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Solutions Manual

Solutions to Chapter 1 Problems

S.1.1

The principal stresses are given directly by Eqgs (1.11) and (1.12) in which
o, = 80 N/mm?, oy =0 (or vice versa) and 7, =45 N/mm?. Thus, from Eq. (1.11)

80 1
O‘I=7+§ 802+4X452

ie.
o1 = 100.2 N/mm?
From Eq. (1.12)

80 1
CIH=——§ 80- +4 x 45

2
i.e.
on = —20.2N/mm?

The directions of the principal stresses are defined by the angle 6 in Fig. 1.8(b) in
which 6 is given by Eq. (1.10). Hence

2 x 45
tan 29 = =1.125
80 -0

which gives
0 =24°11" and 6 =114°11
It is clear from the derivation of Eqs (1.11) and (1.12) that the first value of 6
corresponds to o1 while the second value corresponds to oyj.

Finally, the maximum shear stress is obtained from either of Eqgs (1.14) or (1.15).
Hence from Eq. (1.15)

100.2 — (—20.2
Tmax = % = 60.2N/mm?>

and will act on planes at 45° to the principal planes.
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S.1.2

The principal stresses are given directly by Eqs (1.11) and (1.12) in which o, =
50 N/mm?, o, = —35 N/mm? and 7, = 40 N/mm?. Thus, from Eq. (1.11)

50—35 1
="+ 5\/(50+35)2+4 x 402
1.e.
o1 = 65.9N/mm?
and from Eq. (1.12)
50—-35 1
on="—0"— - E‘/(SO +35)2 + 4 x 402

i.e.
o = —50.9N/mm?
From Fig. 1.8(b) and Eq. (1.10)

2 x 40

= 0.941
50+ 35

tan 260 =

which gives
6 =21°38'(o1) and 0= 111°38'(oyy)

The planes on which there is no direct stress may be found by considering the
triangular element of unit thickness shown in Fig. S.1.2 where the plane AC represents
the plane on which there is no direct stress. For equilibrium of the element in a direction
perpendicular to AC

0 = 50AB cos @ — 35BC sin @ + 40AB sin « + 40BC cos o @)

50 N/mm? <€

Y |B
40 N/mm? 4—“

35N/mm?

Fig. 5.1.2
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Dividing through Eq. (i) by AB
0=50cosa —35tana sina 4 40 sin o 4 40 tan « cos &
which, dividing through by cos «, simplifies to

0 = 50 — 35tan® o + 80 tan «

from which
tano = 2.797 or —0.511
Hence
a=70°21" or —27°5
S.1.3

The construction of Mohr’s circle for each stress combination follows the procedure
described in Section 1.8 and is shown in Figs S.1.3(a)—(d).

7(N/mm?)
A 20 =23°
10 —
Q, (54,5)
! T Lo LT L o pNmm?)
(0] 10 20 3 40 50 60
Q, (30,—-5)
Fig. 5.1.3(a)
7 (N/mm?)
A
10
Q, (54,5)
I | il LG } a —» o (N'/mm?)
o] 10 20 3 40 50 60
Q, (30,-5)
20=23°

Fig. 5.1.3(b)
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7 (N/mm?)

A
26=159° 1 10

Q, (—60,5)
o (Nimm?) e ——pC
-6 -50 = -30 -20 10 o]
Q, (—36,—5)
+-10
Fig. 5.1.3(c)
7 (N/mm?)

> 5 (N/mm?
0

T T
-50 —40 —-30 —-20_~10 O

Fig. 5.1.3(d)

S.1.4

The principal stresses at the point are determined, as indicated in the question, by
transforming each state of stress into a oy, oy, Tyy stress system. Clearly, in the
first case o, =0, 0, =10 N/mm?2, Ty =0 (Fig. S.1.4(a)). The two remaining cases
are transformed by considering the equilibrium of the triangular element ABC in
Figs S.1.4(b), (c), (e) and (f). Thus, using the method described in Section 1.6
and the principle of superposition (see Section 5.9), the second stress system of
Figs S.1.4(b) and (c) becomes the oy, 0y, Ty, system shown in Fig. S.1.4(d) while
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T 10 N/mm?

l 10 N/mm? (o)

Fig. S.1.4(a) Fig. S.1.4(b)

10 N/mm?
C

10 N/mm?
Fig. S.1.4(c)
2.5 N/mm?
4.33 N/mm? A
. mm
— 7.5N/mm? 7.5 N/mm? (0,)
<« 4.33N/mm? (1)
Y
2.5 N/mm? (0,)
Fig. S.1.4(d)

the third stress system of Figs S.1.4(e) and (f) transforms into the o, oy, Ty, system of
Fig. S.1.4(g).

Finally, the states of stress shown in Figs S.1.4(a), (d) and (g) are superimposed
to give the state of stress shown in Fig. S.1.4(h) from which it can be seen that
o1 =oq = 15N/mm? and that the x and y planes are principal planes.



8 Solutions Manual

10 N/mm? 10 N/mm?

10 N/mm? 10 N/mm?
Fig. 5.1.4(e) Fig. 5.1.4(f)
2.5 N/mm?
A
4.33 N/mm? —————
= 7.5N/mm? 7.5 N/mm? (o,)

T 5 4.33N/mm? (1)

Y
2.5N/mm? (o,)

Fig. S.1.4(g)
T 15N/mm?
15N/mm? <€— > 15N/mm?
i 15N/mm?
Fig. S.1.4(h)
S.1.5

The geometry of Mohr’s circle of stress is shown in Fig. S.1.5 in which the circle is
constructed using the method described in Section 1.8.
From Fig. S.1.5

oy = OP; = OB — BC + CP, (i)
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Fig. 5.1.5

In Eq. (i) OB=o01, BC is the radius of the circle which is equal to 7,z and

CP, = /CQ% — QIP% = /rr%mX — r)%y. Hence
Ox = O] — Tmax + vV rrznax - T)%y

Similarly
Oy = OP2 =0B - BC — CP2 in which CP2 = CP]
Thus
Oy = OT — Tmax — +/ Toax — ‘L')%y
S.1.6

From bending theory the direct stress due to bending on the upper surface of the shaft
at a point in the vertical plane of symmetry is given by

My 25 x10° x 75
Oy = — =

== " —75N/mm?
1 7 x 1504 /64 /

From the theory of the torsion of circular section shafts the shear stress at the same
point is

Tr 50 x 10° x 75

o2 X 95N /mm?
7 T 7 x 150432 /mm

Tyy =



10  Solutions Manual

Substituting these values in Egs (1.11) and (1.12) in turn and noting that o, =0

75 1
(71=7+§ 752+4X752
i.e.
o1 = 121.4N/mm?
75 1\/7
= — — —752 4+ 4 x 752
on > 5 + 4 x
ie.

o = —46.4N/mm”?
The corresponding directions as defined by 6 in Fig. 1.8(b) are given by Eq. (1.10)

1.e.
2x 75
tan 26 = X =2
75 -0
Hence
0 = 31°43' (o)
and
0 = 121°43' (o)
S.1.7

The direct strains are expressed in terms of the stresses using Eqgs (1.42), i.e.

1 .
Ex = E[Gx —v(oy + 07)] (1)
&y = zloy = vox +02)] (if)
1
& = E[Uz —v(oyx + 0y)] (iii)
Then
1
e=¢;+e+e = E[Ux+5y+az —2v(ox + oy + 07)]
ie.
(1—-2v)
e=——(0x + oy +07)
whence
Ee
oy+o; =

— oy
1-2v)
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1 Ee
RSl R I W

Substituting in Eq. (i)

so that
Ee, = oy(1 +v) — E¢
1—2v
Thus
vEe E

Oy =

+ £
(I=20)(1+v) A+
or, since G = E/2(1 4+ v) (see Section 1.15)

oy = e + 2Gey,
Similarly

oy = Ae + 2Ge,y
and

0; = Ae + 2Ge;
S.1.8

The implication in this problem is that the condition of plane strain also describes the
condition of plane stress. Hence, from Eqs (1.52)

Ex = E(GX - Vo'y) ()
gy = E(O'y — Voy) (i1)
2(1

Yoy = %‘y _ X ; 0y (see Section 1.15) (iii)

The compatibility condition for plane strain is

82yxy _ 328), stx
axdy  ax2  9y?

(see Section 1.11) @iv)

Substituting in Eq. (iv) for &y, &y and yx, from Egs (i)(iii), respectively, gives

82 2

3t
xy
= @(Gy —voy) + W(Ux — voy) (v)

ox oy

2(1 +v)



Solutions Manual

Also, from Eqgs (1.6) and assuming that the body forces X and Y are zero

&2 @ =0 (vi)
ox ay

doy 0

Dy T (vi)
ay ox

Differentiating Eq. (vi) with respect to x and Eq. (vii) with respect to y and adding gives

Fop Py oy Py .
ax2  dydx  dy2  axdy

zazrxy _ ¥y n ale
ox dy ox2 dy?

or

Substituting in Eq. (v)

o, 00y 9% 8%
—(1 + v) (W; + ﬁ) = ﬁ(ﬂy — vcx) + W(O—x — vay)

so that

Fo, %oy #o, %oy 3oy %oy
—1 - _
( +v)(8x2 + dy? ox2 + dy? "\ + dy?

which simplifies to
Foy, %oy %o oy

ox?2 + dy? + ax2 + dy? =0

or

¥
(@4‘@) (0x+0y)=0

S.1.9

Suppose that the load in the steel bar is Py and that in the aluminium bar is P,. Then,
from equilibrium

Py + Py =P (1)
From Eq. (1.40)

Py Py
= gal =
AstEst AalEal

Est
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Since the bars contract by the same amount

Pst Pal ..
= (i1)
AstEst AalEal
Solving Eqgs (i) and (ii)
AstEst AalEal
Py=—7——1— al = .
AstEst + AalEal AstEst + AalEal
from which the stresses are
E E
o a oal 4 (iii)

= P = P
AstEst + AalEal AstEst + AalEal

The areas of cross-section are

7T x 752 5 7(100? — 75%) )
= =44179mm’ Ay = ————— =3436.1mm

Substituting in Eq. (iii) we have

B 10% x 200 000
T (4417.9 x 200000 4 3436.1 x 80000)
B 10% x 80000
T (4417.9 x 200000 4 3436.1 x 80000)

Ost = 172.6 N/mm2 (compression)

=69.1N/ mm? (compression)

Oal

Due to the decrease in temperature in which no change in length is allowed the strain
in the steel is a7 and that in the aluminium is «, 7. Therefore due to the decrease in
temperature

oyt = Egage T = 200000 x 0.000012 x 150 = 360.0 N/mm2 (tension)
a1 = Eqa T = 80000 x 0.000005 x 150 = 60.0 N/mm2 (tension)

The final stresses in the steel and aluminium are then

og(total) = 360.0 — 172.6 = 187.4N/mm? (tension)
o (total) = 60.0 — 69.1 = —9.1 N/mm2 (compression).

S.1.10

The principal strains are given directly by Eqs (1.69) and (1.70). Thus

1 1
& = E(—O.OO2 + 0.002) + E\/(—O.OO2 +0.002)2 + (+0.002 + 0.002)?
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i.e.
g1 = +0.00283
Similarly
en = —0.00283
The principal directions are given by Eq. (1.71), i.e.
2(—0.002) +0.002 — 0.002

tan 26 = 0.002 + 0.002 =1
Hence
26 = —45° or +135°
and
6 = —22.5° or +67.5°
S.1.11

The principal strains at the point P are determined using Eqs (1.69) and (1.70). Thus

el = [l(_zzz +45) + L\/(—zzz +213)2 4 (=213 — 45)2} x 107°
2 V2

ie.
er=94.0 x 107°
Similarly
e = —217.0 x 107°

The principal stresses follow from Eqs (1.67) and (1.68). Hence

31000 6
o= ———(94.0 — 0.2 x 271.0) x 10
1 —(0.2)2
i.e.
o1 = 1.29N/mm?
Similarly

omr = —8.14 N/mm?

Since P lies on the neutral axis of the beam the direct stress due to bending is zero.
Therefore, at P, o, =7 N/mm? and oy =0. Now subtracting Eq. (1.12) from (1.11)

o1 — O] =1/O')%+4T)%y
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1.29 4+ 8.14 = /72 +4T)%y

from which 7y, =3.17 N/mm?.
The shear force at P is equal to Q so that the shear stress at P is given by
30
2 x 150 x 300

1.€.

Ty =317 =

from which
0 =95100N = 95.1kN.

Solutions to Chapter 2 Problems

S.2.1

The stress system applied to the plate is shown in Fig. S.2.1. The origin, O, of the axes
may be chosen at any point in the plate; let P be the point whose coordinates are (2, 3).

2p
A
4p
YA eP@3) i
3p 3p
O X
4p
4
P Y
2p
Fig. 5.2.1
From Eqgs (1.42) in which o, =0
U S 0
* E E E
2 3p 275
gy =L 4y o208 (ii)

Hence, from Eqs (1.27)

ou 3.5p that 3.5p HAG) (iii)
— = ——— sotha =—— ii
ox E ! E i



Solutions Manual

where f1(y) is a function of y. Also

0 2.75 2.75
v PP sothat v = ——py + f>(x) @iv)
ay E
in which f>(x) is a function of x.
From the last of Eqs (1.52) and Eq. (1.28)
4 0 0 a a
Yy = E” - a_;) n 8—;’ - f;ix) + 4 g;y) (from Egs (iv) and (iii))
Suppose
0
ho) _ A
dy
then
f(y) =Ay+B (v)
in which A and B are constants.
Similarly, suppose
)
() _ c
0x
then
Hx)=Cx+D (vi)

in which C and D are constants.
Substituting for f1(y) and f>(x) in Eqs (iii) and (iv) gives

3.5
u=—Ly 1Ay +B (vii)
E
and
2.75p
v = Ty—l— Cx+D (viii)

Since the origin of the axes is fixed in space it follows that whenx =y =0, u =v=0.
Hence, from Eqs (vii) and (viii), B= D = 0. Further, the direction of Ox is fixed in space
so that, when y = 0, dv/dx = 0. Therefore, from Eq. (viii), C = 0. Thus, from Eqs (1.28)
and (vii), when x =0.

a 4
M_P_ 4
ay G
Egs (vii) and (viii) now become
3.5 4
u= ——px + —py (ix)
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2.75
v= 220 (x)

E
From Eq. (1.50), G=E/2(1 4+ v) = E/2.5 and Eq. (ix) becomes
= %(—S.Sx + 10y) (xi)
At the point (2, 3)
23
u="2""(from Eq. (xi))
E
and
8.25p
v = 5 (from Eq. (x))

The point P therefore moves at an angle « to the x axis given by

8.25
a=tan"! == =19.73°

23
S.2.2
An Airy stress function, ¢, is defined by the equations (Eqs (2.8)):
3% 3¢ )
Oy == —— Oy == —— T —_ —
T2 YT w2 Y ox dy
and has a final form which is determined by the boundary conditions relating to a
particular problem.
Since
¢ = Ay’ + By’x + Cyx (i)
) ) e
—r_0 = — =
ox4 oyt 0x20y?2
and the biharmonic equation (2.9) is satisfied. Further
32
oy = —(f = 6Ay + 6Byx (i1)
dy
¢
, = —=0 iii
) )
=— = -3By"—-C i
Txy ox 0y y (iv)

The distribution of shear stress in a rectangular section beam is parabolic and is zero
at the upper and lower surfaces. Hence, when y = £d /2, 7, = 0. Thus, from Eq. (iv)

—4C

B — 37 v)
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The resultant shear force at any section of the beam is —P. Therefore
d/2
/ Tytdy = —P
—d)2
Substituting for Ty, from Eq. (iv)
d/2
/ (=3By? — C)tdy = —P
—d/2

which gives

2t Bd3+Cd =P
8 2 )

Substituting for B from Eq. (v) gives

3P .
= ﬁ (Vl)
It now follows from Eqgs (v) and (vi) that
—2P ..
= l’d_?’ (Vll)

At the free end of the beam where x =/ the bending moment is zero and thus o, =0
for any value of y. Therefore, from Eq. (ii)

6A+ 6Bl =0
whence
2PI
= Pl (viii)
Then, from Eq. (ii)
12PI 12P
Oy = td_3y - td_?’xy
or
12P(l — x) .
Ox=—"3 Y (ix)

Equation (ix) is the direct stress distribution at any section of the beam given by
simple bending theory, i.e.
My
Oy = —

I
where M = P(I —x) and I = td3/12.
The shear stress distribution given by Eq. (iv) is
6P , 3P
Ty = —=V — —
VT T 2
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6P (, d°
1/'er:td_3( —Z> (x)

Equation (x) is identical to that derived from simple bending theory and may be found
in standard texts on stress analysis, strength of materials, etc.

or

S.2.3
The stress function is
b= 20h3 ——(15h%x%y — 5x%y° — 21%y° +°)
Then
32¢
a2 208 So5B0Ry = 10y) = o
3%
8y2 20h3( 30x%y — 12h%y + 20y%) = o
3% w
= W(?)thx —300y%) = —Tyy
84
T _y
x4
3o w
— = —(120
oyt = 20p3 120
3o

w
ox2oy? — 20800

Substituting in Eq. (2.9)
Vi =0

so that the stress function satisfies the biharmonic equation.
The boundary conditions are as follows:

e Aty=h, o, =w and 1., =0 which are satisfied.
e Aty=—h, o, =—w and 1, =0 which are satisfied.
o Atx=0, o, =w/20h> (—12h%y + 20y3) # 0.

Also
h
/_ hcrxdy S0 / (—12h%y + 20y°)dy
2Oh3[ 6h%y* + 5y,
=0

i.e. no resultant force.
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Finally

h w h
/_ Jow dy= 2o / (—12h%y* 4 20y*)dy
20h3[ —4n*y? + 4y°1",

=0

i.e. no resultant moment.

S.2.4

The Airy stress function is

¢ = [5(° — )y + d)* (v — 2d) — 3yx(y* — d*)*]

12Od3
Then
3o . e _ 3pxy e _ 3pxy
axt Tyt A ax2ay?r 243

Substituting these values in Eq. (2.9) gives

3pxy  3pxy
04+2x == -2 =90
tEXOB T p

Therefore, the biharmonic equation (2.9) is satisfied.
The direct stress, oy, is given by (see Eqs (2.8))

P px

W = 08 L[5y — 17) — 10y° + 6d°y]

oy =
When x =0, oy =0 for all values of y. When x =1
pl 3 2
= ——(—10 6d
Ox 20d3( y~ + y)

and the total end load = [* 4 0xldy

20d3 / (—10y° + 6d%y)dy = 0

Thus the stress function satisfies the boundary conditions for axial load in the x direction.
Also, the direct stress, oy, is given by (see Eqgs (2.8))

82¢ px

3 2 3
oy = pro d3(y — 3yd” —2d°)
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When x =0, o, =0 for all values of y. Also at any section x where y = —d
bpx 3 3 3
=—(—d’+3d°—-2d°)=0
o=y d3( + )

and when y = +d
_ pX 3 3 3y _
O’y—w(d —3d —2d)——px

Thus, the stress function satisfies the boundary conditions for load in the y direction.
The shear stress, tyy, is given by (see Eqs (2.8))

2
= =L P 5322 — Py — d?) — 5yt + 6y2d? — ]
Y ax dy 40d3
When x=0
p
Ty = —407[—512( y? —d?) — 5y* + 6y*d* — d*

so that, when y = +d, 7., =0. The resultant shear force on the plane x =0 is given by

pl*

d d
p 2.2 2 4 2 12 4
ddy = ——— —512(y* — d*) — 5y* + 6y*d* — d*)dy = —
/d% Y 4Od3/d[ (& )=y Oy ldy 6

From Fig. P.2.4 and taking moments about the plane x =1/,
1. 2
Ty(x = 0)12d] = 511’151

i.e.

PP
Ty =0) = 6d

and the shear force is pi2/6.

Thus, although the resultant of the Airy stress function shear stress has the same
magnitude as the equilibrating shear force it varies through the depth of the beam
whereas the applied equilibrating shear stress is constant. A similar situation arises on
the plane x =1.

S.2.5

The stress function is

w
40bc3

¢ = (=103 — 15c2x2y + 262y3 + 5x2y3 - y5)

21
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Then
P9 _ (12¢%y + 30x%y — 20y%) =
P C X = 0.
a2 a0pc3 7 YT AV =0
3%
2 = A0be 3( 20¢ — 30¢? v+ 10y ) =0y
32¢
8x8y 40b 3( 30¢? x+30xy ) =—Ty
84
9 _,
x4
Fo
* T 40be o (1200
e
ox2ay? — 40bc3 )
Substituting in Eq. (2.9)
Vi =0

so that the stress function satisfies the biharmonic equation.
On the boundary, y =+c

ayz—% Ty =0
Aty=—
oy=0 Ty =0
Atx=0
Oy = A0be 3(12c‘y 20y)
Then

c
d 12 20y*)d
/_Ccrxy 40b3/(cy y?)dy

[6c*y* — 5y*1°.,

40b 3
=0
i.e. the direct stress distribution at the end of the cantilever is self-equilibrating.
The axial force at any section is

‘ w ‘ 2 2 3
./;cGXdy: 407/ .(12(: v+ 30x“y — 20y~ )dy

= 10be3 [6c2y + 15x%y% — 5y4]c_c

=0

i.e. no axial force at any section of the beam.
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The bending moment at x =0 is

‘ w ¢ 2.2 4
dy = 12 —20y")d
/Coxyy 4Obc3/_0( c?y? —20y")dy

w
- 40bc3 [402)73 - 4y5]c—c =0

i.e. the beam is a cantilever beam under a uniformly distributed load of w/unit area with
a self-equilibrating stress application at x = 0.

S.2.6

From physics, the strain due to a temperature rise 7 in a bar of original length Ly and
final length L is given by

L—1L _ Lo(1 +aT) — Ly
Lo Lo

Thus for the isotropic sheet, Eqs (1.52) become

=aTl

E =

1
& = E(ox—vay)—l—ozT
= l( ) +aTl
gy = F3 Oy —Voy) +

Also, from the last of Eqs (1.52) and (1.50)

2(1 +v)
yxy = E Txy

Substituting in Eq. (1.21)

2(1+v)azrxy_1<azoy Bzax) *T 1(82ax azoy> *T

E oxdy E

w2 o2

o2 +E

dy? Y dy?

ay2
or
3ty 0o 920y 920, 8’0o
2(1+v Y = A —v —v—2= 4+ EaV?T i
( ) oxdy  ox? dy? ox2 dy? * @

From Eqgs (1.6) and assuming body forces X =Y =0

Py  Por Pry o
dydx  ox2  dxdy  0y?
Hence
Bzrxy 920, Bzay

ax dy T 0y?

23



24  Solutions Manual

and
92 Tyy 920, 92 oy

2v = —
dx dy

v v
ox2 dy?
Substituting in Eq. (i)
Fo,  Foy _ Foy  Foy

_0% - EaV*T
ox2 dy? ox2 + 0y? +he

Thus
¥ 5
@—'—W (Gx+0'y)+EaV T=0
and since
3% 3%
Oy = W oy = ) (see Egs (2.8))
2 9\ (%9 99
— 4+ — — 4+ — EaV’T =0
(ax2 " ay2> (ay2 " ax2> R
or
2,92 _
Ve(V°p+EaT)=0
S.2.7
The stress function is
= 30 Oxy’
T 4a 4q3
Then
3%
W =0= O'y
) 30xy
—_— = — = 0
0y? 2a3 *
Pp 30 30y
= — — —— = —T
oxdy 4a 4a3 v
Also

o o o
V=0 — =0 — =
ox4 oyt 0x2 9y?

so that Eq. (2.9), the biharmonic equation, is satisfied.
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When x =a, o, = —3Qy/2a?, i.e. linear.

Then, when

y=0 oy =0

30
= —a Oy == —

y x =5
-30

y=ta o= 2a

Also, when x = —a, 0, = 3Qy/2a2, i.e. linear and when

y=20 ox =0

-30
= —Aa O, =
y X 20
3
y=+4a o= —Q
2a

The shear stress is given by (see above)

30
4a

yz
Ty = (1 — a_2> , 1.e. parabolic

so that, when y = +a, 7y, =0 and when y =0, 7,, = —30/4a.
The resultant shear force at x = +a is

a 3 2
_a 4a a?
ie.
SF = Q.

The resultant bending moment at x = +-a is

a
=/ oyydy
—da

/a 3Qay2
—a 243

i.e.

BM = —Qa.
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Solutions to Chapter 3 Problems

S.3.1

Initially the stress function, ¢, must be expressed in terms of Cartesian coordinates.
Thus, from the equation of a circle of radius, a, and having the origin of its axes at its

centre.
¢ = k(x> +y* — a°) (i)
From Eqgs (3.4) and (3.11)
¢ 3¢ do
— 4+ — =F=-2G— i
ox2 + dy? dz (i)

Differentiating Eq. (i) and substituting in Eq. (ii)

4k = —2G%
dz
or
1 _deo
k= _EGd_z (iii)
From Eq. (3.8)
T = 2/ ¢dxdy

i.e.

recog | ff e ffroe-a [fas]
= y + y dxdy —a dxdy (iv)
dz A A A

where [, x*dxdy =1y, the second moment of area of the cross-section about the y
axis; [/, n y? dx dy =1, the second moment of area of the cross-section about the x axis
and ffA dxdy=A, the area of the cross-section. Thus, since I, =na*/4, I, = wa* /4
and A = a?® Eq. (iv) becomes

a6 ma*

T dz 2
or

dé 2T T

&~ Gnd Gl ™

From Eqgs (3.2) and (v)
Rl0) do Tx )
Ty = —a = 2kx = Gd—zx = E (Vl)
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and

0 de T .
= gy = ¥, - (vii)
ay z

Substituting for 7, and 7, from Eqs (vi) and (vii) in the second of Eqs (3.15)

T
T = —(xI + ym) (viii)
Iy
in which, from Eqs (3.6)
[ dy o dx
T ds T ds

Suppose that the bar of Fig. 3.2 is circular in cross-section and that the radius makes
an angle o with the x axis. Then.

m=sina and [=cos«

Also, at any radius, r
y=rsine x=rcosa
Substituting for x, [,y and m in Eq. (viii) gives

Tr
Tzs = E (=7)

Now substituting for 7.y, T,y and df/dz from Egs (vii), (vi) and (v) in Egs (3.10)

a T T
w_ D D, (i)
ox G, ' GI,
a T T
. (x)

d G, GI,

The possible solutions of Eqgs (ix) and (x) are w =0 and w = constant. The latter solu-
tion implies a displacement of the whole bar along the z axis which, under the given
loading, cannot occur. Therefore, the first solution applies, i.e. the warping is zero at
all points in the cross-section.

The stress function, ¢, defined in Eq. (i) is constant at any radius, r, in the cross-
section of the bar so that there are no shear stresses acting across such a boundary.
Thus, the material contained within this boundary could be removed without affecting
the stress distribution in the outer portion. Therefore, the stress function could be used
for a hollow bar of circular cross-section.

27



Solutions Manual

S.3.2

In S.3.1 it has been shown that the warping of the cross-section of the bar is everywhere
zero. Then, from Eq. (3.17) and since d6/dz # 0

Ylx,y) =0 @
This warping function satisfies Eq. (3.20). Also Eq. (3.21) reduces to
xm—yl=0 (ii)

On the boundary of the bar x = al, y = am so that Eq. (ii), i.e. Eq. (3.21), is satisfied.
Since ¥ =0, Eq. (3.23) for the torsion constant reduces to

J=//x2dxdy+//y2dxdy=1p
A A

Therefore, from Eq. (3.12)

T= Glp%
dz
asin S.3.1.
From Eqgs (3.19)
dé Ty
Tox = Gd_z(_y) = _E
and
d Tx
Ty = Gd_( )= E
which are identical to Eqs (vii) and (vi) in S.3.1. Hence
Tr
Ty =T = E
asin S.3.1.
S.3.3

Since ¥ = kxy, Eq. (3.20) is satisfied.
Substituting for v in Eq. (3.21)

(kx +x)ym+ (ky —y)l=0
or, from Eqs (3.6)

dx d
—xtk+ DS 4y — )2 =0
ds ds
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or
d )C2 y2
— | ——=k+D)+=k—-1)|=
e )
so that
2 32
—E(k + 1)+ E(k — 1) = constant on the boundary of the bar
Rearranging
1—k
X2+ <1 n k) y2 = constant @)
Also, the equation of the elliptical boundary of the bar is
2 2
X Y
2tp=1
or
2
a .
X%+ » y = a? (i)
Comparing Eqs (i) and (ii)
at?  (1—k
2 \1+k
from which
b2 _ aZ
a* + b? (i)
and
b* —a?
‘// = az + bzxy (IV)

Substituting for ¥ in Eq. (3.23) gives the torsion constant, J, i.e.

b? —a? 9 b? —a? 9
=[G ) G )

Now [, x? dx dy =1, = wa®b/4 for an elliptical cross-section. Similarly /[, y* dxdy =
I, =mab’ /4. Equation (v) therefore simplifies to

na’h? }
a2t )
which are identical to Eq. (v) of Example 3.1.
From Eq. (3.22) the rate of twist is
d9  T(a*+b?) y
— = (vii)

dz  Gna’h?
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The shear stresses are obtained from Eqgs (3.19), i.e.

GT(a* + b?) sz — a2> ]
Ty = y—y

Gra’b3 a® + b2
so that
2Ty
T = )
and
GT(@® + b)) [(b* —d®
YT T G |:<a2 + b2> xF xi|
ie.
2Tx
Ty = — 7D

which are identical to Eq. (vi) of Example 3.1.
From Eq. (3.17)

T(a* + %) (b* —d?
= T Gra’h? (a2 n b2)xy

i.e.
T —a?)

= ny (compare with Eq. (viii) of Example 3.1)
a

S.3.4

The stress function is

2 PN S N I 2 _ 2 o -
¢__Gdz|:2(x +59) 2a(x 3xy%) 774 (1)

Differentiating Eq. (i) twice with respect to x and y in turn gives

32¢ do 3x
= _G—=(1=-=
ax2 dz

a
> do 3
Yo _ Y (14+*
0y? dz a
Therefore
Py ¢ do
2 + W = —2Gd—Z = constant

and Eq. (3.4) is satisfied.
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Further
—a
on AB, X = ? y=y
on BC S— + 2
SRV R
X 2a
on AC, = — - —
VR

Substituting these expressions in turn in Eq. (i) gives
®aB = ¢BCc = pac =0

so that Eq. (i) satisfies the condition ¢ = 0 on the boundary of the triangle.
From Eqgs (3.2) and (i)

o Gd@ 3x? N 3y? (i
Ty =——=0GG— | x — — —_— 11
@ ox dz 2a 2a
and
0 de 3
= Y (3 (iii)
ay dz a

At each corner of the triangular section 7, = 7, =0. Also, from antisymmetry, the
distribution of shear stress will be the same along each side. For AB, where x = —a/3
and y =y, Egs (ii) and (iii) become

Gl (e, (iv)
Th=G—|—+ =2 i
»=Y T2 2, Y
and

T =0 (v)

From Egq. (iv) the maximum value of 7, occurs at y =0 and is

( ) Ga do i)
T,y(max) = ——— vi
& 2 dz

The distribution of shear stress along the x axis is obtained from Eqgs (ii) and (iii) in
whichx=x, y=0, i.e.

;40 3x? (vii)
Ty =G—(x—— vii
T e 2a

T =0
From Eq. (vii) 7,y has a mathematical maximum at x = +a/3 which gives

Ga db

Ty = ?d—z (Vlll)
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which is less than the value given by Eq. (vi). Thus the maximum value of shear stress

in the section is (—Ga/2)d6/dz.

The rate of twist may be found by substituting for ¢ from Eq. (i) in (3.8).

Thus

do 1 1 2
T=-26— —(* +y?) — — (> —30%) — —d® | dxd
Z// [2()6 +y%) 2a(x xy©) 774 y

d

(ix)

The equation of the side AC of the triangle is y = (x —2a/3)/+/3 and that of BC,

y=—(x—2a/3)/ V3. Equation (ix) then becomes

T=-2G—

do [2a/3 —=2a/3/V3
dz J_a/3 Jx—2a/3)/v3 [

2

which gives

_ Ga* do
T 15/3dz
so that
o 15V3T
dz - Ga*
From the first of Eqs (3.10)
ow T, db
w6 a

Substituting for 7, from Eq. (iii)

ow do 3xy
=——|\yYt—-y

ax  dz a
i.e.
ow 3xy do
x  a dz
whence
3x2y d
[y +/(y)

Similarly from the second of Eqgs (3.10)

3x2ydo  y3do
" 2a d_z + Zd_z T/

w =

Comparing Eqgs (xi) and (xii)

3
_ _yd
f@) =0 and f(y) = -

1
502+ ) = (7 =307 —
2a

2
27
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Hence

$.3.5

The torsion constant, J, for the complete cross-section is found by summing the torsion
constants of the narrow rectangular strips which form the section. Then, from Eq. (3.29)

ar’  b*  (2a+ by’

J=2— 4+ —
3 + 3 3
Therefore, from the general torsion equation (3.12)
do 3T

a2~ GQa+ by ®
The maximum shear stress follows from Eqs (3.28) and (i), hence
do 3T

ey T
Fmax iz Qat+b

Solutions to Chapter 4 Problems

S.4.1

Give the beam at D a virtual displacement §p as shown in Fig. S.4.1. The virtual
displacements of C and B are then, respectively, 36p/4 and ép /2.

Fig. 5.4.1

The equation of virtual work is then

2Wép  W3ép
Rpép — — =0
Db =™ 4
from which
Rp = 1.75W

It follows that
Ry = 1.25W.
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S.4.2

The beam is given a virtual displacement §c at C as shown in Fig. S.4.2.

Fig. 5.4.2

The virtual work equation is then

W3sc L x
Rebe — == — w( )3Cdx=0
0

L
from which
3W 4+ 2wl
Rc=——"—
4
so that
W + 2wL
RA = T
S.4.3

The beam is given a virtual rotation 6 at A as shown in Fig. S.4.3.

Fig. 5.4.3

The virtual work equation is then

WL6
MpOy — —2

—2WLOA =0

from which
My =2.5WL
and
Rp =3W.
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S.4.4

Give the beam virtual rotations « and 8 at A and B, respectively as shown in Fig. S.4.4.
Then, at C, (3L/4)a = (L/4)B so that § =3«.

Fig. 5.4.4

The relative rotation of AB and BC at C is (@ + ) so that the equation of virtual
work is Mc(a+ B) = OSLM wax dx + f3LL/4 w3a(L — x)dx

1.e.
3L/4 L
4Mcoz=wa|:/ xdx+3f (L—x)dx:|
0 3L/4
from which
. 3wlL?
€T ;e
S.4.5

Suppose initially that the portion GCD of the truss is given a small virtual rotation about
C so that G moves a horizontal distance g and D a vertical distance §p as shown in

Fig. S.4.5(a).

8g

20kN

B C . 2D &

(a) (b) 8gplcos 45°  (c) Scp

Fig. 5.4.5
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Then, since CG =CD, ég = ép and the equation of virtual work is
FGég = 206p
so that
FG = +20kN

The virtual displacement given to G corresponds to an extension of FG which, since
the calculated value of FG is positive, indicates that FG is tensile.

Now suppose that GD is given a small virtual increase in length §gp as shown in
Fig. S.4.5(b). The vertical displacement of D is then §gp/cos45° and the equation of
virtual work is

GDégp = 208Gp /cos 45°
from which
GD = 4+28.3kN (tension)

Finally suppose that CD is given a small virtual extension dcp as shown in Fig. S.4.5(c).
The corresponding extension of GD is §cp cos 45°. Then the equation of virtual work
is, since the 20 kN load does no work

CD8cp + GDScp cos45° =0
Substituting for GD from the above gives
CD = —20kN (compression).

5.4.6

First determine the deflection at the quarter-span point B. Then, referring to Fig. S.4.6
the bending moment due to the actual loading at any section is given by

W

-

ERETERI IS ROE
A D
5 B c '
L L L
L 3 L 3L 3
—

Fig. 5.4.6

wlx — wx? _ w(lx — xz)
2 2 2
and due to the unit load placed at B is

Mp =

L_
=9 BD

3x .
M| = s inAB and M; =
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Then substituting in Eq. (4.20)

W L/4 L
Vp = —— [ / 3Lx? —x)dx+ | (Lx — x2)(L — x)dx}
8EI | Jo L/4

which gives

_ 57wL?
B = 6144E1

For the deflection at the mid-span point the bending moment at any section due to the
actual loading is identical to the expression above. With the unit load applied at C

(L —x)

M1=§inAc and M, = in CD

Substituting in Eq. (4.20)
W L2 L
ve = — U (Le* —x)dx + | (Lx —x*)(L — x)dx}
4EI | Jo L2

from which

_ SwL*
T 384EIl°

vc

Solutions to Chapter 5 Problems

S.5.1

This problem is most readily solved by the application of the unit load method.
Therefore, from Eq. (5.20), the vertical deflection of C is given by

FoFivL :
Ave=)" B @

and the horizontal deflection by

FoFuL ..
Auc=) —= (ii)

in which F v and F y are the forces in a member due to a unit load positioned at C and
acting vertically downwards and horizontally to the right, in turn, respectively. Further,
the value of L/AE (= 1/20 mm/N) for each member is given and may be omitted from
the initial calculation. All member forces (see Table S.5.1) are found using the method
of joints which is described in textbooks on structural analysis, for example, Structural
and Stress Analysis by T. H. G. Megson (Elsevier, 2005).
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Table S.5.1

Member Fo(N) Fiy Fiu FoFy v FoF1u
DC 16.67 1.67 0 27.84 0

BC —13.33 —1.33 1.0 17.73 —13.33
ED 13.33 1.33 0 17.73 0

DB —10.0 —-1.0 0 10.0 0

AB —16.67 —1.67 0.8 27.84 —13.34
EB 0 0 0.6 0 0

> =101.14 > =-26.67

Note that the loads F v are obtained most easily by dividing the loads F by a factor of
10. Then, from Eq. (i)

1
Ayc =101.4 x 0= 5.07 mm

which is positive and therefore in the same direction as the unit vertical load. Also from
Eq. (i)

1
AH,C = —26.67 x % = —1.33mm

which is negative and therefore to the left.
The actual deflection, A, is then given by

A= /Ay + Afc =5.24mm

which is downwards and at an angle of tan—1(1.33 /5.07) = 14.7° to the left of vertical.

S.5.2

Figure S.5.2 shows a plan view of the plate. Suppose that the point of application of
the load is at D, a distance x from each side of the plate. The deflection of D may be
found using the unit load method so that, from Eq. (5.20), the vertical deflection of D
is given by

FoF1L .
Ap=) —— @)

Initially, therefore, the forces, F, must be calculated. Suppose that the forces in the
wires at A, B and C due to the actual load are Fy s, Fop and Fy c, respectively. Then
resolving vertically

Foa + Fop + Foc =100 (ii)
Taking moments about the edges BC, AC and AB in turn gives
Foa x4 =100x (iii)
Fop x4 xsinA = 100x
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Fig. S.5.2
i.e.
Fop x4 x 0.6 =100x @iv)
and
Foc x 3 =100x (v)

Thus, from Egs (iii) to (v)
4Fp A = 2.4Fy = 3FoC
so that
Foan =0.6Fys Foc =0.8FyB
Substituting in Eq. (ii) gives
Fop =41.7N
Hence
Foao=250N and Foc =334N

Now apply a unit load at D in the direction of the 100 N load. Then
Fio=025 Fip=0417 Fic=0.334
Substituting for F A, F1 A, etc. in Eq. (i)

1440

- 25 x 0.25 4+ 41.7 x 0.417 + 33.4 x 0.334
(/8 x 12 % 196000 = < 022 +41.7 % +33.4%0.334

Ap

1.€.

Ap = 0.33 mm
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$.5.3

Suppose that joints 2 and 7 have horizontal and vertical components of displacement
u, v2, u7, and vy, respectively as shown in Fig. S.5.3. The displaced position of the
member 27 is then 2'7’. The angle « which the member 27 makes with the vertical is
then given by

1 Uy —uz
3a+v7 — vy

o = tan

Fig. S.5.3
which, since « is small and v;7 and v, are small compared with 3a, may be written as

U7 — up
3a

®

o=

The horizontal components uy and #7 may be found using the unit load method,
Eq. (5.20). Thus

F0F1 oL F0F1 7L ..
e @

where F12 and F1 7 are the forces in the members of the framework due to unit loads
applied horizontally, in turn, at joints 2 and 7, respectively. The solution is completed
in tabular form (Table S.5.3). Substituting the summation terms in Eqs (ii) gives

192Pa _ 570Pa
3AE 7T 9AE

uy = —

Now substituting for u» and u7 in Eq. (i)

_382pP
"~ 9AE
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Table S.5.3
Member Length Fo Fip Fi7 FoF 5L FoFy 7L
27 3a 3P 0 0 0 0
87 Sa 5P/3 0 5/3 0 125Pa/9
67 4a —4P/3 0 —4/3 0 64Pa/9
21 4a 4p —4/3 0 —64Pa/3 0
23 Sa 0 5/3 0 0 0
26 Sa —5P 0 0 0 0
38 3a 0 0 0 0 0
58 Sa 0 0 0 0 0
98 Sa 5P/3 0 5/3 0 125Pa/9
68 3a 0 0 0 0 0
16 3a 3P 0 0 0 0
56 4a —16P/3 0 —4/3 0 256Pa/9
13 3a 0 0 0 0 0
43 Sa 0 5/3 0 0 0
93 34a 0 0 0 0 0
03 S5a 0 0 0 0 0
15 Sa —5P 0 0 0 0
10 4a 8P —4/3 0 —128Pa/3 0
> =—192Pa/3 > =570Pa/9
S.5.4

(a) The beam is shown in Fig. S.5.4. The principle of the stationary value of the total
complementary energy may be used to determine the deflection at C. From Eq. (5.13)

ac= [aM i
c= /L o ()
P
A B cl D F
PA | | \ APp
2 —>z EVz2 |2
| g
L/4 | L/4 | L/4 | L/4

Fig. 5.5.4

in which, since the beam is linearly elastic, d8=(M/EIl)dz. Also the beam is
symmetrical about its mid-span so that Eq. (i) may be written

L2 Mde
Ac=2] ZZ2 i
¢ /0 EIdP " (@)

In AC
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so that
dM  z
P 2
Eq. (ii) then becomes
L/4  p;2 L/2 p2
Ac=2 / ——dz +/ —dz (iii)
0 4 <ﬂ > L4 AEI
2

Integrating Eq. (iii) and substituting the limits gives

_ 3pL’
"~ 128EI

C

(b) When the beam is encastré at A and F, fixed end moments M4 and M are induced.
From symmetry Ma = Mg. The total complementary energy of the beam is, from

Eq. (4.18)
M
C=// dodM — PAc
LJo

from which

aC oM

—_— = / dd—— =0 @iv)

oM a L OMp

from the principle of the stationary value. From symmetry the reactions at A and F are
each P/2. Hence

P
M = EZ — My (assuming My is a hogging moment)

Then
oM

My

Thus, from Eq. (iv)

aC _Z/L/ZM oM
Ma " Jo

e /p Lizp (p
o=2[/0 e <§Z—MA> (—1)dz+/L/4 E(Ez—MA) (—l)dz}

from which

or

_5PL
AT
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S.5.5

The unit load method, i.e. the first of Eqs (5.21), may be used to obtain a solution.

Thus

MoM;
EI

in which the M| moments are due to a unit load applied horizontally at C. Then, referring
to Fig. S.5.5, in CB

dz ®

dcH =

My=W(R —Rcosf) M;=1xz

and in BA
My=W2R M;=1xz
| R
TB __ .6y \c
z w
4R
-y A
Y e
Fig. S.5.5

Hence, substituting these expressions in Eq. (i) and noting that in CB ds =R df and in
BAds=dz

1 T 4R
ScH=— / —WR3(1 — cos ) sin9d9+/ 2WRzdz
’ EI 0 0
i.e.
1 3 cos?07" 2-4R
ScH = I {—WR |:—cose+ 2 i|0 + WR[z"],
so that
5 14WR3 (i
= 11
CH= g

The second moment of area of the cross-section of the post is given by

1= 6”—4(1004 — 94%) = 1.076 x 10% mm*
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Substituting the value of I and the given values of W and R in Eq. (ii) gives

dcH = 53.3mm

S.5.6

Either of the principles of the stationary values of the total complementary energy or
the total potential energy may be used to solve this problem.
From Eq. (5.12) the total complementary energy of the system is

M
:/f deM—/wvdz )
LJO L

in which w is the load intensity at any point in the beam and v the vertical displacement.
Equation (i) may be written in the form

M
=// —dsz—/wvdz
LJo EI L

since, from symmetrical bending theory

8z M
8 = — = —8z
R EI

/ﬁdz—/wvdz (i1)

Alternatively, the total potential energy of the system is the sum of the strain energy
due to bending of the beam plus the potential energy V, of the applied load. The strain
energy U, due to bending in a beam may be shown to be given by

M
/ 2EIC

TPE=U+V = /ﬁdz—/vadz (ii1)

Hence

Hence

Egs (ii) and (iii) are clearly identical.
Now, from symmetrical bending theory

M_ d2v

El ~ dZ2

Therefore Eq. (ii) (or (iii)) may be rewritten

LEL (v L
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Now
74 . 27z 2wz z
v = aj sin — + ap sin — w=—(1——)
L L L 2L
so that
d2v 2 oz 4% | 2nz
d_22 —dai 3 Nt T azﬁ s T
Substituting in Eq. (iv)
El7* (L( 7%  nz 472 2mz\°
ZTE ( L2 s1n——l—a2 2 smT> dz
2wo [ b 84 2nz 72 Tz 2 . 2nz
A ; (alzsm T + apzsin T - ali sin T~ QZZ sin T) dz

which, on expanding, gives

Elr* /L 22 ™ g 2 in 27 4 lea2sin? 2 d
= — sin® — ajap sin — sin — sin® —
ST A R A A ) @)™
_Zﬂ g a snlﬂ-i—a s1n2i—a is E_aisn‘l% dz (v)
L Jo \WO T TSR T T T )

Eq. (v) may be integrated by a combination of direct integration and integration by

parts and gives
Eln* (alL + 8 . 1 N 4 N aywolL
= arL | —aiw -+ —
24\ 2 s\ 7 28 2

From the principle of the stationary value of the total complementary energy

(vi)

aC

aC

— =0 and — =0
da day
From Eq. (vi)
aC EIn* W()L
— =a|— — —— 4
day YR 7O )
Hence
2woL
4
a = (= +4)
Also
aC 8EIT*  woL
_ = — az —_—
day L3 2
whence
woL*
ap =
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The deflected shape of the beam is then

4
wol* [ 2, . Tz 1. 27z
“=7[?(7’ TS T e T

At mid-span when z=L/2

L4
V=0, 00918WO

S.5.7

This problem is solved in a similar manner to P.5.6. Thus Eq. (iv) of S.5.6 is directly

applicable, i.e.
El (v’
C=| —|-—) dz—- d i
/L2<dz2> 2z /éwvz 1)

inz ..
v = Z a; sin — (i1)

in which

and w may be expressed as a function of z in the form w = 4woz(L — z)/L> which
satisfies the boundary conditions of w=0atz=0and z=L and w=wyg at z=L/2.
From Eq. (ii)

Substituting in Eq. (i)

El (1 & Sitrh 2 inz 4wy [F > . imz
C=— Zal 7 dz — ?/0 z(L —z);ai sin sz (iii)

Now

L 5 iT2 Ly i2mz z L . 27z L r
sin“ —dz = —{1—-cos dz=|=- — —sin = —
0 L 0 2 L 2 2w L 0 2

L3 213
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Thus Eq. (iii) becomes
E1a2 4 4w0 L’ 213 )
C = Z Za, |:——cosm+ ?cosm— n3(cosm— 1)}

or

EIa2 ot 4w0 2a;L3
C= 1 —cosim iv
; Z 5 ( i) (iv)

The value of (1 — cos im) is zero when i is even and 2 when i is odd. Therefore Eq. (iv)
may be written
EIa2 AEIa 16w0a,-L
4L3 B3
From the principle of the stationary value of the total complementary energy

i is odd

aC Ela,4 4 16wyl

- _ =0
da;  2L3 373
Hence
_ 32woL?
"TOELAT
Then

00 4 .
32woL inz
v = ——=—sin— iisodd
Zl: Eli'n? L
At the mid-span point where z = L/2 and using the first term only in the expression for v

W0L4
94.4E1

Um.s. =

$.5.8

The lengths of the members which are not given are:
Lin=9v2a Liz=15a Lis=13a Ly =>5a

The force in the member 14 due to the temperature change is compressive and equal to
0.7A. Also the change in length, A4, of the member 14 due to a temperature change 7' is
LisoT = 13a x 2.4 x 10~°T. This must also be equal to the change in length produced
by the force in the member corresponding to the temperature rise. Let this force be R.

