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Chapter 1

Introduction

The primary purpose of this reader is to describe the use of analysis equations
and methodologies of structures for design purposes. It is common these days
that we hear from industry that the students graduating with engineering
degrees do not know how to design whether it is structures, or mechanical
systems, or systems from other engineering disciplines. We therefore put the
emphasis in this course on design.

Anybody who has some understanding of the design process, however, re-
alises that without a thorough understanding of the use of analysis methods
it will not be possible to design at least a reliable system. It is, therefore,
important to establish a sound and firm analysis foundation before one can
start the design practice. The approach used in this reader, however, is dif-
ferent from the traditional one in which analysis and designs are taught in
different portions of the course. Instead we will use an approach in which
small portions (sections) of topics from analysis are first introduced immedi-
ately followed by their design implementation. A more detailed description
of the outline and the contents of the reader is provided in the following.

The reader is divided into two primary sections because of a very impor-
tant concept, called statical determinacy, that has a very strong influence
on the way structures are designed. It is of course too early to completely
describe the impact of statical indeterminacy on design. It will be sufficient
to state at this point that statical determinacy simplifies the design process
of a structure made of multiple components by making it possible to design
individual components independent from one another. Structural indeter-
minacy on the other hand causes the internal load distribution in a given
structural system to be dependent on the dimensional and material proper-
ties of the individual component that are typically being designed. That is,
as the design of the individual components change the loads acting on those
components for which they are being designed also change. Hence, individ-
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ual components cannot be designed independently as the design changes in
these components and the other components around them alter the loads
that they are being designed for. The resulting process is an iterative one
requiring design of all the individual components to be repeated again and
again until the internal load redistribution stabilises, reaching an equilibrium
state with the prescribed external loading.

For the reason briefly described above, the first section of the reader is
dedicated to statically determinate structural systems. An important impli-
cation of the independence of internal loads to design changes is the fact
that stresses in the individual components depend only on the sizing vari-
ables, which determine the cross-sectional geometry of the components. That
is, since internal stresses are determined by dividing the internal load by a
property of the cross section of the component (be it area, or thickness, or
area moment of inertia), a designer can make sure that by proper selection of
the sizing variables safe levels of stresses compared to stress allowables can be
maintained. Furthermore, material selection of the components can be made
independent of the rest of the components. The first section therefore concen-
trates on the use of stress analysis of structural components to design cross
sectional properties based on stress considerations only. There are, of course,
other considerations that influence the design decision besides stresses even
if we limit ourselves to statically determinate systems. For example, struc-
tural responses such as buckling and vibration are typically very important
for many aircraft and spacecraft design problems. Such considerations will
be discussed later in the reader.

The second section of the reader is dedicated to statically indeterminate
structural systems. An important element of the stress analysis of indeter-
minate systems is the need to compute displacements and deformations of
the members. As stated earlier, internal load distribution in indeterminate
systems is influenced by the cross-sectional properties of the individual com-
ponents as well as their material properties. This dependency is in fact stems
from the dependence of the internal loads to the stiffnesses of the individ-
ual component, which strongly influence their deformation characteristics.
Structural stiffness is a product of the material properties and the dimen-
sions. As such, the design effort requires evaluation of the member stiffnesses
as a function of the designed quantities, determining the effect of the mem-
ber stiffnesses on member deformations, and in turn internal forces. Hence,
the second section concentrates on design of indeterminate structures and
structures with displacement constraints.

Finally, the material in the reader is organised depending on the type of
structural component to be analysed and designed. Most complex structural
systems are composed of three different types of components, namely truss



3 1. Introduction

and beam members, and plate segments. The primary difference between
the three types of components is the type of loads that are carried by them.
Truss members are two-load members which can only carry co-linear loads
(either tensile or compressive) acting along a line that passes through the
two pin joints connecting the member to other truss members or structural
components. Furthermore the member is assumed to be straight between the
two pins, hence no bending of the member is allowed. The beam members
are primarily used for carrying bending loads, which are typically induced by
more than two forces, or two force members with non co-linear forces. Finally,
plate segments are the more general form of a load carrying component,
reacting to in plane and out of plane loads. A more formal definition of these
components will be provided in appropriate chapters later on. For the time
being we only consider some examples to them in aircraft and spacecraft
structures.
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Chapter 2

Stress Analysis and Design of
Statically Determinate Trusses

A lot of aerospace structures can be idealised as truss structures. This is
clearly illustrated in picture 2.1 where it can be seen that the ribs in the
wing are built up as a truss structure. Also in space applications, trusses
are widely used because of their simplicity and light-weightness. Now the
question rises: what is a truss?

Figure 2.1: Rib truss structure example [Courtesy of www.steenaero.com]

5



2.1. Truss Properties 6

2.1 Truss Properties

A truss is a structure built up from truss members, which are slender bars
with a cross-sectional area A and having a Young’s modulus E.

A generic picture is given in figure 2.2.

Figure 2.2: Typical simple truss structure [Courtesy of
www.compuzone.co.kr]

The following assumptions apply when analysing a truss structure:

• Bar elements can only transfer loads axially. These forces can be either
tensile, tending to elongate the bar, or compressive, tending to shorten
the bar.

• The bar elements are pin-joined together. This has as a consequence
that the joints only transfer forces from one bar element to the other,
and no moments. If the bar elements were welded together, or attached
with a plate, also moments would have been transferred, which is in
contradiction with the earlier mentioning that bar elements are only
suited to take axial loads, and no moments.

• Loadings can only be applied at the joints of the truss. This inherently
means that the weight of the bar, which would act at the midpoint of
a uniform bar, is neglected.

2.2 Static Determinacy of Trusses

A truss is statically determinate if the numbers of unknowns is equal to the
numbers of equations (which is twice the number of nodes n because at each
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node, two forces in x and y direction act) that can be constructed for the
problem. The unknowns are the truss member forces and the reaction forces
at the truss supports. There are m truss member forces and r reaction forces.

So a necessary condition for static determinacy of a truss structure is

m + r = 2n. (2.1)

If m + r > 2n, the truss structure is indeterminate, but that will be
discussed in later chapters

The reaction forces are due to the supports of the truss structure. The
two support types that we use for truss structures are the pinned joint and
the roller support. Both supports can be inspected in figure 2.3.

Pinned node

Roller support

Rx

Ry

Ry

Support Type Reactions

Figure 2.3: Truss support types

Two trusses are given in figure 2.4. One of them is statically determinate
and one is indeterminate. Figure out why they are determinate or indeter-
minate.

Figure 2.4: Statically determinate and indeterminate trusses

2.3 Truss Analysis

The internal forces created by an external loading to the truss can be solved
by using the method of joints. This method implies that the summation of all
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forces in either of the two directions at each node is equal to zero (
∑

Fx = 0
and

∑
Fy = 0). The method of joints is highlighted in figure 2.5.

Figure 2.5: Internal force distribution inside a truss

2.3.1 Truss Definition

Defining and analysing a truss structure is not only a matter of stress analysis,
but also a matter of good book keeping. Therefore we define the nodal
locations, the members along with their begin and end nodes and material
properties in an orderly fashion. The ith node has the following location pi:

pi = {xi, yi}, i = 1 . . . n, (2.2)

where n is the number of nodes in the truss. The jth member or element ej

has a start point ps and an end point pe:

ej = {ps, pe}, j = 1 . . . m, (2.3)

where m is the number of members. Each member has its Young’s modulus
Ej and cross-sectional area Aj. The length lj of the jth member is then
defined as:

lj =

√
(xs − xe)

2 + (ys − ye)
2 (2.4)
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Finally each node has its own applied force Pj, which can be zero in case
of the absence of the force.

2.3.2 Stress Analysis

The procedure for analysing a truss is as follows:

• Define the truss as described in the previous section.

• Draw each node separately including the member forces and if relevant,
the applied forces and reaction forces on the node. By convention, we
draw the direction of the member forces away from the node (see also
figure 2.5). This does not mean that all forces are tensile. Compressive
forces will come out negative. The reaction forces should be drawn in
the positive axis directions and applied forces should remain in their
original direction!

• Sum all the forces per node and per direction and equate them to zero
for equilibrium.

• Solve the obtained equations from the previous item to get the unknown
forces (notice that in case of a statically indeterminate truss, you would
have too few equations!), both member and reaction forces.

• Check global equilibrium to see whether the reaction forces come out
right. This gives additional confidence in the solution.

