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Solutions Manual

Solutions to Chapter 1 Problems

S.1.1

The principal stresses are given directly by Eqs (1.11) and (1.12) in which
σx = 80 N/mm2, σy = 0 (or vice versa) and τxy = 45 N/mm2. Thus, from Eq. (1.11)

σI = 80

2
+ 1

2

√
802 + 4 × 452

i.e.

σI = 100.2 N/mm2

From Eq. (1.12)

σII = 80

2
− 1

2

√
802 + 4 × 452

i.e.

σII = −20.2 N/mm2

The directions of the principal stresses are defined by the angle θ in Fig. 1.8(b) in
which θ is given by Eq. (1.10). Hence

tan 2θ = 2 × 45

80 − 0
= 1.125

which gives

θ = 24◦11′ and θ = 114◦11′

It is clear from the derivation of Eqs (1.11) and (1.12) that the first value of θ

corresponds to σI while the second value corresponds to σII.
Finally, the maximum shear stress is obtained from either of Eqs (1.14) or (1.15).

Hence from Eq. (1.15)

τmax = 100.2 − (−20.2)

2
= 60.2 N/mm2

and will act on planes at 45◦ to the principal planes.
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S.1.2

The principal stresses are given directly by Eqs (1.11) and (1.12) in which σx =
50 N/mm2, σy = −35 N/mm2 and τxy = 40 N/mm2. Thus, from Eq. (1.11)

σI = 50 − 35

2
+ 1

2

√
(50 + 35)2 + 4 × 402

i.e.

σI = 65.9 N/mm2

and from Eq. (1.12)

σII = 50 − 35

2
− 1

2

√
(50 + 35)2 + 4 × 402

i.e.

σII = −50.9 N/mm2

From Fig. 1.8(b) and Eq. (1.10)

tan 2θ = 2 × 40

50 + 35
= 0.941

which gives

θ = 21◦38′(σI) and θ = 111◦38′(σII)

The planes on which there is no direct stress may be found by considering the
triangular element of unit thickness shown in Fig. S.1.2 where the plane AC represents
the plane on which there is no direct stress. For equilibrium of the element in a direction
perpendicular to AC

0 = 50AB cos α − 35BC sin α + 40AB sin α + 40BC cos α (i)

A

B
C

τ

α

35 N/mm2

40 N/mm2

50 N/mm2

Fig. S.1.2
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Dividing through Eq. (i) by AB

0 = 50 cos α − 35 tan α sin α + 40 sin α + 40 tan α cos α

which, dividing through by cos α, simplifies to

0 = 50 − 35 tan2 α + 80 tan α

from which

tan α = 2.797 or −0.511

Hence

α = 70◦21′ or −27◦5′

S.1.3

The construction of Mohr’s circle for each stress combination follows the procedure
described in Section 1.8 and is shown in Figs S.1.3(a)–(d).

Fig. S.1.3(a)

Fig. S.1.3(b)
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Fig. S.1.3(c)

Fig. S.1.3(d)

S.1.4

The principal stresses at the point are determined, as indicated in the question, by
transforming each state of stress into a σx, σy, τxy stress system. Clearly, in the
first case σx = 0, σy = 10 N/mm2, τxy = 0 (Fig. S.1.4(a)). The two remaining cases
are transformed by considering the equilibrium of the triangular element ABC in
Figs S.1.4(b), (c), (e) and (f). Thus, using the method described in Section 1.6
and the principle of superposition (see Section 5.9), the second stress system of
Figs S.1.4(b) and (c) becomes the σx, σy, τxy system shown in Fig. S.1.4(d) while
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10 N/mm2

Fig. S.1.4(a) Fig. S.1.4(b)

Fig. S.1.4(c)

Fig. S.1.4(d)

the third stress system of Figs S.1.4(e) and (f) transforms into the σx, σy, τxy system of
Fig. S.1.4(g).

Finally, the states of stress shown in Figs S.1.4(a), (d) and (g) are superimposed
to give the state of stress shown in Fig. S.1.4(h) from which it can be seen that
σI = σII = 15 N/mm2 and that the x and y planes are principal planes.
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Fig. S.1.4(e) Fig. S.1.4(f)

Fig. S.1.4(g)

Fig. S.1.4(h)

S.1.5

The geometry of Mohr’s circle of stress is shown in Fig. S.1.5 in which the circle is
constructed using the method described in Section 1.8.

From Fig. S.1.5

σx = OP1 = OB − BC + CP1 (i)
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O
C

τ

σ

τmax

τmax

P1

P2

Q1 (σx, τxy)

Q2 (sy,�τxy)

B (σI)

Fig. S.1.5

In Eq. (i) OB = σI, BC is the radius of the circle which is equal to τmax and

CP1 =
√

CQ2
1 − Q1P2

1 =
√

τ2
max − τ2

xy. Hence

σx = σI − τmax +
√

τ2
max − τ2

xy

Similarly

σy = OP2 = OB − BC − CP2 in which CP2 = CP1

Thus

σy = σI − τmax −
√

τ2
max − τ2

xy

S.1.6

From bending theory the direct stress due to bending on the upper surface of the shaft
at a point in the vertical plane of symmetry is given by

σx = My

I
= 25 × 106 × 75

π × 1504/64
= 75 N/mm2

From the theory of the torsion of circular section shafts the shear stress at the same
point is

τxy = Tr

J
= 50 × 106 × 75

π × 1504/32
= 75 N/mm2
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Substituting these values in Eqs (1.11) and (1.12) in turn and noting that σy = 0

σI = 75

2
+ 1

2

√
752 + 4 × 752

i.e.

σI = 121.4 N/mm2

σII = 75

2
− 1

2

√
752 + 4 × 752

i.e.

σII = −46.4 N/mm2

The corresponding directions as defined by θ in Fig. 1.8(b) are given by Eq. (1.10)
i.e.

tan 2θ = 2 × 75

75 − 0
= 2

Hence

θ = 31◦43′(σI)

and

θ = 121◦43′(σII)

S.1.7

The direct strains are expressed in terms of the stresses using Eqs (1.42), i.e.

εx = 1

E
[σx − ν(σy + σz)] (i)

εy = 1

E
[σy − ν(σx + σz)] (ii)

εz = 1

E
[σz − ν(σx + σy)] (iii)

Then

e = εx + εy + εz = 1

E
[σx + σy + σz − 2ν(σx + σy + σz)]

i.e.

e = (1 − 2ν)

E
(σx + σy + σz)

whence

σy + σz = Ee

(1 − 2ν)
− σx
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Substituting in Eq. (i)

εx = 1

E

[
σx − ν

(
Ee

1 − 2ν
− σx

)]

so that

Eεx = σx(1 + ν) − νEe

1 − 2ν

Thus

σx = νEe

(1 − 2ν)(1 + ν)
+ E

(1 + ν)
εx

or, since G = E/2(1 + ν) (see Section 1.15)

σx = λe + 2Gεx

Similarly

σy = λe + 2Gεy

and

σz = λe + 2Gεz

S.1.8

The implication in this problem is that the condition of plane strain also describes the
condition of plane stress. Hence, from Eqs (1.52)

εx = 1

E
(σx − νσy) (i)

εy = 1

E
(σy − νσx) (ii)

γxy = τxy

G
= 2(1 + ν)

E
τxy (see Section 1.15) (iii)

The compatibility condition for plane strain is

∂2γxy

∂x ∂y
= ∂2εy

∂x2 + ∂2εx

∂y2 (see Section 1.11) (iv)

Substituting in Eq. (iv) for εx, εy and γxy from Eqs (i)–(iii), respectively, gives

2(1 + ν)
∂2τxy

∂x ∂y
= ∂2

∂x2 (σy − νσx) + ∂2

∂y2 (σx − νσy) (v)
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Also, from Eqs (1.6) and assuming that the body forces X and Y are zero

∂σx

∂x
+ ∂τzy

∂y
= 0 (vi)

∂σy

∂y
+ ∂τxy

∂x
= 0 (vii)

Differentiating Eq. (vi) with respect to x and Eq. (vii) with respect to y and adding gives

∂2σx

∂x2 + ∂2τxy

∂y ∂x
+ ∂2σy

∂y2 + ∂2τxy

∂x ∂y
= 0

or

2
∂2τxy

∂x ∂y
= −

(
∂2σx

∂x2 + ∂2σy

∂y2

)

Substituting in Eq. (v)

−(1 + ν)

(
∂2σx

∂x2 + ∂2σy

∂y2

)

= ∂2

∂x2 (σy − νσx) + ∂2

∂y2 (σx − νσy)

so that

−(1 + ν)

(
∂2σx

∂x2 + ∂2σy

∂y2

)

= ∂2σy

∂x2 + ∂2σx

∂y2 − ν

(
∂2σx

∂x2 + ∂2σy

∂y2

)

which simplifies to

∂2σy

∂x2 + ∂2σx

∂y2 + ∂2σx

∂x2 + ∂2σy

∂y2 = 0

or
(

∂2

∂x2 + ∂2

∂y2

)
(σx + σy) = 0

S.1.9

Suppose that the load in the steel bar is Pst and that in the aluminium bar is Pal. Then,
from equilibrium

Pst + Pal = P (i)

From Eq. (1.40)

εst = Pst

AstEst
εal = Pal

AalEal
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Since the bars contract by the same amount

Pst

AstEst
= Pal

AalEal
(ii)

Solving Eqs (i) and (ii)

Pst = AstEst

AstEst + AalEal
P Pal = AalEal

AstEst + AalEal
P

from which the stresses are

σst = Est

AstEst + AalEal
P σal = Eal

AstEst + AalEal
P (iii)

The areas of cross-section are

Ast = π × 752

4
= 4417.9 mm2 Aal = π(1002 − 752)

4
= 3436.1 mm2

Substituting in Eq. (iii) we have

σst = 106 × 200 000

(4417.9 × 200 000 + 3436.1 × 80 000)
= 172.6 N/mm2 (compression)

σal = 106 × 80 000

(4417.9 × 200 000 + 3436.1 × 80 000)
= 69.1 N/mm2 (compression)

Due to the decrease in temperature in which no change in length is allowed the strain
in the steel is αstT and that in the aluminium is αalT . Therefore due to the decrease in
temperature

σst = EstαstT = 200 000 × 0.000012 × 150 = 360.0 N/mm2 (tension)

σal = EalαalT = 80 000 × 0.000005 × 150 = 60.0 N/mm2 (tension)

The final stresses in the steel and aluminium are then

σst(total) = 360.0 − 172.6 = 187.4 N/mm2 (tension)

σal(total) = 60.0 − 69.1 = −9.1 N/mm2 (compression).

S.1.10

The principal strains are given directly by Eqs (1.69) and (1.70). Thus

εI = 1

2
(−0.002 + 0.002) + 1√

2

√
(−0.002 + 0.002)2 + (+0.002 + 0.002)2
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i.e.

εI = +0.00283

Similarly

εII = −0.00283

The principal directions are given by Eq. (1.71), i.e.

tan 2θ = 2(−0.002) + 0.002 − 0.002

0.002 + 0.002
= −1

Hence

2θ = −45◦ or +135◦

and

θ = −22.5◦ or +67.5◦

S.1.11

The principal strains at the point P are determined using Eqs (1.69) and (1.70). Thus

εI =
[

1

2
(−222 + 45) + 1√

2

√
(−222 + 213)2 + (−213 − 45)2

]
× 10−6

i.e.

εI = 94.0 × 10−6

Similarly

εII = −217.0 × 10−6

The principal stresses follow from Eqs (1.67) and (1.68). Hence

σI = 31 000

1 − (0.2)2 (94.0 − 0.2 × 271.0) × 10−6

i.e.

σI = 1.29 N/mm2

Similarly

σII = −8.14 N/mm2

Since P lies on the neutral axis of the beam the direct stress due to bending is zero.
Therefore, at P, σx = 7 N/mm2 and σy = 0. Now subtracting Eq. (1.12) from (1.11)

σI − σII =
√

σ2
x + 4τ2

xy
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i.e.

1.29 + 8.14 =
√

72 + 4τ2
xy

from which τxy = 3.17 N/mm2.
The shear force at P is equal to Q so that the shear stress at P is given by

τxy = 3.17 = 3Q

2 × 150 × 300
from which

Q = 95 100 N = 95.1 kN.

Solutions to Chapter 2 Problems

S.2.1

The stress system applied to the plate is shown in Fig. S.2.1. The origin, O, of the axes
may be chosen at any point in the plate; let P be the point whose coordinates are (2, 3).

2p

2p

3p3p

4p

4p

4p

4p

y

xO

P (2,3)

Fig. S.2.1

From Eqs (1.42) in which σz = 0

εx = −3p

E
− ν

2p

E
= −3.5p

E
(i)

εy = 2p

E
+ ν

3p

E
= 2.75p

E
(ii)

Hence, from Eqs (1.27)

∂u

∂x
= −3.5p

E
so that u = −3.5p

E
x + f1(y) (iii)
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where f1(y) is a function of y. Also

∂v

∂y
= 2.75p

E
so that v = −2.75p

E
y + f2(x) (iv)

in which f2(x) is a function of x.
From the last of Eqs (1.52) and Eq. (1.28)

γxy = 4p

G
= ∂v

∂x
+ ∂u

∂y
= ∂f2(x)

∂x
+ ∂f1(y)

∂y
(from Eqs (iv) and (iii))

Suppose

∂f1(y)

∂y
= A

then

f1( y) = Ay + B (v)

in which A and B are constants.
Similarly, suppose

∂f2(x)

∂x
= C

then

f2(x) = Cx + D (vi)

in which C and D are constants.
Substituting for f1(y) and f2(x) in Eqs (iii) and (iv) gives

u = −3.5p

E
x + Ay + B (vii)

and

v = 2.75p

E
y + Cx + D (viii)

Since the origin of the axes is fixed in space it follows that when x = y = 0, u = v = 0.
Hence, from Eqs (vii) and (viii), B = D = 0. Further, the direction of Ox is fixed in space
so that, when y = 0, ∂v/∂x = 0. Therefore, from Eq. (viii), C = 0. Thus, from Eqs (1.28)
and (vii), when x = 0.

∂u

∂y
= 4p

G
= A

Eqs (vii) and (viii) now become

u = −3.5p

E
x + 4p

G
y (ix)
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v = 2.75p

E
y (x)

From Eq. (1.50), G = E/2(1 + ν) = E/2.5 and Eq. (ix) becomes

u = p

E
(−3.5x + 10y) (xi)

At the point (2, 3)

u = 23p

E
(from Eq. (xi))

and

v = 8.25p

E
(from Eq. (x))

The point P therefore moves at an angle α to the x axis given by

α = tan−1 8.25

23
= 19.73◦

S.2.2

An Airy stress function, φ, is defined by the equations (Eqs (2.8)):

σx = ∂2φ

∂y2 σy = ∂2φ

∂x2 τxy = − ∂2φ

∂x ∂y

and has a final form which is determined by the boundary conditions relating to a
particular problem.

Since

φ = Ay3 + By3x + Cyx (i)

∂4φ

∂x4 = 0
∂4φ

∂y4 = 0
∂4φ

∂x2∂y2 = 0

and the biharmonic equation (2.9) is satisfied. Further

σx = ∂2φ

∂y2 = 6Ay + 6Byx (ii)

σy = ∂2φ

∂x2 = 0 (iii)

τxy = − ∂2φ

∂x ∂y
= −3By2 − C (iv)

The distribution of shear stress in a rectangular section beam is parabolic and is zero
at the upper and lower surfaces. Hence, when y = ±d/2, τxy = 0. Thus, from Eq. (iv)

B = −4C

3d2 (v)
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The resultant shear force at any section of the beam is −P. Therefore

∫ d/2

−d/2
τxyt dy = −P

Substituting for τxy from Eq. (iv)

∫ d/2

−d/2
(−3By2 − C)t dy = −P

which gives

2t

(
Bd3

8
+ Cd

2

)
= P

Substituting for B from Eq. (v) gives

C = 3P

2td
(vi)

It now follows from Eqs (v) and (vi) that

B = −2P

td3 (vii)

At the free end of the beam where x = l the bending moment is zero and thus σx = 0
for any value of y. Therefore, from Eq. (ii)

6A + 6Bl = 0

whence

A = 2Pl

td3 (viii)

Then, from Eq. (ii)

σx = 12Pl

td3 y − 12P

td3 xy

or

σx = 12P(l − x)

td3 y (ix)

Equation (ix) is the direct stress distribution at any section of the beam given by
simple bending theory, i.e.

σx = My

I
where M = P(l − x) and I = td3/12.

The shear stress distribution given by Eq. (iv) is

τxy = 6P

td3 y2 − 3P

2td
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or

τxy = 6P

td3

(
y2 − d2

4

)
(x)

Equation (x) is identical to that derived from simple bending theory and may be found
in standard texts on stress analysis, strength of materials, etc.

S.2.3

The stress function is

φ = w

20h3 (15h2x2y − 5x2y3 − 2h2y3 + y5)

Then

∂2φ

∂x2 = w

20h3 (30h2y − 10y3) = σy

∂2φ

∂y2 = w

20h3 (−30x2y − 12h2y + 20y3) = σx

∂2φ

∂x ∂y
= w

20h3 (30h2x − 30xy2) = −τxy

∂4φ

∂x4 = 0

∂4φ

∂y4 = w

20h3 (120y)

∂4φ

∂x2 ∂y2 = w

20h3 (−60y)

Substituting in Eq. (2.9)

∇4φ = 0

so that the stress function satisfies the biharmonic equation.
The boundary conditions are as follows:

• At y = h, σy = w and τxy = 0 which are satisfied.
• At y = −h, σy = −w and τxy = 0 which are satisfied.
• At x = 0, σx = w/20h3 (−12h2y + 20y3) �= 0.

Also
∫ h

−h
σx dy = w

20h3

∫ h

−h
(−12h2y + 20y3)dy

= w

20h3 [−6h2y2 + 5y4]h−h

= 0

i.e. no resultant force.
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Finally

∫ h

−h
σxy dy = w

20h3

∫ h

−h
(−12h2y2 + 20y4)dy

= w

20h3 [−4h2y3 + 4y5]h−h

= 0

i.e. no resultant moment.

S.2.4

The Airy stress function is

φ = p

120d3 [5(x3 − l2x)(y + d)2(y − 2d) − 3yx(y2 − d2)2]

Then

∂4φ

∂x4 = 0
∂4φ

∂y4 = −3pxy

d3

∂4φ

∂x2∂y2 = 3pxy

2d3

Substituting these values in Eq. (2.9) gives

0 + 2 × 3pxy

2d3 − 3pxy

d3 = 0

Therefore, the biharmonic equation (2.9) is satisfied.
The direct stress, σx, is given by (see Eqs (2.8))

σx = ∂2φ

∂y2 = px

20d3 [5y(x2 − l2) − 10y3 + 6d2y]

When x = 0, σx = 0 for all values of y. When x = l

σx = pl

20d3 (−10y3 + 6d2y)

and the total end load = ∫ d
−d σx1 dy

= pl

20d3

∫ d

−d
(−10y3 + 6d2y)dy = 0

Thus the stress function satisfies the boundary conditions for axial load in the x direction.
Also, the direct stress, σy, is given by (see Eqs (2.8))

σy = ∂2φ

∂x2 = px

4d3 ( y3 − 3yd2 − 2d3)
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When x = 0, σy = 0 for all values of y. Also at any section x where y = −d

σy = px

4d3 (−d3 + 3d3 − 2d3) = 0

and when y = +d

σy = px

4d3 (d3 − 3d3 − 2d3) = −px

Thus, the stress function satisfies the boundary conditions for load in the y direction.
The shear stress, τxy, is given by (see Eqs (2.8))

τxy = − ∂2φ

∂x ∂y
= − p

40d3 [5(3x2 − l2)( y2 − d2) − 5y4 + 6y2d2 − d4]

When x = 0

τxy = − p

40d3 [−5l2( y2 − d2) − 5y4 + 6y2d2 − d4]

so that, when y = ±d, τxy = 0. The resultant shear force on the plane x = 0 is given by

∫ d

−d
τxy1 dy = − p

40d3

∫ d

−d
[−5l2( y2 − d2) − 5y4 + 6y2d2 − d4]dy = −pl2

6

From Fig. P.2.4 and taking moments about the plane x = l,

τxy(x = 0)12dl = 1

2
lpl

2

3
l

i.e.

τxy(x = 0) = pl2

6d

and the shear force is pl2/6.
Thus, although the resultant of the Airy stress function shear stress has the same

magnitude as the equilibrating shear force it varies through the depth of the beam
whereas the applied equilibrating shear stress is constant. A similar situation arises on
the plane x = l.

S.2.5

The stress function is

φ = w

40bc3 (−10c3x2 − 15c2x2y + 2c2y3 + 5x2y3 − y5)
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Then

∂2φ

∂y2 = w

40bc3 (12c2y + 30x2y − 20y3) = σx

∂2φ

∂x2 = w

40bc3 (−20c3 − 30c2y + 10y3) = σy

∂2φ

∂x ∂y
= w

40bc3 (−30c2x + 30xy2) = −τxy

∂4φ

∂x4 = 0

∂4φ

∂y4 = w

40bc3 (−120y)

∂4φ

∂x2 ∂y2 = w

40bc3 (60y)

Substituting in Eq. (2.9)

∇4φ = 0

so that the stress function satisfies the biharmonic equation.
On the boundary, y = +c

σy = −w

b
τxy = 0

At y = −c

σy = 0 τxy = 0

At x = 0

σx = w

40bc3 (12c2y − 20y3)

Then ∫ c

−c
σx dy = w

40bc3

∫ c

−c
(12c2y − 20y3)dy

= w

40bc3 [6c2y2 − 5y4]c−c

= 0

i.e. the direct stress distribution at the end of the cantilever is self-equilibrating.
The axial force at any section is

∫ c

−c
σx dy = w

40bc3

∫ c

−c
(12c2y + 30x2y − 20y3)dy

= w

40bc3 [6c2y2 + 15x2y2 − 5y4]c−c

= 0

i.e. no axial force at any section of the beam.
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The bending moment at x = 0 is
∫ c

−c
σxy dy = w

40bc3

∫ c

−c
(12c2y2 − 20y4)dy

= w

40bc3 [4c2y3 − 4y5]c−c = 0

i.e. the beam is a cantilever beam under a uniformly distributed load of w/unit area with
a self-equilibrating stress application at x = 0.