From the unit load method, Eq. (5.20)

FoFL .
Ag = Z— 1)
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In this case, since R and the unit load are applied at the same points, in the same
direction and no other loads are applied when only the temperature change is being
considered, Fp = RF. Equation (i) may then be written

FIL
As =R Z A‘—E (i)
The method of joints may be used to determine the F| forces in the members. Thus
ool Fa_T3 o _lev2o . -20 28
14 = 13 = 13 12 = 13 24 = 13 23 = 13

Eq. (ii) then becomes

A _p| Px13a 352 x15a  (16V2)° x9v2a 20 x 5a N 28? x 3a
= AE 132AE 1322AE 132AE ' 132AE
or
Ra 3 2 2 2 2
At = (13 4357 5 154167 x 184207 x 5 4287 x 3)
i.e.
_ 29532aR
T T1324E
Then
295324(0.7A
130 x 24 x 10-67 = 22224074)
132AE
so that
T =56
S.5.9

Referring to Figs P.5.9(a), (b) and S.5.9 it can be seen that the members 12, 24 and 23
remain unloaded until P has moved through a horizontal distance 0.25 cosa, i.e. a
distance of 0.25 x 600/750 = 0.2 mm. Therefore, until P has moved through a hori-
zontal distance of 0.2 mm P is equilibrated solely by the forces in the members 13,
34 and 41 which therefore form a triangular framework. The method of solution is to
find the value of P which causes a horizontal displacement of 0.2 mm of joint 1 in this
framework.

Using the unit load method, i.e. Eq. (5.20) and solving in tabular form (see
Table S.5.9(a)).

Then

1425.0P

02 = —F7——
300 x 70 000
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1 2
P &
o
450 mm
4 3
T
600 mm
Fig. S.5.9
Table S.5.9(a)
Member Length (mm) Fy F FoF|L
13 750 1.25P 1.25 1171.9P
14 450 —0.75P —0.75 253.1P
43 600 0 0 0
> =1425.0P
from which
P =2947N

The corresponding forces in the members 13, 14 and 43 are then
Fi13 =3683.8N Fi4 = —22103N Fy3=0

When P =10000N additional forces will be generated in these members corre-
sponding to a load of P’ =10000 — 2947 = 7053 N. Also P’ will now produce forces in
the remaining members 12, 24 and 23 of the frame. The solution is now completed in a
similar manner to that for the frame shown in Fig. 5.8 using Eq. (5.16). Suppose that R is
the force in the member 24; the solution is continued in Table S.5.9(b). From Eq. (5.16)

2592R + 1140P' =0

Table S.5.9(b)

Member Length (mm) F JF/0R  FL(0F/0R)

12 600 —0.8R —-0.8 384R

23 450 —0.6R —-0.6 162R

34 600 —0.8R -0.8 384R

41 450 —(0.6R+0.75P") —0.6 162R +202.5P’
13 750 R+1.25P 1.0 750R +937.5P'
24 750 R 1.0 750R

> =2592R + 1140P'
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so that
R— 1140 x 7053
N 2592
i.e.
R = -3102N
Then

Fip = —0.8 x (—3102) = 2481.6 N (tension)

Fy3 = —0.6 x (—3102) = 1861.2 N (tension)

F34 = —0.8 x (—3102) = 2481.6 N (tension)

Fq1 = —0.6 x (—=3102) — 0.75 x 7053 — 2210.3 = —5638.9 N (compression)
F13 = —-3102 4+ 1.25 x 7053 + 3683.8 = 9398.1 N (tension)

F>4 = —3102.0 N (compression)

$.5.10

Referring to Fig. S.5.10(a) the vertical reactions at A and D are found from statical
equilibrium. Then, taking moments about D

Ra3l+ 1wl =0
ie.
Rp = —— (downwards)
Hence
wl
Rp = 5 (upwards)
Also for horizontal equilibrium

wl )
Ha + 5= Hp 1)

The total complementary energy of the frame is, from Eq. (5.12)

M [
C:// dedM—HAAA,H—RAAA,V—HDAD,H—RDAD,VJr/w/Adz (ii)
LJO 0

in which AaA H, Aav, Apn and Apy are the horizontal and vertical components of
the displacements at A and D, respectively and A is the horizontal displacement of
the member AB at any distance z from A. From the principle of the stationary value
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2EI 2EI

Fig. S.5.10(a)

of the total complementary energy of the frame and selecting Aa n as the required

displacement

M
d0—— — App =0

aC _/
O0Hx J, 0Ha

In this case A g =0 so that Eq. (iii) becomes

oM
/ w2 _g
L OHAp

or, since d0 = (M /EI)dz

MM
| EIoHA ©
In AB
M= —H wzd oM _
T
In BC
M = Raz — Hyl Wit oM _ I
=Raz—Hal === o
In DC

!
M = —Hpz = — (HA + K) z  from Eq. (i),

(i)

(iv)

TN
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Substituting these expressions in Eq. (iv) gives

I wz3 213 wl wi?
— (—H =2 d = | =5 Hal = == ) (=Da
/02151( Az )(Z)Z+f0 g\ 2 (=hdz
+/l L(Chy ) dmade =0
| 3E A= )u-de=

or
1 l 21/3 l3
—/ (HAZ —I——) f —z+le+— dz
2 Jo 6
1 1 2
+- f HAZ? + ——
2 Jo
from which
29
2HAP + Ewl‘* =0
or
Hx = —29wl1/90
Hence, from Eq. (i)
Hp = 8wl /45

Thus

8w/%/45
7w/i?/45
B c 8w/2/45
7wl2/45
0.173w/? Bending moment is
drawn on the tension
2, side of each member
45
A D

Fig. 5.5.10(b)



Solutions to Chapter 5 Problems

Whenz=0,Mag =0andwhenz =1, Mg = 7wlz/45. Also, dMap/dz =0 for a turning
value, i.e.
AMag _ 29wl 3wz _
dz 90 6l

from which z = +/29/451. Hence Mag(max) = 0.173wl.

The bending moment distributions in BC and CD are linear and Mp = Twi?/45,
Mp =0 and Mc = Hpl = 8wi*/45.

The complete bending moment diagram for the frame is shown in Fig. S.5.10(b).

S.5.11

The bracket is shown in Fig. S.5.11 in which Rc is the vertical reaction at C and Mc is
the moment reaction at C in the vertical plane containing AC.

Fig. 5.5.11

From Eq. (5.12) the total complementary energy of the bracket is given by

M T
=f/ d@dM-f-// d¢dT — McOc — RcAc — PAp
LJO LJO

in which T is the torque in AB producing an angle of twist, ¢, at any section and the
remaining symbols have their usual meaning. Then, from the principle of the stationary
value of the total complementary energy and since c = Ac =0

aC M 8M .
—_— = — ——dz = @)
ORc . EI 8RC 1. GJ ORc
and
aC M oM T oT .
I _ (MM [Ty (i)
oM 1 EI oM¢c 1. GJ OMc

From Fig. S.5.11
Mac =Rczi —Mc Tac=0
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so that
oM ac oM ac 1 0T Ac 0T Ac 0
= Z = — = =
Re 1 aMc dRc  oMc
Also
Map = —P2 + Rc(z0 —4acosa) + Mc cosa
ie.
16a 4
Mag = —P2+Rc |22 — = + gMc
Hence
Mps _ 16a 9Map 4
ke 275 aMc 5
Finally
Tag = Rcdasina — Mc sina
1.e.
Trn — 12aR 3M
AB = 5 C 5 C
so that

0T AB _ 12a  0TaB . 3
ORc 5 Mc 5

Substituting these expressions in Eq. (i)

/401(1% Mc)zi d +/Sa ! Pz + R 16a) L 4y
0 EI cz1 C)Z1 411 0 L5EI 22 cl|l2 5 5 C

16a q +/5“ 1 12aR 3M 12ad 0 (i)
X - — — |\ —Rc— ¢ — = 111
2775 )T 361 5 €T 57C) T

Note that for the circular section tube AC the torsion constant J (i.e. the polar second
moment of area) =2 x 1.5/ from the theorem of perpendicular axes.
Integrating Eq. (iii), substituting the limits and noting that G/E = 0.38 gives

55.17Rca — 16.18Mc — 1.11 Pa =0 (@iv)

Now substituting in Eq. (ii) for Mac, 0Mac/0Mc, etc.

/4a1(R Mc)(—1)d +/5a ! Pz + R 16a +4M 4d
0 EI c<1 C 4| 0 1.5EI 22 cl|=z2 5 5 C 5 22

% 1 (12a 3 3
— (ZRe — Zmc) (-2 )dzm =0
+/0 3GI< 5 €75 C)( 5) 2 ™
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from which
16.58 Rca — 7. 711 Mc + 6.67Pa =0 (vi)

Solving the simultaneous Egs (iv) and (vi) gives

Rc=0.72P

$.5.12

Suppose that R is the tensile force in the member 23, i.e. R =xPy. Then, from Eq. (5.15)

oF; .
Zx R =0 )

in which, for members 12, 23 and 34

7L 7\" ..
)\.[ZEL[:7 1+ '[_0 (11)

But 7; = F;/A; so that Eq. (ii) may be written

Ai:% 1+ i" (ii1)
AE; Ao

For members 15, 25, 35 and 45 which are linearly elastic

N FiL; (iv)

i=— iv
AE

The solution is continued in Table S.5.12. Summing the final column in Table S.5.12

gives

——[1 4 (x )]+2ﬁRL[1+( X))+ —— 8L (P +2—R>+—16RL—0 v)
fA AE V3AE V3)  \BAE
from Eq. (i)

Noting that R = xPy, Eq. (v) simplifies to

1
4x[1 4+ (ax)"] + 6x[1 + (ax)"]1 + 8 + % +16x=0

or

16
10x(ox)" + x (10 + —=+ 16) +8=0
V3

from which

o ¥ 435 +0.80=0
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Table S.5.12
Member L,‘ Ai F,' 3Fi/3R A.i )\iaFi/aR
2RL R \" 2RL .
12 2L A/V3 R/V3 1/4/3 E[H(A—m)] m[1+(ouc)]
2v/3RL R \"] 2v3RL .
23 2L//3 A R 1 E [H(/Tm)] E [1 4+ (ax)"]
2RL R \" 2RL .
34 2L A/3 R/V3 1/v/3 E[H(ATO)] m[1+(om)]
(Po + 2R//3)2L AL
15 2L A —Py—2R/N3 —2/3 — Py +2R//3
0 —2R/3 —2//3 " NI /+/3)
4RL SRL
25 2L A/3 —2R/\3 —2//3 —— —
/N3 /3 N3 -2 NTT
4RL 8RL
35 2L A/3 —2R/\3 —2//3 —— —
/N3 /3 N3 - T
45 2L A —Py—2R/N3 —2//3 72—L(P0+2R/«/§) 47L(P0+2R/ﬁ)
AE V3AE
S.5.13

Suppose that the vertical reaction between the two beams at C is P. Then the force
system acting on the beam AB is as shown in Fig. S.5.13. Taking moments about B

Fig. 5.5.13

SO

that

The total complementary energy of the beam is, from Eq. (5.12)

Ra x9.154+P x6.1—-100x3.05=0

N

l100 kN

A C F
By, —» 2
L 3.05m | 3.05m L 3.05m

Ra =33.3-0.67P

M
C:// d9dM — PAc — 100Ar =0
LJO
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where Ac and Af are the vertical displacements at C and F, respectively. Then, from
the principle of the stationary value of the total complementary energy of the beam

a9C oM
== [ do=— — Ac =
ap ~ J,  op

whence, as in previous cases

M oM .
= e @
L
In AC
Mac = Raz = (33.3 — 0.67P)z
so that
oM
AC _ _0.67z
P
In CF
Mcr = Raz + P(z — 3.05) = 33.3z + P(0.33z — 3.05)
from which
oM,
F _0.33;—3.05
aP
In FB

Mpp = Raz 4+ P(z —3.05) — 100(z — 6.1) = —66.7z + 610 + P(0.33z — 3.04)

which gives

0MgB
oP

=0.33z-3.04

Substituting these expressions in Eq. (i)
3.05
EIAc = f (33.3 = 0.67P)z(—0.67z)dz
0

6.1
+ / [33.3z 4+ P(0.33z — 3.05)](0.33z — 3.05)dz
3.05

9.15
+ / [—66.7z + 610 + P(0.33z — 3.05)](0.33z — 3.05)dz
6.1
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which simplifies to
3.05
EIAC = / (=22.27% 4+ 0.44Pz%)dz
0

6.1
T / (10.99z2 + 0.11Pz% — 2.02Pz 4+ 9.3P — 101.62)dz
3.05

9.15
+ / (—22.012% + 404.7z + 0.11Pz> — 2.02Pz + 9.3P — 1860.5)dz
6.1

Integrating this equation and substituting the limits gives
EIAc =12.78P — 1117.8 (ii)

From compatibility of displacement, the displacement at C in the beam AB is equal
to the displacement at C in the beam ED. The displacement at the mid-span point in a
fixed beam of span L which carries a central load P is PL3/192EI. Hence, equating this
value to Ac in Eq. (ii) and noting that Ac in Eq. (ii) is positive in the direction of P

(12.78P — 1117.8) = P 6.
—(12. — B =Px —
192

which gives

P = 80.1kN
Thus
A _801x10° x 6.1° x 10°
€~ 192 x 200000 x 83.5 x 10°
i.e.

Ac = 5.6 mm

Note: The use of complementary energy in this problem produces a rather lengthy
solution. A quicker approach to finding the displacement Ac in terms of P for the beam
AB would be to use Macauley’s method (see, e.g. Structural and Stress Analysis by
T. H. G. Megson (Elsevier, 2005)).

5.5.14

The internal force system in the framework and beam is statically determinate so that
the unit load method may be used directly to determine the vertical displacement of D.
Hence, from the first of Eqs (5.21) and Eq. (5.20)

@
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3wa >2  {swunitiength 21
CYYVYVYVYVYVVYY V‘%A

<

4a 4a 4a

Fig. 5.5.14

Referring to Fig. S.5.14 and taking moments about A

8 2
Romda—1.5wSY _ 3walza = 0
from which
Rgu =28wa
Hence
Ran = —28wa

From the vertical equilibrium of the support G, Rg,v =0, so that, resolving vertically
Rav —1.5w8a —3wa =0
ie.
Rav = 15wa

With a unit vertical load at D
RG,H =4 RA,H = —4 RA,V =1 RG,V =0
For the beam ABC, in AB

ISWZ% 2
= 15waz; —0.75wzy; M1 =1xz

M() = RA,VZ] -

and in BC
My = 15wazpy — 0.75wz% M =1x2
Hence

Z wa 1 . w. wa 2 . w. 2 Z
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Suppose 71 =z, =z say, then

MoM, 16 _ [% ) 3 32w , 075 4%
= 2 15 —0.75wz)dz = 5az3 — —=
| TE Z AE” ), (15waz wz”)dz A7E az 1 z .
ie.
MMy - _ 8704wa’
L E YT AE

The solution is continued in Table S.5.14.

Table S.5.14

Member L A Fo F FoF{L/A
AB 4a 4A 28wa 4 112wa? /A
BC 4a 4A 28wa 4 112wa?/A
CD 4a A 4wa 4/3 64wa?/3A
DE 5a A —5wa -5/3 125wa? /3A
EF 4a A —4wa —4/3 64wa® /3A
FG 4a A —28wa —4 448wa® /A
CE 3a A 3wa 1 Iwa’® /A
CF 5a A —30wa -10/3 500wa’ /A
BF 3a A 18wa 2 108wa? /A

3" =4120wa?/34

Thus
Ap — 8704wa’® N 4120wa?
AE 3AE
1.€.
30232wa?
PTTaE
S.5.15

The internal force systems at C and D in the ring frame are shown in Fig. S.5.15. The
total complementary energy of the half-frame is, from Eq. (5.12)

M
C=// d6dM — FAg
LJo

in which Agp is the horizontal displacement of the joint B. Note that, from symmetry,
the translational and rotational displacements at C and D are zero. Hence, from the
principle of the stationary value of the total complementary energy and choosing the
horizontal displacement at C (=0) as the unknown

aC M M
— = =——dz;=0 (i)
aNc  J; EI aNc
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InCB
Mcg = Mc — Nc(r — rcos6y)
At B, Mcg =0. Thus
Mc = Nc(r + rsin30°) = 1.5Ncr

Eq. (ii) then becomes

Mcg = Ncr(0.5 4+ cos 1)

Then
= r(0.5 4+ cos 6
NG r(0.5 + 1)
In DB
MDB = MD — ND(V — r COoS 92)
Fig. 5.5.15

Again the internal moment at B is zero so that
Mp = Np(r — rsin30°) = 0.5Npr
Hence
Mpg = Npr(cosfr — 0.5)

Also, from horizontal equilibrium

Np+Nc=F
so that

Np =F — Nc

(i)

(iii)

(iv)

)

(vi)

(vii)

(viii)
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and Eq. (viii) may be written

Mpg = (F — N¢)r(cos 6, — 0.5) (ix)
whence

oM

8NDCB = —r(cosf —0.5) (x)

Substituting from Eqgs (iv), (v), (ix) and (x) in Eq. (i)

120° 60°
F—N
/ —Ncr3(0.5 + cos 0)2d6; — / F=NE) 3005, — 0.52d6, = 0
0 EI 0 XEI

ie.
120° 60°
F — N,
Nc f (0.25 + cos 6 + cos? 0;)do; — (F=Ne) / (cos? 6y — cos 0 +0.25)d6, = 0
0 X 0

which, when expanded becomes

120° cos 26, (F — N¢)
Nc 0.75 + cos 0y + do; — ————
0

X
60°
26
X / (COS 2 _ cos 0 + 0.75) dé, =0
0 2
Hence
in20; 1'% (F — Nc) [sin26 60°
Ne [0.7501 +sing 4+ 2 1} ¢ c) [Sm 2 _ sin6, +0.7592} —0
0 X 4 0
from which
F—N
2.22N¢ — 01365 =M _ (xi)
X

The maximum bending moment in ADB is equal to half the maximum bending
moment in ACB. Thus

Then, from Eqgs (vii) and (iii)
0.5Npr = 0.75Ncr
so that
0.5(F — Nc) = 0.75N¢
ie.

F — Nc = 1.5N¢
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Substituting for F — Nc in Eq. (xi)

L.5Nc
— =

2.22Nc — 0.136 x 0

whence

x = 0.092

S.5.16

From symmetry the shear force in the tank wall at the lowest point is zero. Let the
normal force and bending moment at this point be No and Mo, respectively as shown
in Fig. S.5.16.

Fig. 5.5.16

The total complementary energy of the half-tank is, from Eq. (5.12)

M P
C=// dodM — —Ap
LJo 2

where Ap is the vertical displacement at the point of application of P. Since the rotation
and translation at O are zero from symmetry then, from the principle of the stationary
value of the total complementary energy

oC M oM .
= | S de= ()
Mo J, EI oMo
and
aC M oM .
——dz=0 (i1)

aNo _ J, EI NG
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At any point in the tank wall
0

M = Mo + No(r — rcosf) — /0 pr? sin (0 — ¢)dg (iii)
For unit length of tank
p=mrip
where p is the density of the fuel.
At the position 6,
p = ph = p(r 4+ rcos¢)
Hence

P
p=—(1+4cos¢)
r
and the last term in Eq. (iii) becomes
? pr . Pr [? . .
—(1 4+ cos¢)sin(f — ¢p)dp = — (1 4 cos ¢)(sin B cos ¢ — cos B sin ¢p)d¢
0o T T Jo

Expanding the expression on the right-hand side gives
pr (% . . . 2 .
— (sinf cos ¢ — cos B sin ¢ + sin & cos” ¢ — cos d sin ¢ cos ¢)d¢
T Jo

Pr 0 .
=— |1+ =sinf —cosfH
T 2

Hence Eq. (iii) becomes
Pr 0 . .
M:Mo—|—Nor(1—c059)——(l—l-zsmé’—cosQ) >iv)
T

so that

oM oM
—— =1 and — =r(l —cosb)
oMo oNo

Substituting for M and 0M/9dMg in Eq. (i) and noting that EI = constant,

T Pr 0 .
Mo + Nor(l —cosf) — — 1—|—5s1n0—cos9 do =0 v)
0 b
from which
3Pr .
Mo+ Nor—— =0 (vi)
21

Now substituting for M and d0M/0No in Eq. (ii)

T Pr 6 .
/ Mo + Nor(l —cosf) — — 1+§sm9—cos9 r(l —cosf)dd =0
0 b4
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The first part of this integral is identical to that in Eq. (v) and is therefore zero. The
remaining integral is then

T Pr 6 .
/ Mo + Nor(l —cos8) — — 1+Esm0—cos.9 cosfdé =0
0 T

which gives

No _SPr_

2 4
Hence

No = 0.398P
and from Eq. (vi)

Mo = 0.080Pr

Substituting these values in Eq. (iv)

M = Pr(0.160 — 0.080 cos & — 0.1596 sin 6)

S.5.17

The internal force systems at A and B are shown in Fig. S.5.17; from symmetry the
shear forces at these points are zero as are the translations and rotations. It follows that
the total complementary energy of the half-frame is, from Eq. (5.12)

M
C:// dodMm
LJO

Fig. 5.5.17

From the principle of the stationary value of the total complementary energy

aC M M
— = == dz=0 (i)
Mg J; EI oMy
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and
aC M oM
— = ———dz=0 (i)
ONg 1. EI ONg
In BC
poz?
M = Mg + > (iii)
so that
oM _ oM —0
Mg ONg
In CA

. a (asin 0)2 Po 5
M = Mg — Nasin6 + ppa (acos@ — 5) +poT + ?(a —acosf)

which simplifies to

2
M = Mg —NBaSinO—i—% (iv)
Hence
oM oM .
—— =1 — = —gsinf
oMp ONp

Substituting for M and dM/0Mp in Eq. (i)

a 1 poZ2 71/21 ) p0a2
— (mp+ 2% )4 — (Mg — Ngasino+ 222 ) ado =0
/o 2EI( Bt Z+/0 g1 \MB —NBasint+ o Ja

i.e.
Z3 a a2 /2
— [Mgz—l-poT] +a|:MBQ+NBacos(9+pOT:| =0
0 0

which simplifies to
2.071Mg — Npa + 0.869ppa’ = 0
Thus
Mg — 0.483Nga + 0.420ppa® = 0 v)
Now substituting for M and dM/0Ng in Eq. (ii)
/077/2 % (MB — Npasinf + pOTaZ> (—asinf)add =0

or

/2 . 5 pod® .
Mp sin 6§ — Na sin 6’+Tsm9 de =0
0
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which gives
Mg — 0.785Npa + 0.5ppa® = 0 (vi)

Subtracting Eq. (vi) from Eq. (v)
0.302Nga — 0.08pga’ = 0

so that
N = 0.265pga

Substituting for Np in Eq. (v) gives
Mg = —0.292poa®

Therefore, from Eq. (iii)
poa? »  poa’
Mc = Mg + T = —0.292ppa” + T
i.e.

Mc = 0.208poa’

and from Eq. (iv)

2
M = —0.292pga® — 0.265pga” + "%

ie.
Ma = —0.057poa*
Also, from Eq. (iii)

Mgc = —0.292pod> + ‘%zz (vii)

At a point of contraflexure Mpc =0. Thus, from Eq. (vii), a point of contraflexure
occurs in BC when z2 = 0.58442, i.e. when z =0.764a. Also, from Eq. (iv), Mca =0
when sin 6 = 0.208/0.265 = 0.785, i.e. when 6 = 51.7°.

$.5.18

Consider the half-frame shown in Fig. S.5.18(a). On the plane of antisymmetry through
the points 7, 8 and 9 only shear forces S7, Sg and Sy are present. Thus from the horizontal
equilibrium of the frame

S74+ 83+ S9g —6ag =0 @)
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S; «— Sg€«—— R a—
q I “ I % q |a
—> 7 > z ZST
4 5A 6
q P q ¢ P
3a | 3a |
I i

Fig. S.5.18(a)

Also, from the overall equilibrium of the complete frame and taking moments about
the corner 6

2aq6a + 6aq2a — 2P3a =0
which gives
q = P/4a

The total complementary energy of the half-frame is, from Eq. (5.12)

M
csz d9dM — PAs — PAg =0
LJO

Noting that the horizontal displacements at 7, 8 and 9 are zero from antisymmetry, then

oC M oM ..
— =] ——dz=0 (i1)
057 1. EI 087
and
aC M oM
— =[] ——dz=0 (iii)
0Sg 1. EI 0Sg
In 74
M =S87z17 and 0M/dS7=2z1 OM/dSg =0
In 45
M = S1a+qazz and OM/3S;=a 0M/3Ss =0
In 85
M = Sgzz and 0M/3S; =0 0M/dSs =23
In 56

M = S7a+ Sga+ qa(B3a + z4) — Pz4 and 0M/3S7=a 0M/dSg =a
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In 69
M = S7(a — z5) + Ss(a — z5) + 6a*q — 3Pa + 6aqzs
and
M /3S7 = (a—z5) OM/3Sg = (a —z5)

Substituting the relevant expressions in Eq. (ii) gives
a 3a 3a
/ Srztdzi+ | ($1a® + ga’z)dz + / [S7a + Ssa + ga(3a + z4) — Pzaladza
0 0 0

a
+ / [S7(a — z5) + Sg(a — z5) + 6a2q — 3Pa + 6aqzs](a — z5)dzs = 0 @iv)
0

from which
2087 + 10Sg + 66aqg — 18P =0 (v)

Now substituting for M and dM /9Sg in Eq. (iii)

a 3a
/ ng% dzz + / [S7a + Sga + ga(Ba + z4) — Pz4]adzy
0 0
a
+ / [S7(a — zs5) + Sg(a — z5) + 6a”q — 3Pa + 6aqzs)(a — z5)dzs =0 (Vi)
0

The last two integrals in Eq. (vi) are identical to the last two integrals in Eq. (iv). Thus,

Eq. (vi) becomes
1087 + 1183 + 52.5ag — 18P =0 (vii)

The simultaneous solution of Eqs (v) and (vii) gives

whence, since ¢ =P /4a
Sz = 0.69P
Substituting for Sg in either of Eqs (v) or (vii) gives
S7 =-0.27P
Then, from Eq. (i)
So = 1.08P

The bending moment diagram is shown in Fig. S.5.18(b) in which the bending
moments are drawn on the tension side of each member.
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1.17 Pa
0.48 Pa
3 0.27 Pa 2 1.08 Pa 1
0.27 Pa 0.69 Pa .
Bending moments
1.17Pa drawn on the tension
0.48 Pa \\ 1.08 Pa \ side of each member
4

0.27 Pa 5 1.08 Pa

5 0.69 Pa
1.08 Pa

0.27 Pa

Fig. 5.5.18(b)

$.5.19

From the overall equilibrium of the complete frame

2nr
/ grds=T
0

which gives

271r2q =T

1.e.

Fig. 5.5.19
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Considering the half frame shown in Fig. S.5.19 there are only internal shear forces
on the vertical plane of antisymmetry. From the vertical equilibrium of the half-frame

b
S1+ 85+ 53 +/ gsinarda =0
0
Substituting for g from Eq. (i) and integrating
T 4
S1+ 8+ 83+ —[—cosaly; =0
2y

which gives

T
Si+S+8=—— (ii)
r

The vertical displacements at the points 1, 2 and 3 are zero from antisymmetry so
that, from Eq. (5.12), the total complementary energy of the half-frame is given by

M
C=// dodm
LJo

Then, from the principle of the stationary value of the total complementary energy

oC M oM
—_— = — —dz (i11)
a5 1 EI 35
and
oC M oM .
— = [ ——dz (iv)
AV 1 EI 05>
In the wall 14
6
M = Sirsinf — / qlr —rcos (0 — a)]rdo
0
i.e.
. T . 0
M = Sirsinf — —[a — sin(a — )],
21
which gives
. T .
M = Sirsinf — — (0 — sin 0) )
21
whence
oM .
— =rsinf — =0
081 2

In the wall 24
M = Srx (vi)
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and
oM oM
—_— = O — =X
LAY LAY
In the wall 43
T
M = Sirsinf — —(6 — sin6) + Srrsin 6
21
and

oM ) oM .
— =rsind — =rsinf
051 EAY)

Substituting for M and dM/dS; in Eq. (iii)
3n/4 T
/ |:S1r sinf — — (6 — sin 9):| rsin Or d6
0 2
T T
—I—/ |:S1rsin9——(9—sin9)+52rsin0}rsin@rd@:O
37/4 2z

which simplifies to
/ﬂ [Slrsine L siné)} r?sin0do + /ﬂ Sprisingdd =0
0 2m 3n/4
Integrating and simplifying gives
S1r—0.16T + 0.095,r =0
Now substituting for M and dM/9S; in Eq. (iv)
r/N2
/4 0
Integrating and simplifying gives
Sir—0.69T + 1.83Sr =0
Subtracting Eq. (ix) from Eq. (viii)
0.53T — 1.74S,r =0

whence

0.30T
Sy =

r
From Eq. (viii)

0.13T
S

(vii)

(viii)

T T
/ |:Slrsin9—2—(9—sin9)+S2rSin9}rsin@rd@—i—/ ngzdx:O
3 T

(ix)
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and from Eq. (ii)
—0.75T

Hence, from Eqgs (v) to (vii)

M4 =T(0.29sin 0 — 0.160)

My3 = T(0.59sin 0 — 0.160)

S$.5.20

Initially the vertical reaction at C, Rc, must be found. From Eq. (5.12) the total
complementary energy of the member is given by

M
C=// d6dM — RcAc — FAp
LJO

From the principle of the stationary value of the total complementary energy and since
Ac=0
oC M oM
— =] ——ds=0 (1)
oRc 1 EI 0Rc

Referring to Fig. S.5.20

Fig. 5.5.20
In BC
. oM
M =Frsinf and — =0
ORc
In CD
oM
M=Fr—Rcz and — = —z

ORc
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Substituting these expressions in Eq. (i) gives

/ (Fr — Rc2)(—=2)dz =0
0

from which
Rc = 1.5F

Note that Eq. (i) does not include the effects of shear and axial force. If these had
been included the value of Rc would be 1.4F; the above is therefore a reasonable
approximation. Also, from Eq. (1.50), G=3E/8.

The unit load method may now be used to complete the solution. Thus, from the first
of Egs (5.21), Eq. (5.20) and Eq. (20.18)

MoM FoF SoS
5B,H=/ 0 1ds+/ . 1ds+/°—}ds (ii)
. EI . AE . GA
In BC
My = Frsin@ M =rsinf
Fo=Fsinf® F|=sin6
So =Fcosf S =cosb
In CD

My=F(r—1520 M, = —1.52)
Fo=F Fi=1
So = 1.5F Si=1.5

Substituting these expressions in Eq. (ii) gives

/2 Fr3 sin2 0 /2 Frsin? 0 /2 Frcos?
S = ———do+ do + —dh
0 0 0

El AE GA'
+/0r§(r—1.5z)2dz+/orédz+/(;r 2‘sz/Fdz
or
511 =20 / "L~ cosamao+ T2 [T L0 cosmyae
AE J, 2 AE Jo 2
+ zilz /OJT/2 %(1 + cos 26)do + j(z(z)g /Or (r* = 3rz 4+ 2.257%)dz
P (P e
AE J, AE J,
from which

448.3Fr
AE

SBH =
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S.5.21

From Clerk—Maxwell’s reciprocal theorem the deflection at A due to W at B is equal
to the deflection at B due to W at A, i.e. ;.

What is now required is the deflection at B due to W at B.

Since the deflection at A with W at A and the spring removed is &3, the load in the
spring at A with W at B is (§2/63) W which must equal the load in the spring at B with
W at B. Thus, the resultant load at B with W at B is

W—<8—2>W=W(1—8—2> @)
83 83

Now the load W at A with the spring in place produces a deflection of §; at A. Thus,
the resultant load at A is (§1/63)W so that, if the load in the spring at A with W at A is

F,then W — F =(6§1/63)W, i.e.
81 ..
F=W{1-— (i)
33

This then is the load at B with W at A and it produces a deflection §,. Therefore, from
Egs (i) and (ii) the deflection at B due to W at B is

1.e.

$.5.22

Referring to Fig. S.5.22
Ra =Rp =1000N from symmetry.
The slope of the beam at A and B may be obtained from the second of Eqs (16.32), i.e.

M
El

/!
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2000N
C A F B D
| |
f e
—>» z
360 mm 720 mm 720 mm 600 mm
I I I

Fig. 5.5.22

where, for the half-span AF, M = Rpz = 1000z. Thus
1000

-——z

EI

1"
v

and

=224 c
= EIZ 1

When z =720 mm, v' =0 from symmetry and hence C; =2.59 x 108 /EI. Hence
1
= —(=500z% +2.59 x 108
V= gy (73007 4 2.59 > 107

Thus v’ (at A)=0.011rads=v" (at B). The deflection at C is then =360 x 0.011 =
3.96 mm and the deflection at D =600 x 0.011 = 6.6 mm.

From the reciprocal theorem the deflection at F due to a load of 3000N at
C =3.96 x 3000/2000 = 5.94 mm and the deflection at F due to a load of 3000 N at
D =6.6 x 3000/2000 = 9.9 mm. Therefore the total deflection at F due to loads of
3000 N acting simultaneously at C and D is 5.94 4+ 9.9 = 15.84 mm.

$.5.23

Since the frame is symmetrical about a vertical plane through its centre only half need
be considered. Also, due to symmetry the frame will act as though fixed at C (Fig.
S.5.23).

If the frame were unsupported at B the horizontal displacement at B, Ag T, due to the
temperature rise may be obtained using Eq. (5.32) in which, due to a unit load acting
horizontally at B, M| =1 x (r sin 30° + r sin 6). Hence

/2 2aT
ABT = / (0.5r + rsinf)——rdo
—7/6 d

i.e.

2aTr?

d

[0.50 — cos 6172 ¢

ApT =



Fig. 5.5.23

which gives

Solutions to Chapter 5 Problems

3.83aTr?
Apt = % (to the right) (i)

Suppose that in the actual frame the horizontal reaction at B is Hp. Since B is not
displaced, the ‘displacement’ Ag i produced by Hg must be equal and opposite to A T
in Eq. (i). Then, from the first of Eqs (5.21) and noting that My = —Hg(0.5r + r sin )

i.e.

Hence

so that

Then, since

from which

ApH = —

Apy = —
BH El

1 /2
Apy=—— / Hg (0.5 + rsin 6)*r do
—7/6

El

HB V3
EIl

/2
/ (0.25 + sin 6 + sin® 9)do
—71/6

HBr3

sin 29]”/2

|:0.750 —cosf —
4

—7/6

2.22Hgr3

ApH = ————— (to the left) (i1)

El

Agu+ AT =0

2.22Hgr? N 3.83aTr?
EI d

1.73EIT«
B = g (iii)
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The maximum bending moment in the frame will occur at C and is given by
M(max) = Hg x 1.5r

Then, from symmetrical bending theory the direct stress through the depth of the frame
section is given by

My
o= T (see Egs (16.21))

and
M (max)y(max)
Umax =
1
i.e.
Hp x 1.5r x 0.5d
Omax = 7

or, substituting for Hg from Eq. (iii)

Omax = 1.30ETa

5.5.24

The solution is similar to that for P.5.23 in that the horizontal displacement of B due to
the temperature gradient is equal and opposite in direction to the ‘displacement’ pro-
duced by the horizontal reaction at B, Hg. Again only half the frame need be considered
from symmetry.

Referring to Fig. S.5.24

My = rcosy in BC and Cd

Fig. 5.5.24

Then, from Eq. (5.32)

/4 /2
ABT :/ (reos a2V gy / (rcos P)ar <9> rdy
0 h /4 h
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i.e.
rraby 74
AT = A cos Y cos 2y dyr
0
or
2060 (74
ABT = r Z 0 / (cosyr —2 sin? Y cos Y )dyr
0

Hence

rraby [ . 2 .4 /4
ABT = sinyr — — sin” ¥
’ h 3 0

which gives

0.47r%ab
Apt = % (to the right) (i)

From the first of Eqs (5.21) in which My = —Hpgr cos ¥

7/2 Hgrcos y rcos ¥
ABH = — d
B.H /0 Z rdy
ie.
HBr3 /2 5
ABH = — ZI /0 cos” Ydy
or
Hgr® (™21
ApHg = — =1 2yn)d
B.H £l /0 2( + cos2y)dyr
whence
0.79Hgr?
Apn = —— BT (40 the left) (ii)

EI
Then, since Apy + As1 =0, from Eqs (i) and (ii)

0.79Hgr>  0.47r%ab,
_ BY + }"O(QZO

EI h
from which
_ 0.59EI a6y
B= rh
Then
M = Hgrcosy
so that

M 0.59EIo;100 cos ¥
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Solutions to Chapter 6 Problems

S.6.1

Referring to Fig. P.6.1 and Fig. 6.3

Member 12 23 34 41 13
Length L L L L V2L
AMcos0) 12 —1N2 —1V2 12 0
w(sin®) 142 V2 =12 —1UV2 1

The stiffness matrix for each member is obtained using Eq. (6.30). Thus

11 -1 —17 1 -1 1 1
AE| 1 1 —1 —1 AE | -1 1 1 -1
Kel=571_0 1 1 |BBI=5p |0 1 1 o4
-1 -1 1 1] 1 -1 -1 1
T 11 =1 =17 1 -1 —1 1]
AE| 1 1 -1 -1 AE | -1 1 1 -1
Kl =ar 10 1 0 |BI=5p o0 0 1 4
-1 -1 1 1] 1 -1 -1 1

0 00 0

AE |0 1 0 —1

[K13]=E O 00 0

0 -1 0 1

The stiffness matrix for the complete framework is now assembled using the method
described in Example 6.1. Equation (6.29) then becomes

Fe C 2 0 -1 -1 0 0 —1 1] (u =0
Fy) 0 2++4/2 -1 -1 0 -2 1 -1 v]

Fyo -1 -1 2 0 -1 1 0 0||lw=0
Fyao| _AE -1 -1 0o 2 1 -1 0 0||w=0 @
Fy3 2L 0 0 -1 1 2 0 -1 =1 |;z=

Fy3 0 —v2 1 =1 0 2442 -1 -1 v3

Fra -1 1 0o 0 -1 -1 2 0| ]ua=0
Fya ! -1 0 0 -1 -1 0 2] lvw=0

In Eq. (i)

Fy,l:_P Fx,l:Fx,3:Fy,3:0
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Then
AE .
Fyi=-P="2-12+ V2)u1 — v2u3] (ii)
AE
Fy3=0= Z[—ﬁvl + 2 4 V2)3] (iii)
From Eq. (iii)
vi = (1+v2)v3 (iv)
Substituting for v; in Eq. (ii) gives
0.293PL
vy = —
AE
Hence, from Eq. (iv)
0.707PL
V] = —
AE
The forces in the members are obtained using Eq. (6.32), i.e.
S AE [1 1] (z)_7(§)7PL r S14 fi t
_ ) =— = rom symmetr
12 /L 0+ 5 14 y y
AE
Si3=——[0 1] 0.293PL  0.707PL ; = 0.293P
VoL TTAE A
Sy = ——[—1 1] 0.293PL = —0.207P = S43 from symmetr
V2L 0 ymmety

The support reactions are Fy 2, Fy 2, Fy 4 and Fy 4. From Eq. (i)

AE
Fra = - (—vi +v3) = 0207P

F 2=A—E(—v1—v3)=05P
Vs 7L .
AE
Fx’4 = Z(Ul — U3) = —0.207P

F —AE( ) =0.5P
y’4_2L V] v3) = 0.

S.6.2

Referring to Fig. P.6.2 and Fig. 6.3
Member 12 23 34 31 24
Length /3 1//3 l l 1//3
AcosO) 372 0 12 —12 312

w(sing) 12 1 =32 =32 —12
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From Eq. (6.30) the member stiffness matrices are

T 3V3/4  3/4  —3J3/4 -3/4
(K1y] _AE | 3/4 V3/4 —3/4 —/3/4
I | =3J3/4 =3/4 3J3/4  3/4
L —3/4  —V3/4  3/4 V3/4
0 0 0 0
AE |0 V3 0 -3
Ksl==10 0o 0o o
0 —v3 0 V3
14  —=J3/4 —1/4 /3/47
© _AE —V3/4  3/4 V3/4  —3/4
[Kaal == /4 V34 14 —3/4
L V3/4  -3/4 —V3/4 3/4 ]
1/4 V3/4 =14 —/3/47
[K31]=f£ V3/4  3/4 —V3/4 -3/4
I | =174 —=V3/4 1/4 V3/4
| —V3/4  =3/4 V34 3/4 ]
[ 3J/3/4  —3/4 —3J3/4 3/4
K JAE | —3/4 V3/4 - 3/4 0 —V3/4
(Kol = _3J3/4  3/4  3J3/4  —3/4
| 3/4 —V3/4  —3/4  J3/4

The stiffness matrix for the complete framework is now assembled using the method
described in Example 6.1. Equation (6.29) then becomes

(1433
4
3+43
4
Fra 33
Fy,l _T
Fro 3
Fya AE 4
Fi3 T 1
Fy3 4
Fra _é
Fya 4
0
0

343 33
4 4
3443 3
4 4
3 33
4 2
VAR
4
3
V3,
4
3
-2 0
4
0 _3V3
4
3
0
4

3t
4 4
V3 V3
4 4
0 0
33 0
2
1
O —
2
-3 0
3 1
4 4
V3 V3
4 4

J3

N W

0 0
0 0
33 3 up =0
T4 4 vy =0
3 \@ uy =0
4 T4 v
1 V3 uz3 =0
4 4 v
@ _§ us =0
4 4 va=0
1433 3443
4 T4
3+4/3 3+43
T4 4 |

®



Solutions to Chapter 6 Problems

In Eq. (1) Fx,g =Fy’2 =O, Fx’3 =O, Fy’3 = —P, Fx’4 = —H. Then

3
Fyp=0="—~ L—vz —3u3 (i)
1\ 2
and
AE 3
Fyy=—P="—F [—ﬁm + (5 + ﬁ) v3:| (iii)
From Eq. (ii)
2
v = 33 (iv)

Now substituting for v, in Eq. (iii)

—% = —%_vg + 3v3 + /303
Hence
6P!
CO+2V3AE
and, from Eq. (iv)
4pPI
O +2V3AE

Also from Eq. (i)

AE (3 V3
Fra=—H="=7 (1”2 + 7”3)

Substituting for v, and v3 gives

H = 0.449pP

S.6.3

Referring to Fig. P.6.3 and Fig. 6.3

Member 12 23 34 45 24
Length l l l l l
AlcosO) —1/2 12 —172 12 1

u(sin@) 312 V312 V32 V32 0
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From Eq. (6.30) the member stiffness matrices are

1/4
—V3/4
—1/4
V3/4
1/4
_AE | V3/4
[K23] =T 14
| —V3/4
[ 1/4
~V/3/4
—1/4
V3/4
1/4
_AE | V3/4
[K45] =7 14
| —V3/4

AE
[Ki2] =T

AE
[K34] =T

—V/3/4
3/4
V3/4
—3/4
V3/4
3/4
—/3/4
—3/4
—V/3/4
3/4
V3/4
—3/4
V3/4
3/4
—/3/4
—3/4

= el e el

—1/4
V3/4
1/4
—V3/4
—1/4
—J3/4
1/4
V3/4
—1/4
V3/4
1/4
—/3/4
—1/4
—J3/4
1/4
V3/4

-1
0
1
0

S O O O

V3/4 ]
—3/4
—V/3/4
3/4 1
—V/3/4]
—3/4
V3/4
3/4
V3/4
—3/4
—V/3/4
3/4 ]
—/3/4]
—3/4

V3/4
3/4

The stiffness matrix for the complete truss is now assembled using the method described
in Example 6.1. Equation (6.29) then becomes

Fy1 B C R ]
Fy -3 3 V3 -3
Fus -1 /3 6 0
Fy2 V3 -3 0 6
Fy3 AE| O 0 -1 V3
Fa[ 4| 0 0 —v3 -3
Fua 0 0 -4 0
Fy4 0 0 0
Fys 0 0 0
Fys 0 0 0

0 0
0 0
-1 =3
-3 -3
2 0
0 6
—1 ﬁ
V3 -3
0 0
0 0

0 0 0
0 0 0
0 0 0
0 0 0
V30 0
-3 0 0
0 -1 =3
6 —v3 -3
V3 1 V3
-3 V3 3

u3 =0

v3 =0

uy

v4

us =0
vs =0

®
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InEq. () Fxp =F,2=0,F,4=0,F,4=—P. Thus from Eq. (i)

From Eq. (v)

From Eq. (iii)

and from Eqgs (ii) and (iv)

Hence, from Eq. (6.32)

which gives

AE
Fip=0= E(@tz — 4uy) (ii)
AE
Fyp=0= Z(6v2) (ii1)
AE .
Fia=0= I(—4u2 + 6uy) @iv)
Fy4=—-P= AE (6v4) (v)
ST Y
2Pl
Vg = ———
3AE
v, =0
Uy = U4 =
AE 0—-0
So4 = 7[1 0] { —2pP1
3AE
S =0

5.6.4

The uniformly distributed load on the member 26 is equivalent to concentrated loads
of wl/4 at nodes 2 and 6 together with a concentrated load of wl/2 at node 4. Thus,
referring to Fig. P.6.4 and Fig. 6.3

Member
Length

A(cos 6)
(sin 6)

12 23 24 46 56 67
! Iy 2 1

0 —1/4/2 1 1 0 12
1 1//2 0 0 1 12
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From Eq. (6.47) and using the alternative form of Eq. (6.44)

[ 12 SYM |
0 0
[K12]=g 6 0 4
Bl-12 0 -6 12
0O 0 0 0 0
| 6 0 2 6 0 0
m 6 SYM T
6 6
[K23]=g 6/v2 62 )
Bl 6 6 —6J2 6
-6 -6 —6/v/2 6 6
| 6/v/2 6//2 2 6/v2 —6/v2 —4/v2]
[0 SYM |
0 96
EI |0 —24 8
[K24]=[K46]=l_3 0 0 0 0
0 —96 24 0 96
0 —24 4 0 24 8 |
[ 12 SYM |
0 0
[K56]=E 6 0 4
Bl-12 0 -6 12
0 0 0 0 0
6 0 2 6 0 0 |
6 SYM
-6 6
CEI|6/V2 —6/¥2 4
Kel=T71 ¢ 6 —6/V2 6
6 -6 6/v/2  —6 6
[6/v/2 —6/+/2 2 6/v2 6/v2 4/2_

The member stiffness matrices are then assembled into a 21 x 21 symmetrical matrix
using the method described in Example 6.1. The known nodal displacements are
up =v1 =01 =us =vs5 =605 =up = us = ug = 03 =07 =0 and the support reactions are
obtained from {F} = [K]{é}. Having obtained the support reactions the internal shear
force and bending moment distributions in each member follow (see Example 6.2).
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5.6.5

Referring to Fig. P.6.5, up =0 from symmetry. Consider the members 23 and 29. The
forces acting on the member 23 are shown in Fig. S.6.5(a) in which F»g is the force
applied at 2 in the member 23 due to the axial force in the member 29. Suppose that
the node 2 suffers a vertical displacement v,. The shortening in the member 29 is then
vy cos 6 and the corresponding strain is —(v, cos 6)/1. Thus the compressive stress in
29 is —(Ev; cos 6)/I and the corresponding compressive force is —(AEv; cos 8)/I. Thus

Fr9 = —(AEv; cos? 0)/1
Now AE = 6+/2EI/L?. § =45° and [ = /2L. Hence

Fig. S.6.5(a)
and
P 3EI .
Fyo = —5 - sz 1)
Further, from Eq. (3.12)
do 03 2EI .
M3z =GJ]— = -2 x08El— = ——03 (ii)
dz 0.8L L
From the alternative form of Eq. (6.44), for the member 23
Fy» 12 -6 —-12 -6 )
My/L| EI| —6 4 6 21 16.L=0 (iii)
Foa [T3|-12 6 12 6|)wum=0 ‘“
M3 /L -6 2 6 4 03L
Then, from Eqgs (i) and (iii)
P 3EI 12EI 6EI
fo=—g-pu=p et

12
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Hence
150; — 663 = —LF (iv)
— = i
T 2EI Y
From Egs (ii) and (iii)
M3 2EI 6El 4E1
PN E R R
which gives 63 = vo/L.
Substituting for 63 in Eq. (iv) gives
rL?
V= ——
18EI
Then
PL?
03 = ———
18EI
From Eq. (i)

. P+3EIPL3_ P
T2 T3 I8E T3

and from Eq. (ii)

2EI PL> PL
3= —— T/ = — = —Ml
L 18EI ~ 9
Now, from Eq. (iii)
M, EI N 2151(9 . 2PL
— = ——0v _ —_ —
L~ T BT
12EI 6EI P
mETTp Rt sl

The force in the member 29 is Fpg9/cos 0 = V2F»9. Thus

3EI PL? 2P

Spo = Spg = 2o = =V
29 = 0% fL3 18E 6

(tension)
The torques in the members 36 and 37 are given by M3/2, i.e.
M3¢ = M37 = PL/18

The shear force and bending moment diagrams for the member 123 follow and are
shown in Figs S.6.5(b) and (c), respectively.
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P73
+
3
1 2

(b) P/3

PL/9 I\ / PL/9

+

(c) 2PL/9

Fig. 5.6.5(b) and (c)

5.6.6

The stiffness matrix for each element of the beam is obtained using the given force—
displacement relationship, the complete stiffness matrix for the beam is then obtained
using the method described in Example 6.1. This gives

Fy T 24 —12 —24 12 T(w
My/L -2 8 12 4 o)L
Fya —24 12 36 6 —12 —6 v
MyL| EI|-12 4 6 12 6 2 6oL
I —12 6 36 —24 —24 —12|] v
Ms/L -6 2 —6 12 12 4]||esL
Fy4 24 12 24 12| w
My/L i —12 4 12 8] e

@)
The ties FB, CH, EB and CG produce vertically upward forces F, and F3 at B and C,
respectively. These may be found using the method described in S.6.5. Thus

(alE cos?60°  ayE cos? 45°>
Fr=— V2

2L/3 AL
But a; = 3841/5+/3L* and a, = 1921/5+/2L? so that
F=— @ vy
513
Similarly
o 96EI ”
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Then
96EI 96E1
STUQ and Fy’3 =—-P- STU:;

In Eq. (i), vi =601 =v4 =04 =0 and M, = M3 =0. Also, from symmetry, v, = v3, and
6r = —63. Then, from Eq. (i)

Fyp=—P—

My =0 = 6vy + 120,L + 6v3 + 2603L
i.e.
12vy + 106,L =0

which gives

6
60, = —5—Lv2

Also from Eq. (1)

Fy,=—-P— %Uz = %(361)2 + 60,L — 12v3 — 603L)
ie.
96E1 48EI
—P—gu=_gwn
whence
5PL3

2T Taap TV
and

6, = P —63

24El

The reactions at the ends of the beam now follow from the above values and Eq. (i).
Thus

El

Fyi = [5(=2402 — 126,) =

W~

=1Iya4
EI PL
M| = 17(121)2 +46,L) = _T = —My

Also

96EI 5PL® 2P
5L 144E1 3

The forces on the beam are then as shown in Fig. S.6.6(a). The shear force and bend-
ing moment diagrams for the beam follow and are shown in Figs S.6.6(b) and (c),
respectively.