Notice that if the convention of drawing the unknown member forces away
from the node is used, the compressive member forces come out negative
automatically. Now that the member forces are known, the member stresses
σj can be retrieved using

σj =
Pj

Aj

. (2.5)

Notice that only the cross-sectional area itself is needed for the calculation
of the member stress, so the shape of the cross section, albeit a square or
a circle, is irrelevant. Also notice that since a truss member can only take
normal forces, only normal stress is calculated, so no shear stress is present
in a truss member.
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2.4 Stress Design

The stresses in the truss members can be calculated according to equation
2.5. This means that if the loading on the member and its geometry are
known, the resulting stress can be derived straightly. Now the question
occurs whether the resulting stress is larger than the stress the material can
take without failure. The latter stress is the allowable stress σall.

If the occurring stress in a truss member is lower than the allowable stress,
it means that there is too much material present. Obviously an aerospace
structure should be as light as possible. So therefore in a stress design, one
should always strive for equating the occurring stress and the allowable stress.
Such a desing philosophy is called a fully stressed design. In a statically
determinate truss, the member forces are solely dependent on the externally
applied loads. As such, one should adapt the cross sectional area to a new
one as:

σall =
F

Anew

(2.6)

Keeping in mind that the original expression for the stress is σ = F
Aold

,
we get as full stressed design update criterion for the cross-sectional area the
following expression:

Anew =

∣∣∣∣
σ

σall

∣∣∣∣Aold (2.7)

2.5 Example

Given is a three bar truss, shown in figure 2.6, with all element having equal
length. A force P is applied at node B in negative y direction. First free-
body diagrams are drawn for each node separately. They can be viewed in
figure 2.7.

The equilibrium equations for node A are:

∑
F→+

x : 0 = Ax + FAB
LBC

LAB

(2.8)

∑
F ↑+

y : 0 = −FAC − FAB
LAC

LAB

. (2.9)

The equilibrium equations for node B are:
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P

A

B

C
x

y

Figure 2.6: Three bar truss example

A

FABFAC

Ax

B
FAB

P

FBC

C

FBC

Cy

Cx

FAC

Figure 2.7: Free-body diagram of each node

∑
F→+

x : 0 = −FBC − FAB
LBC

LAB

(2.10)

∑
F ↑+

y : 0 = −P + FAB
LAC

LAB

. (2.11)

The equilibrium equations for node C are:

∑
F→+

x : 0 = Cx + FBC (2.12)
∑

F ↑+
y : 0 = Cy + FAC . (2.13)
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Solution of the six equations simultaneously yields the following expres-
sions for the unknowns:

{
Ax = −P

LBC

LAC

, Cx = P
LBC

LAC

, Cy = P, FAB = P
LAB

LAC

, FAC = −P, FBC = −P
LBC

LAC

}

(2.14)
By inspection it is evident that the reaction forces equilibrate each other

and the externally applied force P .
Now that the three member forces are known, their cross-sectional areas

can be changed such that each of the members becomes fully stressed using
equation 2.7. Assume the material has an allowable stress σall, the new cross
sectional areas become:

{
AAB,new =

P LAB

LAC

σall

, AAC,new =
P

σall

, ABC,new =
P LBC

LAC

σall

}
(2.15)

Note that although some of the member forces were negative, their ab-
solute value needs to be taken to calculate the cross-sectional areas because
obviously an area cannot be negative.



Chapter 3

Stress Analysis and Design of
Statically Determinate Beams

The objective of this chapter is to master the skills of analysing statically
determinate structures composed of beams or a combination of beam and
truss members using both the continuous and discrete approaches. The dis-
crete approach is based on splitting the structure into short beam segments
over which the loading can be assumed constant. In this case, analysing the
structure is reduced to well-structured calculation which can be carried out
either by hand or using a computer.

3.1 What is a beam?

A beam is any structure or structural member which has one dimension
much larger than the other two. This is the simplest possible definition and
the one mostly used in engineering practice. The long direction is usually
called the beam axis. The beam axis is not necessarily a straight line. The
planes normal to the beam axis (in the undeformed configuration) intersect
the structure in cross-sections. The point at which the beam axis intersects
the cross-section need not be the centroid, although under certain conditions
this choice results in considerable simplification.

Beam analysis is common in preliminary design of aerospace structures.
As shown in figure 3.1, the complete structure of an aircraft can be idealised
as a collection of beams. In other situations, structural members rather than
built-up structures are modelled as beam. Examples of such use are tail or
wing spars and shafts of a turbojet or turbofan engine as shown in figure 3.2.

Apart from its use in preliminary design, beam models are important for
the insight they provide into the behaviour of the structure. Terminology

13
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Figure 3.1: Aircraft beam model [Courtesy of www.flightinternational.com]

associated with beam analysis is an essential part of the vocabulary of struc-
tural engineers. A thorough understanding of and familiarity with beam
theory is one of the cornerstones of the engineering intuition of structural
engineers.

3.2 Equilibrium Equations

A beam has cross-section dimensions which are much smaller than the beam
length. For this reason a beam is usually sketched as lines representing the
beam axis. If we imagine the beam to be separated into two parts at a
certain (see figure 3.3) cross-section, the internal forces at that cross-section
will have a static resultant force and moment. When resolved along the local
beam axes, the static resultant is composed of three force components and
three moment components. The force component along the beam axis, x,
is termed the normal or axial force. The force components along the two
cross-section axes, y and z, are called shear forces. The moment component
along the beam axis is called the twisting moment or torque. The moment
components along the two cross-section axes are called bending moments.
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Figure 3.2: Engine beam model [Courtesy of www.milnet.com]

x

y

z

Figure 3.3: Local beam axes

It is important to note that while the names of the different cross-section
force and moment components are almost universal, the sign conventions,
symbols, and how the variation of these quantities is plotted along the beam
axis, can vary between different books and computer software. It is essential
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to review the conventions adopted by specific books or software packages
before using them.

In the following we are going to use a sign convention that is common
in aerospace applications. The normal force is denoted by N . The sign
convention for the normal force is a positive sign for a tensile force and a
negative sign for a compressive force. The torque is denoted by Mx and is
positive when rotating counter clockwise out of the cross-section. The bend-
ing moments about the two cross-section axes are denoted by My and Mz.
A bending moment is positive if it causes compression in the first quadrant.
Finally, the shear forces are denoted by Vy and Vz. The sign convention of
all cross-sectional resultants is shown in figure 3.4.

+

+

++
+

Figure 3.4: Beam sign convenction

Consider an arbitrary infinitesimal segment of the beam as shown in fig-
ure 3.5. This segment will be in equilibrium under the action of internal
and external forces and moments. For simplicity, we derive the vertical equi-
librium equations. Similar arguments can be used to derive the rest of the
equilibrium equations.

Let pz(x) define the vertical loading per unit length. If the beam seg-
ment is short enough, the load can be assumed uniform. The vertical force
equilibrium of the beam segment requires,

pz(x)∆x + Vz(x)− Vz(x + ∆x) = 0. (3.1)
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∆xVz(x) Vz(x+∆x)

pz

My(x) My(x+∆x)

Figure 3.5: Infinitesimal beam segment

Dividing by ∆x and taking the limit as ∆x → 0, we find the continuous
form of the vertical force equilibrium as,

dVz

dx
= pz. (3.2)

The student is encouraged to derive the moment equilibrium equation around
the y axis. The complete set of equilibrium equations are listed below,

dN

dx
= −px,

dVy

dx
= py,

dVz

dx
= pz (3.3a)

Mx

dx
= −tx,

My

dx
= Vz,

dMz

dx
= Vy. (3.3b)

In these equations, px(x) is the distributed thrust load per unit length, py

and pz are the lateral distributed loads per unit length in y and z direction
respectively, and tx(x) is the distributid twisting moment per unit length.

The equilibrium equations 3.3 are valid when the applied distributed loads
vary smoothly. This, however, is frequently not the case. In many practical
situations, load introduction is abrupt and the loading can be idealised as
concentrated forces and/or moments. In such cases, the distribution of the
cross-sectional forces and moments is not continuous. Special jump condi-
tions have to applied at such locations.
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The jump condition when a vertical concentrated force is applied are
derived. Referring to figure 3.6, the vertical force equilibrium equation 3.1 is
modified to read,

Fz + pz(x)∆x + Vz(x)− Vz(x + ∆x) = 0. (3.4)

Taking the limit as ∆x → 0, we obtain the jump condition,

V +
z − V −

z = Fz, (3.5)

where V −
z and V +

z are the shear force right before and right after the applied
concentrated load Fz.

Similar jump conditions can be derived for all forces and moments. The
student should be able to carry out the derivation without difficulty.

∆x

Vz(x) Vz(x+∆x)

Fz
pz

Figure 3.6: Force jump over an infinitesimal beam segment

3.3 Stresses in Beams

Once the distribution of the internal forces and moments is obtained through
the integration of the equilibrium equations 3.3, the stress state at any point
of the cross section can be calculated. This might at first seem strange since
different loading can lead to the same internal force and moment resultant at
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a given cross-section. The question arises whether the stress distribution due
to two statically equivalent loads are the same. The answer to this question
is that the stress distributions due to statically equivalent systems of loads
are not identically the same but are generally close away from the point
of application of load. This is a statement of the de St. Venant principle.
Stresses calculated based only on the resultant internal force and moment are
usually accurate enough away from points of load introduction, supports, and
discontinuity in the cross-sections.