S.2.6

From physics, the strain due to a temperature rise T in a bar of original length L0 and
final length L is given by

ε = L − L0

L0
= L0(1 + αT ) − L0

L0
= αT

Thus for the isotropic sheet, Eqs (1.52) become

εx = 1

E
(σx − νσy) + αT

εy = 1

E
(σy − νσx) + αT

Also, from the last of Eqs (1.52) and (1.50)

γxy = 2(1 + ν)

E
τxy

Substituting in Eq. (1.21)

2(1 + ν)

E

∂2τxy

∂x ∂y
= 1

E

(
∂2σy

∂x2 − ν
∂2σx

∂x2

)

+ α
∂2T

∂x2 + 1

E

(
∂2σx

∂y2 − ν
∂2σy

∂y2

)

+ α
∂2T

∂y2

or

2(1 + ν)
∂2τxy

∂x ∂y
= ∂2σy

∂x2 + ∂2σx

∂y2 − ν
∂2σx

∂x2 − ν
∂2σy

∂y2 + Eα∇2T (i)

From Eqs (1.6) and assuming body forces X = Y = 0

∂2τxy

∂y ∂x
= −∂2σx

∂x2

∂2τxy

∂x ∂y
= −∂2σy

∂y2

Hence

2
∂2τxy

∂x ∂y
= −∂2σx

∂x2 − ∂2σy

∂y2
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and

2ν
∂2τxy

∂x ∂y
= −ν

∂2σx

∂x2 − ν
∂2σy

∂y2

Substituting in Eq. (i)

−∂2σx

∂x2 − ∂2σy

∂y2 = ∂2σy

∂x2 + ∂2σx

∂y2 + Eα∇2T

Thus
(

∂2

∂x2 + ∂2

∂y2

)
(σx + σy) + Eα∇2T = 0

and since

σx = ∂2φ

∂y2 σy = ∂2φ

∂x2 (see Eqs (2.8))

(
∂2

∂x2 + ∂2

∂y2

)(
∂2φ

∂y2 + ∂2φ

∂x2

)
+ Eα∇2T = 0

or

∇2(∇2φ + EαT ) = 0

S.2.7

The stress function is

φ = 3Qxy

4a
− Qxy3

4a3

Then

∂2φ

∂x2 = 0 = σy

∂2φ

∂y2 = −3Qxy

2a3 = σx

∂2φ

∂x ∂y
= 3Q

4a
− 3Qy2

4a3 = −τxy

Also

∂4φ

∂x4 = 0
∂4φ

∂y4 = 0
∂4φ

∂x2 ∂y2 = 0

so that Eq. (2.9), the biharmonic equation, is satisfied.
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When x = a, σx = −3Qy/2a2, i.e. linear.
Then, when

y = 0 σx = 0

y = −a σx = 3Q

2a

y = +a σx = −3Q

2a

Also, when x = −a, σx = 3Qy/2a2, i.e. linear and when

y = 0 σx = 0

y = −a σx = −3Q

2a

y = +a σx = 3Q

2a

The shear stress is given by (see above)

τxy = −3Q

4a

(
1 − y2

a2

)
, i.e. parabolic

so that, when y = ±a, τxy = 0 and when y = 0, τxy = −3Q/4a.
The resultant shear force at x = ±a is

=
∫ a

−a
−3Q

4a

(
1 − y2

a2

)
dy

i.e.

SF = Q.

The resultant bending moment at x = ±a is

=
∫ a

−a
σxy dy

=
∫ a

−a

3Qay2

2a3 dy

i.e.

BM = −Qa.
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Solutions to Chapter 3 Problems

S.3.1

Initially the stress function, φ, must be expressed in terms of Cartesian coordinates.
Thus, from the equation of a circle of radius, a, and having the origin of its axes at its
centre.

φ = k(x2 + y2 − a2) (i)

From Eqs (3.4) and (3.11)

∂2φ

∂x2 + ∂2φ

∂y2 = F = −2G
dθ

dz
(ii)

Differentiating Eq. (i) and substituting in Eq. (ii)

4k = −2G
dθ

dz

or

k = −1

2
G

dθ

dz
(iii)

From Eq. (3.8)

T = 2
∫∫

φ dx dy

i.e.

T = −G
dθ

dz

[∫∫

A
x2 dx dy +

∫∫

A
y2 dx dy − a2

∫∫

A
dx dy

]
(iv)

where
∫∫

A x2 dx dy = Iy, the second moment of area of the cross-section about the y
axis;

∫∫
A y2 dx dy = Ix, the second moment of area of the cross-section about the x axis

and
∫∫

A dx dy = A, the area of the cross-section. Thus, since Iy = πa4/4, Ix = πa4/4
and A = πa2 Eq. (iv) becomes

T = G
dθ

dz

πa4

2
or

dθ

dz
= 2T

Gπa4 = T

GIp
(v)

From Eqs (3.2) and (v)

τzy = −∂φ

∂x
= −2kx = G

dθ

dz
x = Tx

Ip
(vi)
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and

τzx = ∂φ

∂y
= 2ky = −G

dθ

dz
y = −Ty

Ip
(vii)

Substituting for τzy and τzx from Eqs (vi) and (vii) in the second of Eqs (3.15)

τzs = T

Ip
(xl + ym) (viii)

in which, from Eqs (3.6)

l = dy

ds
m = −dx

ds

Suppose that the bar of Fig. 3.2 is circular in cross-section and that the radius makes
an angle α with the x axis. Then.

m = sin α and l = cos α

Also, at any radius, r

y = r sin α x = r cos α

Substituting for x, l, y and m in Eq. (viii) gives

τzs = Tr

Ip
(=τ)

Now substituting for τzx, τzy and dθ/dz from Eqs (vii), (vi) and (v) in Eqs (3.10)

∂w

∂x
= − Ty

GIp
+ Ty

GIp
= 0 (ix)

∂w

∂y
= Tx

GIp
− Tx

GIp
= 0 (x)

The possible solutions of Eqs (ix) and (x) are w = 0 and w = constant. The latter solu-
tion implies a displacement of the whole bar along the z axis which, under the given
loading, cannot occur. Therefore, the first solution applies, i.e. the warping is zero at
all points in the cross-section.

The stress function, φ, defined in Eq. (i) is constant at any radius, r, in the cross-
section of the bar so that there are no shear stresses acting across such a boundary.
Thus, the material contained within this boundary could be removed without affecting
the stress distribution in the outer portion. Therefore, the stress function could be used
for a hollow bar of circular cross-section.
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S.3.2

In S.3.1 it has been shown that the warping of the cross-section of the bar is everywhere
zero. Then, from Eq. (3.17) and since dθ/dz �= 0

ψ(x, y) = 0 (i)

This warping function satisfies Eq. (3.20). Also Eq. (3.21) reduces to

xm − yl = 0 (ii)

On the boundary of the bar x = al, y = am so that Eq. (ii), i.e. Eq. (3.21), is satisfied.
Since ψ = 0, Eq. (3.23) for the torsion constant reduces to

J =
∫∫

A
x2 dx dy +

∫∫

A
y2 dx dy = Ip

Therefore, from Eq. (3.12)

T = GIp
dθ

dz

as in S.3.1.
From Eqs (3.19)

τzx = G
dθ

dz
(−y) = −Ty

Ip

and

τzy = G
dθ

dz
(x) = Tx

Ip

which are identical to Eqs (vii) and (vi) in S.3.1. Hence

τzs = τ = Tr

Ip

as in S.3.1.

S.3.3

Since ψ = kxy, Eq. (3.20) is satisfied.
Substituting for ψ in Eq. (3.21)

(kx + x)m + (ky − y)l = 0

or, from Eqs (3.6)

−x(k + 1)
dx

ds
+ y(k − 1)

dy

ds
= 0
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or

d

ds

[
−x2

2
(k + 1) + y2

2
(k − 1)

]
= 0

so that

−x2

2
(k + 1) + y2

2
(k − 1) = constant on the boundary of the bar

Rearranging

x2 +
(

1 − k

1 + k

)
y2 = constant (i)

Also, the equation of the elliptical boundary of the bar is

x2

a2 + y2

b2 = 1

or

x2 + a2

b2 y2 = a2 (ii)

Comparing Eqs (i) and (ii)

a2

b2 =
(

1 − k

1 + k

)

from which

k = b2 − a2

a2 + b2 (iii)

and

ψ = b2 − a2

a2 + b2 xy (iv)

Substituting for ψ in Eq. (3.23) gives the torsion constant, J , i.e.

J =
∫∫

A

[(
b2 − a2

a2 + b2 + 1

)
x2 −

(
b2 − a2

a2 + b2 − 1

)
y2
]

dx dy (v)

Now
∫∫

A x2 dx dy = Iy = πa3b/4 for an elliptical cross-section. Similarly
∫∫

A y2 dx dy =
Ix = πab3/4. Equation (v) therefore simplifies to

J = πa3b3

a2 + b2 (vi)

which are identical to Eq. (v) of Example 3.1.
From Eq. (3.22) the rate of twist is

dθ

dz
= T (a2 + b2)

Gπa3b3 (vii)
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The shear stresses are obtained from Eqs (3.19), i.e.

τzx = GT (a2 + b2)

Gπa3b3

[(
b2 − a2

a2 + b2

)
y − y

]

so that

τzx = − 2Ty

πab3

and

τzy = GT (a2 + b2)

Gπa3b3

[(
b2 − a2

a2 + b2

)
x + x

]

i.e.

τzy = 2Tx

πa3b

which are identical to Eq. (vi) of Example 3.1.
From Eq. (3.17)

w = T (a2 + b2)

Gπa3b3

(
b2 − a2

a2 + b2

)
xy

i.e.

w = T (b2 − a2)

Gπa3b3 xy (compare with Eq. (viii) of Example 3.1)

S.3.4

The stress function is

φ = −G
dθ

dz

[
1

2
(x2 + y2) − 1

2a
(x3 − 3xy2) − 2

27
a2
]

(i)

Differentiating Eq. (i) twice with respect to x and y in turn gives

∂2φ

∂x2 = −G
dθ

dz

(
1 − 3x

a

)

∂2φ

∂y2 = −G
dθ

dz

(
1 + 3x

a

)

Therefore

∂2φ

∂x2 + ∂2φ

∂y2 = −2G
dθ

dz
= constant

and Eq. (3.4) is satisfied.
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Further

on AB, x = −a

3
y = y

on BC, y = −x√
3

+ 2a

3
√

3

on AC, y = x√
3

− 2a

3
√

3

Substituting these expressions in turn in Eq. (i) gives

φAB = φBC = φAC = 0

so that Eq. (i) satisfies the condition φ = 0 on the boundary of the triangle.
From Eqs (3.2) and (i)

τzy = −∂φ

∂x
= G

dθ

dz

(
x − 3x2

2a
+ 3y2

2a

)
(ii)

and

τzx = ∂φ

∂y
= −G

dθ

dz

(
y + 3xy

a

)
(iii)

At each corner of the triangular section τzy = τzx = 0. Also, from antisymmetry, the
distribution of shear stress will be the same along each side. For AB, where x = −a/3
and y = y, Eqs (ii) and (iii) become

τzy = G
dθ

dz

(
−a

2
+ 3y2

2a

)
(iv)

and

τzx = 0 (v)

From Eq. (iv) the maximum value of τzy occurs at y = 0 and is

τzy(max) = −Ga

2

dθ

dz
(vi)

The distribution of shear stress along the x axis is obtained from Eqs (ii) and (iii) in
which x = x, y = 0, i.e.

τzy = G
dθ

dz

(
x − 3x2

2a

)
(vii)

τzx = 0

From Eq. (vii) τzy has a mathematical maximum at x = +a/3 which gives

τzy = Ga

6

dθ

dz
(viii)
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which is less than the value given by Eq. (vi). Thus the maximum value of shear stress
in the section is (−Ga/2)dθ/dz.

The rate of twist may be found by substituting for φ from Eq. (i) in (3.8).
Thus

T = −2G
dθ

dz

∫∫ [
1

2
(x2 + y2) − 1

2a
(x3 − 3xy2) − 2

27
a2
]

dx dy (ix)

The equation of the side AC of the triangle is y = (x − 2a/3)/
√

3 and that of BC,
y = −(x − 2a/3)/

√
3. Equation (ix) then becomes

T = −2G
dθ

dz

∫ 2a/3

−a/3

∫ −(x−2a/3)/
√

3

(x−2a/3)/
√

3

[
1

2
(x2 + y2) − 1

2a
(x3 − 3xy2) − 2

27
a2
]

dx dy

which gives

T = Ga4

15
√

3

dθ

dz

so that

dθ

dz
= 15

√
3T

Ga4 (x)

From the first of Eqs (3.10)

∂w

∂x
= τzx

G
+ dθ

dz
y

Substituting for τzx from Eq. (iii)

∂w

∂x
= −dθ

dz

(
y + 3xy

a
− y

)

i.e.
∂w

∂x
= −3xy

a

dθ

dz

whence

w = −3x2y

2a

dθ

dz
+ f ( y) (xi)

Similarly from the second of Eqs (3.10)

w = −3x2y

2a

dθ

dz
+ y3

2a

dθ

dz
+ f (x) (xii)

Comparing Eqs (xi) and (xii)

f (x) = 0 and f ( y) = y3

2a

dθ

dz
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Hence

w = 1

2a

dθ

dz
( y3 − 3x2y).

S.3.5

The torsion constant, J , for the complete cross-section is found by summing the torsion
constants of the narrow rectangular strips which form the section. Then, from Eq. (3.29)

J = 2
at3

3
+ bt3

3
= (2a + b)t3

3
Therefore, from the general torsion equation (3.12)

dθ

dz
= 3T

G(2a + b)t3 (i)

The maximum shear stress follows from Eqs (3.28) and (i), hence

τmax = ±Gt
dθ

dz
= ± 3T

(2a + b)t2 .

Solutions to Chapter 4 Problems

S.4.1

Give the beam at D a virtual displacement δD as shown in Fig. S.4.1. The virtual
displacements of C and B are then, respectively, 3δD/4 and δD/2.

Fig. S.4.1

The equation of virtual work is then

RDδD − 2WδD

2
− W3δD

4
= 0

from which

RD = 1.75W

It follows that

RA = 1.25W .
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S.4.2

The beam is given a virtual displacement δC at C as shown in Fig. S.4.2.

Fig. S.4.2

The virtual work equation is then

RCδC − W3δC

4
−
∫ L

0
w
( x

L

)
δC dx = 0

from which

RC = 3W + 2wL

4
so that

RA = W + 2wL

4
.

S.4.3

The beam is given a virtual rotation θA at A as shown in Fig. S.4.3.

Fig. S.4.3

The virtual work equation is then

MAθA − WLθA

2
− 2WLθA = 0

from which

MA = 2.5WL

and

RA = 3W .
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S.4.4

Give the beam virtual rotations α and β at A and B, respectively as shown in Fig. S.4.4.
Then, at C, (3L/4)α = (L/4)β so that β = 3α.

Fig. S.4.4

The relative rotation of AB and BC at C is (α + β) so that the equation of virtual
work is MC(α + β) = ∫ 3L/4

0 wαx dx + ∫ L
3L/4 w3α(L − x)dx

i.e.

4MCα = wα

[∫ 3L/4

0
x dx + 3

∫ L

3L/4
(L − x)dx

]

from which

MC = 3wL2

32
.

S.4.5

Suppose initially that the portion GCD of the truss is given a small virtual rotation about
C so that G moves a horizontal distance δG and D a vertical distance δD as shown in
Fig. S.4.5(a).

Fig. S.4.5
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Then, since CG = CD, δG = δD and the equation of virtual work is

FGδG = 20δD

so that

FG = +20 kN

The virtual displacement given to G corresponds to an extension of FG which, since
the calculated value of FG is positive, indicates that FG is tensile.

Now suppose that GD is given a small virtual increase in length δGD as shown in
Fig. S.4.5(b). The vertical displacement of D is then δGD/cos 45◦ and the equation of
virtual work is

GDδGD = 20δGD/cos 45◦

from which

GD = +28.3 kN (tension)

Finally suppose that CD is given a small virtual extension δCD as shown in Fig. S.4.5(c).
The corresponding extension of GD is δCD cos 45◦. Then the equation of virtual work
is, since the 20 kN load does no work

CDδCD + GDδCD cos 45◦ = 0

Substituting for GD from the above gives

CD = −20 kN (compression).

S.4.6

First determine the deflection at the quarter-span point B. Then, referring to Fig. S.4.6
the bending moment due to the actual loading at any section is given by

Fig. S.4.6

MA = wLx

2
− wx2

2
= w(Lx − x2)

2

and due to the unit load placed at B is

M1 = 3x

4
in AB and M1 = (L − x)

4
in BD
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Then substituting in Eq. (4.20)

vB = w

8EI

[∫ L/4

0
3(Lx2 − x3)dx +

∫ L

L/4
(Lx − x2)(L − x)dx

]

which gives

vB = 57wL4

6144EI

For the deflection at the mid-span point the bending moment at any section due to the
actual loading is identical to the expression above. With the unit load applied at C

M1 = x

2
in AC and M1 = (L − x)

2
in CD

Substituting in Eq. (4.20)

vC = w

4EI

[∫ L/2

0
(Lx2 − x3) dx +

∫ L

L/2
(Lx − x2)(L − x)dx

]

from which

vC = 5wL4

384EI
.

Solutions to Chapter 5 Problems

S.5.1

This problem is most readily solved by the application of the unit load method.
Therefore, from Eq. (5.20), the vertical deflection of C is given by

�V,C =
∑ F0F1,VL

AE
(i)

and the horizontal deflection by

�H,C =
∑ F0F1,HL

AE
(ii)

in which F1,V and F1,H are the forces in a member due to a unit load positioned at C and
acting vertically downwards and horizontally to the right, in turn, respectively. Further,
the value of L/AE (= 1/20 mm/N) for each member is given and may be omitted from
the initial calculation. All member forces (see Table S.5.1) are found using the method
of joints which is described in textbooks on structural analysis, for example, Structural
and Stress Analysis by T. H. G. Megson (Elsevier, 2005).
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Table S.5.1

Member F0(N) F1,V F1,H F0F1,V F0F1,H

DC 16.67 1.67 0 27.84 0
BC −13.33 −1.33 1.0 17.73 −13.33
ED 13.33 1.33 0 17.73 0
DB −10.0 −1.0 0 10.0 0
AB −16.67 −1.67 0.8 27.84 −13.34
EB 0 0 0.6 0 0

∑ = 101.14
∑ = −26.67

Note that the loads F1,V are obtained most easily by dividing the loads F by a factor of
10. Then, from Eq. (i)

�V,C = 101.4 × 1

20
= 5.07 mm

which is positive and therefore in the same direction as the unit vertical load. Also from
Eq. (ii)

�H,C = −26.67 × 1

20
= −1.33 mm

which is negative and therefore to the left.
The actual deflection, �, is then given by

� =
√

�2
V,C + �2

H,C = 5.24 mm

which is downwards and at an angle of tan−1(1.33/5.07) = 14.7◦ to the left of vertical.

S.5.2

Figure S.5.2 shows a plan view of the plate. Suppose that the point of application of
the load is at D, a distance x from each side of the plate. The deflection of D may be
found using the unit load method so that, from Eq. (5.20), the vertical deflection of D
is given by

�D =
∑ F0F1L

AE
(i)

Initially, therefore, the forces, F0, must be calculated. Suppose that the forces in the
wires at A, B and C due to the actual load are F0,A, F0,B and F0,C, respectively. Then
resolving vertically

F0,A + F0,B + F0,C = 100 (ii)

Taking moments about the edges BC, AC and AB in turn gives

F0,A × 4 = 100x (iii)

F0,B × 4 × sin A = 100x
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A

BC

D

x

x
x

Fig. S.5.2

i.e.

F0,B × 4 × 0.6 = 100x (iv)

and

F0,C × 3 = 100x (v)

Thus, from Eqs (iii) to (v)

4F0,A = 2.4F0,B = 3F0,C

so that

F0,A = 0.6F0,B F0,C = 0.8F0,B

Substituting in Eq. (ii) gives

F0,B = 41.7 N

Hence

F0,A = 25.0 N and F0,C = 33.4 N

Now apply a unit load at D in the direction of the 100 N load. Then

F1,A = 0.25 F1,B = 0.417 F1,C = 0.334

Substituting for F0,A, F1,A, etc. in Eq. (i)

�D = 1440

(π/4) × 12 × 196 000
(25 × 0.25 + 41.7 × 0.417 + 33.4 × 0.334)

i.e.