Fr=F3 =
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i

P/3 » p s p P/3
< p=- < p_ T
3 P 3
Fig. 5.6.6(a)
P/3
+
4
1 2 3
(b) P/3
PL /4 PL /4
2 3 -
4

1 \\ ! N L/
() PL/12 PL/12

Fig. S.6.6(b) and (c)

The forces in the ties are obtained using Eq. (6.32). Thus

G . _ @E | 1V31f0-0
BF = CH—2L/\/§ ) vy — 0

i.e.
384E1/3 1 5PL3 2
SBF = ScH = > =z
53 x 2L32 144E1 3
and
= 5[ ][00
BE = 8¢cG = - —=
V2Ll V2 V21 v =0
1.€.

192E1 1 5PL3 2P
SBe = Scg = — =
542 x £/213 /2 144E1 3
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S.6.7

The forces acting on the member 123 are shown in Fig. S.6.7(a). The moment M, arises

from the torsion of the members 26 and 28 and, from Eq. (3.12), is given by

) 0>
My = -2GJ— = —EI—=
1.6/ )
1 5 \MZ 3 DM‘B
Fy, TT TF%Q i P2
| e
| | |
Fig. 5.6.7(a)
Now using the alternative form of Eq. (6.44) for the member 12
Fy1 12 -6 —-12 -6 v
Myl _EI| -6 4 6 2| |6/
Fo[ B |-12 6 12 6 V)
M/l -6 2 6 4] 6L
and for the member 23
Fyo 9 —-24 —-96 24 V2
My/l|  El | 24 8 24 41 |6.L
Fys [ B |-96 24 96 24 U3
M/l —24 4 24 8] 6L

Combining Eqs (ii) and (iii) using the method described in Example 6.1

Fy 1 12 -6 —-12 -6 0 0 V]

M/l 6 4 6 2 0o ofleu
Fy» EI|-12 6 108 —18 —96 —24| | v
|yt T =6 2 —18 12 24 4|6
Fy3 0 0 -9 24 96 24| |
Ms)l 0 0 —24 4 24 8|6

@

(i)

(1ii)

(iv)

In Eq. (iv) v =v2 =0 and 63 =0. Also M; =0 and F), 3 = —P/2. Then from Eq. (iv)

M, El

from which
02

6, =
! 2

)
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Also, from Eqgs (i) and (iv)

M, EI EI
= — 2611 + 126,1 + 24v3)

L= =
] RGN
so that
13621 4+ 2611 + 24v3 =0 (vi)
Finally from Eq. (iv)
P EI
Fy’3 = —5 = 1—3(24921 + 961)3)
which gives
PP 6l (vii)
= — - ii
Ty A Y

Substituting in Eq. (vi) for #; from Eq. (v) and v3 from Eq. (vii) gives

P2

6y = ——
2~ 48EI

Then, from Eq. (v)

PI?

0 = ———

96EI
and from Eq. (vii)

PP
13=——
3 T 96E1
Now substituting for 61,6, and v3 in Eq. (iv) gives Fyj=—P/16, Fy,=9P/16,
M, = —PI/A8 (from Eq. (i)) and M3 = —PI/6. Then the bending moment at 2 in 12
is Fy1/=—PI/12 and the bending moment at 2 in 32 is —(P/2) (I/2) + M3 = —PI/12.
Also M3 = —PI/6 so that the bending moment diagram for the member 123 is that shown

in Fig. S.6.7(b).
/”MZ
— 3

1 2

Pl/6
Fig. 5.6.7(b)

93



94  Solutions Manual

5.6.8

(a) The element is shown in Fig. S.6.8. The displacement functions for a triangular
element are given by Eqs (6.82). Thus

Uy =oy, V=04
up =y +aor, vy = a4+ aas )
Uz = o] +auwz, V3 = oq + aug

Fig. 5.6.8
From Eq. (i)

ar=u; oy =(u—up)ja o3 =(uz—u)/a

asg=v; as5=(—v)/a as=(v3—v1)/a

Hence in matrix form

o 1 0 0 0 0 0 uj
an —1/a 0 1/a O 0 0 V]
a3| | —1l/a 0 0 0 1/a O u
a[T] 0 10 0 0 0|]w
o5 0 —1/a 0 1/a O 0 u3
o6 . 0 —1/a O 0 0 1/a] |v3

which is of the form
{x} =[A7"1{s%)
Also, from Eq. (6.89)

01 0 0 0O
[C]=]0 0 O 0 O 1
0 01 010
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Hence
—1/a 0 I/a O 0 0
Bl=[ClIA™'1=| 0 —1/a 0 0 1/a
—l/a —1/a 1/a 1/a 0
(b) From Eq. (6.94)
[—1/a 0 —1/a]
ke =| v 1 0
0 0 1/a | 1—12 0 0 L1
0 0 1/ 2=
| 0 1/a 0 |
—1/a 0 1/a O 0 0 |
x| 0 —1/a 0 0 0 1/a Ea%
—1/a —1/a 0 1/a 1/a O
which gives
[ 33— 1+v -2 —(1=-v) —(1-v) =2v]
I4+v 3—v —2v —(1—-v) —(1—-v) =2
[K¢] = Et -2 —2v 2 0 0 2v
T 40— | —=(1=v) —(1-=v) 0 1—v 1—v 0
—(l—-v) —(1—-v) O 1—v 1—v 0
| —2v -2 —2v 0 0 2]

Continuity of displacement is only ensured at nodes, not along their edges.

5.6.9

(a) There are six degrees of freedom so that the displacement field must include six
coefficients. Thus

U =]+ axx + azy

(1)
V= a4 + 05X + aey (i)
(b) From Egs (i) and (ii) and referring to Fig. S.6.9

uy=aor+a+o3 vi=o04+as5+ag

uy = o1 +2a +a3 vy =4+ 205 + g

us = oy + 2a0 + 23 v3 = aq4 + 205 + 206

Thus

o) =uUr — Ul Q3 =Uuz—uy o1 =2u — u3

05 = V) — V] Og=UV3— V2 04 =20 — V3
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Fig. 5.6.9

Therefore

which is of the form

From Eq. (6.89)

Hence

(c) From Eq. (6.69)

[D][B] =

YA
3(2,2)
1(1,1) 2(2,1)
oy 2 0 0 0 —1 07
a -1 0 1 0 0 O
J s 0O 0 -1 0 1 0
a4 0 2 0O 0 0 -1
o5 0O -1 0 1 0 O
a6 | 0 2 0 0 0 —1]
fa = [A7"1{8%)
01 0 0 0O
[C]=[0 O 0 0 0 1
001 010
-1 0 1 0 0
[Bl=[Cll[A™'1=|0 2 0 0 0
0o -1 -1 11
{0} = [DI[BI{5}
Thus, for plane stress problems (see Eq. (6.92))
1 v 0 -1 0 1
v 1 0 0 2 0
1— U2 1
0 0 (I—w 0o -1 -1

ui
V1
u
v2
us3
v3

(iii)
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ie.
—1 2v 1 0 0 —v
[D][B] = —v 2 v 0 0 —1
1= 1 1 1 1
0 —3(0—=v) —50—=v) F(1-v) 5(1-v) 0
For plain strain problems (see Eq. (6.93))
— v —
(1—v)
E(1—v) v
DI[B]=————— 1 0
[DIiB] A+v)(1—=2v) | =V
0 0 (1—-2v)
L 2(1 —v)
-1 0 1 0 0 O
x| 0 2 0 0 0 -1
0O -1 -1 1 1 0
(DIB] = —— V)
T (1)1 —2v)
_ ) _
-1 Y 1 0 R
1—v 1—v
e 2 e 0 0 1
x 1—v 1—v
1—2v 1—2v 1—2v 1—-2v
2(1 —v) 21—v) 21 —v) 2(1—v) N
5.6.10

(a) The element is shown in Fig. S.6.10. There are eight degrees of freedom so that a
displacement field must include eight coefficients. Therefore assume

U= oy + arx + azy + asxy 1)
v =as5+ agx + ayy + agxy (i1)
(b) From Eqgs (6.88) and Eqgs (i) and (ii)
ou
&y = - =02 + a4y
0x
& = 5 = a7 + agx
u v

ny=@+§=a3+a4x+a6+asy
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YA
4 (0,2b) 3 (2a,2b)
> X
1(0,0) 2 (2a,0)
Fig. 5.6.10
Thus since {e} =[Cl{a}
01 0y 0 O0O0O0
[Cl]=10 O 0 O 0 O 1 «x
001 x 01 0y
(c) From Eq. (iii)
0 0 07
1 0 0
0 0 1
y 0 x
=
Lc] 0 0 O
0 0 1
0 1 x
L0 x yl
and from Eq. (6.92)
1 v 0
[D] = E v 1 0
1 —12 .
0 0 3(I-w

Thus

2a 2b
/ [CI'[DI[CldV = / / [CI[DI[C]t dx dy
vol 0 0

(iii)

(iv)
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Substituting in Eq. (iv) for [C]T, [D] and [C] and multiplying out gives

2a 2b
//[WWMW@
0 0

o0 0 0 0 0 0 0 0 7
0 1 0 y 0 0 v VX

1 X 1 y
0 0 E(l—v) 5(1—1}) 0 E(l—u) 0 5(1—1})

X 21— X y
g e |0y SU-v o PHEEY 0 Sd-v) vy wy+F(0-v)
/0 /0 dxdy

_ 2 2
-2 0 0 0 0 0 0 0 0
1 1
0 0 S(1-v) %(1 —) 0 S(1-v 0 %(1 —)

0 v 0 vy 0 0 1 X

0 wx %(1—1)) vxy—i—%(l—v) 0 %(1—1;) x 2+ %0-v)

ro 0 0 0 0 0 0 0 .
0 4ab 0 4ab? 0 0 4abv 4baPv

0 0 2ab(1 —v) 2a%b(1—v) 0 2ab(l—v) 0 2ab*(1 — v)

8
0 4ab* 24%b(1 —v) g{2ab3+ 0 2a*b(1 —v) 4ab*v 24%b*(1 +v)

Et @bl — )}
1-v2 o o 0 0 0 0 0 0

0 0 2ab(1 —v)  2a*b(1—v) 0 2ab(l —v) 0 2ab*(1 — v)

0 4abv 0 4abv 0 0 4ab 4a*b

8
0 4d®bv  2ab*(1 —v) 2a%b*(1+v) 0 2ab*(1—v) 4d%b g{2a3b+

L ab¥(1 —v)}
S.6.11
From the first of Eqs (6.96)
Uy =) —oay —az + oy =0.1/10° )
Uy = oy —l—Olz—Ol3—O{4=O.3/103 (i1)
Uz = ay 4+ o + a3 + ag = 0.6/103 (iii)

Uy =y — s + a3 —ay = 0.1/103 (iv)
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Adding Eqgs (i) and (ii)
u 4 ur =201 — 203 = 0.4/10°
i.e.
o) — a3 =0.2/103 v)
Adding Egs (iii) and (iv)
w3 + ugy = 201 + 203 = 0.7/10°
ie.
o) + a3 = 0.35/10° (vi)
Adding Eqgs (v) and (vi)
o) = 0.275/10°
Then from Eq. (v)
a3z = 0.075/10°
Now subtracting Eq. (ii) from Eq. (i)
up —uy = =20 + 204 = —0.2/10°
ie.
ar — a4 = 0.1/103 (vii)
Subtracting Eq. (iv) from Eq. (iii)
us — ug = 20 + 204 = 0.5/10°
i.e.
oy +ag =0.25/103 (viii)
Now adding Eqs (vii) and (viii)
200 = 0.35/10°
whence
ay = 0.175/10°
Then from Eq. (vii)
ay = 0.075/10°
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From the second of Eqs (6.96)

v = as —ag — a7 +ag = 0.1/10° (ix)
vy = as +ag — a7 —ag = 0.3/10° (x)
vy = a5 +ag + a7 +ag = 0.7/10° (xi)
vy = a5 — o + a7 — ag = 0.5/10° (xii)

Then, in a similar manner to the above

as = 0.4/10°
a7 = 0.2/10°
as = 0.1/10°
ag =0

Eqgs (6.96) are now written

uj = (0.275 + 0.175x + 0.075y + 0.075xy) x 1073
vi = (0.4 4+ 0.1x + 0.2y) x 1073

Then, from Eqs (6.88)

gy = (0.175 + 0.075y) x 1073
gy =02x 1073
Yay = (0.075 + 0.075x 4 0.1) x 107> = (0.175 + 0.075x) x 107>

At the centre of the element x =y =0. Then

gx =0.175 x 1073
gy =0.2 x 1073
Yoy = 0.175 x 1073

so that, from Eqgs (6.92)

200 000

=103 32(0.175 +0.3 x 0.2) x 1073 = 51.65 N/mm?
200 000

=103 32(0.2 +0.3 x 0.175) x 1073 = 55.49 N/mm?
200 000

Ty = —— x 0.175 x 107 = 13.46 N/mm?

2(1+0.3)
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$.6.12

Suitable displacement functions are:

U = o] + o2x + a3y + o4xy

V= o5 + 0gX + a7y + ogxy

Then
Uy = oy — 2ar — a3z + 204 = 0.001 (1)
uy = o1 + 20 — a3z — 204 = 0.003 (i1)
uz3 = o + 200 + a3z + 204 = —0.003 (ii1)
ug = o1 — 20 +az — 204 =0 @iv)

Subtracting Eq. (ii) from Eq. (i)
oy — agq = 0.0005 (v)
Subtracting Eq. (iv) from Eq. (iii)
ar 4+ ag = —0.00075 (vi)
Subtracting Eq. (vi) from Eq. (v)
as = —0.000625

Then, from either of Eqs (v) or (vi)

az = —0.000125
Adding Eqgs (i) and (ii)
a; — a3z = 0.002 (vii)
Adding Egs (iii) and (iv)
a1 + oz = —0.0015 (viii)
Adding Eqs (vii) and (viii)
a1 = 0.00025
Then from either of Eqgs (vii) or (viii)
a3 = —0.00175
Similarly
as = —0.001
ae = 0.00025
a7 = 0.002

ag = —0.00025
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Then

u; = 0.00025 — 0.00125x — 0.00175y — 0.000625xy
v; = —0.001 + 0.00025x 4 0.002y — 0.00025xy

From Eqgs (1.18) and (1.20)
ou

£x = == = —0.000125 — 0000625
X
3
£y = — = 0.002 — 0.00025x
dy
ou v
Yy = 5 + == = —0.0015 — 0.000625x — 0.00025y
)y ox

At the centre of the element where x =y =0

&y = —0.000125 ¢, =0.002 y,, = —0.0015.

5.6.13

Assume displacement functions

u(x,y) = a1 + ox + a3y
v(x,y) = aq4 + asx + aey

Then
U = o
uy = ap + 4o
uz = o + 20 + 23
Solving
Uy — uq 2u3 — uy — up
o = onN=——-
2 4 3 4
Therefore
Uy — uj 2u3 — uy — up
vm e (250 s (2,
or
X oy X oy y
(153 3
! ( 7 T g)mt g Tg)etyn
Similarly

X X
L B IRTE It

103



104  Solutions Manual

Then, from Eqgs (1.18) and (1.20)

ou Uy up
Sx:—:—— —_—
ox 4 4
v vy vy U3
gy:—:—— —_— —
ay 4 4 2
_Bu 8v_ Uy Uy v v2
o=y T 4 4 4
Hence
- oy -
0x
-1 0 1 00
ov 1
[B]{6°} = 5 = — 0 -1 0 -1 0
4 1 -1 -1 12
Jdu  ov
L dy  Ox_
But
a b O
[Dl]=|b a O
0 0 ¢
so that
| —a —b a —b 0 2b
[DI[Bl]=-|-b =-—a b —a 0 2a
4
—c —c -—c c 2¢ O
and
[a+c b4+c —a+c b-c
b+c a+c —-b+c a-—c
1 |—-a+c -b+c a+c¢c —-b-c
T —
B] [D][B]_16 b—c a—c¢c —-b—c a+c
—2c —2c —2c 2c
| —2b —2a 2b —2a
Since [K¢] = [B]T[D][B] x 4 x 1
[ a+c
b+c a+c
l1|—-a+c -b+c a+c
€] — —
[K]_4 b—rc a—c¢ —-b—c a+c
—2c —2c —2c 2c 4c
| —2b —2a 2b —2a 0

—2c

—2c

—2c
2c
4c

SYM]

4a

ui
U1
uz
)
us

v3

—2b
—2a
2b
—2a

da
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S.6.14
Fora=1,b=2

u=g[(1 =02 = Yur + (1 +x)2 — yuz + (1 + )2 + yuz + (1 —x)(2

Similarly for v

Problems

+ y)ug]

Then
0
== =2 i+ Q=+ Q43— @+ ]
0
gy = $0 =001 = (L 0w + (100 = (1= ]
ou v
3y Ty = $ =00 = @ =y = (e 2= e+ (s

+ 2+ yvz + 1A —xus — 2+ y)val

In matrix form
P
ox
Jdv
ay
ou v
Loy " ar

-2 -y 0 2-y 0 2+y) 0 —-Q2+y 0

:% 0 —(-x 0 —(+x 0 (d+x 0 (-x
—(1-x) -C-y) —(I+x) C—-y) (I+x0) 2+y) A-x) —2+y)
Also
c d 0
D=|d ¢ O
0 0 e
Then
[D][B]

—c2—y) —d(1—x) e2—y) —d(1+x) e2+y) dl+x) —c2+y)
=3 —d2—-y) —c(1—x) d2—-y) —c(1+x) d2+y) el1+x) —d2+y)
—e(1—x) —e—y) —e(1+x) e2—y) e(l+x) e2+y) e(l—x)

ug
vy
up
v2
u3
v3
Ug
v4

d(l —x)
c(l1—x)
—e(2+Yy)
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Then
—2-y) 0 —(1 —x)7
0 —(1-=x) =2-y)
| : —c2—=y) —d(1—x) ... ... ...
(BI'[DI[B] = o : —dQ2—y) —c(1—X) ..o oo ...
’ —e(l—x) —e2—y) ... ... ...
Therefore

2 1
K= / f [e2 — ) + e(1 — )*1dx dy
64 ) 2J

t
which gives K1] = 8(46 +e)

2 1
Km:é/ / [d(2 — (1 — %) + e(1 — )2 — y)dx dy
—2J-1

which gives K12 = 1(d + ).

Solutions to Chapter 7 Problems
S.7.1

Substituting for ((1/p0x) + (v/py)) and ((1/py) + (v/px)) from Eqs (7.5) and (7.6),
respectively in Eqgs (7.3)

Ez M, Ez M, .
“i—wp ™M YTioap v

Ox

Hence, since, from Eq. (7.4), D = Ef3/12(1 —v?), Egs (i) become

12zM, 12zM, ..
Oy = 3 oy = 3 (i1)
t 1-
The maximum values of o, and oy will occur when z = 4-#/2. Hence
(max) = 22 o (max) = 220 (iif)
oy(max) = o oy(max) = 2 iii
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Then
6 x 10 x 103
o (max) = i% — £600N/mm>
6 x5 x 103 )
oy(max) = ————— = £300 N/mm
102
S.7.2
From Eq. (7.11) and since My, =0
M, — M
M, = % sin 2« (i)

M, will be a maximum when 2o = 71/2, i.e. « = /4 (45°). Thus, from Eq. (i)

10-5
M;(max) = — = 2.5Nm/mm

$.7.3

The relationship between M), and M,, My and My, in Eq. (7.10) and between M; and
My, My, and M,, in Eq. (7.11) are identical in form to the stress relationships in Eqs
(1.8) and (1.9). Therefore, by deduction from Eqs (1.11) and (1.12)

M, +M .
My = =7 \/ (M — My)? +4M2, (i)
and
Mo+ M, 1 )
My = =5 - 5\/(Mx — M,)? +4M2, (ii)

Further, Eq. (7.11) gives the inclination of the planes on which the principal moments
occur, i.e. when M; = 0. Thus

2M,,

tan2¢¢ = —————
M, — M,

(iii)
Substituting the values M, =10Nm/mm, M, =35Nm/mm and M,, =5Nm/mm in
Eqgs (i), (ii) and (iii) gives

M1 = 13.1 Nm/mm
My = 1.9Nm/mm

and

a=-31.7° or 58.3°
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The corresponding principal stresses are obtained directly from Eqs (iii) of S.7.1. Hence

o] = iM = 4786 N/mm?
102
6 x 1.9 x 103 )
oy = 1—02=:|:114N/mm

5.7.4

From the deflection equation

3w qoa

Ty Ty TYy\ . T7IX
— = 1+A cosh— B— sinh— ) sin —
ax2 D2 ( + + a
2w qoa . TTX
— (Aco h— +2Bcosh— +B— smh—) sin —
a2 Dn? a a a

Now w=0and M, =0 at x =0 and a. From Eq. (7.7) this is satisfied implicitly.
Also w=0and M, =0 at y = %a so that, from the deflection equation

qoa
Drm

X
0= 4(1+Acosh71—I—Byrsmhyr)sm—
a

i.e.
1+ Acoshm + Brsinhmr =0 (1)
Also, from Eq. (7.8)

0O=-— ;1)0_[(14 cosh r 4+ 2B cosh 7w + B sinh )

—0.3(1 4+ A cosh 7 + Bt sinh )] sin ——
a

or
O =-0.34+0.7Acoshm 4 2Bcoshm + 0.7Br sinh & (i)
Solving Eqgs (i) and (ii)
= —0.2213 B =0.0431

S.7.5

The deflection is zero at x = a/2, y = a/2. Then, from the deflection equation

4
3 3
— —a4(l —V) — Za*tv+A

o=%
42 4
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Hence

4
a

A==—(5-3
4( V)

The central deflection, i.e. at x =0, y =0 is then

ga*

= 96(1 — v)D

_qa4 5—3v
384D\ 1 —v

1
X Z(S — 31))

S.7.6

From the equation for deflection

*w m\4 X 3wy
W =Wy (;) COS ; CcoS 7
*w 3r\* b4 3my
W =wo| — COS — SIn 7
*w 7\2 (372 X 3wy
= wy (—) — ] cos —cos —
0x2 3y? a a a a

Substituting in Eq. (7.20)

, 3 4
9%, 5) =wocosﬂcosﬂ(l +2x9+81) (z)
D a a a

i.e.

4
b4 X 3

q(x,y) = w0D100—4 COS — COS 2
a a a

From the deflection equation
w=0 atx==a/2,y==xa/2

The plate is therefore supported on all four edges.

Also
ow T, TX 3wy
— = —wp— Sin — cos ——
0x a a a
ow 3n X 3wy

— = —wp— CcO0Ss — sin ——
ay a a a
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When
:I:a ow £0
x=x- —
2 ox
_ :I:a ow £0
r= 2 9y
The plate is therefore not clamped on its edges.
Further
3w (n 2 X 3wy
— = —Wp —) cos — cos ——
ox2 a a a

3w 37\2 X 3my
— =—-wp | — ) cos— cos —
dy? a a

Substituting in Eq. (7.7)

2 3
M, = —Dwy (z) cos ™ cos ﬂ(—1 — %)
a a a

Similarly, from Eq. (7.8)

T\2 X 3wy
My, = woD (—) cos —cos — (9 +v)
a a a

Then, at x = £a/2, M, =0 (from Eq. (i)) and at y = +a/2, M, =0 (from Eq. (ii)).
The plate is therefore simply supported on all edges.
The corner reactions are given by

82
2D(1 —v) (see Eq. (7.14))
dx dy
Then, since
9w w3r . wx . 3my
=wp——sin —sin — atx =a/2, y=a/2
dx dy a a a a
T\ 2
Corner reactions = —6wyD (—) (1—-v)
a

From Eqgs (7.7) and (7.8) and the above, at the centre of the plate

M, = woD (%)2(1 +9v), My, = woD (g)z(g + ).

(ii)
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S.7.7

Substituting g(x, y) = gox/a in Eq. (7.29) and noting that the plate is square and of side a

. mmx niw
Jrm—— / / qo— sin —— sin —ydx dy
a
ie.
4q0 ¢ . max a nmy 4
amn = —5 xsm—[——cos—] dx
a Jo a nw a lo
Hence
4qg0 (¢ . mux
Apn = —— x sin ——(cosnmw — 1)dx
a‘nm Jo a

The term in brackets is zero when 7 is even and equal to —2 when » is odd. Thus

8 a
iy = — 2% / xsin dx (1 0dd) (i)
a*nm Jo a

Integrating Eq. (i) by parts

840 a mmx a mmx ¢
amn = — —X—Ccos — + | —cos dx
a*nw mim a mi a 0
i.e.
8g0 mix a . mmxia
Amp = ——— | —xcos —— + ——sin ——
amniw a mi a o

The second term in square brackets is zero for all integer values of m. Thus

840
A = = (—acos mm)
amniw

The term in brackets is positive when m is odd and negative when m is even. Thus

8
qO ( 1)m+1

Amn =

Substituting for a,,, in Eq. (7.30) gives the displaced shape of the plate, i.e.

1 00 00 Sqo(_l)erl . ommx nimy
W=3 Z Z m 2 2SI SHT
m=123n=135 > [(_2> + <_2>}
a a
or
84oa = (=pmH! mux . niy
=D 2 2 i R S s

m=1,2,3n=1,3,5
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S.7.8

The boundary conditions which must be satisfied by the equation for the displaced
shape of the plate are w = 0 and dw/dn = 0 at all points on the boundary; » is a direction
normal to the boundary at any point.

The equation of the ellipse representing the boundary is

= (i)

Substituting for x2/a? + y*/b* in the equation for the displaced shape clearly gives w =0
for all values of x and y on the boundary of the plate. Also

ow owadx  Ow dy
J— + —

o0~ axan | ay on W
Now
w=wy(1l- ﬁ - ﬁ i
a? b2
so that
3 4 22
L I S (ii)
ox a? az b2
and
ow 4woy x2 P )
—=—(1-=-= (iv)
dy b? a’> b2

From Egs (i), (ii) and (iv) it can be seen that dw/dx and dw/dy are zero for all values
of x and y on the boundary of the plate. It follows from Eq. (ii) that dw/dn =0 at all
points on the boundary of the plate. Thus the equation for the displaced shape satisfies
the boundary conditions.

From Egs (iii) and (iv)

Fw 24wy Fw  24wy  d'w  Bwg
ot at ayt b w29yr a2b?

Substituting these values in Eq. (7.20)

24 16 24\ p
Y\F e W) o

whence
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Now substituting for D from Eq. (7.4)

B 3p(1 —1?) -
M= (3 23 v
2Et s + 202 + e
From Eqgs (7.3), (7.5) and (7.7)
Ez [®w N 3w i)
ox=————|—5+trv— vi
* 1—v2 \ ox2 ay?
and from Eqs (7.3), (7.6) and (7.8)
Ez 3w n 3w (vii)
oy=——m——| — +v—>sr vii
Y 1—v2 \ 9y? ox2
From Egs (iii) and (iv)
Fw _ _dwo (3PN Pw w2 3P
ax2 a? a’> b2 dy? b? a’> b2

Substituting these expressions in Eq. (vi) and noting that the maximum values of direct
stress occur at z = £t/2

(max) = + Et 4wyg 1 3x% P 4wov 1 x2 3y?
max) =+——[— (1 - = —-= ] — _
o 20— | & &) P P

(viii)
At the centre of the plate, x =y =0. Then
2Etwq 1 v .
ax(max) = im (a_2 + ﬁ) (IX)
Substituting for wg in Eq. (ix) from Eq. (v) gives
3pa’b*(b* 4 va?)
=+
Oxma%) = £ 5 St 228 + 3% ®
Similarly
3pa’b*(a® + vb?) ,
oy (max) = £ o b 2025 + 3 (1)
At the ends of the minor axis, x =0, y =b. Thus, from Eq. (viii)
( )=+ 2Etwg 1 1 n v 3v
ox(max) =t—— | - — =+ 5 — —
* 1—v)\a® a b b?
ie.
4Etwov .
ox(max) = £ (xii)

p2(1 —12)
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Again substituting for wg from Eq. (v) in Eq. (xii)
6pa*b?
2(3b* 4 2a%b? 4 3a*)

oy(max) = +

Similarly
6pb*a?

) = :l:
oy(max) = T T 22b% 1 3%

$.7.9

The potential energy, V, of the load W is given by
V=-Ww

ie.

g mi nw
=—WZZAmnsin p 51 Tn

m=1n=1

Therefore, it may be deduced from Eq. (7.47) that the total potential energy, U + V, of
the plate is

U+V=— ZZA2 nab( —> WZZAmnsm—m ?

m=1 n=1
From the principle of the stationary value of the total potential energy

2

U +V Yab (m>  n?
—( +V) = DA, ram Ty W sin _mzr$ sin n 0
0Amn 4 b? b
Hence
4W sin _mnf sin ]
Amn — a b

ol () + ()]

so that the deflected shape is obtained.

$.7.10

From Eq. (7.45) the potential energy of the in-plane load, Ny, is

1 [a b aw\ 2
—— N (ZE) dxd
2/0/0 *(ax> Y
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The combined potential energy of the in-plane load, Ny, and the load, W, is then, from
S.79

1 [ b ow nmn
V=—§f0 /0 NX(§> dxdy — WZZAmnsm—m >

m=1n=1

or, since,
o0 o0
aw mi mmx . RNy
— = ZZAmn—cos—sm—
0x b
m=1 n=1
1 [e [t & m2m? mit nm
v=—3 /NXZZA,%M T cos” T sin? e
0 Jo m=1 n=1
nmn
—WZZAW,Sln—Sl -
m=1 n=1
i.e.

=——N,62:2:A2 mr —WZZAmnsmm—nésm?

m=1 n=1 m=1n=1

Then, from Eq. (7.47), the total potential energy of the plate is

U+v== Zzznab(2+—) NXZZAZ'"”

m=1n=1 m=1n=1
nmn
4 Z ZA,,," sm — s1n7
m=1 n=1
Then, from the principle of the stationary value of the total potential energy
2
U +V) atab (m* n? ab m*m? mmé& nmn
—=DAyp—— | 5+ — ——NAw—— — Wsin—=sin— =0
dAn g b2 4 g2 a b

from which

4W sin m_né sin ?

a
Amn =

2 25\ 2 2

m n m-N,
Dt | (= + =) — ———
ave |:(a2 bz) w2a’D
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S.7.11

The guessed form of deflection is

4x2 4y2 )

Clearly when x = £a/2, w =0 and when y = £a/2, w =0. Therefore, the equation for
the displaced shape satisfies the displacement boundary conditions.
From Eq. (i)

* A 497\ & A 4x?
oW _ Al () oW Al
0x2 a? a? 0y? a? a?

Substituting in Eq. (7.7)

841D 4 4x2
a a

Clearly, when x = +a/2, M, #0 and when y = +a/2, M, # 0. Similarly for My. Thus
the assumed displaced shape does not satisfy the condition of zero moment at the simply
supported edges.
From Eq. (i)
92w _ 64A11xy
xdy  at

Substituting for 8?w/dx2, 8>w/dy*, #*w/dx dy and w in Eq. (7.46) and simplifying gives

a/2 324%,D 16 ) 4
U4V = — 4— (x+ )+ (x +2%% +yh - 14
—a/2

—a/2 a
5.6 67.2x7y
+a—2(x2 )+ —]
4x2  4yr 16x%y?
Cata (18 AT 1 g,
a a a

from which
62.4A%1D _ 4q0A11a2
a? 9
From the principle of the stationary value of the total potential energy

U+V =

WU +V) 1248A11D  4qoa®

= =0
0A1] a? 9

Hence, since D = E£3/12(1 — v?)

Aq = 0.0389g0a” /Er
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$.7.12

From Eq. (7.36) the deflection of the plate from its initial curved position is

. X, 7y
w1 = Bp1 sin — sin —
a b
in which
AN
B = 5 2x 3
D a
2 \te)
The total deflection, w, of the plate is given by
w = w1 + wo
ie.
AN
w= T 3 + A sin—sin—y
7D a* b
2 \Itp) M
ie.
A11 . TTX Ty
w= sin — sin —

Nya? a? 2 a
-2 /(1+=
72D < * b2>

Solutions to Chapter 8 Problems

S.8.1

The forces on the bar AB are shown in Fig. S.8.1 where

dv .
Mp =K (—) (1)

dz B

and P is the buckling load.
From Eq. (8.1)
gl p (ii)
— = —Pv 11
dz?

The solution of Eq. (ii) is
v=Acosuz+ Bsin uz (ii1)
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M,
B VB
—> R 4 _—
P A
I
I
Fig. 5.8.1
where u? = P/EL
When z =0, v=0 so that, from Eq. (iii), A = 0. Hence
v = Bsin uz @iv)
Then
dv
— = uBcos uz
dz
and when z =1, dv/dz = Mg/K from Eq. (i). Thus
M,
B—_ B
WK cos il
and Eq. (iv) becomes
Mg . W)
v=——s5in \%
WK cos ul Hz

Also, when z =, Pvg = Mp from equilibrium. Hence, substituting in Eq. (v) for Mp

Pup

V= ———35
UK cos ul

in el

from which
_ _uK
 tan ul

(vi)

(a) When K — o0, tan ul — oo and ul — /2, i.e.

P T
[ ] =
EI 2

from which

which is the Euler buckling load of a pin-ended column of length 21.
(b) When EI — oo, tan ul — pl and Eq. (vi) becomes P = K /I and the bars remain
straight.
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5.8.2

Suppose that the buckling load of the column is P. Then from Eq. (8.1) and referring

to Fig. S.8.2,in AB

gl _p
= _Py
dz?
and in BC
d%v
4EI— = —Pv
dz2
y B 4 El c
El
P v |
—> >» z
A
| 14 | 12
[ [
Fig. 5.8.2

The solutions of Egs (i) and (ii) are, respectively
vAB = A cos uz + Bsin uz

2 .M
=C — D —
UBC cos 2z+ sin 2Z

in which
P

2—_
b= F

When z =0, vag = 0 so that, from Eq. (iii), A = 0. Thus

vAB = B sin j2%4

Also, when z =1/2, (dv/dz)gc = 0. Hence, from Eq. (iv)

mo, . opl o ul
0=—— —+ =D —
2Csm 1 + > cos 1
whence
l
D=CtanM—
4
Then

2 ul . u
VBC <cos 2z+ an 1 sin 22)

(i)

(ii)

(iii)
(iv)

)

(vi)
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When z =1/4, vap = vpc so that, from Eqs (v) and (vi)

[ I l [
Bsin% =C (cos% +tan%sin%)
which simplifies to
[ [ [
Bsin % = Csec % cos % (vii)

Further, when z = /4, (dv/dz)ap = (dv/dz)pc. Again from Eqs (v) and (vi)

l l l l
,uBcosM—=C —Esinu——kﬁtanu—cosu—
4 2 8 2 4 8

from which

l .
Bcos — = —sec — sin — (viii)

l
tan — = 2/ tan Lok
8
or
I l
tan L tan L =2
4 8
Hence
2tan® ul/8 5
1 —tan2 pul/8
from which
. ul 1
an — = —
8 V2
and
l
% — 35.26° = 0.615rad
ie.
P
—-—=0.615
EI'8
so that

24.2EI
P =
12
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5.8.3

With the spring in position the forces acting on the column in its buckled state are
shown in Fig. S.8.3. Thus, from Eq. (8.1)

d%v .

El— =4P(5 —v) — ké(l —2) (1)
dz?
The solution of Eq. (i) is

. J ..

v=Acosuz+ Bsin uz + E[4P—|—k(z — D] (i1)
4P
! ‘
l ké )
4
> Z

Fig. 5.8.3

where
4p
2 ——
=T
When z =0, v=0, hence, from Eq. (ii)

8
O0=A+ —@4P —kl
+4P( )

from which
S(kl — 4P
g = dKL—4P)
4P
Also when z =0, dv/dz = 0 so that, from Eq. (ii)

0=uB+ ok
TP
and
-8k

:E
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Eq. (ii) then becomes

3 k .

v=—|(kl—4P)cospuz — —sinuz +4P + k(z — 1) (iii)
4p %
When z =1, v=3_. Substituting in Eq. (iii) gives
) k .
§=—|(kI—4P)cosul — —sin ul + 4P
4p "

from which
. 4P
Tl —tan pul

S.8.4

The compressive load P will cause the column to be displaced from its initial curved
position to that shown in Fig. S.8.4. Then, from Eq. (8.1) and noting that the bending
moment at any point in the column is proportional to the change in curvature produced
(see Eq. (8.22))

Eldz—v - Eldzﬂ = —Pv (i)
dz2 dz?
Now
vy = a%(l -2)

so that

d%vg 8a

iz~ B

/
|

Fig. 5.8.4

and Eq. (i) becomes

d2v P 8a (ii)
_ _— ) = —— 11
2 TE TR
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The solution of Eq. (ii) is
v = A cos Az + Bsin Az — 8a/ (A1) (iii)

where A% = P/EL
When z =0, v=0 so that A = 8a/(A])?. When z = I/2, dv/dz = 0. Thus, from Eq. (iii)

oM Al
0= —AAsin — + ABcos —
2 2

whence

8a Al
B = ——tan —
(A)? 2

Eq. (iii) then becomes
a Azt tan 2L sinaz — 1 (iv)
v=——|[cos an — sin Az — iv

(D)2 ¢ g AR

The maximum bending moment occurs when v is a maximum at z =1[/2. Then, from
Eq. (iv)

8aP V) Mo Al
M(max) = —PUmax = CcOs — 4+ tan — sin 5~ 1

a2\ 2 2
from which
M . 8aP A 1
(max) = _(Al)z (sec 5~ )
S.8.5

Under the action of the compressive load P the column will be displaced to the position
shown in Fig. S.8.5. As in P.8.4 the bending moment at any point is proportional to the
change in curvature. Then, from Eq. (8.1)

El— —E[— = —Pv (i)

2 2

Fig. S.8.5
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In this case, since each half of the column is straight before the application of P,
d?vo/dz? =0 and Eq. (i) reduces to

a®_ _p (i)
— = —Pv 11
dz2
The solution of Eq. (ii) is

v =Acosuz + Bsin uz (ii1)

in which p? = P/EI. When z =0, v=0 so that A =0 and Eq. (iii) becomes
v = Bsin uz (iv)
The slope of the column at its mid-point in its unloaded position is 2§/1. This must be

the slope of the column at its mid-point in its loaded state since a change of slope over
zero distance would require an infinite bending moment. Thus, from Eq. (iv)

dv 26 B ul
— = —= cos —
dz 1 Py
so that
28
B=————
ulcos (ul/2)
and

26
V= —M——
ulcos (ul/2)

The maximum bending moment will occur when v is a maximum, i.e. at the mid-point
of the column. Then

sin g V)

2P§ ul

———sin
wlcos (ul/2) 2

25 |EI Pl
M(max) = —P—,/ —tan,/ — =
IV P EI2

M(max) = —Pvmax = —

from which

5.8.6

Referring to Fig. S.8.6 the bending moment at any section z is given by

wl 72
M:P(e—i—v)—?z—i—wE
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Fig. 5.8.6

or
M = P(e +v) + g(z2 —1I2) ()

Substituting for M in Eq. (8.1)

2

d“v w5
EI@ + Pv=—Pe — E(Z —[2)
or
d?v 5 5 owp? .
a?+uv=—ue—33&-4@ (i)

The solution of Eq. (ii) is

w

v:Acosuz—l—BSinuz—e—F%(lz—zz)—l-MZP (iii)
When z=0,v=0, hence A=¢ — w/,uzP. When z =1/2, dv/dz =0 which gives
l l
B=Atan'u—= e—l tanM—
2 u2P 2
Eq. (iii) then becomes
w cosu(z—1/2 w .
v=[e—— W /)—1 +—z—2%) (iv)
u-P cos ul/2 2P

The maximum bending moment will occur at mid-span where z=1/2 and v = vyx.

From Eq. (iv)
Elw ul wi?
VUmax = (6— ?) (SCC? — 1) + ﬁ

M(max) = Pe + Pvmax — i

and from Eq. (i)

125



126  Solutions Manual
whence
w ul w
M(max) = | Pe — — |sec—+ — v)
w 2

For the maximum bending moment to be as small as possible the bending moment at
the ends of the column must be numerically equal to the bending moment at mid-span.

Thus
)
Pe + (Pe—%)sec%—l—% =0
or
ul w wul
Pell4+sec— )= —|sec— —1
2 u? 2
Then
_w (1—cosul/2
~ Pu? \ 1 +cosul/2
i.e.
e=|—=)tan® — (vi)
Pu? 4

From Eq. (vi) the end moment is

wo ol wi? (tan ,ul/4) (tan Ml/4)
Pe = —tan” — = —
m 416 \ /4 /4

When P — 0, tan /4 — pl/4 and the end moment becomes wi2/16.

S.8.7

From Eq. (8.21) the buckling stress, oy, is given by

7T2Et ()
- -t i
™= W2
The stress—strain relationship is
10.5 x 10° 21000( g )16 (ii
DX e=o0+ m 11)
Hence
cde 16 x 21000 s
105x1°—=1+——-0
do (49 000)16
from which

do 10.5 x 10° x (49 000)'6

~ de  (49000)16 + 16 x 21 000(c)!3

Ey
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Then, from Eq. (i)

IN? #2E 10.36 x 107 (i)
- = = iii
oh op + 336 000(a, /49 000)16
From Eq. (iii) the following op—(//r) relationship is found

op 4900 3 x4900 6 x4900 9 x4900 49000
I/r 1454 84.0 59.3 31.2 16.4

For the given strut

I D* —d% /64 1
r2:_:77( d")/6 LIPS
A aD?—d¥)/4 16

ie.
P2 = 11_6(1.52 + 1.34%) = 0.253 units?
Hence
r = 0.503 units
Thus
2
é = % =39.8

Then, from the o,—(I/r) relationship
op = 40 500 force units/units’

Hence the buckling load is
40500 x %(1.52 — 1.342)

1.e.

Buckling load = 14 454 force units

5.8.8

The deflected shape of each of the members AB and BC is shown in Fig. S.8.8. For the
member AB and from Eq. (8.1)

L
dz% N B
so that
dv;
El— = —Mgz; + A
dz;
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Z4

Fig. 5.8.8

When z; = b, dvi/dz; =0. Thus A = Mgb and

dv .
EI— = —Mg(z; — b) (i)
dz;
At B, when z; =0, Eq. (i) gives
d Mgb
dur _ Msb (ii)
dz; EI
In BC Eq. (8.1) gives
P L
— = —Fv
dz? B
or
L (iif)
i v = iii
dz? b
The solution of Eq. (iii) is
v = Bcosiz+ Csiniz + Mp/P @iv)

When z=0, v=0 so that B= —Mg/P.
When z =a/2, dv/dz =0 so that

Eq. (iv) then becomes

My et Aa . N 1
v=——cos an — sin Az —
P ¢ p M
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so that
M () Gnrz+atan 2 cosa
— = ——— | —A\sin an — cos
dz P . 2 ‘
At B, when z=0,
d M, A
v B tan 22 v)
dz P 2

Since dv/dz; = dv/dz at B then, from Egs (ii) and (v)

b A Aa
— = ——tan —
EI P 2
whence
Ara 1 /a ra
M (-) tan -2
2 2 \b 2
S.8.9

In an identical manner to S.8.4

d>v' d?v ,
El— — EI— = —Pv
dz? dz?

where v’ is the total displacement from the horizontal. Thus

v P, d%

A A

or, since
d%v m? b4 P
— =——68sin—z and pu’=—
FE A K= E
d?v 5 n? mz
= ——4§sin — i
dz? Tuy 2 l @

The solution of Eq. (i) is

—A + Bsi + b . Tz (ii)
v = CoS Uz Sin uwz ——— S1n — 11
H Her e ™

When z=0 and [, v" =0, hence A = B=0 and Eq. (ii) becomes

, %8 i
= —  _sin —
w2 — p2i? l
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The maximum bending moment occurs at the mid-point of the tube so that

78 Ps
2 u22 1 —PI2/72El

M(max) =PV =P
;s

ie.
Ps Ps
1-P/P. 1—«a
The total maximum direct stress due to bending and axial load is then

P Pé d/2
o(max) = — + 3
mdt 1 —a) nd’t/8

M(max) =

Hence

P (1 1 43)

The forces acting on the members AB and BC are shown in Fig. S.8.10

¢y 7777774

A C P
— H

v

N JLVB B Yz
i B P P
f
a | b
I

Considering first the moment equilibrium of BC about C

Fig. 5.8.10

Pvg = Vb
from which
Vb 0
Vg = — i
B=p
For the member AB and from Eq. (8.1)
P LR
— = —Pv —
dz? ¢
or
dv P Vz

@2 TET TH (i
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The solution of Eq. (ii) is
. Vz
v=AcosAz+ Bsiniz — 7 (i11)
When z=0, v=0 so that A =0. Also when z =a, dv/dz =0, hence

\%
0= ABcosia — —
P

from which

_ \%
"~ APcosAa

V [ sinAz
V= — -z
P \ AcosAia

When z =a, v=uvp = Vb/P from Eq. (i). Thus

Vb_V sin Aa
P~ P \acosia ¢

and Eq. (iii) becomes

from which

Ma + b) = tan Aa

S.8.11

The bending moment, M, at any section of the column is given by

M = Pcrv = Pcrk(lz — Z2) (1)
Also
dv ..
— =k(l —22) (i)
dz

Substituting from Eqs (i) and (ii) in Eq. (8.47)

Pk |1 @ 22 1 [l 242 1! 2,2
U+V=—/+ —/(lz—z)dz+—/ (lz —z7)dz + — (lz —z%)7dz
2F 1Jo L J, I Ji—a

Pcrk? (!
_ IR / (I — 27)%dz
2 Jo
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i.e.
I—
YUl B S R Rl
2 || 3 2 5|, L] 3 2 5
a
I )
1|23 2P Pcrk? [ 5 , 47
— = =4 — Pz —2077 4+ =
+I1|:3 2+5 [z z+3}0
l—a
i.e.
U+V_Png2 L Pa’ 1a4+a5 lz(l—a)3+l(l—a)4 (Il —a)
 2EL |\I 3 2 5 3 2 5

LI’ } Perk2

From the principle of the stationary value of the total potential energy

3 2 5 3

U+V) _ Pk [ (B \|2d b & Pl-a
ok  EL |\L

L= ot (-al| bP| Pk _
2 5 11 30 3
Hence
» ELP (i
CR = iii
b Pa® It @ PPl-a)
3\ --1= = =+=——
I 3 2 5 3
I(l—a* (—aP | LD
-at d-a’)| bhP
2 5 I 30
When I, = 1.6/; and a = 0.2/, Eq. (iii) becomes
14.96EI, .
Pcr = — (iv)
Without the reinforcement
2ElL
Pcr = B (v)

Therefore, from Eqs (iv) and (v) the increase in strength is

EL
5 (14.96 — %)



Solutions to Chapter 8 Problems

Thus the percentage increase in strength is

2

El Lo
(1496 — 7 )/ﬁ % 100 = 52%

Since the radius of gyration of the cross-section of the column remains unchanged
L=Air? and L =Ax"
Hence
A I
2-2_16 (vi)
A I
The original weight of the column is /A| p where p is the density of the material of the

column. Then, the increase in weight =0.4/A1p + 0.6IA2p —[A1p=0.61p(A2 — A1).
Substituting for A, from Eq. (vi)

Increase in weight = 0.6/p(1.6A1 — A1) = 0.36/A1p

i.e. an increase of 36%.

