CHAPTER 1
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1.2 N =. jus (pu cos O + 1, sin 6) ds,

TE
+ _[LE (p,cos@—71,sinf) ds,

dscos6=dx
ds sin 6 = -dy

Hence,
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N=- [ [@e-p)-@ Pl dxt [T (ntr)dy

Divide by gw S = g ¢(1)
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This is Eq. (1.15).
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TE
= J.LE (-pu SO + 1, cosO) ds,

TE o
+ ILE (p, sin®+ 1, cosb) ds,

(1.8)
, TE TE
A= [ @eep)dyt | (e, dx
, TE [
A= pu-p) =@ D)y [ (T, dx
Qec ¢ Q. . c’°\q, 4.
1 (T1E 1 ¢e
Cy= E ILE (cpu—cpl)dyf; 'L (cf“-cﬂ,)dx
This1s Eq. (1.16).
Mg = J'Z: [(pu cosB + T, SIO)X — (py SINO - T, c0sO)y] dsy
+ Jz [-p, cosO + 1, swO)x + (p, sinB + 1,cos0)y] ds,
, & TE
M= ILE Pu-p,Jxdx- ILE (twtT,)xdy
+ITE [s=-p,] dy+jTE (tat+t,)ydx
g PuPely e Y E
TE . TE
M= [ [P-P) -, -p)1xdx- [ = (tr)xdy
L+ TE | TE |
[ Perpd-@c-pd] ydy+ [ (mrT)ydx
Divide by qmci:
MLF:}'__ 1? J"rE (Pu_pmJ—(pé*pwJ de-_lTITE (_fi_*_i{u)xdy
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Cm, =75 [L (C,, -C,)xdx- jLE (C¢ +C,) xdy

TE c
+ ], (€ =Coydy+ [ (C+C;) vdx]

This is Eq. (1.17).
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For a flat plate, 8 = 0 in Eqs. (1.7) — (1.11). Hence,

N = .[: (Pf‘pu)dxz _[: ["2XIO4(X"1)2+1'19XI05]C1X

3

N’=-2x1(54[%- 24x]' +119x 10%])} = 1.12x 10°
A= qrydx= [ (731x702 4288 x ") dx

A =[1274x"%! =[1274

L' =N’ cosd - A’ sinoe=1.12 x 10° cos 10° — 1274 sin 10°
=[1105 x 10°N]

D’ =N’ sina + A” cosa. = 1.12 x 10° sin 10° + 1274 cosa

=p07x10N

Mie= [ [pu-pdxdx= [ 2x10°1-119%107) x dx
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3 2 . . .
+2x10° [%—%+%}},- [0.595x 105" =[5.78 x 10° N

M’ =M g+ L (c/4) =-5.78 x 10° + 1,105 x 10° (0.25)

=:3.02 x 10" N/m|

M, (=578 x 10%)
Rep = - e = —’ — 516
P N’ 112 x 10°




1.5
C = ¢y COSOL - Cp SINQ

=(1.2) cos 12° = (0.3) sina. = [1.18
Cd = Cp SIDKL + €, COSTL

= (1.2) sin 12° + (0.3) cosa. = 10.279

1.6 cy=¢, cosa + cq sina

Also, using the more accurate N’ rather than L' in Eq. (1.22), we have

Hence:
o°) Cn L Xgle
2.0 0.0498 1.09
0 0.25 0.41
2.0 © 044 0.336
4.0 0.639 0.306
6.0 : 0.846 0.293
8.0 1.07 0284
10.0 1.243 0.277
12.0 1.402 o027
14.0 1.52 0.266
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Note that x¢, moves forward as o is Increased, and that it closely approaches the quarter-
chord point in the range of o of 10° to 14°. At higher angles-of-attack, beyond the stall (o >
16°), X, Will reverse its movement and move rearward as o continues to increase. Compare
the above variation with the center-of-pressure measurements of the Wright Brothers on one
of their airfoils, shown in Fig. 1.28.

17 K =3 (mass, length, and time)
f1 (D, pw, Vs 6, ) =0 Hence N=5
We can write this expression in terms of N - K =5 — 3 =2 dimensionless Pi products:
5 (I, k)
where
Ih = 1f3.(p«. Ve, ¢, D)
IL = f4 (Pos Vior €, 8)

Let ThL=p.® V2D



I=(m £ (4 ) £°m £ 5 =0

mass: a+1=0 a=-]
length: -3a+b+c+1=0 b=-2
time: -b-2=0 c=-.2
Hence:

le T 7 OIH}Z D

puovoo c lpmvﬂ—CZ

2

I, = D2

q9.¢

Let Il =‘pm2 Vo' g

1=(m £3? (£t £° (¢ i'z)d =0

mass: a=>0 a=0
length: -3a+1+b+d=0 d=-1/2
time: -1-2d=0 b=-1/2
Hence:
v
Hz-‘“- =

Thus:

D V.)
fz (H;)Hz)z f (—‘—‘2—,‘—“&—} =0

q.c” Jeg

or:

~

1.8 D=1 (Pus Vi, C, au, Cp, )

K =4 (mass, length, time, degrees)




f2 (Dw; Py VVL‘: €, dw, Cps CV) =0

Hence, N = 7. This can be written as a function of N —K =7 — 4 = 3 pi products:
f3= (1,11, IL)=0
where:
I = £4 (P, Veos €, €p, D)
I =15 (Pw, Veo, €, Cpy o)
3 = f5 (Pes Vs, €, Cps C)
The dimensions of ¢, and ¢, are

energy _ (force)(distance) _ (mft X))
mass(®) mass(®) T m(®)

[epl =

[co] = £7 t2(°y! where () degrees.

For I1y:

pm] V.l & ¢, D=1IT)

m £ (@Y (OF PP O m £ ) =1

mass: 1+1=0 i=-1
length: -3i+j+k+2n+1=0 n=0
time: - -2n-2=0 j=-2
degrees: -n =0 k=-2
Hence:
I = Dz,,,orIL———
FaVa 9aC
For1L:




L=(m 43 (46 () (20 (7 (£ £

mass: 1=0 1=0
length: -3i+1+j+2k+n=0 k=0
time: -1-2k-n=0 n=-1
degrees: -k =0 j=0
Hence:
A
e
For Is:

Tl = p Vo c© Cp Cv

1=(m £ (£ £ £« z't-z)n OF (£ ) )

mass: 1=0 1=0

length: -3i+j+k+2n+2=0 n=-1

time:  -j-2n-2=0 7=0

degrees: n—1=90 k=0
Hence:

Thus, )

or,




Cp=f (Mg, v

1.9

Re, p Voo, \p, p Voe,

My _Via,_V, [T 100 [0
M, V,a V,yT, 200V200

Hence, the Mach numbers of the two flows are the same.

Re, oV (ﬂz) _ e, [T _( 125 )[@)(}_) §,0_9=-_0354
1739/\200/\2 Vzoo '

The Reynold’s numbers are different. Hence, the two flows are not dynamically similar.

M; =M,
and

Re;=Rey
For Mach number:

.Y

a a

1 2

Sincea o v T, we have

vV, Vv, 250

L = = =167
JL JT V223
V. V,c
For Reynolds number: PG P2 T
Hy Hs

Assume, as before, that p o JT . Hence

P V2 VIS

NI

1.10 Denote free flight by subscript 1, and the wind tunnel by subscript 2. For the lift and
drag coefficients to be the same in both cases, the flows must be dynamically similar. Hence

1)
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or,

A A ( c, J _ (0414)(250) (5)

NN 23 \1
" oI,
P2Va _ 3465
JT
Finally, from the equation of state:
101 x 10°
pgT2=%=—2§7—=351.9 (3)

Eqgs. (1) ~ (3) represent three equations for the three unknowns, pa, Vs, and Tp: They are
summarized below: '

v
= =167 1
L (1)
2V,
o =3465 2
3 @
psz =351.9 (3)
From Eq. (3):
P2 =351.9/T> “y -

Subst. (4) into (2):

| 351.9( v,

T \/f)=34.65 (3)

3519

Subst. (1) into (5): (16.7) = 34.65

2

Hence,
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(351.9)(16.7) -
Ty = 222 < [169.6°K]
P (3469)

From Eq. (1): V2=16.7 JT, =167 1696 ={2175 —

seC

3519 _3519 |, o ke
T, 1696 m

From Eq. 3): p2=

1.11 Pb:pa‘pgAh

=1.01 x 10° ~ (1.36 x 10*)(9.8)(0.2)

py={7.43 x 10* N/m?

1.12  Weight = Buoyancy force + lift

W= B + L
) B=(15,000)  (1.1117) (9.8) = 1.634x10°N
\-—Y_J \.._y_l

volume  air density acceleration
() at 1000m  of gravity
(kg/m®)’ (m/sec)

.’
=

Qo= — pw Va2 = — (1.1117) (30)* = 500 N/m*

1 1
2 2
S = nd¥/4 = 1(14)%/4 = 153.9 m’

L= q. S CL=(500)(153.9)(0.05) = 3487 N

Hence:

W=1.634x10°+3847= [L67x 10N~

1.13  Let us use the formalism surrounding Eq. (1.16) in the text. In this case, cq = ¢4, and
from Eq. (1.16), neglecting skin friction

12



Cq= % j:: (CP“ — Cpe)dy | (1)

From Eq. (1.13) in the text, Eq. (1) above can be written as

LE

1 (7€
Cq= ~ j' (CP - Cp,) (- sin O ds) )
C u i
Draw a picture:

Following our sign
convention, note
that 0 1s drawn
counterclockwise
1n this sketch, hence
1t 1s a negative
angle, -6,

From the geometry:
- B=n-¢
Herce, sin (-6) = - sin 8 = sin (n-8) = cos ¢

Substitute this into Eq. (2), noting also that ds = rd¢ and the chord ¢ is twice the radius, ¢ =
2r. From Eq. (2),

Cd=‘_1" J‘TE (Cp“ —Cpt) cosprdd

LE

cd——--;— ILE (va —CPC)_COS(f)d(b

1 rmE 1 =
= f. Coocosddd -5 [, c, cosdpdd 3)

Consider the Iimits of integration for the above integrals. The first integral is evaluated from
the leading edge to the trailing edge along the upper surface. Hence, ¢ = 0 at LE and = at TE.




The second integral is evaluated from the leading edge to the trailing edge along the bottom
surface. Hence, & =27 at LE and & at the TE. Thus, Eq. (3) becomes

_1 * 1 .4
Cd__2_ JO C,. coszbdc[)‘ 5 Izr C, cospdéd

In Eq. (4),
- 2
C,, =2cos" ¢ forO0< ¢ <n/2
z
C, =0 forzﬁcl)gn
C. =2cos? for 27X <4<2
b, —2c08" ¢ or~é—_¢_ 7
3
C,, =0 fornﬁd)i—?

Thus, Eq. (4) becomes
Cg= J-m’z cos® ¢ d ¢ - jiﬂ cos’ od ¢
Since cos’ ¢ d = (% sing)(cos’ ¢ + 2), Eq. (5) becomes
2
ci=I(L sind)(oos? 6 + 277 - (5 sind)(oos’ +2)°
2

c= (%)(1)(2% (DD

d=4/3.

4)

1.14
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Booy
SUBNERGED

P Ay =

FLUID

Consider the a arbitrary body sketched above. Consider also the vertical cyhnder element
inside the body which intercepts the surface area dA; near the top of the body, and dA; near
the bottom of the body. The pressures on dA; and dA; are p; and p; respectively, and makes
angles O; and 0, respectively with respect to the vertical hine through the mlddle of dA; ahd
dA;. The net pressure force in the y-direction on this cylinder is:

dFy=-p)cos 8; dA; +p; cos 8 dA; (1)
Let dA, be the projection of dA; and dA; on a plane perpendicular to the y axis.

dA,=cos 8; dA; = cos 0, dAy
Thus, Eq. (1) becomes

dFy = (p2 —py) dAy ¥l
From the hydrostatic equation

by

p-p= | opgdy (3)

by

Combining Egs. (2) and (3),

h2
dry= [* pgdyday “)

However, dy dAy = dV = element of volume of the body. Thus, the total force in the y
direction, Fy, 1s given by Eq. (4) integrated over the volume of the body



Fy = gdV
5 #, »

Force onbody  Weight of fluid displaced by body.

1.15 From Eq. (1.45)

o L 2W 2(2950)
L= = =
3.8 P V.S (0.002377)V,7(174)
14265
CL= Nk M

]

Also,
Cp = 0.025 + 0.054 C;* Q)

Tabulate Eqgs. (1) and (2) versus velocity. .

L C;
V. (ft/sec) Co Cp D-C,
70 2.911 0.483 6.03
90 1.761 0.192 - 9.7
110 1.179 0.100 11.79
130 0.844 0.063 13.40
150 0.634 0.047 13.49
170 0.494 0.038 13.0
190 0.395 0.033 11.97
210 0.323 0.031 10.42
230 0.270 0.029 9.31
250 0.228 0.028 8.14

These results are plotted on the next page.
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FLIGHT VELOCITY, VY ( Fr/sec)

Examining this graph, we note, for steady, level flight:

1. The lift coefficient decreases as V., increases.

2. At lower velocity range, the drag coefficient decreases even faster than the lift
coefficient with velocity. (Note that on the graph the scale for Cp 1s one-tenth
that for Cy.)

3. As a result, the lift-to-drag ratio first increases, goes through a maximum, and
then gradually decreases as velocity increases.

Tt can be shown that the maximum velocity for this airplane is about 265 ft/sec at sea level.
As seen in the graph, the maximum value of L/D occurs around V. = 140 ft/sec, which 1s
much lower than the maximum velocity. However, at higher velocity the value of L/D
decreases only gradually as V. increases. This has the practical implication that at higher
speeds, even though. the value of L/D 1s less than its maximum, it is still a reasonably high
value. The range of the aireraft is proportional to L/D (see for example, Anderson, Aircraft
Performance and Design, McGraw-Hill, 1999, or Anderson, Introduction to Flight, 4™ ed.,

17




McGraw-Hill, 2000). To obtain maximum range, the airplane should fly at the velocity for
maximum L/D, which for this case is 140 ft/sec. However, one reason to fly in an airplane is
to get from one place to another in a reasonably short time. By flying at the low velocity of
V=140 ft/sec, the flight time may be unacceptably long. By cruising at a higher speed, say
200 ft/sec, the flight time will be cut by 30%, with only an 18% decrease in L/D.