�D = 0.33 mm
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S.5.3

Suppose that joints 2 and 7 have horizontal and vertical components of displacement
u2, v2, u7, and v7, respectively as shown in Fig. S.5.3. The displaced position of the
member 27 is then 2′7′. The angle α which the member 27 makes with the vertical is
then given by

α = tan−1 u7 − u2

3a + v7 − v2

2

2'

7

7'

3a

u7

v7

v2 u2

α

Fig. S.5.3

which, since α is small and v7 and v2 are small compared with 3a, may be written as

α = u7 − u2

3a
(i)

The horizontal components u2 and u7 may be found using the unit load method,
Eq. (5.20). Thus

u2 =
∑ F0F1,2L

AE
u7 =

∑ F0F1,7L

AE
(ii)

where F1,2 and F1,7 are the forces in the members of the framework due to unit loads
applied horizontally, in turn, at joints 2 and 7, respectively. The solution is completed
in tabular form (Table S.5.3). Substituting the summation terms in Eqs (ii) gives

u2 = −192Pa

3AE
u7 = 570Pa

9AE

Now substituting for u2 and u7 in Eq. (i)

α = 382P

9AE
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Table S.5.3

Member Length F0 F1,2 F1,7 F0F1,2L F0F1,7L

27 3a 3P 0 0 0 0
87 5a 5P/3 0 5/3 0 125Pa/9
67 4a −4P/3 0 −4/3 0 64Pa/9
21 4a 4P −4/3 0 −64Pa/3 0
23 5a 0 5/3 0 0 0
26 5a −5P 0 0 0 0
38 3a 0 0 0 0 0
58 5a 0 0 0 0 0
98 5a 5P/3 0 5/3 0 125Pa/9
68 3a 0 0 0 0 0
16 3a 3P 0 0 0 0
56 4a −16P/3 0 −4/3 0 256Pa/9
13 3a 0 0 0 0 0
43 5a 0 5/3 0 0 0
93

√
34a 0 0 0 0 0

03 5a 0 0 0 0 0
15 5a −5P 0 0 0 0
10 4a 8P −4/3 0 −128Pa/3 0

∑ = −192Pa/3
∑ = 570Pa/9

S.5.4

(a) The beam is shown in Fig. S.5.4. The principle of the stationary value of the total
complementary energy may be used to determine the deflection at C. From Eq. (5.13)

�C =
∫

L
dθ

dM

dP
(i)

A C D F
P

P
2

P
2z

L/4 L/4 L/4 L/4

EI
EI/2

B

Fig. S.5.4

in which, since the beam is linearly elastic, dθ = (M/EI)dz. Also the beam is
symmetrical about its mid-span so that Eq. (i) may be written

�C = 2
∫ L/2

0

M

EI

dM

dP
dz (ii)

In AC

M = P

2
z
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so that

dM

dP
= z

2

Eq. (ii) then becomes

�C = 2

⎡

⎢⎢
⎣

∫ L/4

0

Pz2

4

(
EI

2

)dz +
∫ L/2

L/4

Pz2

4EI
dz

⎤

⎥⎥
⎦ (iii)

Integrating Eq. (iii) and substituting the limits gives

�C = 3PL3

128EI

(b) When the beam is encastré at A and F, fixed end moments MA and MF are induced.
From symmetry MA = MF. The total complementary energy of the beam is, from
Eq. (4.18)

C =
∫

L

∫ M

0
dθ dM − P�C

from which

∂C

∂MA
=
∫

L
dθ

∂M

∂MA
= 0 (iv)

from the principle of the stationary value. From symmetry the reactions at A and F are
each P/2. Hence

M = P

2
z − MA (assuming MA is a hogging moment)

Then
∂M

∂MA
= −1

Thus, from Eq. (iv)

∂C

∂MA
= 2

∫ L/2

0

M

EI

∂M

∂MA
dz = 0

or

0 = 2

[∫ L/4

0

1

(EI/2)

(
P

2
z − MA

)
(−1) dz +

∫ L/2

L/4

1

EI

(
P

2
z − MA

)
(−1) dz

]

from which

MA = 5PL

48
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S.5.5

The unit load method, i.e. the first of Eqs (5.21), may be used to obtain a solution.
Thus

δC,H =
∫

M0M1

EI
dz (i)

in which the M1 moments are due to a unit load applied horizontally at C. Then, referring
to Fig. S.5.5, in CB

M0 = W (R − R cos θ) M1 = 1 × z

and in BA

M0 = W2R M1 = 1 × z

4R

z

A

R
C

W

B θ

Fig. S.5.5

Hence, substituting these expressions in Eq. (i) and noting that in CB ds = R dθ and in
BA ds = dz

δC,H = 1

EI

{∫ π

0
−WR3(1 − cos θ) sin θ dθ +

∫ 4R

0
2WRz dz

}

i.e.

δC,H = 1

EI

{

−WR3
[
−cos θ + cos2 θ

2

]π

0
+ WR[z2]4R

0

}

so that

δC,H = 14WR3

EI
(ii)

The second moment of area of the cross-section of the post is given by

I = π

64
(1004 − 944) = 1.076 × 106 mm4
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Substituting the value of I and the given values of W and R in Eq. (ii) gives

δC,H = 53.3 mm

S.5.6

Either of the principles of the stationary values of the total complementary energy or
the total potential energy may be used to solve this problem.

From Eq. (5.12) the total complementary energy of the system is

C =
∫

L

∫ M

0
dθ dM −

∫

L
wv dz (i)

in which w is the load intensity at any point in the beam and v the vertical displacement.
Equation (i) may be written in the form

C =
∫

L

∫ M

0

M

EI
dz dM −

∫

L
wv dz

since, from symmetrical bending theory

δθ = δz

R
= M

EI
δz

Hence

C =
∫

L

M2

2EI
dz −

∫

L
wv dz (ii)

Alternatively, the total potential energy of the system is the sum of the strain energy
due to bending of the beam plus the potential energy V , of the applied load. The strain
energy U, due to bending in a beam may be shown to be given by

U =
∫

L

M2

2EI
dz

Hence

TPE = U + V =
∫

L

M2

2EI
dz −

∫

L
wv dz (iii)

Eqs (ii) and (iii) are clearly identical.
Now, from symmetrical bending theory

M

EI
= −d2v

dz2

Therefore Eq. (ii) (or (iii)) may be rewritten

C =
∫ L

0

EI

2

(
d2v

dz2

)2

dz −
∫ L

0
wv dz (iv)
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Now

v = a1 sin
πz

L
+ a2 sin

2πz

L
w = 2w0z

L

(
1 − z

2L

)

so that

d2v

dz2 = −a1
π2

L2 sin
πz

L
− a2

4π2

L2 sin
2πz

L

Substituting in Eq. (iv)

C = EI

2

π4

L4

∫ L

0

(
a1

π2

L2 sin
πz

L
+ a2

4π2

L2 sin
2πz

L

)2

dz

−2w0

L

∫ L

0

(
a1z sin

πz

L
+ a2z sin

2πz

L
− a1

z2

2L
sin

πz

L
− a2

z2

2L
sin

2πz

L

)
dz

which, on expanding, gives

C = EIπ4

2L4

∫ L

0

(
a2

1 sin2 πz

L
+ 8a1a2 sin

πz

L
sin

2πz

L
+ 16a2

2 sin2 2πz

L

)
dz

−2w0

L

∫ L

0

(
a1z sin

πz

L
+ a2z sin

2πz

L
− a1

z2

2L
sin

πz

L
− a2

z2

2L
sin

2πz

L

)
dz (v)

Eq. (v) may be integrated by a combination of direct integration and integration by
parts and gives

C = EIπ4

2L4

(
a2

1L

2
+ 8a2

2L

)

− a1w0L

(
1

π
+ 4

π3

)
+ a2w0L

2π
(vi)

From the principle of the stationary value of the total complementary energy

∂C

∂a1
= 0 and

∂C

∂a2
= 0

From Eq. (vi)

∂C

∂a1
= 0 = a1

EIπ4

2L3 − w0L

π3 (π2 + 4)

Hence

a1 = 2w0L4

EIπ7 (π2 + 4)

Also

∂C

∂a2
= 0 = a2

8EIπ4

L3 + w0L

2π

whence

a2 = − w0L4

16EIπ5
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The deflected shape of the beam is then

v = w0L4

EI

[
2

π7 (π2 + 4) sin
πz

L
− 1

16π5
sin

2πz

L

]

At mid-span when z = L/2

v = 0.00918
w0L4

EI

S.5.7

This problem is solved in a similar manner to P.5.6. Thus Eq. (iv) of S.5.6 is directly
applicable, i.e.

C =
∫

L

EI

2

(
d2v

dz2

)2

dz −
∫

L
wv dz (i)

in which

v =
∞∑

i=1

ai sin
iπz

L
(ii)

and w may be expressed as a function of z in the form w = 4w0z(L − z)/L2 which
satisfies the boundary conditions of w = 0 at z = 0 and z = L and w = w0 at z = L/2.

From Eq. (ii)

d2v

dz2 = −
∞∑

i=1

ai
i2π2

L2 sin
iπz

L

Substituting in Eq. (i)

C = EI

2

∫ L

0

∞∑

i=1

a2
i

i4π4

L4 sin2 iπz

L
dz − 4w0

L2

∫ L

0
z(L − z)

∞∑

i=1

ai sin
iπz

L
dz (iii)

Now
∫ L

0
sin2 iπz

L
dz =

∫ L

0

1

2

(
1 − cos

i2πz

L

)
dz =

[
z

2
− L

i2π
sin

i2πz

L

]L

0
= L

2
∫ L

0
Lz sin

iπz

L
dz = L

[
−zL

iπ
cos

iπz

L
+
∫

L

iπ
cos

iπz

L
dz

]L

0
= −L3

iπ
cos iπ

∫ L

0
z2 sin

iπz

L
dz =

[
−z2L

iπ
cos

iπz

L
+
∫

L

iπ
cos

iπz

L
2z dz

]L

0

= −L3

iπ
cos iπ + 2L3

i3π3 (cos iπ − 1)
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Thus Eq. (iii) becomes

C =
∞∑

i=1

EIa2
i i4π4

4L3 − 4w0

L2

∞∑

i=1

ai

[
−L3

iπ
cos iπ + L3

iπ
cos iπ − 2L3

i3π3 (cos iπ − 1)

]

or

C =
∞∑

i=1

EIa2
i i4π4

4L3 − 4w0

L2

∞∑

i=1

2aiL3

i3π3 (1 − cos iπ) (iv)

The value of (1 − cos iπ) is zero when i is even and 2 when i is odd. Therefore Eq. (iv)
may be written

C = EIa2
i i4π4

4L3 − 16w0aiL

i3π3 i is odd

From the principle of the stationary value of the total complementary energy

∂C

∂ai
= EIaii4π4

2L3 − 16w0L

i3π3 = 0

Hence

ai = 32w0L4

EIi7π7

Then

v =
∞∑

i=1

32w0L4

EIi7π7 sin
iπz

L
i is odd

At the mid-span point where z = L/2 and using the first term only in the expression for v

vm.s. = w0L4

94.4EI

S.5.8

The lengths of the members which are not given are:

L12 = 9
√

2a L13 = 15a L14 = 13a L24 = 5a

The force in the member 14 due to the temperature change is compressive and equal to
0.7A. Also the change in length, �14, of the member 14 due to a temperature change T is
L14αT = 13a × 2.4 × 10−6T . This must also be equal to the change in length produced
by the force in the member corresponding to the temperature rise. Let this force be R.

From the unit load method, Eq. (5.20)

�14 =
∑ F0F1L

AE
(i)
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In this case, since R and the unit load are applied at the same points, in the same
direction and no other loads are applied when only the temperature change is being
considered, F0 = RF1. Equation (i) may then be written

�14 = R
∑ F2

1 L

AE
(ii)

The method of joints may be used to determine the F1 forces in the members. Thus

F14 = 1 F13 = −35

13
F12 = 16

√
2

13
F24 = −20

13
F23 = 28

13

Eq. (ii) then becomes

�14 = R

[
12 × 13a

AE
+ 352 × 15a

132AE
+ (16

√
2)2 × 9

√
2a

132
√

2AE
+ 202 × 5a

132AE
+ 282 × 3a

132AE

]

or

�14 = Ra

132AE
(133 + 352 × 15 + 162 × 18 + 202 × 5 + 282 × 3)

i.e.

�14 = 29 532aR

132AE

Then

13a × 24 × 10−6T = 29 532a(0.7A)

132AE

so that

T = 5.6◦

S.5.9

Referring to Figs P.5.9(a), (b) and S.5.9 it can be seen that the members 12, 24 and 23
remain unloaded until P has moved through a horizontal distance 0.25 cos α, i.e. a
distance of 0.25 × 600/750 = 0.2 mm. Therefore, until P has moved through a hori-
zontal distance of 0.2 mm P is equilibrated solely by the forces in the members 13,
34 and 41 which therefore form a triangular framework. The method of solution is to
find the value of P which causes a horizontal displacement of 0.2 mm of joint 1 in this
framework.

Using the unit load method, i.e. Eq. (5.20) and solving in tabular form (see
Table S.5.9(a)).

Then

0.2 = 1425.0P

300 × 70 000
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1

34

450 mm

600 mm

P
α

2

Fig. S.5.9

Table S.5.9(a)

Member Length (mm) F0 F1 F0F1L

13 750 1.25P 1.25 1171.9P
14 450 −0.75P −0.75 253.1P
43 600 0 0 0

∑ = 1425.0P

from which

P = 2947 N

The corresponding forces in the members 13, 14 and 43 are then

F13 = 3683.8 N F14 = −2210.3 N F43 = 0

When P = 10 000 N additional forces will be generated in these members corre-
sponding to a load of P′ = 10 000 − 2947 = 7053 N. Also P′ will now produce forces in
the remaining members 12, 24 and 23 of the frame. The solution is now completed in a
similar manner to that for the frame shown in Fig. 5.8 using Eq. (5.16). Suppose that R is
the force in the member 24; the solution is continued in Table S.5.9(b). From Eq. (5.16)

2592R + 1140P′ = 0

Table S.5.9(b)

Member Length (mm) F ∂F/∂R FL(∂F/∂R)

12 600 −0.8R −0.8 384R
23 450 −0.6R −0.6 162R
34 600 −0.8R −0.8 384R
41 450 −(0.6R + 0.75P′) −0.6 162R + 202.5P′
13 750 R + 1.25P′ 1.0 750R + 937.5P′
24 750 R 1.0 750R

∑ = 2592R + 1140P′
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so that

R = −1140 × 7053

2592

i.e.

R = −3102 N

Then

F12 = −0.8 × (−3102) = 2481.6 N (tension)

F23 = −0.6 × (−3102) = 1861.2 N (tension)

F34 = −0.8 × (−3102) = 2481.6 N (tension)

F41 = −0.6 × (−3102) − 0.75 × 7053 − 2210.3 = −5638.9 N (compression)

F13 = −3102 + 1.25 × 7053 + 3683.8 = 9398.1 N (tension)

F24 = −3102.0 N (compression)

S.5.10

Referring to Fig. S.5.10(a) the vertical reactions at A and D are found from statical
equilibrium. Then, taking moments about D

RA
2
3 l + 1

2 lw 2
3 l = 0

i.e.

RA = −wl

2
(downwards)

Hence

RD = wl

2
(upwards)

Also for horizontal equilibrium

HA + wl

2
= HD (i)

The total complementary energy of the frame is, from Eq. (5.12)

C =
∫

L

∫ M

0
dθ dM − HA�A,H − RA�A,V − HD�D,H − RD�D,V +

∫ l

0
w′� dz (ii)

in which �A,H, �A,V, �D,H and �D,V are the horizontal and vertical components of
the displacements at A and D, respectively and � is the horizontal displacement of
the member AB at any distance z from A. From the principle of the stationary value
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z

w z

l

EI

2EI2EI

A

B
C

D

2l /3

w'

z

HD

RDRA

HA

Fig. S.5.10(a)

of the total complementary energy of the frame and selecting �A,H as the required
displacement

∂C

∂HA
=
∫

L
dθ

∂M

∂HA
− �A,H = 0 (iii)

In this case �A,H = 0 so that Eq. (iii) becomes

∫

L
dθ

∂M

∂HA
= 0

or, since dθ = (M/EI)dz

∫

L

M

EI

∂M

∂HA
dz = 0 (iv)

In AB

M = −HAz − wz3

6l

∂M

∂HA
= −z

In BC

M = RAz − HAl − wl2

6

∂M

∂HA
= −l

In DC

M = −HDz = −
(

HA + wl

2

)
z from Eq. (i),

∂M

∂HA
= −z
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Substituting these expressions in Eq. (iv) gives

∫ l

0

1

2EI

(
−HAz − wz3

6l

)
(−z)dz +

∫ 2l/3

0

1

EI

(

−wl

2
z − HAl − wl2

6

)

(−l)dz

+
∫ l

0

1

2EI

(
−HA − wl

2

)
z(−z)dz = 0

or

1

2

∫ l

0

(
HAz2 + wz4

6l

)
dz +

∫ 2l/3

0

(
wl2

2
z + HAl2 + wl3

6

)

dz

+ 1

2

∫ l

0

(

HAz2 + wlz2

2

)

dz = 0

from which

2HAl3 + 29

45
wl4 = 0

or

HA = −29wl/90

Hence, from Eq. (i)

HD = 8wl/45

Thus

MAB = −HAz − wz3

6l
= 29wl

90
z − w

6l
z3

8wl2/45

8wl2/45
7wl2/45

7wl2/45

0.173wl2

A

B

D

29

45
l

Bending moment is 
drawn on the tension 
side of each member

C

Fig. S.5.10(b)
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When z = 0, MAB = 0 and when z = l, MAB = 7wl2/45. Also, dMAB/dz = 0 for a turning
value, i.e.

dMAB

dz
= 29wl

90
− 3wz2

6l
= 0

from which z = √
29/45l. Hence MAB(max) = 0.173wl2.

The bending moment distributions in BC and CD are linear and MB = 7wl2/45,
MD = 0 and MC = HDl = 8wl2/45.

The complete bending moment diagram for the frame is shown in Fig. S.5.10(b).

S.5.11

The bracket is shown in Fig. S.5.11 in which RC is the vertical reaction at C and MC is
the moment reaction at C in the vertical plane containing AC.

A

B

C

3a
5a

4a

z2

P

α

z1

Rc

Mc

Fig. S.5.11

From Eq. (5.12) the total complementary energy of the bracket is given by

C =
∫

L

∫ M

0
dθ dM +

∫

L

∫ T

0
dφ dT − MCθC − RC�C − P�A

in which T is the torque in AB producing an angle of twist, φ, at any section and the
remaining symbols have their usual meaning. Then, from the principle of the stationary
value of the total complementary energy and since θC = �C = 0

∂C

∂RC
=
∫

L

M

EI

∂M

∂RC
dz +

∫

L

T

GJ

∂T

∂RC
dz = 0 (i)

and
∂C

∂MC
=
∫

L

M

EI

∂M

∂MC
dz +

∫

L

T

GJ

∂T

∂MC
dz = 0 (ii)

From Fig. S.5.11

MAC = RCz1 − MC TAC = 0
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so that

∂MAC

∂RC
= z1

∂MAC

∂MC
= −1

∂TAC

∂RC
= ∂TAC

∂MC
= 0

Also

MAB = −Pz2 + RC(z2 − 4a cos α) + MC cos α

i.e.

MAB = −Pz2 + RC

(
z2 − 16a

5

)
+ 4

5
MC

Hence

∂MAB

∂RC
= z2 − 16a

5

∂MAB

∂MC
= 4

5

Finally

TAB = RC4a sin α − MC sin α

i.e.

TAB = 12a

5
RC − 3

5
MC

so that

∂TAB

∂RC
= 12a

5

∂TAB

∂MC
= −3

5

Substituting these expressions in Eq. (i)

∫ 4a

0

1

EI
(RCz1 − MC)z1 dz1 +

∫ 5a

0

1

1.5EI

[
−Pz2 + RC

(
z2 − 16a

5

)
+ 4

5
MC

]

×
(

z2 − 16a

5

)
dz2 +

∫ 5a

0

1

3GI

(
12a

5
RC − 3

5
MC

)
12a

5
dz2 = 0 (iii)

Note that for the circular section tube AC the torsion constant J (i.e. the polar second
moment of area) = 2 × 1.5I from the theorem of perpendicular axes.

Integrating Eq. (iii), substituting the limits and noting that G/E = 0.38 gives

55.17 RCa − 16.18 MC − 1.11 Pa = 0 (iv)

Now substituting in Eq. (ii) for MAC, ∂MAC/∂MC, etc.

∫ 4a

0

1

EI
(RCz1 − MC)(−1)dz1 +

∫ 5a

0

1

1.5EI

[
−Pz2 + RC

(
z2 − 16a

5

)
+ 4

5
MC

]
4

5
dz2

+
∫ 5a

0

1

3GI

(
12a

5
RC − 3

5
MC

)(
−3

5

)
dz2 = 0 (v)
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from which

16.58 RCa − 7.71 MC + 6.67 Pa = 0 (vi)

Solving the simultaneous Eqs (iv) and (vi) gives

RC = 0.72 P

S.5.12

Suppose that R is the tensile force in the member 23, i.e. R = xP0. Then, from Eq. (5.15)

∑
λi

∂Fi

∂R
= 0 (i)

in which, for members 12, 23 and 34

λi = εLi = τiLi

E

[
1 +

(
τi

τ0

)n]
(ii)

But τi = Fi/Ai so that Eq. (ii) may be written

λi = FiLi

AiEi

[
1 +

(
Fi

Aiτ0

)n]
(iii)

For members 15, 25, 35 and 45 which are linearly elastic

λi = FiLi

AiE
(iv)

The solution is continued in Table S.5.12. Summing the final column in Table S.5.12
gives

4RL√
3AE

[1 + (αx)n] + 2
√

3RL

AE
[1 + (αx)n] + 8L√

3AE

(
P0 + 2R√

3

)
+ 16RL√

3AE
= 0 (v)

from Eq. (i)
Noting that R = xP0, Eq. (v) simplifies to

4x[1 + (αx)n] + 6x[1 + (αx)n] + 8 + 16x√
3

+ 16x = 0

or

10x(αx)n + x

(
10 + 16√

3
+ 16

)
+ 8 = 0

from which

αnxn+1 + 3.5x + 0.80 = 0
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Table S.5.12

Member Li Ai Fi ∂Fi/∂R λi λi ∂Fi/∂R

12 2L A/
√

3 R/
√

3 1/
√

3
2RL

AE

[
1 +

(
R

Aτ0

)n] 2RL√
3AE

[1 + (αx)n]

23 2L/
√

3 A R 1
2
√

3RL

AE

[
1 +

(
R

Aτ0

)n] 2
√

3RL

AE
[1 + (αx)n]

34 2L A/
√

3 R/
√

3 1/
√

3
2RL

AE

[
1 +

(
R

Aτ0

)n] 2RL√
3AE

[1 + (αx)n]

15 2L A −P0 − 2R/
√

3 −2/
√

3 − (P0 + 2R/
√

3)2L

AE

4L√
3AE

(P0 + 2R/
√

3)

25 2L A/
√

3 −2R/
√

3 −2/
√

3 −4RL

AE

8RL√
3AE

35 2L A/
√

3 −2R/
√

3 −2/
√

3 −4RL

AE

8RL√
3AE

45 2L A −P0 − 2R/
√

3 −2/
√

3 − 2L

AE
(P0 + 2R/

√
3)

4L√
3AE

(P0 + 2R/
√

3)

S.5.13

Suppose that the vertical reaction between the two beams at C is P. Then the force
system acting on the beam AB is as shown in Fig. S.5.13. Taking moments about B

RA × 9.15 + P × 6.1 − 100 × 3.05 = 0

P

A
C

3.05 m 3.05 m 3.05 m

100 kN

z
F

B

RA RB

Fig. S.5.13

so that

RA = 33.3 − 0.67P

The total complementary energy of the beam is, from Eq. (5.12)

C =
∫

L

∫ M

0
dθ dM − P�C − 100�F = 0
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where �C and �F are the vertical displacements at C and F, respectively. Then, from
the principle of the stationary value of the total complementary energy of the beam

∂C

∂P
=
∫

L
dθ

∂M

∂P
− �C = 0

whence, as in previous cases

�C =
∫

L

M

EI

∂M

∂P
dz (i)

In AC

MAC = RAz = (33.3 − 0.67P)z

so that

∂MAC

∂P
= −0.67z

In CF

MCF = RAz + P(z − 3.05) = 33.3z + P(0.33z − 3.05)

from which

∂MCF

∂P
= 0.33z − 3.05

In FB

MFB = RAz + P(z − 3.05) − 100(z − 6.1) = −66.7z + 610 + P(0.33z − 3.04)

which gives

∂MFB

∂P
= 0.33z − 3.04

Substituting these expressions in Eq. (i)

EI�C =
∫ 3.05

0
(33.3 − 0.67P)z(−0.67z)dz

+
∫ 6.1

3.05
[33.3z + P(0.33z − 3.05)](0.33z − 3.05)dz

+
∫ 9.15

6.1
[−66.7z + 610 + P(0.33z − 3.05)](0.33z − 3.05)dz



Solution-1-H6739.tex 24/1/2007 9: 28 Page 58

58 Solutions Manual

which simplifies to

EI�C =
∫ 3.05

0
(−22.2z2 + 0.44Pz2)dz

+
∫ 6.1

3.05
(10.99z2 + 0.11Pz2 − 2.02Pz + 9.3P − 101.6z)dz

+
∫ 9.15

6.1
(−22.01z2 + 404.7z + 0.11Pz2 − 2.02Pz + 9.3P − 1860.5)dz

Integrating this equation and substituting the limits gives

EI�C = 12.78P − 1117.8 (ii)

From compatibility of displacement, the displacement at C in the beam AB is equal
to the displacement at C in the beam ED. The displacement at the mid-span point in a
fixed beam of span L which carries a central load P is PL3/192EI. Hence, equating this
value to �C in Eq. (ii) and noting that �C in Eq. (ii) is positive in the direction of P

−(12.78P − 1117.8) = P × 6.13

192

which gives

P = 80.1 kN

Thus

�C = 80.1 × 103 × 6.13 × 109

192 × 200 000 × 83.5 × 106

i.e.