5.8.12

The equation for the deflected centre line of the column is

46 .
V= l—2Z2 (1)

in which § is the deflection at the ends of the column relative to its centre and the origin
for z is at the centre of the column. Also, the second moment of area of its cross-section
varies, from the centre to its ends, in accordance with the relationship

1=n(1- 1.6%) (ii)
At any section of the column the bending moment, M, is given by
2
M = Pcr(8 — v) = Pcré <1 — 41_2> (iii)
Also, from Eq. (i)
dv 86 .
d_z = Z—ZZ (IV)

Substituting in Eq. (8.47) for M, I and dv/dz

2
22024
2EL( —L6z/l) ° 2 )y #

12 P2 82 1—4 2 12 2 P 12 6482
U+V:2/ crd” (1 —427/17)7  Per
0
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or

U+V =

P%L8? /’/2 (I — 422y Z_64PCR82 /1/222dz
ELP (I - 1.62) o)y

Dividing the numerator by the denominator in the first integral in Eq. (v) gives

P2 52 12
U+V=-R / (—102> — 6.251z> + 1.09/°z + 0.683/%)dz
0

EL P
+0.3171° / e dz 64Pc1z82 2
' o (1—1.6z/]) 14 3,

Hence
P2 52 4 3 2
U+V= 523 [ 10——6251§+109z2 +0.683%;
031740 (12 12 "2 8Pcrs*
1.6 1 )], 31
ie.

0.3803P2g8%1  8PcRr4?
El 31

From the principle of the stationary value of the total potential energy

U+V =

AU +V)  0.7606PZgdl  16Pcrd

= =0
) EqL 3

Hence
7.01EL
12
For a column of constant thickness and second moment of area I,

Pcr =

T2El

Per =~ (seeEq. (8.5)

For the columns to have the same buckling load

m?ElL,  7.01EI

12 12

so that
L =0.71

Thus, since the radii of gyration are the same

Ay =0.7A
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Therefore, the weight of the constant thickness column is equal to pA>l =0.7pA1l.
The weight of the tapered column = p x average thickness x [ = p x0.6A11.
Hence the saving in weight=0.7pA 1/ — 0.6pA 1/ =0.1pA1 1.

Expressed as a percentage

0.1pA1!
0.7pA,1

x 100 = 14.3%

saving in weight =

5.8.13

There are four boundary conditions to be satisfied, namely, v=0 at z=0 and z=1,
dv/dz=0 at z=0 and d%v/dz? (i.e. bending moment) =0 at z =1[. Thus, since only
one arbitrary constant may be allowed for, there cannot be more than five terms in the
polynomial. Suppose

Z Z\2 Z\3 2\4 .
v=ap+aj (—) +az (—) + a3 (—) + as (—) @)
[ I [ [
Then, since v=0 at z=0, agp=0. Also, since dv/dz=0 at z=0, a; =0. Hence,
Eq. (i) becomes
Z\2 7\3 2\4 .
v=ap (—) + a3 (—) + aq (—) (i1)
l l I
When z =1, v=0, thus
O=ar+as+ay (ii1)
When z =/, d?v/dz% =0, thus
0=ay +3a3z + 6as @iv)
Subtracting Eq. (iv) from Eq. (ii)
0= —2a3 — S5a4

from which a3 = —5a4/2.
Substituting for a3 in Eq. (iii) gives a4 =2a3/3 so that a3 = —5a»/3. Eq. (ii) then

becomes
_ Z\2 Sap <z>3 2a» (z>4
”_a2<1) 3 ) T30 )

Then

dv z 2 8ay 2 .

d_Z =2azi—5a21—3+71—4 (Vl)
and

d?v ) z2 ..

d_Z2 = 27 10(12 13 + 8&2 l4 (Vll)
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The total strain energy of the column will be the sum of the strain energy due to
bending and the strain energy due to the resistance of the elastic foundation. For the
latter, consider an element, §z, of the column. The force on the element when subjected
to a small displacement, v, is k6zv. Thus, the strain energy of the element is %kvzéz and
the strain energy of the column due to the resistance of the elastic foundation is

'
f —kv?dz
0 2
Substituting for v from Eq. (v)

1 a3 (! 105 3725 2077 478
U (elastic foundation) = —ka—2 / <z4 _ = + L _ox 4 X dz
0

271 3l 972 913

i.e. U (elastic foundation) = 0.0017ka%l.
Now substituting for d?v/dz? and dv/dz in Eq. (8.48) and adding U (elastic founda-
tion) gives

EI (! 44> 10z  33z2 4072 167*
vy =E ﬁ(l——z z 4 F4

) dz 4 0.0017ka3!

2 Jo I CTtTE T TR
Per ['a3 [ , 202 1074 80Z2° 6478
== 2475 — - d
2 Jo B\ T T e T R i)

Eq. (viii) simplifies to

0.4E1

0.01943P
U+V = =5=a +0.001Tka] — TR

l

From the principle of the stationary value of the total potential energy

AU +V) 08EI 0.038a, P,
w+V) _ ay + 0.0034kay] — —— 027 CR
day &)
whence
21.05E1
Per = =5 +0.09k
S$.8.14

The purely flexural instability load is given by Eq. (8.7) in which, from Table 8.1
le =0.5] where [ is the actual column length. Also it is clear that the least second moment
of area of the column cross-section occurs about an axis coincident with the web. Thus
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Then
b _ TE
R=050?
ie.
b 4’ Eth? i
- - i
CR 3
The purely torsional buckling load is given by the last of Eqs (8.77), i.e.
» Al N m?ET i)
= — ii
CR(9) I 2
In Eq. (i1)) A = 5bt and
Ih=L+1,=2 2tbb2 + b + d
= = X e —_— —_
0= Ty 4771273
ie.
P 171
T2
Also, from Eq. (18.11)
3 3
st 1 17bt
J=Y T = _(2b88 +br’) =
3 3( + bt”) 3
and, referring to S.27.4
1’
= —
12
Then, from Eq. (ii)
b 20 (126 N n2Etb* (i)
= iii
RO = 17
Now equating Egs (i) and (iii)
47Eth® 20 5 TPEh?
— = —[17Gr’ +
312 17b
from which
2 2 Eb*
255Gt?

From Eq. (1.50), E/G =2(1 + v). Hence

l_2nb2 1+v

t 255
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Egs (i) and (iii) may be written, respectively, as

1.33C
Pcr = 2

and

1.175C,
Pcripy = C2 + 2

where C| and C; are constants. Thus, if / were less than the value found, the increase
in the last term in the expression for Pcgr(g) would be less than the increase in the value
of Pcr, i.e. Pcr(p) < Pcr for a decrease in / and the column would fail in torsion.

5.8.15

In this case Eqs (8.77) do not apply since the ends of the column are not free to warp.
From Eq. (8.70) and since, for the cross-section of the column, x; =y; =0,

EFd49 + | [ P GJ d%6 0 @)
eV - - i
dz* O dz2

For buckling, P = PcR, the critical load and Pcr/A = ocr, the critical stress. Eq. (i)
may then be written

d*o _,d* 0 (i)
i - = ii
dz* dz?
in which
I - GJ
22 (loocr ) (i)
ET
The solution of Eq. (ii) is
0 =Acosiz+ Bsiniz+ Dz + F (iv)

The boundary conditions are:

6=0atz=0and z =2I

do
= Oatz=0and z =2[ (see Eq.(18.19))
z

Then B=D =0, F = —A and Eq. (iv) becomes
0 =A(cosiz —1) (v)
Since 8 =0 when z =2/
cosA2l =1

or

A2l =2nm
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Hence, forn=1

i.e. from Eq. (iii)

Ipocr — GJ _ 2

ET 2
so that
1 GJ 4+ n2ET i)
OCR = — —_— vi
CR Io B

For the cross-section of Fig. P.8.15

3

J= Z% (see Eq. (18.11))

1.e.
8ht3  8x25.0x253
J=220 2 XX 10417 mm?
3 3
and
or .~ (2b)3tsin? 60° .
L = 4bt(bcos 30°)” + ZT (see Section 16.4.5)
i.e.
L = 463t = 4 x 25.0° x 2.5 = 156 250.0 mm*
Similarly
Lo (P ot ) + ,(2b)tcos® 60° _ 14b°t
P12 12 T3
so that
Ly = 14 x 25.0* x 2.5/3 = 182291.7 mm*
Then

Io = Ly + Iy = 338 541.7 mm*

The torsion-bending constant, I, is found by the method described in Section 27.2 and
is given by

= bt =25.0° x 2.5 = 24.4 x 10 mm*

Substituting these values in Eq. (vi) gives

ocr = 282.0N/mm?
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5.8.16

The three possible buckling modes of the column are given by Eqgs (8.77) i.e.

2

n El .

Pery = =7 = @
2

Periu = neElyy (i)

oY) 12
A w?ET
PCR(Q) = E GJ + 2 (111)

From Fig. P.8.16 and taking the x axis parallel to the flanges

A = (2 x 20 +40) x 1.5 = 120 mm?>
L =2 x 20 x 1.5 x 20> + 1.5 x 40°/12 = 3.2 x 10* mm*
Ly = 1.5 x 403/12 = 0.8 x 10* mm*

Io = Ly + Ly = 4.0 x 10* mm*

J = (20 + 40 +20) x 1.5°/3 = 90.0mm* (see Eq. (18.11))

o L5 X207 x 407 (2 x 40 +20
B 12 40 +2 x 20

=2.0 x 10° mm® (see Eq. (ii) of Example 27.1)

Substituting the appropriate values in Eqs (i), (ii) and (iii) gives

Pcrox) =22107.9N
Pcryy) = 5527.0N
Pcrp) = 10895.2N

Thus the column will buckle in bending about the y axis at a load of 5527.0 N.

$.8.17

The separate modes of buckling are obtained from Eqs (8.77), i.e.

2
wcEl .
PcRr(xx) = Pcriy) = T(lx = Iy, =1, say) )

and

A 72ET ..
Pcrep)y = — | GJ + (i1)
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In this case
Ly = Ly = 7t = 7w x 40° x 2.0 = 4.02 x 10° mm*
A = 27rt = 27 % 40 x 2.0 = 502.7 mm?
J =2nr’ /3 =27 x 40 x 2.0°/3 = 670.2 mm*
From Eq. (8.68)
Io =1y + 1y + Axf (note that yg = 0)

in which x; is the distance of the shear centre of the section from its vertical diameter;
it may be shown that x; = 80 mm (see S.17.3). Then

Ip =2 x 4.02 x 10° +502.7 x 80> = 4.02 x 10° mm*

The torsion-bending constant I" is found in a similar manner to that for the section
shown in Fig. P.27.3 and is given by

2
I'= 7Tr5l <§T[2 —4)

i.e.
2
=7 x40 x2.0 (gnz — 4) = 1.66 x 10° mm°®
72 x 70000 x 4.02 x 10°

P = Perivy) = =3.09 x 10°N

(a) CR(xx) CR(yy) 3.0 x 105 X
502.7 72 x 70000 x 1.66 x 10°
b P ———" (22000 x 670.2
®) RO = 2702 % 106 ( % + (3.0 x 103)2 >
=178 x 10*N

The flexural—torsional buckling load is obtained by expanding Eq. (8.79). Thus
(P — Pcreen)(P — Pcrio)lo/A — P*x; = 0
from which
P>(1 — Ax2/Iy) — P(Pcrew) + Pcr@@)) + PcrooPcr(@) = 0 (iii)

Substituting the appropriate values in Eq. (iii) gives

P? —24.39 x 10*P +27.54 x 108 =0 (iv)
The solutions of Eq. (iv) are

P=119x 10*N or 2321x 10°N

Therefore, the least flexural—torsional buckling load is 1.19 x 10*N.
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Solutions to Chapter 9 Problems

S.9.1

Assuming that the elastic deflection, w, of the plate is of the same form as the initial
curvature, then

X Ty
w = Asin — sin —
a a

Hence, from Eq. (7.36) in whichm =n=1, a=>b and N, = ot
dot X Ty

= m sin 7 sin 7 (1)

The deflection, wc, at the centre of the plate where x =a/2,y =a/2 is, from Eq. (i)

dot

(472D/a?) — ot (i)

we =

When ot — 47*D/a,w — oo and ot — Ny.cr, the buckling load of the plate. Eq. (ii)
may then be written

Sot (So't/Nx,CR
we = =
¢ Nycr — ot 1 —ot/Nicr
from which
wc
we = Ny, CR_t ) (ii1)

Therefore, from Eq. (iii), a graph of wc against wc /ot will be a straight line of slope
Ny.cr and intercept 8, i.e. a Southwell plot.

S$.9.2

The total potential energy of the plate is given by Eq. (9.1), i.e.
Pw | Pw ? PwPw  (Pw\
U—I—V- 201 -V —S——| —
2 8y2 ox2 9y? ox dy
ow 2 .
— Ny <—) }dxdy @
ox

w = aj1 Sin T sin > (i1)

in which

and

N, = ot
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From Eq. (ii)

ow mi MITX ., 5 Y

— = aj;— cos — sin“ —

0. l l b
Fw m’rw? | mmx | ,my
— = —ay sin —— sin
ox2 2 [ b
9w 272 . mux 2wy
— = daj]—5 sin cos ——
dy? b? [ b
92w mm? mmx . 2wy

=a cos sin ——
oy U Tpl I b

Substituting these expressions in Eq. (i) and integrating gives

U+V == Mmoo m L
+ DTN\ Ter T T 321

D , 4<3m4b m3 l> 3ata%1m2n2b
2

The total potential energy of the plate has a stationary value in the neutral equilibrium
of its buckled state, i.e. when o = ocgr. Thus

oU +V) — Da 1n4<3m4b m? [ ) B 3ocrtaym*mn®b _0

a1 168 "o T 161

whence

(iii)

16l7%D <3m4b m> l)
OCR =

3 \ 168 2 T b3
When [ =2b, Eq. (iii) gives

(iv)

3272D <3m2 1 2 )
OCR =

32 \18s T2 a2

ocr will be a minimum when docr/dm =0, i.e. when

6m 4 .

128 md
or

4
b — x 128
6
from which
m = 3.04

ie.
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Substituting this value of m in Eq. (iv)

71.9D
g, = —
CR e
whence
6E t\?
OcR= —+-| —
R=a=-\»
S.9.3

(a) The length, I, of the panel is appreciably greater than the dimension b so that failure
will occur due to buckling rather than yielding. The modes of buckling will then be
those described in Section 9.5.

(1) Buckling as a column of length |
Consider a stiffener and an associated portion of sheet as shown in Fig. S.9.3. The
critical stress, ocr, is given by Eq. (8.8), i.e.

72E

UL o

OCR

Centroid of
combined section —< &

Fig. 5.9.3

In Eq. (i) r is the radius of gyration of the combined section. Thus, r = /I /A, where
A and I, are the cross-sectional area and the second moment of area of the combined
section respectively. From Fig. S.9.3

A = bt +t,2d + ¢) = bt + Aq (ii)
Also

(bt + Ag)y = Agys
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so that
s _ Agys
YT it A
Then
I, = bi(3)? + 2dt (C)2+ tsC” + A — y5)?
x = y S 2 12 s — Vs
or
o c? ¢ 3 5
L= biG) + 15 (4 +2) + AG =) (i)

The radius of gyration follows from Eqs (ii) and (iii) and hence the critical stress from
Eq. (i).

(2) Buckling of the sheet between stiffeners
The sheet may buckle as a long plate of length, /, and width, b, which is simply supported
on all four edges. The buckling stress is then given by Eq. (9.7), i.e.

nkan £\ (iv)
=—— " (- i
R0 -2 \b v

Since / is very much greater than b, k is equal to 4 (from Fig. 9.2). Therefore, assuming
that buckling takes place in the elastic range (n = 1), Eq. (iv) becomes

_ AT’E t 2
TR T 0 - (b) v

(3) Buckling of stiffener flange
The stiffener flange may buckle as a long plate simply supported on three edges with
one edge free. In this case k = 0.43 (see Fig. 9.3(a)) and, assuming elastic buckling (i.e.

n=1)
0.4372E [ 1\ ,
OCR = ———>~ (vi)

T 120 -2 \d,

(b) A suitable test would be a panel buckling test.

5.9.4

(a) Consider, initially, the buckling of the panel as a pin-ended column. For a section
comprising a width of sheet and associated stiffener as shown in Fig. S.9.4,

A =120 x 3 + 30 x 3.5 = 465 mm?

Then
465y =30 x3.5x 154+ 120 x 3 x 1.5
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| 120 mm |
| | |
! Vo
3mm - 30 mm
3.5 m?H
Fig. S.9.4
ie.
y =4.5mm
Then
120 x 3% 35x45 35x255°
I, = 120 x 3 x 4.57
x e A
ie.
I, = 27011 mm*
Hence
27011
=, —— =7.62mm
465
From Eq. (8.8)
72 x 70000
OCR = ————
R = (500/7.62)2

i.e.
ocr = 160.5N/mm?
From Section 9.5 the equivalent skin thickness is

_ 30x35
t=——+3=3.875mm
120

Overall buckling of the panel will occur when
Nycr = ocrt = 160.5 x 3.875 = 621.9N/mm

Buckling of the sheet will occur when, from Eq. (9.6)

£\ 3 \?
ocr = 3.62E( - ) =3.62 x 70000 —
b 120
i.e.

ocr = 158.4N/mm?>
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Hence
Nycr = 158.4 x 3.875 = 613.8 N/mm (i1)

Buckling of the stiffener will occur when, from Eq. (9.6)
03852(L) =0.385 x 70000( 22
ocr = 0. -] =0. X —
R b 30

ie.
ocr = 366.8 N/mm?
whence
Ny cr = 366.8 x 3.875 = 1421.4N/mm (iii)
By comparison of Egs (i), (ii) and (iii) the onset of buckling will occur when

Nycr = 613.8N/mm

(b) Since the stress in the sheet increases parabolically after reaching its critical value
then

o = CN? (iv)
where C is some constant. From Eq. (iv)
ocr = CN}cr )

so that, combining Eqgs (iv) and (v)

o N. 2
2 (%)
OCR Ny cr

Suppose that o = o, the failure stress, i.e. op =300 N/mm?. Then, from Eq. (vi)
OF
Nx,F = _Nx,CR
OCR

300
158.4

or

Ny = x 613.8

i.e.

Nyr = 844 7TN/mm
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S.9.5

The beam may be regarded as two cantilevers each of length 1.2 m, built-in at the mid-
span section and carrying loads at their free ends of 5 kN. The analysis of a complete
tension field beam in Section 9.7.1 therefore applies directly. From Eq. (9.29)

4 1+ 1.5x350/2 %300

tan* o = —0.7192
A = T 5 % 300,280

hence
o =42.6°
From Eq. (9.19)

_5X1~2X103+ 5
T 7350 2tan 42.6°

i.e.
Fr =19.9kN
From Eq. (9.23)

P 5 x 300 tan 42.6°
n 350

i.e.

P =39kN

5.9.6

(i) The shear stress buckling coefficient for the web is given as K = 7.70[1 + 0.75(b/d)?].
Thus Eq. (9.33) may be rewritten as

£\ h\?2 £\

—ke(Z) =770|14075(2) |E(Z
R <b> 01 1+0 5<d> (b)
77014075 (20 ’ 70000 ( — ’

T = /. . —_— X —_—

CR 725 250

Ter = 9.3972 ()

Hence

1.€.

The actual shear stress in the web, , is

100000 133.3
7500 ¢

(ii)
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Two conditions occur, firstly
T < 165N/mm?
so that, from Eq. (ii) # = 0.81 mm and secondly
T < 1517cRr
so that, from Eqs (i) and (ii)

133.
15 x 9.39¢2 = ?

whence
t = 0.98 mm
Therefore, from the range of standard thicknesses
t =1.2mm
(ii) For t = 1.2 mm, tcR is obtained from Eq. (i) and is
Tcr = 13.5N/mm?
and, from Eq. (ii), t=111.1 N/mmz. Thus, 7/tcr =8.23 and, from the table, the

diagonal tension factor, k, is equal to 0.41.
The stiffener end load follows from Eq. (9.35) and is

Agkttan o
Os = 05As =
(Ag/th) +0.5(1 — k)
i.e.
Ag x 0.41 x 111.1tan40° 13044

Os

T (As/1.2x 250) +0.5(1 — 0.41) _ 1+ 0.0113A,

The maximum secondary bending moment in the flanges is obtained from Eq. (9.25)
multiplied by &, thus

kWb? tan o

maximum secondary bending moment = 2d

ie.

0.41 x 100000 x 250% x tan 40°
12 x 750
= 238910 N/mm

maximum secondary bending moment =
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S.9.7

Stringer local instability:
The buckling stress will be less for the 31.8 mm side than for the 19.0 mm side. Then,

from Eq. (9.6)
. 0.9 \?
ocR =KE| -] =3.62 x 69000 —
b 31.8

i.e.

ocr = 200.1 N/mm?

\2
KE(—) =200.1
b

Skin buckling:
Referring to Fig. P.9.7(a)

Then
y2 _ 3:62 X 69000 x 1.62
200.1
ie.
b =56.5mm

Panel strut instability:
Consider stringer and skin as a strut. Add to stringer a length of skin equal to the
lesser of 30z or b.

b=565mm, 30f=30x1.6=48.0mm
The section is then as shown in Fig. S.9.7

19.0 mm

0.9 mm

9.5 mm =1 _x
_ ! ’

TLSmm

31.8 mm

48.0 mm

Fig. 5.9.7
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Taking moments of areas about the skin

[(19.042x31.84+2x%x9.5)x094+48 x 1.6]y =19 x 0.9 x 31.8
+2x31.8x09 x15.9

from which y = 8.6 mm.
Then

0.9 x 31.83
12

+2x95x09x86>+48 x 1.6 x 8.6°

Ly = 19.0 x 0.9 x 23.2%2 +2 < +0.9 x 31.8 x 7.32)

i.e.
L = 24022.7 mm*
From Egq. (8.5)
72 x 69000 x 24022.7

168.212
Therefore
2 7% x 69000 x 24022.7
- 168.2 x 200.1
i.e.
L = 697 mm
say
L =700 mm

Solutions to Chapter 10 Problems
S.10.1

Referring to Fig. S.10.1(a), with unit load at D (1), Rc = 2. Then
My =1z (0<z<]
My =1z—Rc(z—1)=2l—z (I<z<2])
M =-1z-2) Ql<z<3])
M,=0 (0=<z=2])
M, =1(z-20) 2QI<z<3])
Hence, from the first of Eqs (5.21)
21 31

Sy = — ZM2d+1 M2d+1 M:d
WSE o VS T m ), YT RS,
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Fig. S.10.1(a)

Substituting for M| from the above

1 ! 21 31
S11 = — _/ 2 dz + 2l —z)*dz + (z -2 dz
EI[Jo i 21

which gives

&
S = z
Also
1 3
80 = i )y (z —20)*dz
from which
B
8 = 3L
and
1 3
b= =4 G —20)*dz
i.e.
B
812 =821 = 3
From Eqgs (10.5) the equations of motion are
mv1811 + 2mvad1p +v1 =0 (1)
mv1821 + 2miv2éan +vp =0 (i)

Assuming simple harmonic motion, i.e. v = vg sin w¢ and substituting for 1, §12 and
822, Eqs (i) and (ii) become

—3)»0)21)1 + 2)»(1)21)2 +v1 =0

)\a)zvl — 2}»0)21)2 +uv, =0
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in which A = mI3/3EI or, rearranging
(1 = 3r0®)v; + 220V =0
r0?v) 4+ (1 = 220%) vy = 0

(iii)
(iv)

From Eq. (10.7) and Eqgs (iii) and (iv)

(1 —3r0?) 2hw?
2 YN 0
Aw (1 —2Aw°)

from which
(1 = 3r0?)(1 — 20%) — 2(00*)* =0
or
40 =500 +1=0
i.e.
(4ro” — H(ro® = 1) =0 v)
Hence
rw? = % or 1
so that
P o 2=
dmi3 mil3
Hence

| 3EI |3EI

w1 = — W = —_—

! dmiB ? mi3
The frequencies of vibration are then

w1 [3E f_l 3E]
~ 22V amB 7?7 22\ i

= o
From Eq. (iii)
V] 20w? (vi)
—_—=— vi
vy 1 —3rw?

When o = w1, v1/vs is negative and when w = w», v1/v> is positive. The modes of

vibration are therefore as shown in Fig. S.10.1(b) and (c).
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Fig. S.10.1(b) and (c)

$.10.2

Referring to Fig. S.10.2

4

El

1 3El 2 El 3

AL ° A
—>» Z
I I
1
Fig. 5.10.2

M2=—%Z O=<z=<D
My=—3Q2l—z2) (<z<2l)
M>, =0 O=<x=<)
My = 1x O=<x=<)
My = %Z O=<z=<)

My=-3Ql—2) (<z<2]

Then from the first of Eqs (5.21)

— d
4 T, 5 ¢

80 = —

1.2 21 2
| 20—
/ a4 @l-a
3 J,

which gives
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Also
1 l 1 l Z2 1 21 (2l — Z)Z
Sgq = — 2dx 4+ — —d — —d
4 EI/OX t3m )y T m ), 5 -
from which
Sus — 43
“ = 9E1
and
1.2 21 2
Z 1 2l -2
==y 7%t e 5 C
Thus
13
Oar = 0oy = ——
42 24 13E]
From Eqgs (10.5) the equations of motion are
mvgdaq + 2mivoday +v4 =0 @)
mU484 + 2mvndyy +v2 =0 (ii)

Assuming simple harmonic motion, i.e. v = vy sin wt and substituting for d44, 847 and
822, Eqs (i) and (ii) become
—8rw?vg — 2X?vy +v4 = 0 (iii)
—Aw2v4 — 4rw? vy +uvy=0 @iv)
in which A = m/3/18EI. Then, from Eq. (10.7)

- sxg)z) —2,\0)22 _0
—Aw (1 —4rw?)
which gives
(1 = 820°)(1 — 4rw?) — 2(Aw?)? =0

i.e.

30(ha?)? — 1200” +1=0 )
Solving Eq. (v)

rw? =0.118 or Aw® =0.282

Hence

5 18EI 3 18EI
o =0.118 x —— or w* =0.282x —
mi3 mi3

Then, since f = w/27, the natural frequencies of vibration are

. | [213EI P 5.08E]
YoV e 2T 2N B
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$.10.3
The second moment of area, I, of the tube cross-section is given by
T4 4
I=—D"—-d
64 ( )
in which D and d are the outer and inner diameters respectively. Now,

D=254+125=2625mm d=25-1.25=23.75mm

Thus
I= %(26.254 —23.75%) = 7689.1 mm*

The polar second moment of area, J, for a circular section is 2/, i.e. J = 15378.2 mm?.
From Eqgs (5.21)

S = iy ds + —i j ds (1)
g
c (1,2

A ﬁ}

Fig. 5.10.3(a)
Then, referring to Fig. S.10.3(a)

Mi=1ly (O=y=a)
My =1z (0=z=2a)

T = O=<y=<a
T)=1la (0<z<2a)
M, = O=<y=<a

Ih=1 (0<z<2a)

Thus, from Eq. (i)

a (2 2a 2 2a 2

y z a
sn=[ Ld 4 L
=) B y+/0 El Z+/0 GJ°
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which gives

2 3 2
511 = a + =)= 50° +
EI GJ 70000 x 7689.1 28000 x 15378.2

i.e.
811 =0.16
Also
12
8 = /— y+/0 adz
ie.

12 1 2
520 = =) =2
2 ”( * GJ) 50 (70000 % 76891 28000 x 15 378.2)
which gives

8 = 1.63 x 1070

8120 = 8y = - —d
12 21 = / y+/0 GJ Z

Finally

so that

b = b =’ (% + E) = 250° (2 x 70003 X 76891 28000 ><215 378.2)
Thus
812 =380 =348 x 1074
The equations of motion are then, from Eqgs (10.5)
misy + mr*08;, +v =0 (ii)
mvsay + mr68yy +60 =0 (iii)

Assuming simple harmonic motion, i.e. v = vg sin wt and 6 = 6 sin wt, Eqs (i) and (ii)
may be written

—m311a)2v — mr2512a)29 +v=0
—m821a)2v — mr2822w29 +0=0
Substituting for m, r and &1, etc.

—20 x 0.16w°v — 20 x 62.5% x 3.48 x 10~ *w?0 +v =0
—20 x 3.48 x 10%w?v — 20 x 62.52 x 1.63 x 10 %00 +6 =0
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which simplify to
v(l —3.20%) —27.20°0 =0 (iv)
—0.0070*v 4+ 6(1 — 0.1270*) =0 )
Hence, from Eqgs (10.7)
(1-320%)  —27.207

—0.0070> (1 —0.1270%)| ~ 0

which gives
(1 —3.20°)(1 — 0.127w?) — 0.190* = 0

or

ot —15.40° +4.63 =0 (vi)
Solving Eq. (vi) gives
w?*=15.1 or 0.1

Hence the natural frequencies are
f=0.62Hz and 0.09Hz

From Eq. (iv)

v 27 2w?

6 1—3202

Thus, when w? = 15.1, v/6 is negative and when w? = 0.31, v/@ is positive. The modes
of vibration are then as shown in Figs S.10.3(b) and (c).

2_
o? = 15.1 s

(b) (©)
Fig. S.10.3(b) and (c)
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$.10.4

Choosing the origin for z at the free end of the tube

M=z, S1=1 and T =0
M=z, S)=1 and Tr=2a

in which the point 1 is at the axis of the tube and point 2 at the free end of the rigid bar.
From Eqgs (5.21) and (20.19)

L L L
Ml'Mj / T;T; / % qiqj .
8 = d —d —ds|d
ij | E zZ+  GJ Z+ A Gt s)dz )

in which ¢g; and g; are obtained from Eq. (17.15) in which S,; =S, j=1, Sy =0 and
I, =0. Thus

N

1
9i=dqj=—7" tyds + ¢s0
xx JO

‘Cutting’ the tube at its lowest point in its vertical plane of symmetry gives g;0=0.
Then, referring to Fig. S.10.4

Fig. 5.10.4
1 0
qi =qj = —/ ta cos Ba do
Ixx 0
i.e.
a*tsin 0
q9i =4qj = 7
XX

From Fig. 16.33, I, = ma’t. Hence ¢; = gj = sinf/ma and

T oinl
iqi 0 1
U [T
Gt o Gnlad’t Grat
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Also in Eq. (i) the torsion constant J is obtained from Eq. (18.4), i.e.

447 A(ma®)?

J = = = 2na’t
$ds/t  2malt

Therefore from Eq. (i)

5 /Lzzd +/L | B2 L (ii)
= —dz = — 11
1 o EI ¢ o Grmat ¢ 3El  Gmat
Putting A = 3Ea®/GL?, Eq. (ii) becomes
3

811 = L (I+21)
U= 3k

5 [LZZd +/L 4612 q +/L 1 q
2=, BTy Gamad T )y Grar -

L3
822 = —(1+32)

Also

which gives

3EI
Finally
S12 =8 —/Lzzd+/L L g
12—21—0EIZ oGnatZ
1.e.

3

L
S1p =581 =—(0+Ax
12 = 81 3EI( +A)

From Eqgs (10.5) the equations of motion are

mv1811 + mvadio + vy =0 (ii1)

mv1821 + mvadyy +vp =0 @iv)
Assuming simple harmonic motion, i.e. v = vg sin wt, Egs (iii) and (iv) become
2 2 _
—méjiw-vy —méppwvy +vy =0
—m521w2v1 — m822w2v2 +vy; =0
Substituting for 811, 872 and §12 and writing u = L3 /3EI gives

vi[l = me? (1 4+ 2)] — ma*u(l + Avy =0
—ma? (1 4+ My + v2[1 — me’u(1 +31)] =0
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Hence, from Eqs (10.7)

[1 — ma?u(l + )] —ma? (1 + 1) —0
—me*u(l+21) [l —mo?u(l +30]
Then

[1 — mo?u(l + M1 — mo* 1l +31)] — m*o* 1?1+ 1> =0

which simplifies to

1
— — —2mp(1 4+ 20) + 2m* (1 + 1) = 0
w

w
Solving gives
1 24172
_mu(l 4+ 20) £ mu(l + 21 4+ 2A4°)
w?
i.e.
1 ’ 24172
— 14+20 £ +21 421
= = g1+ 2h (1 20 +220) /%)
$.10.5

Choosing the origin for z at the free end of the beam
My=z S =1

Also, from Eqgs (5.21) and Eq. (20.19)

MM, Lt aig;
8ij = ! dz ! ds ) dz i
7 /o EI +/ <7§ Gi ) »
in which g; and ¢; are obtained from Eq. (20.11) and in which §,; =5, ; =1, Sy =0,
I,y =0 and tp =0. Thus

qgi = qj = __ZBryr + 45,0

xx r=1
where I, is given by (see Fig. S.10.5)
L =2 x 970 x 100% + 2 x 970 x 150% = 6.305 x 10’ mm*

Thus

1 n
i =4b.j = =305 % 107 ZBryr
r=1
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Fig. 5.10.5

Hence, cutting the tube at O,

qv,01 =0
970 x 100
=———— = _0.00I5N
.12 = 76305 x 107 /mm
0.0015 — 270150 h038 Ny
= —VU. _— = = —U. mm
.23 6.305 x 107
Then, from Eq. (17.27)
B 2 0.0015 x 600 0.0038 x 150
90 = 75100/1.0 + 600/1.25 + 150/1.0) 1.25 1.0
1.€.
gs0 = 0.0018 N/mm
Therefore
4i,01 = ¢j,01 = 0.0018 N/mm
qi12 = gj12 = —0.0015 4+ 0.0018 = 0.0003 N/mm
qi23 = gj23 = —0.0038 + 0.0018 = —0.002 N/mm
Then
94 2 0.00182 x 100 N 0.00032 x 600 N 0.002% x 150
99 45 —
Gt 26500 1.0 1.25 1.0
=73x%x1078
Hence

1525 2 1525 o
811 = —d 73 x107°d
11 /0 El z+/(; X Z
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i.e.

15253

= +73x 1078 x 1525 =3.79 x 1074
3 x 70000 x 6.305 x 107

811

For flexural vibrations in a vertical plane the equation of motion is, from Eqs (10.5)
mv1811 +vy =0
Assuming simple harmonic motion, i.e. v=vp sin wt Eq. (ii) becomes

—m511a)2v1 +v1 =0

ie.
1 9.81 x 103
2
© T s 4450 x 3.79 x 104

Hence

w 1

f=—=—+/5816.6=12.1Hz

2n 27w
S.10.6
Assume a deflected shape given by

2
V = cos ? —1 )

where z is measured from the left-hand end of the beam. Eq. (i) satisfies the boundary
conditions of V=0atz=0and z=/and also dV/dz=0at z =0 and z = [. From Eq. (i)

dV_ 2 . 2nz

a0t
and
v 47’ 2nz
@2 T
Substituting these expressions in Eq. (10.22)
2

I74 47?2 2 5 272 I 472 5 27z
2 4E] —5 ) cos” | — dz + EI —5 ] cos”| — dz
0 I 1 1/4 I l
74 2nz - \* 72 2tz \? 1 S B
2 2m|cos — — 1) dz+ mlcos— — 1) dz|+2=ml(—1)* + -ml(2)
0 l 1/4 1 2 4

w?
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which simplifies to
A2 2 1/4 o) 12 o)
EI (%) / 4 cos? (ﬁ) ds + / cos? (E) dz
- [ 0 [ 1/4 I
1/4 2 2 12 2 2
m / 2<cos£—1) dz+/ (cos£—1> dz+1
0 l 1/4 !

(ii)

Now

47 L /)y 8
/1/2 , 272 1 ( ! 4nz)l/2 !
cos“ —dz=—-(z+ —sin — —

174 2z 2 7411 4rz 21z
cos— — 1) dz = —(14+cos— ) —2cos— +1|dz
0 [ 0 2 l l
L L -2 W .2 2 3
== —sin — | — —sin — == ——
AN ‘v 78 %

Similarly

Substituting these values in Eq. (ii)

E,(ﬁ)z(ﬂ+£)

5 2 8 ' 8

:m[Z(ﬁ—i)-}-g-f-i-f-l]
8 T 8 T

ie.
2 EI
o°=5392—
ml4
Then
w EI
=—=37/—
f 2 ml*
The accuracy of the solution may be improved by assuming a series for the deflected
shape, i.e.

V@)=Y BVi(x) (Eq.(10.23)
s=1
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Solutions to Chapter 11 Problems

S.11.2

From Eq. (1.40) Young’s modulus E is equal to the slope of the stress—strain curve.
Then, since stress = load/area and strain = extension/original length.

E =slope of the load—extension curve multiplied by (original length/area of
cross-section).

From the results given the slope of the load—extension curve ~402.6 kN/mm. Then

_402.6 x 10° x 250

T x 252
4

The modulus of rigidity is given by

~ 205000 N/mm?

TL
G=—
0J

Therefore, the slope of the torque-angle of twist (in radians) graph multiplied by (L/J)
is equal to G. From the results given the slope of the torque-angle of twist graph
is ~212.38 kNm/rad. Therefore

1238 x 10° x 250

7 x 254
32

Having obtained £ and G the value of Poisson’s ratio may be found from Section

1.15, i.e.
E
V= (—)—1:0.27
2G

Finally, the bulk modulus K may be found using Eq. (1.54)

~ 80700 N/mm?

K~—— ~ 148500 N/mm>.
3(1 — 2v)

S.11.3

Suppose that the actual area of cross-section of the material is A and that the original
area of cross-section is A,. Then, since the volume of the material does not change
during plastic deformation

AL = AyL,
where L and L, are the actual and original lengths of the material, respectively. The
strain in the material is given by

L—L, A,

& L 2 @)
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from the above. Suppose that the material is subjected to an applied load P. The actual
stress is then given by o = P/A while the nominal stress is given by opom = P/Ao.
Therefore, substituting in Eq. (i) for A/A,

&= —1
Onom
Then
onom(l + &) =0 = Cé&"
or
ce" .
Tnom = 77— (i1)

Differentiating Eq. (ii) with respect to € and equating to zero gives

dogom _ nC(1 +e)e" ! — Ce"

= =0
de (1+¢)?
i.e.
n(l+ee ' —e"=0
Rearranging gives
n
&£ = .
(1—n)
S.11.4
Substituting in Eq. (11.1) from Table P.11.4
10* N 10° N 10° N 107 039 < 1
- 4+ =0.39 <
5x10% 106 24 x 107 12 x 107

Therefore, fatigue failure is not probable.

Solutions to Chapter 12 Problems
S.12.3

From Example 12.1 and noting that there are two rivets/pitch in double shear

2

3
(b—3)x 2.5 x 465 =2 x 2 x 222 370

from which

b= 12mm
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From Eq. (12.5)

12 -3
x 100 = 75%

S.12.4

The loading is equivalent to a shear load of 15 kN acting through the centroid of the
rivet group together with a clockwise moment of 15 x 50 =750 kN mm.

The vertical shear load on each rivet is 15/9 =1.67kN.

From Example 12.2 the maximum shear load due to the moment will occur at rivets
3 and 9. Also

r (rivets 1, 3,7, 9) = (252 + 25%)!/2 = 35.4mm
r (rivets 2, 4, 6, 8) = 25 mm

r (rivet 5) =0
Then
Zﬂ =4 x 35.4% + 4 x 25% = 7500

From Eq. (12.6)
750

~ 7500

Therefore, the total maximum shear force on rivets 3 and 9 is given by (see
Example 12.2)

x 35.4 = 3.54kN

max

Smax (total) = (1.67% + 3.54% + 2 x 1.67 x 3.54 cos 45°)!/2

i.e.
Smax (total) = 4.4kN
Then
4.4 x 103
350 = ———-
nd? /4
which gives
d =4.0mm
The plate thickness is given by
4.4 x 103
—F— =600
td

from which

t =1.83mm
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Solutions to Chapter 14 Problems
S.14.1

Suppose that the mass of the aircraft is m and its vertical deceleration is a. Then referring
to Fig. S.14.1(a) and resolving forces in a vertical direction

ma+ 135 -2 x200=0

N
ma M
Y s
| 2.25kN
135kN
T T J 200 kN
200 kN 200 kN 150 mm |‘*
(a) (b)
Fig. S.14.1(a) and (b)
which gives
ma = 265kN
Therefore
265 265
T m 1353
ie.
a=19g¢g

Now consider the undercarriage shown in Fig. S.14.1(b) and suppose that its mass is
my.c. Then resolving forces vertically

N+ myca+225-200=0 1)
in which
my.ca = zgg x 1.96 g = 4.41kN
Substituting in Eq. (i) gives
N =193.3kN

Now taking moments about the point of contact of the wheel and the ground

M+Nx015=0
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which gives
M = —29.0kNm (ie. clockwise)

The vertical distance, s, through which the aircraft moves before its vertical velocity
is zero, i.e. the shortening of the oleo strut, is obtained using elementary dynamics;
the compression of the tyre is neglected here but in practice could be significant. Thus,
assuming that the deceleration a remains constant

v = v% + 2as

in which vg =3.5m/s and v =0. Then
3 3.5
2(—1.96g) 2 x1.96 x 9.81
ie.
s=0.32m

Let the mass of the wing outboard of the section AA be my. Then, referring to
Fig. S.14.1(c) and resolving forces vertically the shear force, S, at the section AA is
given by

S—mya—66=0

Fig. S.14.1(c)
ie.
6.6
S——x19g—-66=0
8
which gives

S =19.5kN

Now taking moments about the section AA

My — mya x 3.05—6.6 x3.05=0
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or
6.6
My = — x 1.96g x 3.05 + 6.6 x 3.05
8
i.e.
My = 59.6kNm
S.14.2

From Example 14.2 the time taken for the vertical velocity of the aircraft to become
zero is 0.099 s. During this time the aircraft moves through a vertical distance, s, which,
from elementary dynamics, is given by

s = vot + %at2

where vgp =3.7m/s and a = —3.8 g (see Example 14.2). Then
s =3.7x0.099 — 1 x 3.8 x 9.81 x 0.099>
i.e.
s =0.184m

The angle of rotation, 61, during this time is given by

01 = wot + %atz
in which wy = 0 and o = 3.9 rad/s? (from Example 14.2). Then

61 = 1 x 3.9 x 0.099> = 0.019rad
The vertical distance, s1, moved by the nose wheel during this rotation is, from Fig. 14.5
s1 =0.019 x 5.0 =0.095m

Therefore the distance, s», of the nose wheel from the ground after the vertical velocity
at the CG of the aircraft has become zero is given by

sp = 1.0 —0.184 — 0.095
ie.
sp =0.721 m

It follows that the aircraft must rotate through a further angle 6, for the nose wheel to
hit the ground where
0721

6p = —— = 0.144rad
5.0

During the time taken for the vertical velocity of the aircraft to become zero the vertical
ground reactions at the main undercarriage will decrease from 1200 to 250kN and,
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assuming the same ratio, the horizontal ground reaction will decrease from 400 kN to
(250/1200) x 400 = 83.3 kN. Therefore, from Eqgs (ii) and (iii) of Example 14.2, the
angular acceleration of the aircraft when the vertical velocity of its CG becomes zero is

250 2
o] = —— x3.9=0.81rad/s
1200

Thus the angular velocity, w1, of the aircraft at the instant the nose wheel hits the ground
is given by
o = wf + 20162
where wg = 0.39rad/s (see Example 14.2). Then
w? =0.39 42 x 0.81 x 0.144

which gives
w1 = 0.62rad/s
The vertical velocity, vNnw, of the nose wheel is then
unw = 0.62 x 5.0
i.e.

UNW — 3.1m/s

S.14.3

With the usual notation the loads acting on the aircraft at the bottom of a symmetric
manoeuvre are shown in Fig. S.14.3.

e I

0 nw

<

0.915m 16.7m ‘

Fig. 5.14.3
Taking moments about the CG
0.915L — My = 16.7P (1)

and for vertical equilibrium

L+P=nW (ii)
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Further, the bending moment in the fuselage at the CG is given by
Mcg = nMyrgy FLT — 16.7P (iii)

Also
Mo = $pV2ScCy, = 1 x 1.223 x 27.5 x 3.05% x 0.0638V?
ie.
Mo = 9.98V? (iv)
From Eqgs (i) and (iii)
0.915(nW — P) — My = 16.7P
Substituting for My from Eq. (iv) and rearranging

P = 0.052nW — 0.567V? v)

In cruise conditions where, from Fig. P.14.3, n=1and V = 152.5m/s, P, from Eq. (v)
is given by

P =—-29943N
Then, from Eq. (iii)) when n=1
600000 = Mgy rLT + 16.7 x 2994.3
which gives
Migv rir = 549995 Nm
Now, from Egs (iii) and (v)
Mcg = 5499951 — 16.7(0.052nW — 0.567V?)
or

Mcg = 3797891 + 9.47V?> (vi)

From Eq. (vi) and Fig. P.14.3 it can be seen that the most critical cases are n=3.5,
V=152.5m/s and n=2.5, V =183 m/s. For the former Eq. (vi) gives

Mcg = 1549500 Nm

and for the latter
Mcg = 1266600 Nm

Therefore the maximum bending moment is 1549500Nm at n=3.5 and V=
152.5m/s.
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S.14.4

With the usual notation the loads acting on the aeroplane are shown in Fig. S.14.4; AP
is the additional tail load required to check the angular velocity in pitch. Then

AP x 12.2 =204000 x 0.25

P+ AP

Fig. 5.14.4

i.e.
AP =4180N
Now resolving perpendicularly to the flight path
L+(P+AP):VZ—‘:+WCOS4OO (1)
Then resolving parallel to the flight path
SW + Wsin40° =D (i1)
where f is the forward inertia coefficient, and taking moments about the CG

(P+ AP) x 12.2 = Mcc (iii)

Assume initially that

wv?
L = Wcos40° + —
gR

1.e.

L = 230000 cos 40° 4 238000 x 215%/(9.81 x 1525)
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which gives

L =917704N
Then
C—- L2 _ 917704 : 0367
1oV2S 1 x1.223 x (215)2 x 88.5
and
Mcg = 4pV?5(0.427Cy, — 0.061)
ie.
Mcg = § x 1.223 x 215% x 88.5(0.427 x 0.367 — 0.061)
from which

Mcg = 239425 Nm
Then, from Eq. (iii)

239425
P+ AP =
12.2

i.e.
P+ AP =19625N

Thus, a more accurate value for L is
L =917704 — 19625 = 898 079N

which then gives

a - - 8980792 0359
3 % 1.223 x 2152 x 88.5
Hence
Mcg = § x 1.223 x 215% x 88.5(0.427 x 0.359 — 0.061)

ie.

Mcg = 230880 Nm
and, from Eq. (iii)

P+ AP =18925N
Then

L =917704 — 18925 = 898 779N

so that
. 898 779

n= =3.78
238000
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At the tail
ol 230880 12.2

n=— = X —— = 1.41
g 204000 " 9.81

Thus the total n at the tail =3.78 + 1.41 =5.19.

Now
2
898779
Cp = 0.0075 + 0.045 x T T 0.0128
Q,OVZS
1.e.
Cp = 0.026
so that

D = 1pV25 x 0.026 = 65041 N
Thus, from Eq. (ii)
f=—-0.370

S.14.5

From Eq. (14.21) ¢, in Fig. 14.10, is given by

y2 1682
tangp=—=——-——
gR ~ 9.81 x 610

=4.72
so that
¢ =78.03°
From Eq. (14.20)
n=sec¢p =4.82
Thus, the lift generated in the turn is given by

L=nW =482 x 133500 = 643470N

Then
L 643470
CL =+ =5 =0.80
3pV2S 5 x 1.223 x 1682 x 46.5
Hence
Cp = 0.01 +0.05 x 0.80% = 0.042
and the drag

D=} x 1223 x 168> x 46.5 x 0.042 = 33707N
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The pitching moment M is given by
Mo = 3pV?SeCppo = —% x 1.223 x 168 x 46.5 x 3.0 x 0.03
i.e.
My = —72229 Nm (i.e nose down)
The wing incidence is given by

. 1
gt 080 18050
dCL/da 4.5 T

The loads acting on the aircraft are now as shown in Fig. S.14.5.