18



CHAPTER 2

s

i;:_ﬁ pdg

If p = constant = p.,

F= -p. 4| pdS (M)

However, the integral of the surface vector over a closed surface is zero, 1.e.,

gfidgzo

Hence, combining Egs. (1) and (2), we have

F=0

22

T mmy miam —n r— m— m T

N
7 7S 7 7 /t{ S S S S
Lower Wa/l/ e (x)
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Denote the pressure distributions on the upper and lower walls by pu(x) and p, (%) respectively.
The walls are close enough to the model such that p, and p, are not necessarily equal to p.,.
Assume that faces ai and bh are far enough upstream and downstream of the model such that

P~ P and v=0 and ai and bh.

Take the y-component of Eq. (2.66)

= §f (V& v- [[ Sy

abhi

The first integral = 0 over all surfaces, either because {)/ Es = 0 or because v=0. Hence
L'=- || (0dS)y =-[| pudx; | p, &
abht a i

Minus sign because y-component is in downward
Direction. '

Note: In the above, the integrals over 1a and bh cancel because p = p» on both faces. - Hence

k b
L'= | p,dx- [ pedx

i

_v_oy/x1 4y v

23 d_Y 2 2y
dx u cx/(X"+y) x

dy &
Yy X

mhy=4fnx+c;=~Ln(cyx)

The sireamlines are straight lines emanating from the origin. (This is the velocity field and
streamline pattern for a source, to be discussed in Chapter 3.)

24 JW_Y_ X
dx u y
ydy=-xdx

20



y2 = .x* + const

, .
X+ y2 = const.

The streamlines are concentric with their centers at the origin. (This is the velocity field and
streamline pattern for a vortex, to be discussed in Chapter 3.)

2.5 From inspection, since there is no radial component of velocity, the streamlines must be
circular, with centers at the origin. To show this more precisely,

u=-Vegsin=-cr Y =-Cy
T

X
v=VacosO=cr — =¢x
T

& +xX = COIlSt.]

This 1s the equation of a circle with the center at the origim. (This velocity field corresponds fo

solid body rotation.)
26 W_Y¥Y__¥
dx u

* ¥y

Ihy=x fnx+c X

¥l a \*\ /r

The streamlines are hyperbolas.




27 @ P _v.§
o Dt
In polar coordinates: V {’f = 12 TV + lﬂi
T a T O
Transformation: X=rcosH
y=rsin®

V,=ucos8+vsmnb

Ve=-usin6+vcosB

22



cx  _ cr cos@ ¢ cosd

u: 2 ') - 2 -
x"+y7) re r
ve cy _ o sind _ ¢ sinf
= +3%) r? T

c 3 c .5 c
;= — cosS O+ — siInB=-—
r r T

c . ¢ ]
Ve=- — ¢c0s0 sinf + — cosO sinf =0
T r

0+ 120

v-v=_i2
ra r o8

(b) From Eq. (2.23)

AR AT A
a r 1o

VxV=¢,[0+0-0]=)

The flowfield is irrotational.
28  u= cy _cr smf _ ¢ sinb
) (x* +vy%) r? T
gy "X _ & cosf _ ¢ cosd
(x2 +v?) r’ T

c . c ;
V.= — cosB sind - — cosO sind =90
T r

c . c c

Vg=- — sin?0 - ~ cos@=- —
T T T

©+ 22D — g4 0-

(a) v‘{*]:_l__o"_
ré& r o8



z

(b) Vx {}’ = e_} {_ﬁ(*(:/l’)_i_lé(_@n}

e c (v
: [_5___0}
o7,

Vx Ve @ except at the origin, where r = 0. The flowfield is singular at the origin.

2.9 V.=0. Ve=cr

VxVe=e [MJFE_M_@}
& r r o6

= e, ctc-0)=2ce,

The vorticity is finite. The flow is not irrotational; it is rotational.

2.10
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Mass flow between streamlines = A y
Ay =pVAn

Ay =(-pVe) Ar+p V; (1)

Let cd approach ab

dy=-pVadr+prv,do 0]
Also, since v = (1,0), from calculus
dt,z_/=—5—l’:y~dr+ 2% do 2)
‘ & éo '
Comparing Eqgs. (1) and (2)
Sy
o Va= 2T
P Vo a
and
.
rv,=—
P 26
or:”
1 Sy
Vr: - -
P r &4
. By
Vo= 22
p Ve Py }
oy
211 u=cx=-—2L jy=cxy+f(x) (1)
%4
v=~cy=-g%:w=cxy+f(y) )

25




Comparing Eqs. (1) and (2), f(x) and f(y) = constant

[\y=cxy+const;]

w=ex= Y p=al+1)

V__:_Cy=il//_:¢=-cy2+f(x)

Comparing Egs. (4) and (5), f(v) = - cy” and f(x) = cx”
o =c (v

Differentiating Eq. (3) with respect to x, holding = const.

dy
0=ex — +¢
dx Y
or,
d
) _ -
dX w=const

Differentiating Eq. (6) with respect to x, holding ¢ = const.
d
0=2cx—-2¢y A
dx

o1,

Comparing Egs. (7) and (8), we see that

w=const

dx

g

¢=const

Hence, lines of constant y are perpendicular to lines of constant ¢.

3)

(4)

)

(6)

()

()
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212, The geometry of the pipe is shown below.

V: /OQM/:‘:G I
—
[

i
-~

‘é:/ﬁ‘ﬁ'rr,,’/}cﬁc l

As the flow goes through the U-shape bend and is turned, it exerts a net force R on the internal
surface of the pipe. From the symumetric geometry, R is in the horizontal direction, as shown,
acting to the right. The equal and opposite force, -R, exerted by the pipe on the flow is the
mechanism that reverses the flow velocity. The cross-sectional area of the pipe inlet is 7d*/4

~where d is the inside pipe diameter. Hence, A = td*/4 = 7(0.5)*/4 = 0.196m”. The mass flow
entering the pipe is

m = p; A Vi = (1.23)(0.196)(100) = 24-11 kg/sec.

Applying the momentum equation, Eq. (2.64) to this geometry, we obtain a result similar to Eq.
(2:75), namely

R=-4f (pv-as)v 6]

Where the pressure term in Eq. (2.75) is zero because the pressure at the inlet and exit are the
same values. In Eq. (1), the product (p V * dS) is negative at the inlet (V and dS are in opposite
directions), and is positive at the exit (V and dS) are in the same direction). The magnitude of p

V = dS is simply the mass flow, m. Finally, at the inlet V) is to the right, hence it is in the
positive x-direction. At the exit, V; is to the left, hence it is in the negative x-direction. Thus,
V,=-V; With this, Eq. (1) is written as

R=-[-m Vi+m Vo= m (Vi ~V3)

= m [Vi— (-V))]=m (2V7)

R= (24.11)(2)(100) =

27




CHAPTER 3

3.1  Consider steady, inviscid flow.

& & & _ B
X-momentum: pu — + pv — F pW.— =~ ——
K & oz &
y-momentum: pu ﬁ +pv _(?V— + pw _&1 =_ @
2 X & &

Al b A _ &

z-momentum; pu — +pv —— F pW — F- ——

179 Poza oz

Multiply (1), (2), and (3) by dx, dy, apd dz respectively:

115"l—l-d)(-l-védx+wé dx---}—ép

X & or p X
uéd} +vé;v—dy+wgd __léb

X 24 ér px
u@ dz+v o dz+W—é—‘-W-—dz=-l % dz

& ; 12 P&

Add () + (5) + (6):

u(@dx+ji—v~dy+@dz) +v (édx+—aidy+@dz)
& X & &y & &

+w (él—dXJr—a—v-der@dz) - (épdx+@dy+ )
L a . dL 2 & ar

For irrotational flow (see Eq. (2.119)): VXV =0

-

Hence:

2

»|¥

X s
&’ &K &

2|

A
2

Subt. Eqgs. (8) into (7):

28
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udU'f‘VdV'FWdW:-idp
P

La@ eV wh= ~d (V) =VaV=- < dp
2 2 Jo)

dp=-pV dV which integrates to

p+ % p V> = const.

for incompressible flow.

(2)(P1 '— p?,)
AN
nE

py = 2116 I/ft’; p, = 2100 Ib/AE", Ao/A1 = 0.8

32 V=

v, = | 2(2116-2100 _[547 fosed

e (O

) A
33 —pa=Ya2p V¢ [ 1
P1—P2 p Vi {A

2 '
j - 1}5 Va (1.23)(90) [(1/0.85)* - 1)=[1913 N/m?}

2

2 wAh

4 Vs A1-(a,7/4,)]




m
b3

W= pmg = (1.36x 10 (9.8 )=1.33 x 10° N/m?

sec

A
AB=10cm=0.1m; p= 123 kg/n’, -2 =—
A, 12

2(133 x 10°)(01) _ |

=

Vy= 147 m/se

35

‘p1—p2=w Ab=(1.33 x 10°)(0.1) = 1.33 x 10" N/m’

p2=p1—133%10*=1.01x10° —1.33 x 10* = 8.77 x 10 N/m®

Po=p2+ % p V2=877x10"+ % (1.23)(147)* = [L.01 x 10° N/m’}

Note: It makes sense that the total pressure in the test section would equal one atmosphere,
because the flow in the tunnel is drawn directly from the open ambient surroundings, and for
an inviscid flow, we have no losses between the inlet and the test section.

3.6 Po = P T l mez
2
voe [2@.=Po) =\/2(1.07—1.01) x10° Jooom
ye) 123 sec
\Y4 130}*
37 Co=1-|—1| = _(—F) =07
1y =1-(5) -
3.8 {}zV T V. =1u = constant

f
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TN

—-l
=

VXV =

¥l

g 2
&K &

cu ;Ony

It 1s a physically possible incompressible flow.

0 0
=3 (0-0)- 3 (0-2{)‘& (0—%;

Vx V=0 The flow is irrotational.

3.9  Forasource flow,

In polar coordinates:

<
<
Il
|

<
<l
Il

[ B

Q—’[QJ QJ|QJ
-
+
{—
‘;n\
=2

Hence, the flow is a physical possible incompressible flow, except at the origin where r = 0.

\(\(A

A

What happens at the origin? Visualize a cylinder of
radius ¥ wrapped around the line source per unit depth
perpendicular to the page. The volume flow across this

cylindrical surface is




ﬁ?-éfs e

Since we are considering a unit depth, then we have the volume flow per unit depth. This is
precisely the definition of source strength, A. Hence, from (1),

A=constant= ff V- dS : @)

5

From the divergence theorem:
ﬁ V- &’s=<§ﬁ(v-?}) dV (3)
5 v
Combining Eqgs. (2) and (3)
ff (v-V) av=A = constant | (4j
Shrink the volume to an infinitesimal value, AV, around th¢ origin. Eq. (4) becomes

(V-V) AV= A

Taking the limit as AV — 0

- -y
(V-V)= hm “A%_—'_zoo- Hence V-V = oo at origin

o
To show that the flow is irrotational, calculate VXV,

e, T e, & 100 e,
T & o0 & T & a8 &z
V, 1V, v, Ay 0
2ar
0 0 0 0

Vx{;Z—r ge EUO‘BAEZMJ*"‘%igO_a&sz) :@
oz éa




Hence,

V xV =0 everywhere.

By . TP _,
& &
@ _ . T _,
& &

Hence, Laplaces equation:

2 T a2
;? + %? =0+ 0 =0 is identically satisfied.
i dy _, Sy
Similarly, fory=Vy, —/— =0, =0
Y, 10T ¥y: e =
= ~2
& &

Hence, Laplaces equation:

&’2W+ &y
ﬁy?_

@EZ

=0+ 0 =0 1s identically satisfied.

3.11 ¢=§/-\:- o
y/4

NS S N S

& 21t & 27t
2
F_y 7,
0 o8t -
Hence, Laplace’s equation o
-2 [}
T\ & P J9F r o

1s 1dentically satisfied.

L
L)




Hence, Laplaces equation

10"(0”1//) 1 &y 18 1
| |4 = = () + 5 (0)=0
ra\la) o ra e

is identically satisfied.

3.12 The stagnation point is a distance A/27V., upstream of the source. Hence,

A
27V,

=1, 0or A=21V,

The shape of the body 1s given by

A A
j=Versinf+ — 0= -—
v 2 2
or,
A
Ising+ O=—
27V, 2V,
or,
27V 272V
rsinf+ At f= Gt
27V 2V,
or,
E sinf+0=r| Equation of the semi-infinite body.
T—6
r=2"72
siné



O(rad) I
T 1
3 1.0033
2.8 1.02
2.5 1.072
2.0 1.255
/2 1.57
13 1.91
1.0 2.54
0.75 3.509
0.5 5.51 |

To plot the pressure coefficient:

Vr:VwCOS@“FA =Ve.cos 0+
2
Ve=-V,smb
or,
v
L. =¢ps O+ 1
v, T
—=-4n 0O

X =r1cosb Y =1 sinb
-1 0
-0.990 0.1416
-0.961 0.3416
-0.859 0.6416
0.522 1142

0 1.57
0.511 1.84
1.372 2.14
2.57 2.39
4.84 2.64

272V

=0

27

iy

Cartesian Coordinates of Body

v
=Voc0508 + —
T

=cos«9+-?-c039+i2+ sin? 6’=1+~2—cos6’+i2

r T I




(@}
=

1.0
0.98
0.886
0.624
0.0283
-0.4057
-0.554
-0.580
-0.4982

-0.352

N N

\

[Bony swmer

Zed
/0% - -
| Sk o
G /.0 20 2¢ 7.0 5o
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At pomt A: Velocity due to freestream = V,

Velocity due to source = _A
27(r+b)

(note that it is In the negative x-direction)

+

Velocity due to sink = OGN
27(r +b)

(Note that it is in the positive x-direction)

Total velocity at Point A:
Vi=V., A 1 + A 1

" 2% (1-b) 27 (r+b)
From point A to be a stagnation point, V5 = 0.