�C = 5.6 mm

Note: The use of complementary energy in this problem produces a rather lengthy
solution. A quicker approach to finding the displacement �C in terms of P for the beam
AB would be to use Macauley’s method (see, e.g. Structural and Stress Analysis by
T. H. G. Megson (Elsevier, 2005)).

S.5.14

The internal force system in the framework and beam is statically determinate so that
the unit load method may be used directly to determine the vertical displacement of D.
Hence, from the first of Eqs (5.21) and Eq. (5.20)

�D,V =
∫

L

M0M1

EI
dz +

k∑

i=1

Fi,0Fi,1Li

AiEi
(i)
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A

B

C
D

E G

3a

4a 4a 4a

3wa

B

C
D

G

1.5w/unit length

RG,H

RA,H

RA,V

F

z2 z1

RG,V

Fig. S.5.14

Referring to Fig. S.5.14 and taking moments about A

RG,H3a − 1.5w
(8a)2

2
− 3wa12a = 0

from which

RG,H = 28wa

Hence

RA,H = −28wa

From the vertical equilibrium of the support G, RG,V = 0, so that, resolving vertically

RA,V − 1.5w8a − 3wa = 0

i.e.

RA,V = 15wa

With a unit vertical load at D

RG,H = 4 RA,H = −4 RA,V = 1 RG,V = 0

For the beam ABC, in AB

M0 = RA,Vz1 − 1.5wz2
1

2
= 15waz1 − 0.75wz2

1 M1 = 1 × z1

and in BC

M0 = 15waz2 − 0.75wz2
2 M1 = 1 × z2

Hence
∫

L

M0M1

EI
dz = 16

Aa2E

[∫ 4a

0
(15waz2

1 − 0.75wz3
1)dz1 +

∫ 4a

0
(15waz2

2 − 0.75wz3
2)dz2

]
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Suppose z1 = z2 = z say, then

∫

L

M0M1

EI
dz = 16

Aa2E
2
∫ 4a

0
(15waz2 − 0.75wz3)dz = 32w

Aa2E

[
5az3 − 0.75

4
z4
]4a

0

i.e.
∫

L

M0M1

EI
dz = 8704wa2

AE

The solution is continued in Table S.5.14.

Table S.5.14

Member L A F0 F1 F0F1L/A

AB 4a 4A 28wa 4 112wa2/A
BC 4a 4A 28wa 4 112wa2/A
CD 4a A 4wa 4/3 64wa2/3A
DE 5a A −5wa −5/3 125wa2/3A
EF 4a A −4wa −4/3 64wa2/3A
FG 4a A −28wa −4 448wa2/A
CE 3a A 3wa 1 9wa2/A
CF 5a A −30wa −10/3 500wa2/A
BF 3a A 18wa 2 108wa2/A

∑ = 4120wa2/3A

Thus

�D = 8704wa2

AE
+ 4120wa2

3AE
i.e.

�D = 30 232wa2

3AE

S.5.15

The internal force systems at C and D in the ring frame are shown in Fig. S.5.15. The
total complementary energy of the half-frame is, from Eq. (5.12)

C =
∫

L

∫ M

0
dθ dM − F�B

in which �B is the horizontal displacement of the joint B. Note that, from symmetry,
the translational and rotational displacements at C and D are zero. Hence, from the
principle of the stationary value of the total complementary energy and choosing the
horizontal displacement at C (=0) as the unknown

∂C

∂NC
=
∫

L

M

EI

∂M

∂NC
dz = 0 (i)
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In CB

MCB = MC − NC(r − r cos θ1) (ii)

At B, MCB = 0. Thus

MC = NC(r + r sin 30◦) = 1.5NCr (iii)

Eq. (ii) then becomes

MCB = NCr(0.5 + cos θ1) (iv)

Then
∂MCB

∂NC
= r(0.5 + cos θ1) (v)

In DB

MDB = MD − ND(r − r cos θ2) (vi)

Fig. S.5.15

Again the internal moment at B is zero so that

MD = ND(r − r sin 30◦) = 0.5NDr (vii)

Hence

MDB = NDr(cos θ2 − 0.5) (viii)

Also, from horizontal equilibrium

ND + NC = F

so that

ND = F − NC
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and Eq. (viii) may be written

MDB = (F − NC)r(cos θ2 − 0.5) (ix)

whence

∂MDB

∂NC
= −r(cos θ2 − 0.5) (x)

Substituting from Eqs (iv), (v), (ix) and (x) in Eq. (i)

∫ 120◦

0

1

EI
NCr3(0.5 + cos θ1)2dθ1 −

∫ 60◦

0

(F − NC)

xEI
r3(cos θ2 − 0.5)2dθ2 = 0

i.e.

NC

∫ 120◦

0
(0.25 + cos θ1 + cos2 θ1)dθ1 − (F − NC)

x

∫ 60◦

0
(cos2 θ2 − cos θ2 + 0.25)dθ2 = 0

which, when expanded becomes

NC

∫ 120◦

0

(
0.75 + cos θ1 + cos 2θ1

2

)
dθ1 − (F − NC)

x

×
∫ 60◦

0

(
cos 2θ2

2
− cos θ2 + 0.75

)
dθ2 = 0

Hence

NC

[
0.75θ1 + sin θ1 + sin 2θ1

4

]120◦

0
− (F − NC)

x

[
sin 2θ2

4
− sin θ2 + 0.75θ2

]60◦

0
= 0

from which

2.22NC − 0.136
(F − NC)

x
= 0 (xi)

The maximum bending moment in ADB is equal to half the maximum bending
moment in ACB. Thus

MD = 1
2 MC

Then, from Eqs (vii) and (iii)

0.5NDr = 0.75NCr

so that

0.5(F − NC) = 0.75NC

i.e.

F − NC = 1.5NC
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Substituting for F − NC in Eq. (xi)

2.22NC − 0.136 × 1.5NC

x
= 0

whence

x = 0.092

S.5.16

From symmetry the shear force in the tank wall at the lowest point is zero. Let the
normal force and bending moment at this point be NO and MO, respectively as shown
in Fig. S.5.16.

O

θ
h

N

Mp
S

φ

P
2

MO

NO

Fig. S.5.16

The total complementary energy of the half-tank is, from Eq. (5.12)

C =
∫

L

∫ M

0
dθ dM − P

2
�P

where �P is the vertical displacement at the point of application of P. Since the rotation
and translation at O are zero from symmetry then, from the principle of the stationary
value of the total complementary energy

∂C

∂MO
=
∫

L

M

EI

∂M

∂MO
dz = 0 (i)

and
∂C

∂NO
=
∫

L

M

EI

∂M

∂NO
dz = 0 (ii)
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At any point in the tank wall

M = MO + NO(r − r cos θ) −
∫ θ

0
pr2 sin (θ − φ)dφ (iii)

For unit length of tank

p = πr2ρ

where ρ is the density of the fuel.
At the position θ,

p = ρh = ρ(r + r cos φ)

Hence

p = P

πr
(1 + cos φ)

and the last term in Eq. (iii) becomes
∫ θ

0

Pr

π
(1 + cos φ) sin(θ − φ)dφ = Pr

π

∫ θ

0
(1 + cos φ)(sin θ cos φ − cos θ sin φ)dφ

Expanding the expression on the right-hand side gives

Pr

π

∫ θ

0
(sin θ cos φ − cos θ sin φ + sin θ cos2 φ − cos θ sin φ cos φ)dφ

= Pr

π

(
1 + θ

2
sin θ − cos θ

)

Hence Eq. (iii) becomes

M = MO + NOr(1 − cos θ) − Pr

π

(
1 + θ

2
sin θ − cos θ

)
(iv)

so that
∂M

∂MO
= 1 and

∂M

∂NO
= r(1 − cos θ)

Substituting for M and ∂M/∂MO in Eq. (i) and noting that EI = constant,
∫ π

0

[
MO + NOr(1 − cos θ) − Pr

π

(
1 + θ

2
sin θ − cos θ

)]
dθ = 0 (v)

from which

MO + NOr − 3Pr

2π
= 0 (vi)

Now substituting for M and ∂M/∂NO in Eq. (ii)
∫ π

0

[
MO + NOr(1 − cos θ) − Pr

π

(
1 + θ

2
sin θ − cos θ

)]
r(1 − cos θ)dθ = 0
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The first part of this integral is identical to that in Eq. (v) and is therefore zero. The
remaining integral is then

∫ π

0

[
MO + NOr(1 − cos θ) − Pr

π

(
1 + θ

2
sin θ − cos θ

)]
cos θ dθ = 0

which gives

NO

2
− 5

8

Pr

π
= 0

Hence

NO = 0.398P

and from Eq. (vi)

MO = 0.080Pr

Substituting these values in Eq. (iv)

M = Pr(0.160 − 0.080 cos θ − 0.159θ sin θ)

S.5.17

The internal force systems at A and B are shown in Fig. S.5.17; from symmetry the
shear forces at these points are zero as are the translations and rotations. It follows that
the total complementary energy of the half-frame is, from Eq. (5.12)

C =
∫

L

∫ M

0
dθ dM

A

B
C

a

z

θ

NA

NB

MB

MA

p0

Fig. S.5.17

From the principle of the stationary value of the total complementary energy

∂C

∂MB
=
∫

L

M

EI

∂M

∂MB
dz = 0 (i)
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and
∂C

∂NB
=
∫

L

M

EI

∂M

∂NB
dz = 0 (ii)

In BC

M = MB + p0z2

2
(iii)

so that
∂M

∂MB
= 1

∂M

∂NB
= 0

In CA

M = MB − NBa sin θ + p0a
(

a cos θ − a

2

)
+ p0

(a sin θ)2

2
+ p0

2
(a − a cos θ)2

which simplifies to

M = MB − NBa sin θ + p0a2

2
(iv)

Hence
∂M

∂MB
= 1

∂M

∂NB
= −a sin θ

Substituting for M and ∂M/∂MB in Eq. (i)

∫ a

0

1

2EI

(
MB + p0z2

2

)
dz +

∫ π/2

0

1

EI

(
MB − NBa sin θ + p0a2

2

)
a dθ = 0

i.e.

1

2

[
MBz + p0z3

6

]a

0
+ a

[
MBθ + NBa cos θ + p0a2

2

]π/2

0
= 0

which simplifies to

2.071MB − NBa + 0.869p0a2 = 0

Thus

MB − 0.483NBa + 0.420p0a2 = 0 (v)

Now substituting for M and ∂M/∂NB in Eq. (ii)

∫ π/2

0

1

EI

(
MB − NBa sin θ + p0a2

2

)
(−a sin θ)a dθ = 0

or
∫ π/2

0

(
MB sin θ − NBa sin2 θ + p0a2

2
sin θ

)
dθ = 0
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which gives

MB − 0.785NBa + 0.5p0a2 = 0 (vi)

Subtracting Eq. (vi) from Eq. (v)

0.302NBa − 0.08p0a2 = 0

so that

NB = 0.265p0a

Substituting for NB in Eq. (v) gives

MB = −0.292p0a2

Therefore, from Eq. (iii)

MC = MB + p0a2

2
= −0.292p0a2 + p0a2

2

i.e.

MC = 0.208p0a2

and from Eq. (iv)

MA = −0.292p0a2 − 0.265p0a2 + p0a2

2
i.e.

MA = −0.057p0a2

Also, from Eq. (iii)

MBC = −0.292p0a2 + p0

2
z2 (vii)

At a point of contraflexure MBC = 0. Thus, from Eq. (vii), a point of contraflexure
occurs in BC when z2 = 0.584a2, i.e. when z = 0.764a. Also, from Eq. (iv), MCA = 0
when sin θ = 0.208/0.265 = 0.785, i.e. when θ = 51.7◦.

S.5.18

Consider the half-frame shown in Fig. S.5.18(a). On the plane of antisymmetry through
the points 7, 8 and 9 only shear forces S7, S8 and S9 are present. Thus from the horizontal
equilibrium of the frame

S7 + S8 + S9 − 6aq = 0 (i)
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7 98

654

aqq

q

3a 3a

P Pq

z4
z5

S7

z1

z2

S8

z3

S9

Fig. S.5.18(a)

Also, from the overall equilibrium of the complete frame and taking moments about
the corner 6

2aq6a + 6aq2a − 2P3a = 0

which gives

q = P/4a

The total complementary energy of the half-frame is, from Eq. (5.12)

C =
∫

L

∫ M

0
dθ dM − P�5 − P�6 = 0

Noting that the horizontal displacements at 7, 8 and 9 are zero from antisymmetry, then

∂C

∂S7
=
∫

L

M

EI

∂M

∂S7
dz = 0 (ii)

and

∂C

∂S8
=
∫

L

M

EI

∂M

∂S8
dz = 0 (iii)

In 74

M = S7z1 and ∂M/∂S7 = z1 ∂M/∂S8 = 0

In 45

M = S7a + qaz2 and ∂M/∂S7 = a ∂M/∂S8 = 0

In 85

M = S8z3 and ∂M/∂S7 = 0 ∂M/∂S8 = z3

In 56

M = S7a + S8a + qa(3a + z4) − Pz4 and ∂M/∂S7 = a ∂M/∂S8 = a
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In 69

M = S7(a − z5) + S8(a − z5) + 6a2q − 3Pa + 6aqz5

and

∂M/∂S7 = (a − z5) ∂M/∂S8 = (a − z5)

Substituting the relevant expressions in Eq. (ii) gives

∫ a

0
S7z2

1 dz1 +
∫ 3a

0
(S7a2 + qa2z2)dz2 +

∫ 3a

0
[S7a + S8a + qa(3a + z4) − Pz4]a dz4

+
∫ a

0
[S7(a − z5) + S8(a − z5) + 6a2q − 3Pa + 6aqz5](a − z5)dz5 = 0 (iv)

from which

20S7 + 10S8 + 66aq − 18P = 0 (v)

Now substituting for M and ∂M/∂S8 in Eq. (iii)

∫ a

0
S8z2

3 dz3 +
∫ 3a

0
[S7a + S8a + qa(3a + z4) − Pz4]a dz4

+
∫ a

0
[S7(a − z5) + S8(a − z5) + 6a2q − 3Pa + 6aqz5](a − z5)dz5 = 0 (vi)

The last two integrals in Eq. (vi) are identical to the last two integrals in Eq. (iv). Thus,
Eq. (vi) becomes

10S7 + 11S8 + 52.5aq − 18P = 0 (vii)

The simultaneous solution of Eqs (v) and (vii) gives

S8 = −39

12
aq + 3

2
P

whence, since q = P/4a

S8 = 0.69P

Substituting for S8 in either of Eqs (v) or (vii) gives

S7 = −0.27P

Then, from Eq. (i)

S9 = 1.08P

The bending moment diagram is shown in Fig. S.5.18(b) in which the bending
moments are drawn on the tension side of each member.



Solution-1-H6739.tex 24/1/2007 9: 28 Page 70

70 Solutions Manual

1.17 Pa

1.08 Pa 1

1.08 Pa

1.08 Pa

65
0.27 Pa

0.27 Pa
4

23
0.27 Pa

0.27 Pa

0.69 Pa

0.48 Pa

1.17 Pa

0.48 Pa

1.08 Pa
0.69 Pa

Bending moments 
drawn on the tension 
side of each member

Fig. S.5.18(b)

S.5.19

From the overall equilibrium of the complete frame

∫ 2πr

0
qr ds = T

which gives

2πr2q = T

i.e.

q = T

2πr2 (i)

3

4 2

45°

x

q 1

α

θ

S1

S2

S3

Fig. S.5.19
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Considering the half frame shown in Fig. S.5.19 there are only internal shear forces
on the vertical plane of antisymmetry. From the vertical equilibrium of the half-frame

S1 + S2 + S3 +
∫ π

0
q sin αr dα = 0

Substituting for q from Eq. (i) and integrating

S1 + S2 + S3 + T

2πr
[−cos α]π0 = 0

which gives

S1 + S2 + S3 = − T

πr
(ii)

The vertical displacements at the points 1, 2 and 3 are zero from antisymmetry so
that, from Eq. (5.12), the total complementary energy of the half-frame is given by

C =
∫

L

∫ M

0
dθ dM

Then, from the principle of the stationary value of the total complementary energy

∂C

∂S1
=
∫

L

M

EI

∂M

∂S1
dz (iii)

and

∂C

∂S2
=
∫

L

M

EI

∂M

∂S2
dz (iv)

In the wall 14

M = S1r sin θ −
∫ θ

0
q[r − r cos (θ − α)]r dα

i.e.

M = S1r sin θ − T

2π
[α − sin (α − θ)]θ0

which gives

M = S1r sin θ − T

2π
(θ − sin θ) (v)

whence

∂M

∂S1
= r sin θ

∂M

∂S2
= 0

In the wall 24

M = S2x (vi)
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and
∂M

∂S1
= 0

∂M

∂S2
= x

In the wall 43

M = S1r sin θ − T

2π
(θ − sin θ) + S2r sin θ (vii)

and
∂M

∂S1
= r sin θ

∂M

∂S2
= r sin θ

Substituting for M and ∂M/∂S1 in Eq. (iii)

∫ 3π/4

0

[
S1r sin θ − T

2π
(θ − sin θ)

]
r sin θr dθ

+
∫ π

3π/4

[
S1r sin θ − T

2π
(θ − sin θ) + S2r sin θ

]
r sin θ r dθ = 0

which simplifies to

∫ π

0

[
S1r sin θ − T

2π
(θ − sin θ)

]
r2 sin θ dθ +

∫ π

3π/4
S2r3 sin θ dθ = 0

Integrating and simplifying gives

S1r − 0.16T + 0.09S2r = 0 (viii)

Now substituting for M and ∂M/∂S2 in Eq. (iv)

∫ π

3π/4

[
S1r sin θ − T

2π
(θ − sin θ) + S2r sin θ

]
r sin θ r dθ +

∫ r/
√

2

0
S2x2 dx = 0

Integrating and simplifying gives

S1r − 0.69T + 1.83S2r = 0 (ix)

Subtracting Eq. (ix) from Eq. (viii)

0.53T − 1.74S2r = 0

whence

S2 = 0.30T

r

From Eq. (viii)

S1 = 0.13T

r
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and from Eq. (ii)

S3 = −0.75T

r

Hence, from Eqs (v) to (vii)

M14 = T (0.29 sin θ − 0.16θ)

M24 = 0.30Tx

r
M43 = T (0.59 sin θ − 0.16θ)

S.5.20

Initially the vertical reaction at C, RC, must be found. From Eq. (5.12) the total
complementary energy of the member is given by

C =
∫

L

∫ M

0
dθ dM − RC�C − F�B

From the principle of the stationary value of the total complementary energy and since
�C = 0

∂C

∂RC
=
∫

L

M

EI

∂M

∂RC
ds = 0 (i)

Referring to Fig. S.5.20

D C

B F

r

r

z

θ

RC

Fig. S.5.20

In BC

M = Fr sin θ and
∂M

∂RC
= 0

In CD

M = Fr − RCz and
∂M

∂RC
= −z
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Substituting these expressions in Eq. (i) gives
∫ r

0
(Fr − RCz)(−z)dz = 0

from which

RC = 1.5F

Note that Eq. (i) does not include the effects of shear and axial force. If these had
been included the value of RC would be 1.4F; the above is therefore a reasonable
approximation. Also, from Eq. (1.50), G = 3E/8.

The unit load method may now be used to complete the solution. Thus, from the first
of Eqs (5.21), Eq. (5.20) and Eq. (20.18)

δB,H =
∫

L

M0M1

EI
ds +

∫

L

F0F1

AE
ds +

∫

L

S0S1

GA′ ds (ii)

In BC

M0 = Fr sin θ M1 = r sin θ

F0 = F sin θ F1 = sin θ

S0 = F cos θ S1 = cos θ

In CD

M0 = F(r − 1.5z) M1 = (r − 1.5z)

F0 = F F1 = 1

S0 = 1.5F S1 = 1.5

Substituting these expressions in Eq. (ii) gives

δB,H =
∫ π/2

0

Fr3 sin2 θ

EI
dθ +

∫ π/2

0

Fr sin2 θ

AE
dθ +

∫ π/2

0

Fr cos2 θ

GA′ dθ

+
∫ r

0

F

EI
(r − 1.5z)2dz +

∫ r

0

F

AE
dz +

∫ r

0

2.25F

GA′ dz

or

δB.H =400Fr

AE

∫ π/2

0

1

2
(1 − cos 2θ)dθ + Fr

AE

∫ π/2

0

1

2
(1 − cos 2θ)dθ

+ 32Fr

3AE

∫ π/2

0

1

2
(1 + cos 2θ)dθ + 400F

Ar2E

∫ r

0
(r2 − 3rz + 2.25z2)dz

+ F

AE

∫ r

0
dz + 24F

AE

∫ r

0
dz

from which

δB,H = 448.3Fr

AE
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S.5.21

From Clerk–Maxwell’s reciprocal theorem the deflection at A due to W at B is equal
to the deflection at B due to W at A, i.e. δ2.