Fig. 5.14.5

Taking moments about the CG

L(0.915 cos 10.2° 4+ 0.45sin 10.2°) — D(0.45 cos 10.2° — 0.915sin 10.2°) — My
= P x 7.625co0s 10.2° (i)

Substituting the values of L, D and My in Eq. (i) gives

P =73160N

S.14.6

(a) The forces acting on the aircraft in the pull-out are shown in Fig. S.14.6. Resolving
forces perpendicularly to the flight path

wv?
L=——4Wcosf (1)
gR

The maximum allowable lift is 4.0W so that Eq. (i) becomes

V2
— =4 —cosf
gR
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Fig. 5.14.6

or

Vo ..
— =4 —cosb (i)
g

where @ (= V/R) is the angular velocity in pitch. In Eq. (ii) @ will be a maximum when
cos @ is a minimum, i.e. when 6 reaches its maximum allowable value (60°). Then,
from Eq. (ii)

35¢

w= %(4 —0.5)= =8 (iii)

From Eq. (iii)) w will be a maximum when V is a minimum which occurs when
Cr. = CLmax. Thus

10oV2SCLMAX = 4 x pVISCLMAX
whence
V=2V, =2x46.5=93.0m/s
Therefore, from Eq. (iii)

3.5 x9.81
Wmax = W =0.37 rad/s

(b) Referring to Fig. 14.10, Eq. (14.17) gives

wv?
nWsingp = ——
gR
ie.
Vv
4sin¢g = g @iv)
8

Also, from Eq. (14.20) sec ¢ =4 whence sin ¢ = 0.9375. Then Eq. (iv) becomes

8
=3.87=
® v )

177



178  Solutions Manual

Thus, w is a maximum when V is a minimum, i.e. when V =2V as in (a). Therefore

3.87 x 9.81
Wmax = m =0.41 rad/s

The maximum rate of yaw is wmax cOS ¢, i.€.

maximum rate of yaw = 0.103 rad/s

S.14.7

The forces acting on the airliner are shown in Fig. S.14.7 where «, is the wing incidence.
As a first approximation let L = W. Then

1 3¢
—,onSaw—a L — 1600000
o

2

Fig. 5.14.7
ie.
1600000 x 180
T TR 0116 % 6102 x 280 x 15 x 7

so that

oy = 10.1°
From vertical equilibrium

L+P=W (1)
and taking moments about the CG.

P x42.5¢c0810.1° = L x 7.5¢c0s 10.1° + M) (ii)

Substituting for L from Eq. (i) in Eq. (ii)
P x 42.5¢c0s10.1° = (1600000 — P)7.5cos 10.1°
+1 % 0.116 x 6107 x 280 x 22.8 x 0.01
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from which
P =267963N
Thus, from Eq. (i)
L =1332037N
giving
oy = 8.4°

Then, taking moments about the CG

P x 42.5c0s 8.4° = (1600000 — P)7.5cos 8.4° + %
x 0.116 x 610% x 280 x 22.8 x 0.01

which gives
P =267852N

This is sufficiently close to the previous value of tail load to make a second approxi-
mation unnecessary.
The change A« in wing incidence due to the gust is given by

18
Ao = — = 0.03rad
610

Thus the change AP in the tail load is

1 C
AP = ~pV2s7 T Ay
2 oo

1.e.
AP = % x 0.116 x 610 x 28 x 2.0 x 0.03=36257N

Also, neglecting downwash effects, the change AL in wing lift is

AL = Loy2g9Ct
= - — A«
2,0 oo

i.e.
AL = % x 0.116 x 610% x 280 x 1.5 x 0.03 = 271931 N

The resultant load factor, n, is then given by

36257 + 271931
1600000

n=1+

n=1.19
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S.14.8

As a first approximation let L = W. Then

1 dc
—pV2s—t o, = 145000
da

2
Thus
14
Oy = I 5000 =0.0158rad = 0.91°
3 x 1.223 x 2502 x 50 x 4.8
Also

Cp = 0.021 + 0.041 x 0.08*
i.e.
Cp = 0.0213
Referring to Fig. P.14.8 and taking moments about the CG and noting that cos 0.91° >~ 1
Lx05—-Dx04+My=P x8.S5
i.e.

1 1
0.5(145000 — P) — 0.4 x szZSCD + Epvzssz,o =8.5P

Thus
1 1
0.5(145000 — P) — 0.4 x 5% 1.223 x 250% x 50 x 0.0213 — 5
x 1.223 x 250% x 50 x 2.5 x 0.032 = 8
which gives
P=—10740N
Hence

L=W—P=145000+ 10740 = 155740N
The change AP in the tail load due to the gust is given by

1 oC
AP = —pV2iS7—=TL Ag
2 oo
in which
6
o =—— =—0.024rad
250
Thus

1
AP = —5 X 1.223 x 250% x 9.0 x 2.2 x 0.024 = —18 162N

Therefore the total tail load = —10740 — 18 162 =—-28 902 N.
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The increase in wing lift AL due to the gust is given by
1 aC 1

AL = —=pV2S—E A = -5 x1.223 x 250% x 50 x 4.8 x 0.024

i.e.
AL = —-220140N
Hence
220140 + 18 162

¢ + ) = —0.64

145000
Finally the forward inertia force fW is given by

fW =D = 1pV2SCp = 4 x 1.223 x 250 x 50 x 0.0213
ie.

fW =40703N

Solutions to Chapter 15 Problems

S.15.1

Substituting the given values in Eq. (15.3)

S.
Sa=2x230(1- a
2 x 870

from which

S, = 363 N/mm?>

S$.15.2

From Eq. (15.4)

Sa \?
S, =2x230|1—
2 x 870

Sa =460 — 1.519 x 107452

1.e.

or
S2 4+ 6581.75, — 3027600 = 0
Solving,
S, = 432 N/mm?.
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$.15.3

From Eq. (15.5) and supposing that the component fails after N sequences of the three
stages

200 n 200 n 600 _
104 100 2x105)
which gives
N =40

The total number of cycles/sequence is 1000 so that at 100 cycles/day the life of the
component is

1000
40 x —— = 400 days.
" 100 e

5.15.4

From Eq. (15.30)
3320 = S(7 x 2.0)” x 1.0
which gives

S = 1324 N/mm?.

S.15.5

From Eq. (15.30)
K = S(mag)” x 1.12
so that

18002

M= T 1802 x 1.122

ie.
ar = 25.4mm
Now from Eq. (15.44)

1 1 1
Ni = —
T30 x 10-15(180 x %)+ (0.4 25.4)

1.e.

Ny = 7916 cycles.



$.15.6

From Eq. (15.26)

so that

Then

1.e.

S.15.7

From Eq. (15.26)

Then, since

and

Therefore

Similarly

Solutions to Chapter 15 Problems

Dy = F(V)*2°

Dg(200) = F(200)>%¢ = 1.269F
Dg(220) = F(220)>%6 = 2.095F

Dy(220)  2.095F
Dg(200)  1.269F

1.65

Increase = 65%.

Dg(240) = F(240)>%¢ = 3.31 x 1012F
D,(235) = F(235)>% = 2.96 x 10'*F

Dgye = 0.1D10T
Dror(240) = 0.1Dtor + 3.31 x 10"2F

Dror(235) = 0.1Dtot + 2.96 x 10'2F

0.9D1o1(240) = 3.31 x 10'?F
Dror(240) = 3.68 x 10'2F

Dror(235) = 3.29 x 10'%F

3.68 x 1012F

Then, the increase in flights = ———— = 1.12

i.e. a 12% increase.

3.29 x 1012F
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Solutions to Chapter 16 Problems
S.16.1

From Section 16.2.2 the components of the bending moment about the x and y axes
are, respectively

M, = 3000 x 10° cos30° = 2.6 x 10° N mm

M, = 3000 x 10° sin 30° = 1.5 x 10° Nmm
The direct stress distribution is given by Eq. (16.18) so that, initially, the position of
the centroid of area, C, must be found. Referring to Fig. S.16.1 and taking moments of

area about the edge BC

(100 x 10 + 115 x 10)x = 100 x 10 x 50+ 115 x 10 x 5

i.e.
X =25.9mm
100 mm |
y
B ‘\ ’ A
| f1omm
E ‘\/‘:300 v F
c > X
125 mm /
X
T C IZI D
10 mm
Fig. S.16.1

Now taking moments of area about AB
(100 x 104+ 115 x 10)y =100 x 10 x 5+ 115 x 10 x 67.5

from which

38.4 mm

y
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The second moments of area are then

100 x 103 , 10 x 1153 5
o = —————— 4+ 100 x 10 x 33.4* + ————" 410 x 115 x 29.1
12 12
=3.37 x 10> mm*
10 x 1003 ,  115x10° )
Ly = ——5—— +10x 100 x 24.1° + ————— + 115 x 10 x 20.9

= 1.93 x 10° mm*
Iy =100 x 10 x 33.4 x 24.1 + 115 x 10(=20.9)(—29.1)
=1.50 x 10° mm*
Substituting for My, My, Iy, Iyy and Iy, in Eq. (16.18) gives
o, = 0.27x + 0.65y (1)

Since the coefficients of x and y in Eq. (i) have the same sign the maximum value of
direct stress will occur in either the first or third quadrants. Then

oya) = 0.27 x 74.1 4 0.65 x 38.4 =45.0 N/mm? (tension)
ozc) = 0.27 x (—=25.9) + 0.65 x (—86.6) = —63.3 N/mm2 (compression)

The maximum direct stress therefore occurs at C and is 63.3 N/mm? compression.

5.16.2

The bending moments half-way along the beam are
M, = —800 x 1000 = —800000Nmm M, = 400 x 1000 = 400 000 N mm

By inspection the centroid of area (Fig. S.16.2) is midway between the flanges. Its
distance x from the vertical web is given by

(40x2+100x2+80x Nx=40x2x20+80x 1 x40
i.e.
x = 13.33mm

The second moments of area of the cross-section are calculated using the approxima-
tions for thin-walled sections described in Section 16.4.5. Then

2 x 1003
1,()C=40><2><502+80><1><502+—X12 —5.67 x 10° mm*
5 2x40° ,  1x80°
Ly =100 x 2 x 13.33* + +2 x 40 x 6.67% + B

+1 x 80 x 26.67>
= 1.49 x 10> mm*

Ly = 40 x 2(6.67)(50) + 80 x 1(26.67)(—50) = —0.8 x 10°> mm*
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40mm
y

2.0 mmi -
f
2.0mm —wla— _
y
C X 100 mm
x
‘1.0 mm ¥
f
80 mm |

Fig. 5.16.2

The denominator in Eq. (16.18) is then (5.67 x 1.49 —0.8%) x 10'°=7.81 x 10'°.
From Eq. (16.18)

400000 x 5.67 x 10° — 800000 x 0.8 x 10°
o =
7.81 x 1010 o

L (7800000 x 1.49 105 ++ 400000 x 0.8 x 10°
781 x 1010 Y

i.e.
o=2.08x—1.12y

and at the point A where x = 66.67 mm, y = —50 mm

o(A) = 194.7N/mm? (tension)

5.16.3

Initially, the section properties are determined. By inspection the centroid of area, C,
is a horizontal distance 2a from the point 2. Now referring to Fig. S.16.3 and taking
moments of area about the flange 23

(Sa + 4a)ty = 5at(3a/2)

from which
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3a

Fig. 5.16.3

From Section 16.4.5

Ly = 4at(5a/6)* + (5a)*1(3/5)*/12 + 5at(2a/3)* = 105a°1/12
Ly = t(4a)* /12 + (5a)’t(4/5)* /12 = 12a°t
Ly = 1(5a)*(3/5) (4/5)/12 = 5a°t

From Fig. P.16.3 the maximum bending moment occurs at the mid-span section in a
horizontal plane about the y axis. Thus

M, =0 My(max) = wi%/8

Substituting these values and the values of Iy, I,y and Iy, in Eq. (16.18)

wiz (7 1 i
o= —|—x—— i
T35 \6a” T 16

From Eq. (i) it can be seen that o, varies linearly along each flange. Thus

At L wh 5 13a wi?
where x = Za = — 0. = —F
YT 76 %1 T 962
—5a —wi?
where x a 'y G 072 18302
A3 wh 5 —5a 13wi?
where x = - A= —
VT YE e %83 T 3oy

Therefore, the maximum stress occurs at 3 and is 13wi%/384421.
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S.16.4

Referring to Fig. S.16.4.

Fig. 5.16.4
In DB
M, = —W(i—2) ()
My =0
In BA
My = -W(i—2) (i)
M, = —2w (é - z) (i)

Now referring to Fig. P.16.4 the centroid of area, C, of the beam cross-section is at the
centre of antisymmetry. Then

e el o8]
=) e (]
o (5) () () ()

Substituting for Iy, Iy, and Iy, in Eq. (16.18) gives

1 .
0: = —5[(3.10My — 1.16My)x + (1.94M, — 1.16My)y] (iv)
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Along the edge 1, x =3d/4, y =d/2. Equation (iv) then becomes
1
0,1 = td—2(1.75My + 0.1M,) v)
Along the edge 2, x = —d/4, y =d/2. Equation (iv) then becomes

1
022 = —5(=1.36My + 1.26M) (vi)

From Eqgs (i)—(iii), (v) and (vi)

In DB
0.1w 0.05WI
0l = T 5 (1 —z) whenceo,(B)=— 0
1.26W(1 ) b ®) 0.63WI
02 =———>—(—2) whenceo: =
2,2 tdz 7,2 td2
In BA
w 1.85Wi
0z1 = td—z(3.6z — 1.85l) whence o, 1(A) = — e
w 0.1WI
072 = td—z(—l.46z +0.1/)  whence 0,2(A) = o
5.16.5

By inspection the centroid of the section is at the mid-point of the web. Then

21(2h)®>  10K%t

Ly = ﬁ QO +hth* + ——— =

o 12 3
2t(h/2)3 th*  5h’t

= 312

3h3
1)0_2;( )( )(h)-i—ht( )( h) = -

Since My, =0, Eq. (16.18) reduces to
—M. I, 4 M, Iy 0

Lodyy — 13" " Iy, — I,

o; =

Substituting in Eq. (i) for I, etc.

M, 3/4 5/12
%= A [(10/3)(5/12) - (3/4)2x * (10/3)(5/12) — (3/4)24

. M, .
ie. o, = E(O.91x + 0.50y) (i)
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2t

h
t
I S S
2 f
h
Fig. 5.16.5
Between 1 and 2, y = —h and az is linear. Then
0.41
01 = 3(091xh 0.5h) = th
0.5
00 = (O 91 x 0 — 0.5h) = hthx
Between 2 and 3, x =0 and o; is lmear. Then
0.5
GZ,Z = —EMX

M; 0.5

M, h 0.04
= (L0091 x L4 05h) = o
T4 = 15 ( 2t ) e M

5.16.6

The centroid of the section is at the centre of the inclined web. Then,

1(2a)? sin? 60°

L = 2 ta(a sin 60°)% + —G = 243t
I ) a3 n 1(2a)? cos? 60° a3t
= X — e
> 12 12 3
#(2a)? sin 60° cos 60° f 3a3t

= 12 6
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2
Fig. 5.16.6
Substituting in Eq. (16.18) and simplifying (M, =0)
M, (4 23 0
o,=—|=zy— —x i
T\ T
On the neutral axis, o, = 0. Therefore, from Eq. (i)
V3
= —x
YT
and
V3
tanog = —
2
so that
a =40.9°

The greatest stress will occur at points furthest from the neutral axis, i.e. at points 1

and 2. Then, from Eq. (i) at 1,
M, (4 a3 23 a)
X — + — X

Oz max = =

St\77 2 T 7 T2

3V3M, _ 074

i.e. Oz max — =
¢ 7a%t a2

S.16.7

Referring to Fig. P.16.7, at the built-in end of the beam
M, =50 x 100 — 50 x 200 = —5000 N mm
M, = 80 x 200 = 16 000 N mm
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and at the half-way section

M, = —50 x 100 = —5000 N mm
My = 80 x 100 = 8000 N mm

AY
X
24 mm 1.25mm
ol

c > X

i1 .225mm y

2 i 3
36 mm
I

Fig. 5.16.7
Now referring to Fig. S.16.7 and taking moments of areas about 12
(24 x 1.25+36 x 1.25)x =36 x 1.25 x 18

which gives

x = 10.8 mm

Taking moments of areas about 23

(24 x 1.254+36 x 1.25)y =24 x 1.25 x 12

which gives
y=4.8mm
Then

125 x24°

o = > +1.25 x 24 x 7.22 +1.25 x 36 x 4.8% = 4032 mm*
1.25 x 363
12

Iy = 1.25 x 24 x (—10.8)(7.2) + 1.25 x 36 x (7.2)(—4.8) = —3888 mm*

Ly = 1.25 x 24 x 10.8% + +1.25 x 36 x 7.2* = 10692 mm*
Substituting for Iy, Iy, and I,y in Eq. (16.18) gives

o, = (1.44M, + 1.39M,) x 107%x + (3.82M, + 1.39M,) x 1074y (1)
Thus, at the built-in end Eq. (i) becomes

o, = 1.61x + 0.31y (ii)
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whence o, | = —11.4N/mm?, 0,5 = —18.9N/mm?, 0,3 =39.1 N/mm?. At the half-
way section Eq. (i) becomes

o, = 0.46x — 0.80y (iii)

whence o, 1 = —20.3 N/mm?, 0,5 = —1.1 N/mm?, 0, 3 = —15.4 N/mm?.

5.16.8

The section properties are, from Fig. S.16.8
T
Ly = Zf t(r — rcos 9)2r do = 37t
0
T
Ly =2 / 1(rsin6)*r do = mtr
0

T
Ly = 2/ 1(—rsin0)(r — rcos O)r dg = —4tr°
0

Fig. 5.16.8

Since My, =0, Eq. (16.22) reduces to

Ly 4113
tane = —— = ——
Ly tr

1.€.

o=519°
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Substituting for M, =3.5 x 10 N mm and M, =0, Eq. (16.18) becomes

_10?

o; = —3(1.029x + 0.808y) 6)
tr

The maximum value of direct stress will occur at a point a perpendicular distance
furthest from the neutral axis, i.e. by inspection at B or D. Thus

103
o,(max) = 3 (0.808 x 2 x 5)

0.64 x
i.e.
o.(max) = 101.0N/mm?

Alternatively Eq. (i) may be written

103
o, = t—3[1.029(—r sin 0) + 0.808(r — r cos 6)]
r
or
808
o, = —2(1 —cosf — 1.27sin 6) (i1)
tr

The expression in brackets has its greatest value when 6 =, i.e. at B (or D).

5.16.9

The beam is as shown in Fig. S.16.9

90 kN/m
30 kN/m
A
A B
/
Rafl———>z Rs
l< >|
[ 6m |
Fig. 5.16.9
Taking moments about B
30x 62 60
RA X 6 — —— x6x=-=0

2 2 3
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which gives
Rp = 150kN
The bending moment at any section a distance z from A is then

2

30z Z\ /2 (Z
M = —150z + == + (90 — 30 (—) (—) (—)
7+ > +( ) FACIAC
i.e.
5 3
M = —150z + 152 + %
Substituting in the second of Eqs (16.33)
d?v 573
El|— | =150z — 15> - =
(dzz) ¢ ¢ 3
e () 2752535 4 ¢
Z) = Z Z B 1
524 2
Elv=257—-="" > 4 (Ciz+C
v Z " 12-i- 12+ G

When x =0, v=0 so that C; =0 and when z=6m, v=0. Then

5x64 6 L 6C
4 12 !

0=25x6 —

from which
C, =-522

and the deflected shape of the beam is given by

Elvmig-span =25 X 3 — == — == — 522 x 3 = —1012.5kN m’

Therefore

—1012.5 x 102 410 @ @)
VUmid- = = — .Umm ownwards
mid-span = 15072 106 x 206 000
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$.16.10

Take the origin of x at the free end of the cantilever. The load intensity at any section a
distance z from the free end is wz/L. The bending moment at this section is given by

3
w=((T)G) =%
Substituting in Eqs (16.32)

d?v —wz?
El| — )= ——
dz? 6L

dv —wz*
EI = + Cq

dz 24L
5

Elv = £+C12+Cz
120L

When z =L, (dv/dz) =0 so that C; = wL3/24. When z=L, v=0, i.e. C, = —wL*/30.
The deflected shape of the beam is then

Elv = — (L) (& — 57L% + 4L5)
120L
At the free end where z =0
wL*
~ T 30EI

S.16.11

The uniformly distributed load is extended from D to F and an upward uniformly
distributed load of the same intensity applied over DF so that the overall loading is
unchanged (see Fig. S.16.11).

6 kN 4 kN
1kN/m
A B C I l l l; v JF
p* A A%
RA—P R HF
z 1kN/m
| | o
im | 2m | 2m | 1im

Fig. 5.16.11

The support reaction at A is given by

RAX6—-6x5—-4x3—-1%x2x2=0
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Then
Ra =7.7kN
Using Macauley’s method, the bending moment in the bay DF is

Iz =3P 1[z—5P

M=-77z+6[z—1]+4[z— 3]+ 5 5

Substituting in Eqs (16.33)

[z — 3] L [z —5]%

d?v
El (d_z2> =77z—6[z—1]—4[z—3] —

2 2
dv\  7.72 ) 5 =3P [z-5P
EI(=—)= —3lz— 1P -2z -3 - - c
(dz) > [z —1] [z — 3] G G + Cy
7.773 2[z - 3)3 -3 — 5
pro="T" ppoqp o 2 R SR e,

3 24 24
When z =0, v=0 so that C; =0. Also when z=6m, v=0. Then

0o 17x6 o 2x3 3 14+6C
T 6 3 24 !

which gives
C; =-21.8

Guess that the maximum deflection lies between B and C. If this is the case the slope
of the beam will change sign from B to C.

AtB
d 7.7 x 12
EI (—U> = L 21.8 which is clearly negative
dz 2
AtC
d 7.7 x 32
El (—”) = X 3422218 = 4085
dz 2

The maximum deflection therefore occurs between B and C at a section of the beam
where the slope is zero.

i.e.
7.77%
0=""% _3;-11?=218
Simplifying
2 4+7.062—292=0
Solving

z=29m
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The maximum deflection is then

7.7 x 2.93 3
Elvpey = ———— =197 = 21.8 x 2.9 = -38.8

ie.

—38.8
VUmax = —E (downwards)

5.16.12

Taking moments about D
Rax4+100—-100x2x1+200x3=0
from which
Ra = —125N
Resolving vertically
R —125—-100x 2 —-200=0

Therefore
R = 525N
The bending moment at a section a distance z from A in the bay DF is given by
100[z — 2]° 100[z — 47°
M = +125z — 100[z — 11° + % — 525[z — 4] — %

in which the uniformly distributed load has been extended from D to F and an upward
uniformly distributed load of the same intensity applied from D to F.
Substituting in Eqs (16.33)

dZ
EI ( v) = —1257 4+ 100[z — 11° — 50[z — 2]* + 525[z — 4] + 50[z — 4]?

dz2
dv —12572 , 50[z—2 525[z—4]> 50[z— 4]}
EI|=)= +100[z — 11" — + + +Cy

dz 3 2 3

—12573 50[z — 2]*  525[z —4)
Elv = T sop 1y~ e =2l 5250 — 4

12 6
50[z — 4]*
+%+CIZ+C2

When z =0, v=0 so that C; =0 and when z =4 m, v =0 which gives C; =237.5. The

deflection curve of the beam is then

1 [(—12573 50[z —2]* 525[z —4]° 50[z — 4]*
( > S0z —21* | 525( —4F | 50z — 4]

— 50[z — 1
v=g\ T 0 12 12

+ 237.52)
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5.16.13
From Eqgs (16.30) the horizontal component of deflection, u, is given by

1

MLy — Myl

= (1)
E(Luly — 12)

in which, for the span BD, referring to Fig. P.16.13, M = —Rpz, M, =0, where Rp is
the vertical reaction at the support at D. Taking moments about B

Rp2l+ Wl =0

so that
Rp = —W/2 (downward)

Eq. (i) then becomes
” Wi,y

U =—
2E(Luclyy — I2)

Z (i1)

From Fig. P.16.13

3 3 2 3
Lo = 2 aray +2 [—t(a/z) + 12 (3—0) } _ Bat

12 12 2\ 4 4
t2a)? a . o, 543t
I, = 2—t = —
w =Ty TAian =

3 3 Tat
o = Yit-a) (z) var(-2) @+ e (_;) var (2) o= -4

Equation (ii) then becomes

" 2w (iii)
U =———-—
113Ea3t
Integrating Eq. (iii) with respect to z
P 21W 2
113Ea3t
and
W 4 .
= - Az+ B
3a3- T )

When z =0, u =0 so that B=0. Also u =0 when z = 2] which gives

28w
~ 113Ed’t
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Then
W
U= ——-rn
113Ea3t
At the mid-span point where z =1, Eq. (v) gives

(—2° + 41%7) )

0.186W/*
U= ————
Ea3t
Similarly
_0.177WP
"~ Ed’t
S.16.14
(a) From Eqgs (16.30)
u// — Mxlxy — MYéxx (1)
E(Ixxlyy - Ixy)
Referring to Fig. P.16.14
w 2 ..
My=—--(1-2) (i)
2
and
My, =-T(-72) (ii1)
in which T is the tension in the link. Substituting for M, and My, from Eqs (ii) and (iii)
in Eq. (i).
1 1
" Xy 2
= (w—=( - — Tl (I —
* T T EGuly, - 13) [W p (7 T Z)]
Then

1 Ly z3 7
/ w (2 2
= w2 1 (=) +4
" E(Ixxlyy—l)%y) |:W2 < LT3 ) xx<z 2) i|

When z=0, ' =0 so that A =0. Hence

1 |- 2 3 4 2 3
W= [wﬁ (12Z— A Z—) Ty (lZ— - Z—) +Bi|
Elul,—12) "2\ 273712 276

When z =0, u =0 so that B=0. Hence

1 I 2 3 4 2 3
U=————— [wﬂ (lzz__lz_+z_) — Tl <ZZ——Z—>j| (iv)
E(Lulyy — I5) 2 2 3 12 2 6
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Since the link prevents horizontal movement of the free end of the beam, u =0 when
z=1. Hence, from Eq. (iv)

Ly (1 l4+l4 a (P BY_,
"2 \2 7312 “\27%6)7

. 3wllyy
8l

whence
T
(b) From Eqgs (16.30)

_ Midyy — Myl
E(llyy — I2)

1

)

The equation for v may be deduced from Eq. (iv) by comparing Eqs (v) and (i). Thus

1 I 2 3 4 2 3
v [wﬂ (zzz— A Z—) — T, (ﬁ— - Z—)] (vi)
Eldy -1 "2 273712 276

At the free end of the beam where z =1

1 wlyy 14 - 3
VFE = — Tl —
T Eduly, —12) \ 8 »

which becomes, since T=3wll /81,

wi*
8EL,

UFE =

5.16.15

The beam is allowed to deflect in the horizontal direction at B so that the support
reaction, Rp, at B is vertical. Then, from Eq. (5.12), the total complementary energy,
C, of the beam is given by

M
C=// d9dM — RgAg — WAC (i)
LJO

From the principle of the stationary value of the total complementary energy of the

beam and noting that Ag =0
aC oM
— = / d6— =0
oRp L ORp

aC M oM
— = =dz=0 (i)
aRs  Ji EI 3Ry

Thus

201
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In CB
M=WQ2l—-z) and 0M/0Rg =0
In BA
M=WQ2l—2)—Rg(l—z) and 0M/dRgp = —( —2)
Substituting in Eq. (ii)

!
/ W2l —z) —Re(l =)l —2)dz =0
0

from which

oW
B=7

Then
Mc=0 Mp=WI My=-WI/2

and the bending moment diagram is as shown in Fig. S.16.15.

wi
|<—-‘ﬂ2 +ve
A
—ve B C
wi
2
Fig. S.16.15
5.16.16

From Eq. (16.50) and Fig. P.16.4
Nr = Ea(4Tydt + 2 x 2Ty dt + Tp dt)
i.e.
Nt =9FEadt Ty
From Eq. (16.50)

d d
M,r = Ex [4T0 dt (5> + 2 x 2Ty dt(0) + To dt <—§>i|

1.e.

3Ead?*t Ty
My = 2
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From Eq. (16.52)

d d d d
A@T:Ea{ﬂbﬁ(z)+2ﬂﬂh<z)+2ﬂﬂh<—z)+lbw<—z)]

3Ead?*t Ty
My = —_—

1.€.

S.16.17

Taking moments of areas about the upper flange

(at 4 2at)y = 2ata

x|

2a

Fig. 5.16.17

which gives
2

Y=§a

Now taking moments of areas about the vertical web

_ a
3atx = at—
2

so that

=1
I
|
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From Eq. (16.53)

T Ea Tot
NT=/Eaiytds= “ O/yds
A 2a 2a  Ja

But ¢ f Wy ds is the first moment of area of the section about the centroidal axis Cx,
i.e. [, yds=0. Therefore

Nr =20

From Eq. (16.54)

T EaT;
MxT:fEa—Otyzds: * O/tyzds
A 2a A

2a
But
[oras=ra=ar(2a) +20 oar(2
i.e.
L= 10a3t
3
Therefore
My — S5Ea ;zzt To

From Eq. (16.55)

Ty EaTy
Myr = | Ea—txyds = txy ds
A 2a 2 A

a
But
a 2 a a
/A’xy di =1y =ar(3) (§> +2ar(=5) (-5)
i.e.
a’t
Ixy = T
Then
_ Eo a*t Ty
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Solutions to Chapter 17 Problems
S.17.1

In Fig. S.17.1 the x axis is an axis of symmetry (i.e. Iy, =0) and the shear centre, S,
lies on this axis. Suppose S is a distance &s from the web 24. To find &g an arbitrary
shear load Sy is applied through S and the internal shear flow distribution determined.
Since Iy =0 and S, =0, Eq. (17.14) reduces to

Sy [ ,
qs = —7— tyds )
Ixx 0

Fig. 5.17.1
in which
Lo fdsinta ?
) 12 2
1.e.
th? 3 .2 3
Ly = E(l + 60 4+ 2p” sin” «) (i)
Then
Sy [
qi2 = —— ty ds
Ixx 0
i.e.

S [k, (d e
= — = - =S SIn o )
q12 I 0 ) ) 1 1
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so that
Syt . 2 .
q12 = ——(hsy + ds) sina — s7 sin @) (iii)
21
Also
Sy [ Syt %2 |:h (a’ > . ]
g3 = —— tydsy) = = —— = —s)sina|ds;
L Jo L Jo 2 2
whence
Syl . 2 . .
g3 = ——(hsy — dsy sina + 55 sin @) @iv)
2Ux
Taking moments about C in Fig. S.17.1
2 a2 p
Syés = —2/ q12—= cosadsy + 2/ q32= cos o dsy (v)
0 2 0 2

Substituting in Eq. (v) for g12 and g32 from Eqgs (iii) and (iv)

Sythcos o

Sybs =
’ L

dj2
/ —(hs1 + ds1 sina — s% sin r)dsg
0

d/2
+ / (hsy — dsp sina + s% sin oz)dsz:|
0

from which
£ thd? sin o cos o i)
= vi
S 121

Now substituting for I, from Eq. (ii) in (vi)

p? sina cos o
1 +6p+2p3sin«

s =—d

$.17.2

The x axis is an axis of symmetry so that I, =0 and the shear centre, S, lies on this
axis (see Fig. S.17.2). Therefore, an arbitrary shear force, Sy, is applied through S and
the internal shear flow distribution determined.
Since Sy =0 and I, =0, Eq. (17.14) reduces to
Sy [° .
gs = —7— [ tyds @
Ly 0
in which, from Fig. S.17.2.,

a’tsin? «

12

. a . 2 dtsin’a a . 2
L, =2 +at<asmo¢+§sma> +T+at(§sma>



Solutions to Chapter 17 Problems

Fig. 5.17.2

which gives
16a°t sin® o .
Iy = ———— (i)
3
For the flange 54, from Eq. (1)

Sy [? .
qs4 = —— t(s — 2a)sina ds
Ixx 0

from which

Sytsina 52
qs4 = — I 5~ 2as (ii1)
XX

Taking moments about the point 3

a
Syés =2 / gs4asin 2a ds @iv)
0

Substituting in Eq. (iv) for gs4 from Eq. (iii)

2asin2aSytsina (¢ (s
Syés = — — —2as ) ds
Ixx 0 2

which gives

2at sin 2¢ sin o <5a3 )

5 )

S =
IXX

Substituting for I, from Eq. (ii) in (v) gives

Sacosa
8

s =

207
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$.17.3

The shear centre, S, lies on the axis of symmetry a distance &5 from the point 2 as
shown in Fig. S.17.3. Thus, an arbitrary shear load, S), is applied through S and since
Iy =0, Sy =0, Eq. (17.14) simplifies to

S, [* .
qs = _I_ tyds (1)
xx JO

Fig. 5.17.3

in which I, has the same value as the section in S.16.8, i.e. 3777°¢. Then Eq. (i) becomes

S 6
y
qi2 = — t(r + rcos@)rdb
Ixx 0

or
q12 = 3—7;[9 + sin 0]}
i.e.
Sy . ..
4n = 22O +sin0) (i)

Taking moments about the point 2

g
Syés = 2/ q12(r + rcosO)rdo (ii1)
0
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Substituting in Eq. (iii) for g2 from Eq. (ii)

28yr T .
Syés = —— (0 4 sin 6)(1 + cos 8)do
3 0
Thus
2r 7 . .
Eg = — (0@ + 0 cos B + sinf + sin 6 cos H)do
3n 0
i.e.
2r [62 cos207"
= | 4+ 49sinb —
&s i [2 + Osin L
from which
£ = r
T3
S.17.4

The x axis is an axis of symmetry so that /,, =0 and the shear centre, S, lies on this
axis (see Fig. S.17.4). Further S, =0 so that Eq. (17.14) reduces to

Sy [* .
9 =—7" tyds (i)
xx JO
&s
5 1
i 1
t
—>l— Sy
£ S — -> X
S
! —> 51 2 52 €— 3
d Bd

Fig. 5.17.4

Referring to Fig. S.17.4

e ™ a (MY + pa (M) | 2o (v
==t f(i)W (z) = (E*)
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From Eq. (i)
qi2 = R t <—ﬁ) ds)
L Jo 2
i.e.
Syth ..
q12 = mh (i)
Also
q32 = T (—ﬁ> dsy
L Jo B\ 2
so that
Syth
932 =3 Bl 52 (ii1)
Taking moments about the mid-point of the web
d Bd
Syés = 2/ qr2zdsy — 2/ g3 =dsy (iv)
0 2 0 2

Substituting from Eqgs (ii) and (iii) in Eq. (iv) for ¢17 and ¢3»

Syth* 4 Syth* P4
Syés = s1ds; — sp dsp
0 0

2l 2Bl
1.€.
h? (d*  d?
s=a. (7%)
1.e.
th2d*(1 — B)
5= i 1 12d/h)/12
so that
& _3p(1=P)
d  (1+12p)
S.17.5

Referring to Fig. S.17.5 the shear centre, S, lies on the axis of symmetry, the x axis, so
that I,y = 0. Therefore, apply an arbitrary shear load, Sy, through the shear centre and
determine the internal shear flow distribution. Thus, since S, = 0, Eq. (17.14) becomes

Sy s )
qs = I / tyds (1)
xx JO
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Sy
h _— S
f3
L !
o T I-—'—'—'""—z T
d
Fig. 5.17.5
in which
Bk (4 (b
Ly=—+4+2 d| =
“=Tn T 2
i.e.
h2
L = E[tah +3(t1 + 12)d] (i1)
The thickness ¢ in the flange 12 at any point s is given by
(nh —n)
t=H— —
1 p S (iii)

Substituting for ¢ from Eq. (iii) in (i)

- h
q12 = __/ |: ! t2)S1j| (—E) dsy

Syh (Hh — ) S% .
= t — —
q12 o [ 151 ) (iv)

Hence

Taking moments about the mid-point of the web

d h
Syés = 2/ q12 (5) dsy
0

d

Sk | st —n)s

Syés = oy — ————
2 |2 d 6|

1.e.

21
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from which
h2 2

§s = 121,

(2t + 1)
Substituting for I, from Eq. (ii)

d*Q2n + 1)

§s = 3d(t; + 1) + ht3

S.17.6

The beam section is shown in Fig. S.17.6(a). Clearly the x axis is an axis of symmetry
so that I, =0 and the shear centre, S, lies on this axis. Thus, apply an arbitrary shear
load, Sy, through S and determine the internal shear flow distribution. Since Sy =0, Eq.
(17.14) simplifies to

Sy [? .
qs = _I_ / tyds 1)
xx JO

Fig. 5.17.6(a)

in which, from Fig. S.17.6(a)

b h 2 a h 2
Ly =2 /0 t<2_bs> ds-i—/‘0 t<%s> ds (i1)
where the origin of s in the first integral is the point 1 and the origin of s in the second

integral is the point 3. Equation (ii) then gives

_thA(b+a)
6

Sy Slt h d
= —— —— s
q12 I Jo b 1 1

L (iit)

From Eq. (i)
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from which
Syth s%
q12 = 5=
2bl 2
or, substituting for I, from Eq. (iii)
38y 2 .
2= 20+ a) ! )
and
38yb ®)
e v
% 2h(b + a)
Also
Sy [*? h
g3 = —— t|—5-(a—s2)|ds2+q2
Ixx 0 2a
Substituting for I, from Eq. (iii) and ¢> from Eq. (v)
35, 53 Wb i)
= s — =+ = vi
=0+ \ " 24 2
and
38, (vi)
- i
4q3 h vi

Equation (iv) shows that g1, varies parabolically but does not change sign between 1
and 2; also dg12/ds; = 0 when 51 = 0. From Eq. (vi) g23 =0 when s, — s§/2a +b/2=0,
i.e. when

53 —2asy —ba =0 (viii)

Solving Eq. (viii)

s =a=x+va?+ ba

Thus, g>3 does not change sign between 2 and 3. Further

dgs 38, (1 5

= ) =0 whens) =a
dsy h(b + a)

a

Therefore go3 has a turning value at 3. The shear flow distributions in the walls 34 and
45 follow from antisymmetry; the complete distribution is shown in Fig. S.17.6(b).
Referring to Fig. S.17.6(a) and taking moments about the point 3

b
Sk =2 [ qupds (ix)
0

where p is given by
hl

=sina=— ie.p=—

~I
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Fig. 5.17.6(b)

Substituting for p and ¢g12 from Eq. (iv) in (ix) gives

Sybs = bh(b + a) / 2! s dsi
from which
I
S = 30 ab)
S.17.7

Initially the position of the centroid, C, must be found. From Fig. S.17.7, by inspection
y=a. Also taking moments about the web 23

(2at + 2a2t + a2t)x = a2t§ + 2ata

from which x = 3a/8.
To find the horizontal position of the shear centre, S, apply an arbitrary shear load,
Sy, through S. Since Sy =0 Eq. (17.14) simplifies to

Syl §
qs = #yz/ txds — f tyds
Ixxlyy - Ixy 0 Ly yy -

1.e.

Sy S N .
qs = II—Iny (Ixy/(; txds — Iyy/o tyds) (1)
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4_3_,‘
3 2t] 4
X1
y
pal — 0S4 X —
&s
s y
T T
t) S oy
2 T 1
s <«—]
2a

Fig. 5.17.7

in which, referring to Fig. S.17.7
Ly = a2t(a)? + 2at(a)® + 1(2a)* /12 = 164°t/3

Ly = 2ta®/12 + 2ta(a/8)* + t(2a)* /12 + 2at(5a/8)* + 4at(3a/8)* = 53a’t/24
Ly = a2t(a/8)(a) + 2at(5a/3)( — a) = —a’t

Substituting for Iy, Iy, and I, in Eq. (i) gives

gs = 93?3: (— /OS txds — ;/()Styds> (ii)
from which
q12 = 997533 [— /OS (1%1 — s) ds — ; /Os (—a)ds:| (iii)
ie.
98, (Tas 52 .
912 =573 (E + 2) @iv)
Taking moments about the corner 3 of the section
2a
Syés = — /0 q12(2a)ds v)

Substituting for g1 from Eq. (iv) in (v)

S8 = ISSy/2” 7as+s2 d
WET912 ), \12 T 2)%
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from which

£ = 45a
5T Ty

Now apply an arbitrary shear load S, through the shear centre, S. Since S, =0
Eq. (17.14) simplifies to

Sx < \/\S /S
gs=——"—"""1\1 txds — I tyds
T Laly 12\ o *Jo

from which, by comparison with Eq. (iii)
98¢ [16 [* (13a §
=— — | t|— —s])d t(—a)d
g1 T [ 3 ./0 ( 2 s) s+/0 (—a) s:|

(23as — 8s?) (vi)

ie.
J— Sx
q12 = “ 973
Taking moments about the corner 3

2a
Sx(2a —ns) = —/ q12(2a)ds
0

Substituting for g1 from Eq. (vi)

2a
S(2a — ng) = 97;2 i (23as — 85%)ds
which gives
_ 46a
UN 97

$.17.8

The shear centre is the point in a beam cross-section through which shear loads must
be applied for there to be no twisting of the section.

The x axis is an axis of symmetry so that the shear centre lies on this axis. Its position
is found by applying a shear load S, through the shear centre, determining the shear flow
distribution and then taking moments about some convenient point. Equation (17.14)
reduces to

Sy [° )
gs=——[ tyds @
L Jo

in which, referring to Fig. S.17.8

tr3 /2
Ly =2 <? +2rtr? + f 1r? cos® Or d9>
0
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> S2

or _11_____ p

| 2r |
Fig. 5.17.8
ie.
Ly = 6.221r°
In the wall 12, y = s1. Therefore substituting in Eq. (i)
Sy [* S, 152
qi2 = ——y/ tspds = ——=—1
Ixx 0 Ixx 2
Then
Sy tr?
q2 = _IZT

In the wall 23, y = r, then

1.e.
A\ ; +tr2
=—|—= s —
q23 Tt 2 5
and
Sy tr?
BT

In the wall 34, y =r cos 6, then

S 0 5tr2
q34=——y </ tr20059d9+—r)
L \Jo 2

% 2 (sing + 2
= ——tr" (sinf + =
43 =~ 5

1.€.
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Taking moments about O

r 2r /2
Syxs = —2 [ f q122rds + f ga3rds + / qar’ de]
0 0 0

The negative sign arises from the fact that the moment of the applied shear load is in
the opposite sense to the moments produced by the internal shear flows. Substituting
for q12, g23 and ¢34 from the above

Sy r S% 2r r2 /2 A . 5
Syxs = —t — | 2rds+ rs) + — | rds+ r'|sinf+ = ) do
L | Jo \ 2 0 2 0 2

which gives

xs = 2.66r

$.17.9

In this problem the axis of symmetry is the vertical y axis and the shear centre will lie on
this axis so that only its vertical position is required. Therefore, we apply a horizontal
shear load Sy through the shear centre, S, as shown in Fig. S.17.9.

S Sy

[ |
25mm 100mm 25mm

Fig. 5.17.9

The thickness of the section is constant and will not appear in the answer for the
shear centre position, therefore assume the section has unit thickness.
Equation (17.14), since I, =0, t =1 and only S, is applied, reduces to

S S
gs=—— | xds @)
Ly Jo
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where
253 ) 5 /2 )
Iyy=E+25x62.5 + 50 x 50 +/ (50 cos 8)-50 d6
0
ie.
Ly = 6.44 x 10° mm*

In the flange 12, x = —75 + 51 and

Se [* S 2
g =2 (754 spds = =2 (755 + 2
Ly Jo Ly 2

and when 51 =25mm, g, =1562.55,/I,y
In the wall 23, x = —50 mm, then

S § S
g3 = —— ( / —50ds — 1562.5) = “2(50s, + 1562.5)
Iy 0 Iy
when s, =50 mm, g3 =4062.5S,/1,,.
In the wall 34, x = —50 cos 9, therefore
Sc ([° Sx :
q3s = —— —50c0s050d6 — 4062.5 ) = —(2500sin 0 + 4062.5)
Iy \Jo Iyy
Now taking moments about O

25 50 z
Seys =2 — / g1250ds| + / ¢2350dsy + f q3450% do
0 0 0

Note that the moments due to the shear flows in the walls 23 and 34 are opposite in sign
to the moment produced by the shear flow in the wall 12. Substituting for g7, etc. gives

ys = 87.5mm

$.17.10

Apply an arbitrary shear load Sy, through the shear centre S. Then, since the x axis is an
axis of symmetry, I, =0 and Eq. (17.14) reduces to

_ Sy * d
qs = 7 fyds

xx JO

r /4
/ n?ds + / 1r sin@)zrde]
0 0

r

=2 / #(2r sin 45° — 51 sin 45°)%ds; + /
0 0

Ly =2
: /4
tr3 sin% 6 d9:|

r r ¢ 3 b4
=2 |sin? 450/ @r? — 4rsy + sDds; + %/ (1 — cos 29)d9}
0 0
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Fig. 5.17.10

which gives

Ly = 2.6217°
Then
Sy, [
qin = ——y/ t(2r sin 45° — 51 sin 45°)ds;
Ix;x 0
i.e.
—0278, () s? (.)
=— 2 — 2 i
q12 3 =5
and
—-0.4S
a@ = 2
.
Also

Sy ¢ [ . o
q23:——/ t|rsin(45° — ¢p)rde¢ —
0

L

0.4S,
r
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from which

S (45° — ¢)
= - cos —Q)—
2= "5 6or

0.13S, i
r

Taking moments about O

r /4
Syxs = —2 [/ q12r dsy +f q3r? d¢} (iii)
0 0

Substituting for 17 and g3 from Egs (i) and (ii) in Eq. (iii) gives

xs = 1.2r

S.17.11

Since the x axis is an axis of symmetry and only Sy is applied Eq. (17.14) reduces to

Sy [*
s = —7— tyds
Ly 0

6
2mm \ 5
S
YA 4
S
30mm
3 So
‘\/ 5 15mm
XS —r
B e —— |
St I 25mm
60 mm 1

Fig. 5.17.11

Also
530 = (157 4+ 60%)'/2 = 61.8 mm
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and

P 2X253+2 ’s 5752+2x61.83 15 \?
= X X . X
= 12 12 61.8

+2 x61.8 x 37.5% +

2x603]

which gives
I, = 724094 mm*

Then
Sy [
qi2 = —— 2(=70 + s1)dsq
Ixx 0
i.e.
Sy 2 .
q12 = ——(140s1 — s7) ()
Ixx
and
28758,
q2 =
I)C)C
Also
15 28758,
6]23———/ 45+ dsy +
8 Ly
Then
Sy 90s 15 + 2875 (ii)
3=\ TGy 5% "

Taking moments about the mid-point of the web 34 (it therefore becomes unnecessary
to determine g34)

25 61.8 60
Syxs =2 —/ 60g12 dsq +/ 30 x ——qn3dsy
0 0 61.8

Substituting for g12 and g»3 from Eqgs (i) and (ii)

xs = 20.2 mm

$.17.12

Referring to Fig. S.17.12 the x axis is an axis of symmetry so that I, =0 and since
Sy =0. Eq. (17.15) reduces to

s =—7 /lde-qso @
xx
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in which
(2r)%t sin? 45° o,
Ly=—"—+2 t(rsin0)“rdo
12 0
Fig. 5.17.12
i.e.

L = 0.62t1°

‘Cut’ the section at O. Then, from the first term on the right-hand side of Eq. (i)

S, o
db,01 = T 0.6003 /0 tr sin Or d6
i.e.
db,01 = —Oéyzr[—cos 9]8
so that
Sy Sy .
qb,01 = _0.62r(COS0 -1 = 1.617(cos9 -1 (i)
and
0.478S,
gb,1 = — p
Also
Sy § .o 0.478S,
qb,12 = _W/o t(r — s)sin45°ds — ;.
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which gives
qv.12 = —3(—1.14rs + 0.57s° — 0.47r%) (ii1)
r

Now take moments about the point 2

/4 2
Syr = 2/ qdv,011T do+2 x qu,()
0

Substituting in Eq. (iv) for g 01 from Eq. (ii)

4 s, ) mr?
Syr = 2/ 1.61—(cos8 — 1)r=d6 + qu’o
0 r

i.e.
. w/4 | T 2
Syr =3.228,r[sin6 — 0]’ + qu,o
so that
0.80S,
qs,0 =
’

Then, from Eq. (ii)
Sy
go1 = —(1.61cos8 — 0.80)
r
and from Eq. (iii)
S,
q12 = 5(0.57s% — 1.14rs + 0.33r%)
r

The remaining distribution follows from symmetry.

$.17.13

The x axis is an axis of symmetry so that I,; =0 and, since Sy =0, Eq. (17.15)
simplifies to
Sy N .
s = —— tyds + g0 (1)
Ly 0

in which, from Fig. S.17.13(a)

Lo Qdltsine (h+2d) i
SR 212 "
‘Cut’ the section at 1. Then, from the first term on the right-hand side of Eq. (i)

Sytsina 2
T

S, S1
qb,12 = ——}/ t(—sy sina)ds| =
Ixx 0
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Fig. 5.17.13(a)

Substituting for I, and sin «

. 3Sy 2
2= ah+2d) !

and

_ 38,d
2= 3+ 2d)
Also
Sy [ h
b3 = ——— tl—=+s2)ds2+qpp
Ixx 0 2
so that

65, 55 N d
= ——__ s —_—— —
L= h 2\ T w2

Now taking moments about the point 1 (see Eq. (17.18))
" h
0= / gb23d cosadsy + 2§d COS aqs.0
0
ie.
h
0= / gb.23 ds2 + hggp
0

Substituting in Eq. (v) for gp 23 from Eq. (iv)

0 5% /h s%+d dsy +h
= — s — =+ —|ds
hh+2dy J, \2 7 T2 T s0

225
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which gives

Sy(h + 3d) i)
= vi
D0 =" 1 2d)
Then, from Egs (iii) and (i)
38, s Sy(h+3d)
q12 = ST —
hd(h + 2d) h(h + 2d)
i.e.
Sy 3s% ad i)
_ il S A vii
M=+ 2d) \ d
and from Eqgs (iv) and (vi)
_ Sy 6 65% (viii)
q23 = h(h + 2d) 52 A Vil

The remaining distribution follows from symmetry.
From Eq. (vii), g12 is zero when s% = (hd/3) + d?,i.e. when s; > d. Thus there is no
change of sign of g12 between 1 and 2. Further

d 6
12 _ 2 _ ) whens; =0
ds d
and
_ Sy(h+3d)
U= "+ 2d)
Also, when s1 =d
S
Pp=—"
(h+2d)
From Eq. (viii) 23 is zero when 6s, — (6s3/h) — h =0, i.e. when s3 — 52/ + (h%/6) =0.
Then
h  h
§y) = — ]
2 V12

Thus g»3 is zero at points a distance h/+/12 either side of the x axis. Further, from
Eq. (viii), go3 will be a maximum when s> = //2 and gp3(max ) = Sy/2(h + 2d). The
complete distribution is shown in Fig. S.17.13(b).
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hi\/12

hin/12

S, (h+3d)
h(h+2d)

Fig. 5.17.13(b)

S.17.14

Since the section is doubly symmetrical the centroid of area, C, and the shear centre, S,
coincide. The applied shear load, S, may be replaced by a shear load, S, acting through
the shear centre together with a torque, T, as shown in Fig. S.17.14. Then

T = Sacos30° = 0.8665a @)

Fig. 5.17.14

The shear flow distribution produced by this torque is given by Eq. (18.1), i.e.