If, for the sake of simplicity, we assume that the beam is loaded in the xz
plane only, the formulae for the stress distribution are particularly simple.
The distribution of the normal stress σx is given by,

σx =
N

A
− My

Iy

z, (3.6)

where A is the total area of the cross-section, Iy is the second moment of
area about the y axis, and the z coordinate is measured from the centroid of
the cross section. The distribution of the shear stress is given by,

τ = −VzQ

Iyt
, (3.7)

where Q is the first moment of area of the part of the cross section up to the
point of calculation.

3.4 Discrete Beam Analysis

While the equations of equilibrium are straightforward to integrate for beams
with simple loading, the integration can become very cumbersome for more
complex loading (e.g., lift distribution over a wing). For such cases, it is
possible to compute approximate distribution of cross-sectional forces and
moments by discretising the beam into a finite number of segments, n, and
assuming the loading to be constant over each segment.

For simplicity we consider only lateral loads in the xz plane. The tech-
nique can be easily extended for the general case. The beam is divided into n
segments. The ith segment having a length `(i) and uniform applied load p

(i)
z .

It is assumed that any concentrated forces are applied between the segments
and not inside the segment. Integration of the equilibrium equations gives
the following relations,

V (i)
z

∣∣
L

= V (i−1)
z

∣∣
R

+ F (i)
z , V (i)

z

∣∣
R

= V (i)
z

∣∣
L

+ p(i)
z `(i), (3.8)
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and

M (i)
y

∣∣
L

= M (i−1)
y

∣∣
R

, M (i)
y

∣∣
R

= M (i)
y

∣∣
L

+
(
V (i)

z

∣∣
L

+ p(i)
z `(i)/2

)
`(i), (3.9)

where the L and R subscripts denote the left end and right end of the segment
respectively.

The above equations are very easy to program using Maple, Matlab, or
even using a simple excel sheet. The way the equations are used can be best
illustrated by an example.

3.5 Example

A representative example will be analysed using both continuous integration
and a discrete beam model. Consider an aircraft wing modelled as a can-
tilever beam and loaded with a vertical load distribution (lift distribution),
approximated as,

pz(x) = p0

(
3
(x

L

)− 3
(x

L

)2
+

(x

L

)3
)
, (3.10)

where, for numerical computations, p0 = 1000N/m and L = 5m are used.
The shear force at the leftmost edge is zero since it is a free end. This

allows us to evaluate the integration constant when integrating equation 3.10.
Thus, we can obtain the shear force distribution as,

Vz(x) =
p0L

4

(
6
(x

L

)2 − 4
(x

L

)3
+

(x

L

)4
)
. (3.11)

Similarly, equation 3.11 can be integrated and the integration constant de-
termined by noting that at x = 0, the bending moment vanishes. The final
expression for the bending moment is,

My(x) =
p0L

2

20

(
10

(x

L

)3 − 5
(x

L

)4
+

(x

L

)5
)
. (3.12)

To solve this example using the discrete approach we divide the beam
into ten segments. The results of the computation is summarised in Table
3.5. Sample Maple codes for discrete beam analysis are available online.
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Table 3.1: Discrete Shear Force and Bending Moment Distribution

Segment ` pz Vz|L Vz|R My|L My|R
1 0.5 142.6 0.0 71.3 0.0 17.8
2 0.5 385.9 71.3 264.3 17.8 101.7
3 0.5 578.1 264.3 553.3 101.7 306.1
4 0.5 725.4 553.3 916.0 306.1 673.4
5 0.5 833.6 916.0 1332.8 673.4 1235.6
6 0.5 908.9 1332.8 1787.3 1235.6 2015.7
7 0.5 957.1 1787.3 2265.8 2015.7 3028.9
8 0.5 984.4 2265.8 2758.0 3028.9 4284.9
9 0.5 996.6 2758.0 3256.3 4284.9 5788.5
10 0.5 999.9 3256.3 3756.3 5788.5 7541.6
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Chapter 4

Stress Analysis and Design of
Statically Determinate Plates

Plates are extensively used structural elements in aerospace constructions.
Skin material, ribs, aircraft floors, . . . ; their application possibilities are
infinite. An example of the use of plate material as aircraft skin is given in
figure 4.1. At the very dawn of aviation, aircraft wing and fuselage skins
were applied to preserve the required aerodynamic shape, and all the loads
acting on the vehicle were carried mainly by truss structures. However, with
the introduction of aluminium in the aircraft industry, this changed radiaclly.
The so-called fully stressed skin was invented. This means that the plates
forming the skin take their part of the loads.

A plate can be loaded mainly in two ways, in the plane of the plate and
perpendicular to its plane. The stress analysis of bending of plates has proven
to be too complicated to deal with in this course, and as such will not be
treated. Also the loading in the plane is not exactly trivial either, however,
there are some particular cases that will be investigated in this course. These
simplified cases already provide initial insight in the essentials of stresses in
plates.

4.1 Uniform In-Plane Loading

The loading condition considered is a uniform in-plane loading. This means a
constant stress field that is distributed uniformly over the entire plate. Such
a stress field is the resultant of an applied stress in one direction of the plate.
The plate can also be loaded uniformly in the other direction. This results in
a uniform stress field in that direction as well. A combination of two uniform
stress fields in either direction of the plate is called a bi-axial uniform stress

23
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Figure 4.1: Example of an aircraft riveted plate skin [Courtesy of
www.romeolima.com]

state. Finally a plate can, in combination with the previously mentioned
applied normal stresses, also be loaded in uniform shear. This results in a
uniformly distributed shear stress state in the plate. The total combination
is shown in figure. Please note the particular directions of the applied shear
stress components. The combined load cases can be seen in figure 4.2.

When these three components act on a plate, a stress analysis can be
carried out. Even in case of a plate that has a complex stress distribution
due to a certain applied load combination, locally the stress distribution is
uniform. Such a small local plate element is called a stress element.

4.2 Circle of Mohr

If a bi-axial stress state and a uniform shear stress are present, the question
is what the occurring normal and shear stress would be in any arbitrary
direction of the plate. On top of that, one might wonder what the maximum
normal and shear stress would be in the plate, and in which direction that
one would act. This issue is solved by looking at the force equilibrium in an
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σx

σy

τxy

σy

σx

τxy

x

y

Figure 4.2: Example of fully loaded stress element

arbitrary direction of a stress element, as shown in figure 4.3.

τθ

σy

σx

τxy

σθ

A0

θ

x

y
xθ

yθ

θ

Figure 4.3: Free body diagram for the plate equilibrium equations

Keeping in mind that a force is the applied stress times the area over
which the stress is distributed, the force equilibrium in x and y-direction can
be written as
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∑
Fxθ

: 0 = σθA0 − σx(A0 cos θ) cos θ − τxy(A0 sin θ) cos θ − σy(A0 sin θ) sin θ
−τxy(A0 cos θ) sin θ∑

Fyθ
: 0 = τθA0 + σx(A0 cos θ) sin θ + τxy(A0 sin θ) sin θ − σy(A0 sin θ) cos θ

−τxy(A0 cos θ) cos θ
(4.1)

.
Assembling corresponding terms of the above equation yields

{
σθ = σx cos2 θ + σy sin2 θ + 2τxy sin θ cos θ
τθ = −(σx − σy) sin θ cos θ + τxy(cos2 θ − sin2 θ)

(4.2)

.
Using standard trigonometric relations, the above expressions can be sim-

plified even further:

{
σθ = σx+σy

2
+ σx−σy

2
cos 2θ + τxy sin 2θ

τθ = −σx−σy

2
sin 2θ + τxy cos 2θ

(4.3)

.
If the second of the above equation is substituted into the first one, one

obtains an expression of a circle:

(
σθ − σx + σy

2

)2

+ τ 2
θ =

(
σx − σy

2

)2

+ τ 2
xy (4.4)

This circle is called Mohr’s circle. It is obvious that this is a circle in the
σθ − τθ - plane and has as centre point σx+σy

2
, which is the average normal

stress σav and radius R =
√(σx−σy

2

)2
+ τ 2

xy. Assume the applied stresses σx,

σy and τxy are known, the stresses σθ and τθ can be determined using the
equation of the circle of Mohr. The layout of the circle is given in figure 4.4.