What is now required is the deflection at B due to W at B.
Since the deflection at A with W at A and the spring removed is δ3, the load in the

spring at A with W at B is (δ2/δ3)W which must equal the load in the spring at B with
W at B. Thus, the resultant load at B with W at B is

W −
(

δ2

δ3

)
W = W

(
1 − δ2

δ3

)
(i)

Now the load W at A with the spring in place produces a deflection of δ1 at A. Thus,
the resultant load at A is (δ1/δ3)W so that, if the load in the spring at A with W at A is
F, then W − F = (δ1/δ3)W , i.e.

F = W

(
1 − δ1

δ3

)
(ii)

This then is the load at B with W at A and it produces a deflection δ2. Therefore, from
Eqs (i) and (ii) the deflection at B due to W at B is

W

(
1 − δ2

δ3

)

W

(
1 − δ1

δ3

)δ2

Thus the extension of the spring with W at B is

(
1 − δ2

δ3

)

(
1 − δ1

δ3

)δ2 − δ2

i.e.

δ2

(
δ1 − δ2

δ3 − δ1

)

S.5.22

Referring to Fig. S.5.22
RA = RB = 1000 N from symmetry.
The slope of the beam atA and B may be obtained from the second of Eqs (16.32), i.e.

v′′ = − M

EI
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360 mm 720 mm 720 mm 600 mm

2000 N

C A F B D

z

RA RB

Fig. S.5.22

where, for the half-span AF, M = RAz = 1000z. Thus

v′′ = −1000

EI
z

and

v′ = −500

EI
z2 + C1

When z = 720 mm, v′ = 0 from symmetry and hence C1 = 2.59 × 108/EI. Hence

v′ = 1

EI
(−500z2 + 2.59 × 108)

Thus v′ (at A) = 0.011 rads = v′ (at B). The deflection at C is then = 360 × 0.011 =
3.96 mm and the deflection at D = 600 × 0.011 = 6.6 mm.

From the reciprocal theorem the deflection at F due to a load of 3000 N at
C = 3.96 × 3000/2000 = 5.94 mm and the deflection at F due to a load of 3000 N at
D = 6.6 × 3000/2000 = 9.9 mm. Therefore the total deflection at F due to loads of
3000 N acting simultaneously at C and D is 5.94 + 9.9 = 15.84 mm.

S.5.23

Since the frame is symmetrical about a vertical plane through its centre only half need
be considered. Also, due to symmetry the frame will act as though fixed at C (Fig.
S.5.23).

If the frame were unsupported at B the horizontal displacement at B, �B,T, due to the
temperature rise may be obtained using Eq. (5.32) in which, due to a unit load acting
horizontally at B, M1 = 1 × (r sin 30◦ + r sin θ). Hence

�B,T =
∫ π/2

−π/6
(0.5r + r sin θ)

2αT

d
r dθ

i.e.

�B,T = 2αTr2

d
[0.5θ − cos θ]π/2

−π/6
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B

C

I

30°

θ
r

HB

Fig. S.5.23

which gives

�B,T = 3.83αTr2

d
(to the right) (i)

Suppose that in the actual frame the horizontal reaction at B is HB. Since B is not
displaced, the ‘displacement’�B,H produced by HB must be equal and opposite to �B,T
in Eq. (i). Then, from the first of Eqs (5.21) and noting that M0 = −HB(0.5r + r sin θ)

�B,H = − 1

EI

∫ π/2

−π/6
HB(0.5r + r sin θ)2r dθ

i.e.

�B,H = −HBr3

EI

∫ π/2

−π/6
(0.25 + sin θ + sin2 θ)dθ

Hence

�B,H = −HBr3

EI

[
0.75θ − cos θ − sin 2θ

4

]π/2

−π/6

so that

�B,H = −2.22HBr3

EI
(to the left) (ii)

Then, since

�B,H + �B,T = 0

−2.22HBr3

EI
+ 3.83αTr2

d
= 0

from which

HB = 1.73EITα

d
(iii)



Solution-1-H6739.tex 24/1/2007 9: 28 Page 78

78 Solutions Manual

The maximum bending moment in the frame will occur at C and is given by

M(max) = HB × 1.5r

Then, from symmetrical bending theory the direct stress through the depth of the frame
section is given by

σ = My

I
(see Eqs (16.21))

and

σmax = M(max)y(max)

I
i.e.

σmax = HB × 1.5r × 0.5d

I
or, substituting for HB from Eq. (iii)

σmax = 1.30ETα

S.5.24

The solution is similar to that for P.5.23 in that the horizontal displacement of B due to
the temperature gradient is equal and opposite in direction to the ‘displacement’ pro-
duced by the horizontal reaction at B, HB. Again only half the frame need be considered
from symmetry.

Referring to Fig. S.5.24

M1 = r cos ψ in BC and Cd

Fig. S.5.24

Then, from Eq. (5.32)

�B,T =
∫ π/4

0
(r cos ψ)α

θ0 cos 2ψ

h
r dψ +

∫ π/2

π/4
(r cos ψ)α

(
0

h

)
r dψ
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i.e.

�B,T = r2αθ0

h

∫ π/4

0
cos ψ cos 2ψ dψ

or

�B,T = r2αθ0

h

∫ π/4

0
(cos ψ − 2 sin2 ψ cos ψ)dψ

Hence

�B,T = r2αθ0

h

[
sin ψ − 2

3
sin3 ψ

]π/4

0

which gives

�B,T = 0.47r2αθ0

h
(to the right) (i)

From the first of Eqs (5.21) in which M0 = −HBr cos ψ

�B,H =
∫ π/2

0
−HBr cos ψ r cos ψ

EI
r dψ

i.e.

�B,H = −HBr3

EI

∫ π/2

0
cos2 ψ dψ

or

�B,H = −HBr3

EI

∫ π/2

0

1

2
(1 + cos 2ψ)dψ

whence

�B,H = −0.79HBr3

EI
(to the left) (ii)

Then, since �B,H + �B,T = 0, from Eqs (i) and (ii)

−0.79HBr3

EI
+ 0.47r2αθ0

h
= 0

from which

HB = 0.59EIαθ0

rh

Then

M = HBr cos ψ

so that

M = 0.59EIαθ0 cos ψ

h
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Solutions to Chapter 6 Problems

S.6.1

Referring to Fig. P.6.1 and Fig. 6.3

Member 12 23 34 41 13
Length L L L L

√
2L

λ(cos θ) 1/
√

2 −1/
√

2 −1/
√

2 1/
√

2 0
µ(sin θ) 1/

√
2 1/

√
2 −1/

√
2 −1/

√
2 1

The stiffness matrix for each member is obtained using Eq. (6.30). Thus

[K12] = AE

2L

⎡

⎢⎢⎢
⎣

1 1 −1 −1

1 1 −1 −1

−1 −1 1 1

−1 −1 1 1

⎤

⎥⎥⎥
⎦

[K23] = AE

2L

⎡

⎢⎢⎢
⎣

1 −1 1 1

−1 1 1 −1

−1 1 1 −1

1 −1 −1 1

⎤

⎥⎥⎥
⎦

[K34] = AE

2L

⎡

⎢⎢⎢
⎣

1 1 −1 −1

1 1 −1 −1

−1 −1 1 1

−1 −1 1 1

⎤

⎥⎥⎥
⎦

[K41] = AE

2L

⎡

⎢⎢⎢
⎣

1 −1 −1 1

−1 1 1 −1

−1 1 1 −1

1 −1 −1 1

⎤

⎥⎥⎥
⎦

[K13] = AE√
2L

⎡

⎢⎢⎢
⎣

0 0 0 0

0 1 0 −1

0 0 0 0

0 −1 0 1

⎤

⎥⎥⎥
⎦

The stiffness matrix for the complete framework is now assembled using the method
described in Example 6.1. Equation (6.29) then becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fx,1

Fy,1

Fx,2

Fy,2

Fx,3

Fy,3

Fx,4

Fy,4

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= AE

2L

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

2 0 −1 −1 0 0 −1 1

0 2 + √
2 −1 −1 0 −√

2 1 −1

−1 −1 2 0 −1 1 0 0

−1 −1 0 2 1 −1 0 0

0 0 −1 1 2 0 −1 −1

0 −√
2 1 −1 0 2 + √

2 −1 −1

−1 1 0 0 −1 −1 2 0

1 −1 0 0 −1 −1 0 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 = 0

v1

u2 = 0

v2 = 0

u3 = 0

v3

u4 = 0

v4 = 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(i)

In Eq. (i)

Fy,1 = −P Fx,1 = Fx,3 = Fy,3 = 0
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Then

Fy,1 = −P = AE

2L
[(2 + √

2)v1 − √
2v3] (ii)

Fy,3 = 0 = AE

2L
[−√

2v1 + (2 + √
2)v3] (iii)

From Eq. (iii)

v1 = (1 + √
2)v3 (iv)

Substituting for v1 in Eq. (ii) gives

v3 = −0.293PL

AE
Hence, from Eq. (iv)

v1 = −0.707PL

AE
The forces in the members are obtained using Eq. (6.32), i.e.

S12 = AE√
2L

[1 1]

⎧
⎨

⎩

0 − 0

0 + 0.707PL

AE

⎫
⎬

⎭
= P

2
= S14 from symmetry

S13 = AE√
2L

[0 1]

⎧
⎨

⎩

0 − 0

−0.293PL

AE
+ 0.707PL

AE

⎫
⎬

⎭
= 0.293P

S23 = AE√
2L

[−1 1]

⎧
⎨

⎩

0 − 0

−0.293PL

AE
− 0

⎫
⎬

⎭
= −0.207P = S43 from symmetry

The support reactions are Fx,2, Fy,2, Fx,4 and Fy,4. From Eq. (i)

Fx,2 = AE

2L
(−v1 + v3) = 0.207P

Fy,2 = AE

2L
(−v1 − v3) = 0.5P

Fx,4 = AE

2L
(v1 − v3) = −0.207P

Fy,4 = AE

2L
(−v1 − v3) = 0.5P

S.6.2

Referring to Fig. P.6.2 and Fig. 6.3

Member 12 23 34 31 24
Length l/

√
3 l/

√
3 l l l/

√
3

λ(cos θ)
√

3/2 0 1/2 −1/2
√

3/2
µ(sin θ) 1/2 1 −√

3/2 −√
3/2 −1/2
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From Eq. (6.30) the member stiffness matrices are

[K12] =AE

l

⎡

⎢⎢⎢
⎣

3
√

3/4 3/4 −3
√

3/4 −3/4

3/4
√

3/4 −3/4 −√
3/4

−3
√

3/4 −3/4 3
√

3/4 3/4

−3/4 −√
3/4 3/4

√
3/4

⎤

⎥⎥⎥
⎦

[K23] =AE

l

⎡

⎢⎢⎢
⎣

0 0 0 0

0
√

3 0 −√
3

0 0 0 0

0 −√
3 0

√
3

⎤

⎥⎥⎥
⎦

[K34] =AE

l

⎡

⎢⎢⎢
⎣

1/4 −√
3/4 −1/4

√
3/4

−√
3/4 3/4

√
3/4 −3/4

−1/4
√

3/4 1/4 −√
3/4√

3/4 −3/4 −√
3/4 3/4

⎤

⎥⎥⎥
⎦

[K31] =AE

l

⎡

⎢⎢⎢
⎣

1/4
√

3/4 −1/4 −√
3/4√

3/4 3/4 −√
3/4 −3/4

−1/4 −√
3/4 1/4

√
3/4

−√
3/4 −3/4

√
3/4 3/4

⎤

⎥⎥⎥
⎦

[K24] =AE

l

⎡

⎢⎢⎢
⎣

3
√

3/4 −3/4 −3
√

3/4 3/4

−3/4
√

3/4 3/4 −√
3/4

−3
√

3/4 3/4 3
√

3/4 −3/4

3/4 −√
3/4 −3/4

√
3/4

⎤

⎥⎥⎥
⎦

The stiffness matrix for the complete framework is now assembled using the method
described in Example 6.1. Equation (6.29) then becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fx,1

Fy,1

Fx,2

Fy,2

Fx,3

Fy,3

Fx,4

Fy,4

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= AE

l

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 + 3
√

3

4

3 + √
3

4
−3

√
3

4
−3

4
−1

4
−

√
3

4
0 0

3 + √
3

4

3 + √
3

4
−3

4
−

√
3

4
−

√
3

4
−3

4
0 0

−3
√

3

4
−3

4

3
√

3

2
0 0 0 −3

√
3

4

3

4

−3

4
−

√
3

4
0

3
√

3

2
0 −√

3
3

4
−

√
3

4

−1

4
−

√
3

4
0 0

1

2
0 −1

4

√
3

4

−
√

3

4
−3

4
0 −√

3 0
3

2
+ √

3

√
3

4
−3

4

0 0 −3
√

3

4

3

4
−1

4

√
3

4

1 + 3
√

3

4
−3 + √

3

4

0 0
3

4
−

√
3

4

√
3

4
−3

4
−3 + √

3

4

3 + √
3

4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 = 0

v1 = 0

u2 = 0

v2

u3 = 0

v3

u4 = 0

v4 = 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(i)
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In Eq. (i) Fx,2 = Fy,2 = 0, Fx,3 = 0, Fy,3 = −P, Fx,4 = −H. Then

Fy,2 = 0 = AE

l

(
3
√

3

2
v2 − √

3v3

)

(ii)

and

Fy,3 = −P = AE

l

[
−√

3v2 +
(

3

2
+ √

3

)
v3

]
(iii)

From Eq. (ii)

v2 = 2

3
v3 (iv)

Now substituting for v2 in Eq. (iii)

− Pl

AE
= −2

√
3

3
v3 + 3

2
v3 + √

3v3

Hence

v3 = − 6Pl

(9 + 2
√

3)AE

and, from Eq. (iv)

v2 = − 4Pl

(9 + 2
√

3)AE

Also from Eq. (i)

Fx,4 = −H = AE

l

(
3

4
v2 +

√
3

4
v3

)

Substituting for v2 and v3 gives

H = 0.449P

S.6.3

Referring to Fig. P.6.3 and Fig. 6.3

Member 12 23 34 45 24
Length l l l l l
λ(cos θ) −1/2 1/2 −1/2 1/2 1
µ(sin θ)

√
3/2

√
3/2

√
3/2

√
3/2 0
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From Eq. (6.30) the member stiffness matrices are

[K12] =AE

l

⎡

⎢⎢⎢⎢
⎣

1/4 −√
3/4 −1/4

√
3/4

−√
3/4 3/4

√
3/4 −3/4

−1/4
√

3/4 1/4 −√
3/4√

3/4 −3/4 −√
3/4 3/4

⎤

⎥⎥⎥⎥
⎦

[K23] =AE

l

⎡

⎢⎢⎢⎢
⎣

1/4
√

3/4 −1/4 −√
3/4√

3/4 3/4 −√
3/4 −3/4

−1/4 −√
3/4 1/4

√
3/4

−√
3/4 −3/4

√
3/4 3/4

⎤

⎥⎥⎥⎥
⎦

[K34] =AE

l

⎡

⎢⎢⎢⎢
⎣

1/4 −√
3/4 −1/4

√
3/4

−√
3/4 3/4

√
3/4 −3/4

−1/4
√

3/4 1/4 −√
3/4√

3/4 −3/4 −√
3/4 3/4

⎤

⎥⎥⎥⎥
⎦

[K45] =AE

l

⎡

⎢⎢⎢⎢
⎣

1/4
√

3/4 −1/4 −√
3/4√

3/4 3/4 −√
3/4 −3/4

−1/4 −√
3/4 1/4

√
3/4

−√
3/4 −3/4

√
3/4 3/4

⎤

⎥⎥⎥⎥
⎦

[K24] =AE

l

⎡

⎢⎢⎢
⎣

1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0

⎤

⎥⎥⎥
⎦

The stiffness matrix for the complete truss is now assembled using the method described
in Example 6.1. Equation (6.29) then becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fx,1

Fy,1

Fx,2

Fy,2

Fx,3

Fy,3

Fx,4

Fy,4

Fx,5

Fy,5

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= AE

4l

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 −√
3 −1

√
3 0 0 0 0 0 0

−√
3 3

√
3 −3 0 0 0 0 0 0

−1
√

3 6 0 −1 −√
3 −4 0 0 0√

3 −3 0 6 −√
3 −3 0 0 0 0

0 0 −1 −√
3 2 0 −1

√
3 0 0

0 0 −√
3 −3 0 6

√
3 −3 0 0

0 0 −4 0 −1
√

3 6 0 −1 −√
3

0 0 0 0
√

3 −3 0 6 −√
3 −3

0 0 0 0 0 0 −1 −√
3 1

√
3

0 0 0 0 0 0 −√
3 −3

√
3 3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 = 0

v1 = 0

u2

v2

u3 = 0

v3 = 0

u4

v4

u5 = 0

v5 = 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(i)
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In Eq. (i) Fx,2 = Fy,2 = 0, Fx,4 = 0, Fy,4 = −P. Thus from Eq. (i)

Fx,2 = 0 = AE

4l
(6u2 − 4u4) (ii)

Fy,2 = 0 = AE

4l
(6v2) (iii)

Fx,4 = 0 = AE

4l
(−4u2 + 6u4) (iv)

Fy,4 = −P = AE

4l
(6v4) (v)

From Eq. (v)

v4 = − 2Pl

3AE

From Eq. (iii)

v2 = 0

and from Eqs (ii) and (iv)

u2 = u4 = 0

Hence, from Eq. (6.32)

S24 = AE

l
[1 0]

⎧
⎨

⎩

0 − 0

−2Pl

3AE
− 0

⎫
⎬

⎭

which gives

S24 = 0

S.6.4

The uniformly distributed load on the member 26 is equivalent to concentrated loads
of wl/4 at nodes 2 and 6 together with a concentrated load of wl/2 at node 4. Thus,
referring to Fig. P.6.4 and Fig. 6.3

Member 12 23 24 46 56 67
Length l l l/2 l/2 l l

λ(cos θ) 0 −1/
√

2 1 1 0 1/
√

2

µ(sin θ) 1 1/
√

2 0 0 1 1/
√

2
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From Eq. (6.47) and using the alternative form of Eq. (6.44)

[K12] = EI

l3

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

12 SYM

0 0

6 0 4

−12 0 −6 12

0 0 0 0 0

6 0 2 6 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

[K23] = EI

l3

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

6 SYM

6 6

6/
√

2 6/
√

2 4

6 6 −6
√

2 6

−6 −6 −6/
√

2 6 6

6/
√

2 6/
√

2 2 6/
√

2 −6/
√

2 −4/
√

2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

[K24] = [K46] = EI

l3

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 SYM

0 96

0 −24 8

0 0 0 0

0 −96 24 0 96

0 −24 4 0 24 8

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

[K56] = EI

l3

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

12 SYM

0 0

6 0 4

−12 0 −6 12

0 0 0 0 0

6 0 2 6 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

[K67] = EI

l3

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

6 SYM

−6 6

6/
√

2 −6/
√

2 4

−6 6 −6/
√

2 6

6 −6 6/
√

2 −6 6

6/
√

2 −6/
√

2 2 6/
√

2 6/
√

2 4/
√

2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

The member stiffness matrices are then assembled into a 21 × 21 symmetrical matrix
using the method described in Example 6.1. The known nodal displacements are
u1 = v1 = θ1 = u5 = v5 = θ5 = u2 = u4 = u6 = θ3 = θ7 = 0 and the support reactions are
obtained from {F} = [K]{δ}. Having obtained the support reactions the internal shear
force and bending moment distributions in each member follow (see Example 6.2).
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S.6.5

Referring to Fig. P.6.5, u2 = 0 from symmetry. Consider the members 23 and 29. The
forces acting on the member 23 are shown in Fig. S.6.5(a) in which F29 is the force
applied at 2 in the member 23 due to the axial force in the member 29. Suppose that
the node 2 suffers a vertical displacement v2. The shortening in the member 29 is then
v2 cos θ and the corresponding strain is −(v2 cos θ)/l. Thus the compressive stress in
29 is −(Ev2 cos θ)/l and the corresponding compressive force is −(AEv2 cos θ)/l. Thus

F29 = −(AEv2 cos2 θ)/l

Now AE = 6
√

2EI/L2. θ = 45◦ and l = √
2L. Hence

F29 = −3EI

L3 v2

2
3

F29

v2

M2 M3

l

P/2 Fy,3

θ

θ

9

Fig. S.6.5(a)

and

Fy,2 = −P

2
− 3EI

L3 v2 (i)

Further, from Eq. (3.12)

M3 = GJ
dθ

dz
= −2 × 0.8EI

θ3

0.8L
= −2EI

L
θ3 (ii)

From the alternative form of Eq. (6.44), for the member 23
⎧
⎪⎪⎨

⎪⎪⎩

Fy,2

M2/L
Fy,3

M3/L

⎫
⎪⎪⎬

⎪⎪⎭
= EI

L3

⎡

⎢⎢
⎣

12 −6 −12 −6
−6 4 6 2

−12 6 12 6
−6 2 6 4

⎤

⎥⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

v2

θ2L = 0
v3 = 0
θ3L

⎫
⎪⎪⎬

⎪⎪⎭
(iii)

Then, from Eqs (i) and (iii)

Fy,2 = −P

2
−3EI

L3 v2 = 12EI

L3 v2−6EI

L2 θ3



Solution-1-H6739.tex 24/1/2007 9: 28 Page 88

88 Solutions Manual

Hence

15v2 − 6θ3L = −PL3

2EI
(iv)

From Eqs (ii) and (iii)

M3

L
= −2EI

L2 θ3 = −6EI

L3 v2 + 4EI

L2 θ3

which gives θ3 = v2/L.
Substituting for θ3 in Eq. (iv) gives

v2 = − PL3

18EI

Then

θ3 = − PL2

18EI

From Eq. (i)

Fy,2 = −P

2
+ 3EI

L3

PL3

18EI
= −P

3

and from Eq. (ii)

M3 = 2EI

L

PL2

18EI
= PL

9
= −M1

Now, from Eq. (iii)

M2

L
= −EI

L3 6v2 + 2EI

L3 θ3L = 2PL

9

Fy,3 = −12EI

L3 v2 + 6EI

L3 θ3L = P

3

The force in the member 29 is F29/cos θ = √
2F29. Thus

S29 = S28 = √
2

3EI

L3

PL3

18EI
=

√
2P

6
(tension)

The torques in the members 36 and 37 are given by M3/2, i.e.