_ T _ 0.866Sa
24 24

qr (from Egq. (1))
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where
A = a2acos30° + 2 x acos30° x asin30° = 2.6a>
Then
qr = g (clockwise) (i1)

The rate of twist is obtained from Eq. (18.4) and is

do  0.866Sa (6a
dz  4(2.64%)2G \ t

ie.
de  0.1928
dz ~ Gta?
The shear load, S, through the shear centre produces a shear flow distribution given
by Eq. (17.15) in which S, = —§, Sy =0 and I, = 0. Hence

(1ii)

S S
gs=— [ tyds+gqso (iv)
Ixx 0
in which
ta’ a . o 5a3t
Ly=2—+4 t(—a + s1sin30°)°ds; = —
12 0 2

Also on the vertical axis of symmetry the shear flow is zero, i.e. at points 7 and 3.
Therefore, choose 7 as the origin of s in which case g5 in Eq. (iv) is zero and

S N
gs =7 | tyvds v)
L Jo
From Eq. (v) and referring to Fig. S.17.14

51

S
g3 = — t(—a + s1 sin 30°)ds

Ixx 0
i.e.
AN S
= — — —)d
q78 503/0 ( a+2> s
so that
S 2
978 =753 (2as1 - %) (vi)
and
38 ..
qs = (vii)

" 10a
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Also
S Sz a
81 = — t(——+S2>dS2+ 8
i Ixx 0 2 7
1.€.
28 %2 ( a 4 )d 35
= — —— + 5 )dsp — —
W =55 ) T2T%2)92 7 0,
from which
g3 = i(—2as2 + 253 — 3d%) (viii)
10a3
Thus
1S
= 7504

The remaining distribution follows from symmetry.

The complete shear flow distribution is now found by superimposing the shear flow
produced by the torque, 7', (Eq. (ii)) and the shear flows produced by the shear load
acting through the shear centre. Thus, taking anticlockwise shear flows as negative

0.17S  0.35§  0.52§

q1 =
a a a
0.17§ 03§ 0.478 .
q2 =48 = — - = — (from Eq. (vii))
a a
0.17S
q3 =41 = —
a
0.178 03§ 0.13§
44 =46 = — + =
a a a
0.17S 0.35§ 0.18S
qs = — + =
a a a

The distribution in all walls is parabolic.

$.17.15

Referring to Fig. P.17.15, the wall DB is 3m long so that its cross-sectional
area, 3 x 103 x 8 =24 x 103 mm?, is equal to that of the wall EA, 2 x 103x 12=
24 x 103 mm?. If follows that the centroid of area of the section lies mid-way between
DB and EA on the vertical axis of symmetry. Also since S, = 500kN, Sy =0and I, =0,
Eq. (17.15) reduces to

500 x 103 [ _
s = ————— / tyds + g5 )
Iy 0
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If the origin for s is taken on the axis of symmetry, say at O, then ¢ is zero. Also

L =3 x 103 x 8 x (0.43 x 10°)> +2 x 10° x 12 x (0.43 x 10%)?
+2 x (1 x 10%)* x 10 x sin® 60°/12
ie.
L = 101.25 x 10 mm*

Equation (i) then becomes

N
gs = —4.94 x 105/ tyds
0
In the wall OA, y = —0.43 x 103> mm. Then

N
goa = 4.94 x 105/ 12 x 0.43 x 10° ds = 0.25s
0

and when sy =1 x 103 mm, qoa =250 N/mm.
In the wall AB, y=—-0.43 x 103 + sg cos 30°. Then

s
gaB = —4.94 x 107> / 10(—0.43 x 10° + 0.866s5)ds + 250
0

i.e.
gap = 0.21sp — 2.14 x 107*s3 + 250

When sg = 1 x 10° mm, gaB = 246 N/mm.
In the wall BC, y =0.43 x 10°> mm. Then

N
gsc = —4.94 x 105/ 8 x 0.43 x 107 ds + 246
0

i.e.
gsc = —0.17sc + 246

Note that at C where sc = 1.5 x 10> mm, gpc should equal zero; the discrepancy,
—9 N/mm, is due to rounding off errors.

The maximum shear stress will occur in the wall AB (and ED) mid-way along its
length (this coincides with the neutral axis of the section) where sg =500 mm. This
gives, from Eq. (ii), gap (max) = 301.5 N/mm so that the maximum shear stress is equal
to 301.5/10 = 30.2 N/mm>.
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Solutions to Chapter 18 Problems
S.18.1

Referring to Fig. P.18.1 the maximum torque occurs at the built-in end of the beam and
is given by

Trmax = 20 x 2.5 x 10> = 50000 N m
From Eq. (18.1)

o @max _ T
I'min 2Atmin
i.e.
_ 50000 x 10°
fmax = 577250 x 1000 x 1.2
so that

Tmax = 83.3 N/mm?

o T y§ds
dz =~ 4A2 | Gr

do 2002500 — z) x 103 x 2 1000 n 250
dz 4 x (250 x 1000)2 18000 x 1.2 = 26000 x 2.1

From Eq. (18.4)

ie.

which gives

deo 9
— =8.14 x 1072(2500 — 7)
dz
Then
22
6 =28.14x 1077 (ZSOOz — 5) +C

When z =0, § =0 so that C; =0, hence
2
6=8.14 x 1077 (2500z — 5)

Thus 6 varies parabolically along the length of the beam and when z = 2500 mm

6 =0.0254rad or 1.46°
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$.18.2

The shear modulus of the walls of the beam is constant so that Eq. (18.5) may be written

o T8 (b0, Ao, 0
ST Toa6\ s T A

in which

ds Sds
=@ — and Jos = —
t o !

Also, the warping displacement will be zero on the axis of symmetry, i.e. at the mid-
points of the walls 61 and 34. Therefore take the origin for s at the mid-point of the
wall 61, then Eq. (i) becomes

Ts d0s Aos ..
Wy=—|——— (i1)
2AG \ 6 A

in which

b3 = v/5002 4+ 1002 = 509.9mm and /5 = v/8902 + 1502 = 902.6 mm

Then

5 200 N 300 N 2 x 509.9 N 2x902.6 54799
20 25 1.25 1.25 '

and
A= %(500 + 200) x 890 + %(500 4+ 300) x 500 = 511500 mm?

Equation (ii) then becomes

90500 x 10° x 2479.9 [ 8o, Aos
Wy = —
ST 2 % 511500 x 27500 \2479.9 511500
ie.
wy = 7.98 x 10%(4.0380, — 0.0196A0;) (iii)

The walls of the section are straight so that 8o and Ay vary linearly within each wall. It
follows from Eq. (iii) that w; varies linearly within each wall so that it is only necessary
to calculate the warping displacement at the corners of the section. Thus, referring to
Fig. P.18.2

100 1
w=7098x 107* (4.03 X530~ 0.0196 x 5 X 890 x 100)

1.e.

w1 = —0.53 mm = —wg from antisymmetry
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Also

» 902.6 1
wy =7.98 x 1074 (403 x 52 — 0.0196 x 7 x 250 x 890 ) —0.53

ie.

wy = 0.05mm = —ws
Finally

509.9 1
w3 = 7.98 x 1074 <4.03 X 135 ~ 0.0196 x 3 x 250 x 500) + 0.05

i.e.

w3 = 0.38mm = —wy
S.18.3

Referring to Fig. P.18.3 and considering the rotational equilibrium of the beam

2R =2 x 450 x 1.0 x 2000

so that
R =1450Nm
In the central portion of the beam
T =450+ 1.0(1000 — z) — 1450 = —zNm (z in mm) (1)
and in the outer portions
T =450+ 1.0(1000 — z) = 1450 — zNm (z in mm) (i)

From Eq. (i) it can be seen that T varies linearly from zero at the mid-span of the beam
to —500 Nm at the supports. Further, from Eq. (ii) the torque in the outer portions of
the beam varies linearly from 950 Nm at the support to 450 Nm at the end. Therefore
Tmax = 950 Nm and from Eq. (18.1)

iy = Imx _ Tmax
min 2Atmin
i.e.
950 x 10°

= 24.2N/mm?

Tmax =

2xmwx502x%x25

For convenience the datum for the angle of twist may be taken at the mid-span section
and angles of twist measured relative to this point. Thus, from Eqs (18.4) and (i), in the
central portion of the beam

o zx10% x 7 x 100
dz 4@ x 502)2 x 30000 x 2.5
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i.e.

deo _3
— =—1.70 x 10™°z
dz

Then

2
6=—170x 1078 % +B

When z =0, 6 =0 (datum point) so that B=0. Then
6 =—0.85 x 10787 (iii)
In the outer portions of the beam, from Eqs (18.4) and (ii)

d6 (1450 —2) x 10° x 7 x 100
dz  4(w x 50%)% x 30000 x 2.5

ie.
do
— =1.70 x 1078(1450 — 2)
dz
Hence
ZZ
6=1.70x10"8 (1450z — 5) +C @(v)

When z =500mm, 6 = —2.13 x 1073 rad from Eq. (iii). Thus, substituting this value
in Eq. (iv) gives C = —12.33 x 1073 and Eq. (iv) becomes

2
0=1.70x 1078 <145()z - %) —12.33 x 103 rad v)

The distribution of twist along the beam is then obtained from Eqs (iii) and (v) and
is shown in Fig. S.18.3. Note that the distribution would be displaced upwards by
2.13 x 1073 rad if it were assumed that the angle of twist was zero at the supports.

3.82 x 10 3 rad

VLN

2.13 x 10 8 rad
Fig. 5.18.3
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5.18.4

The total torque applied to the beam is 20 x 4 x 10°> Nm. From symmetry the reactive
torques at A and D will be equal and are 40 x 10°> Nm. Therefore,

Tap = 40000 N m

Tpc = 40000 — 20(z — 1000) = 60000 — 20z Nm (z in mm)

Note that the torque distribution is antisymmetrical about the centre of the beam. The
maximum torque in the beam is therefore 40 000 Nm so that, from Eq. (18.1)

40000 x 10° TL4N/mm?
T = = . mm
M2 % 200 x 350 x 4

The rate of twist along the length of the beam is given by Eq. (18.4) in which

2 %200 2 x 350
% = =+ =216.7
4 6
Then
do 216.7
— = T =15.79 x 107 14T
dz 4 x (200 x 350)2 x 70 000

In AB, Tag =40 000 Nm so that
Oa = 6.32 x 1072+ B

When z =0, a5 = 0 so that B =0 and when z = 1000 mm, 6a5 = 0.0063 rad (0.361°)
In BC, Tgc =60 000 — 20z N m. Then, from Eq. (18.4)

Opc = 15.79 x 1071460000z — 10z%) x 10° + C
When z = 1000 mm, 8gc = 0.0063 so that C = —0.0016. Then
Osc = 1.579 x 1071260 000z — 10z%) — 0.0016

At mid-span where z =3000 mm, 6gc=0.0126 rad (0.722°).

S.18.5

The torque is constant along the length of the beam and is 1 kN m. Also the thickness
is constant round the beam section so that the shear stress will be a maximum where
the area enclosed by the mid-line of the section wall is a minimum, i.e. at the free end.
Then

1000 x 10

= = 33.3N/mm?>
max = 57750 x 150 x 2 /mm
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The rate of twist is given by Eq. (18.4) in which 95 ds/t varies along the length of the
beam as does the area enclosed by the mid-line of the section wall. Then

50z
2x50+4+ (150 + ——

%% _ 2500/ 1 _ 1254+ 0.012
t 2
Also
50z
A=50(150+ — ) = 7500
( + zsoo) Tz
Then
do  ( 1x10° \ (125+0.01z)
dz = \4x25000/ (7500 + z)?
or
do | 12500 + z
dz 100(7500 + z)2
i.e.
do 5000 N 1
dz (7500 +z)2 7500 + z
Then

9=0.1 —5000 +log. (7500 +z) + B
= 0. _ (0]
(7500 + ) C8e ¢

When z =2500mm, 6 =0 so that B= —6.41 and
—5000
0=01] ——— +1 7500 —6.41 | rad
|:(7500+Z)+ g, ( +2) ]ra

When z=0, 6 =10.6°, etc.

5.18.6

In Eq. (18.4), i.e.

o T ?gds
dz ~ 4A2 | Gt

Gt = constant = 44 000 N/mm. Thus, referring to Fig. S.18.6

do 4500 x 103 2 x 2004 100 4+ 7 x 50
dz ~ 4(100 x 200 4 7 x 502/2)2 44000
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ie.
dé _6
— =29.3 x 107" rad/mm
dz
2 J1.6mm 3
? e
U 1.6 mm
—_- c -— | 100 mm
o mm ¥ 50mm l
1 M.G mm |4 —
200 mm
Fig. 5.18.6

The warping displacement is zero on the axis of symmetry so that Eq. (18.5) becomes

W_T_8 dos _ Aoy i)
YR A

where
S ds

5 f &5 nd s
= _— an = _—
Gt 5= ), Gr

Since Gt = constant, Eq. (i) may be written

s
=z e (5 -%) @
in which
%ds:2x200+100+7t x 50 = 657.1 mm
and

A =100 x 200 + 7 x 50%/2 = 23927.0 mm>

Equation (ii) then becomes

Wy

657.1 23927.0

4500 x 10° x 657.1 ( [yds Ao,
"~ 2% 23927.0 x 44000

1.€.

A
ws = 1.40 x 1073 (1.52f ds — 4.18 x IOZAOS) (iii)
0
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In the straight walls fos ds and Ay are linear so that it is only necessary to calculate the
warping displacement at the corners. Thus

w3 = —ws = 1.40 x 1073(1.52 x 50 — 4.18 x 1072 x £ x 200 x 50) = —0.19 mm

wy = —wy = 1.40 x 1073(1.52 x 200 — 4.18 x 1072 x § x 200 x 50) — 0.19
ie.
wy = —w; = —0.056 mm

In the wall 21
/:ds =50¢ and Ao, = 1 x 50%¢
Then Eq. (iii) becomes
wot = 1.40 x 1073(1.52 x 50¢ — 4.18 x 1077 x £ x 50%¢) — 0.056
ie.
wa1 = 0.033¢ — 0.056 (iv)

Thus wp; varies linearly with ¢ and when ¢ = /2 the warping displacement should
be zero. From Eq. (iv), when ¢ =7/2, wy; = —0.004 mm; the discrepancy is due to
rounding off errors.

5.18.7

Suppose the mass density of the covers is p, and of the webs pp. Then
Pa =k1Gy  pp =kiGp
Let W be the weight/unit span. Then
W =2at,pq8 + 2btpppg
so that, substituting for p, and pp
W = 2ki1g(at,G, + btpGp) 1)

The torsional stiffness may be defined as 7/(d6/dz) and from Eq. (8.4)

do T 2a n 2b (i)
- = 11
dz  4a?b2 \ Gut, Gty

Thus, for a given torsional stiffness, df/dz = constant, i.e.

a b
+ —— = constant = k 1il
Gut, Gptp 2 (i)
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Let #/t, = A. Equation (iii) then becomes

t—l a+b
Tk \G, AG

and substituting for #, in Eq. (i)

abG,

ky 2 2
W = 2k gt,(aG AbGp) = 2— b
18ta(aGy + b) kzg ([l + + 2G),

For a maximum

dw _
dr
i.e.
2= 922
Gp
from which
,_Ga_ b
Gy ta

L abGy
Ga

For the condition G,t, = Gpt, knowing that a and b can vary. Eq. (i) becomes

W =2k Ggt,g(a + b)
From Eq. (ii), for constant torsional stiffness

a+b

—— = constant = k3
a?b?

Let b/a = x. Equation (iv) may then be written
W = 2k1Ggtaga(l + x)

and Eq. (v) becomes

14+x
ks = asx?
which gives
1
a = R
kax?

Substituting for a in Eq. (vi)

2k1Gatag (1 +x\"?
W= ll/i“g( 2) (1+2)
ky x

(iv)

v)

(vi)
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i.e.

2k1Gatag (1 + x)*/3
= e 2/3
3

Hence for (dW/dx)=0

1/3
o= 2d+07 zx_5/3(1 +x)*3

3 X283 3
i.e.
4x —2(14+x)=0
so that
x=1=b/a
5.18.8
The maximum shear stress in the section is given by Eq. (18.13) in which, from
Egs. (18.11)
204+ 15425+25
J=2xz3( * ;’ ki ):453.3mm4
Then
50 x 103 x 2 220.6 N /mm’
Thax = ——————— = . mm
e 453.3
From Eq. (18.12)
o T
dz  GJ
ie.
do 50 x 10°
& X ).0044rad/mm
dz 25000 x 453.3
5.18.9
The rate of twist/unit torque is given by Eq. (18.12).
ie.
o 1
dz = GJ
where

3
LR
J= %:5(2x25+2x61.8+60):623mm4
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Then
do _ 1

— =——— =642 x 10" %rad/mm
dz ~ 25000 x 623

$.18.10

From the second of Eqgs (18.13) the maximum shear stress is given by

T .
Tmax = :|:7 (1)

in which J, from Eqs (18.11), is given by (see Fig. P.18.10)

12741275V d
3 3 3 274+ 1. —) Ky

100 x 2.54° 38x 1277 2 0
J=—+2x —— <
0 50
where the origin for s is at the corner 2 (or 5). Thus
J = 854.2 mm*
Substituting in Eq. (i)

2.54 x 100 x 103 5
Tmax = & 2512 = 4297.4N/mm

The warping distribution is given by Eq. (18.20) and is a function of the swept area, AR
(see Fig. 18.11). Since the walls of the section are straight Ar varies linearly around
the cross-section. Also, the warping is zero at the mid-point of the web so that it is only
necessary to calculate the warping at the extremity of each wall. Thus

” T ) 1 55 % 50 100 x 103

W) = — — =—-2X =X X X —

! RGJ 2 26700 x 854.2
= —5.48 mm = —wg from antisymmetry

Note that pr, and therefore AR, is positive in the wall 61.

1 100 x 103
wy)y=-5484+2x = x50 x50 x ——— =548 mm = —ws
2 26700 x 854.2

(pr is negative in the wall 12)

1 100 x 103
w3 =5484+2Xx = x38X7T5X ——— = 17.98mm = —wy
2 26700 x 854.2

(pr is negative in the wall 23)
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S.18.11

The maximum shear stress in the section is given by the second of Eqgs (18.13), i.e.

tmax 1|
Tmax — iw 1)

in which fp4x = t9 and the torsion constant J is obtained using the second of Eqs (18.11).

Thus
r=o| MG st [T (L) s
=2 - s+ = — s+ —
3 )y \a” 3y \3a? 3
In the first integral s is measured from the point 7 while in the second s is measured
from the point 1. Then

dat}
=%
3
Substituting in Eq. (i)
toT 3T
Thax =+t——F— =+—
T T 4ard/3 T dard

The warping distribution is given by Eq. (18.19). Thus, for unit rate of twist
ws = —2AR (i)

Since the walls are straight AR varies linearly in each wall so that it is only necessary to
calculate the warping displacement at the extremities of the walls. Further, the section
is constrained to twist about O so that wg = w3 = w4 =0. Then

w7 = =2 X %aa =—a’ = —wg  (pRr is positive in 37)

wy = —2 X %a2a cos45° = v/2a* = —ws  (pr is negative in 32)

wi = ~2a* +2 x ta(2asin45° + a) = a*(1 + 2v/2) = —we  (pg is negative in 21)

5.18.12

The torsion constant J is given by the first of Eqs (18.11)
ie.

1
J = §(mz3 +4r) = 23818

The maximum shear stress/unit torque is, from Eqs (18.13)

= +0.42/rt*

Tmax —

4
2.38r13
The warping distribution is obtained from Eq. (18.19)
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So
-~ s,
3
2
o
0 - R -
5
4
6
Fig. 5.18.12
1.€.
w = —2AR /unit rate of twist
In 03
1
AR = —=1?0
R 2"
so that
wo3 = 6
and
2
T
w3 = rT — 157172 = —wy
In 32
N r? 1
= —— — —§1T
R 4 2
and
’
w3y = E(JTI” + 2s1)
Then
Wy = %(m’ +2r) = 2.571 7% = —ws
In 21

1
AR = —L—’;(nr +2r) + Eszr
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which gives
oy = —%(2.?2 —5.142r)

and
= +1.5717% = —Wweg

With the centre of twist at O

A LU DD JE TN W SN PP
=—|——-—= )| —=r"+=r2r=40.215r
R 4 2) 2 T2
and
wi = —0.43r7
Maximum shear stress is unchanged but torsional stiffness increases since the warping
is reduced.
5.18.13

The loading is equivalent to a pure torque of 1 x 25 =25kN/mm acting as shown in
Fig. S.18.13 together with a shear load of 1kN acting at 2 (the shear centre).

1KN
T=25KNmm

B
Jo 1y

C

S
1

The maximum shear stress due to the torque is given by Eq. (18.13) in which

Fig. 5.18.13

J_100x33 80 x 2°

=1113.3mm*
3
Then

25 x 103 x 3
)y ="""" "~ _ 67.4N/mm?
Tmax ( ) 11133 /mm
25 x 103 x 2 5
Tmax(12) = ————— = 44.9N/mm

1113.3
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From Eq. (18.12)

de 25 x 103

e = _—90x 10 *rad/
dz _ 25000 x 1113.3 x D radimm

The shear flow distribution due to shear is given by Eq. (17.14) in which S, =0 and
Iy, =0,i.e.

Sy [*
s = —7— tyds
Ly 0

Taking moments of area about the top flange

(100 x 34+ 80 x 2)y =80 x 2 x 40

i.e.
y=13.9mm

Then

2 x 803

Ly = 100 x 3 x 13.9% + X12 + 80 x 2 x 26.1% = 252290 mm*

Therefore

Sy [

Ixx 0
i.e.

2
g2 =—7.93 x 1073 (66.151 — %) (i)

From Eq. (i), 12 is a maximum when s; = 66.1 mm. Then
gi12(max) = —17.4N/mm
and
T12(max) = —8.7 N/mm?
Also, from Eq. (i) the shear flow at 2 in 12 = —16.6 N/mm so that the maximum shear
flow in the flange occurs at 2 and is —16.6/2 = —8.3 N/mm. Then the maximum shear
stress in the flange is —8.3/3 = —2.8 N/mm? in the directions 32 and 42.

The maximum shear stress due to shear and torsion is then 67.4 + 2.8 = 70.2 N/mm?
on the underside of 24 at 2 or on the upper surface of 32 at 2.
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Solutions to Chapter 19 Problems
$.19.1

From Example 19.1
I, =145 x 10° mm*
From Eq. (16.18) in which My, =0 and I, =0
M

X
Oz = Ey
Therefore
6

oy = %y — 1.38y (i)
The C, axis is 75 mm (see Example 19.1) from the upper wall 2367 so that, from Eq. (i),
the maximum direct stress due to bending will occur in the wall 45 where y = —125 mm.
Then

o;(max) = 1.38 x (—125) = —172.5 N/mm2 (compression)

S.19.2
\1 00 KN
y
2 o—"5" 3
S3 \/
200 mm 1 ;t__, 4
121 G i
mm
100 S
200 mm mri 54 _T_e
8 6 5
S5
7 500 o
600 mm
Fig. 5.19.2

Take moments of areas about 23
2(4 x 500 + 2 x 200 + 2 x 400 4 600)y = 2(2 x 500 x 50 + 2 x 500 x 350
+ 2 x 400 x 200 + 2 x 200 x 200)
from which

y = 168.4 mm
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Then (see Section 16.4.5)

4 % 500% x 2 /100>
mz%(—> +2 %500 x 2 x 118.4% +2 x 500 x 2 x 181.6%

500
2 x 4003

) 2 x 2003
+2><T+2x2x400x31.6 +2 X —

12
+2x 2 x 200 x 31.6% +2 x 600 x 168.42

ie.
L = 157.8 x 10® mm*

Since O lies on an axis of symmetry ¢ at O is zero. Then, from Eq. (17.14), the ‘basic’
or ‘open section’ shear flows are

S
q03 = ——=1(168.4)s1
IX)C

and

, Syt Syt
g3in 03 = ——= x 168.4 x 300 = —505207-

XX XX

‘Cut’ the section at mid-point of 54. Then

Syt [%2 Syt (3
qos4 = —— (5o —31.6)dsy) = —— | == — 31.657
Ixx 0 2

Ixx

Then

Syt
qs = —1840—

IXX

=M /% 316+ sy ) dss + 1840
q43 = It 0 . 500S3 53

which gives

_ 31.6 +s§+1840
q43 = 7 053 10

XX

and

. Syt
g3 (in43) = —42 6401—

XX

Syt $4
g6 = _IL [/ (168.4 — s4)dss + 50520 + 42 640]
0

XX
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i.e.
Syt 52
y 4
qig = —— | 168.4s4 — = + 93160
Ly 2
and
Syt
= —80520—
Ixx
Similarly
Syt 2
=-—212316 — + 80520
q65 It S5 + 10 2
and
Syt
=10280—
Ly
Also
gs59 = —Ii (131 656 — 2 — 10280)

From Eq. (17.28)

300 100 500 400
?g gpds = — / qo3 ds1 — / qo4 dsy — / q43ds3 — / q36 dsa
0 0 0

500 100
- / ges5dss — / qs9 dsg
0

Then, substituting for g3, etc.

Syt
g ds = —65 885801

XX

Also
ygds:4x500+2x400+2x200+600:3800

Then

Syt
gso = 34 677%

XX

Hence, the total shear flows are

Syt
go3 = —~168.4-"s)

XX

S 2
a6 =—== (168 dsy — % +93 160+34677)

XX
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and so on and at the mid-point of 36.
g = —179.4N/mm (in direction 63)

and the shear stress is

179.4
— =897 N/mm?

S.19.3

For the closed part of the section, from Eq. (18.4)

4A%G 4A% x 25000 :
GJ (closed) = f i = 2(400 + 200 + 2 x 500) ®
P 2

But
A= %(400 + 200)(500% — 100%)1/2 x 2 = 293 938.8 mm>
Substituting in Eq. (i)
GJ (closed) = 5.4 x 10'2 N mm?
From Eq. (18.11)

3 25000 x 600 x 23
GJ (open) = G S? = X3 X =40 x 10° N mm?

(negligible compared to GJ (closed))

Therefore
Total GJ = 5.4 x 10'2 N mm?

From Eq. (18.4)

de 100 x 10°
& X T 185 x 10 % rad/mm
dz 5.4 x 1012
Then
T GJ(closed)dd 5.4 x 102 x 18.5x 107°
T 24 24 dz 2 x 293938.8
2
i.e.

g = 340N/mm (in closed part)
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Therefore
Tmax = 170 N/mm?
The maximum shear stress in the open part is, from Eqs (18.12) and (18.13)

Tmax = 225000 x 2 x 18.5 x 1076 = £0.9N/mm?

Solutions to Chapter 20 Problems

S.20.1
From either Eq. (20.1) or (20.2)
500 x 10 300 x 10
B =60 x 10+ 40 x 10 + T(Z—i—l)—f—T(Z— 1)
Sy
1 2
L 4 ®
Xs
300 mm — S -
@ @
4 3
| 500 mm |
~ "
Fig. S.20.1(a)
i.e.
By = 4000 mm? = By
500 x 10 300 x 8

BZ=50x8+30x8+T(2+1)+ 2-1)

6
1.e.
B> = 3540mm” = B3

Since the section is now idealized, the shear flow distribution due to an arbitrary shear
load S, applied through the shear centre is, from Eq. (20.11), given by

Sy« .
qs = -2 ZBrYr + 45,0 1)
IXX

r=1
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in which
Lee = 2 x 4000 x 150 4+ 2 x 3540 x 150> = 339 x 10° mm*.

‘Cut’ the section in the wall 12. Then
gb12 = qb43 =0

Sy
Go41 = —I—> x 4000 x (—150) = 1.77 x 10738,

XX

SY
g2 = ——> x 3540 x (—150) = 1.57 x 10735,
Lex ’
Since the shear load is applied through the shear centre the rate of twist is zero and g, o
is given by Eq. (17.28) in which
ds 500 300 300
—=2X —+ — 4+ — =1675
O TR TR
Then

1 300 300
=—— 8 [157x1073x = - 1.77x 103 x =—
0= "1675 y( g S 10)

which gives
gso = —0.034 x 10735,

The complete shear flow distribution is then as shown in Fig. S.20.1(b).

0.034x 10735,

1.804x107%S, B B 1.536x 10735,

0.034x 10735,

Fig. 5.20.1(b)

Taking moments about the intersection of the horizontal axis of symmetry and the
left-hand web

Syxs = 1.536 x 10_3Sy x 300 x 500 — 2 x 0.034 x 10_3Sy x 500 x 150
from which

xs = 225 mm
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S$.20.2

From Eq. (20.6)

r=1
Sy
7 6
8 ‘\E -
50 mm s 20 mm 80 mm
- - 40 mm
50 mi_ Xs / 80 mm
1 "
2 3
| 1somm | 200mm | 1s50mm |
Fig. S.20.2(a)
where
Lo = 4 x 2.0 x 80% + 2 x 200 x 50% + 2 x 200 x 40>

ie.

Ly = 8.04 x 10® mm*
Then

n
gs =—1.86 x 107> "By,
r=1

from which

g12 = —1.86 x 107* x 200 x (—50) = 1.86N/mm

gs3 = —1.86 x 107* x 200 x (—40) = 1.49N/mm

g3 = 1.49 — 1.86 x 107 x 250 x (—80) = 5.21 N/mm

¢27 = 1.86 +5.21 — 1.86 x 107 x 250(—80) = 10.79 N/mm.

The remaining shear flow distribution follows from symmetry; the complete distribution
is shown in Fig. S.20.2(b).
Taking moments about the mid-point of web 27

Syxs = 2(q12 x 150 x 80 — g32 x 200 x 80 — g43 x 150 x 80 — g3 x 40 x 200)
which gives

xs = —122mm (i.e. to the left of web 27)
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. 5.21
1.86 6 1.49
S, 5
10.79 T I
‘ <—>Xs | / All _shﬁr;lr flows
1 4 In mm
m e 1\4

2 ~—— 3

5.21
Fig. 5.20.2(b)

$.20.3

The shear centre, S, lies on the horizontal axis of symmetry, the x axis. Therefore
apply an arbitrary shear load, Sy, through S (Fig. S.20.3(a)). The internal shear flow
distribution is given by Eq. (20.11) which, since I, =0, Sy = 0 and tp = 0, simplifies to

Sy « :
qs = _E ZBrYr + G50 6Y)
r=1
_ 0.8mm 1
& ASy 1.2mm 100mm
— e > x
100 mm
v 0.8mm | 4
500mm
Fig. 5.20.3(a)
in which

Lee = 2 x 450 x 100% + 2 x 550 x 100> = 20 x 10° mm*

Equation (i) then becomes

n
gs = =0.5x 10778, > " Bryr + g0 (i)

r=1

The first term on the right-hand side of Eq. (ii) is the gy distribution (see Eq. (17.16)).
To determine gy, ‘cut’ the section in the wall 23. Then

Gv23 =0
gb3a = —0.5 x 10778, x 550 x (—100) = 2.75 x 107>Sy = gb.12
gva1 = 2.75 x 10738, — 0.5 x 10778, x 450 x (—100) = 5.0 x 10735,
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The value of shear flow at the ‘cut’ is obtained using Eq. (17.28) which, since
G = constant becomes

qs0 = —% (iii)
In Eq. (iii)

% @+2x@+@=1996.7

t 1.0 0.8 1.2

Then, from Eq. (iii) and the above g, distribution

Sy 2.75 x 1073 x 500 5.0 x 1073 x 200
qs0 = — X +
1996.7 0.8 1.2
i.e.
gs0 = —2.14 x 10735,

The complete shear flow distribution is shown in Fig. S.20.3(b).

0.61x10735,
2.14x10735, —

2.86x1073S,

0.61x107%5,
Fig. 5.20.3(b)
Now taking moments about O in Fig. S.20.3(b) and using the result of Eq. (20.10)

SyEs =2 x 0.61 x 10738, x 500 x 100 +2.86 x 10738, x 200 x 500
—2.14 x 10738, x 2(135000 — 500 x 200)

which gives

& = 197.2mm

$.20.4

The x axis is an axis of symmetry so that /, =0, also the shear centre, S, lies on this
axis. Apply an arbitrary shear load, Sy, through S. The internal shear flow distribution
is then given by Eq. (20.11) in which Sy =0 and /,, = 0. Thus

S K n .
qs = _I_:; (/ tpy ds + ZBrYr> + 45,0 (1)

0 r=1
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in which from Fig. S.20.4

0.36 x 80°  0.64 x 803

L = 4 % 100 x 407 4 2 x 0.64 x 240 x 40% + T
i.e.
Ly = 1.17 x 10® mm*
e_
2 0.64mm) Sz |1
33¢ 151
e e ———— _.1° > X |80mm
036mm | “Toeamm
3% 0.64mm 4
240 mm

Fig. 5.20.4

‘Cut’ the section at O. Then, from the first two terms on the right-hand side of Eq. (i)

Sy [
4b,01 = __y/ 0.64s; dsy
Ly 0

ie.
gvo1 = —0.27 x 1070857 (i)
and
gby = —4.32 x 1071,
Also
S 52
b12 = —i (fo 0.64 x 40ds; + 100 x 40) —4.32 x 10745,
1.€.
qv.12 = —10745,(0.225, + 38.52) (i)
whence
gb2 = —91.32 x 10775,
Finally

Sy [ [
Gos =~ [/ 0.36(40 — s3)ds3 + 100 x 40] —91.32 x 1074,
0

XX

255



256  Solutions Manual
i.e.
qv23 = —10748,(0.1253 — 0.15 x 107253 + 125.52) (iv)

The remaining gy, distribution follows from symmetry. From Eq. (17.27)

_ § (gv/1)ds

§ds/t ®

5,0 =

in which

— = =1097.2
t 0.64 * 0.64 * 0.36 0

f ds 80 2 x 240 80

Now substituting in Eq. (v) for g» 01, gb,12 and gy 23 from Eqs (ii)—(iv), respectively

_2x 1071, /40 027 X107 5 +/240 L (0225, +38.52)d
450 = 155 i oo S1ds YT 52 .52)ds>

40 1
+ / —(0.1253 — 0.15 x 107253 + 125.52)ds3
o 0.64

from which
g0 = 70.3 x 1074s,,

The complete shear flow distribution is then

go1 = —10745,(0.27 x 10725} — 70.3) (vi)
g2 = g34 = —107%5,(0.225, — 31.78) (vii)
g3 = —10745,(0.1253 — 0.15 x 107253 — 55.22) (viii)

Taking moments about the mid-point of the wall 23

40 240
SySS =2 |:-/ qo1 X 240ds; + / q12 X 40dS2] (ix)
0 0

Substituting for go; and g2 from Eqs (vi) and (vii) in Eq. (ix)
40
Syks = —2 x 10748, [ / (0.27 x 107257 — 70.3) x 240ds;
0

240
+/ (0.2255 — 31.78) x 40 dszi|
0

from which

&g = 142.5mm
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S.20.5

Referring to Fig. S.20.5(a) the x axis of the beam cross-section is an axis of symmetry
so that I, =0. Further, S, at the end A is equal to —4450N and S, =0. The total
deflection, A, at one end of the beam is then, from Eqs (20.17) and (20.19)

M, M
A= | Zele0, o / ( / 4091 ds) dz i)
L EIxx L sect Gt

in which g, from Eqs (20.20) and (20.11) is given by

Sy.0 " ..
90 =—7" Bryr +4s50 (ii)
XX

r=1

100 mm
100 mm
4450N
1250 mm 500 mm 1250 mm
I I
(b)
Fig. S.20.5
and
_ 490
N = 4450

Since the booms carrying all the direct stresses, Iy, in Eq. (i) is, from Fig. S.20.5(a)
Le = 2 x 650 x 100% +2 x 650 x 75% +2 x 1300 x 100* = 46.3 x 10° mm*
Also, from Fig. S.20.5(b) and taking moments about C
Rp x 500 — 4450 x 1750 — 4450 x 1250 =0
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from which
R =26700N
Therefore in AB
Mo = 4450z M, =z
and in BC

My =334 x10° — 222507 M, = 7500 — 57

Thus the deflection, Ay, due to bending at the end A of the beam is, from the first term
on the right-hand side of Eq. (i)

1 1250 1500
AMm / 44507 dz + / 4450(7500 — 5z)%dz
0 1

- l?lxx 250
i.e.
1250
4450 z 1 371500
Am = | - —<l7500 -5
M= 69000 x 46.3 x 106 {[3 L 151 2’11250
from which
Ay = 1.09 mm

Now ‘cut’ the beam section in the wall 12. From Eq. (20.11), i.e.

Sy —
qs = _é ZBryr + 45,0 (iii)

r=1
b2 =0
Sy S,
gb23 = 1 x 1300 x 100 = —1300001—

XX XX

S, S, S,
gbaa = —130000-2 — ZX % 650 x 100 = —195 000>

XX XX XX

Sy Sy
qb,16 = I x 650 x 75 = —487501—

XX XX

The remaining distribution follows from symmetry. The shear load is applied through
the shear centre of the cross-section so that d9/dz = 0 and g o is given by Eq. (17.28), i.e.

_ $avds
QS,O - l¢‘ds

(t = constant)

in which

%ds=2x300+2x250—|—2x100—|—2x75=1450mm
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i.e.
28,
gs0 = — (—130000 x 250 — 195000 x 100 + 48750 x 75)
’ 14501,
from which
qs0 = 666818, /1,
Then

q12 = 666818, /1,
g3 = —63319S8, /1,
q3s4 = —1283198, /1,x
q16 = — 1154318}, /1,

Therefore the deflection, Ag, due to shear is, from the second term in Eq. (i)

9091
As:/(/ —ds)dz
L sect Gt

i.e.
Sy,OSul 2 2 2
Ag = 222 (1154317 x 75 + 66 6817 x 300 + 633197 x 250
L Gl
+128319% x 100)} dz
Thus
A / Sy0Sy.1 x 4.98 x 1012 q /6 96 x 10-55. 5. 1 d
— = . X
ST ],726700 x 2.5 x (46.3 x 1002 < J, »09y.1 €
Then
1250 1500
Ag = / 6.96 x 108 x 4450 x ldz—i—/ 6.96 x 10~% x 22250 x 5dz
0 1250
from which
As = 2.32 mm

The total deflection, A, is then

A =AM+ As=1.094232 =341 mm
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S.20.6

At any section of the beam the applied loading is equivalent to bending moments in
vertical and horizontal planes, to vertical and horizontal shear forces through the shear
centre (the centre of symmetry C) plus a torque. However, only the vertical deflection
of A is required so that the bending moments and shear forces in the horizontal plane
do not contribute directly to this deflection. The total deflection is, from Eqs (20.14),
(20.17) and (20.19)

ToT MM
A :/ 0 ldz+/ 1 x,odz+/ (/ CIthds) dz 0
L GJ L ElL L sect Gt

Fig. 5.20.6

Referring to Fig. S.20.6 the vertical force/unit length on the beam is
1.2p0= + po= + 0.8p0= — po= = poc  (upwards)
. P02 p02 . P02 Do 5= poc (upwards

acting at a distance of 0.2c¢ to the right of the vertical axis of symmetry. Also the
horizontal force/unit length on the beam is

o pos +0.8p0% — pos = pot
3 p02 -P02 p02—p0

acting to the right and at a distance 0.2¢ above the horizontal axis of symmetry. Thus,
the torque/unit length on the beam is

1.2pg

poc x 0.2¢ — pot x 0.2t = 0.2po(c* — %)

acting in an anticlockwise sense. Then, at any section, a distance z from the built-in
end of the beam

Ty = O.Zp()(c2 — t2)(L -2 T = —1% (unit load acting upwards at A)



Solutions to Chapter 20 Problems
Comparing Eqs (3.12) and (18.4)

4A2
ds
t

ie.
J—afatc) /2 _ e
22 to 2a
Then
L1oT L 0.1po(c? — ) 0.1pgal®(t* — ¢? .
071 :_/ p(;(2 )(L—z)dz: Po 2( ) (ii)
o GJ 0 Gt>c*tg/2a Gt<toc

The bending moment due to the applied loading at any section a distance z from the
built-in end is given by

C
Mo = —p%(L —2)% alsoM,; = —1(L—7z)

Thus
M. M
/ oMo, poc / (L — 2dz
= 2EI,
in which
; _2(a)3tosin2a_a3to t/2\* _ at*t
o 12 6 \a2) 6
Then
MM 3 1 L 3pger?
f oMo SPoc _S(L—ot| = Poc (iii)
" Eaty 4Eatt

The shear load at any section a distance z from the built-in end produced by the actual
loading system is given by

Sy0 =poc(L —z) alsoSy,; =1
From Eq. (17.15), in which I, =0 and S, =0

S, [* .
gs=—7—| tyds+gso0 (iv)
Ly 0

If the origin of s is taken at the point I, g; o = 0 since the shear load is applied on the
vertical axis of symmetry, Eq. (iv) then becomes

Sy s
qs = —7— tyds
Ly 0
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and
0% [ + d
= —— —— +ssina ) ds
q12 21 Jo o\ ~>5
ie.
68, (1 1s?
a2 2 \2 a?
Thus

The remaining distribution follows from symmetry. Then

Qa1 9pocL—z2) (92 2\
Phlds=ax > s— =) ds
sect Gt Ga“t*ty Jo a

i.e.

/ 091 4 3poca(L — z)
S =
et Gt 5Gt2t

Then

L q0491 _ 3poca 3pocal?
—ds 3 ( —z)dz = 3
0 sect Gt ~ 5Gt 1o 10Gt41y
Now substituting in Eq. (i) from Eqgs (ii), (iii) and (v)

0. lpoaL2(t2 -3 3pocL4 3pocaL2

A=
Gt2tyc 4Eaf’ty = 10G#ty

ie.

_ poL2 a(t* = ¢  3cl? 4 3ca
21 10Ge 4Ea  10G

Substituting the given values and taking a = ¢

A po(2¢)* [ ¢l(0.05¢)* — ¢?] 3c(2c)2 +
(0.05¢)21y AE 4Ec 4E

Neglecting the term (0.05¢)? in [(0.05¢)? — ¢?] gives

_5600poc?
o Etg

)
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S.20.7

The pressure loading is equivalent to a shear force/unit length of 3bp/2 acting in the ver-
tical plane of symmetry together with a torque = 3bp((3b/2 —b)/2 = 3b*po/4 as shown
in Fig. S.20.7. The deflection of the beam is then, from Eqs (20.14), (20.17) and (20.19)

ToT M, M
/01 . o1 xod,—l—/(/ 610611d>d 0
L Elxx L sect Gt

¢3bp0/2
Ay
2 (A) S €— 1
52¢ T= 3b2p0/4
- T'_- ————— —-—-—>»x |b
| |
3 Ll
Tt |
3b

Fig. 5.20.7

Now
To = 3b%po(L —z)/4 T) = 3b/2
Also, from Eqgs (3.12) and (18.4)

447 A@BbHE 9b

ggds/t 8b/t 2
Thus
ToT L L?
ToTuy _ / PO pyap = P50 (ii)
. GJ o 4Gt 8Gt
Also
My = 3bpo(L — 2)*/4 M1 = 1(L —2)
Then
M. M L 3p
/ 1Mo :/ PO (1 — 23dz
El o 4EL,
in which

Lo = 2 x 3bt x (b/2)> + 21b° /12 = 5b%1/3
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Thus
Mx 1My, 0 9po 34 9P0L4
2 ( - Z) 2 (111)
Elxx 20Eb SOEb t
Further
3bpog
Sy0 = ——p(L —2) Spi=-1

Taking the origin for s at 1 in the plane of symmetry where g, =0 and since I, =0
and S, =0, Eq. (17.15) simplifies to

S N
xx JO
Then
38y [ (b
= —— tl{=)d
q12 3h31 fo <2> S1
i.e.
38y
= s
q12 Top2 ™!
from which
_ 9S,
2= 50
Also
Sy [ (b 95,
= [ - ds) — —
q23 Ixx/() (2 S2> 52 20b
i.e.
38, (b s3\  9S,
= —— —s —_ = —_
D=7535\22 72 ) " 20
Hence
38y (.52 5
=——=12 3
23 20b< b p T )
Then

Qa1 /2 3ppo(L—2) {3\,
——ds = s7dsy
et Gt o 2Gt 1062

b 2 2
bpo(L —
+2/ Sbpok=2) (3\* (52,55 . ds»
3b/2 2Gt 20 b b?
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which gives

1359
f W9 4o _ PO
sect

Gr T 1000Gt

Hence

L 1359 1359poL?
/ </ g dS) 7 / (L—7)dg = —P0 @iv)
0 sect Gt ~ 1000Gt 2000Gt
Substituting in Eq. (i) from Egs (ii)—(iv) gives

_poL? | 9poL* | 1359pyL?
~ 8Gt  80Eb*t  2000Gt

Thus

A =

pol? [ 9L? N 1609
t \80Eh? = 2000G

Solutions to Chapter 21 Problems
S.21.1

Referring to Fig. P.21.1 the bending moment at section 1 is given by

15 x 12
Thus
P,yu=—-P,1 = 73 = 25kN
U= b= 500 x 1073 ©
Also
100
Pyy=0 and Py =-25x Tx108 = —2.5kN (see Egs (21.1))

Then

Py =[P}y + Py =25kN (tension)

PL = —+/252 +2.52 = —25.1kN (compression)

The shear force at section 1 is 15 x 1 =15kN. This is resisted by Py, the shear
force in the web. Thus

shear in web = 15 — 2.5 = 12.5kN
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Hence

12.5 x 103

q=———— =41.7kN/mm
300
At section 2 the bending moment is
15 x 22
2
Hence
P.yu=—-P,1 = 30 = 75kN
U= el = 400 % 103
Also
P 0 d P 75 x 200 7.5kN
= an = — — = -T7.
»U L 2 % 103

Then

Py =75kN (tension)
and

PL = —+752+7.52 = —75.4kN  (compression)

The shear force at section 2 is 15 x 2=30kN. Hence the shear force in the web
=30 — 7.5 =22.5kN which gives

22.5 x 10°
qg=——-———=>563N/mm
400
S.21.2
The bending moment at section 1 is given by
15 x 12

The second moment of area of the beam cross-section at section 1 is

2 x 3003

L = 2 x 500 x 150% + =2.7 x 10’ mm*

The direct stresses in the flanges in the z direction are, from Eq. (16.18)

7.5 x 10° x 150

57107 = 41.7N/mm?
/X

OzU = —0zL =

Then
P,y =41.7 x 500 =20850N = Py (tension)
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Also
P,1.. = —20850N (compression)
Hence
Py = —20850 x L03 = —2085N (compression)
1x10

Therefore, the shear force in the web at section 1 is given by

Sy =—-15x1x 10° +2085 = —12915N

500 mm?
— T/_'|_
s

300 mm ——— > X

Fig. 5.21.2

The shear flow distribution is obtained using Eq. (21.6). Thus, referring to Fig. S.21.2

12915

1= 57510

N
[/ 2(150 — s)ds 4+ 500 x 150:|
0

Hence
qg=4.8x 10_4(300s — 2475 000)

The maximum value of ¢ occurs when s = 150 mm, i.e.