O=V,x,+-A—[ ! + ! 1.
27 (r+b) (r—b)

O:Vm+_j_\_‘{r—b*(:+b)}=vm+£ (7—2b)7
27 | (t+b)r—b) 27 1t°—-b"

Vo Pty = 2 omy= A0
2r T

2= Ab e
v,
r= Ab +b?
v,
314 VrZ%il _5_9{. (1)
: & 1 9 _
k sing

For a doublet:oy = - —
2T r

a0 27 T

@)



Substitute (2) into (1)

op 1

g T

(_ K cos@)_ K cosf

27 1 27 1°

Integrating with respect to r

o)

or.

X cos@

o=

27T r

315 w=(Varsing) (1 - RJ

I

V.= 1oy (Vo cosB) (1 - Rz)
T

o8 1’

2
Ve=- %I/i =- (1+R—2] Ve sind

3
RZ - N 2 2
VE=V7+ Vg = [1— j Ve c0s°8 + (1+ ZJ Ve 5in’0
-/ r
V? 2)? .
Cp=1-—5= -(1——2) cosze—(1 R’) sin’6)
A\ Iy r?
Atthe surfacé, =R
Cp=1—4sin’0
V 2
3.16 From Eq. (3.93): Vr = (1 - R2 ] coso
- T




i

—(1+R2)sin6
r

At any given point (1,0), V; and Vj are both directly proportional to V. Hence, the direction -

v
From Eq. (3.94): vg—

of the resultant, V, is the same, no matter what the value of V., may be. Thus, the shape of

the streamlines remains the same.

v 2
3.17 From Eq. (3.119): L= (lw R_, J cosd

\'A I

\Y R? r
F Eq. (3.94): —‘9=-(1+—~) me -
Torn Eq. ( ) v o s gy

Note that Vg/V., is itself a function of V., via the second term. Hence, as V., changes, the
direction of the resultant velocity at a given point will also change. The shape of the

streamlines changes when V,, changes.

318 L'=poVel

L 6

= 0.163 m*/sec
PV, (123)(30)
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3.19  Atstandard sea level conditions,

slag

3

Do = 0.002377
He=3.737x 107 -8
(ft)(sec)

Also:

V=120 mph =120 (ﬁ) ft/sec=176 R
60 sec

Qoo = % Poo Voo = % (0.002377) (176)* = 36.8 Ib/ft*

For the struts: D=21in=0.167 ft.

Re% pVD _ (O._002377)(187.7)(0.167)
M 3737 x 107~

= 199,382

From Fig. 3.39, Cp = 1. The total frontal surface area of the struts is (25) (0.167) = 4.175 f%.
Hence,

Drag due to struts:

Ds= 0w S Cp=(36.8)(4.175)(1) =153 Ib
o ] ) 3
For the bracing wires: D = —35111 =0.0078 ft

Re =199382 (0'0078
0.167

Joson

Fgom Fig. 3.39, Cp = 1. The total frontal surface area of the wires 1s (80) (0.0078) = 0.624
ft". Hence,

Drag due to wires:
Dyw =09 S Cp=(36.8)(0.624)(1) =23 1b

Total drag due to struts and wires = Dg+ Dy =

153 +23 =174

41




The total zero-lift drag for the airplane is (including struts and wires)

Cp, =qa S Cp, = (36.8)(230)(0.036) =

Note that, for this example, the drag due to the struts and wires is

768 = 0.58 of the total

drag —i.e., 58 percent of the total drag. This clearly points out the drag reduction that was
achieved in the early 1930°s when airplane designers started using internally braced wings
- with one or more central spars, thus eliminating struts and wires completely.

3.20 The flow over the airfoil in Figure 3.37 can be syntheized by a proper distribution of
singularities, i.e., point sources and vortices. The strength of the vortices, added together,
gives the total circulation, I, around the airfoil. This value of T is the same along all closed
curves around the airfoil, even if the closed curve is drawn a very large distance away from
the airfoil. In this case, the airfoil becomes a speck on the page, and the distributed point
vortices appear as one stronger point vortex with strength T". This is exactly equivalent to the
single point vortex in Figure 3.27 for the circulat cylinder, and the lift on the airfoil where
the circulation is taken as the total I is the same as for a circular cylinder, namely Eq.

(3.140),
) L' =po Vol
—_ @ﬁn/%e
- \d}'fr)"ancc'
7
[ away
— — / N\
— — o
~ { T
DOrstrt butess \
‘o S99 @t laprhe, i ! /Bt
‘ e ) 1y L Vertex |
. /
S —_— . - - \ /
N /
~
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CHAPTER 4

4] qw::_:!_ pmvmzz

5 % (0.002377)(50)* = 2.97 Ib/ft*

¢, =0.64 and ¢, =-0.036

L' =qes c, =(2.97)2)(1)(0.64) =[3.80 Ib per unit span|

Mg =g S ¢ ¢, = (2.97)(2)(1)(2)(-0.36) = 0.428 ft/Ib per unit span

42 Qu=-= pw Vo == (1.23)(50)" = 1538 N/m’

b | =

oL 153
g8 (5382

From Fig. 4.5,

Dr:c_fPD——“gs-Fq’ {;gs

t
Dds =d§f}
Dt

Hence, the second term in Eq. (1) becomes

4§ v-av={ d(l;—)zo

From the momentum equation,

43



DV _ 1 : |
——- =- = Vp (neglecting body forces)
Dt P

Hence, the first term in Eq. (1) becomes

DV = 1 = d
T U

‘When p = const, or p = p(p), then

dp _ ‘
»Cf L. Hence, from Eq. (3)
c P

45:[—-ds=o - “4)

Substituting Egs. (2) and (4) into (1), we obtain-

Dr _

- 0 Note: See Karamcheti, Ideal-Fluid Aerodynamics. for more

details (pp. 239-242).

44 Mip=-p.Ve [ EYE) A

Ll

T C c '
- Po Voo — (1 -¢c0s8) 6 (y)— snb 46
paVeo [ = (1-c0s0) 0 () sim

C2 29 )
:_pme—Z2ochj (1—co0s"0)do

, .
c T 1 2 2 7T
= po Vi —at | | = (5 pu VD) & -
Po Ve oy [2] (5 P=Ve) e =

= guc? %‘i This is Eq. (4.36).

4.5 ¢, =2 m o where o is in radians. Hence
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15
=21 | —|={0.164
o n(S?.B] 0.164
Cp,. = - ¢/t =r0.041

4.6

1 r7» dz
Oljmpg=- — — (cos8-1)do
C Op=g EJ.D i (c )

(@)
For0<X<04 (E) =02-05 (fj
c dx/, c
For0.4 <2< [—Z) = 0.0888 — 0.2222 (EJ
C X C.

Since x = % (1 -cosB), then

(25) =-0.05 + 0.25 cos8, for 0 <0< 13694
X/

(%) =-0.0223 + 0.1111 cosO, for 1.3694 <8 <n

2

1 13694 - 1
=— | (-0.05+0.25 cosB)(cosd - 1)d0 - — |
o /A

i

T

13694

"(-0.0223 + 0.1111 cosB)(cost - 1) dO

1 13694 2
=-— | (0.05 ~ 0.3 cosO + 0.25 cos’0) dO
7: o

L | (0.0223—0.13334 0030 + 0.1111 cos?0) dO
g 7 13694

/L =

— L [0.056 - 03 sind +0.25 (%,% cin2g) P55

45




. 0 .
[0.0223 6 - 0.1334 5100 + 0.111 (5 +% s1n26) 115604

y =

_ 1 [0.06847 — 0.2939 +0.1712 + 0.0245] - E [0.0701 + 0.1745]
T Vs

+ L 10,0305 -0.1307 + 0.0761 + 0.0109]
/A

_ 02281 o
A

®)

c, =2 7 (o + 0y =g) Where o is in radians

¢, =2 13- (416]=0782
37,3 _

47 A= 2 Iﬂ _d_z cosO do
x Jo dx
2 1.3694
== (0.05 + 0.25 cosB) cosd do
bl s}

o2 Ix (-0.0223 + 0.1111 cosb) cosd do

) 13694

_2 [ (005 cosd +0.25 cos9) 40 +
7Z‘ o

2 f” (-0.0223 cos6 + 0.1111 cos’) do
jT -

13694
=2 005 sin0+025 (242 sinogy e
F/a 2 4

+ 2 [(0.0233) sin + 0.1111 (%% 5in26) g4
T

46



z [-0.04899 + 0.25 (0.6847 + 0.09800) + 0.1745
T
+0.02185— 0.1111 (0.6847 + 0.09800)]
2
A; = (0.2561) = =0.1630
T

dz
dx

A, = 2 j” c0s26 do
. /AR

2 1.3694 _ 2 ¢
== j (-0.05 + 0.25 cos®) cos 2040 + — j (-0.0223
T ° T 1.3694

+0.1111 cosB) cosh d6

smé sm3g
+.—-.—_.-—
2 6

)]1.3694
o

_2 [i(—0.0S) sm 20 +0.25 (
T 2

sind sin3é4 .,
5 +_6-‘")]1.3594

2 .
+ = [% (-0.0223) s 20 + 0.1111 (
T 2

SN

[-0.009800 + 0.25 (0.4899 — 0.1372) + 0.004371
- 0.1111 (0.4899 —0.1372))

= (0.0436) = -0.0277
. T

Cp, = % (Az—Ay) = % (0.0277 — 0.1630) =[0.1063

X -
w1 [1+ z (A —-A)]= 1 1+ ~ (0.1630 - 0.0277)] =0.386
c 4 c, 4 0.782
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Experiment (Ref, 11) Theory

% Difference

KL=0 -3.9° -4.16°
c, 0.76 0782
c -0.095 -0.1063

Moy

6.25%

2.8%

10.6%

49 Mip=-p.Vo | E¥E) &

M, -2 e
O™ T | ex®a
~pVer YeC
S PoVe
Cc
E= 5 (1 - cosB)

dt = % sin® d@

siné

1(0)=2 V. [AOM)-+Z A Sinn.é’}
’ n={

With the above, Eq. (1) becomes

>

c__ == J:Ao(l—coszmde-i_[

Wigry
n=}

Note the following definite integrals:

j: cos’0 46 =

SAR

= _2 _'_7-[—
JO s 0 do = 3

J " cosO sin*0 do =0

43

T A, (1 - cosO) sind sin nd d6
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j” sind sinn® d6 =0

o

J” cos0 sind s 26 do = %

j”cosesmesmnede=o forn=3,4,. ..

Hence, Eq. (2) becomes:

s s s
C = [nAg- 2 Ao+ L A-Z A
e [ 5 e ‘2_“.1 2 7]

C _— -

Mg

A
(A0+A1 = 72)

SHE

410 The slope of the lift curve is

_ 065-(-039)

= (0.104 per degree
4 —(-6)

The slope of the moment coefficient curve is

—0.037 — (-0.04
m, = 0037~ ( ) =8x10" per degree

4=(-6)

From Eq. (4.71),

_ —4
Kae T + ogsz_g—gié—g_ +0.25=10.242

a4,
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5.1

CHAPTER 5

— - > -
o0 df x T=(R d) e

N :
where ¢ is a unit vector
perpendicular to the plane of
the loop, directed 1nto the page.

By symmetry, the resultant velocity dute to the entire loop must be along the x-axis. Hence,

e it ' (ardl

V] = J' ‘dV coser—(Z;J.o :2—) cosb =
—r——,—lw——z—- (27R) cosb =
47 (AT +R%)



R I R?
(A*+R*) JR?4a  2(AT+ RY)™

r R
2

53 a= 2o , where a, = 0.1080 per degree = 6.188 per radian

a
I+——(1+
AR( 2

From Fig. 5.18: § =1=0.054.

a= 6182188 =4.91 per rad.
T+ ——— (1+ 0.054)
7(8)

= (.0857 per degree

Ci=a (o - a=o) = 0.0857 [7—(-1.3) = 0.712

Co = (1 +8)= LT (1 054)-
T mR ()
2 2z
s4 Ar=2 -GV _¢m

s 170

At standard sea level, po = 0.002377 slug/ft’

Vi =120 mph (-——788 ft/ secj =176 ft/sec
{mph _
Qoo = % P V2= % (0.002377) (176)* = 36.8 Tb/ft*

a2, = 0.1033 per degree
=5.92 per rad .

EOW 2450
q.S q.S  (368)(170)

CL= 03916



a, - 592

a= = =4 38 perrad

fr-2e (14r) 1+ 092 (1+012)
TT. o 7(6.02)
=(.0764 per deg

CL=2a (o - on=p)

C. -
S 03916 =B

a 0.0764
2 ' 2
55 L (09167 0.01267

> T RAR  2(64)(602)

Di= G S Cp, = (36.8)(170)(0.01267) =

5.6 To be consistent, we will use Helmbold’s equations for both the straight and swept
WIngs.

(a) a,= 0.1 per degree = 0.1 (57.3) = 5.73 per radian

a, 573

= = 0304
TAR  w(6)

From Helmbold’s equation for a straight wing, Eq. (5.81),

aU

2=
J1+[a, /(7AR)] +a, / (TAR)

) 573 =273 G247 per radiad]

J1+(0304)% +0304 1349

(b) From Helmbold’s equation for a swept wing, Eq. (5.82), where

a, cos A = 5.73 cos 45° = 4.05 per radian

and
a,cosA 405
TAR 7(6)

=0215

we have
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a, CosA

ae |
J1+[a, cosA/(#AR)] +a, cosA/(7AR)

4.05 405

= =~~~ = .27 per radian
JI+(0215)% +0215 123785

Comparing the results of parts (2) and (b), we readily conclude that the effect of wing sweep
1s to reduce the lift slope. Moreover, the reduction is substantial.

J

5.7  Again, we use Helmbold’s equations.
(a) a,=5.73 per radian

a 573

° =22 _ 0608
7AR  7(3)
ao .
a:
J1+[a, / (AR)Y +a, / (7AR)
573 573

= = = [3.222 per radian
J1+(0608)2 +0.608 1778

(b) ao cos A =4.05

a, CosA 405
AR (3)

T
i 4

a, cosA

a:
\/I—I‘[ao cos A/ (mAR))? +a, cos A/ (7AR)

_ 4.05 _ 4:_05 _
J1+(043)? 1043 15185-

In Problem 5.6, with an aspect ratio of 6, we had

a,,
_swept i@l =077
4247

a straight

LA
L3




The lift slope for the swept wing is only 77% of that for the straight wing when the aspect
ratio of both wings is 6. :

In Problem 5.7, with aspect ratio 3, we have

oo 2667

= =083
3222

a

straight
The lift slope for the swept wing is 83% of that for the straight wing.