M36 = M37 = PL/18

The shear force and bending moment diagrams for the member 123 follow and are
shown in Figs S.6.5(b) and (c), respectively.
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1

3

P/3

P/3

(b)

2

PL/9 PL/9

2PL/9(c)(c)

+

+

−

− −

Fig. S.6.5(b) and (c)

S.6.6

The stiffness matrix for each element of the beam is obtained using the given force–
displacement relationship, the complete stiffness matrix for the beam is then obtained
using the method described in Example 6.1. This gives
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fy,1

M1/L
Fy,2

M2/L
Fy,3

M3/L
Fy,4

M4/L

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= EI

L3

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

24 −12 −24 −12
−12 8 12 4
−24 12 36 6 −12 −6
−12 4 6 12 6 2

−12 6 36 −24 −24 −12
−6 2 −6 12 12 4

−24 12 24 12
−12 4 12 8

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1

θ1L
v2

θ2L
v3

θ3L
v4

θ4L

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(i)

The ties FB, CH, EB and CG produce vertically upward forces F2 and F3 at B and C,
respectively. These may be found using the method described in S.6.5. Thus

F2 = −
(

a1E cos2 60◦

2L/
√

3
+ a2E cos2 45◦

√
2L

)
v2

But a1 = 384I/5
√

3L2 and a2 = 192I/5
√

2L2 so that

F2 = −96EI

5L3 v2

Similarly

F3 = −96EI

5L3 v3
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Then

Fy,2 = −P − 96EI

5L3 v2 and Fy,3 = −P − 96EI

5L3 v3

In Eq. (i), v1 = θ1 = v4 = θ4 = 0 and M2 = M3 = 0. Also, from symmetry, v2 = v3, and
θ2 = −θ3. Then, from Eq. (i)

M2 = 0 = 6v2 + 12θ2L + 6v3 + 2θ3L

i.e.

12v2 + 10θ2L = 0

which gives

θ2 = − 6

5L
v2

Also from Eq. (i)

Fy,2 = −P − 96EI

5L3 v2 = EI

L3 (36v2 + 6θ2L − 12v3 − 6θ3L)

i.e.

−P − 96EI

5L3 v2 = 48EI

5L3 v2

whence

v2 = − 5PL3

144EI
= v3

and

θ2 = PL2

24EI
= −θ3

The reactions at the ends of the beam now follow from the above values and Eq. (i).
Thus

Fy,1 = EI

L3 (−24v2 − 12θ2L) = P

3
= Fy,4

M1 = EI

L2 (12v2 + 4θ2L) = −PL

4
= −M4

Also

F2 = F3 = 96EI

5L3

5PL3

144EI
= 2P

3

The forces on the beam are then as shown in Fig. S.6.6(a). The shear force and bend-
ing moment diagrams for the beam follow and are shown in Figs S.6.6(b) and (c),
respectively.
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1 PL/4 PL/4

P/3P/3
P− 2

3
P= P

3
P− 2

3
P= P

3

2 3 4

Fig. S.6.6(a)

1 3
4

P/3

P/3

+

(b)
−

2

1

2
4

PL /4PL /4

PL /12 PL /12
+

(c)

3
−−

Fig. S.6.6(b) and (c)

The forces in the ties are obtained using Eq. (6.32). Thus

SBF = SCH = a1E

2L/
√

3

[

−1

2

√
3

2

]{
0 − 0
v2 − 0

}

i.e.

SBF = SCH = 384EI
√

3

5
√

3 × 2L3

1

2

5PL3

144EI
= 2

3
P

and

SBE = SCG = a2E√
2L

[
− 1√

2

1√
2

]{
0 − 0
v2 − 0

}

i.e.

SBE = SCG = 192EI

5
√

2 × √
2L3

1√
2

5PL3

144EI
=

√
2P

3
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S.6.7

The forces acting on the member 123 are shown in Fig. S.6.7(a). The moment M2 arises
from the torsion of the members 26 and 28 and, from Eq. (3.12), is given by

M2 = −2GJ
θ2

1.6l
= −EI

θ2

l
(i)

1 3

l l/2

P/2

M2 M3

Fy,1 Fy,2

2

Fig. S.6.7(a)

Now using the alternative form of Eq. (6.44) for the member 12
⎧
⎪⎪⎨

⎪⎪⎩

Fy,1

M1/l
Fy,2

M2/l

⎫
⎪⎪⎬

⎪⎪⎭
= EI

l3

⎡

⎢⎢
⎣

12 −6 −12 −6
−6 4 6 2

−12 6 12 6
−6 2 6 4

⎤

⎥⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

v1

θ1L
v2

θ2L

⎫
⎪⎪⎬

⎪⎪⎭
(ii)

and for the member 23
⎧
⎪⎪⎨

⎪⎪⎩

Fy,2

M2/l
Fy,3

M3/l

⎫
⎪⎪⎬

⎪⎪⎭
= EI

l3

⎡

⎢⎢
⎣

96 −24 −96 −24
−24 8 24 4
−96 24 96 24
−24 4 24 8

⎤

⎥⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

v2

θ2L
v3

θ3L

⎫
⎪⎪⎬

⎪⎪⎭
(iii)

Combining Eqs (ii) and (iii) using the method described in Example 6.1
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Fy,1

M1/l
Fy,2

M2/l
Fy,3

M3/l

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

= EI

l3

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

12 −6 −12 −6 0 0
−6 4 6 2 0 0

−12 6 108 −18 −96 −24
−6 2 −18 12 24 4

0 0 −96 24 96 24
0 0 −24 4 24 8

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

v1

θ1l
v2

θ2l
v3

θ3l

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(iv)

In Eq. (iv) v1 = v2 = 0 and θ3 = 0. Also M1 = 0 and Fy,3 = −P/2. Then from Eq. (iv)

M1

l
= 0 = EI

l3 (4θ1l + 2θ2l)

from which

θ1 = −θ2

2
(v)
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Also, from Eqs (i) and (iv)

M2

l
= −EI

l2 θ2 = EI

l3 (2θ1l + 12θ2l + 24v3)

so that

13θ2l + 2θ1l + 24v3 = 0 (vi)

Finally from Eq. (iv)

Fy,3 = −P

2
= EI

l3 (24θ2l + 96v3)

which gives

v3 = − Pl3

192EI
− θ2l

4
(vii)

Substituting in Eq. (vi) for θ1 from Eq. (v) and v3 from Eq. (vii) gives

θ2 = Pl2

48EI

Then, from Eq. (v)

θ1 = − Pl2

96EI

and from Eq. (vii)

v3 = − Pl3

96EI

Now substituting for θ1, θ2 and v3 in Eq. (iv) gives Fy,1 = −P/16, Fy,2 = 9P/16,
M2 = −Pl/48 (from Eq. (i)) and M3 = −Pl/6. Then the bending moment at 2 in 12
is Fy,1l = −Pl/12 and the bending moment at 2 in 32 is −(P/2) (l/2) + M3 = −Pl/12.
Also M3 = −Pl/6 so that the bending moment diagram for the member 123 is that shown
in Fig. S.6.7(b).

1 2
3

Pl/16 Pl/12

Pl/6

+

−

Fig. S.6.7(b)
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S.6.8

(a) The element is shown in Fig. S.6.8. The displacement functions for a triangular
element are given by Eqs (6.82). Thus

u1 = α1, v1 = α4
u2 = α1 + aα2, v2 = α4 + aα5
u3 = α1 + aα3, v3 = α4 + aα6

⎫
⎬

⎭
(i)

3 (0,a)

1 (0,0) 2 (a,0)

y

x

Fig. S.6.8

From Eq. (i)

α1 = u1 α2 = (u2 − u1)/a α3 = (u3 − u1)/a

α4 = v1 α5 = (v2 − v1)/a α6 = (v3 − v1)/a

Hence in matrix form
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

α1

α2

α3

α4

α5

α6

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

1 0 0 0 0 0
−1/a 0 1/a 0 0 0
−1/a 0 0 0 1/a 0

0 1 0 0 0 0
0 −1/a 0 1/a 0 0
0 −1/a 0 0 0 1/a

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u1

v1

u2

v2

u3

v3

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

which is of the form

{x} = [A−1]{δe}
Also, from Eq. (6.89)

[C] =
⎡

⎣
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 1 0

⎤

⎦
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Hence

[B] = [C][A−1] =
⎡

⎣
−1/a 0 1/a 0 0 0

0 −1/a 0 0 0 1/a
−1/a −1/a 0 1/a 1/a 0

⎤

⎦

(b) From Eq. (6.94)

[Ke] =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

−1/a 0 −1/a
0 −1/a −1/a

1/a 0 0
0 0 1/a
0 0 1/a
0 1/a 0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

E

1 − ν2

⎡

⎣
1 ν 0
ν 1 0

0 0 1
2 (1 − ν)

⎤

⎦

×
⎡

⎣
−1/a 0 1/a 0 0 0

0 −1/a 0 0 0 1/a
−1/a −1/a 0 1/a 1/a 0

⎤

⎦ 1

2
a2t

which gives

[Ke] = Et

4(1 − ν2)

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

3 − ν 1 + ν −2 −(1 − ν) −(1 − ν) −2ν

1 + ν 3 − ν −2ν −(1 − ν) −(1 − ν) −2
−2 −2ν 2 0 0 2ν

−(1 − ν) −(1 − ν) 0 1 − ν 1 − ν 0
−(1 − ν) −(1 − ν) 0 1 − ν 1 − ν 0

−2ν −2 −2ν 0 0 2

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

Continuity of displacement is only ensured at nodes, not along their edges.

S.6.9

(a) There are six degrees of freedom so that the displacement field must include six
coefficients. Thus

u = α1 + α2x + α3y (i)

v = α4 + α5x + α6y (ii)

(b) From Eqs (i) and (ii) and referring to Fig. S.6.9

u1 = α1 + α2 + α3 v1 = α4 + α5 + α6

u2 = α1 + 2α2 + α3 v2 = α4 + 2α5 + α6

u3 = α1 + 2α2 + 2α3 v3 = α4 + 2α5 + 2α6

Thus

α2 = u2 − u1 α3 = u3 − u2 α1 = 2u1 − u3

α5 = v2 − v1 α6 = v3 − v2 α4 = 2v1 − v3
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3 (2,2)

1 (1,1) 2 (2,1)

y

x

Fig. S.6.9

Therefore
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

α1

α2

α3

α4

α5

α6

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

2 0 0 0 −1 0
−1 0 1 0 0 0
0 0 −1 0 1 0
0 2 0 0 0 −1
0 −1 0 1 0 0
0 2 0 0 0 −1

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u1

v1

u2

v2

u3

v3

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(iii)

which is of the form

{α} = [A−1]{δe}
From Eq. (6.89)

[C] =
⎡

⎣
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 1 0

⎤

⎦

Hence

[B] = [C][A−1] =
⎡

⎣
−1 0 1 0 0 0
0 2 0 0 0 −1
0 −1 −1 1 1 0

⎤

⎦

(c) From Eq. (6.69)

{σ} = [D][B]{δe}
Thus, for plane stress problems (see Eq. (6.92))

[D][B] = E

1 − ν2

⎡

⎣
1 ν 0
ν 1 0

0 0 1
2 (1 − ν)

⎤

⎦

⎡

⎣
−1 0 1 0 0 0
0 2 0 0 0 −1
0 −1 −1 1 1 0

⎤

⎦
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i.e.

[D][B] = E

1 − ν2

⎡

⎢
⎣

−1 2ν 1 0 0 −ν

−ν 2 ν 0 0 −1

0 − 1
2 (1 − ν) − 1

2 (1 − ν) 1
2 (1 − ν) 1

2 (1 − ν) 0

⎤

⎥
⎦

For plain strain problems (see Eq. (6.93))

[D][B] = E(1 − ν)

(1 + ν)(1 − 2ν)

⎡

⎢⎢⎢⎢⎢⎢
⎣

1
ν

(1 − ν)
0

ν

(1 − ν)
1 0

0 0
(1 − 2ν)

2(1 − ν)

⎤

⎥⎥⎥⎥⎥⎥
⎦

×
⎡

⎣
−1 0 1 0 0 0
0 2 0 0 0 −1
0 −1 −1 1 1 0

⎤

⎦

[D][B] = E(1 − ν)

(1 + ν)(1 − 2ν)

×

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

−1
2ν

1 − ν
1 0 0 − ν

1 − ν

− ν

1 − ν
2

ν

1 − ν
0 0 −1

0 − 1 − 2ν

2(1 − ν)
− 1 − 2ν

2(1 − ν)

1 − 2ν

2(1 − ν)

1 − 2ν

2(1 − ν)
0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

S.6.10

(a) The element is shown in Fig. S.6.10. There are eight degrees of freedom so that a
displacement field must include eight coefficients. Therefore assume

u = α1 + α2x + α3y + α4xy (i)

v = α5 + α6x + αyy + α8xy (ii)

(b) From Eqs (6.88) and Eqs (i) and (ii)

εx = ∂u

∂x
= α2 + α4y

εy = ∂v

∂y
= α7 + α8x

γxy = ∂u

∂y
+ ∂v

∂x
= α3 + α4x + α6 + α8y
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3 (2a,2b)

1 (0,0) 2 (2a,0)

y

x

4 (0,2b)

Fig. S.6.10

Thus since {ε} = [C]{α}

[C] =
⎡

⎢
⎣

0 1 0 y 0 0 0 0

0 0 0 0 0 0 1 x

0 0 1 x 0 1 0 y

⎤

⎥
⎦ (iii)

(c) From Eq. (iii)

[C]T =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 0

1 0 0

0 0 1

y 0 x

0 0 0

0 0 1

0 1 x

0 x y

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

and from Eq. (6.92)

[D] = E

1 − ν2

⎡

⎢
⎣

1 ν 0

ν 1 0

0 0 1
2 (1 − ν)

⎤

⎥
⎦

Thus

∫

vol
[C]T[D][C]dV =

∫ 2a

0

∫ 2b

0
[C]T[D][C]t dx dy (iv)
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Substituting in Eq. (iv) for [C]T, [D] and [C] and multiplying out gives

∫ 2a

0

∫ 2b

0
[C]T[D][C]t dx dy

= Et

1 − ν2

∫ 2a

0

∫ 2b

0

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 0 0 0 0 0 0

0 1 0 y 0 0 ν νx

0 0
1

2
(1 − ν)

x

2
(1 − ν) 0

1

2
(1 − ν) 0

y

2
(1 − ν)

0 y
x

2
(1 − ν) y2 + x2(1−ν)

2 0
x

2
(1 − ν) νy νxy + xy

2 (1 − ν)

0 0 0 0 0 0 0 0

0 0
1

2
(1 − ν)

x

2
(1 − ν) 0

1

2
(1 − ν) 0

y

2
(1 − ν)

0 ν 0 νy 0 0 1 x

0 νx
y

2
(1 − ν) νxy + xy

2
(1 − ν) 0

y

2
(1 − ν) x x2 + y2

2 (1 − ν)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

dx dy

= Et

1 − ν2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 0 0 0 0 0 0

0 4ab 0 4ab2 0 0 4abν 4ba2ν

0 0 2ab(1 − ν) 2a2b(1 − ν) 0 2ab(1 − ν) 0 2ab2(1 − ν)

0 4ab2 2a2b(1 − ν)
8

3
{2ab3+ 0 2a2b(1 − ν) 4ab2ν 2a2b2(1 + ν)

a3b(1 − ν)}
0 0 0 0 0 0 0 0

0 0 2ab(1 − ν) 2a2b(1 − ν) 0 2ab(1 − ν) 0 2ab2(1 − ν)

0 4abν 0 4ab2ν 0 0 4ab 4a2b

0 4a2bν 2ab2(1 − ν) 2a2b2(1 + ν) 0 2ab2(1 − ν) 4a2b
8

3
{2a3b+

ab3(1 − ν)}

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

S.6.11

From the first of Eqs (6.96)

u1 = α1 − α2 − α3 + α4 = 0.1/103 (i)

u2 = α1 + α2 − α3 − α4 = 0.3/103 (ii)

u3 = α1 + α2 + α3 + α4 = 0.6/103 (iii)

u4 = α1 − α2 + α3 − α4 = 0.1/103 (iv)
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Adding Eqs (i) and (ii)

u1 + u2 = 2α1 − 2α3 = 0.4/103

i.e.

α1 − α3 = 0.2/103 (v)

Adding Eqs (iii) and (iv)

u3 + u4 = 2α1 + 2α3 = 0.7/103

i.e.

α1 + α3 = 0.35/103 (vi)

Adding Eqs (v) and (vi)

α1 = 0.275/103

Then from Eq. (v)

α3 = 0.075/103

Now subtracting Eq. (ii) from Eq. (i)

u1 − u2 = −2α2 + 2α4 = −0.2/103

i.e.

α2 − α4 = 0.1/103 (vii)

Subtracting Eq. (iv) from Eq. (iii)

u3 − u4 = 2α2 + 2α4 = 0.5/103

i.e.

α2 + α4 = 0.25/103 (viii)

Now adding Eqs (vii) and (viii)

2α2 = 0.35/103

whence

α2 = 0.175/103

Then from Eq. (vii)

α4 = 0.075/103



Solution-1-H6739.tex 24/1/2007 9: 28 Page 101

Solutions to Chapter 6 Problems 101

From the second of Eqs (6.96)

v1 = α5 − α6 − α7 + α8 = 0.1/103 (ix)

v2 = α5 + α6 − α7 − α8 = 0.3/103 (x)

v3 = α5 + α6 + α7 + α8 = 0.7/103 (xi)

v4 = α5 − α6 + α7 − α8 = 0.5/103 (xii)

Then, in a similar manner to the above

α5 = 0.4/103

α7 = 0.2/103

α6 = 0.1/103

α8 = 0

Eqs (6.96) are now written

ui = (0.275 + 0.175x + 0.075y + 0.075xy) × 10−3

vi = (0.4 + 0.1x + 0.2y) × 10−3

Then, from Eqs (6.88)

εx = (0.175 + 0.075y) × 10−3

εy = 0.2 × 10−3

γxy = (0.075 + 0.075x + 0.1) × 10−3 = (0.175 + 0.075x) × 10−3

At the centre of the element x = y = 0. Then

εx = 0.175 × 10−3

εy = 0.2 × 10−3

γxy = 0.175 × 10−3

so that, from Eqs (6.92)

σx = 200 000

1 − 0.32 (0.175 + 0.3 × 0.2) × 10−3 = 51.65 N/mm2

σy = 200 000

1 − 0.32 (0.2 + 0.3 × 0.175) × 10−3 = 55.49 N/mm2

τxy = 200 000

2(1 + 0.3)
× 0.175 × 10−3 = 13.46 N/mm2
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S.6.12

Suitable displacement functions are:

u = α1 + α2x + α3y + α4xy

v = α5 + α6x + α7y + α8xy

Then

u1 = α1 − 2α2 − α3 + 2α4 = 0.001 (i)

u2 = α1 + 2α2 − α3 − 2α4 = 0.003 (ii)

u3 = α1 + 2α2 + α3 + 2α4 = −0.003 (iii)

u4 = α1 − 2α2 + α3 − 2α4 = 0 (iv)

Subtracting Eq. (ii) from Eq. (i)

α2 − α4 = 0.0005 (v)

Subtracting Eq. (iv) from Eq. (iii)

α2 + α4 = −0.00075 (vi)

Subtracting Eq. (vi) from Eq. (v)

α4 = −0.000625

Then, from either of Eqs (v) or (vi)

α2 = −0.000125

Adding Eqs (i) and (ii)

α1 − α3 = 0.002 (vii)

Adding Eqs (iii) and (iv)

α1 + α3 = −0.0015 (viii)

Adding Eqs (vii) and (viii)

α1 = 0.00025

Then from either of Eqs (vii) or (viii)

α3 = −0.00175

Similarly

α5 = −0.001

α6 = 0.00025

α7 = 0.002

α8 = −0.00025
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Then

ui = 0.00025 − 0.00125x − 0.00175y − 0.000625xy

vi = −0.001 + 0.00025x + 0.002y − 0.00025xy

From Eqs (1.18) and (1.20)

εx = ∂u

∂x
= −0.000125 − 0.000625y

εy = ∂v

∂y
= 0.002 − 0.00025x

γxy = ∂u

∂y
+ ∂v

∂x
= −0.0015 − 0.000625x − 0.00025y

At the centre of the element where x = y = 0

εx = −0.000125 εy = 0.002 γxy = −0.0015.

S.6.13

Assume displacement functions

u(x, y) = α1 + α2x + α3y

v(x, y) = α4 + α5x + α6y

Then

u1 = α1

u2 = α1 + 4α2

u3 = α1 + 2α2 + 2α3

Solving

α2 = u2 − u1

4
α3 = 2u3 − u1 − u2

4
Therefore

u = u1 +
(

u2 − u1

4

)
x +

(
2u3 − u1 − u2

4

)
y

or

u =
(

1 − x

4
− y

4

)
u1 +

(x

4
− y

4

)
u2 + y

2
u3

Similarly

v =
(

1 − x

4
− y

4

)
v1 +

(x

4
− y

4

)
v2 + y

2
v3
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Then, from Eqs (1.18) and (1.20)

εx = ∂u

∂x
= −u1

4
+ u2

4

εy = ∂v

∂y
= −v1

4
− v2

4
+ v3

2

γxy = ∂u

∂y
+ ∂v

∂x
= −u1

4
− u2

4
− v1

4
+ v2

4

Hence

[B]{δe} =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

∂u

∂x

∂v

∂y

∂u

∂y
+ ∂v

∂x

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

= 1

4

⎡

⎣
−1 0 1 0 0 0

0 −1 0 −1 0 2
−1 −1 −1 1 2 0

⎤

⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u1

v1

u2

v2

u3

v3

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

But

[D] =
⎡

⎣
a b 0
b a 0
0 0 c

⎤

⎦

so that

[D][B] = 1

4

⎡

⎣
−a −b a −b 0 2b
−b −a b −a 0 2a
−c −c −c c 2c 0

⎤

⎦

and

[B]T[D][B] = 1

16

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

a + c b + c −a + c b − c −2c −2b
b + c a + c −b + c a − c −2c −2a

−a + c −b + c a + c −b − c −2c 2b
b − c a − c −b − c a + c 2c −2a
−2c −2c −2c 2c 4c 0
−2b −2a 2b −2a 0 4a

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

Since [Ke] = [B]T[D][B] × 4 × 1

[Ke] = 1

4

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

a + c SYM
b + c a + c

−a + c −b + c a + c
b − c a − c −b − c a + c
−2c −2c −2c 2c 4c
−2b −2a 2b −2a 0 4a

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦
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S.6.14

For a = 1, b = 2

u = 1
8 [(1 − x)(2 − y)u1 + (1 + x)(2 − y)u2 + (1 + x)(2 + y)u3 + (1 − x)(2 + y)u4]

Similarly for v

Then

∂u

∂x
= 1

8 [−(2 − y)u1 + (2 − y)u2 + (2 + y)u3 − (2 + y)u4]

∂v

∂y
= 1

8 [−(1 − x)v1 − (1 + x)v2 + (1 + x)v3 − (1 − x)v4]

∂u

∂y
+ ∂v

∂x
= 1

8 [−(1 − x)u1 − (2 − y)v1 − (1 + x)u2 + (2 − y)v2 + (1 + x)u3

+ (2 + y)v3 + (1 − x)u4 − (2 + y)v4]

In matrix form
⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

∂u

∂x
∂v

∂y
∂u

∂y
+ ∂v

∂x

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

= 1

8

⎡

⎢
⎣

−(2 − y) 0 (2 − y) 0 (2 + y) 0 −(2 + y) 0

0 −(1 − x) 0 −(1 + x) 0 (1 + x) 0 (1 − x)

−(1 − x) −(2 − y) −(1 + x) (2 − y) (1 + x) (2 + y) (1 − x) −(2 + y)

⎤

⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1

v1

u2

v2

u3

v3

u4

v4

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Also

D =
⎡

⎣
c d 0
d c 0
0 0 e

⎤

⎦

Then

[D][B]

= 1

8

⎡

⎢
⎣

−c(2 − y) −d(1 − x) e(2 − y) −d(1 + x) e(2 + y) d(1 + x) −c(2 + y) d(1 − x)

−d(2 − y) −c(1 − x) d(2 − y) −c(1 + x) d(2 + y) e(1 + x) −d(2 + y) c(1 − x)

−e(1 − x) −e(2 − y) −e(1 + x) e(2 − y) e(1 + x) e(2 + y) e(1 − x) −e(2 + y)

⎤

⎥
⎦
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Then

[B]T[D][B] = 1

64

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−(2 − y) 0 −(1 − x)
0 −(1 − x) −(2 − y)

...