It is clear that the maximum (σ1) and minimum (σ2) normal stresses can
be read off Mohr’s circle directly (where the circle intersects with the σθ-
axis), as well as the maximum shear stress. In some cases it can also occur
that σ2 becomes larger than σ1 in absolute value. Obviously σ2 will be the
maximum normal stress in that case. Also the double of the direction ϑ in
which the normal stresses act can be read from the circle. It is the angle
between the σθ-axis and the line connecting the circle’s centre point and the
(σx, τxy) point. The reason why it is a double angle can be found in equation
4.3. The equation for the direction angle ϑ is

ϑ =
1

2
arctan

(
τxy

(σx − σy)/2

)
(4.5)
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Figure 4.4: Layout and definition of Mohr’s circle

4.3 Stress Design

The stress design of a statically determinate plate is very similar to that of
a statically determinate truss or beam. In this case, also the fully stressed
design philosophy applies, as already explained in section 2.4. The major
difference is that in the case of a plate, we are not looking to update the
cross sectional area, but the thickness, since the other geometric quantities
are usually prescribed. The plate thickness can be updated according to
two design criteria, maximum normal stress or maximum shear stress. The
maximum normal stress is the maximum value of the two stresses σ1 and σ2 -
in absolute value - obtained using Mohr’s circle. The maximum shear stress
is obtained directly from using the circle of Mohr. The new plate thickness
is calculated according to the following equations, which are expressions for
maximum normal and shear stress, respectively:

tnew =
σ

σall

told (4.6)

tnew =
τ

τall

told (4.7)
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4.4 Example

Special cases of Mohr’s circle

σx or σy is zero
τxy is zero

σx and σy are equal
τxy is zero

σx and σy are zero
τxy is finite
σx = -σy and 
τxy is zero

σx = σy and 
τxy = σx = σy

σ

τ

σ

τ

σ

τ

Figure 4.5: Special cases of Mohr’s circle

Bi-axially Loaded Stress Element

A stress element is loaded with two normal stresses and one shear stress as
indicated in figure 4.6.

In orde to construct Mohr’s circle, we need the circle midpoint and the
circle radius. The midpoint, located on the σθ-axis is the following:

σav =
σx + σy

2
=

100 + 50

2
= 75MPa (4.8)

The circle radius is:

R =

√(
σx − σy

2

)2

+ τ 2
xy =

√(
100− 50

2

)2

+ 252 = 35.36MPa (4.9)

Using this information, the maximum normal and shear stress can be
found:

σ1 = σav + R = 110.36MPa (4.10)

τmax = R = 35.36MPa (4.11)
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σx = 100 MPa

σy = 50 MPa

τxy = 25 MPa

x

y

Figure 4.6: Example load case on a stress element

The value for σ2 in this case is 39.64 MPa. The direction ϑ in which the
maximum normal stress acts, is calculated as follows:

ϑ =
1

2
arctan

(
25

(100− 50)/2

)
= 22.5◦ (4.12)

Assuming the initial thickness of the plate is 2 mm, the allowable normal
stress is 100 MPa and the allowable shear stress is 50 MPa, the fully stressed
thickness both for maximum normal and shear stress becomes, respectively:

tnew =
110.36

100
2 = 2.2mm (4.13)

tnew =
35.36

50
2 = 1.4mm (4.14)

It is evident that one can get totally different answers based on the stress
criterion one uses.
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Chapter 5

Stress Concentrations and
Multiple Loads

5.1 Stress Concentrations

We have seen in the stress analysis methods of trusses, beams and plates that
one deals with average stresses uniformly distributed over the cross-section
of the structure. In most cases that is a fair assumption and leads to good
analysis results. However particular load introductions, holes in a structure
or sudden changes in cross-section can cause stress concentrations to occur.
These stresses are larger than the average stresses calculated far from those
critical locations, and as such can cause the occurring stress to become larger
than the allowable stress at certain locations in the structure. Therefore it is
important to take these stress concentrations into account and involve them
into the stress analysis.

Stress concentrations happen at places where there are discontinuities in
the structure, such as holes, cracks, cross-section changes. They are also
present at load introduction locations. It can be stated generally that brittle
materials are more susceptible to stress concentrations than ductile ones.
The reason for this is twofold. First of all cracks and cognates influence the
fatigue life of a structure, and it is generally known that brittle materials
are more sensitive to fatigue. Secondly the elevated stresses might cause
plasticity to emerge in the material. Also in this case, ductile materials are
more favourable than brittle ones.

The stress level at the stress concentration location, σmax, is higher than
the average stress in the structure, σav. The ratio between these two stresses
is a measure for the intensity of the stress concentration and indicated with
the stress concentration factor K:

31



5.1. Stress Concentrations 32

K =
σmax

σav

. (5.1)

De Saint-Venant’s Principle

The question is now how big the influence of such local phenomena is on the
remainder of the structure. De Saint-Venant postulated a theorem on this
matter, which is still accepted today. He claims that such local phenomena
have only a local influence. Far from the influence, the occurring stresses are
independent of how the loads are applied, or whether there are holes present
or not. This is depicted in figure 5.1. As a rule of thumb one may assume
for load introduction problems that the effect of the applied axial load is
relevant up to a distance equal to the width of the plate.

σmax

σav

σmax

σavσav

σmax

P

Figure 5.1: Illustration of the principle of De Saint-Venant

Circular holes and Cross-Section Changes

As mentioned earlier, stress concentrations can occur near circular holes or
cross-section changes. The question is how to determine the stress concentra-
tion factor K based on the geometric properties of the holes or area change.
The following geometric quantities are important when calculating K:

• Circular hole: the ratio of hole radius r and the distance from the hole
to the plate edge d.
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• Cross-section change:

1. the ratio of the fillet radius r and the length of the smallest cross-
section d.

2. the ratio of the smallest cross-section length to the largest cross-
section length.

Symbols r and d are used multiple times, however, these are the con-
ventions for hole and cross-section change stress concentration factors, so be
always mindful of what K factor you are dealing with.

The geometric definitions and K factor relations for the hole are given in
figure 5.2 while those for the cross-section change are given in figure 5.3.

Figure 5.2: Geometric definitions and K factor for a hole [Courtesy of Beer,
P.F., Mechanics of Materials ]

5.2 Design for Multiple Loads

The terms combined load and multiple loads are often used in design. In the
first case, a structure is submitted to a combination of loads simultaneously.
A good example is an aircraft wing; this structure is submitted to a lift force,
a drag force and an aerodynamic moment at the same time during flight (see
figure 5.4).

Calculating the stresses due to such a combined load can be approached
by calculating the internal normal and shear forces, and the bending and
torsional moments resulting from the combined load at the location where
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Figure 5.3: Geometric definitions and K factor for a cross-section change
[Courtesy of Beer, P.F., Mechanics of Materials ]

L

DM

Figure 5.4: Combined airfoil load

one desires to know the stresses. The stresses resulting from each of these
internal forces can added together since we are dealing with linear structures
throughout the entire course. As such, desinging for combined loads is not
fundamentally different from designing for a single load only.

When one designs for multiple loads on the other hand, the objective is
to make sure that the structure is able to withstand several load cases which
do not occur simultaneously. To clarify the difference between multiple load
and combined load, each of the individual load cases of a multiple loading
condition can be a combined load. As an example for a multiple load case
serves a flight envelope (see figure 5.5). An aircraft wing needs to be designed
for each of the points inside the boundaries of the flight envelope.

The challenge is that one is often confronted with completely different
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Figure 5.5: Flight envelope containing multiple load cases

requirements. Take as an example a simply supported beam which needs to
be designed for tension and compression simultaneously. In the tensile case,
the only important factor is the total cross-section area of the beam. On the
other hand, in the compressive case, the beam is prone to buckling. For a
simply supported beam, the buckling load Pcr is equal to π2EI

L2 , where I is the
second moment of area of the beam, and as such not only the area of the beam
becomes important, but also the shape. Let us assume a rectangular thin-
walled shape with wall thickness 1 mm, width b and height h. The applied
tensile/compressive load is 10,000 N and the material Young’s modulus is 70
GPa and its allowable stress 310 MPa. This leads to two requirements:

Amin ≥ P

σall

(5.2)

Imin ≥ PL2

π2E
. (5.3)

If we keep the formulas for A and I in mind (A = 2t(b + h) and I =

th2(
1

6
h+

1

2
b)), and plugging in the values given above, we obtain the following

inequalities:
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32.3 ≤ 2(b + h) (5.4)

145.0 ≤ h2(
1

6
h +

1

2
b). (5.5)

Plotting both curves gives a graph as depicted in figure 5.6.

Figure 5.6: Plotted inequalities for the multiple load case

The inequalities given above indicate that all combinations of b and h that
are above both curve are good candidates for the design problem. Obviously
both values should be positive, so b = 0-line forms a boundary as well. If both
tensile failure and buckling should occur simultaneously, then the intersection
of both graphs in the positive b-plane is the only option.