Conclusion: Wing sweep decreases the lift slope. Moreover, wing sweep affects the
lift slope to a greater degree for higher aspect ratio wings than for lower aspect ratio wings.
This makes some sense, because the lift slope for low aspect ratio wings 1s already
considerably reduced just due to the aspect ratio effect.
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CHAPTER 6

61 Vi=-—, Vg=0, V4=0
2
e, re_; (rsin@)e:
Vx {)7: 5 1_ _5’_ i _0"_
1 siné & iz ap
C
— 0 0
1_2
1 ‘& /1 - 2
_ {e (0— O)—-ree( d —O)—H’Sin@ ea{ofﬂ’/r j} |
¥ sin6 0z a6
{0-0+0}=0
I' Sln
Flow is 1rrotational.
[— c J— pr—
62 V=, Ve=0, V4=0
2 1 & 1 7 1 200
v V=1L RS =L O
rt & Isind 56 rsinfd o
v §=~15-§-+0+0=0+0+0:
r° &

The flow is a physical possible incompressible flow.

6.3

For the sphere: Cp=1- % sin0
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For the cylinder: Cpe.=1-4 sin’@

At the top of the sphere: 0 = n/2, hence
(Cp)sphere = - 5/4 = ~1.25

For no manometer deflection, (Cp)sphere = (Cpeyt.
-1.25=1-45in’0
sin’® = 0.5625
sinb = 0.75

Hence:

The pressure tap on the cylinder must be located at an angular position 48.6° above or below
the stagnation point. '
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CHAPTER 7

71 p=pRT
_ p _(78QLie) 0.0103 shug/ft]
RT (1716)(934)
72 (a)
_ R _(40716) | o ftl
y—1 04 slug °R
o= R _1716 |, g, ft 10
y—1 04 shug °R
e =c¢,T = 4290 (934) ={4.007 x 10° ft 1b
slug
h=c,T = 6006 (934) ={5.610 x 10° ft 1o
_ shug

(b) For a calorically perfect gas, ¢, and ¢, are constants, independent of temperature.
Hence, we have again

ft b
slag °R

¢y = 6006

ft Ib

¢y = 4290
slug °R

Also, at standard sea level, R = 519°R. Hence

ft 1o
slug

E=4290 (519) =2.227 x 10°

ft b

h = 6006 (519)=3.117 x 10°
slug
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hy —hy = ¢, (Ty - TY) = (1004.5)(690-288) ={4.038 x

105 jo’ule

kg

&2 — e = ¢y (T2 - T1) = (718.5)(690-288) ={2.884 x 10°

joule

kg

69

S5 =c Z-R mP2 = (10045) En——% - (287) fn 8.656 =

T, P 28

2582

joule
kg °K

p. 435 x 10°

74 po= = =0.6186 kg/m’
RT, (287)(245)
Wy
_p__(LJ
Po \Po
My a 4 1/3/4
P =P [lJ o018 | 28X 10| dosa04 K8
Pa 435 x 10 m
A
-1
75 i%ﬂf
p. T
}-{T 1) 027
T-1, (i] s 1) -7
p 101 x 10° -y
= — =" =359 kg/mv
RT  (287)(259) 1339 kgfmn]
7.6 pv=RIT, hencev= RT

P
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Note: 1 atm=1.01 x 10° N/m?

_ 2
S L hosx107 B
P (02)(101 x 10%) N

¥
[VZ
Vi

r
For an isentropic process: b (ﬂj =
P2 P

Le., pivi' =pavy’ or pv’ = constant = ¢;

7
_[ClJ
V— —_—
P

[é‘j _ %(C*)w (p)~(1/7)-1 __ _;: (pV" }L"y (p) iy 4

= L 13536 x 107 2
(14)(02)(101 x 10°)

R _(AAHATI6) _ 0o ftlb

77 cp= 2
T 04 slug °R

2 2 : 2
‘h{,'—'h+—Y—-=cpT+ v =(6006)(480)+m=3.72'8x106
2 2 shig

ft b

7.8 Let (hy)ses = total enthalpy of the reservoir = ¢, (To)res
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2

.
(he)e = total enthalpy at the exit = ¢, Te + 2°

For an adiabatic flow, h, = constant. Hence

(ho)res = (ho)c

2
Cp(To)res = Cp Te+ "_25_

Vo= 2 ¢ [T -T.]= J2(10045)(1000— 600) ={896.4 m/sec

p. _ (0.61)(101 x 10%) .
o_R (0819)287)

(y-1)y {r=0fy 0.2857
T _ (L} S T=Te (_p_j =262.1 (E) =247.6 K
T P P.. 0.61

a

79  Tn= 621 °K

Since the flow is isentropic, it is also adiabatic. Hence, ho = constant

v 2
2 2

V= J2(h, R+ VE =2 o, (T ~ T+ V2 =+/2(10045)(2621 - 247.6) + (300)°

=345 m/se
V2 . Vv?
710 patp—2=ptp-——
P TP 5 pPYe 5
V= 2—(pi--w12+\7w2 :\[2(1'01 x 10°)(061 O'5)+(300)2 =3422 m/sec
Je) 0819

% error = (ﬁ%—gﬁjx 100 = 0.81%
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=Dy 03 0.2857
711 T=T. (—p—) =262.1 (—-) =214 °K
. 0.61

V = 1/2(10045)(262.1- 214) + (300)> =432 m/sec

7.12

I 7)(061-03
V:\/2(101 X 10°)O061-03) | 30012 = 408 misec

0819

‘ 432 - 408.
% error = (%z)x 100 = [5.55%

7.13  From Eq. (7.53)

VI
h+ 7 = constant

From Egs. (7.6b) and (7.9),

h=c,T= b (1)

y—1
From the equation of state,
RT=plp @)

Combining Eqgs. (1) and (2),

b= L (2} )
7—1\p

Hence, Eq. (7.53) can be written as

. 2
. L (3] + yo_ constant 4
y=1\p 2

In the limit of y — oo, Eq. (4) becomes

61




p + 2 p V2 = constant

which is Bernoulli’s equation. Hence, the energy equation for compressible flow can be
reduced to Bernoulli’s equation for the case of ¥ — «. Hence, the ratio of specific heats for
incompressible flow is infinite, which of course does not exist in nature. This 1s just another
example of the special inconsistencies associated with the assumption of incompressible
flow, i.e., constant density flow, which of course does not exist in nature. This is why we
have stated earlier in this book that incompressible flow is a myth.

As to the question whether Bernoulli’s equation 1s a staternent of Newton’s second
Jaw or an energy equation, we pow see that it is both. For an incompressible flow, the
application of the fundamental principles of Newton’s second law and the conservation of
energy are redundant, both leading to the same equation, namely Bernoulli’s equation.
However, philosophically this author feels strongly that Bemoulli’s equation is
fundamentally a statement of Newton’s second law — it is a mechanical equation. This 1s
how we derived Bernoulli’s equation in a very straightforward manner in Chapter 3. For the
study of inviscid incompressible flow, we need only to apply the fundamental principles of
mass conservation and Newton’s second law. The principle of conservation of energy is
redundant and 1s not needed. '
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CHAPTER 8

a= [IRT =/(14)(287)(230) =[04 m/seq

8.1

2
8.2 cplo=cple+ 7“

V2 385)>
P )
2(6006)

T.=T, -
‘ ° ECP

a.= \JRT, =/(14)(1716)(359.3) =929.1 R

v
AN
a, 9291

a= [IRT, =[(14)(287)(300) =347.2 m/sec

_ 250 — o
3472

M=

P

From Tables: IT°—:1.104 and 2o =1.412
p

To=1.104 T=1.104 (300) =j331.2 °K|
Pe=1.412p=1.412(12) = [1.694 atm

p Po

p*=0.7455p=0455(1.2) =

£ T* T, _
I e 08333 (1.104) = 0.92

T T,
T*=0.92 (300) =

a¥ = \IRT = /(14)(287)(276) =333 m/sec
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e = Y B0 g

a*_§-3_§

84 a= [RT =.(14)1716)(700) = 1297 ft/sec

3%

M=Y_28 5,
a 1297

|

K=

From Tables: Ilf—= 2058 and 2= =125
P

To=2.058 T= 2.058 (700) =
Pe=12.5p=125(16)=

* *
L _TT_ ~ (0.8333) (2.058)=1715

T T,

T*=1.715T=1.715 (700) =

* *
PP P _(0528)(12.5)=66
p

p* = 6.6 p=6.6(1.6) =[10.56 atm]

a*= [RT* =.[(14)(1716)(1200) = 1698 fi/sec

.V 2983
M*= L =222 =[1757
a* 1698

T
85  From Tables: 2= =7.824 and =18
p

Hence, for ’rhé test section flow,
po="7.824 p=7.824 (1) =7.824 atm

T,=18 T=18(230)=414K
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Since the flow is isentropic, both p, and T, are constant throughout the flow. Also, in the

- reservolr, M = (. Hence, the reservoir pressure and temperature are

Po=7.824 atm

T,=414°K

8.6 From the Standard Altitude Tables, at 10,000 ft.,

Do = 1455.6 1b/ft* and T.. = 483.04 °R.

T
From Table A.1: For M, = 0.82; Po o 1.555, T° =1.134
pCD @

T
ForM=1; ¢ =1893 -2 =12
P T

Since the flow is isentropic, p, = constant and T, = constant.

p=-E Eo :%9“ (1.555) (1455.6) = [1196 Ib/ft]
070

P, Pa
T, 1 | ___
= T T, =5 (1.134)(483.04) =
_ T
87 TromTable A2: 22 =772 P2 =3449 2 =2238
P, £ T,

Poy =9.181, M, =0.5039, Do — 04601

pl poi

Hence,

p= 22 p, =772 (1) = [2aud

1

Ty= %Tl — 238 (288) =

=)
Ln




_py _ (DO x 10°)

1.222 kg/m’
RT, (287)(288)

po= L2 01 =3.449 (1222)=

P

Po, =~ p, =9.181 (1) =

1

T
T, =T, = T T\ = (2.352)(288) = [677.4 °Kl (using Table A.1)

1

6 =s;=-R £n 2% = (287) £n 04601 = 222.8 °UE
D, kg °K
5 . : T o
88 22 =1033. From Table A2, M, =30, = = 2679, %o ~12.06
ol 1 P

Thus,

T
Ti= LT, = (1390)=BI85R

T
From Table A.1, for M; =3.0, T =28

1

T,
To, =T, = T T, =2.8 (518.9) = 1453°

!

Po

poz =

1

= py = (12.06) 1) =

g9 Do :‘e-(sisj)/R = 1995287 _ g 409
P.,

From Table A.2: M;=2.5

66



5

8.10  From Table A.2: —T—
1

=72.799 and M, = 0.4695
Hence,

T,
T, = ~T—' Ty =2.799 (480) = 1343.5°R

!

2 = JLAAT16)(13435) = 1796.6 ft/sec

V2 =M; a; = (0.4695)(1796.6) = 1843.5 {t/sec

T
From Table A.1, for M, = 0.4695, T =1.044

T,* T

T;_* =
TD

2 T, =(0.8333)(1.044)(1343.5) = 1169°R

5

z

Ag* = IRT, = J1H(1716)(1169) = 1676 fusec

w V, 8435
M, =L z-0.5o3
4 1676

2

Po 1 1403 which is
p 0528

higher than 1.555. Hence, the flow is subsonic. From Table A.1, for

"8.11 s the flow subsonic or supersonic? For sonic flow,

Po — 1555 M=0.82.
p

a= JIRT = /(14)(287)(288) =340.2 m/sec

V =Ma= (0.82)(340.2) = 278.9 m/sec

712.8

8.12  The ratio U : = 3.645 is Jarger thanh 1.893. Hence, the flow is supersonic. This

means that a normal shock wave exists In front of the nose of the Pitot tube. From Table A.2,
for
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P, 77128

= 3.645, M, = 1.56
p, 2116

a1 = JIRT, =/(14)(1716)(519) =1116.6 ft/sec

V1 =M; a; = (1.56)(1116.6) = [1742 fuseq

5
813 () p= e L X100y os o
RT  (287)(288)

7 — . ~ 5 : .
v |X®.P) =J2(1'555 1'?)2(;‘01 X107 303 misec INCORRECT
p ) L

v error = 2022189 _13 559

2789

) p= P= 210 4602376 sgit?
RT (1716)(519)

v=\/z(p°_p)=\/2(7712'8_2”6) =2170.5 ft/sec INCORRECT

P 0.002376

%enor:%ﬁz— =D4.6%

2y 2y MI=2y l-y+2y Mj
g4 Pr_q. 7(1\4‘,*-1):”“” 2y mrrar Mg
P y+1 y+1 ¥+1
[ "1‘ :':_
pzz[n” Mi)"’ @)
P> 2

M= 1+[(27/—1)/2]Mf
7 M ‘(7'1)/2)

Working with the expression inside the parenthesis of Eq. (2):
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1+(‘V;1] M:? 1'+(_}/2—1) M?