...

...

...

...

...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎡

⎣
−c(2 − y) −d(1 − x) . . . . . . . . .

−d(2 − y) −c(1 − x) . . . . . . . . .

−e(1 − x) −e(2 − y) . . . . . . . . .

⎤

⎦

Therefore

K11 = t

64

∫ 2

−2

∫ 1

−1
[c(2 − y)2 + e(1 − x)2]dx dy

which gives K11 = t

6
(4c + e)

K12 = t

64

∫ 2

−2

∫ 1

−1
[d(2 − y)(1 − x) + e(1 − x)(2 − y)]dx dy

which gives K12 = t
4 (d + e).

Solutions to Chapter 7 Problems

S.7.1

Substituting for ((1/ρx) + (ν/ρy)) and ((1/ρy) + (ν/ρx)) from Eqs (7.5) and (7.6),
respectively in Eqs (7.3)

σx = Ez

1 − ν2

Mx

D
and σy = Ez

1 − ν2

My

D
(i)

Hence, since, from Eq. (7.4), D = Et3/12(1 − ν2), Eqs (i) become

σx = 12zMx

t3 σy = 12zMy

t3 (ii)

The maximum values of σx and σy will occur when z = ±t/2. Hence

σx( max ) = ±6Mx

t2 σy( max ) = ±6My

t2 (iii)
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Then

σx(max) = ±6 × 10 × 103

102 = ±600 N/mm2

σy(max) = ±6 × 5 × 103

102 = ±300 N/mm2

S.7.2

From Eq. (7.11) and since Mxy = 0

Mt = Mx − My

2
sin 2α (i)

Mt will be a maximum when 2α = π/2, i.e. α = π/4 (45◦). Thus, from Eq. (i)

Mt(max) = 10 − 5

2
= 2.5 Nm/mm

S.7.3

The relationship between Mn and Mx, My and Mxy in Eq. (7.10) and between Mt and
Mx, My and Mxy in Eq. (7.11) are identical in form to the stress relationships in Eqs
(1.8) and (1.9). Therefore, by deduction from Eqs (1.11) and (1.12)

MI = Mx + My

2
+ 1

2

√
(Mx − My)2 + 4M2

xy (i)

and

MII = Mx + My

2
− 1

2

√
(Mx − My)2 + 4M2

xy (ii)

Further, Eq. (7.11) gives the inclination of the planes on which the principal moments
occur, i.e. when Mt = 0. Thus

tan 2α = − 2Mxy

Mx − My
(iii)

Substituting the values Mx = 10 Nm/mm, My = 5 Nm/mm and Mxy = 5 Nm/mm in
Eqs (i), (ii) and (iii) gives

MI = 13.1 Nm/mm

MII = 1.9 Nm/mm

and

α = −31.7◦ or 58.3◦
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The corresponding principal stresses are obtained directly from Eqs (iii) of S.7.1. Hence

σI = ±6 × 13.1 × 103

102 = ±786 N/mm2

σII = ±6 × 1.9 × 103

102 = ±114 N/mm2

S.7.4

From the deflection equation

∂2w

∂x2 = −q0a2

Dπ2

(
1 + A cosh

πy

a
+ B

πy

a
sinh

πy

a

)
sin

πx

a

∂2w

∂y2 = q0a2

Dπ2

(
A cosh

πy

a
+ 2B cosh

πy

a
+ B

πy

a
sinh

πy

a

)
sin

πx

a

Now w = 0 and Mx = 0 at x = 0 and a. From Eq. (7.7) this is satisfied implicitly.
Also w = 0 and My = 0 at y = ±a so that, from the deflection equation

O = q0a4

Dπ4 (1 + A cosh π + Bπ sinh π) sin
πx

a

i.e.

1 + A cosh π + Bπ sinh π = 0 (i)

Also, from Eq. (7.8)

O = − q0a2

Dπ2 [(A cosh π + 2B cosh π + Bπ sinh π)

− 0.3(1 + A cosh π + Bπ sinh π)] sin
πx

a

or

O = −0.3 + 0.7A cosh π + 2B cosh π + 0.7Bπ sinh π (ii)

Solving Eqs (i) and (ii)

A = −0.2213 B = 0.0431

S.7.5

The deflection is zero at x = a/2, y = a/2. Then, from the deflection equation

O = a4

4
− 3

2
a4(1 − ν) − 3

4
a4ν + A
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Hence

A = a4

4
(5 − 3ν)

The central deflection, i.e. at x = 0, y = 0 is then

= qa4

96(1 − ν)D
× 1

4
(5 − 3ν)

= qa4

384D

(
5 − 3ν

1 − ν

)

S.7.6

From the equation for deflection

∂4w

∂x4 = w0

(π

a

)4
cos

πx

a
cos

3πy

a

∂4w

∂y4 = w0

(
3π

a

)4

cos
πx

a
sin

3πy

a

∂4w

∂x2 ∂y2 = w0

(π

a

)2
(

3π

a

)2

cos
πx

a
cos

3πy

a

Substituting in Eq. (7.20)

q(x, y)

D
= w0 cos

πx

a
cos

3πy

a
(1 + 2 × 9 + 81)

(π

a

)4

i.e.

q(x, y) = w0D100
π4

a4 cos
πx

a
cos

3πy

a

From the deflection equation

w = 0 at x = ±a/2, y = ±a/2

The plate is therefore supported on all four edges.
Also

∂w

∂x
= −w0

π

a
sin

πx

a
cos

3πy

a
∂w

∂y
= −w0

3π

a
cos

πx

a
sin

3πy

a
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When

x = ±a

2

∂w

∂x
�= 0

y = ±a

2

∂w

∂y
�= 0

The plate is therefore not clamped on its edges.
Further

∂2w

∂x2 = −w0

(π

a

)2
cos

πx

a
cos

3πy

a

∂2w

∂y2 = −w0

(
3π

a

)2

cos
πx

a
cos

3πy

a

Substituting in Eq. (7.7)

Mx = −Dw0

(π

a

)2
cos

πx

a
cos

3πy

a
(−1 − 9ν) (i)

Similarly, from Eq. (7.8)

My = w0D
(π

a

)2
cos

πx

a
cos

3πy

a
(9 + ν) (ii)

Then, at x = ±a/2, Mx = 0 (from Eq. (i)) and at y = ±a/2, My = 0 (from Eq. (ii)).
The plate is therefore simply supported on all edges.
The corner reactions are given by

2D(1 − ν)
∂2w

∂x ∂y
(see Eq. (7.14))

Then, since

∂2w

∂x ∂y
= w0

π

a

3π

a
sin

πx

a
sin

3πy

a
at x = a/2, y = a/2

Corner reactions = −6w0D
(π

a

)2
(1 − ν)

From Eqs (7.7) and (7.8) and the above, at the centre of the plate

Mx = w0D
(π

a

)2
(1 + 9ν), My = w0D

(π

a

)2
(9 + ν).
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S.7.7

Substituting q(x, y) = q0x/a in Eq. (7.29) and noting that the plate is square and of side a

amn = 4

a2

∫ a

0

∫ a

0
q0

x

a
sin

mπx

a
sin

nπy

a
dx dy

i.e.

amn = 4q0

a3

∫ a

0
x sin

mπx

a

[
− a

nπ
cos

nπy

a

]a

0
dx

Hence

amn = − 4q0

a2nπ

∫ a

0
x sin

mπx

a
(cos nπ − 1)dx

The term in brackets is zero when n is even and equal to −2 when n is odd. Thus

amn = 8q0

a2nπ

∫ a

0
x sin

mπx

a
dx (n odd) (i)

Integrating Eq. (i) by parts

amn = 8q0

a2nπ

[
−x

a

mπ
cos

mπx

a
+
∫

a

mπ
cos

mπx

a
dx

]a

0

i.e.

amn = 8q0

amnπ2

[
−x cos

mπx

a
+ a

mπ
sin

mπx

a

]a

0

The second term in square brackets is zero for all integer values of m. Thus

amn = 8q0

amnπ2 (−a cos mπ)

The term in brackets is positive when m is odd and negative when m is even. Thus

amn = 8q0

mnπ2 (−1)m+1

Substituting for amn in Eq. (7.30) gives the displaced shape of the plate, i.e.

w = 1

π4D

∞∑

m=1,2,3

∞∑

n=1,3,5

8q0(−1)m+1

mnπ2

[(
m2

a2

)
+
(

n2

a2

)]2 sin
mπx

a
sin

nπy

a

or

w = 8q0a4

π6D

∞∑

m=1,2,3

∞∑

n=1,3,5

(−1)m+1

mn(m2 + n2)2 sin
mπx

a
sin

nπy

a
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S.7.8

The boundary conditions which must be satisfied by the equation for the displaced
shape of the plate are w = 0 and ∂w/∂n = 0 at all points on the boundary; n is a direction
normal to the boundary at any point.

The equation of the ellipse representing the boundary is

x2

a2 + y2

b2 = 1 (i)

Substituting for x2/a2 + y2/b2 in the equation for the displaced shape clearly gives w = 0
for all values of x and y on the boundary of the plate. Also

∂w

∂n
= ∂w

∂x

∂x

∂n
+ ∂w

∂y

∂y

∂n
(ii)

Now

w = w0

(
1 − x2

a2 − y2

b2

)2

so that

∂w

∂x
= −4w0x

a2

(
1 − x2

a2 − y2

b2

)
(iii)

and

∂w

∂y
= −4w0y

b2

(
1 − x2

a2 − y2

b2

)
(iv)

From Eqs (i), (ii) and (iv) it can be seen that ∂w/∂x and ∂w/∂y are zero for all values
of x and y on the boundary of the plate. It follows from Eq. (ii) that ∂w/∂n = 0 at all
points on the boundary of the plate. Thus the equation for the displaced shape satisfies
the boundary conditions.

From Eqs (iii) and (iv)

∂4w

∂x4 = 24w0

a4

∂4w

∂y4 = 24w0

b4

∂4w

∂x2 ∂y2 = 8w0

a2b2

Substituting these values in Eq. (7.20)

w0

(
24

a4 + 16

a2b2 + 24

b4

)
= p

D

whence

w0 = p

8D

(
3

a4 + 2

a2b2 + 3

b4

)
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Now substituting for D from Eq. (7.4)

w0 = 3p(1 − ν2)

2Et3

(
3

a4 + 2

a2b2 + 3

b4

) (v)

From Eqs (7.3), (7.5) and (7.7)

σx = − Ez

1 − ν2

(
∂2w

∂x2 + ν
∂2w

∂y2

)
(vi)

and from Eqs (7.3), (7.6) and (7.8)

σy = − Ez

1 − ν2

(
∂2w

∂y2 + ν
∂2w

∂x2

)
(vii)

From Eqs (iii) and (iv)

∂2w

∂x2 = −4w0

a2

(
1 − 3x2

a2 − y2

b2

)
∂2w

∂y2 = −4w0

b2

(
1 − x2

a2 − 3y2

b2

)

Substituting these expressions in Eq. (vi) and noting that the maximum values of direct
stress occur at z = ±t/2

σx(max) = ± Et

2(1 − ν2)

[
−4w0

a2

(
1 − 3x2

a2 − y2

b2

)
− 4w0ν

b2

(
1 − x2

a2 − 3y2

b2

)]

(viii)
At the centre of the plate, x = y = 0. Then

σx(max) = ± 2Etw0

(1 − ν2)

(
1

a2 + ν

b2

)
(ix)

Substituting for w0 in Eq. (ix) from Eq. (v) gives

σx(max) = ± 3pa2b2(b2 + νa2)

t2(3b4 + 2a2b2 + 3a4)
(x)

Similarly

σy(max) = ± 3pa2b2(a2 + νb2)

t2(3b4 + 2a2b2 + 3a4)
(xi)

At the ends of the minor axis, x = 0, y = b. Thus, from Eq. (viii)

σx(max) = ± 2Etw0

(1 − ν2)

(
1

a2 − 1

a2 + ν

b2 − 3ν

b2

)

i.e.

σx(max) = ± 4Etw0ν

b2(1 − ν2)
(xii)
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Again substituting for w0 from Eq. (v) in Eq. (xii)

σx(max) = ± 6pa4b2

t2(3b4 + 2a2b2 + 3a4)

Similarly

σy(max) = ± 6pb4a2

t2(3b4 + 2a2b2 + 3a4)

S.7.9

The potential energy, V , of the load W is given by

V = −Ww

i.e.

V = −W
∞∑

m=1

∞∑

n=1

Amn sin
mπξ

a
sin

nπη

b

Therefore, it may be deduced from Eq. (7.47) that the total potential energy, U + V , of
the plate is

U + V = D

2

∞∑

m=1

∞∑

n=1

A2
mn

π4ab

4

(
m2

a2 + n2

b2

)2

− W
∞∑

m=1

∞∑

n=1

Amn sin
mπξ

a
sin

nπη

b

From the principle of the stationary value of the total potential energy

∂(U + V )

∂Amn
= DAmn

π4ab

4

(
m2

a2 + n2

b2

)2

− W sin
mπξ

a
sin

nπη

b
= 0

Hence

Amn =
4W sin

mπξ

a
sin

nπη

b

π4Dab

[(
m2

a2

)
+
(

n2

b2

)]2

so that the deflected shape is obtained.

S.7.10

From Eq. (7.45) the potential energy of the in-plane load, Nx, is

−1

2

∫ a

0

∫ b

0
Nx

(
∂w

∂x

)2

dx dy
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The combined potential energy of the in-plane load, Nx, and the load, W , is then, from
S.7.9

V = −1

2

∫ a

0

∫ b

0
Nx

(
∂w

∂x

)2

dx dy − W
∞∑

m=1

∞∑

n=1

Amn sin
mπξ

a
sin

nπη

b

or, since,

∂w

∂x
=

∞∑

m=1

∞∑

n=1

Amn
mπ

a
cos

mπx

a
sin

nπy

b

V = − 1

2

∫ a

0

∫ b

0
Nx

∞∑

m=1

∞∑

n=1

A2
mn

m2π2

a2 cos2 mπx

a
sin2 nπy

b
dx dy

− W
∞∑

m=1

∞∑

n=1

Amn sin
mπξ

a
sin

nπη

b

i.e.

V = −ab

8
Nx

∞∑

m=1

∞∑

n=1

A2
mn

m2π2

a2 − W
∞∑

m=1

∞∑

n=1

Amn sin
mπξ

a
sin

nπη

b

Then, from Eq. (7.47), the total potential energy of the plate is

U + V = D

2

∞∑

m=1

∞∑

n=1

A2
mn

π4ab

4

(
m2

a2 + n2

b2

)2

− ab

8
Nx

∞∑

m=1

∞∑

n=1

A2
mn

m2π2

a2

− W
∞∑

m=1

∞∑

n=1

Amn sin
mπξ

a
sin

nπη

b

Then, from the principle of the stationary value of the total potential energy

∂(U + V )

∂Amn
= DAmn

π4ab

4

(
m2

a2 + n2

b2

)2

− ab

4
NxAmn

m2π2

a2 − W sin
mπξ

a
sin

nπη

b
= 0

from which

Amn =
4W sin

mπξ

a
sin

nπη

b

abDπ4

[(
m2

a2 + n2

b2

)2

− m2Nx

π2a2D

]



Solution-1-H6739.tex 24/1/2007 9: 28 Page 116

116 Solutions Manual

S.7.11

The guessed form of deflection is

w = A11

(
1 − 4x2

a2

)(
1 − 4y2

a2

)
(i)

Clearly when x = ±a/2, w = 0 and when y = ±a/2, w = 0. Therefore, the equation for
the displaced shape satisfies the displacement boundary conditions.

From Eq. (i)

∂2w

∂x2 = −8
A11

a2

(
1 − 4y2

a2

)
∂2w

∂y2 = −8
A11

a2

(
1 − 4x2

a2

)

Substituting in Eq. (7.7)

Mx = −8A11D

a2

[
1 − 4y2

a2 + ν

(
1 − 4x2

a2

)]

Clearly, when x = ±a/2, Mx �= 0 and when y = ±a/2, Mx �= 0. Similarly for My. Thus
the assumed displaced shape does not satisfy the condition of zero moment at the simply
supported edges.

From Eq. (i)

∂2w

∂x ∂y
= 64A11xy

a4

Substituting for ∂2w/∂x2, ∂2w/∂y2, ∂2w/∂x ∂y and w in Eq. (7.46) and simplifying gives

U + V =
∫ a/2

−a/2

∫ a

−a/2

{
32A2

11D

a4

[
4 − 16

a2 (x2 + y2) + 16

a4 (x4 + 2x2y2 + y4) − 1.4

+ 5.6

a2 (x2 + y2) + 67.2x2y2

a4

]

− q0A11

(
1 − 4x2

a2 − 4y2

a2 + 16x2y2

a4

)}
dx dy

from which

U + V = 62.4A2
11D

a2 − 4q0A11a2

9
From the principle of the stationary value of the total potential energy

∂(U + V )

∂A11
= 124.8A11D

a2 − 4q0a2

9
= 0

Hence, since D = Et3/12(1 − ν2)

A11 = 0.0389q0a4/Et3
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S.7.12

From Eq. (7.36) the deflection of the plate from its initial curved position is

w1 = B11 sin
πx

a
sin

πy

b

in which

B11 = A11Nx

π2D

a2

(
1 + a2

b2

)2

− Nx

The total deflection, w, of the plate is given by

w = w1 + w0

i.e.

w =

⎡

⎢⎢⎢
⎣

A11Nx

π2D

a2

(
1 + a2

b2

)2

− Nx

+ A11

⎤

⎥⎥⎥
⎦

sin
πx

a
sin

πy

b

i.e.

w = A11

1 − Nxa2

π2D

/(
1 + a2

b2

)2 sin
πx

a
sin

πy

b

Solutions to Chapter 8 Problems

S.8.1

The forces on the bar AB are shown in Fig. S.8.1 where

MB = K

(
dv

dz

)

B
(i)

and P is the buckling load.
From Eq. (8.1)

EI
d2v

dz2 = −Pv (ii)

The solution of Eq. (ii) is

v = A cos µz + B sin µz (iii)
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P A

B P

y

z

l

MB VB

Fig. S.8.1

where µ2 = P/EI.
When z = 0, v = 0 so that, from Eq. (iii), A = 0. Hence

v = B sin µz (iv)

Then
dv

dz
= µB cos µz

and when z = l, dv/dz = MB/K from Eq. (i). Thus

B = MB

µK cos µl

and Eq. (iv) becomes

v = MB

µK cos µl
sin µz (v)

Also, when z = l, PvB = MB from equilibrium. Hence, substituting in Eq. (v) for MB

vB = PvB

µK cos µl
sin µl

from which

P = µK

tan µl
(vi)

(a) When K → ∞, tan µl → ∞ and µl → π/2, i.e.
√

P

EI
l → π

2

from which

P → π2EI

4l2

which is the Euler buckling load of a pin-ended column of length 2l.
(b) When EI → ∞, tan µl → µl and Eq. (vi) becomes P = K/l and the bars remain

straight.
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S.8.2

Suppose that the buckling load of the column is P. Then from Eq. (8.1) and referring
to Fig. S.8.2, in AB

EI
d2v

dz2 = −Pv (i)

and in BC

4EI
d2v

dz2 = −Pv (ii)

B

DA

P P

EIEI

v
z

y 4 EI C

l /2l /4 l /4

Fig. S.8.2

The solutions of Eqs (i) and (ii) are, respectively

vAB = A cos µz + B sin µz (iii)

vBC = C cos
µ

2
z + D sin

µ

2
z (iv)

in which

µ2 = P

EI

When z = 0, vAB = 0 so that, from Eq. (iii), A = 0. Thus

vAB = B sin µz (v)

Also, when z = l/2, (dv/dz)BC = 0. Hence, from Eq. (iv)

0 = −µ

2
C sin

µl

4
+ µ

2
D cos

µl

4

whence

D = C tan
µl

4

Then

vBC = C

(
cos

µ

2
z + tan

µl

4
sin

µ

2
z

)
(vi)
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When z = l/4, vAB = vBC so that, from Eqs (v) and (vi)

B sin
µl

4
= C

(
cos

µl

8
+ tan

µl

4
sin

µl

8

)

which simplifies to

B sin
µl

4
= C sec

µl

4
cos

µl

8
(vii)

Further, when z = l/4, (dv/dz)AB = (dv/dz)BC. Again from Eqs (v) and (vi)

µB cos
µl

4
= C

(
−µ

2
sin

µl

8
+ µ

2
tan

µl

4
cos

µl

8

)

from which

B cos
µl

4
= C

2
sec

µl

4
sin

µl

8
(viii)