Gmax = 46.8 N/mm

S.21.3

The beam section at a distance of 1.5 m from the built-in end is shown in Fig. S.21.3.
The bending moment, M, at this section is given by

M= —-40x15=—-60kNm

Since the x axis is an axis of symmetry I, =0; also My, =0. The direct stress
distribution is then, from Eq. (16.18)

M, )
0; = I_y 1)
XX
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SF in panels = 26 669.8 N Ty

A
3
1: ® 35
——-—--—-—-—-06-—-—-—-—-—)x 225 mm
2 4 6
100 mm
250 mm 250 mm

Fig. 5.21.3

in which Iy, = 2 x 1000 x 112.5% +4 x 500 x 112.5? = 50.63 x 10® mm*. Then, from
Eq. (i), the direct stresses in the flanges and stringers are

60 x 10% x 112.5 5
= £+133.3N/mm

o; =

50.63 x 109
Therefore
P,1 =—P;»=—133.3 x 1000 = —133300N
and
P,3=P,5=—P,4=—P;6=—133.3 x 500 = —66650N

From Eq. (21.9)

Py’l = Py,Z = 133 300 X W = 33325N
and
5
Py’3 = Py’4 = Py’j = Py,6 = 66650 x W = 1666.3 N

Thus the total vertical load in the flanges and stringers is
2 x3332.5+4 x 1666.3 = 13330.2N
Hence the total shear force carried by the panels is

40 x 10° — 13330.2 = 26 669.8 N
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The shear flow distribution is given by Eq. (20.11) which, since I, =0, S, =0 and
tp = 0 reduces to

S n
qs = —2 ZBryr + qs,0

Ixx r=1
i.e.
26669.8
qs = — 5063 x 1062 rYr + 45,0
or
n
s = —5.27 x 107" Y "B,y + g40 (ii)
r=1

From Eq. (ii)

gb13 =0

gb3s = —5.27 x 107* x 500 x 112.5 = —29.6N/mm

gbs6 = —29.6 —5.27 x 107* x 500 x 112.5 = —59.2N/mm
gb12 = —5.27 x 107* x 1000 x 112.5 = —59.3N/mm

The remaining distribution follows from symmetry. Now taking moments about the
point 2 (see Eq. (17.17))

26669.8 x 100 = 59.2 x 225 x 500 + 29.6 x 250 x 225 + 2 x 500 x 225,

from which

gs0 = —36.9N/mm (i.e. clockwise)

Then
q13 = 36.9N/mm = q42
gq35 = 36.9 —29.6 = 7.3 N/mm = ge4
gos = 59.2 — 36.9 = 22.3N/mm
g21 = 36.9 +59.3 = 96.2N/mm

Finally

Py=— /P2 + P2, = — (V1333002 +3332.52) x 107 = ~1333kN = P

Py = — /P2y + P2y = — (1666502 + 1666.32) x 1073

= —667kN = P5 = —P4 = —P6
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Solutions to Chapter 22 Problems

S.22.1
The direct stresses in the booms are obtained from Eq. (16.18) in which I,, =0 and
M, =0. Thus
M .
o, =—y (1)
IX)C

From Fig. P.22.1 the y coordinates of the booms are

y1 = —y6 = 750 mm
y2 = yi0 = —y5 = —y7 = 250 + 500 sin 45° = 603.6 mm
Y3 =Yy9 = —y4 = —yg = 250 mm

Then I, =2 x 150(7502 + 2 x 603.62 + 2 x 250%) =4.25 x 108 mm*. Hence, from

Eq. (i)
100 x 106
77 425 % 1087
ie.
o, = 0.24y
Thus
Boom 1 210 39 48 57 6

o (N/mm?) 180.0 1449 60.0 —60.0 —1449 —180.0

From Eq. (20.11)

qs = ZBryr"i‘QSO
xx r=1
i.e.
50 x 10° x 150
4= oe o5 2 s
so that

gs = —0.018y, + g5, (ii)
‘Cut’ the wall 89. Then, from the first term on the right-hand side of Eq. (ii)

qp,89 =0
gvo10 = —0.018 x 250 = —4.5N/mm
gv.101 = —4.5—0.018 x 603.6 = —15.4N/mm
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gb.12 = —15.4 —0.018 x 750 = —28.9 N/mm
gb23 = —28.9 — 0.018 x 603.6 = —39.8 N/mm
gb34 = —39.8 — 0.018 x 250 = —44.3N/mm

The remaining gy, distribution follows from symmetry and the complete distribution
is shown in Fig. S.22.1. The moment of a constant shear flow in a panel about a specific
point is given by Eq. (20.10). Thus, taking moments about C (see Eq. (17.17))

50 x 10° x 250 = 2(—2 x 454910 — 2 x 15.4A101 — 2 x 28.9A12 — 2 x 39.843
— 2 x 44.3A34) — 2Aqy (iii)
in which

Azs = 1 x 500 x 250 = 62 500 mm?

Agz = Agig = 62500 + 505 x 7 x 500% — 1 x 250 x 353.6 = 116474.8 mm*

Ap =Ajo1 = 5 x 250 x 353.6 4 555 x 7w x 500% = 142374.8 mm?

50 kN

9
443

8 4

4.5
39.8
5
. Shear flows
15.4 |6 28.9 in N/mm

Fig. 5.22.1
Also the total area, A, of the cross-section is
A =500 x 1000 + 7 x 500% = 1285398.2 mm?
Eq. (iii) then becomes
50 x 10° x 250 = —2 x 2(4.5 x 116474.8 + 15.4 x 142374.8 +28.9 x 142374.8
+39.8 x 116474.8 +44.3 x 62500) — 2 x 1285398.2¢;0
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from which
gso = —27.0N/mm (clockwise)

Then
ggo = 27.0N/mm, ¢919 = ¢g78 =22.5N/mm, ¢i01 = g7 = 11.6 N/mm,

q21 = qe5 = 1.9N/mm, g3 = g54 = 12.8 N/mm, ¢43 = 17.3N/mm

Solutions to Chapter 23 Problems
S.23.1

The beam section is unsymmetrical and M, = —120000Nm, M, = —30000Nm.
Therefore, the direct stresses in the booms are given by Eq. (16.18), i.e.

Myl — M, I M.ly, — M1, )
0z=( yhax J;Xy))H_( xTyy )Jc})y (i)

Ly — I, Ly — I)%y

AY

240 mm _ > x
X C _ 180 mm

(X }

400 mm 400 mm 400 mm
[

Fig. 5.23.1

In Fig. S.23.1 x =600 mm by inspection. Also, taking moments of area about the
line of the bottom booms

(4 x 1000 + 4 x 600)y = 1000 x 240 + 1000 x 180 4 600 x 220 + 600 x 200

from which
y = 105 mm
Then
Ly =2 x 1000 x 105% 42 x 600 x 1052 4 1000 x 1352 + 1000 x 752 + 600 x 115>
+ 600 x 95% = 72.5 x 10° mm*
Ly = 4 x 1000 x 600% + 4 x 600 x 200* = 1536.0 x 10° mm*
Ly = 1000[(—600)(135) + (600)(75)] + 600[(—200)(115) + (200)(95)]

= —38.4 x 10° mm*



Solutions to Chapter 23 Problems
Table S.23.1
Boom 1 2 3 4 5 6
x (mm) —600 —200 200 600 600 200 —600
y (mm) 135 115 95 75 —105 —105 —105
o, (N/mm?) —190.7 —181.7 —172.8 —163.8 140.0 164.8 214.4

Note that the sum of the contributions of booms 5, 6, 7 and 8 to Iy is zero. Substituting

for My, My, I, etc. in Eq. (i) gives
o; = —0.062x — 1.688y
The solution is completed in Table S.23.1.

S.23.2

From Eq. (23.6) for Cell I

deo 1
_— = 1) 1) S 052) — qrid
iz ZAIG[qI( 21 + 816 + 865 + 852) — quds2]
and for Cell 11
do

1
— = ——[—qg18 ) 1) ) é
& 2AHG[ q1852 + qu(832 + 825 + 854 + 643)]

In Egs (i) and (ii)

Ay = 7750 + (250 4 600) x 500/2 = 220250 mm?
At = 6450 + (150 + 600) x 920/2 = 351 450 mm?>

821 = (v/2502 4 5002)/1.63 = 343.0 816 = 300/2.03 = 147.8
865 = (v/1002 4 5002)/0.92 = 554.2 855 = 600/2.54 = 236.2
854 = (v/2502 +9202)/0.92 = 1036.3 843 = 250/0.56 = 446.4

83 = (v/200% + 9202)/0.92 = 1023.4

Substituting these values in Eqgs (i) and (ii) gives, for Cell I

de 1

& (1281.2q; — 2362
& = 2 x 2202506 aA qu)

and for Cell II

de 1

L ((2362q+2742.3
4z = 2 x 351450G" at qu)

(i)

®

(i)

(iii)

(iv)
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Equating Eqgs (iii) and (iv) gives
qu = 0.73q1
Then, in Cell I

1
Tmax = T65 = o = 1.087¢1

0.92
and in Cell II
Il
Tmax = & — 1.304q;
In the wall 52
q1 — qu
= = 0.106
B2= 554 a
Therefore

Tmax = 1.304¢r = 140 N/mm?
which gives
g1 = 107.4N/mm
and, from Eq. (v)
qn = 78.4N/mm
Substituting for g1 and gy in Eq. (23.4)

T = (2 x220250 x 107.4 + 2 x 351450 x 78.4) x 1072
ie.
T =102417Nm
From Eq. (iii) (or Eq. (iv))

do 1
dz 2 x 220250 x 26600

(1281.2 x 107.4 — 236.2 x 78.4)

i.e.
do
— =1.02 x 107 rad/mm
dz

Hence

180
6 =1.02 x 107> x 2500 x (—) = 1.46°
T

The torsional stiffness is obtained from Eq. (3.12), thus

T

J = @) = 102417 x 10%/(1.02 x 107) = 10 x 10'> Nmm?/rad
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S.23.3

From Eq. (23.6) for Cell I
o

8 o 5 i) — 8 i .
dz 2AIG[q1( 450 + 45 ) qTdy4s5 ] (1)
For Cell I
do 1 [ S + (3 + S + ) + ) ) S ] ()
dz 244G~ ' i - ii
dz  2ApGh d1o4st T o34 T dasi T 056 T 063) — qini%63
For Cell 111
dé 1 [—qndes + qm(823 + 836 + 867 + 672) 5701 (i)
dz ~ 2AmG- - iii
Q& 2Ap Gl dmees T qumions 036 067 7+ 072) — 4IVOT72
For Cell IV
dz N iv
dz ~ 2AnG quo72 -+ qrv(027 T 078 T+ 081 12
where

812 = 878 = 762/0.915 = 832.8 3833 = 867 = 834 = 856 = 812/0.915 = 887.4
8451 = 356/1.220 = 291.8 450 = 1525/0.711 = 2144.9
836 = 406/1.625 = 249.8 70 =356/1.22 =291.8 6§31 = 254/0.915 = 277.6
Substituting these values in Eqs (i)—(iv)
do

— = ————(2436.7q; — 291.8
& = 2% 161500G" a1~ 291.8qu) )
do ! (—291.8q1 + 2316.4 249.8¢m1) (vi)
—_— = (— . . — . V1
dz 2 x 291000G @ qn qm
do = ! (—249.8qm + 23164 291.8q1v) (vii)
dz ~ 2 x291000G -0q11 AqIn .8qIv vii
dé ! (—291.8 + 2235.0g1v) (viii)
— = - . . 111
dz 2 x 226000G qm a v
Also, from Eq. (23.4)
T = 2(161500¢; + 291 000g1 + 291 000¢ + 226 000g1v) (ix)
Equating Eqs (v) and (vi)
g1 — 0.607gy + 0.053gm = 0 (%)

Now equating Eqs (v) and (vii)
g1 — 0.063¢g11 — 0.528¢mm + 0.066gry = 0 (xi)
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Equating Eqgs (v) and (viii)
g1 — 0.120g1 + 0.089¢m — 0.655¢gry = 0 (xii)
From Eq. (ix)
g1+ 1.802¢11 + 1.802¢m + 1.399grv = 3.096 x 10767 (xiii)
Subtracting Eq. (xi) from (x)
g — 1.068¢gm + 0.121gry =0 (xiv)
Subtracting Eq. (xii) from (x)
qu + 0.074qm — 1.345gry =0 (xv)
Subtracting Eq. (xiii) from (x)
qn + 0.726qm + 0.581gry =0 (xvi)
Now subtracting Eq. (xv) from (xiv)
g — 1.284qy =0 (xvii)
Subtracting Eq. (xvi) from (xiv)
qur + 0.256gry = 0.716 x 107°T (xviii)
Finally, subtracting Eq. (xviii) from (xvii)
qiv = 0.465 x 107°T

and from Eq. (xvii)
gur = 0.597 x 107°T
Substituting for g1 and gy in Eq. (viii)
do 1914 x 10°°T
dz G
so that
T/(d6/dz) = 522.5 x 10°G Nmm? /rad

S.234

In this problem the cells are not connected consecutively so that Eq. (23.6) does not
apply. Therefore, from Eq. (23.5) for Cell I

do 1 .
Fe W[QI(SUU + 823 + 034U + 841) — qudzqu — qmi(823 + 841)] 1)
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For Cell I
de 1 ..
@ m[—qlaaw + qu(34u + 8341) — qmids4L] (if)
For Cell III
do 1
FE m[—m(fm + 841) — quésqL + qui(S14 + 8431 + 832 + S511)] (ii1)

In Egs (1)—(iii)

8o = 1084/1.220 = 888.5 8, = 2160/1.625 = 1329.2
814 = 823 = 127/0.915 = 138.8 83,0 = 8340 = 797/0.915 = 871.0

Substituting these values in Eqs (i)—(iii)

j—i — m(zonlql — 871.0q1 — 277.6qm) (iv)

do 1

© = 73035006 871001 + 1742.0gn — 871.0qm) v)

do 1 .
= (—277.6q1 — 871.0gn1 + 2477.8q1m) (vi)

dz 2 x 528000G
Also, from Eq. (23.4)

565000 x 10° = 2(108 400g; + 202 500411 + 528 000g11) (vii)

Equating Eqgs (iv) and (v)
g1 — 0.720g11 + 0.075gm = 0 (viii)

Equating Eqgs (iv) and (vi)
g1 — 0.331gyr — 0.375qm =0 (ix)

From Eq. (vii)
q1 + 1.868qy + 4.871gm = 260.61 x)

Now subtracting Eq. (ix) from (viii)
qu — 1.157qu =0 (xi)
Subtracting Eq. (x) from (viii)
qu + 1.853¢gm = 100.70 (xii)
Finally, subtracting Eq. (xii) from (xi)

g = 33.5N/mm
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Then, from Eq. (xi)

g = 38.8 N/mm
and from Eq. (ix)

q1 = 25.4N/mm

Thus

giou =254N/mm gL =33.5N/mm g4 = g3 = 33.5—-25.4 =8.1N/mm
qauu = 38.8 —25.4=134N/mm ¢34 = 38.8 —33.5=53N/mm

S.23.5

In Eq. (23.10) the gy shear flow distribution is given by Eq. (20.6) in which, since the
x axis is an axis of symmetry (Fig. S.23.5), I, =0; also S, = 0. Thus

s
=3 By, 0)
L r=1

T 44500N

5

101 mm
254 mm -—>» X | 406 mm
101 mm
635mm 763 mm
[ |
Fig. S.23.5
in which

Lo =2 x 1290 x 1277 +2 x 1936 x 203% + 2 x 645 x 1012 = 214.3 x 10° mm*
Then Eq. (i) becomes

44500 < e
43 < 10 ZB,y, =-2.08x 1074 ZB,yr

r=1

gb = —
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‘Cut’ the walls 65 and 54. Then

gb,65 = qv54 = 0

gos1 = —2.08 x 107% x 1290 x 127 = —32.8 N/mm
qv.12 = qv23 = 0 (from symmetry)

g5 = —2.08 x 107 x 1936(—203) = 81.7N/mm
gv34 = —2.08 x 107* x 645(—101) = 13.6N/mm

From Eq. (23.10) for Cell I

deo 1 ..
— = ——[¢5,01(856 + d61 + 812 + 824) — G5,0.11625 + Gb25025 + gb61061] (1)
dz 2A1G
For Cell I
do 1
— = —— 45,0125 + ¢5,0,1(845 + 852 + 823 4 834) + qb,34034 + qb,52825] (i)
dz 2A1G
in which
856 = 812 = 647/0.915 = 707.1 845 = 823 = 775/0.559 = 1386.4
861 = 254/1.625 = 156.3 §50 = 406/2.032 = 199.8 34 = 202/1.220 = 165.6

Substituting these values in Eqs (ii) and (iii)

do 1
— = ———(1770. —199. 11197. i
=~ 2% 232000 G( 0.3¢5,01 — 199.8g5011 + 97.0) (v)
do

= (—199.8¢5,01 + 3138.2¢g5 011 — 14071.5) %)

dz 2 x 258000G

Also, taking moments about the mid-point of the web 25 and from Eq. (23.11) (or
Eq. (23.12))

0=13.6 x 202 x 763 — 32.8 x 254 x 635 4 2A14,,01 + 2Anqs,01 (vi)
Equating Egs (iv) and (v)
gs01 — 1.55¢501 +12.23 =0 (vii)
From Eq. (vi)
gs01+ 1.11gs011 — 6.838 =0 (viii)

Subtracting Eq. (viii) from (vii) gives

gson = 7.2N/mm
Then, from Eq. (vii)

gs01 = —1.1 N/mm
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Thus
q16 = 32.84+ 1.1 =339N/mm g5 = ¢g21 = 1.1 N/mm
qas = qo3 = T72N/mm ¢34 = 13.6+ 7.2 = 20.8 N/mm
g5 =81.7—1.1 —-7.2=73.4N/mm

5.23.6

Referring to Fig. P.23.6, the horizontal x axis is an axis of symmetry so that I,, =0.
Further, S, = 0 so that, from Eq. (20.6)

ZBryr (@)
r=1

in which
Lo = 4 x 1290 x 153% 4+ 4 x 645 x 153% = 181.2 x 10° mm*

Eq. (i) then becomes

n

66750 e
=~ T5T7 106 ZB,y, =—3.68 x 107* ) "B,y,

r=1
Now, ‘cutting’ Cell I in the wall 45 and Cell II in the wall 12
Gv45 =0 =gp,12
G4z = —3.68 x 107 x 645 x 153 = —36.3N/mm = gp 65 (from symmetry)

gbag = —3.68 x 107 x 1290 x 153 = —72.6N/mm
gp,78 = 0 (from symmetry)

gv.76 = —3.68 x 1074 x 645 x (=153) =36.3N/mm = gp32 (from symmetry)
gbe3 = 36.3 +36.3 —3.68 x 1074 x 1290 x (—153) = 145.2N/mm

The shear load is applied through the shear centre of the section so that the rate of
twist of the section, d6/dz, is zero and Eq. (23.10) for Cell I simplifies to

1
0= —— 634 + 845 + 856 + &
3AGrer [95,0,1(834 + 845 + 856 + 63)
— 50,1063 + gb.63963 + qb,34034 + gb 566561 (i)
and for Cell I1
1
0= ———[—¢s501863 + gs01(812 + 623 + 836 + 867 + 878 + 831) + gb.81581
2A11GREF

+ ¢b.23923 + gb.36936 + gv,67567] (iii)
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in which Grgp = 24 200 N/mm?. Then, from Eq. (23.9)

. .. 20700
t34 = t56 = 24—200 x 0.915 = 0.783 mm
. . . 24800

Thus
834 = 856 = 380/0.783 = 485.3
812 = 623 = 867 = 878 = 356/0.915 = 389.1
836 = 831 = 306/1.250 = 244.8
845 = 610/1.250 = 488.0
Eq. (ii) then becomes
1703.4¢5,01 — 244.8q501 +70777.7 = 0
or
gs01 — 0.144g5011 +41.55 =0 (iv)
and Eq. (iii) becomes
—244 8¢501 + 2046g,0m1 —46021.1 =0
or
qs.01 — 8.358¢50mm + 188.0=0 v)
Subtracting Eq. (v) from (iv) gives
gson = 17.8 N/mm
Then, from Eq. (v)
qs01 = —39.2N/mm
The resulting shear flows are then
q12 =¢q78 = 17.8N/mm ¢33 = q76 = 36.3 — 17.8 = 18.5N/mm
qe3 = 145.2 —17.8 — 39.2 = 88.2N/mm
a3 = q65 = 39.2 -36.3 =29N/mm gs54 = 39.2N/mm
qg1 = 72.6 4+ 17.8 = 90.4 N/mm
Now taking moments about the mid-point of the web 63
66750xs = —2 x g76 X 356 x 153 +2 x g78 X 356 x 153 4 gg; x 306 x 712
—2 X q43 X 380 x 153 — gs4 x 2(51500 + 153 x 380) (see Eq. (20.10))
from which

xs = 160.1 mm
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S.23.7

Referring to Fig. P.23.7 the horizontal x axis is an axis of symmetry so that I, = 0 and
the shear centre lies on this axis. Further, applying an arbitrary shear load, S, through
the shear centre then S, =0 and Eq. (20.6) simplifies to

S n
qp = _I_y ZBryr (1)
=1
in which
Lo = 2 X 645 x 1022 +2 x 1290 x 1522 +2 x 1935 x 150% = 162.4 x 10° mm*

Eq. (i) then becomes

n
o = —6.16 x 1075, Y " B,, (ii)

r=1

‘Cut’ the walls 34° and 23. Then, from Eq. (ii)

gb34> = gb23 = 0 =gp4s (from symmetry)

Gpazi = —6.16 x 10778, x 1935 x (=152) = 1.81 x 1075, N/mm

Gb6s = —6.16 x 10778, x 645 x (—=102) = 0.41 x 1072S, N/mm = gp

(from symmetry)

gbs2 = 0.41 x 10738, — 6.16 x 1072, x 1290 x (—152) = 1.62 x 107>S, N/mm

Since the shear load, Sy, is applied through the shear centre of the section the rate of
twist, d6/dz, is zero. Thus, for Cell I, Eq. (23.10) reduces to

0 = ¢5,01(8340 + 8341) — gs.011034i + Gp 43i034i (ii1)
and for Cell IT
0 = —q5,010431 + q5,011(823 + 341 + 845 + 852) + gb 52052 — Gp43idszi  (iV)
in which

8340 = 1015/0.559 = 1815.7 834 = 304/2.030 = 149.8
823 = 845 = 765/0.915 = 836.1
825 = 304/1.625 = 187.1

Thus Eq. (iii) becomes

1965.5¢,0.1 — 149.8¢, 011 + 0.2718, = 0
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or
gs01 — 0.076¢5011 + 0.138 x 10735, =0 V)

and Eq. (iv) becomes
—149.8¢5,01 + 2009.1¢5 011 + 319.64 x 107%S, =0
or

gs01 — 13.411g5011 — 0.213 x 10738, = 0 (vi)
Subtracting Eq. (vi) from (v)

13.335¢, 011 + 0.351 x 10738, =0

whence

gsoa = —0.026 x 10738,
Then from Eq. (vi)

gs00 = —0.139 x 10775,

Now taking moments about the mid-point of the web 43

Syxg = —24p21(508 x 152 4 50 x 762) + gp.52 x 304 x 762 + 2 x 258 0004011
+2 x 93000g5,01

from which

Xy = 241.4mm

5.23.8

The direct stresses in the booms are given by the first of Eqs (16.21) in which, referring
to Fig. P.23.8, at the larger cross-section

Ly = 2 x 600 x 105% + 4 x 800 x 160% = 95.2 x 10° mm*

Then, from Eq. (21.8)

M.B
P,y =0.,Br = L)7r
IXX
or
1800 x 103 _ .
or = 955 o6 B = 1:89 % 10 2By, @)

The components of boom load in the y and x directions (see Fig. 21.4(a) for the axis
system) are found using Eqs. (21.9) and (21.10). Then, choosing the intersection of
the web 52 and the horizontal axis of symmetry (the x axis) as the moment centre
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Table S.23.8

Boom P, (N) &y/éz x;/6z Py, (N) Py, (N) P, (N) Nr & Py &, Py ny
(mm) (mm) (Nmm) (N mm)

1 1190.7 0.045 —-0.12 53.6 —142.9 1200.4 590 105 31624 —15004.5

2 2419.2  0.060 O 145.2 0 2423.6 0 160 0 0

3 2419.2  0.060 0.18 145.2 435.5 2462.4 790 160 —114708 69680

4 —2419.2 —0.060 0.18 1452 —435.5 —2462.4 790 160 —114708 69680

5 —2419.2 —-0.060 O 145.2 0 —2423.6 0 160 0 0

6 —1190.7 —-0.045 —-0.12 53.6 1429 —1200.4 590 105 31624 —15004.5

and defining the boom positions in relation to the moment centre as in Fig. 21.5 the
moments corresponding to the boom loads are calculated in Table S.23.8. In Table S.23.8
anticlockwise moments about the moment centre are positive, clockwise negative. Also

n
D Per=0
r=1

n
> Py, =6830N

r=1

n
> P& = —166168 N mm

n
> Perny = 109351 N mm

r=I1

The shear load resisted by the shear stresses in the webs and panels is then

Sy, =12000 — 688 = 11312N

‘Cut’ the walls 12, 23 and 34° in the larger cross-section. Then, from Eq. (20.6) and

noting that /,, =0

i.e.
do =

Thus

11312

g M
-2 Z By,
Lex r=1

gdb,12 = 4b,23 = (4b34° = {b,45 = {b,56 = 0
gve1 = —1.188 x 107* x 600 x (—105) = 7.48 N/mm
G52 = —1.188 x 107* x 800 x (—160) = 15.21 N/mm

dp43t =

r=I1

n
~ 552 1 1% ZBryr =—1188 x 107> "By,

—1.188 x 107 x 800 x (—160) = 15.21 N/mm
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From Eq. (23.10) for Cell I

3_i = ﬁ[qsm(éw + 3341) — gs.0.1834i + Gp, 43i043i] (ii)
For Cell I
dé 1
& m[—qs,o,l%m + g5,0,11(823 + 8341 + 845 + 852) — g5.0,m852
+ 4v,52852 — G 4316431] (iii)
For Cell TIT
d@ 1
&~ 2AnG [ 45011852 + g5,0m(812 + 825 + 856 + J61) + gb,6161 — gb,52852] (1v)
in which

812 = 856 = 600/1.0 = 600 853 = 845 = 800/1.0 = 800
8340 = 1200/0.6 = 2000 834 = 320/2.0 = 160 85, = 320/2.0 = 160
361 = 210/1.5 = 140

Substituting these values in Eqs (i1)—(iv)

dé 1
& = 2% 100000G ! —1 2433,

dz ~ 2 x 100 000G 21604501 — 160g, 011 + 2433.6) )
do

— = (=160 1920 — 160 .
4z = 2% 260000G" 4501+ 1920g501 qs.0.111) vi)
do

& m(—mo%,o,n + 1500450, — 1384.8) (vii)

Also, taking moments about the mid-point of web 52, i.e. the moment centre (see
Eq. (23.13))

0= gb,61 X 210 x 590 — qp.43i X 320 x 790 + 2AIC]s,0,I + 2Aqu’(),H

n n
+ 2Amgs.0m + Z Py + Z Py,r%.r (viii)
r=1 r=1

Substituting the appropriate values in Eq. (viii) and simplifying gives
gs01 + 2.6g5011 + 1.8g501m — 14.88 = 0 (ix)
Equating Eqs (v) and (vi)

qds,0,1 — 0-404QS,0,II + 0-028(]5,0,111 +1.095=0 (x)
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Equating Eqs (v) and (vii)
qs.01 — 0.033g5011 — 0.386g501m + 1.483 =0 (xi)

Now subtracting Eq. (x) from (ix)

gsoa + 0.590¢50m — 5.318 =0 (xii)
and subtracting Eq. (xi) from (ix)

gso11 + 0.830g501m — 6.215 =0 (xiil)
Finally, subtracting Eq. (xiii) from (xii) gives

gsomn = 3.74N/mm

Then, from Eq. (xiii)
gson = 3.11 N/mm
and from Eq. (ix)
gs0,1 = 0.06 N/mm
The complete shear flow distribution is then
q12 = gs6 = 3.74N/mm  g37 = g45 = 3.11 N/mm

@340 = 0.06 N/mm g3 = 12.16 N/mm
g52 = 1458 N/mm g = 11.22N/mm

$.23.9

Consider first the flange loads and shear flows produced by the shear load acting through
the shear centre of the wing box. Referring to Fig. S.23.9(a), in bay @ the shear load is
resisted by the shear flows ¢ in the spar webs. Then

200 o
= = mm
= 55200
Similarly in bay @
2000
- —5N
2= 55200 /mm

From symmetry the bending moment produced by the shear load will produce equal
but opposite loads in the top and bottom flanges. These flange loads will increase with
bending moment, i.e. linearly, from zero at the free end to

2000 x 1000
2 x 200

= 5000 N
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200 mm

Fig. S.23.9(a)

at the built-in end. Then, at the built-in end
P =P4=—P,=—P3; =5000N

Alternatively, the flange loads may be determined by considering the equilibrium of a
single flange subjected to the flange load and the shear flows in the adjacent spar webs.

Now consider the action of the applied torque in Fig. S.23.9(b). In bay @ the torque
is resisted by differential bending of the spar webs. Thus

g1 x 200 x 400 = 1000 x 10°
which gives
g1 = 12.5N/mm

The differential bending of the spar webs in bay @ induces flange loads as shown in
Fig. S.23.9(c). For equilibrium of flange 1

2P; =500g1 = 500 x 12.5

so that
P; =3125N

Now considering the equilibrium of flange 1 in bay @
P+ g2 x500 —g3 x500=0

whence

g —q3 = —6.25 ()
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Fig. 5.23.9(b)
P, «—
2 N
Pra—
<— P
T 7
g
P1 —> —
\
H P1
500mm |
|
Fig. 5.23.9(c)

Also, the resultant of the shear flows in the spar webs and skin panels in bay @ is
equivalent to the applied torque. Thus

2 x 2 x £ %200 x 200g2 +2 x 2 x 1 x 400 x 100g3 = 1000 x 10
ie.
g2 +q3 =125 (ii)
Adding Egs (i) and (ii) gives
g2 = 3.125N/mm

whence

g3 = 9.375 N/mm
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The shear flows due to the combined action of the shear and torsional loads are then
as follows:
Bay @

Spar webs: ¢ =12.5—-5="7.5N/mm
Bay @
Spar webs: g =5 —3.125 = 1.875N/mm
Skin panels: ¢ = 9.375 N/mm

The flange loads are:
Bay @

At the built-in end: P; = 5000 — 3125 = 1875 N (tension)
At the central rib:  P; = 2500 + 3125 = 5625N  (tension)

Bay @

At the central rib: Py = 3625N (tension)
At the freeend: P; =0

Finally the shear flows on the central rib are:

On the horizontal edges: ¢ = 9.375N/mm
On the vertical edges: ¢ = 7.5+ 1.875 = 9.375N/mm

Solutions to Chapter 24 Problems
S.24.1

From the overall equilibrium of the beam in Fig. S.24.1(a)
RF =4 kN RD = 2kN

The shear load in the panel ABEF is therefore 4 kN and the shear flow ¢ is given by

4 x 103 ANy
= = mm
= 1000
Similarly
_2x10° N/
2= "000 — /MM

Considering the vertical equilibrium of the length & of the stiffener BE in
Fig. S.24.1(b)

Pgg + (g1 + g2)h = 6 x 10°
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A B C
=z N K
/‘ L‘h \J F% 1000 mm
p— —
F ;; ¢E % D
6 kN
RFT T HD
| 1000 mm ‘ 2000 mm |
[ [ |
Fig. S.24.1(a)
B
a4 Qo 1000 mm
il
. L y
¢ 6 kN
Fig. S.24.1(b)

where Pgg is the tensile load in the

stiffener at the height 4, i.e.

Prg =6 x 10° — 6k

®

Then from Eq. (i), when =0, Pgg =6000N and when /= 1000 mm. Pgg=0.
Therefore the stiffener load varies linearly from zero at B to 6000 N at E.

A
5 > Ppg
1000 mm 9
T > P
F
.
Re

Fig. S.24.1(c)
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Consider now the length z of the beam in Fig. S.24.1(c). Taking moments about the
bottom flange at the section z

Pap x 1000 + Rpz =0

whence
Pag = —4zN

Thus Pap varies linearly from zero at A to 4000 N (compression) at B. Similarly Pcp
varies linearly from zero at C to 4000 N (compression) at B.

S.24.2

Referring to Fig. P.24.2 and considering the vertical equilibrium of the stiffener CDF
8000 sin 30° — g1 x 200 — g2 x 200 =0

from which
q1+q2 =20 ®
Now considering the horizontal equilibrium of the stiffener ED

8000 cos 30° — g1 x 300 4+ g x 300 =0

whence
g1 —q =231 (ii)
Adding Eqgs (i) and (ii)
2g; = 43.1

ie.

g1 = 21.6 N/mm
so that, from Eq. (i)

g2 = —1.6 N/mm

The vertical shear load at any section in the panel ABEGH is 8000 sin 30° = 4000 N.
Hence

400g3 = 4000
ie.
g3 = 10 N/mm

Now consider the equilibrium of the flange ABC in Fig. S.24.2(a). At any section z
between C and B

Pcp = 21.67 (iii)
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so that Pcp varies linearly from zero at C to 6480 N (tension) at B. Also at any section
z between B and A

Ppa = 21.6 x 300 4 10(z — 300)

Z €—
A B C
[ ]
10 N/mm 21.6 N/mm
300 mm 300 mm
[ [
Fig. S.24.2(a)
i.e.
Pga = 3480 + 10z (iv)

Thus Ppa varies linearly from 6480 N (tension) at B to 9480 N (tension) at A.
Referring to Fig. S.24.2(b) for the bottom flange HGF, the flange load Prg at any
section z is given by

Prg = 1.62 v)
10 N/mm 1.6 N/mm
[ ]
H G F
Z €—
300 mm 300 mm
[ [

Fig. 5.24.2(b)
Thus Pgg varies linearly from zero at F to 480 N (tension) at G. Also at any section z
between G and H
Pgh + 10(z — 300) — 1.6 x 300 = 0
ie.
Pgn = 3480 — 10z (vi)

Hence Pgy varies linearly from 480 N (tension) at G to —2520 N (compression) at H.
The forces acting on the stiffener DE are shown in Fig. S.24.2(c). At any section a
distance z from D

Ppg + 21.6z7 + 1.6z — 8000 cos 30° =0

1.e.

Ppg = —23.27 4 6928.2 (vii)
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£ 21.6 N/mm D
| |
30°
1.6 N/mm
7 <«—] 8000 N
300 mm

Fig. S.24.2(c)

Therefore Ppg varies linearly from 6928 N (tension) at D to zero at E. (The small value
of Ppg at E given by Eq. (vii) is due to rounding off errors in the values of the shear
flows.)

C
l h
21.6 N/mm 200 mm
D Yy
30°
8000 N
1.6 N/mm 200 mm
= v _

Fig. 5.24.2(d)

The forces in the stiffener CDF are shown in Fig. S.24.2(d). At any section in CD a
distance /& from C the stiffener load, Pcp, is given by

Pcp = 21.6A (viii)
so that Pcp varies linearly from zero at C to 4320 N (tension) at D. In DF

Ppr + 8000 sin 30° + 1.6(h — 200) — 21.6 x 200 =0

from which
Ppr = 640 — 1.6h (ix)

Hence PpF varies linearly from 320 N (tension) at D to zero at F.
The stiffener BEG is shown in Fig. S.24.2(e). In BE at any section a distance 4 from
B

Pgg +21.6h — 10h =0
ie.

Ppg = —11.6h (x)
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21.6 N/mm l 200 mm

h

10 N/mm E

1.6 N/mm 200 mm

Fig. S.24.2(e)

PgE therefore varies linearly from zero at B to —2320 N (compression) at E. In EG
Pgg — 1.6(h — 200) 4+ 21.6 x 200 — 10k =0
ie.
Prpg = 11.6h — 4640 (xi)

Thus Pgg varies linearly from —2320 N (compression) at E to zero at G.

5.24.3

A three flange wing section is statically determinate (see Section 23.1) so that the shear
flows applied to the wing rib may be found by considering the equilibrium of the wing
rib. From Fig. S.24.3(a) and resolving forces horizontally

600g12 — 600g34 — 1200 = 0

whence
q12 — q34 =20 (1)
Now resolving vertically and noting that g5; = g45
400g45 — 400g23 + 8000 = 0
i.e.
q4s — q23 = —20 (i)
Taking moments about 4

7 x 2002

q12x600x400+2< 5

1
—1—5 x 400 x 600> q23 — 12000 x 200 — 8000 x 600 =0
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2 Gi2 1
—— _
/‘ L 9> 051 200 mm
5
— > 1
- 12000 N
/‘ L g3 Qus 200 mm
- 7
\ v
J34 |
600 mm
|
Fig. S.24.3(a)
so that
q12 + 1.52¢23 = 30 (ii1)
Subtracting Eq. (iii) from (i) and noting that ¢34 = ¢23
—2.52g23 = —10
or
q23 = 4.0N/mm = g34
Then from Eq. (i)
q12 = 24.0N/mm
and from Eq. (ii)
q45 = —160N/mm = ¢51
400 mm

Fig. 5.24.3(b)
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Consider the nose portion of the wing rib in Fig. S.24.3(b). Taking moments about 3

2002
P2x400—2x%x4.0=0

from which
P, = 1256.6 N (tension)
From horizontal equilibrium
P34+ P, =0
whence
P3 = —1256.6 N (compression)
and from vertical equilibrium
g1 = 4.0N/mm

From the vertical equilibrium of the stiffener 154 in Fig. S.24.3(c)

g2 x 200+ g3 x 200 — 16 x 400 =0

—_

16.0 N/mm
o h | 200 mm
5(——> —
12000 N
16.0 N/mm 200 mm
ds
" v __
Fig. S.24.3(c)
i.e.

g2 +q3 =32 @iv)
Also, in 15 at any distance 4 from 1
Pis 4+ 16h —goh =0
i.e.
P15 = (g2 — 16)h v)
and in 54
Psq + 16h — g2 x 200 — g3(h —200) = 0



Solutions to Chapter 24 Problems
whence
Ps4 = 200(q2 — ¢q3) + (g3 — 16)h (vi)
92
6 I ] 5*) 12000 N
g3
Z €—
600 mm
I
Fig. 5.24.3(d)

Fig. S.24.3(d) shows the stiffener 56. From horizontal equilibrium

600g> — 600g3 — 12000 = 0

or
@ —q3 =20 (vi)
Adding Eqgs (iv) and (vii)
2g> =52
ie.
g2 = 26 N/mm
and from Eq. (iv)
g3 = 6 N/mm
Then, from Eq. (v)
P15 =10h (viii)

and P5 varies linearly from zero at 1 to 2000 N (tension) at 5. From Eq. (vi)
Ps4 = 20026 — 6) + (6 — 16)h
i.e.
Ps4 = 4000 — 104 (ix)

so that Ps4 varies linearly from 2000N (tension) at 5 to zero at 4. Now from
Fig. S.24.3(d) at any section z

Psg + g2z — q3z— 12000 =0
ie.
Ps¢ = —20z + 12000 (x)

Thus Pse varies linearly from 12 000 N (tension) at 5 to zero at 6.
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26.0 N/mm
Z€<—
600 mm

Fig. 5.24.3(e)

Consider the flange 12 in Fig. S.24.3(e). At any section a distance z from 1
Pip+247—262=0
i.e.
Py =12z (xi)

Hence P, varies linearly from zero at 1 to 1200 N (tension) at 2.
Now consider the bottom flange in Fig. S.24.3(f). At any section a distance z from 4

Pyz+6z—-4z=0

3 6.0 N/mm 4
[ ]
4.0 N/mm
Z€<—
600 mm
|
Fig. 5.24.3(f)
ie.
Py =-2z2 (xii)

Thus P43 varies linearly from zero at4 to —1200 N (compression) at 3. (The discrepancy
between P in 12 and P; in 23 and between P3 in 43 and P3 in 23 is due to the rounding
off error in the shear flow ¢1.)

In Fig. S.24.3(g) the load in the stiffener at any section a distance & from 2 is given by

Py +26h+4h =0
ie.
Py = —30h (xiii)
Therefore Py varies linearly from zero at 2 to —6000 N (compression) at 6. In 63

Pe3 4+ 26 x 200 4 4h + 6(h —200) =0
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2 —
26.0 N/mm Ih 200 mm
4.0 N/mm 6 v
6.0 N/mm 200 mm
T o
8000 N
Fig. S.24.3(g)
i.e.
Pz = —4000 — 10k (xiv)

Thus Pe3 varies linearly from —6000 N (compression) at 6 to —8000 N (compres-
sion) at 3.

Solutions to Chapter 25 Problems

S.25.1
From Eq. (25.5) the modulus of the bar is given by
100 x 10 100 x 45
Ej = 140000 x ——— +3000 x ———
100 x 55 100 x 55

i.e.
E; = 27909.1 N/mm?

The overall direct stress in the longitudinal direction is given by

500 x 103

=—— =909N 2

1= 7700 x 55 /mm
Therefore, from Eq. (25.2), the longitudinal strain in the bar is
%9
©27909.1

The shortening, Ay, of the bar is then

& 3.26 x 1073

A =326x1077 x1x 10> =3.26mm
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The major Poisson’s ratio for the bar is obtained using Eq. (25.7). Thus

100 x 4 100 x 1
0045 o164 100X 10 s —0.18

Vg = ———— X
100 x 55 100 x 55

Hence the strain across the thickness of the bar is
g0 =0.18x326x 107 =5.87 x 107*
so that the increase in thickness of the bar is
Ay =587 x107* x 55
i.e.
At = 0.032 mm
The stresses in the polyester and Kevlar are found from Eqs (25.3). Hence

om(polyester) = 3000 x 3.26 x 1073 =9.78 N/mm2
or(Kevlar) = 140000 x 3.26 x 1073 = 456.4N/mm?

S.25.2

For each cover

bitiEz; = 150 x 1.0 x 20000 = 3 x 10
For each web

bitiEz ; = 100 x 2.0 x 60000 = 12 x 10
Then

n
D bitiEzi =2 %3 x 10° +2 x 12 x 10° = 30 x 10°

i=1
From Eq. (25.37)

40 x 103

= W =133 x 1073
X

154
Therefore

P(covers) = 1.33 x 1072 x 3 x 10® = 4000N = 4kN
P(webs) = 1.33 x 1073 x 12 x 10° = 16000N = 16kN

Check: 2 x4 +2 x 16 =40kN



Solutions to Chapter 25 Problems
S.25.3

Since I)’(y = 0and M, = 0, Eq. (25.39) reduces to

M,
0; = EZ,iTY
IJCX
where
, 2.0 x 1003 5
I, =2 x 60000 x T+2x20000x 1.0 x 150 x 50
ie.
I, =3.5x 10N mm?
Then
1 x 108 s :
o7 = EZ,i X my =2.86 x 10 EZ,,'Y (1)

The direct stress will be a maximum when Y is a maximum, i.e. at the top and bottom
of the webs and in the covers. But Ez; for the webs is greater than that for the covers,
therefore

oz(max) = +2.86 x 107> x 60000 x 50
i.e.

o;(max) = +£85.8 N/ mm? (at the top and bottom of the webs)

S.25.4

The second moments of area are, from Example 25.5

I =2.63 x 10'°N mm?

I, =0.83 x 10'°Nmm?

I, =250 x 10" N mm?
Also My =0 and My = 0.5 kN m so that Eq. (25.39) becomes

07 = Ezi(—3.23 x 107X 4+ 3.07 x 1073Y) (i)
On the top flange, Ez; =50 000 N/mm? and Y = 50 mm. Then, from Eq. (i)
oz = —1.62X + 76.75

so that at 1 where X =50 mm

071 = —4.3N/mm?
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andat2, X =0
oz2 =768 N/mm2
In the web, Ez; = 15000 N/mm?, X =0 so that

oz = 0.46Y

and at 2
072 = 0.46 x 50 = 23.0N/mm?

The maximum direct stress is therefore 76.8 N/mm?

$.25.5

From Example 25.5 the second moments of area are

I, =2.63 x 10N mm?
I;,y =0.83 x 10'°N mm?
I, =2.50 x 10'9 N mm?

2 kN

S
|

100 mm

—a— 1.0 mm

2.0 mm

S

4

Fig. 5.25.5
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In this case Sy =0, Sy =2 kN so that Eq. (25.40) becomes

N
qs = —Egz; <1.15 X 10—7/ £;X ds — 0.382 x 10—7/
0 0

' 1Y ds> (i)

On the top flange, X =50 — 51, Y =50 mm, Ez ; =50 000 N/mm?. Eq. (i) then becomes

N

S1 1
gi» = —11.5 x 10—3f (50 — s1)ds1 + 190 x 10—3/ dsi
0 0

which gives
q12 = 0.00575s7 — 0.385s

when s; =50mm ¢ = —4.875 N/mm
In the web, X =0, Y =50—s2, Ez; = 15000 N/mm?. Eq. (i) then becomes

52
g =573 x 107 / (50 — 55)dss — 4.875
0

so that
q23 = 0.0287s5 — 2.865s5 — 4.875

S.25.6

Referring to Fig. P.25.6, if the origin for s is chosen on the vertical axis of symmetry
gs,0, at 0, is zero.
Also since Sx =0 and I)’(Y =0, Eq. (25.41) reduces to

S s
qs = —EZ’,' Y / tYds
0

I
in which
0.5 x 503
Ly = 2(54 100 x 200 x 25%) + 2 (17 700 x %)
i.e.
Iy = 13.7 x 10° N mm?

Then

20 x 103

gor = —54100 x ——— [ 1.0 x 25ds;

13.7 x 10° J

i.e.
qo1 = —1.98s

so that

g1 = —1.98 x 100 = —198 N/mm
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Also

20 x 103

= 17700 x — 2
92 137 % 10°

52
f 0.5(25 — 57)dso, — 198
0

which gives
g2 = 6.5 x 107353 — 0.325s5, — 198

The remaining distribution follows from symmetry

S.25.7
The shear flow is obtained from Eq. (25.42), i.e.

1 x 100

= 3% 200 x50 — JON/mm

q
The maximum shear stress will occur in the webs and is

>0 100 N/mm?
Thax — —— = mm
max 05

From Eq. (25.45)
GJ = 4 x (50 x 200)%/[2 x 200/(20700 x 1.0) + 2 x 50/(36 400 x 0.5)]
ie.
GJ = 1.6 x 10'° N mm?

Then

o T 1 x 100

—=— =" _=625x107 rad/mm
dz GJ 1.6x1010

Finally, from Eq. (25.47)

w 1 x 10 [ 100 (%xlOOxZS)( 2 x 200
4

T 2% 200x50|20700 x 1.0 50 x 200 20700 x 1.0
2 x50
+—
36400 x 0.5

W4 = —0.086 mm

i.e.
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$.25.8

From Eq. (25.48)

13 0.53
GJ =2 x 16300 x 50 x 5 +20900 x 100 x > = 6.3 x 10° N mm?