Chapter 6

Displacement Analysis and
Design of Statically
Determinate Trusses

No structure is rigid. The floor you were just walking on deformed under
your feet, the chair you are sitting on shortened just a little bit. However
not evident from every day life practice, everything deforms under a certain
loading. Especially in the aerospace industry, deformations are important
as a consequence of the design philosophy. Weight is the driving factor in
every aerospace design, and this constant striving for lightness renders struc-
tures to become flexible. The danger of such structures is that the occurring
displacements might jeopardise the structural functionality. Imagine that
because of weight savings, the torsional rigidity of a wing would be reduced.
This would result in large local angles-of-attack altering the aerodynamic
performance considerably.

Therefore a structure should always be designed such that it is able to
carry the applied loads without violating certain displacement constraints.
Because of that, displacement analysis of a structure is very important. More-
over, as we will see later, the internal stress distribution in a statically in-
determinate structure depends entirely on the displacement field. This is a
second example the importance of displacement calculation.

In this chapter we will deal with the displacement of trusses. But first we
introduce a tool with which we can calculate displacements of trusses and
beams using energy principles. This tool is called the Dummy Load Method.

37
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6.1 Dummy Load Method

Energy Principles

Work W exerted on a structure is equal to a force F times the displacement
δ the force creates:

W = Fδ (6.1)

Doing work requires energy U , which is stored in the structure. If all
energy is released when the applied forces are removed from the structure,
such a structure is called conservative or elastic. If some energy remains in
the structure, it is called nonconservative or plastic. The externally applied
work, resulting in an external energy Ue needs to be in equilibrium with the
internal structural strain energy Ui. This principle is called conservation of
energy.

Another important concept is the principle of virtual work. This type
of work can be interpreted as an applied force effectuating an infinitessimal
small displacement in the direction of the force. It can be explained by
looking at figure 6.1.

F

δ

U

∆U

∆δδδδ

Figure 6.1: Principle of virtual work

It is clear that the energy stored in the structure due to a finite displace-
ment ∆δ is equal to ∆U = F∆δ. If the latter displacement is going to zero
in the limit - in order to obtain the infinitessimally small displacement - the
principle of virtual work becomes

dU = Fdδ. (6.2)

This means that the rate of change of the internal strain energy with the
displacement is equal to the applied force. Associated with virtual work is
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Trusses

the principle of complementary energy U∗. This can be inspected in figure
6.2.

F

δ
U

U*

∆F

∆U*

Figure 6.2: Principle of complementary energy

Instead of an infinitessimal displacement, we are now looking at a small
force ∆F . Analoguous to the method described above for the virtual work,
we obtain

dU∗ = dF δ (6.3)

This formula indicates that the rate of change of the complementary
energy with the force is equal to the resulting displacement.

Castigliano’s Theorem

For linear structures, which we use thorugout this course, the relation be-
tween an applied force and the resulting displacement is linear F = kδ, where
k is the structural stiffness. It is evident from figure 6.3 that in the linear
case the internal energy is equal to the complementary energy U = U∗.

Therefore the following important relation can be derived from equations
6.2 and 6.3:

dU

dF
= δ. (6.4)

This means that we can find the displacement δ in the direction of a
force F by differentiating the strain energy with respect to that force. This
equation is called the theorem of Castigliano. If multiple forces act on the
structure, each displacement in the direction of a particular force Fi is then
expressed as:

dU

dFi

= δi. (6.5)
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F

δ

U

∆U

∆δδδδ

U*

∆F

∆U*

Figure 6.3: Linear force-displacement diagram

Note that the strain energy U is a result from all applied forces F , while
the displacement in the direction of a particular force Fi is the derivative
with that force only.

If we apply the above explanation to a truss member in particular, we
end up with the following expression for the energy:

U =

F∫

0

δdF =
F 2L

2EA
, (6.6)

keeping in mind that F = kδ and that the stiffness k of an axial truss member
is equal to k = EA

L
. For an entire truss structure, the energy becomes the

summation over the individual contributions of each member:

U =
n∑

i=1

F 2
i Li

2EiAi

(6.7)

where n is the number of truss members in the truss structure. This equation
assumes the properties like cross-section, length and Young’s modulus to be
constant over the truss member.

If we apply Castigliano’s theorem to the above expressions, we obtain an
expression for the displacement in the direction of a certain applied force P
(do not confuse with the internal forces F ):

δ =
dU

dP
=

n∑
i=1

Fi
dFi

dP
Li

EiAi

. (6.8)

The quantity dFi

dP
is how the internal force in truss member i changes if

the external loading P changes. This is also denoted with the symbol fi:
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Trusses

δ =
dU

dP
=

n∑
i=1

FifiLi

EiAi

. (6.9)

Notice that fi is dimensionless.

Dummy Load Method

In practice, the above derived theory works as follows. The most difficult and
important part of the expression is to determine the unity force distribution
fi. This quantity indicates how the internal forces change with changing
external force. Keeping this in mind, and also thinking of the fact that
Castigliano’s theorem says that the displacement is obtained by deriving
the total strain energy U by a force in that direction, one can conclude the
following. If one wants to know the displacement of a structure in a certain
direction, place a unit load (remind that fi is dimensionless) at that particular
point in the direction in which one desires to know the displacement. Do
this regardless whether an external load P is already applied or not. Using
this applied unit load, one can calculate fi. Use the following approach to
calculate the displacements of a truss:

• Calculate the internal force Fi in each truss member due to the exter-
nally applied forces Pi.

• Remove all externally applied forces.

• Apply a unit load at the point where you want to know the displacement
in the direction you want to calculate the displacement.

• Calculate the reaction forces at the supports due to the dummy load.

• Calculate the internal unity forces fi due to the dummy load.

• Apply equation 6.8 to obtain the magintude of the displacement in the
direction of the dummy load.

6.2 Displacement Design

If the geometry of a structure is given, including the loading conditions, the
construction displaces according to the given parameters. However, it might
be desirable to alter the geometry of the construction such that a certain
point of the truss meets a prescribed displacement δ0. Usually the truss
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layout in terms of member lenghts is fixed as well as the material properties.
This leaves the cross-sectional areas as variables. Assume that only the cross-
sectional area of member n, An is variable, we get the following equation for
the displacement (analogue to equation 6.8):

n−1∑
i=1

FifiLi

EiAi

+
FnfnLn

EnAn

= δ0. (6.10)

The only unknown in this equation is the unknown cross-section area An

which can be determined easily. The same procedure holds if a certain length
Li or Young’s modulus Ei is unknown.

6.3 Example

As an example, we take the same truss as in the example of chapter 2, see
figure 2.6. We already know the internal force distribution due to the applied
load P , which is given in section 2.5, so we know all the unknown quantities
Fi. Now it we want to know the displacement of node B in positive y-
direction, we first remove the load P and apply a dummy load as given in
figure 6.4.

x

y

A

BC

1

Figure 6.4: Truss structure with applied dummy load

By inspection it is evident that the reaction dummy force cy is equal to
1. Furthermore ax = LBC

LAC
and as such, cx = −LBC

LAC
. Note that each of these

dummy reaction forces are dimensionless as well. The internal dummy forces
fi can be calculated by looking at nodal equilibrium as given in figure 6.5.

The equilibrium equations for node A are:
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cx fBC
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1
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fAC

Figure 6.5: Nodal internal dummy loads

∑
F→+

x : 0 = ax + fAB
LBC

LAB

(6.11)

∑
F ↑+

y : 0 = −fAC − fAB
LAC

LAB

. (6.12)

The equilibrium equations for node B are:

∑
F→+

x : 0 = −fBC − fAB
LBC

LAB

(6.13)

∑
F ↑+

y : 0 = 1 + fAB
LAC

LAB

. (6.14)

The equilibrium equations for node C are:

∑
F→+

x : 0 = cx + fBC (6.15)
∑

F ↑+
y : 0 = cy + fAC . (6.16)

Solution of the six equations simultaneously yields the following expres-
sions for the unknowns:

{
ax =

LBC

LAC

, cx = −LBC

LAC

, cy = −1, fAB = −LAB

LAC

, fAC = 1, fBC =
LBC

LAC

}

(6.17)
Note that the reaction forces are indeed the ones we predicted, which gives

confidence that our solution is correct indeed. Note furthermore that the
dummy forces fi are −dFi

dP
indeed. The minus sign comes from the opposite

signs of P and the dummy load.
If then equation 6.8 is applied, and assuming lengths LAC and LBC are

equal to L (to simplify the resulting expression), we obtain for the vertical
displacement:
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δ = −P2(1 +
√

2)L

EA
. (6.18)

Since we chose the dummy load to be positive upwards, the resulting
displacement is negative, since node B will displace downwards under the
applied load P . Verify this by inspection.