I+7/_1M§=1+7*1 _ PR 2
2 2 y Mi—-(y-1)/2 29 M? —(y=1)
=1+ 1){ 2+( =D M, }: 4y M} =2y -D+2(r =D+ (=)’ M
4y M7 -2(r -1 4 M2-2 (71

Ay M+ 2y ) My (7 2y D) MG
4y Mi =2 (r-1) 4y Mi =2 (r=1)

7 +1*M; “
4y Mj-2 (-1

Combining Eqgs. (4), (2), and (1), we have:

7
o o D*M?2 | d—y+2y M? . .
pzzp_zp_z{ UM, }" [ resy ‘}whmhisEq.(&SO)
Pi P Pi |4y Mi-2(y-D y+1

8.15 At80,000 ft., T.=389.99°R

Ve=2112 (%) = 3097.6 ft/sec

an = JIRT = ,/(14)(1716)(389.99) = 967.9 fi/sec

3097.6 _
967.9

Moo= 32

From Appendix A:

. T
For M=3.2, T° =3.048

T, =3.048 T, =3.048 (389.99)=1188.7 R
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Since 0°F = 460°R, the

T, = 728 7°F
g16 Lo I3 43
P, 0.1

From Appendix B, M= @

817 The temperature at the stagnation point is the total temperature in the freestream,
because the total temperature is constant across the normal shock. From Eq. (8.40),

T _ _
o =122 o1 22 s = 0602
T, 2 2

Since T, =300 K, we have

To = (260.2)(300) =

This is an ungodly high temperature. It is also incorrect, because long before the air would
reach this temperature, it would chemically dissociate and ionize. In such a chemically
reacting gas, the specific heats are not constant, which means that Eq. (8.40) is not valid for
such a chemically reacting flow. In reality, the temperature at the stagnation point on the
Apollo was close to 11,000 K, much lower than our estimate above, but still plenty high. Air
at 11,000 K is a partially ionized plasma. For the analysis of high temperature, chemically
reacting flows, techniques much different than those discussed in this book must be used.
See for example Anderson, Modem Compressible. Flow, 2™ ed., McGraw-Hill, 1990, or
Anderson, Hypersonic and High Temperature Gas Dynamics, McGraw-Hill, 1989, reprinted
by the American Institute of Aeronautics and Astronautics, 2000.

818 UseEq. (8.40)

T _
o o147 IMi
T 2

For T, = 11,000 K, T =300 K, and M, = 36, this equation becomes:

11,000

y -1 2
1+4— (36
300 5G9

35.67=0648 y- 0648
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or,

y%jgl

In order to use Eq. (8.40) to estimate a reasonably valid stagnation temperature for the
Apollo, we have to use an “effective gamma” of 1.055. To double check this, return to Eq.
(8.40), mnsert y = 1.055, and calculate T,

T _
o o147 g2 =1
2

(36)* = 36.64

1.055-1
-+.
2

o0

or,

To=36.64 T..=36.64 (300)= {11,000
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CHAPTER 9

1
= Sin™! (—) =4].8°
P=sm- {3

9.1
h h =559 Tan B = 559 Tan 41.8°
5 ,

92 M, =M; sinB=(4.0)sin30°=2

m

L =1.687, == =0.7209, M, =0.5774
Po,

From Table A2, for M, =2: 2 =4.5;
jY!

_»ai»—a

pp= 2 py = (4.5) (2.65 x 10%) = [L.193 x 10° N/m]

Py

I = % T) = (1.687)(223.3) =
1

From the 6--M diagrém: 0=17.7°

M 05774

M, = I =p71
27 sin(B-6) sin(30—17.7) 271
- P, T,
From Table A1, for My =4: —2 =1518, —2 =42
Pj T
Ps, Po -
Po, = L py = (0.7209)(151.8)(2.65 x 10%) =[2.9 x 10° N/m 5.5 % 10° W]

—

T, =T, == Ti=(42)2233)=

!



—+ =-(287) n 0.7209=93.9

o

9.3 Consider an oblique shock. For such a case,

Po, (polj
— = — X
pol pZ

Depends on actual Mach
mimber behind the shock
Mg, I]Lt an

5 o
b,

/__v&___\‘
Depends on normal
Mach number upstream
of the shock, M, .

In the derivation of Eq. (8.80), we related M, directly to M, through Eq. (8.78). This holds
only for a pormal shock. If we wish to use Eq. (8.78) for an oblique shock; then both M,
and M; in Eq. (8.78) are replaced by M, and M, . However, in Eq. (1) above, p, /p,
Depends on Mg, not M . Because Eq. (8.78) does not relate M; to M; for an oblique shock
(itrelates M, to M, ), then Eq. (8.78) cannot be used for the derivation of p,, / p, for an

oblique shock. Therefore, the derivation of Eq. (8.80) holds only for a normal shock. It can
not be used for an obligue shock, even with M, replaced by M, . On the other hand,

T
S2—51=Cp fnp—z-R fn =2
P T

where py/p1 and To/T; for an oblique shock depend onlv on M, . Since Pop e, then
' Po,

clearly Pey depends only on M, . For these reasons, when using Table A2 to determine

Oy

P,

1s a valid column,

changes across an oblique shock, using M, , the total pressure ratio

0z

but the column giving 1s not valid.

P

94 To CORRECTLY calculate p,_ :

M, =M;sinf=3sn3687°=1.38

n




From Table A.2, for M, = 1.8: Poy 0.8127

p,,
: P,
From Table A 1, for M; = 3: = '=36.73
P,
p, Do Pou o 0.8127)36.73)(1) = 2985 at
) po, p'l

(b) The INCORRECT calculation of p, would be as follows:

From Table A2, for M, =1.8: Po — 467

P

p,, 2% p; =467 (1 atm) = 4.67 atm.  Totally WRONG
P .

1

85-4. ; .
% error = -2%61 x 100 =539% -- a terribly large error.

9.5

From the 8-B-M diagram:

A

M, =M sinB=2.5sin46°=138

From Table A.2, for M, =18, 22 =3.613,

=1.532, M, = 0.6165
P

|

p2 = P2, =3.613 (1 atm) =613 am]
P



) |
Ty= 2 Ty = (1.532)(300) =
1

M
M= ——2 = . 06165 = [1.546
Sin(f—6) Sin(46—225)

9.6 From the 6-B-M diagram, shock detachment occurs when o> 28.7°. Whena.=0=
28.7°, B = 64.5°.

M, =Misin =24 sin64.5°=2.17

n

From Table A2, for M, =2.17: P2 =5327
P

Prax = 12 p; = 5.327 (1 atm) =
P

t

and the maxymum pressure occurs when o =

9.7

I = 0.5a%m

From the 6-3-M diagram: p =48°

M, =M;sinB=3.5 sin48°=2.60

n

Po, _

From Table A.2: =0.4601, M, =0.5039,
Po,




M, _ 05039

M2 = . = = - - 648
Sin(f—6&) Sin(48-302)
From Table A2, for My = 1.648; ~2 = 0.876
| P,

From Table A.1, for M =3.5; Pe. - 76.27
' P

p, = o Do Poe o (0.876)(0.4601)(76.27)0.5) =
Po, Do, Pu .

Po 151.8

9.8 From Table A.1, for M; =4,

P

Hence, p, = Po, p1=151.8 (1 atm) = 151.8 atm.
P

1

a)y M;=4j From Table A.2, for M, = 4: Po, 0.1388

e p“]
p°| poz
P,

p,, = 2 p, =0.1388(151.8)=21.07 atm

01

Loss 1n total pressure = p, - P,, = 151.8 —21.07=

b)
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From the 8-§-M diagram,
f=38.7°

M, =M;sinB=4sin38.7°=25

From Table A2, for M, =2.5: Po, _ 0.499, M, =0.513
D,
M, 0513

: = — =221
si(f—0) sin(38.7-253)

b

From Table A2, forM,=221: =2 =(0.6236
P,
p03 po pol _ - _
p, == % I p = (0.6236)(0.499)(151.8)(1 atm) = 47.24 atm
po, pn, P :

Loss In total pressure = p,, - p,, =151.8-47.24 = ]104.6 atm

©)

From part (b) above, My =2.21, Do, 0.499.
. P,

From the $-0-M diagram: B, =47.3°
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For the second shock: M, = M, sin 3, =2.21 sin 47.3° = 1.624

From Table A2, for M, =1.624: 22 =0.8877, M, =0.6625
R P, |
M
Vo M 06625 ..,
sin(f, —6,) sin(47.3-20)
From Table A.2. for M3 = 1.444: Po, 0.947
Po,

— Doy Po; Po, Do,

Po,
an po2 po, pl

p,, =63.68 atm

Loss in total pressure= p, - p,, = 151.8 —63.68 =

29 ) = (0.947)(0.8877)(0.499)(151.8)

CONCLUSION: To decrease a supersonic flow to subsonic speeds via a shock system, a
series of oblique shocks followed by a normal shock yields a smaller total pressure loss than
a normal shock by itself Hence, a system of oblique shocks, followed by a normal shock 1s a
more efficient means of slowing a supersonic flow to subsonic speeds than a single normal

shock itself.

9.9
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From the 6-B-M diagram, B,=34.2°
M | = M1 sm B]

n

=(32)sin34.2°=1.38

From Table A.2; for M, =1.8: £2 =3613, L 53,
b T,
M, =0.6165
M, 06165

P sin(B,-0) sn(342-82)

For the Reflected Shock:

From the 0-B-M diagram, for M =204 and §=18.2°: B, =44°

an =M, sin B, =2.24 sin 44° = 1 56

From Table A2, for M, =1.56: 2 =2.673, % =1361, M, =0.6809
joi 2 )

_ M, 06809
sin(B, —6) sin(44-182)

Note: The fact that M3 and M, are

equal is just a coincidence.

D=P,-H=44-182=D58

ps= P2 B2 5 w0 673)(3.613)(1 atm) = 5.66 at|
b, B :
Ty= 22 Ty = (1361)(1.532)(520) =71084°K]
2 1
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9.10
M, =2

'rle =G, 7atm
7, T G3OR

ST

From Table A.3: ForM,=2,v,=26.38°
vy =0 + vy =23.38°+26.38°=49.76°
Hence,
M, = 3.0

T,

o

From Table A1, for M; =2: 200 =7804 —%—=138

Py

3

Po 5
ForM,=3: — =36.73, —-=28
P: T

However: p, =p, and T =T, . Thus

p= Lo Eng]=( 1 )(7.824)(0.7)=
Po, P

36.73

T T - '
L T1=(2—1§)(1.8)630)=

T, T

p, _ (0149)(2116)

_ = |.537 x 107 slug/ft|
RT, (1716)(405)

M=

o, = Dy, = 2 pi=(7.824)0.7) = B477 atnd

P
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T,

T, =T, == Ti=(1.8)(630) =

From Table A3: forM, = 2., py =30°
For My =3, pz = 19.47
Referenced to the upstrearn direction:
Angle of forward Mach line = p; =

Angle of rearward Mach line = py -6 = 19.47 - 23.38° =

Note: The rearward Mach line is below the upstream direction for this problem.

9.11 From Table A.1, for M; =1.58: Po, =4127

P
Poy _ Doy _Po Py =(4.127) [___1__) =131.6
Py P, P, P, 01306
From Table A1, for Por 31.6,M, =29
P2

From Table A.3, for M = 1.58; vi = 14.27, for M; =2.9: v,=47.79

O=vy-v,=4779-1427 =

9.12
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From the 0-$-M diagram:

For Mj =3 and 0 =30.6°, p = 53.1°

=Misin f=3sin53.1=24

Mﬂ]
— . pl T p°2 — —
From Table A.2, for M, =2.4: == =6.553, =~ =2.04, =0.541, M, =0.531
pl T; po,
M 2
= L = 00231 =137

sin(f—6)  sin(53.1-30.6)
From Table A.3: For My =1.37, v5 = 8.128
vy =8.128 + 30.6 = 38.73°

From Table A.3: For v =38.73°, Ms = ‘

From Table A.1: For M; =3, Por 36.73, % =28

P, 1

Po, T,
ForM;=248,: =16.56, —~=223
P; T

=P Pos Poy Po (161 ) (1)(0.5401)(36.73)(1 atm) =

po:‘ pcz po, pl

T T T
T,= 5 o S Ty (ﬁ] (1)(1)(2.8)(285) =
)

Clearly, ps # p1, Ts = Ty, and Mz = M. Why'7 Because there is an entropy increase across the
shock wave, which permanently alters the thermodynamic state of the original flow, even
after 1t 1s brought back to 1its onginal duectlon )
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9.13

(a) ForM;=2.6and §=5° [ =26.5°

M, =M sinf=2.6sin265°=1.16

From Table A.2: P2 =1.403
P

Po, _ 19.95
Jull

From Table A.1, for M; =2.6:

From Table A3, for My =2.6: v, =41 41°

va=vi+8=4141+5°=4641° -+ M,;=2.83

From Table A.1, for M, =2.83: Po, _ 28.4
P2
Py = P2 P Po ) 0350)(1)(19.95) = 0.7022
P, Po, Po D

_ L (p; ~p,)c cos Of“: (p:—p,)
Qo 4. ¢ () q.

cos &

_ oYy _r ey pM;
2y p 2 a 2
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2 —
c, = ————m(p3 Pzz) cos o = 2 > (&—&) cos o
Y Py M] yM} Ph B

) .
¢, = ————— (1.403-0.7022) cos 5° = 0.148
T Tl )

- = 5Q .
oy 2 (gl_&) sno=c, S2% _0148 Smsu =

¥y M: \p, p, cos cos

(b) ForM;=26and0=15°p=359°

M, =M;sin = 2.6 sin35.9°=1.525

n

From Table A2: £2 =2.529
P

From Table A 1, for M; = 2.6: 2% =19.95
jol

From Table A3, forM;=2.6:v;=41.41°
v,=vi+0=414]1+15=5641°—>M,=337

Po, _
P>

63.33

From Table Al forM,=3.37:

&=&3?z—pi=[ ! ) 1)(19.95) = 0.315
6333 (D{A-95)=0-

¢ = —> (&—&J cos = ——> (2529 —0.315) cos 15° = 0.452)

‘ 4 Mlz B D (1-4)(2-6)2

il

6= c, SN _ o 455 smml5 =‘,.

[
©cosa cos15°®
(¢)  ForMj=2.6and6=30°p=59.3°

M, =M; sinB=2.6 sin 59.3° ~2.24
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Ps 5687, 2o —19.95, v, =41.41°
jo Pi

Vvy=vi+0=4141+30=7141°-> M; =446

Po, 97525
P2

Pz=&p¢p¢=( ! )(1)(1995) 0.0725
27525

el (1 J (]4)(26) (5.687 —0.0725) =[1.19

ce=1.19 sin30°

cos30°

9.14
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Forregion 2:
vy =49.76°
Vo=V +0=49.76°+5°=54.76° > My =327

For M, = 3: Yo =36.73:

Pz

P,
P

For M, =327, = 5476

Forregion 3:

va=vy+0=5476°+20°=74.76°—> M3=4.78

For Ms = 4.78: 2o = 407.83
Ps

For region 4:
M;=3and 6=25°—>  =44°

M, =M; sin =3 sin 44 = 2.08

Pe ~ 4881, M, =0.5643,and 22 = 06835
P P, ’

_ M, 05643
sin(f—0)  sin(44—25)

=1.733.