Then, from Eq. (25.49)

do 0.5 x 10

_ -3
d_z = m =0.8 x 10 rad/mm

From Eq. (25.50)

1.0
Tmax(flanges) = £2 x 16300 x > x 0.8 x 1073

ie.
Tmax (flanges) = +13.0 N/mm2
0.5
Tmax(Web) = £2 x 20900 x > x 0.8 x 1073
ie.
Tmax(Web) = +8.4 N/mm?
Therefore

Tmax = :|:13.ON/mm2
The warping at 1 is, from Eq. (18.19)

1
W, =_2X§ x50 x50 x 0.8 x 1073 = —2.0mm

Solutions to Chapter 26 Problems
S.26.1

In Fig. S.26.1 a =tan"! 127/305 =22.6°. Choose O as the origin of axes then, from
Eq. (26.1), since all the walls of the section are straight, the shear flow in each wall is
constant. Then

g1z = 1.625G(2546" — u') @)
q23 = 1.625G(2546' c0s 22.6° — u’ c0s22.6° — v’ sin 22.6°)
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T‘I‘H 250N
2 - d12 1

L
_ 3 40‘:\1_
254 mm
127 mm
Os2
-y - - _L_) X
d34 0
127 mm
254 mm
_— 4
P F————
Us6
305 mm 254 mm |
|
Fig. S.26.1
ie.

q23 = 1.625G(234.50' — 0.923u’ — 0.3840") (i1)
q34 = 2.03G(3050' — ') (ii1)
gs2 = 2.54Gv/ (iv)
q45 = 1.625G(234.50' + 0.923u’ — 0.3840") )
gs6 = 1.625G(2540" + u') (vi)

From symmetry 12 = gs6 and g23 = ga5 so that, from Eqs (i) and (vi) (or Egs (ii) and
(v)) u' = 0. Now resolving forces vertically

gs2 X 508 — go3 x 127 — g34 X 254 — qa5 x 127 = 111250
i.e.
508gs2 — 2 x 127q23 — 254¢34 = 111250
Substituting for gs», g23 and ¢34 from Eqs (iv), (ii) and (iii), respectively gives

56.63
v —129.30' = ——

(vii)
Now taking moments about O
2g12 X 254 x 254 + 2g23 x 305 x 254 + g34 x 254 x 305 =0

Substituting for g12, g23 and ¢34 from Eqgs (i), (ii) and (iii), respectively gives

v —631.16 =0 (viii)
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Subtracting Eq. (viii) from (vii) gives

0 = —— i
G (ix)
Hence, from Eq. (viii)
o = 71.2 @
G

Now substituting for 8" and v’ from Egs (ix) and (x) in Eqs (i)—(vi) gives

q12 = g56 = 46.0N/mm g3 = gs4 = 1.4N/mm
q43 = 746 N/mm g5 = 180.8 N/mm

Finally, from Eq. (17.11)

v 71.2 u
=L 6301 ~%_p
R="y T 70113 mmeIR =y

5.26.2

In Fig. S.26.2, a = tan—! 125/300 = 22.6°. Also, since the walls of the beam section
are straight the shear flow in each wall, from Eq. (26.1), is constant. Choosing O, the
mid-point of the wall 42, as the origin, then, from Eq. (26.1) and referring to Fig. S.26.2.

qs1 = 1.6G(2506" + V) @)
g2 = 1.2G(1250' — i) (ii)
g23 = 1.0G(1256' c0s22.6° — 1/’ c0s 22.6° — v’ sin 22.6°)

o . di2 1

Q23
11 000 Nm 125 mm
951
< - e} -—- — = —>» X
3 5 —X
125 mm
Q34 Go4
4 —— 5
Q45
300 mm 250 mm
|

Fig. 5.26.2
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1.€.
g23 = 1.0G(115.40' — 0.923u’ — 0.3840") (ii1)
q34 = 1.0G(115.46" + 0.923u" — 0.3840") @iv)
qus = 1.2G(1250 + ) v)
g4 = 1.6G(—) (vi)

From antisymmetry g1 = g45 and g23 = g34. Thus, from Egs (ii) and (v) (or Egs (iii)
and (iv)), ¥’ = 0. Resolving forces vertically

qs51 X 250 — 24 X 250 — g3 X 125 — (34 X 125=0
i.e.
gs1 —q24 —q23 =0 (vii)

Substituting in Eq. (vii) for ¢s1,¢24 and g3 from Eqs (i), (vi) and (iii), respectively
gives

vV +79.410' =0 (viii)
Now taking moments about O

2q12 X 250 x 125 4 2g23 x 300 x 125 + gs51 x 250 x 250 = 11000 x 10°

i.e.
q12 + 1.2¢q23 + gs51 = 176 (ix)
Substituting in Eq. (ix) for ¢12, g23 and gs1 from Eqs (ii), (iii) and (i), respectively gives
154.5
v +604.40 = —— (x)

Subtracting Eq. (x) from (viii) gives

0 =—"—— i
G (x1)
whence, from Eq. (viii)
23.37
/ _ .o
v = G (xii)

Substituting for & and v’ from Egs (xi) and (xii) in Eqs (1)—(vi) gives

gs1 = 80N/mm gq2 = g45 = 44.1N/mm
g3 = q3a =429N/mm ¢gr4 = 37.4N/mm

The centre of twist referred to O has coordinates, from Eq. (17.11)

v 23.37 u
=——=795mm yyr=—=0

R= T T 0204 o
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$.26.3

Referring to Fig. S.26.3 the shear flows in the walls 12 and 23 are constant since the
walls are straight (see Eq. (26.1)). Choosing O as the origin of axes, from Eq. (26.1)

q12 = Gt(6'R cos 30° + u’ cos 30° + v’ sin 30°)

3
10000 N
2 30°
— — > X
;
Fig. 5.26.3
i.e.
q12 = Gt(0.866RO" + 0.866u" + 0.5v") @)
g23 = G1(0.866R0' — 0.866u' + 0.5v) (i)
q31 = Gt(RO' — u/ cos ¢ — V' sin ¢) (iii)

Resolving forces vertically

e

q12R + g23R — / q31 sin ¢ Rd¢ = 10000 sin 30°
0

i.e.
T . 5000 )
qi2+q3— | qsingdp =——7 @iv)
0 R
Substituting in Eq. (iv) for g3, g23 and g3 from Eqgs (i)—(iii), respectively gives
, , 18656.7
RO — 9.5 = — )
GtR
Resolving forces horizontally
b
q12(R/tan 30°) — go3(R/tan 30°) — / q31cos ¢ Rd¢p = 10000 cos 30°
0
i.e.
T 8660.3
1.732¢g12 — 1.732q23 — / g3 cospde = R (vi)
0

309



310  Solutions Manual

Substituting in Eq. (vi) for g12, ¢23 and g31 from Eqs (i)—(iii), respectively gives

, 18947 ..
U = (vii)
GIR
Taking moments about O
T
q12(R/tan 30°)R + ¢23(R/tan 30°)R + / q31R2d¢ = 10 000R cos 30°
0
ie.
T 8660.3
1.732¢12 + 1.732q23 + / g31de¢ = R (viii)
0

Substituting in Eq. (viii) for q12, g23 and g31 from Eqgs (i)—(iii), respectively gives

, , 1410.0 .
R6" —0.044v = (ix)
GtR
Now subtracting Eq. (ix) from (v)
20066.7
—9.546v" = —
GIR
whence
2102.1
/
=GR =
Then, from Eq. (v)
, 15024 )
RO = (xi)
GtR
Substituting for «/,v" and 6’ from Egs (vii), (x) and (xi), respectively in Eqs (i)—(iii)
gives
q12 = 3992.9/RN/mm, ¢p3 =711.3/RN/mm
g31 = (1502.4 — 1894.7 cos ¢ — 2102.1 sin ¢)/RN/mm
5.26.4
From Fig. P.26.4 the torque at any section of the beam is given by
T =20 x 10°(2500 — z) Nmm @)
Eq. (26.16) for the warping distribution along boom 4 then becomes
C cosh 11z + D sinh +2Ox103(200—z) b a i
w = Ccos sin - —— ii
He He 8abG b 1
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where
BE(bt, + atp)

Comparing Figs 26.6 and P26.4, 1, =1, =1.0mm, a=500mm, »=200mm and
B =800 mm. Then

uw

2 8x036x1.0x1.0
~800(200 x 1.0 + 500 x 1.0)

"
from which
w=227x%x10"3
Eq. (ii) then becomes
w = Ccosh2.27 x 1073z + Dsinh 2.27 x 1073z — 3.75 x 10742500 — z)  (iii)

When z =0, w =0, hence, from Eq. (iii), C = 0.9375. At the free end the direct stress in
boom 4 is zero so that the direct strain dw/dz =0 at the free end. Hence, from Eq. (iii),
D = —0.9386 and the warping distribution along boom 4 is given by

w = 0.9375cosh2.27 x 1073z — 0.9386 sinh 2.27 x 1073z
—3.75 x 10742500 — z) (iv)
Substituting for w from Eq. (iv) and T from Eq. (i) in Eq. (26.11)

do
= —1077[1.6069 cosh 2.27 x 1073z — 1.6088 sinh 2.27 x 10737
Z
—3.4998 x 1073(2500 — 7)] v)
Then
1.6069 1.6088
0=—-10"| ———sinh2.27 x 103 — ——————cosh2.27 x 1073
2.27 x 1073 2.27 x 1073
2
—3.4998 x 1073 (2500z — %ﬂ tF (vi)
When z =0, 6 =0 so that, from Eq. (vi)
1.6088
F=—-107x ——°
2.27 x 1073

and

6=—1072 |:707.9 sinh 2.27 x 1073z — 708.7 cosh 2.27 x 1073z

2
—3.4998 x 1073 <2500z - %) + 708.7] (vii)

At the free and where z =2500 mm Eq. (vii) gives
0 =0.1036rad = 5.9°
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S$.26.5

The warping distribution along the top right-hand corner boom is given by Eq. (26.16),
i.e.

w = C cosh uz + D sinh uz + wy 1)
where
2 8Gnty T b a
=——— and wp= - — —
BE(bt; + aty) 8abG \ 1 5]

At each end of the beam the warping is completely suppressed, i.e. w=0 at z=0 and
z=1. Thus, from Eq. (i)

0=C+wo
i.e.
C=—wp
and
0 = Ccosh u!l + Dsinh ul + wy

which gives
wo

D= hul — 1
sinh ! (cosh p )
Hence, Eq. (i) becomes
hul —1
w=wq |1 —coshuz+ —(COS, i ) sinh uz (i1)
sinh ul

The direct load, P, in the boom is then given by

aw
P =0,B=BE—
0z
Thus, from Eq. (ii)
. (cosh ul — 1)
P = uBEwq | —sinh uz + ——— = cosh uz (iii)
sinh ul
or, substituting for wy from above
UBET (bt ) inh uz 4+ (coshul — 1) h (iv)
= — —a —sin ———~cos iv
8abGur B2t ™ inh wl He

For a positive torque, i.e. T is anticlockwise when viewed along the z axis to the
origin of z, the term in square brackets in Eq. (iv) becomes, when z=0

coshul — 1
sinh ul
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which is positive. Thus at z=0 the load in the boom is tensile. At z=1 the term in
square brackets in Eq. (iv) becomes
1 — cosh ul
sinh u/
which is negative. Thus at z = [ the load in the boom is compressive. Also, from Eq. (iv)

0P/dz =0 at z=1/2 and the distribution of boom load is that shown in Fig. S.26.5. The
reverse situation occurs for a negative, i.e. a clockwise, torque.

AP

Tension

. T positive
/ / """ | T Tnegatve
: Compression
Fig. 5.26.5
5.26.6

The warping distribution is given by Eq. (26.16), i.e.

Ceosh uz + Dsinhpz + —— (2 _ 4@ (i)
w = COS Sin —_ - — 1
He rerewmc \y, 1,

in which the last term is the free warping, wy, of the section. Eq. (i) may therefore be
written

w = C cosh uz + D sinh uz 4+ wg (i1)
When z =0, w = kwg so that, from Eq. (ii)

C=wyk—1)
When z = L, the direct stress is zero. Then, from Chapter 1

ow
oc=E— =0
0z

so that
0 = puCcosh uL + uD sinh uL
which gives
D = —wy(k — 1)tanh uL
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Eq. (ii) then becomes

cosh u(L —
wewo |14k — ZSAE =D (iif)
cosh uL
Then
ow
oc=FE—
0z
so that
inh (L —
cosh uL
When k=0,
sinh (L — 2)
o = ukEwy——mMmm
cosh uL
i.e. a rigid foundation.
When k=1,
o=0

i.e. free warping (also from Eq. (iii)).

5.26.7

Initially directions for the shear flows, ¢, are chosen as shown in Fig. S.26.7(a). The
panel is symmetrical about its horizontal centre line so that only half need be considered.

S/unit length
P <— ¥ —_—
a—
| b
- 7
Py <€— * —
—\
A
qJ r S b
B
—
P < ¥ -y
—>»Z
/

Fig. 5.26.7(a)



Solutions to Chapter 26 Problems
S
PB<—| =z I—)PB +¥ ¥4
T —
q
e

| |
Fig. 5.26.7(b)

For equilibrium of the element of the top boom shown in Fig. S.26.7(b)

0Pg
PB+8—Z(SZ—PB — 8624+ ¢éz=0

i.e.
oPg
——=S5-¢ (i)
0z
P
'DAE | | )PAJF?SZ
~ -
q
e
[ |
Fig. 5.26.7(c)

Also, for equilibrium of the element of the central stringer shown in Fig. 26.7(c)

oPa
PA+8—5Z—PA—2q8Z=0
Z

i.e.
0Pa

0z
For equilibrium of the length, z, of the panel shown in Fig. S.26.7(d)

=2 (ii)

2Pg + Ppo — 287 —2P —Ps =0
ie.
Py =2P + Ps + 257 — 2P (ii1)

The compatibility of displacement condition for the top boom and central stringer is
shown in Fig. S.26.7(e). Thus

d
(1 +er)8z = (1 + £5)87 + bd—’z/az
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P €«<—

P <— ——> Py

Fig. 5.26.7(d)

(I+eg) 8z

dy
y ’J/+afz 52

(I+e,) 8z

Fig. 5.26.7(e)

ie.

r_1 ) (iv)
— = —(&EA — & 1
dz b A B v

Now

OA OB Oc
ea = — and &g = — = — = constant
E E E
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Also op = 0.80% so that Eq. (iv) becomes

dy 0.20,
L= W)
dz bE
In Eq. (v) y =¢q/Gt, hence
dg 0.2Gt i)
— =———20 vi
dz bE ¢
Substituting for ¢ in Eq. (vi) from (i) gives
#Pg  0.2Gt
—_— = —Ue
9z bE
so that
0.1Gt
Pp =~ 22 + C24D (vii)

When z =0, Pg = P so that, from Eq. (vii), D = P. Also, when z =, ¢ = 0 so that, from
Eq. (i), 0Pg/dz =S at z = 1. Hence, from Eq. (vii)

0.2Gto.
C=- I+ S
bE +
and
p 0.1Gtoe , (s 0.2Gto.l 4P (vii)
— i I viii
B="%E °© bE )°
Now Pp = 0B so that, from Eq. (viii)
0.1Gt , 1 0.2Gtoel )
B= — (s - —= P
bE © +ae[< bE )Z+ ] (i)
Substituting for Pg from Eq. (viii) in (iii) gives
0.4Gto, z2
Pa = z— =) +P
A oE (z : ) + Ps (x)
But P4 = Ag0.80¢ so that, from Eq. (x)
A Gt (, 22 N 1.25Ps xi)
= — - — xi
STwe\" 72 e

Substituting the given values in Eqgs (ix) and (xi) gives
B =3.8x 107%% 4+ 0.3227z + 1636.4 (xii)

and

As = 2.3757 — 9.5 x 107%72 + 659.1 (xiii)
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From Eq. (xiii) when z = 1250 mm, Ag = 2143.5 mm. Then
Pp = 0.80.As = 0.8 x 275 x 2143.5 = 471570N
The total load, P, carried by the panel at the built-in end is
Pt =2 x 450000 + 145000 + 2 x 350 x 1250 = 1920000 N

Therefore, the fraction of the load carried by the stringer is 471 570/1 920 000 = 0.25.

5.26.8

The panel is symmetrical about its vertical center line and therefore each half may be
regarded as a panel with a built-in end as shown in Fig. S.26.8(a). Further, the panel is
symmetrical about its horizontal centre line so that only the top half need be considered;
the assumed directions of the shear flows are shown.

1
— -
B,
q d
B, — 5
N
q d
B; —
Z€<—
2
Fig. 5.26.8(a)
P+ Py oz <—| |—> P.
ooz 1
E—
q
e
| |
Fig. 5.26.8(b)

Consider the equilibrium of the element of longeron 1 shown in Fig. S.26.8(b).

P
Pi+—65,—P1—¢qéz=0
0z
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Hence
oP;
0z

Now consider the equilibrium of the element of longeron 2 shown in Fig S.26.8(c).

=9 ®

oP>
P+ —6z—Py+295z=0
0z
whence
oP;
s __9 ii
% q (i)
. a
Po+ i oz <—| |—) P
2 0z 2
~
q
e
| |
Fig. 5.26.8(c)
P, <—]
P, <€<—
V4
Fig. 5.26.8(d)

From the overall equilibrium of the length z of the panel shown in Fig. S.26.8(d)
2P1 4+ P =0 (iii)

The compatibility condition for an element of the top half of the panel is shown in
Fig. S.26.8(e). Thus

d
(14 1)z = (1 + £2)82 + dd—Z&
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| (ve)dz |
l |
y + % [ ¥4 ‘ %
| Y
d
(I+¢&2) 6z
Fig. 5.26.8(e)
i.e.
d 1 .
d—JZ/ = 3(81 —&2) (iv)
In Eq. (iv)
Py
&l = ——
B|E

Also, an element, 8z, of the central longeron would, without restraint, increase in
length by an amount «7'8z. The element therefore suffers an effective strain equal to
(&2 — aT)éz/8z. Thus

Py

— =g —aTl
BE
so that Eq. (iv) becomes
d 1 [P P
r_ 1 v)
dz dE B] Bz

Also y =¢q/Gt and from Eq. (ii) ¢ = —(dP2/0z)/2. Therefore, substituting for y and
then ¢ in Eq. (v) and for P from Eq. (iii) in (v)

19*P, Gt P, P
= - - = _qTE
2 972 dE\ 2B, B
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or

%P, 2GT [ 1 N 1 2GtaT i)
—_— _— —_— = V1
3Z2 dE 2B 1 B; d

The solution of Eq. (vi) is

2GtaT

Py = Ccosh uz + Dsinh uz — —— (vii)
u-d
where
,  2Gt 1 n 1
B =" \28, " B,
When z =0, P, =0 so that, from Eq. (vii)
_ 2GtaT
=24
Also when z =1/2, g =0 and, from Eq. (ii), P> /9z = 0. Hence, from Eq. (vii)
. [ [
0 = uCsinh ,uz + uD cosh ME
from which
l 2GtaT I
D:—Ctanh'u—:— « tanh'u—
2 w2d 2
Thus,
2GtaT [
= i cosh pz — tanh e sinh uz — 1 (viii)
w2d 2
or, substituting for Mz
ul .
cosh uz — tanh 5 sinh uz — 1
Py = EaT (ix)

Lo
2B, ' By

From Fig. S.26.8(e) the relative displacement of the central longeron at one end of
the panel is d(y);=o. Now

q 1 [oP; ..
o=(L)y — (22 from Eq.
Vim0 (Gt>z:o 261 < oz )Z:o (from Bg- (1)

Hence, from Eq. (ix)

. . ol ul
relative displacement = — tanh —

uw 2
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S.26.9

The panel is unsymmetrical so that the shear flows in the top and bottom halves will
have different values as shown in Fig. S.26.9(a).

Sy
Pio ':E
_ o
—\

—>» Z 82
/
Fig. 5.26.9(a)
S
P, <—| - |—>P1+ 5z 92
~
a1

e

| |
Fig. 5.26.9(b)

For equilibrium of the element of the top member shown in Fig. 26.9(b)

oPq
P+ B—Z(SZ — P —515z —Q18Z =0

1.e.
0P

—_5s ;
e 1+ q1 )

Similarly, for the equilibrium of the element of the central stringer shown in
Fig. S.26.9(c)

oP3
P3+8—ZSZ—P3 —g262+q162=0

i.e.
oP3 ..
—— =42 —q (i)
0z
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P, <— > Pyt %62

Fig. 5.26.9(c)

Fig. 5.26.9(d)

Also, from Fig. S.26.9(d)
oP;
Py + 8—252 — Py — 82024+ q26z=0

whence

oP;
— =S¢ (111)
0z

Now, from the longitudinal equilibrium of a length z of the panel (Fig. S.26.9(e))

Py +P3+ P, —Pro—Pro—S12—82=0

54
Pio .5
— =
:
b
—5— ——> P;
b
—— ~ 1 >R
!
P2 S,
z

Fig. 5.26.9(e)
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i.e.

Pi+P3+ Py =Pio+Pro+ (51 + 52z
and from its moment equilibrium about the bottom edge member

Pi12b + P3b — P1,Q2b —8122b =0

i.e.
2P +P3 =2P1o+ 281z
(/+€7) [ /
v b
Y1+ 3z !
oV dyy d [dv
~ 'Y1+afz+8*262+afzafz62
‘m
Fig. 5.26.9(f)

(iv)

)

From the compatibility condition between elements of the top edge member and the

central stringer in Fig. S.26.9(f)

d v
(I+e)dz=(1+¢e3)dz+b <ﬂ + _) 87

dz 922

or

dy; 1 ( ) v

— = —(&1 — ¢ P —

dz bt dz?
Similarly for elements of the central stringer and the bottom edge member

dy» 1 ( ) 9%v

— = —(&y — ¢ —_—

dz b YT 2
Subtracting Eq. (vii) from (vi)

dyi  dys

1
e (e =2
iz iz b(81 €3+ €2)

(vi)

(vii)

(viii)
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Now y=¢q/Gt,e1 =01/E,e3 =03/FE and g3 =03 /E. Eq. (viii) may then be written

dq1 qu Gt

(01 — 203+ 07)

dz dz  bBE
or, from Eq. (i)
#P; Gt
T2 E(Ul — 203 + 02)

Then, since 03 = P3/A

0203 Gt o )
— = — (203 -0 —0O
922 DbEA T O1T 92
or
9203  2Gt Gt 1 +02) 0
— — —03=——7-(01+4+o0 1X
922 DbEA S~ BbEA T2

The solution of Eq. (ix) is
03 = Ccosh uz + Dsinh uz + (o1 4+ 02)/2

where 1> =2Gt/bEA.
When z =0, 03 =0 so that C = —(o 4+ 02)/2. When z =1, 03 = 0 which gives

o1+ 02
D=—=— hul —1
2sinh g 0D
Thus
1— h !
03 = nto 1 —cosh uz — (,Cw sinh uz (x)
2 sinh !
From Eq. (i)
doP; .
qg=—-—351 (x1)
0z

Substituting for Py from Eq. (v) in (xi)

1 0P3 IA 003

qQ=—5——=-;A—~

2 0z 2 0z

Therefore, from Eq. (x)

1 — cosh ul
g =A o1+ o2 u sinhuz—l-(.cwcosh/u
4 sinh !
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$.26.10

The assumed directions of shear flow are shown in Fig. S.26.10(a). For the equilibrium
of an element of the top boom, Fig. S.26.10(b).

0Py
P +8—ZSz—P1 +¢16z=0

3P

A

2P

A

A
-

A
Y

Fig. 5.26.10(a)

oz
JP.

L)l
Fig. 5.26.10(b)
from which

0P
0z

Similarly for an element of the central boom

=—q ®

P, .
_— ql — q2 (11)
0z

For overall equilibrium of the panel, at any section z

Py + Py + P3 = —6P (ii1)
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and taking moments about boom 3
P12d + P>d + 3P2d 4+ 2Pd =0
so that
2Py + P, = —8P (iv)

The compatibility condition is shown in Fig. S.26.10(c) for an element of the top panel.

Y4
Y1 +a7 [ ¥4 /%
v Jv ! dv

%2 +osl5plsz / Vitoz

+ 87 /

(/+€2) & /

Fig. 5.26.10(c)

Then
3 v
(I+e8z=(1+esz+d 2+ ) sz
0z 0z
ie.
ay 1 9%v
P S~ Y v)
Similarly for an element of the lower panel
1 v _
B_Z = 5(83 — &) — F (vi)
Subtracting Eq. (vi) from (v)
0 0 1
3lzl — 3lZ2 = 2(282 — &1 —&3) (vii)
But
o @ P PP
"T6 PTGe PTBE T AE T aE
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Then, from Eq. (vii)

dql dqg . Gt (2P; P3
dz dE\ B A A

.- (viii)

Substituting in Eq. (viii) for g; — g, from Eq. (ii) and for P; and P3 from Egs (iv) and
(iii) and rearranging

&P, 2p, _ OGP (%)
_ - ix
o2 M7 A
where
2_ Gt(2A + B)
dEAB
The solution of Eq. (ix) is
P C cosh pz + D sinh 6PB
= Ccos sin —
2 He M= A+ B
When z =0, P, = —2P and when z =L, g1 = g» =0 so that, from Eq. (ii) 0P>/dz =0.
These give
B—A —A
C =4P D = —4P tanh uL
2A+B 2A+B
Then
6P 2 h u(L —
Py = _B+_(B_A)COS'M—(Z)
2A+ B 3 cosh uL
From Eq. (iv)
6P [ (B+8A 1 cosh (L — z)
P = - —2(B—4)
2A+B | 6 3 cosh uL
and from Eq. (iii)
6P [ [(4A—B 1 h (L —z)7]
P3 = — — —(B—A) COSM—(Z)
2A+B | 6 3 cosh uL
When A=B

Pr=-3P P=-2P P3=-P

and there is no shear lag effect.

$.26.11

This problem is similar to that of the six-boom beam analysed in Section 26.4
(Fig. 26.11) and thus the top cover of the beam is subjected to the loads shown in
Fig. S.26.11(a). From symmetry the shear flow in the central panel of the cover is zero.
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Considering the equilibrium of the element 6z of the corner longeron (1) in
Fig. S.26.11(b)

Pt s p S usi=0
T TG

S/2h
/
=
—
B B h
{ ]a n
/
sih ;o
/
Fig. 5.26.11(a)
: S/i2h
JP.
P+, 2 <—| > P,
- 7
q
e
| |
Fig. 5.26.11(b)
1.e.
oP S .
P — _ — 1
0w 17 o @

Now considering the equilibrium of the element 8z of longeron 2 in Fig. S.26.11(c)
P,
P2+8—Z$z—P2+6132=0

which gives
P,
0z

From the equilibrium of the length z of the panel shown in Fig. S.26.11(d)

=—q (ii)

S
2P 2P 2—z=0
1 +2P + th
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=
P+ =287 <—] > P,
e
| |
Fig. 5.26.11(c)
___Si2h
Py €«—
P, <«——
Py €«—
P, <«—
N S/2h
V4
Fig. 5.26.11(d)
or
Sz
Pi+Py=—— (111)
2h

The compatibility of the displacement condition between longerons 1 and 2 is shown
in Fig. S.26.11(e). Thus

d
(14 ¢£1)8z = (1 + £2)82 + hd—’z’az

from which
d 1
T = (iv)
In Eq. (iv) y =¢q/Gt,e1 = P1/3BE, and &3 = P, /BE. Equation (iv) then becomes
dg Gt (P
g __— (= _p
dz _ hBE < 3 2) ™
From Eq. (i)
dg _ 3Py

dz 822
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| (I+eq) 6z |
l |
dy
v+ 3z 6z y
h
(I+e5) 6z
Fig. 5.26.11(e)
and from Eq. (iii)
Sz
Py=—-P — —
2 1= 5
Substituting in Eq. (v)
#Py Gt (4P L5
32~ hBE\ 3 ' 2h
or
PPy 4Gt G1Sz :
— 1= (Vl)
9z2  3hBE 2h2BE
The solution of Eq. (vi) is
38
Py = Ccosh uz 4 Dsinh uz — S_hZ (vii)

where u? =4GT /3hBE.
When z =0, P; =0 so that, from Eq. (vii), C =0. When z=1, ¢ =0 so that, from
Eq. (i), 0P1/0z=—S/2h. Hence from Eq. (vii)
. S
"~ 8hucosh pul

and Eq. (vii) becomes

p S sinh uz 43 (vii)
=\ —— V111
=78 Uncosh il T 7°

331



332

Solutions Manual

Substituting for P; in Eq. (i) gives

S [ cosh uz .
g=—o [ — —1 (ix)
8h \ cosh ul
If the effect of shear lag is neglected then Eq. (ix) reduces to
S
77 8n

and the shear flow distribution is that shown in Fig. S.26.11(f) in which g2 =qa3 =
ge5 =q73 = S/8h and gg1 = gs4 =S/2h. The deflection A due to bending and shear is
given by Eqgs (20.17) and (20.19) in which

My=—-Sz and M;=—-1xz

-
|

IN
\/
®w
o
|\
4

Fig. 5.26.11(f)

Also Iy =4 x 3B x (h/2)? + 4 x B x (h/2)*> =4Bh?* and q| = qo/S. Thus
L 2 I
Sz q091
A= | ——d “Lds)d
/0 aBiE" T fo (?g Gt s) < @

q091 S ([ 4h 2h 118
——ds = — + =
Gt G \64h%t  4h?3t 48Ght

Hence, substituting in Eq. (x)

SI 2 11
A= — [ — + —
12h \ BRE ~ 4Gt

In Eq. (x)

5.26.12

The forces acting on the top cover of the box are shown in Fig. 26.12(a). Then for the
equilibrium of the element §z of the edge boom shown in Fig. S.26.12(b).

JP B wz

™ (i)
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/\WZ/Zh

A
Y

Fig. S.26.12(a)

PB+aaﬂzB 6z <—| I—» PB

Fig. 5.26.12(b)

Similarly, for the central boom
0P
oz
For the equilibrium of a length z of the cover

=2q (ii)

2

2P+ Py — 225 =0 (iif)
_ — 111
BTOA TS

The compatibility of displacement condition is shown in Fig. S.26.12(c).
Then

0
(1 +¢e4)0z = (1 4+ ep)dz + 8_);8Zd
which gives
1 .
= E(EA — €B) (iv)

But
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(I+eg) 6z
dy
v+ $ 8z y
| |
l l
L 1]

(I+ep) 62

Fig. 5.26.12(c)
Substituting in Eq. (iv)

dz dE\A B

dq _ Gt [ Pa Py
A B
Substituting for g from Eq. (ii) and Pp from Eq. (iii) and rearranging

FPPr 5 Gtw
_ PAr = —
922 A= To4ERB” )
where
2 _ Gt2B+4)
dEAB

The solution of Eq. (v) is

Pa = Ceoshpz+Dsinhpz+ 22 (2 42
= COS Sin — | —&
A pe Moo+ ay\ 2 ¢

When z=0, Pp =0 which gives

_ wA
 hQB+A)u?

When z =L, dP5/dz =0 since g =0 at z= L. This gives

D— wA sinh L
"~ wh(2B 4 A) cosh ph 0"

Hence

wA cosh uz WL 4 sinh uL | I z
PA:— 2 + 2 Slnh/,lzz__z__
h(2B + A) 7 u=cosh uL I 2
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Solutions to Chapter 27 Problems
S.27.1

The position of the shear centre, S, is given and is also obvious by inspection (see
Fig. S.27.1(a)). Initially, then, the swept area, 2Ar (see Section 27.2) is deter-
mined as a function of s. In 12, 2Agr o =2sd/2=sd. Hence, at 2, 2Ar =d?. In
23, 24R 0 = 2(s/2)(d/2) + d* = sd/2 + d*. Therefore at 3, 2AR o = 3d*/2. In 34, 2AR o
remains constant since p =0. The remaining distribution follows from antisymmetry
and the complete distribution is shown in Fig. S.27.1(b). The centre of gravity of the
‘wire’ 1'2'3'4’5'6’ (i.e. 2A%) is found by taking moments about the s axis. Thus

d>  5d* 3d* 5d4*  d?
24p5dt =dt | — + — + — + — + —
R (2 ty Tttt 2>

YA
2 |s‘—|1
| |
s | d
|
. 4 _
3 g
|
d
6 5
| d
|

Fig. S.27.1(a)

which gives 24, = d?. Therefore, instead of using Eq. (27.9), the moment of inertia of
the wire (i.e. 'r) may be found directly, i.e.

2\*
'R = 2dt(dz)2 + 2d¢ (?) + dr d i
R= 3 3 2

which gives

_ 13d°t
T
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2AR,O ﬂk
2AR 3’ 4
2 Z E 5
i PR E
24 L a
U : : | : 6
! : - > S
1 d 2 d 3 d 4 d 5 d 6
Fig. 5.27.1(b)
5.27.2

By inspection the shear centre, S, lies at the mid-point of the wall 34 (Fig. S.27.2(a)).
The swept area, 2AR o, is then determined as follows. In 12, 2AR ¢ = (2sa sin 2)/2,
i.e. 2Ag 0 =a’ sin 2a. In 23, 2Ag 0 =2 x Ssasin 2o+ a” sin 2 = (sa + a°) sin 2o and
at 3, 2Ag o = 2a’ sin 2a.

Fig. S.27.2(a)

In 34 there is no contribution to 2AR  since p = 0. The remaining distribution follows
from anti-symmetry and the complete distribution is shown in Fig. S.27.2(b).

The centre of gravity of the ‘wire’ 1'2'3'4'5'6’ (i.e. 2AR ) is found by taking moments
about the s axis. Thus

2AR6at = at(2 x 2a* sin 2a + 2 x 2a* sin 2a)
i.e.

24 = 3a”sin2a
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2AH,O‘\
2Aq 3
2 i f
2A'R 1 2P sin 2¢) 242 sin 2t ;
v : : > s
1 a 2 a 3 2a 4 a 5 a 6
Fig. 5.27.2(b)
Then, from Eq. (27.9)
2a? sin 2a)? 4 2
Tg =2 x 2atw + 2at(2a? sin 2a)® — <§a2 sin Z(x) 6at

which gives

'k = %ast sin’ 2«
S.27.3

The shear centre, S, of the section is at a distance wr/3 above the horizontal through
the centers of the semicircular arcs (see P.17.3). Consider the left-hand portion of the
section in Fig. S.27.3(a).

2ARr,0 = —2(Area BCS — Area BSO)
= —2(Area CSF + Area CFOD + Area BCD — Area BSO)

i.e.
1 T . 1 .
2ARp = —2 E(r cosfy +r) <? — rs1n91> + 5(2r + rcos f1)r sin 0y
+1 29 12 Tr
2" T 273
i.e.

2 T . T .
2ARo =71 <§ —60; —sinf; — 3 cos 91) i)

When 6 =7, 24g o = —1r?/3.

Note that in Eq. (i) Ar o is negative for the tangent in the position shown.

Consider now the right-hand portion of the section shown in Fig. S.27.3(b). The
swept area 2AR  is given by

2AR0 = 2 Area OSJ — nr2/3
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Fig. S.27.3(a)

Fig. 5.27.3(b)

i.e.

which gives

In Eq. (ii)

i.e.

2AR o = 2(Area OSJ — Area OJI — Area SJI) — 772 /3

KS = MScosb, = (g — rtan 02) cos bh

r .
KS = ?00592 — rsinf;

Substituting in Eq. (ii) gives

V14
2AR0 = r? <sin 6 — 6 — 3 cos 02)

(i)

(iii)
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In Eq. (27.3)
2AR ot ds 1 T
Je2Arords 1 [/ r (T — ) —sinf) — zcosel) d6;
Jotds 27r | Jo 3 3
T b4
+ f r* (sin6 — 6 — = cos ) d92]
0 3
i.e.

fC 2AR,()t ds r?

fords 3

Hence, Eq. (27.3) becomes
r?
2AR = 2AR0 + 3

Then

T 2
'R = / (2AR)%t ds =/ P (z — 6 —sinf; — i cosf + 7—[> do;
- o | \3 3 3

Tl T T\2
—{—[ r <s1n92—92——c0592+—> do,
0 3 3

I'r = 72t <z - z)
3 0w

which gives

S.27.4

The applied loading is equivalent to a shear load, P, through the shear centre (the centre
of symmetry) of the beam section together with a torque 7 = —Ph/2. The direct stress
distribution at the built-in end of the beam is then, from Eqs (16.21) and (27.1)

M, d%6 .
o= Ey — 2AREd—Z2 @)
In Eq. (1)
M, =PI (ii)
and
Ly = 2td?/12 = 1td* /6 (iii)

Also d26/dz? is obtained from Eq. (27.6), i.e.

de d3e
T=GJ]— —ETR—
dz dz3
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or, rearranging
o ,do , T :
@ MET e )
in which u? = GJ/ETR. The solution of Eq. (iv) is

49 C cosh uz + D sinh uz + d (v)
—_— = COS Sin —_— \%
dz He ey

At the built-in end the warping is zero so that, from Eq. (18.19) d6/dz =0 at the built-in
end. Thus, from Eq. (v), C = —T/GJ. At the free end the direct stress, or, is zero so
that, from Eq. (27.1), d%6/dz*> =0 at the free end. Then, from Eq. (v)

D= (L) tanhw
= — ) tan
GJ H

and Eq. (iii) becomes

do T cosh u(l — z) .
—=—|1-—)F (vi)
dz GJ cosh !l
Differentiating Eq. (vi) with respect to z gives
d?0 T sinhp(l—2) N
5 = g (vii)

dz2 ~ GJ cosh ul
Hence, from Eq. (27.1)

T sinhu(l —
op = _ZARE_MM
GJ cosh ul

which, at the built-in end becomes

| E
or = — TT‘RTZAR tanh ! (viii)

J=(h+2d)>/3 (see Eq. (18.11)) (ix)

In Eq. (viii)

The torsion bending constant, I'g, is found using the method described in Section 27.2.
Thus, referring to Fig. S.27.4(a), in 12, 2Ar o =sh/2 and at 2, 2Ar o = hd/4. Also,
at 3, 2Ar,0 =hd/2. Between 2 and 4, 2ARr remains constant and equal to hd/4.
At 5, 2Ar 0 =hd/4 + hd/4 = hd/2 and at 6, 2ARr 0 = hd/4 — hd/4=0. The complete
distribution is shown in Fig. $.27.4(b). By inspection 2Ay = hd/4. Then
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3 2 ) ‘—I 1
—_— g — - — - h
R
6 4 5
| a |
| |
Fig. S.27.4(a)
2AR,0 ‘\
2AR A
A
2AR
" 1 1 1 A S
1 2| a2 |3 -
a2 h
Fig. 5.27.4(b)
i.e.
td3h? ®
= X
R= s

Substituting the given values in Egs (ii), (iii), (ix) and (x) gives

M, =200 x 375 = 75000 N mm
Ly = 2.5 x 37.5%/6 = 21973.0 mm*
J = (7542 x 37.5)2.5°/3 = 781.3 mm*
I'r = 2.5 x 37.5° x 75%/24 = 3.09 x 10’ mm®
Then
pu? =781.3/(2.6 x 3.09 x 107) = 9.72 x 107°

and
nw=312x1073
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Thus from Eqgs (i) and (viii)

o = 3.41y + 0.064(2AR) (xi)
Then, at 1 where y = —d/2 = —18.75 mm and 2ARr = —hd/4 = —703.1 mm?,

o1 = —108.9N/mm? = —o3

Similarly
o5 = —18.9N/mm? = —o5
and
op) =04 =024 =0
S.27.5

The rate of twist in each half of the beam is obtained from the solution of Eq. (27.6).
Thus, referring to Fig. S.27.5, for BC

do T
— = —— +Acosh?2 Bsinh?2 i
& = 8GJ + wzy + 1%} 1)

where u? = GJ/ET and for BA

99 _ T | ¢coshpuz + Dsinh (i
_— = — COS Sin 11
dm  GJ Hz 1z

Fig. $.27.5
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The boundary conditions are as follows:

When
21=2=0, db/dz; =db/dz, (iii)

When
n=zn=1 d%0/d:> =d%/dz3 =0 (see Eq.(27.1)) (iv)

When
21=2=0, 2d°0/dz? = —d*0/dz3 v)

(since the loads at B in each half of the section are equal and opposite). From Egs (i),
(i1) and (iv)
B = —Atanh2ul (vi)
D = —Ctanh ul (vii)

From Eqgs (i)—(iii)
T

T
—+A=—+C
8GJ+ GJ+

i.e.
(viii)
From Egs (i), (ii) and (v)

D= —-4B (ix)
Solving Egs (vi)—(ix) gives

7T tanh pltanh 2l
~ " 8GJ(4tanh 24l + tanh pl)
_ TT(4tanh pultanh 2u1)
"~ 8GJ(4tanh 2l + tanh )
A 7T tanh !
8GJ (4 tanh 2pul + tanh pl)
7T (4 tanh 2 1)
~ " 8GJ(4tanh 2l + tanh ul)

Integrating Eq. (i)
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When z1 =0, 8; =0 so that F = —B/2u. Integrating Eq. (ii)

T C . D
0 = —2z20+ —sinhuzp + —coshuz + H
GJ Iz I

When z, =0, 8, =0so that H = —D/u. Hence, when z; = and z; = [ the angle of twist
of one end of the beam relative to the other is

T
8GJ (4 tanh 2l + tanh pl)

X [%( tanh ! sinh 2l — tanh pltanh 2l cosh 2l — 4 tanh 2l sinh !l

T
01—1—92:@(1—#81)4-

+ 4 tanh pl tanh 2l cosh pul — %( tanh w! tanh 2,ul)]

which simplifies to

T! 49 sinh 2l
01+ 6 =

8GJ |”  2ul(10cosh? ul — 1)

S.27.6

Initially the swept area 2AR  is plotted round the section and is shown in Fig. S.27.6(b).

3 2

N[ o

Fig. S.27.6(a)

Then, using the ‘wire’ analogy and taking moments about the s axis

oAl sar = 239 (32 +2at 3a”
RME= 275 7y 9\
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2AR10
3 4
2Ag /!
, 5
2
2AR |3—az
v ?
! 2 l l 6
1.3, 2 a 3 2a 4 a 5 %% 6 5
Fig. 5.27.6(b)
which gives
21a?
24, = ——
R™ 20
Then
Lo y3a 1 (3 2+2t 32\’ 21a2\*
=2—t-|— at| — ) —Sa
RT3\ 2 2 20
ie.
I'r = 1.25at
From Eq. (27.6), i.e.
$o_ a0 T
dz3 dz GJ
where
/ﬂ: GJ
ETR

99 _ ¢ cosh iz + Dsinh iz +
—_— = COS Sin —_—
dz He HeTGr

When z =0, the warping, w, is zero so that d8/dz =0 (see Eq. (18.19)), then
T

GJ

When z = L, the direct stress is zero. Therefore, from Eq. (27.1) d?6/dz? = 0. Therefore

B= L tanhuL
= — tan
Gy A
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so that the rate of twist is

o T |:1 B coshu(L—z)]

dz  GJ cosh uL
and
T sinh (L — z
0=—|z+ L +C
GJ ucosh uL

When z =0, 6 =0 which gives
1
C = ——tanhulL
n

and

T sinh w(L — z)  tanh uL
z _
ucosh ulL "
At the free end when z =L

TL tanh L
or=—|(1-—
GJ uL

Inserting the given values in Eq. (i)

2.0°
T =100 x 30 =3000Nmm J =5 x 30 x 5 = 400 mm*

w?=235%x10"% uL=153 67 =6.93°

S.27.7

The torsion bending constant is identical to that in S.27.4, i.e.

i’
R= ™
The expression for rate of twist is (see S.27.6)
dg Acosh puz 4+ Bsinh uz + d
— = Acos sin —
dz He T

In AB, T =0 and d6/dz =0 at z =0 which gives A =0
Therefore, in AB

do )
— = Bsinh uz
dz

In BC

do
% = [l — acosh u(z — L) — Bsinh u(z — L)] + B sinh uz
Z
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where [ ] is a Macauley bracket
i.e.

[]=0forz <L
= (/) ordinary bracket for z > L

For continuity of d9/dz and d?6/dz? at z = L the Macauley bracket and its first derivative
must be zero at z=L. Then

l—a=0and 8=0

For the complete beam

% = 1[1 — cosh u(z — L)] + Bsinh uz
dz GJ
At
z=2L d%0/dz>=0 (or =0atz=2L).
Then

T
6 = ——pusinh ulL Bcosh2ulL
GJM uL + 12

which gives

T sinhulL
"~ GJcosh2ulL
Then
dé T sinh L
— = — 1[1 — cosh —L —————sinh
A~ GJ {[ cosh (e = DI+ oL 5 “Z}

Also since 6 =0 at z =0 and the Macauley bracket is zero for z < L

0 T L 1 inh j1( L)_i_sinh,uL( h 1
= — — L — —sin  — ——(cos —
GJ < % i cosh2uL He

Atz=2L

T sinh L

or = — -

GJ uLcosh2ulL

S.27.8

The variation of swept area is shown in Fig. S.27.8(b)
Using the ‘wire’ analogy

2
5 3
2A§4at = at% + 2al‘§a2 + al‘é—la2
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A
Aro a
/ Y
A
S.C
a
3a
8 \ 4
3 4
a
Fig. 5.27.8(a)
2AR'0
4
A 2’
2Aq ‘
A - | - -
, \:,/ 5a%/4
2AR 1 2
a’l4 |
Y ] |
1 a 2 2a 3 a 4
Fig. 5.27.8(b)
1.e.
5a%
24, = —
R™ g
Then

1 1/3 N2 (5 ,)\2 1/a2\> (3 ,)\2
FRzatg(a2)2+2at [3 <§a2> +(§a2) :|—|—at [5 (%) +(Za2>
2\ 2
—4at (51)
8
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which gives
Tat
24
The rate of twist is identical to that given by Eq. (vi) in S.27.4, i.e.

o T ! cosh u(L — z)
dz  GJ cosh uL

R =

®

The direct stress distribution at the built-in end is, from Eq. (ix) of Example 27.1

E sinh L
or = — T 2Ar
GJT'r cosh uL

Evaluating the different constants

MR =9.33 x 10°mm® J =126.67mm* 7T =1125Nmm
w?=856x10"% and uL =146

Then
or = —0.369 2ARr
At 2,
54> 3a®> 3 x20%
2AR:a2—i:i: x — 150 mm?
8 8 8
so that

orp =—553 N/mm2
The direct stress due to elementary bending theory is, from Eqs (16.21)

M,y
O; =
Ixx
where
M, = —150 x 500 = —75000 N mm
and
, 1.0 x 40° sy
Ly =2 x 1.0 x20 x 20 +T=21.3x10 mm
Then
75000 x 20 704N/ 2
0,0 =————— =—70. mm
2 213 x 103

The total direct stress at 2 is therefore

07 = —55.3 — 70.4 = —125.7N/mm?
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S$.27.9

The torsion bending constant is identical to that in S.27.4,
1.e.

r
R= g

The rate of twist is, from Eq. (27.6)

when z=0, d8/dz=0 (w=0 at z =0) which gives

whiL
2GJ

When z =L, d?6/dz?> =0 (or =0 at z = L) which gives

h
B= 2 Ltanh uL + —
2GJ wcosh uL
Hence
dé wh puLsinhuLl + 1Y |
— = —— | —Lcosh —————— ) sinh L—
dz  2GJ |: Hz+ ( pcosh uL > Hz+ Z:|
Then
2ARE &0
or = — —
r R4z

is

wh . uLsinh uL + 1
= —2ARE—— | —uL sinh ———— Jcoshuz—1
or RE2G7 |: pE s Lz < cosh uL He

At the built-in end when z=0

or = —2ARE

wh [ uLsinh uL + 1 — cosh L
2GJ

cosh uL
Evaluating the constants
I'r = 1040 x 10 mm®, J=12500mm* px?>=4.0x107"% uL=3.0.
Then
or = —0.025(2AR)

The distribution of 2AR is linear round the section so that or is also linear.
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At 1,
2AR = -7 (see S.27.4)
Then
50 2
or,1 = +0.025 x 200 x 7= +62.5N/mm~.
From symmetry of the 2AR distribution

or3 = —0or,| = —0r4 =0re6 = —62.5 N/mmz,

orp=or5=0

From Eqgs (16.21)
M
o, = b
Iyy
where
15007
M, =0.5x = 562 500 N mm
and
50° 4
Ly =2 x5 x D = 104200 mm
Then
o, = 5.4y,
1.€.

0,1 =+135 N/mm2
From symmetry

0,1 = —0,3 = —0,4 = 0,6 = +135N/mm?>

0z2 = 0z5 = 0
The complete direct stresses are

o1 = 62.5+ 135 = +197.5N/mm” = —o3
04 = 62.5— 135 = —72.5N/mm? = —o5

o) =05 =0
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Solutions to Chapter 28 Problems
S$.28.1

The solution is obtained directly from Eq. (28.9) in which dci/d0 =a, o =« and

¢m,0 = Cm,o. Thus
C Als —
o _ ( M.0 +a0> [cos -y 1]
ea COS AS

C As — C
9:< M,O+a0) cosA(s —y)  Cmo

which gives

(o 74]
ea COS AS ea
Thus
Cm COS A(s — Cm
9+ao=< ’0+on> (s—y) Cwmo
ea COS AS ea
where

22— ea% ,0V2c2
GJ
Also, from Eq. (28.11) the divergence speed Vj is given by

Vi m2GJ
4= 2pecsia

Since the additional lift due to operation of the aileron is at a distance hc aft of the
flexural axis the moment equilibrium equation (28.25) for an elemental strip becomes

5.28.2

dTr .
—38y — ALec — ALghc =0 (1)
dy
in which, from Eq. (28.23)
1
AL = pV2eby [al (9 - %) + azfa(y)é]

where f,(y) =0 for 0 <y <ks and f,(y) =1 for ks <y <s. Also
ALg = 3pV2edyar fu(1)§
Then, substituting for T(=GJ df/dy), AL and AL¢ in Eq. (i) and writing A=
pVZec?a)2GJ
d?6 2Dy shay

—— 220 =222 4 A%

e A RO (ii)



Solutions to Chapter 28 Problems 353

The solution of Eq. (ii) is obtained by comparison with Eq. (28.29). Thus

in A h
01(0 — ks) = L y— SRAY ) azé(tan As cos Aks — sin Aks) sin Ly (ii1)
\% A COSAS eda

and

p sin Ly
Or(ks —s) ==y —
b (ks — ) v (y )

A COS AS
hay& . .
+ (1 — cos Ay cos Aks — tan As cos Aks sin Ay) @{iv)
eal
Then, from Eq. (28.32)
b py ; Py $
/ ai <91——)ydy+/a1 (92——)ydy=—az%‘ ydy (v)
0 14 ks 14 ks

Substituting for 61 and 6, in Eq. (v) from Egs (iii) and (iv) gives

\)

s ks ) K (e + h) s
—tanAs | ysinAydy 4+ tan Aks ysinAydy — [ ycosiAydy+ ——F— [ y
0 0 ks h cos Aks ks

peay / o avd
= sin
hayELV cos Ascos ks Jg Y ye

Hence the aileron effectiveness is given by

s ks
—tan As / ysin Ay dy 4+ tan Aks / ysinAydy
0 0
§ (e+ h)

- aydy + ————[s% — (ks)?
(ps/V) ,/ks ycosaydy+ 2h cos Aks L7 = ksl i)
£ ea /S .
Ayd
har\s cos As cos Aks Jy ySImAYEy

The aileron effectiveness is zero, i.e. aileron reversal takes place, when the numerator
on the right-hand side of Eq. (vi) is zero, i.e. when

s

ks L K
e+h
tanAks/ ysin)\ydy—tan)»s/ ysinkydy—/ ycosiydy = (e+h)
0 0 k

leth) 22
. cos ks S S