Assume we prescribe the vertical displacement, positive upwards accord-
ing to the dummy load direction, to be −δ0. All geometric values are known,
except the cross-sectional area AAC . The other cross-sectional areas are all
equal to A. Determine that value in order the displacement to be δ0.

δ0 = −
(

FACL

EAAC

+
FBCL

EA
+

FAB

√
2L

EA

)
. (6.19)

The unknown can now be solved as:

AAC =
P L A

A E δ0 − (2
√

2 + 1)PL
(6.20)



Chapter 7

Displacement Analysis and
Design of Statically
Determinate Beams

In this chapter, we consider the calculation of beam displacements and ro-
tations at selected points. This is done, as explained before for trusses, by
applying the unit load method. Again, we restrict ourselves to beams in the
x-z plane subject to lateral loading.

If it is desired to calculate the displacement at a certain point p, we
apply a unit later force at p. The direction of the unit load is arbitrary (it
can be pointing up or down). It must be kept in mind that the displacement
calculated will be in the direction of the load. Thus, a negative displacement
means that the actual sense of the displacement is opposite to that of the
unit load. Similarly, if it is desired to calculate the beam rotation at a certain
point, we apply a unit moment at this point.

The bending moment distribution due to the application of the unit load
(force or moment) is denoted by my(x). Then, the displacement (or rotation)
at the given point in the direction of the unit load is given by,

δ =

∫

beam

my(x)My(x)

EI(x)
dx, (7.1)

where M(x) is the bending moment distribution due to actual applied
loads.

The integration in 7.1 can be evaluated analytically only in special cases.
For general load distribution and variable cross-sectional geometry along the
beam (e.g., due to tapering), it is best to evaluate the integral 7.1 in con-
junction with the discrete method described in the previous chapter. The
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discrete version of the equation reads,

δ =
n∑

i=1

m̄
(i)
y M̄

(i)
y

EI(i)
dx, (7.2)

where,

M̄ (i) =
(
M (i)

y

∣∣
L

+ M (i)
y

∣∣
R

)
/2, (7.3)

and similarly for m̄
(i)
y .

7.1 Example

We take a beam with length L, Young’s modulus E and moment of inertia
I, which is loaded with a constant distributed load q0. The objective is to
calculate the tip rotation of the beam. For that purpose, we are going to use
the integral equation as given in equation 7.1. We first calculate the moment
distribution due to the distributed loading q0:

M(x) = −q0

2
(L− x)2 (7.4)

Since we are interested in the tip rotation, we apply a unit moment at the
tip of the beam, as depicted in figure 7.1. The resulting moment distribution
is hence:

m(x) = 1 (7.5)

Applying the integral equation, you end up with a tip rotation θ:

θ = − q0

2EI

L∫

0

(L− x2)dx = −q0L
3

6EI
(7.6)

Check this expression with the basic mechanics expression for a tip rota-
tion of a beam loaded under a distributed load.
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q0

A B

1

Figure 7.1: Statically determinate beam example
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Chapter 8

Analysis of Statically
Indeterminate Trusses

In previous chapters, statically determinate trusses have been discussed. Also
the way to determine whether a structure is determinate or indeterminate
and the degree of indeterminacy is explained. This basically breaks down to
checking whether the number of available equilibrium equations is equal to
the number of unknown forces in the system. If that is the case, then the
structure is statically determinate. If not, the number of missing equations
indicates the degree of indeterminacy. A structure can be indeterminate
for several reasons. Trusses are often indeterminate for redundancy reasons,
meaning that additional truss member are added to the structure in case
another member would fail. This makes the stress analysis of trusses more
complex since additional equations need to be formulated in order to solve
for all unknowns. Such equations can be formulated as displacement com-
patibility equations, as will be explained next.

8.1 Displacement Compatibility

Essential in the technique of displacement compatibility is the fact that the
structural response is linear. This allows the application of the principle of
superposition. Resultant displacements of a set of loadings acting simulta-
neously is equal to the sum of the effect of individual loadings acting alone.
This is illustrated in figure 8.1.

So if this is applied to a redundant or statically indeterminate truss, one
can split up the indeterminate structure into a statically determinate part,
and a redundant force, as is shown in the following figure.

Figure 8.2 shows that the internal forces can be calculated as function of
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P
Pi Pi

P

+ =

Figure 8.1: Force superposition principle

= +

P P

F1
F2

F3

F1cut F2cut
f1cut f2cut unit

loads

F3 F3 F3

Figure 8.2: Split-up of an indeterminate truss

the statically indeterminate force F3. So this particular force remains to be
solved. This can be done by introducing a displacement compatibility at the
location where the structure has been cut to create the statically determinate
version. The relative displacement of the point where the structure is cut
needs to be compatible for both superposed configurations. This can be illus-
trated easily if we take figure 8.2 as an example. The relative displacement
of the point where force P is applied needs to be zero for the two superposed
structures. First of all, the displacement of the aforementioned point of the
statically determinate part is as follows:
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δdet =
∑ F cut

i f cut
i Li

EiAi

. (8.1)

The displacement due to the indeterminate force is now calculated as
follows:

δF3 =
∑ (F3f

cut
i ) f cut

i Li

EiAi

. (8.2)

Now the relative displacement needs to be zero, enforced by the following
displacement compatibility equation:

δdet + δF3 = 0. (8.3)

Note that in the above equation, the only unknown is the indeterminate
force F3. If the value for that force is known, the internal force distribution is
defined. It can be seen from equation 8.3 that the force F3 is a function of the
geometric parameters such as cross-sectional areas and Young’s moduli. This
means that if the geometry changes, the internal force distribution is altered
as well. It is important to keep this in mind when designing an indeterminate
structure.

8.2 Action Item List for Analysis of Indeter-

minate Trusses

This following list of actions should be followed when analysing a statically
indeterminate truss:

• Make the structure statically determinate: remove truss members or
supports that render the truss to be indeterminate. Often this can
be done in multiple ways, though the different individual approaches
should yield the same result. This can be a convenient way of checking
the correctness of the solution.

• Identify the displacement compatibility at the locations where the stat-
ically indeterminate forces have been removed. At those locations, cal-
culate the displacements in the direction of the released forces using
the dummy load method.

• Next calculate the displacements, again in the aforementioned direc-
tions, due to the released forces.
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• Sum up all individual displacements and equate them to zero. Obtain
an equation for each displacement that needs to be compatible. As
such, you will get as many equations as unknowns, which should be a
solvable system of equations.

8.3 Example

Consider the six bar truss shown in figure 8.3. This statically indeterminate
square truss with length L = 1000 mm is loaded by a force P = 1500 N which
is applied vertically in downward direction at node C. The cross-sectional
areas of the truss members are the same and equal to 15 mm2. The Young’s
modulus is 200 GPa.

A

B

C

D

A

B

C

D

L

L

L

L

P

FAD

FAD

Figure 8.3: Statically indeterminate six bar truss

Member AD is removed to make the structure statically determinate, and
the indeterminate force FAD is added as the redundant force. We calculate all
the necessary ingredients for the displacement compatibility equation, used
to calculate the redundant force FAD under the loading P .

member E A L Fsd f εsd fεL f 2L/EA
AB 200× 103 15 1000 -1500 -0.7071 −5.0000× 10−4 0.354 1.667× 10−4

AC 200× 103 15 1000 -1500 -0.7071 −5.0000× 10−4 0.354 1.667× 10−4

AD 200× 103 15 1414 0 1.0 0 0.0 4.714× 10−4

BC 200× 103 15 1414 2121 1.0 7.0710× 10−4 1 4.714× 10−4

BD 200× 103 15 1000 0 -0.7071 0 0 1.667× 10−4

CD 200× 103 15 1000 0 -0.7071 0 0 1.667× 10−4

∑
1.707 1.609× 10−3

Table 8.1: Calculation of redundant force under mechanical load
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The value of the redundant reaction in member AD is calculated from
the condition,

1.707 + 1.609× 10−3 RAD = 0, =⇒ RAD = −1061N. (8.4)

For the calculation of displacements we need the total member forces F
which is obtained by superposing the statically determinate values with the
values due to the redundant reaction. The unit load at point C needed to
calculate the displacement is applied to a statically determinate structure.
For simplicity, we use the same statically determinate structure as was used
for the calculation of the redundant.

member E A L F f ε fεL
AB 200× 103 15 1000 -750 -1 −2.500× 10−4 0.250
AC 200× 103 15 1000 -750 -1 −2.500× 10−4 0.250
AD 200× 103 15 1414 -1061 0 −3.536× 10−4 0.0
BC 200× 103 15 1414 1061 1.414 3.536× 10−4 0.707
BD 200× 103 15 1000 750 0 2.500× 10−4 0
CD 200× 103 15 1000 750 0 2.500× 10−4 0∑

1.207

Table 8.2: Calculation of displacement under mechanical load
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Chapter 9

Analysis of Statically
Indeterminate Beams

In the previous chapter, statically indeterminate trusses have been discussed.
Obviously, beams can be indeterminate as well. The reason why beams are
indeterminate is because of redundancy reasons as well, or often supporting
truss members are connected to beams to restrict displacements or redis-
tribute stresses yielding lighter designs for the beam. Just as for trusses, this
makes the stress analysis of the beam more complex, since the number of
available equilibrium equations is smaller than the number of internal forces
and moments that need to be solved for. Therefore displacement compatibil-
ity equations need to be formulated, which will make the internal force and
moment distribution dependent on the structure’s geometry.