M,

Thus.

7

vs=18.69, £or = 5165
Ps e

Forregion 5:

Vs =vg4+0=18.69°+20°=38.69° > Ms; =2.48
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P 1656
Ps

Pressure ratios

Py _ Py Poy Po (L) (1)(36.73) = 0.6707
5476

Ps _PaPs_ P2 Py Poy Po (0.6707)( )(1)(54-76') =0.09

Pr Pi P P1Po. Po, P2 407.83
Ps 4881
o

_p_5= Ps Po; Po, P,
p1 pos po_, pol P]

1 - o
- (1656) (1)(0.6835)(36.73) = 1.516

Let ¢ = length of each face of the -diamond wedge.
L =pq £ cos 25°+ps £ cos 5°-pp £ cos 5° - p3 cos 25°

L) = (ps—p3) £ cos25° +(ps—p2) £ cos 5°
F v f ) . i
€ = E__ ¢ -2 =~ Ii(?i_&] c0325°+(&_22.) cosS{i
q,,S gle?C b4 Ml C pl Pr o a3

c, = —-2—2- £ [(4.881 — 0.09) cos 25° + (1.516 — 0.6707) cos 5°]
14)X3)" c

/
6=0.823 —.
c
However,
.iz;=cos 10'3 £ =___._._.]_l..._...__ :0'5077
4 ¢ 2 cos 10°

¢ = (0.823)(0.5077) =
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D'=ps £ sm25°+ps £ sm5°-py £ 510 5°-p3 £ 51n 25°

= (ps—ps) £ sin 25° + (ps —p2) £ sin 5°

Cg= >y__D -2 3 = K& p3]5m25° ( p’jsmS"{l
9.5 glefc yMpc\p P P P

o= — 2 [(4 881 —0.09) sin 25° + (1.516 — 0.6707) sin 5°)
a4E)?
ca=0333 £ =033 (0.5077) = [0.169)
C

9.15  The maximum expansion would correspond to Mz — c0. From Eq. (9.42) in the text,

: - y+l o y—-1 0 B Ny
Imwv, = hm{ ltn \/—Tﬁ(Mz—l)—tan JM ~1}

y- Y

M; —> 0 My >
. fZ_:tl LA s 1)——2277rad—13045°

Since, for M; =1, v =0, then

0= Va2 -V = 13045—-0= 130.459

max

M=/
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9.16  For the cylinder, with ¢4 based on frontal area,

Doyt = G S 06 = G A1 V(4/3) = % @) g

For the dimensional wedge airfoil, referring to Figure 9.27.

D)w=(p2—ps3)t

Hence,

4
(D g(d) q,
D), (P—ps)t

However,t=d and q.. = 22,— 19 M;?
Thus,

4(7’ 2 2
' - =M - 2
(D )cyl =3 QJ ! -3 y M;

(D), (p_z_&) (E.Z__Bi)
P P P P

To calculate p»/p), we have, for M =5 and 6 =5°, B =15.1°.

M,; =M, sin p =5 sin (15.1°) = 1.303

From Appendix B, for My = 1.302, P2 _ 1 .80s. Also,
P

M,, 0786 _, 4o

Mo (s 6) sm(151-5)

To calculate & , the flow is éxpanded fﬂrough an angle of 10°. From Table C, for M, =
P
448, vo = 71.83 (nearest entry).
v3=vy+8=71.83+10=281.38°

Hence, M; = 56 (nearest entry)
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Po, _

From Appendix A: For My =35, =529.1
P;
—_ p°3 —
ForM;=15.6, =1037
bs

. P,
From Appendix B: For M, =1.303, -+ =0.979%4

Po,

Thus,

Ps _ P Po, P Po 2( 1 )(1)(0.9794)(529.1)=0.5
pl p°: POI pol pl 1037

Hence,

2 g .
Oy, M 2090

— 3 = = CR
(D", ( P &J (1805—05)
Pr P

Note: This is why we try to avoid blunt leading edges on supersonic vehicles. (However, at
hypersonic speeds, blunt leading edges are necessary to reduce the aerodynarmic heating.)

9.17 The supersonic flow over a flat plate at a given angle of attack in a freestream with a
given Mach number, M., is sketched below.




The flow direction downstream of the leading edge is given by line ab. The flow direction 1s
below the horizontal (below the direction of M) because lift is produced on the flat plate,
and due to overall momentum considerations, the downstream flow must be inclined slightly
downward. Also, line ab is a slip line; the entropy in region 4 is different than in region 5
because the flows over the top and bottom of the plate have gone through shock waves of
different strengths. The boundary condition that must hold across the slip line is constant
pressure, i.e., ps = ps. It is this boundary condition that fixes the strengths of the expansion
wave and the shock wave at the trailing edge.

To calculate the trailing edge shock and expansion waves, and the flow direction
downstream, use the following iterative approach:

1. Assume a value for ¢

2. Calculate the strength of the trailing edge shock for the local deflection angle (-
$).- This gives, among other quantities, a value of ps-

3. Calculate the strength of the trailing edge expansion wave for a local expansion
angle of (¢-¢). This gives a value for ps.

4. Compare ps and ps from steps 3 and 4. If they are different, assume a new value
of ¢. ‘

5. Repeat steps 2-4 until ps = ps. When this condition is satisfied, the iteration has
converged, and the trailing edge flow is now determined.
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CHAPTER 10

10.1  From Table A.1, for A/A* =2.193,

. T
Po. 1. , 2= =2.058.
P. T

For 1sentropic flow, T, = constant and p, = constant. Hence,

Po, =Po = fatu],and T, =T, ~
1
pe = ;&'Po=(ﬁg) (5 atm) = 0.4 atrm]

T
T= & [ ) 520 *-527"
T To= 2058 (520)

_ p. _ (04)(2116)
P T R, T 1716)(252.7) = 1000195 shug/tt]

a.= ORI, = JA4)A716)(252.7) = 7792 fi/sec

=M, a. = (2.3)(779.2) =

102 Po— 5 31] yeia 3.182. From Table A.1, we see that and A/A* =]1.113|.
Pe -

10.3  Ahead of the normal shock in front of the Pifot tube,

\/_D:U - p°.=p°=2.02x105N/m2
4
i . P, _892x10° _

p,, 202x10
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From Table A.2: M.=2.65

From Table A.1: AJ/A¥*={3.036

P, _ _(Y210) —0.01186—-5215

10.4 r;1=p*u*A*;p0= = =
RT, (1716)(520)

5
o = P2 by = (0.634)(0.01186) = 0.007519 shug/ft

P

*
T*= 1{ T, = (0.833)(520) = 433.2°R

u* =a* = [(14)(1716)(4332) = 1020 fu/sec

" = pFuF A = (0.007519)(1020 (—) =
m = prurA* = (0 9)(1020)| 7

0.213

| slug

sec

10.5 m = p*u*A*

Hence,

- P* B p*A*

m= A* T#* =

oy AY JRTT = S

Since, M* =1, then

'I:) =1+ 7/—1 M*l 7+1

T* 2 2

b (y+l yi=1 -

P\ 2 )

Thus,




=Hy+1)2(y-1)
R 2

A

or,

. * () r-1)
e
\/f R\y+1

10.6  po=15 atm = 5(2116) = 10580 Ib/ft>

A* =4/144 = 0.02778 £

- _ (105809)(0.02778) | (14) ( 2\ =' shig
" J520 \/(1716)\2.4) 0213

sec

which is the same as obtained in
Problem 10.4

10.7

/Qﬁ;e ;
> My —t—
, Me
/";\'
Ae
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First, check to see if the flow is sonic at the throat.

Po— 1 _q0s6
p. 0947

From Table A, for 22 = 1.056: M, = 0.28 and AJA* =2.166
P,

. A A L. )
Since :&f— =1616< A:‘ =7.166, then A, > A*. The throat size is larger than that for sonic

t
flow, hence the throat Mach number, M, is subsonic.

A
ﬁmi—-:R@l%)—lﬂ
A* A, A* 1616

| A
From Table A1, for -=% =134 2o —1186
P,

po=2t Po pp - [1—1183) (1.056)(0.947) =

P, P.

10.8 Note: The équation for m given in Problem 10.5 can pot be used here because the
flow is not choked, i.e., the throat Mach number is not sonic.

I;1=p,:Aeuc

From Table A.1, for £ —=1.056: M.=0.28, ;f‘— =1.016
P'e . S c ) )

=T,/1.016 =288/1.016 =283.5°K

5
o= B _ (0941101 x 1) 1 176 kefec?
RT, (287)(2835)

= JRT, = J(14)(287)(2835) =337.5 m/sec

1= M, a. = (0.28)(337.5) = 94.5 m/sec
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Ac:At (Ae
A

] = (6.3)(1_616) =0.4848 m’

t

m = pActe = (1.176)(0.4848)(94.5) = [53.88 kg/se

109 (a) e =1 —1064.
p. 094
From Table A.1: M, =03 and AJA* =2.035. 2L A0 A _ (—-1—) (2.035)=1.33.
A* A, A* \153

Since A;> A*, then the flow is completely subsonic. No shock wave exists. Hence, from

Table A.1, for £ =1.064, M, = 0.3

e

p 1
=2 = ——=1,129.
®) p. 0886
P A
From Table A.1, for 2> =1.129: M. =0.42 and A:‘ =1.539.
P. .
A A A (—L) (1.529) = 0.999 ~ 1.0,
A* A, A* \153/°

Hence, A;= A*, and the flow is precisely sonic at the throat. Tt is subsonic everywhere else.

Hence, from the above M, = 0.42|

(c) From the above results, clearly when pe is reduced below 0.866 atm, sonic flow
will occur at the throat, and the nozzle will be choked. Since pe = 0.75 atm is far above the

supersonic exit pressure, we suspect that a normal shock wave exists within the nozzle. Note

that, if we run the same calculation as in parts (a) and (b) above, we find:

Po (J-) ~1.333.
P. 0.75.

From Table A.1, for Py - 1.333, we have
P.

Be 1.127

A*
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A A A _ (——1—] (1.127) = 0.7366. Since it 1s impossible for Ay < A*, then

A* A, A* \153

clearly the flow can not be completely isentropic. There must be a shock wave inside the
nozzle, with a consequent change in both po and A* across the shock. Hence, the above-
calculation is meaningless. Instead, set up the following trial-and-error process as follows:

Assume a normal shock exists inside the pozzle, say at a location where AA=
1.024. Let:

A* = somic throat area for the flow ahead of the shock.
A,* = sonic throat area for the flow behind the shock.

p,, = total pressure for the flow ahead of shock.

p,, = total pressure for the flow behind shock.

Shock
‘/’_,-—""_'_—
y ]
M |
|
rote t
P, 2 Lt A
!
: 1
A
o L.‘_-"“"‘“‘—-—-i
A, Ao
e S—" ——
Flow with FA¥= A* Flow with A%=A3"

Note that p,. <P, As™> Ayt o
which comes from the shock wave theory discussed in the text.

Key equation:
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e poz
Pe = _,,I.).._ — po‘

Po, Po,

To find the values of the ratios in Eq. (1):

From Table A.1 for Ay/A1* =1204: M; =1.54

From Table A2 for M; = 1.54: M; = 0.6874, 2 = 0.9166
P, .
— A2
From Table A.1, for M; = 0.6874: Ar =1.1018
A, A
e o= Ae B Ay =(15 3)( )(1 1018)=14
AZ * Al AZ AZ *
A P,
From Table A.1, for —&— =14: M. =0.47, =22 =1.163
- A2 * pc
Returning to Eq. (1):
pe=PePor o ( ! )(0 9166)(1 atmm) = 0.788 atm.
Do, P, \1163

This is slightly higher than the given p. = 0.75. Hence, move the shock wave slightly
downstream.

Assume Asx/A.=1.301

From Table A.1: M;=1.66

From Table A1, for M; = 1.66: 2= = 0.872, M, = 0.6512
Po,

Al .
From Table A.1, for M, = 0.6512: \ 2* =1.1356

2

: =_~£%L=(1 53)(

) (1.1356) =1.335
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p°2 —

From Table A.1, for =1.1862

Be 1.335: M, =0.50,
A2 * pe

From Eq. (1):

D= .p_epipm = ( ! ) (0.872)(1 atm) = 0.735 atm.

P,, P, 11862
0.75— 0.
Interpolate: - B2 1.301—(1.301 — 1.204) 07520735 _ 1.274
A, 0.788 — 0.735
Thus, Assume Ay/A;=1.274
From Table A.1: M;=1.63
From Table A.2: M, = 06596, 2% = 0.8838
Po, .
A,
From Table A.1: —— =1.1265
A *
A A
A A B A g 3)( ](1 1265) = 1.353
Al* A( AZ A2 *

From Table A.1: M,=0.49, P, - 1.178
P.