The principle of static indeterminacy and analysis is basically the same
as for trusses. This is discussed in the previous chapter. However, there
are certain differences, as already highlighted in the chapters on statically
determinate trusses and beams. The main issue is that beams, apart from
axial forces, can also take bending moments. This extends the principle of
displacement compatibility of beams to displacement and rotation compati-
bility.

9.1 Force Method of Analysis

This following list of actions should be followed when analysing a statically
indeterminate beam:

• Make the structure statically determinate: remove additional forces
and moments that render the beam to be indeterminate. Often this can
be done in multiple ways, though the different individual approaches
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should yield the same result. This can be a convenient way of checking
the correctness of the solution.

• Identify the displacement and rotation compatibility at the locations
where the statically indeterminate forces and moments have been re-
moved. At those locations, calculate the displacements and rotations
in the direction of the released forces using the dummy load method.

• Next calculate the displacements and rotations, again in the aforemen-
tioned directions, due to the released forces and moments.

• Sum up all individual displacements and rotation and equate them
to zero. Obtain an equation for each displacement and rotation that
needs to be compatible. As such, you will get as many equations as
unknowns, which should be a solvable system of equations.

In case of beams, it is convenient to use the principle of flexibility coeffi-
cients. This technique is highlighted in the following section.

9.2 Flexibility Coefficients

The flexibility coefficient fBA is defined as the displacement in point B due
to a unit force in point A. This definition is illustrated in figure 9.1.

A

1

B

f
BA

f
AA

Figure 9.1: Illustration of the flexibility coefficient

The use of such coefficients is very effective since if one wants to know
the displacement in let’s say point X due to a force in point Y , one takes
the flexibility coefficient fXY and one multiplies that coefficient with the
force in point Y and you obtain the displacement in point X. Moreover the
flexibility coefficient fXY is equal to fY X according to Maxwell’s theorem.
The convenience of flexibility coefficients becomes clear when looking at the
following figure:
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Figure 9.2: Solution of a statically indeterminate beam using flexibility co-
efficients

It is easy to see that this beam is statically indeterminate to the second
degree. This structure can be solved by enforcing the displacement compat-
ibility at points B and C. The displacement at point B is calculated by
adding the displacements due to the external loads P1 and P2, and due to
the statically indeterminate forces RB and RC . As such, the displacement
compatibility equations for points B and C are calculated as:

0 = ∆B + fBBRB + fBCRC (9.1)

0 = ∆C + fBCRB + fCCRC (9.2)

The flexibility coefficients can be calculated easily by using the dummy
load method.

9.3 Example

Let us consider a beam of length L which is cantilevered on the left hand
side in point A and supported by a roller on the right hand side in point
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B. The beam has Young’s modulus E and a moment of inertia I. It can be
seen easily that the beam is statically indeterminate. In order to analyse the
structure, the first step is to make it statically determinate and superpose
the statically indeterminate force. This is shown in figure 9.3.

A

B

A

B

=
+

A

B

RB

q0

q0

q0

Figure 9.3: Analysis example of a statically indeterminate beam

In this example, the use of flexibility coefficients comes in handy. In this
case, the flexibility coefficient fBB is needed. The reason for this is that we
are going to apply compatibility at the beam tip. It can be seen easily that
the tip deflection in point B needs to be equal to zero. For this particular
beam, this influence coefficient is equal to:

fBB =
L3

3EI
. (9.3)

Try to figure out by using the dummy load method. Furthermore, from
standard mechanics it is evident that the tip deflection due to a distributed
load is equal to:

δB =
q0L

4

8EI
. (9.4)

The compatibility equation now reads:
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0 =
q0L

4

8EI
+ fBBRB. (9.5)

By adding the sign, we assume the force RB to be acting in the downward
direction. Try to figure out yourself why. The solution of this equation gives
the expression for the unknown force RB:

RB = −3

8
q0L. (9.6)

Note the minus sign, indicating that the force RB acts in the opposite
than defined, meaning the force points upwards, which is consistent with the
physical problem.
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Chapter 10

Analysis of Statically
Indeterminate Plates

The analysis of plates is rather intricate, as already indicated in the chapter
on statically determinate plates. Only in exceptional cases of uniaxial or
biaxial stress states, analytical methods can offer a way out. In this chapter,
it is explained how internal stresses in plates can be calculated for indeter-
minate plates. Again, just as in the case of trusses and beams, displacement
compatibility is the key to solving the stress state.

As a start, we consider a statically determinate plate. If a square plate of
length L and thickness t is loaded in x-direction with a force P , the resulting
stress in that direction is σx = P

Lt
, and according to Hooke’s law, the strain

is εx = P
ELt

. Due to the Poisson effect, which accounts for the fact that a
plate shrinks in a direction perpendicular to the loading direction, the strain
in the transverse direction is εy = νεx. ν is the Poisson ratio, with has a
typical value of around 0.3 for metals. Note that the stress in the transverse
direction remains zero.

10.1 Biaxial Stress State

Let us first consider a simple biaxial stress state plate, which is given in figure
10.1.

Obviously there is a stress in x-direction due to the applied force P ,
but because of both side restraints on the plate, there is normal stress in
y-direction as well due to the constraint force Ry. The displacement in x-
direction is defined as:

δx =
PL

Ewt
− ν

Ry

Et
, (10.1)
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Figure 10.1: Biaxial stress state plate

while the transverse displacement is equal to:

δy =
Ryw

ELt
− ν

P

Et
. (10.2)

Now the unknown force Ry is calculated by requiring the displacement in
y-direction is equal to zero (due to the restraints).

10.2 Multimaterial Plates

Plates consisting of multiple materials are inherently indeterminate, even if
the geometric boundary conditions do not seem to indicate so. For instance
the left plate of figure 10.2 contains two different materials, each having their
own internal force. In this particular case, there are two unknown forces
and one force equilibrium equation. Therefore a displacement compatibility
equation needs to be formulated. If we take a closer look at the problem
itself, it is evident that the vertical displacements of the three parts of the
plate need to extend equally under the given load. Therefore an additional
equation can be formulated requiring the displacement of the Aluminium
being equal to the displacement of the Brass. Note that this condition only
applies because of the fact that the two Aluminium part have exactly the
same dimensions, otherwise the force in both Aluminium plates would be
different.
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Figure 10.2: Indeterminate multimaterial plates (left: one statically indeter-
minate force, right: two statically indeterminate forces)
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Chapter 11

Actuated Structures

Linear actuation can be achieved through various means. A simple example
is the change in length of bars under thermal actuation (sometimes referred
to as thermal load). Hydraulic and pneumatic cylinders, which work with
pressurised liquids and gases respectively, are the most common commercially
available linear actuators. A more modern version of similar devices are the
electrically actuated active material systems such as piezoelectric devices.

While we consider temperature as an actuation, the methods presented
here are also applicable for the practically important case of thermal loading.
For many aerospace structures such as launchers, reentry vehicles and en-
gines, structural components are subject to elevated temperatures that lead
to considerable stresses and deformations. The stress and deflection analy-
sis of thermally loaded structures follows the same methodology as thermal
actuation.

11.1 Thermal Actuation

A bar with a uniform cross section A will change its length due to a uniform
applied change in the temperature ∆ T . The change in length is linearly
proportional to the temperature change, as shown in figure 11.1. Typically
this relation is represented in terms of thermal strain, and is given by the
relation,

εT = α∆ T. (11.1)

where α is the coefficient of thermal expansion (CTE). This is a special one
dimensional case of a more general three dimensional description of thermal
expansion, and is sometimes called linear coefficient of thermal expansion. In
general, application of the thermal field would also generate strain in other
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directions (like in the cross-sectional expansion of a bar), but for the time
being we will ignore that for one-dimensional bars.

Figure 11.1: Thermal extension of a bar

Following are the CTEs for three popular materials, namely copper, alu-
minium, and steel, respectively, all in the units of cm/cm/◦C (strain/◦C):
αcu = 1.8× 10−5, αAl = 2.5× 10−5, and αst = 1.9× 10−5.

Note that there is a limit on the maximum thermal strain that can be
achieved for a given material dictated by the maximum temperature that the
material is able to withstand without loosing its elastic properties. We will
call this strain εmax

a . Also the temperature difference may be either positive
or negative with respect to the room (or operating) temperature.

11.2 Piezoelectric Actuation

For a piezoelectric material, an electric field E3 produces strains represented
by S33, as shown in figure 11.2,

S33 = d33E3. (11.2)

In this representation the subscript 33 refers to the thickness direction in
the piezoelectric material. The use of such subscripts should not be confus-
ing, as the basic equation above 11.2 is same as thermal actuation of a bar
presented earlier in equation 11.1, it is just different notation.

In an actual piezoelectric material (like in the case of thermal loads) the
same electric field across the thickness also produces strains in the transverse
directions, but these will not be needed until we study bending actuators
constructed using piezoelectric material.

For a typical piezoelectric material d33 = 500× 10−12m/V .
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Figure 11.2: Piezoelectric thickness change of a bar

In contrast with the thermal case, we rarely use the applied electric field
directly. The applied actuation is customarily specified as applied voltage.
The electric field E3 generated by applying voltage difference V across a
piezoelectric substrate of thickness t is,

E3 =
V

t
. (11.3)

Similar to the thermal case in which there is a maximum temperature
that can be applied to the material, there is a maximum electric field that
can be applied, called the coercive electric field, Ec . Strain corresponding
to this coercive field is,

Smax
33 = d33E3. (11.4)

For a typical value of the coercive field Ec = 0.4 × 106V/m, the maximum
possible strain is Smax

33 = 0.2× 10−3.
Typically, in order to increase the stroke (displacement) capability, the

piezoceramic material is arranged in a stacks. Lets say we put 200 layers on
top of one another. In this way, the displacement output is amplified 200
times. Piezoelectric material arranged in a stack is rather stiff, on the other
hand. They produce small deformations, but they can produce very large
actuation forces. This will be demonstrated in the next section. However, we
first learn how to handle strains/deformations created under the combined
action of applied forces and applied actuation.

11.3 Response of an Actuated Member

More than often, the actuators described above will have to operate under
mechanical loads acting on the members. In this section we will assume that;
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the entire bar is made of a material that will be actuated, the cross sectional
area of the bar is uniform A, the modulus is E , and the bar is under the
action of an axial load F . Also, for simplicity, we will consider the thermal
case only; the piezoelectric case being similar.

Under the action of combined thermal and mechanical load, the strain
that the active member will experience is the superposition of the strains
due to the thermal load and the mechanical loads,

ε = εT + εM (11.5)

The mechanical part of the strain, εM , is the one responsible for the
generation of mechanical stress, thus,

σ = EεM , (11.6)

where E is Young’s modulus of the material. The stress in the member can
be expressed as,

σ =
F

A
. (11.7)

The strain in the member is,

ε = α∆ T +
F

EA
. (11.8)

Clearly, when the applied external force is zero then the total strain of the
actuator is force free (εM = 0) and is equal to the εT .

The other extreme case is when the expansion of the bar is completely
restrained (ε = 0). In this case, the corresponding force is called the blocked
force, Fb, which can be computed by setting ε = 0 in 11.8 to obtain,

Fb = αE∆ TA, (11.9)

with a corresponding (compressive) stress of,

σb = −αE∆ T. (11.10)

In realistic applications, when an actuated member is part of a structure
that is performing a function, the members is neither fully blocked nor com-
pletely free to extend. It will be under the action of combined mechanical
and thermal (actuation) loads.

In the following section, we will use the dummy-load method to determine
the actuation temperature of an axial member.
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11.4 Dummy Load Method for Structures with

Actuated Members

We certainly do not need the dummy-load method to determine the response
of a single member under a mechanical load and actuation. The equation
derived in the previous section, based on superposition, would have been
enough to compute anything/everything we need. However, as we will see
later with examples, the dummy-load method provides a powerful tool to
compute response efficiently in more complicated structural geometries, es-
pecially the ones that are statically indeterminate. Therefore, although we
will still use the method of superposition, the argument provided for the
calculation of the displacement under the thermal load may be useful (even
though it is implementation is ridiculously simple).

The basic equation for the unit load method is not changed. The dis-
placement at a given point and in a given direction is calculated by applying
the corresponding unit load and calculating,

δ =
∑

fiεiLi (11.11)

where fi are the member forces under the unit load. The only additional
consideration is that the strain in the i-th member is calculated according to
11.8.

11.5 Example

The same truss is considered as in chapter 8. The picture is shown again in
figure 11.3. The length of the truss is 1000 mm, the cross-sectional areas of
the members are 15 mm2, and the applied force P is 1500 N . The Young’s
modulus is 200 GPa.

As usual we use superposition. Moreover, we will compute the displace-
ment due to mechanical and thermal loads separately. One important point
to remember is that for statically indeterminate structures under thermal
loads, member forces are not zero.

First we calculate all the necessary ingredients for the displacement com-
patibility equation, used to calculate the redundant force FAD under the
loading P .

The value of the redundant reaction in member AD is calculated from
the condition,

1.707 + 1.609× 10−3 RAD = 0, =⇒ RAD = −1061N. (11.12)
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Figure 11.3: Statically indeterminate six bar truss

member E A L Fsd f εsd fεL f 2L/EA
AB 200× 103 15 1000 -1500 -0.7071 −5.0000× 10−4 0.354 1.667× 10−4

AC 200× 103 15 1000 -1500 -0.7071 −5.0000× 10−4 0.354 1.667× 10−4

AD 200× 103 15 1414 0 1.0 0 0.0 4.714× 10−4

BC 200× 103 15 1414 2121 1.0 7.0710× 10−4 1 4.714× 10−4

BD 200× 103 15 1000 0 -0.7071 0 0 1.667× 10−4

CD 200× 103 15 1000 0 -0.7071 0 0 1.667× 10−4

∑
1.707 1.609× 10−3

Table 11.1: Calculation of redundant force under mechanical load

For the calculation of displacements we need the total member forces F
which is obtained by superposing the statically determinate values with the
values due to the redundant reaction. The unit load at point C needed to
calculate the displacement is applied to a statically determinate structure.
For simplicity, we use the same statically determinate structure as was used
for the calculation of the redundant.

member E A L F f ε fεL
AB 200× 103 15 1000 -750 -1 −2.500× 10−4 0.250
AC 200× 103 15 1000 -750 -1 −2.500× 10−4 0.250
AD 200× 103 15 1414 -1061 0 −3.536× 10−4 0.0
BC 200× 103 15 1414 1061 1.414 3.536× 10−4 0.707
BD 200× 103 15 1000 750 0 2.500× 10−4 0
CD 200× 103 15 1000 750 0 2.500× 10−4 0∑

1.207

Table 11.2: Calculation of displacement under mechanical load
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Now, we repeat the exercise for the thermal load.

member α E A L ∆ T f εsd fεL f2L/EA

AB 1.9× 10−5 200× 103 15 1000 0 -0.7071 0 0 1.667× 10−4

AC 1.9× 10−5 200× 103 15 1000 0 -0.7071 0 0 1.667× 10−4

AD 1.9× 10−5 200× 103 15 1414 0 1.0 0 0 4.714× 10−4

BC 1.9× 10−5 200× 103 15 1414 1 1.0 1.9× 10−5 0.0269 4.714× 10−4

BD 1.9× 10−5 200× 103 15 1000 0 -0.7071 0 0 1.667× 10−4

CD 1.9× 10−5 200× 103 15 1000 0 -0.7071 0 0 1.667× 10−4
∑

0.0269 1.609× 10−3

Table 11.3: Calculation of redundant force under thermal load

The value of the redundant reaction in member AD is calculated from
the condition,

0.0269 + 1.609× 10−3 RAD = 0, =⇒ RAD = −16.7N. (11.13)

To calculate the vertical displacement at point C, we follow the same
procedure as for mechanical loading except that now the strain is composed
of mechanical and thermal parts.

member E A L F f ε fεL
AB 200× 103 15 1000 11.81 -1 3.935× 10−6 −3.935× 10−3

AC 200× 103 15 1000 11.81 -1 3.935× 10−6 −3.935× 10−3

AD 200× 103 15 1414 -16.7 0 −5.565× 10−6 0.0
BC 200× 103 15 1414 -16.7 1.414 1.344× 10−6 2.687× 10−2

BD 200× 103 15 1000 11.81 0 3.935× 10−6 0
CD 200× 103 15 1000 11.81 0 3.935× 10−6 0∑

0.019

Table 11.4: Calculation of displacement under thermal load

With the vertical displacement at C under both mechanical and thermal
loads known, we can calculate the required actuation temperature to nullify
the displacement at C.

δC = 1.2071 + 0.019∆ T = 0, =⇒ ∆ T = −63.5◦C. (11.14)