Pe= Pe Po, Py = ( )(0 8838)(1 atm) = 0.75 atm
Po, Po, ! 1178/

Hence, p. calculated agrees with p. given. Thus,
M. = 0.49

o tm
(d) P, lam 6.49. -
p. 0154 atm

From Table A.1: A:‘ = 1.53, which is precisely the given area ratio of the nozzle. Hence,

for this case, we have a completely isentropic expansion, where,
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@33-1.88

10.10 From the 6-B-M diagram, for 6 = 20° and B = 41.8°, we have M; = 2.6. From Table
Al, i

10.11  From Table A.1, for Ae 6.79,M.=3.5

A*

From Table A2, for M. =3.5: Po _ 02129

P,,

P, (1 _
P, == p,, =| ](1.448)=

P, 02129

T
10.12 From Table A1, for M, =2.8: L%-=27.14, 2-=2.568

P. e

At standard sea level: p=2116 Ib/f, T = 519°R

Po= 2%t p, = (27.14)(2116) = 57,430 b/ = 27.14 atm)
P

c

T ‘
To= - Te= 2.568)(519) =

o= o= T80 _ 4565 chug/®

RT, (1716)1333)

p* =(0.6339)(0.0251) = 0.0159 shug/f>

T*=0.833 (1333)=1110°R

a*= _[RT* = J(14)(1716)(1110) =-1633 fi/sec = u*
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m = prurA*

m 1

A= 0.0385 ft

prur | (0.0159)(1633)

From Table A.1: AJA*¥=3.5

A,
A=t Ar= (3.5)(0.0385) = [0.1348 ft

A
From Eg. (10.38) in text: At’ =22 _te

From Table A.2: for Mo = 2.8 % = 0.3895

Do,
P, P, ‘ 1 )
A, =A, | 5] =A== =(00385) ~ [0.0988 ft
=~ T p,, P, 03895
10.13 m = pru*A* (1)
Also, R=RM = 3222 - 519,628
16 kg K
i 1
* =1 02
pF = B_po*——( Z_JT Lo =(i)°' — P =3319%107p,
0, y+1) RI, \22/ (519.6)(3600)

T*=—T, = (——2*) (3600)=3273 K
T, y+1

¥ = a* = RT* = J(12)(519.6)(3273) = 1428.6 m/sec

Hence, fom Eq. (1), with m =287.2 ke ,
: sec

287.2= (3319 x 107 po)(1428.6)(0.2)

o1,
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= _2787'2 =3.029x10° —
(3319x107)(1428.6)(02) m’

Po

or,

_ 3029 x 10° _

=30 ai
101 x 10° 30 atny

10.14 We assume the flow velocity is low at the diffuser exit; hence the total pressure at the

exitis 1 atm. From Appendix B, for M = 3, Por 03283,

Do,
np=P2/Ps__ 1,
Do, /D,
Py _1p Pu gy (0.3283) =0.394
D, Do,

po= P = —P3iam

0394 (0394
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CHAPTER 11

70 iy
111 u= % =Vt Ey_r(__)_ e PPIMaY g (27mx)

v— 70 (2::41— Mi) &PV IMY gin (27x)

&  J1-M2

=140 1 e 2" MY §in (27%)

2. = IRT = J(14)(A716)(519) = 1116.6 fsec

M= e = 199 _ 6260
a, 11166

Thus, at (x,5) = (0.2, 0.2)

27(70) .

u="700 + = 20790 o5 [27( 2)] = 765.6 ft/sec

v =-140 1t 27D gin [27(.2)] = -157.2 ft/sec

V= Ju¥ +v2 = [(7656)* — (1572)* =781.6 fi/sec

From Table A.1, for M., = 0.6269, :;:“ =1.079

o

T, = 1.079 T = 0.079 (519) = 560°R

20— IR, = JAA1716)(560) = 1160 fi/sec

z
a?=a + 7’—;1 (V3) = 1.345 x 10° = (2)(781.6)"= 1.223 x 10° (fa
- 5€

a=1106 ft/sec .
M= X:%g— = 1077067
a
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From Table A1, for M= 0.6269: L2 = 1.3065, -2 = 1.079

Pe T
P T
For M =0.7067 = =2 = 1.400, ?"w =1.101
P

p=L P o (ﬁ) (1.3065)(1 atm) = [0.933 atn

Py Pw»

T= Tl %— T.= (1—1‘0—1) (1.079)(519) =[508.6°R

11.2  The results of Fig. 4.5 are for low-speed, incompressible flow. Hence, from Fig. 4.5,
at o =5° ato=35°

¢, =075

% . 5 G5

£
¢, = :
CI-M2 1- 06y

C ~0.54 ~0.54

113 Cp=—2 = = =[0.663
Jl—Mi J1-(387 08146
C —054
®) Cp= n - 3 .
oy DT
" ls1-M2 ) 2 e |
Cp =10.7063

C, " j
© Cp = - IR -
N Y +[mi(l+%Mi) /21/1—M3]Cp“ ‘
- -054 -

" 08146+ [03364(1.067) / 16292}(~054)

)
¢
il
I
H
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CP:

Note the differences: There is a 17% discrepancy between the three compressibility
corrections. Of the three, experience has shown the Karman-Tsien rule to be more accurate.

114 For the pressure coefficient on the airfoil:

C —041

C Po

& Ji-n2 ZW |

0.4

0.5

0.6 0.7

0.8

Cp -0.43

-0.447

-0.473

105

-0.513 -0.574

-0.683




_/‘2 - -

~fot-

-—QB 4+ .
~o6 T |
|
_ !
\/Dr-an:/f/ — E/QuErT* !
~0.9 + _ |
|
!
‘ i
-0.2 % : |
t | Mo =07 J
!
i

0.4 0.5 O.6 0.7 a,8
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11.5 When M = M, then p at the minimum pressure point is clearly per.

P Pe (?ﬁ)(ﬁ"—) = (0.528)(1.524) =[0.805
pw pﬂ) PO pcr.-

—An A

Evaluated Evaluated

atM=1 atM=038

11.6  From Appendix A:

For M., =05, o =1.186
P

For M =0.86, £ =1.621

(:p———_(mxoj)2 (0.7316 ~ 1)

Check: Using Eq. (11.58)

1
1+4—M2
y Mol 2222w

[\
E———

2 [( 1+ 02(05) )”_1} _

~ Ua)(05) [\ 1+ 02(086)°

It checks!

107




11.7  First, caleulate Cp o at point A from the information in Figure 11.5(a). The actual
pressure coefficient is

where

Pa _ Pa Po
P P, Po

From Appendix A (interpolating between entries for more accuracy for this problem),

ForM,=03: 2o =1.064
P

For M, = 0.435: 22 =1.139

Pa
Thus,
Cpa= - 2[1‘064—1) =-1.045
(14)(03)> \ 1139

From the Prandtl-Glauert rule,

Cpo=Cpa y1-M2 = (=1.045)4/1~ (03)* =-0.9969

For the case of part (c) where M = 0.6, again using the Prandtl-Glauert rule,

C,. ~0.9969

= = =-1.258
J1-M2 J1-(061y

To find the local Mach number, M,, which corresponds to this value of Cp 4, note that

2 [,
CTAIQ' (—A—'—l)
oy M\,

or,
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z ) 2 -
Pa - ¥ MaCop o AAO061) (£1.258)

Po 2 2

1=10.6723

However,

Pa — Pa Do where Po for M, = 0.61 is 1.286

peo po pl-'o pl-")
Thus,
Pa _ Pa /P _ 0.6723 0593
Po  Po/P. 1286
Hence,
Po 1012,
Pa

 From Appendix A, for 2= =1.912, M, =[1.01

Pa

This is close enough. Hence, given the numbers in Figure 11.5(a), the pumbers in Figure
11.15(c) are consistent with the laws of physics.

11.8 There is a three-dimensional relieving effect for the flow over a sphere. The flow over
a cylinder is two-dimensional — in order to get out of the way of the eylinder, the flow can
move only upwards or downwards. This means it must greatly accelerate to get out of the
way of the cylinder. In contrast, the flow over a sphere is three-dimensional — it can move
not only upward or downward but also sideways. This extra degree of freedom means that
the flow does not have to speed up so much in flowing over the sphere. Hence, the
freestream Mach number of the sphere is higher in order to achieve sonic flow on the sphere
— 1.e., the critical Mach number is higher.
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CHAPYER 12

12.1 Consider oo = 5°=0.0873 rad.

¢, = 42a - 4(0.08273) ‘=
IM2 -1 J@26)* -1

From exact theory (Prob. 9.13): ¢, =0.148

% error = 14801455 o0 1 6o%

0148

o= _43___ = ¢, a=(0.1455)(0.0873) =
IME T |

From exact theory (Prob. 9.13): ¢4 =10.0129

% erTor = 0012900127 x 100 =1.53%

0.0129 '
N (b) a=15°=0.2618 rad
4o -
Cp = =

YM: -1
From éxact theory (Prob. 9.13): ¢, = 0.452

0452 — 0426

. x100=347%
0452

% erTor =

ca= ¢, a=(0.436)(0.2618) = 0.114

From exact theory (Prob. 9.13): ¢q=0.121

% error = 9‘%;133- x100=5.7%

(c) a=30°=0.5236rad
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4a 4(05236) _ s

C: —_

oMo J@e -1
From exact theory (Prob. 9.13): ¢, = 1.19

% error = 11_91_1%7,3_ x 100=26.7%

ca= ¢, o= (0.873)(0.5236) = [O.457‘i
From exact theory (Prob. 9.13): ¢4=0.687

% error = M =33.5%

0.687

Conclusion: At low , linear theory is reasonably accurate. However, its accuracy
deteriorates rapidly at high . This is no surprise; we do not expect linear theory to hold for
Jarge perturbations. It appears that linear theory is reasonable to at least 5°, and that it 15
acceptable as high as 15°. At 30° it is unacceptable. Keep in mind that the above comments
pertain to the lift and wave drag coefficients only. They say nothing about the accuracy of
the pressure distributions themselves.

122

Y

111




M2 C  6)?
D TMG L 02608333

= +
P. 2 2
P i3043041
P.

Hence: Examining the physical picture: recalling o= 5°= 0.873 rad.

P1 _ 3943 (0873)+1=

o

From exact theory (Prob. 9.13): P2~ 07022

-]

% emor = 0.7022-06558 x 100 =6.6%
0.7022 :

Ps 139430+1=3.943(0873)+1=
P. ‘

From exact theory (Prob. 9.13): ‘p_3 =1.403

<

% error = y—% x 100 =4.2%
. 403
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(b) For o =15°=0.2618 rad:

Pi _ 39439 +1=-3.943 (2618)+ 1= -0.0322 (physically impossible)
P.

The result from exact theory (Prob. 9.13) is P2 _p315

o

P3 39430 +1=3.943 (2618) + 1 =032
pm

From exact theory (Prob. 9.13): P _5529

O

% emror = 222072932 | 100 =19.7%

2529

(c) For a=30°=0.5236 rad

P2 30439+ 1=-3.943 (0.5236) + 1 = -1.064 (physically impossible)
Pa

The result from exact theory (Prob. 9.13) is 22 = 0.0725

o

Ps ~39430+ 1 =3.943 (0.5236) + 1 =B.063

Po
From exact theory (Prob. 9.13): Ps 5.687
687 —3.065
% erTor = 26873065 x 100 = 46%
5.687

Conclusions: (1) Pressures predicted by linear theory rapidly become inaccurate as o
increases. (2) Pressures predicted by linear theory are reasonable only at low values of o,
say below 5°. (3) At each value of ct, the % error is much greater for pressure than for lift
and wave drag coefficients. (See Prob. 12.1). Hence, linear theory works better for ¢, and
ca than it does for p. What happens is that the inaccuracies in p on the top and bottom
surfaces tend to compensate, yielding a more accurate acrodynamic force coefficient.
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y M2
12.3 —B—:——p+l where C, =+

P 2 JM2 1

C 20

Co=+ 20 —+070710

Jo -1

P, A9BO707D0

P 2
P 4455041
P.

Surface 2: 8 =5°=0.08727 rad.

P2 = 4455 08727+ 1= 06112

P

Surface 3: 8 =25°=(0.4663 rad

Ps — 4455 (4363)+1=-0.9439
Ps -
Note: Although a negative pressure is
: - : not physically possible, in order to
Surface 4: 6 =25°=0.4363ad’ ' calculate the net force, we must carry

1t as such.

Po = 4455 (4383)+ 1=2.944

=
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Surface 5 8 =5°=0.08727 rad

Ps 4455 (.08727)+1=1.3888

pm
c, = 2 5 2 (p—“—&j 00325°+(&——p—2) cosS":l (From Prob. 9.14)
7, Ml c psc pw pw puc
2 4
c, = (2.944 + 0.9439) cos 25° + (1.3888 — 0.6112) cos 5°]

GO

c, =0.682 £ However, £ 0.5077 (From Prob. 9.14)
c c

¢, = (0.682)(.5077) =

Ca = 2 ~ £ (p—A—-Pi)‘SMZS%(&—Bz—J sin5°
y M ¢|\p. P. P» P.

Ca= 64_)2(3_)? (.5077) [(2.944 + 0.9439) sin 25° + (1.3888 —0.6112) sin 5°]
ca=
Comparison
Exact (Prob. 9.14) Linear Theory % Error
c, 0418 0.346 -~ 172%
Cq 0.169 0.1089 35.6%
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CHAPTER 13

13.1

(o0.0/1z2/7,0)

At point 1:

a;= /RT, = /(14)(287)(288) =340 m/sec

Vi=Jul +v? = ./(639)7 +(232.6) =680 m/sec

6, =Tan" % = Tan™ (._____23 3 '6)'= 20°
u'] 639

vi = (M) = 26.38°
K_=0+v=20+26.38=4638°

At pomnt 2:

o= JIRT, = J(14)(287)(288) = 340 m/sec

V2 =680 m/sec
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v

My=—L = @ =7
a, 340

623 0°

vy =26.38°

Ki=0-v=-2638°
At point 3:
B3 ="2[K )+ (K.} ="2(46.38-26.38) = 10°
vy =12 [K_ ) +(K.)2] = V2 (4638 -26.38) = 36.38°
M;=24 |

To obtain the other flow variables at point 3, note that:

P =7.824 and Po _ 14.62

P Ps

py= L2 Bo Bo (—i—) (1)(7.824)(1 atm) =

Po, Po, P 14.62
Tﬂ TU
L=18and — =2.152
T, T,
e 2 1= (L syesy - pa0sE
YTOT, T, \21%2 ' '

a3 = JRT, = /(14)(287)(240.9) = 211.1 m/sec
V3 =Msa; = 2.4 (311.1) = 746.6 m/sec
u; = V3 cos B3 = 746.6 cos 10° =[735.3 m/se

v3 = V3 sin 83 = 746.6 sin 10° =]129.6 m/se

To locate point 3:

Along the C,. Charactenistic:
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Thus:

9zwc: 1/2 (92 + 93) = 1/2 (0 + 10) = 50

Have = 2 (}.lz + }.13) =15 (300 + 24,620) =27.31°

%}i = Tan (Baye + Have) = Tan (5° +27.31°) = 0.6324
X
y = 0.6324 x —0.00765 6}

Along the C. characteristic:
Oave = V2 (6, +03)= 15 (20° +10°) = 15°
Have = V2 (1 + p3) = Y2 (30 + 24.62) = 27.31°

% = Tan (Oave - ave) = Tan (15° - 27.31°) = 02182
X

y=-02182 x + 0.0684 @)

Point 3 lies at the intersection of Eqgs. (1) and (2)

y = 0.6324 x -0.00765

y=-0.2182 x + 0.0684

Solving simultaneously: x =0.08%94
y=0.0489
Thus: [(x3, y3) = (0.0894, 0.0489)
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CHAPTER 14

14.1 ,//
—- F2
{2

M,

c, = (Cp3 -C, )cosoc

Cg= (Cp? —sz) sin o
(a) Using straight Newtonian theory:
Cp=2sin’ o
For o= 5%
P

C,, =2sin’ 5°=0.0152

C,.=0

Pz

¢, =0.0152 cos 5°=[0.015

c¢=0.0152 sin 5° =(0.0013

For o =15°:

C, =2sin’15°=0.1340, C, =0

¢, =0.1340 cos 15° =

cg=0.1340 s1n 15°=0.0347
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For o =30°:

C, =2sin’30°=0.5

P

¢, = 0.5 cos 30° =0433]
cg= 0.5 sin 35° =[0.23]

(b) Using modified Newtonian:

- - 2
Cp=C, sin"a

¢ PP _ PP 2 (po_)
=" e Tap,, 7 M

2

. = ————— (9.181-1)=1729-
=~ (14)(2.6) _

Fora=15°

C,, =1.729 sin® 5°=0.0131
¢, =0.0131 cos 5°=[0.0131
ca=0.0131 sin 5°=0.00114

For oo = 15°

C,, =1.729 sin® 15°=0.1158

¢, =0.1158 cos 15°=[0.1119|
ca=0.1158 sin 15° =[0.030)

For aa=30°

C,, = 1.729 sin® 30° = 0.4323

¢, =0.4323 cos 30°=
cq=0.4323 sin 30° =
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Comparison:

Mod.
Exact ¢, Newtonlan Newtonian
o4 (Prob. 9.13) c, % error c, % error
5° 0.148 0.0151 90 0.0131 o1
15° 0.452 0.129 71 0.1119 752
30° 1.19 0.433 63.6 0.374 68.6
Mod.
Exact ¢, Newtonian Newtonian
vd (Prob. 9.13) c, % exTor Cy % error
5 0.0129 0.00132 90 0.00114 91
15° 0.121 0.0347 71 0.03 75.2
30° 0.687 0.25 63.6 0216 68.6

Conclusion: Newtonian theory gives terrible results for a flat plate a moderate o at low

Supersonic Mach numbers.
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From Newtonian theory:

C, =2 sin® a =2 sin” 20° = 0.234




¢, =0234 cosa=
cs=0234sina=

From shock-expansion theory:

On the top surface: vo=v; +8=1162+20=136.20

This is beyond the maximum expansion angle. Hence, a “void” exists on the top surface,
re,px=0. \

On the bottom surface: From the 8-B-M diagram,

B=249°
M, =M;sinf=20smn24.9°=84

Ps _g015

P

From Prob. 9.13:

c, = 2 > (&“&) Cos O
y M, \p, P,

and

2

¢, = ———— (82.15 - 0) cos 20° = 0.2757
(14)(20) _

¢g=0.2757 Tan 20° = 0.100 '

275702 o
For ¢,: % emror= 0—2‘-~7—5-Z-—--0—2—Q=20% a
02757
Forcg: % error= w=20%
010

Note: Newtonian theory works much better for blunt bodies, i.e., for large values of 6.
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14.3

(@) Use Eq. (14.7) to estimate the pressure at point A. We first need to obtain
Cp.max, which is a function of p2/p=. From Appendix B for My = 20, po2/pe = 0.5155 x
10°. Hence,

Comn = —2— (pﬂ _1) =2 (5153-1)=1837
7 y Mo\p.,  / (14X20)

From Eq. (14.7), at point A on the surface

C, = Cpma sin” 0= (1.837) sin’ 20° = 0.2149

Pa

Since
2 p
CPA - 2 (—A“ J
y M_\p,
then, _
M2iC 2

Pa _ y M e 1= (L4)(20)* (0.2149) 1= 6117

P. 2 2
Hence,

Pa=61.17 (3.06) = [187.2 Ib/ft]
(b) The stagnation temperature is found from Eq. (8.40)

LSNP ol M2 =1+0.2 (20" =81

T. 2

o

Assuming an 1sentropic flow from the stagnation point to point A,
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or.

b_:ﬁ:[i\]ﬁ

po,’l po‘2 /pm To
. =
L _ (__61'}7) 7 = (011877 = 0.5439
T, \5155
T, (T -
Ta= 22 ( T°J T.= (0.5439)(81)(500) =£2,028°F

(Please note. Relative to our discussion in Problems 8.17 and 8.18, we know this
estimate of T to be too large because we are not taking into account the effect of
chemically reacting flow.)

(¢) Atpoint A, for an isentropic flow, pea = Po2

4
. p—r /P 515
Poa _ (1 r-: 1 i)y ' Pop/Px 3155 =8427
P Pa/Pa 6117

_ y—1 =
1+ 1= M2 = (8427)5 = (84272 =1.8385

M2 = (18385 — 1) —— = (0.8385)(5) = 4.1925

y—1

I A:?...O

Lh

(d) an= IRT, = [(14)(1716)(22,028) = 7275 fi/sec

Va=aa Ma = (7275)(2.05) =]1.49 x 10° fi/sed

Note: Once again, this estimate of V, is too high because Ta, hence aa, is too high.

Also pote: The purpose of this problem is to illustrate that, from the Newtonian sine-
squared law for pressure variations, the other-flow field quantities can also be obtained.
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CHAPTER 15

15.1
\ Uz Us
|
{
! | ]
/} LU =0

N A A A S A A

(a) Since the plates are infinite in length, u = u(y) only. Also, v=0, i.e., the flow is
in the x-direction only. The governing equation is Eq. (15.18a), which reduces to the
following u =u(y), v =0 and p = const.

d du
0= _— kel
e (1 dy)

Integrating:

dua
B — =const =,
dy '

HO =y + ¢
Aty=0,u=0: ¢=0

Aty=h,u=u: pu.=ch

h

pu=ﬂ;° y, OT uzua(ﬁ o

The velocity variation is linear between the plates.

C1

Thus:

du u,
(b) 3y

h
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v
l‘Ldy p‘h

&

ﬁ__[l)m T0+110‘"( 320 )3” 288164110 _

- 1.084
u. \T.) T+110 \28816/  320+110
1=1.084 11, = 1.084 (1.7894 x 10°) = 1.94 x 10°° _ke
m Se€C
s [ 30 -,
1=(1.94x 107) o) 5.82 x 107 N/m]

The shear stress is constant, and hence is the same on the top and bottom walls.

152

—

VAN S S S AR S A A

u=u(y), v=0,p=px)

s

2z
dx/ 2pu 4 M

Aty=0,u=0. Thusc; =0
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Aty=h,u=0. Thus,

2
G @
dx 2/1 y7 dx/ 2
i (_dg) v, (ER) L
dx/ 2u dx/ 2u
u=— | —| (hy-y) The velocity profile is parabolic.
24 \dx
dy dx/ u dx/ 2pu

On the top plate, y=h: t=p (_HE) since dy 1s negative, i.e., the distance away from the top

plate 1s in the downward (negative direction)

o)) o

=3 ()
dx
For both the top and bottom walls,
=3 ()
2 \dx -

Shear stress varies linearly with the magnitude of the pressure gradient.

Note: Due to the content of chapters 16, 17, and 18, no homework problems are
required,
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CHAPTER 19

19.1 1 mi/hr=0.4471 m/sec

[141——) 04471 m/seC| _ o3 04 misec
e/l 1 mi/hr

_ paVae _ (123)(6304)(1L6) _

Re. 3% 10°
I 17894 x 107
1328 1328 o oa

(@) C¢=
VR \/ 693 x 106
Noting that drag exists on both the bottom and top surfaces, we have
Dr=2 qu S Ce=2(Y2)(1.23)(63.04)%(9.75)(1.6)(5.04 x 10™) =

0074 . 0074 - B
Cr= = _ =3.17x 10
) o e ~ (693105

(C)us 317 x 107
D= Ll 38.4) =
= )m( A= 8= 415N

Note that turbulent skin friction is 6.28 times larger than the laminar value.

192 (@) = 22 = COUO  _304x10°m= 304 e

JRe, /693 x 10°

& = 037x __(O37)A6)  _ 5544 102m =[.54 om

Rex \/5 (6.93){] 0‘6 )1/5
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Qe = V2 (1.23)(63.04)* = 2444 N/m*

(X[ _._Xo)
He

'\7
Re.=5x 10° P==

5% 10°4,  (5x10°)(17894 x 107)
o V. (1.23)(63.04)

(X1 —%Xo)= =0.1154 m

Laminar drag on (xj - x,):

Cr= _ 328 ie7sx 107

V5 x 10°

Df=qw S Cr= (2444)(0.1154)(9.75)(1.878 x 10°)=5.16 N
Turbulent drag on (x; - x,):

0.07
p= (5x—1045F =536 %107

-3
De= (53—63—10—) 516=1473N
1878 x 107

‘From Prob. 19.1, the turbulent drag on (x> — Xo) was 241.5 N. Hence,

Turbulent drag on (xp —x3) =241.5—- 1473 =226 8N
Total skin friction drag = [Laminar drag on (X — X,)] + [Turbulént drag on (x5 — x3)]

=5.16+226.8=

194 At standard sea levei: P = 0.002377 shug/ft

Te=519°R

2= [IRT =./(14)(1716)(519) = 1117 fi/sec

szMmaoo:4 (1117)=4468 ﬂ/SeC

129



Y
Re = P=Vet _ (.002377)(4468)(57/12) C118x107
i 37373 x 10°
Incompressible Cs= C 1328 _ 1328 _3ge6x10°

“ " JRe, ViIE x 10
From Fig. 18.8:

C/C, ~0.85;C;=3286x% 10"

D= G S Cr = (V2)(.002377)(4468)*(5/12)(3.286 x 10

D= 3.248 Iy on one side of the plate.

19.5 For incompressible flow:

0074 0.074

—~285x10°
Reclj (].18 107)[/5

Ce =

From Fig. 19.1: Cr~1.6x10°
(The effect of Mach number is to reduce Cr by about 44% in this case.)

From Prob. 19.4, the laminar value of Dris 3.248 fora value of Cy=3.286 x 107,
Hence, the turbulent value is

D= (M) (3.248) =

3286 x 107

19.6 = From Eg. (18.32):

pu a +pv a_2 (,U—aiJ (1
X & & )
From Eq. (18. 41) with P
A, éh, & ( o’ho)
+ 8 e 2
pu—=Fpv P 5 @)

Egs. (1) and (2) are identical. Hence
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hy = ¢y + ¢ u, where ¢} and ¢ are constants.

Atthe wall, u =0 and h, = h, =hy. Hence,

hw=c1+0, or ¢, =hy
At the boundary layer edge:

h, =ci+ou=hy+tecu

ho, ~h,
Cy =
uC
Thus:
h, ~h,
hy=c;+c;u=hy+ ———
uﬁ

Since

h=¢, T, then

19.7 From Eq. (18.70),

) _ i d
g, =0.763 Pr® (o) ,/ ;: (Baw — b)

where, from Eq. (18.82), the velocity gradient is given by

du, 1 J2(p.—p.)
dx R P.

(1) -

@

The subscript e denotes properties at the outer edge of the stagnati-on point boundary layer,
i.e., p and p, are the inviscid stagnation point values of pressure and density. The speed of

sound i the ambient atmosphere is

.= JRT, =+/(14)(287)(2461) =314.5 m/sec

(&) For Vo, = 1500 m/sec, we have
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V., 1500

M= — =477

a 3145

@

From Appendix B (nearest entry),

po,Z
Po

=29.52

and from Appendix A (nearest entry),

T
= =5512
T

Hence,
Poz = Pe = (29.52)(583.59) = 1.723 x 10* N/m*
To=Te=(5.512)(246.1)= 1357 K

p, 1723 x 10* _
RT, (287)(1357)

lil

De 0.044 kg/m®

From Southeland’s law, Eq. (15.3), using the standard sea level value of g, = 1.7894 x 10°°

kg/(m)(sec) at T, = 288K, we have

&_(1})3’2 To+110_(1357)”( 288+110) 0y
u, \T,) T,+110 \288/) \1357+110/

He = (2.77)(1.789 x 107) = 4.957 x 10™ kg/(m)(sec)

From Eq. (2) above

2 _ ‘ 4 _ 3
du, 1 [2(p.-P.) 1 \/2(1.723 X 10°—58359) 4 00 1otrcec
&x R p. (0.0254) 0.044

Assuming a recovery factor r = 1, then haw = ho.

-

_V_2 . V‘l L : ’ : 2
Bow =ty = bt 2= =y T+ = =(1008)(246.1)+95_‘2)9_)-

=2.48 x 10° + 11.25 x 10° = 13.73 x 10° joule/kg

Baw = ¢, Tw = (1008)(400) = 4.032 x 10” joule/kg
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The “tho-mu” product is

2
pette = (1.044)(4.957 x 1075 =2.18 x 100 &) _
m  sec

~ From Eq. (1) above

- . /duc
q. = 0.763 Pr 0.63 (pel.lc) dx (haw— hw)

=0.763 (0.72)"% (2.18 x 10%)(3.42 x 10" (13.73 - 4.032) x 10°

—393 JOUeS  fygg 5 watt

sec(m?) m’

(b} For V,=4500 m/séc, we have

V .
M., = Vo _ 4500 14.31
a, 3145

From Appendix B (interpolated)

Po,l
Pw

=264.0

From Appendix A (interpolated)

L, = 4194
T

e

Thus:

pe == (264)(583.59) = 1.54 x 10° N/m’
T.=41.94 (246.1) = 10321 K

p. _ 154 x 10°
RT, (187)(10,321)

u“, _(3_)3’2 T0+110_(10321)3'/2( 288+110 ) 8186
u, \T,) T,+110 \ 288 10321+110 )

Pe™=

=0.052 kg/m®