Dividing Eq. (vii) by Eq. (viii) gives

tan
µl

4
= 2
/

tan
µl

8

or

tan
µl

4
tan

µl

8
= 2

Hence

2 tan2 µl/8

1 − tan2 µl/8
= 2

from which

tan
µl

8
= 1√

2

and

µl

8
= 35.26◦ = 0.615 rad

i.e.
√

P

EI

l

8
= 0.615

so that

P = 24.2EI

l2
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S.8.3

With the spring in position the forces acting on the column in its buckled state are
shown in Fig. S.8.3. Thus, from Eq. (8.1)

EI
d2v

dz2 = 4P(δ − v) − kδ(l − z) (i)

The solution of Eq. (i) is

v = A cos µz + B sin µz + δ

4P
[4P + k(z − l)] (ii)

4P
y

l

v
z

δkδ

Fig. S.8.3

where

µ2 = 4P

EI

When z = 0, v = 0, hence, from Eq. (ii)

0 = A + δ

4P
(4P − kl)

from which

A = δ(kl − 4P)

4P

Also when z = 0, dv/dz = 0 so that, from Eq. (ii)

0 = µB + δk

4P

and

B = −δk

4Pµ
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Eq. (ii) then becomes

v = δ

4P

[
(kl − 4P) cos µz − k

µ
sin µz + 4P + k(z − l)

]
(iii)

When z = l, v = δ. Substituting in Eq. (iii) gives

δ = δ

4P

[
(kl − 4P) cos µl − k

µ
sin µl + 4P

]

from which

k = 4Pµ

µl − tan µl

S.8.4

The compressive load P will cause the column to be displaced from its initial curved
position to that shown in Fig. S.8.4. Then, from Eq. (8.1) and noting that the bending
moment at any point in the column is proportional to the change in curvature produced
(see Eq. (8.22))

EI
d2v

dz2 − EI
d2v0

dz2 = −Pv (i)

Now

v0 = a
4z

l2 (l − z)

so that

d2v0

dz2 = −8a

l2

P P

y

z

l

v

v0

Fig. S.8.4

and Eq. (i) becomes

d2v

dz2 + P

EI
v = −8a

l2 (ii)
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The solution of Eq. (ii) is

v = A cos λz + B sin λz − 8a/(λl)2 (iii)

where λ2 = P/EI.
When z = 0, v = 0 so that A = 8a/(λl)2. When z = l/2, dv/dz = 0. Thus, from Eq. (iii)

0 = −λA sin
λl

2
+ λB cos

λl

2

whence

B = 8a

(λl)2 tan
λl

2

Eq. (iii) then becomes

v = 8a

(λl)2

(
cos λz + tan

λl

2
sin λz − 1

)
(iv)

The maximum bending moment occurs when v is a maximum at z = l/2. Then, from
Eq. (iv)

M(max) = −Pvmax = − 8aP

(λl)2

(
cos

λl

2
+ tan

λl

2
sin

λl

2
− 1

)

from which

M(max) = − 8aP

(λl)2

(
sec

λl

2
− 1

)

S.8.5

Under the action of the compressive load P the column will be displaced to the position
shown in Fig. S.8.5. As in P.8.4 the bending moment at any point is proportional to the
change in curvature. Then, from Eq. (8.1)

EI
d2v

dz2 − EI
d2v0

dz2 = −Pv (i)

y

z

v

v0

δ

l/2 l/2

PP

Fig. S.8.5
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In this case, since each half of the column is straight before the application of P,
d2v0/dz2 = 0 and Eq. (i) reduces to

EI
d2v

dz2 = −Pv (ii)

The solution of Eq. (ii) is

v = A cos µz + B sin µz (iii)

in which µ2 = P/EI. When z = 0, v = 0 so that A = 0 and Eq. (iii) becomes

v = B sin µz (iv)

The slope of the column at its mid-point in its unloaded position is 2δ/l. This must be
the slope of the column at its mid-point in its loaded state since a change of slope over
zero distance would require an infinite bending moment. Thus, from Eq. (iv)

dv

dz
= 2δ

l
= µB cos

µl

2

so that

B = 2δ

µl cos (µl/2)

and

v = 2δ

µl cos (µl/2)
sin µz (v)

The maximum bending moment will occur when v is a maximum, i.e. at the mid-point
of the column. Then

M(max) = −Pvmax = − 2Pδ

µl cos (µl/2)
sin

µl

2

from which

M(max) = −P
2δ

l

√
EI

P
tan

√
P

EI

l

2

S.8.6

Referring to Fig. S.8.6 the bending moment at any section z is given by

M = P(e + v) − wl

2
z + w

z2

2
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z

y

P P

l

ee

w

wl
2

wl
2

v

Fig. S.8.6

or

M = P(e + v) + w

2
(z2 − lz) (i)

Substituting for M in Eq. (8.1)

EI
d2v

dz2 + Pv = −Pe − w

2
(z2 − lz)

or

d2v

dz2 + µ2v = −µ2e − wµ2

2P
(z2 − lz) (ii)

The solution of Eq. (ii) is

v = A cos µz + B sin µz − e + w

2P
(lz − z2) + w

µ2P
(iii)

When z = 0, v = 0, hence A = e − w/µ2P. When z = l/2, dv/dz = 0 which gives

B = A tan
µl

2
=
(

e − w

µ2P

)
tan

µl

2

Eq. (iii) then becomes

v =
(

e − w

µ2P

)[
cos µ(z − l/2)

cos µl/2
− 1

]
+ w

2P
(lz − z2) (iv)

The maximum bending moment will occur at mid-span where z = l/2 and v = vmax.
From Eq. (iv)

vmax =
(

e − EIw

P2

)(
sec

µl

2
− 1

)
+ wl2

8P

and from Eq. (i)

M(max) = Pe + Pvmax − wl2

8



Solution-1-H6739.tex 24/1/2007 9: 28 Page 126

126 Solutions Manual

whence

M(max) =
(

Pe − w

µ2

)
sec

µl

2
+ w

µ2 (v)

For the maximum bending moment to be as small as possible the bending moment at
the ends of the column must be numerically equal to the bending moment at mid-span.
Thus

Pe +
(

Pe − w

µ2

)
sec

µl

2
+ w

µ2 = 0

or

Pe

(
1 + sec

µl

2

)
= w

µ2

(
sec

µl

2
− 1

)

Then

e = w

Pµ2

(
1 − cos µl/2

1 + cos µl/2

)

i.e.

e =
(

w

Pµ2

)
tan2 µl

4
(vi)

From Eq. (vi) the end moment is

Pe = w

µ2 tan2 µl

4
= wl2

16

(
tan µl/4

µl/4

)(
tan µl/4

µl/4

)

When P → 0, tan µl/4 → µl/4 and the end moment becomes wl2/16.

S.8.7

From Eq. (8.21) the buckling stress, σb, is given by

σb = π2Et

(l/r)2 (i)

The stress–strain relationship is

10.5 × 106ε = σ + 21 000
( σ

49 000

)16
(ii)

Hence

10.5 × 106 dε

dσ
= 1 + 16 × 21 000

(49 000)16 σ15

from which

Et = dσ

dε
= 10.5 × 106 × (49 000)16

(49 000)16 + 16 × 21 000(σ)15
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Then, from Eq. (i)

(
l

r

)2

= π2Et

σb
= 10.36 × 107

σb + 336 000(σb/49 000)16 (iii)

From Eq. (iii) the following σb–(l/r) relationship is found

σb 4900 3 × 4900 6 × 4900 9 × 4900 49 000
l/r 145.4 84.0 59.3 31.2 16.4

For the given strut

r2 = I

A
= π(D4 − d4)/64

π(D2 − d2)/4
= 1

16
(D2 + d2)

i.e.

r2 = 1

16
(1.52 + 1.342) = 0.253 units2

Hence

r = 0.503 units

Thus
l

r
= 20

0.503
= 39.8

Then, from the σb–(l/r) relationship

σb = 40 500 force units/units2

Hence the buckling load is

40 500 × π

4
(1.52 − 1.342)

i.e.

Buckling load = 14 454 force units

S.8.8

The deflected shape of each of the members AB and BC is shown in Fig. S.8.8. For the
member AB and from Eq. (8.1)

EI
d2v1

dz2
1

= −MB

so that

EI
dv1

dz1
= −MBz1 + A
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y

z
PP

a

v

b

A

B

B

z1

v1

y1
MB

MB

C

Fig. S.8.8

When z1 = b, dv1/dz1 = 0. Thus A = MBb and

EI
dv1

dz1
= −MB(z1 − b) (i)

At B, when z1 = 0, Eq. (i) gives

dv1

dz1
= MBb

EI
(ii)

In BC Eq. (8.1) gives

EI
d2v

dz2 = −Pv + MB

or

EI
d2v

dz2 + Pv = MB (iii)

The solution of Eq. (iii) is

v = B cos λz + C sin λz + MB/P (iv)

When z = 0, v = 0 so that B = −MB/P.
When z = a/2, dv/dz = 0 so that

C = B tan
λa

2
= −MB

P
tan

λa

2

Eq. (iv) then becomes

v = −MB

P

(
cos λz + tan

λa

2
sin λz − 1

)
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so that

dv

dz
= −MB

P

(
−λ sin λz + λ tan

λa

2
cos λz

)

At B, when z = 0,

dv

dz
= −MB

P
λ tan

λa

2
(v)

Since dv1/dz1 = dv/dz at B then, from Eqs (ii) and (v)

b

EI
= −λ

P
tan

λa

2

whence

λa

2
= −1

2

(a

b

)
tan

λa

2

S.8.9

In an identical manner to S.8.4

EI
d2v′

dz2 − EI
d2v

dz2 = −Pv′

where v′ is the total displacement from the horizontal. Thus

d2v′

dz2 + P

EI
v′ = d2v

dz2

or, since

d2v

dz2 = −π2

l2 δ sin
π

l
z and µ2 = P

EI

d2v′

dz2 + µ2v′ = −π2

l2 δ sin
πz

l
(i)

The solution of Eq. (i) is

v′ = A cos µz + B sin µz + π2δ

π2 − µ2l2 sin
πz

l
(ii)

When z = 0 and l, v′ = 0, hence A = B = 0 and Eq. (ii) becomes

v′ = π2δ

π2 − µ2l2 sin
πz

l
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The maximum bending moment occurs at the mid-point of the tube so that

M(max) = Pv′ = P
π2δ

π2 − µ2l2 = Pδ

1 − Pl2/π2EI

i.e.

M(max) = Pδ

1 − P/Pe
= Pδ

1 − α

The total maximum direct stress due to bending and axial load is then

σ(max) = P

πdt
+
(

Pδ

1 − α

)
d/2

πd3t/8

Hence

σ(max) = P

πdt

(
1 + 1

1 − α

4δ

d

)

S.8.10

The forces acting on the members AB and BC are shown in Fig. S.8.10

A

B

P P

v

y

a b

V

P

z
vB

V
B

C

Fig. S.8.10

Considering first the moment equilibrium of BC about C

PvB = Vb

from which

vB = Vb

P
(i)

For the member AB and from Eq. (8.1)

EI
d2v

dz2 = −Pv − Vz

or

d2v

dz2 + P

EI
v = −Vz

EI
(ii)
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The solution of Eq. (ii) is

v = A cos λz + B sin λz − Vz

P
(iii)

When z = 0, v = 0 so that A = 0. Also when z = a, dv/dz = 0, hence

0 = λB cos λa − V

P

from which

B = V

λP cos λa

and Eq. (iii) becomes

v = V

P

(
sin λz

λ cos λa
− z

)

When z = a, v = vB =Vb/P from Eq. (i). Thus

Vb

P
= V

P

(
sin λa

λ cos λa
− a

)

from which

λ(a + b) = tan λa

S.8.11

The bending moment, M, at any section of the column is given by

M = PCRv = PCRk(lz − z2) (i)

Also

dv

dz
= k(l − 2z) (ii)

Substituting from Eqs (i) and (ii) in Eq. (8.47)

U + V = P2
CRk2

2E

{
1

I1

∫ a

0
(lz − z2)2dz + 1

I2

∫ l−a

a
(lz − z2)2dz + 1

I1

∫ l

l−a
(lz − z2)2dz

}

− PCRk2

2

∫ l

0
(l − 2z)2dz
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i.e.

U + V = P2
CRk2

2E

⎧
⎨

⎩
1

I1

[
l2z3

3
− lz4

2
+ z5

5

]a

0

+ 1

I2

[
l2z3

3
− lz4

2
+ z5

5

]l−a

a

+ 1

I1

[
l2z3

3
− lz4

2
+ l5

5

]l

l−a

⎫
⎬

⎭
− PCRk2

2

[
l2z − 2lz2 + 4z3

3

]l

0

i.e.

U + V = P2
CRk2

2EI2

{(
I2

I1
− 1

)[
l2a3

3
− la4

2
+ a5

5
− l2(l − a)3

3
+ l(l − a)4

2
− (l − a)5

5

]

+ I2

I1

l5

30

}

− PCRk2l3

6

From the principle of the stationary value of the total potential energy

∂(U + V )

∂k
= P2

CRk

EI2

{(
I2

I1
− 1

)[
l2a3

3
− la4

2
+ a5

5
− l2(l − a)3

3

+ l(l − a)4

2
− (l − a)5

5

]

+ I2

I1

l5

30

}

− PCRkl3

3
= 0

Hence

PCR = EI2l3

3

{(
I2

I1
− 1

)[
l2a3

3
− la4

2
+ a5

5
− l2(l − a)3

3

+ l(l − a)4

2
− (l − a)5

5

]

+ I2

I1

l5

30

}

(iii)

When I2 = 1.6I1 and a = 0.2l, Eq. (iii) becomes

PCR = 14.96EI1

l2 (iv)

Without the reinforcement

PCR = π2EI1

l2 (v)

Therefore, from Eqs (iv) and (v) the increase in strength is

EI1

l2 (14.96 − π2)
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Thus the percentage increase in strength is

[
EI

l2 (14.96 − π2)
/ l2

π2EI

]
× 100 = 52%

Since the radius of gyration of the cross-section of the column remains unchanged

I1 = A1r2 and I2 = A2r2

Hence

A2

A1
= I2

I1
= 1.6 (vi)

The original weight of the column is lA1ρ where ρ is the density of the material of the
column. Then, the increase in weight = 0.4lA1ρ + 0.6lA2ρ − lA1ρ = 0.6lρ(A2 − A1).

Substituting for A2 from Eq. (vi)

Increase in weight = 0.6lρ(1.6A1 − A1) = 0.36lA1ρ

i.e. an increase of 36%.

S.8.12

The equation for the deflected centre line of the column is

v = 4δ

l2 z2 (i)

in which δ is the deflection at the ends of the column relative to its centre and the origin
for z is at the centre of the column. Also, the second moment of area of its cross-section
varies, from the centre to its ends, in accordance with the relationship

I = I1

(
1 − 1.6

z

l

)
(ii)

At any section of the column the bending moment, M, is given by

M = PCR(δ − v) = PCRδ

(
1 − 4

z2

l2

)
(iii)

Also, from Eq. (i)

dv

dz
= 8δ

l2 z (iv)

Substituting in Eq. (8.47) for M, I and dv/dz

U + V = 2
∫ l/2

0

P2
CRδ2(1 − 4z2/l2)2

2EI1(1 − 1.6z/l)
dz − PCR

2
2
∫ l/2

0

64δ2

l4 z2dz
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or

U + V = P2
CRδ2

EI1l3

∫ l/2

0

(l2 − 4z2)2

(l − 1.6z)
dz − 64PCRδ2

l4

∫ l/2

0
z2dz (v)

Dividing the numerator by the denominator in the first integral in Eq. (v) gives

U + V = P2
CRδ2

EI1l3

[∫ l/2

0
(−10z3 − 6.25lz2 + 1.09l2z + 0.683l3)dz

+0.317l3
∫ l/2

0

dz

(1 − 1.6z/l)

]

− 64PCRδ2

l4

[
z3

3

]l/2

0

Hence

U + V = P2
CRδ2

EIl3

[
−10

z4

4
− 6.25l

z3

3
+ 1.09l2 z2

2
+ 0.683l3z

−0.317

1.6
l4 loge

(
1 − 1.6z

l

)]l/2

0
− 8PCRδ2

3l

i.e.

U + V = 0.3803P2
CRδ2l

EI1
− 8PCRδ2

3l

From the principle of the stationary value of the total potential energy

∂(U + V )

∂δ
= 0.7606P2

CRδl

EI1
− 16PCRδ

3l
= 0

Hence

PCR = 7.01EI1

l2

For a column of constant thickness and second moment of area I2,

PCR = π2EI2

l2 (see Eq. (8.5))

For the columns to have the same buckling load

π2EI2

l2 = 7.01EI1

l2

so that

I2 = 0.7I1

Thus, since the radii of gyration are the same

A2 = 0.7A1
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Therefore, the weight of the constant thickness column is equal to ρA2l = 0.7ρA1l.
The weight of the tapered column = ρ × average thickness × l = ρ ×0.6A1l.
Hence the saving in weight = 0.7ρA1l − 0.6ρA1l = 0.1ρA1l.
Expressed as a percentage

saving in weight = 0.1ρA1l

0.7ρA1l
× 100 = 14.3%

S.8.13

There are four boundary conditions to be satisfied, namely, v = 0 at z = 0 and z = l,
dv/dz = 0 at z = 0 and d2v/dz2 (i.e. bending moment) = 0 at z = l. Thus, since only
one arbitrary constant may be allowed for, there cannot be more than five terms in the
polynomial. Suppose

v = a0 + a1

(z

l

)
+ a2

(z

l

)2 + a3

(z

l

)3 + a4

(z

l

)4
(i)

Then, since v = 0 at z = 0, a0 = 0. Also, since dv/dz = 0 at z = 0, a1 = 0. Hence,
Eq. (i) becomes

v = a2

(z

l

)2 + a3

(z

l

)3 + a4

(z

l

)4
(ii)

When z = l, v = 0, thus

0 = a2 + a3 + a4 (iii)

When z = l, d2v/dz2 = 0, thus

0 = a2 + 3a3 + 6a4 (iv)

Subtracting Eq. (iv) from Eq. (ii)

0 = −2a3 − 5a4

from which a3 = −5a4/2.
Substituting for a3 in Eq. (iii) gives a4 = 2a2/3 so that a3 = −5a2/3. Eq. (ii) then

becomes

v = a2

(z

l

)2 − 5a2

3

(z

l

)3 + 2a2

3

(z

l

)4
(v)

Then

dv

dz
= 2a2

z

l
− 5a2

z2

l3 + 8a2

3

z3

l4 (vi)

and

d2v

dz2 = 2
a2

l
− 10a2

z

l3 + 8a2
z2

l4 (vii)
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The total strain energy of the column will be the sum of the strain energy due to
bending and the strain energy due to the resistance of the elastic foundation. For the
latter, consider an element, δz, of the column. The force on the element when subjected
to a small displacement, v, is kδzv. Thus, the strain energy of the element is 1

2 kv2δz and
the strain energy of the column due to the resistance of the elastic foundation is

∫ l

0

1

2
kv2dz

Substituting for v from Eq. (v)

U (elastic foundation) = 1

2
k

a2
2

l4

∫ l

0

(

z4 − 10z5

3l
+ 37z6

9l2 − 20z7

9l3 + 4z8

9l4

)

dz

i.e. U (elastic foundation) = 0.0017ka2
2l.

Now substituting for d2v/dz2 and dv/dz in Eq. (8.48) and adding U (elastic founda-
tion) gives

U + V =EI

2

∫ l

0

4a2
2

l4

(
1 − 10z

l
+ 33z2

l2 − 40z3

l3 + 16z4

l4

)
dz + 0.0017ka2

2l

− PCR

2

∫ l

0

a2
2

l4

(

4z2 − 20z3

l
+ 107z4

3l2 − 80z5

3l3 + 64z6

9l4

)

dz (viii)

Eq. (viii) simplifies to

U + V = 0.4EI

l3 a2
2 + 0.0017ka2

2l − 0.019a2
2PCR

l

From the principle of the stationary value of the total potential energy

∂(U + V )

∂a2
= 0.8EI

l3 a2 + 0.0034ka2l − 0.038a2PCR

l

whence

PCR = 21.05EI

l2 + 0.09kl2

S.8.14

The purely flexural instability load is given by Eq. (8.7) in which, from Table 8.1
le = 0.5l where l is the actual column length. Also it is clear that the least second moment
of area of the column cross-section occurs about an axis coincident with the web. Thus

I = 2 × 2tb3

12
= tb3

3
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Then

PCR = π2EI

(0.5l)2

i.e.

PCR = 4π2Etb3

3l2 (i)

The purely torsional buckling load is given by the last of Eqs (8.77), i.e.

PCR(θ) = A

I0

(
GJ + π2E�

l2

)
(ii)

In Eq. (ii) A = 5bt and

I0 = Ix + Iy = 2 × 2tb
b2

4
+ tb3

12
+ tb3

3

i.e.

I0 = 17tb3

12

Also, from Eq. (18.11)

J =
∑ st3

3
= 1

3
(2b8t3 + bt3) = 17bt3

3

and, referring to S.27.4

� = tb5

12

Then, from Eq. (ii)

PCR(θ) = 20

17b

(
17Gt3 + π2Etb4

l2

)
(iii)

Now equating Eqs (i) and (iii)

4π2Etb3

3l2 = 20

17b

(
17Gt3 + π2Etb4

l2

)

from which

l2 = 2π2Eb4

255Gt2

From Eq. (1.50), E/G = 2(1 + ν). Hence

l = 2πb2

t

√
1 + ν

255
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Eqs (i) and (iii) may be written, respectively, as

PCR = 1.33C1

l2

and

PCR(θ) = C2 + 1.175C1

l2

where C1 and C2 are constants. Thus, if l were less than the value found, the increase
in the last term in the expression for PCR(θ) would be less than the increase in the value
of PCR, i.e. PCR(θ) < PCR for a decrease in l and the column would fail in torsion.

S.8.15

In this case Eqs (8.77) do not apply since the ends of the column are not free to warp.
From Eq. (8.70) and since, for the cross-section of the column, xs = ys = 0,

E�
d4θ

dz4 +
(

I0
P

A
− GJ

)
d2θ

dz2 = 0 (i)

For buckling, P = PCR, the critical load and PCR/A = σCR, the critical stress. Eq. (i)
may then be written

d4θ

dz4 + λ2 d2θ

dz2 = 0 (ii)

in which

λ2 = (I0σCR − GJ)

E�
(iii)

The solution of Eq. (ii) is

θ = A cos λz + B sin λz + Dz + F (iv)

The boundary conditions are:

θ = 0 at z = 0 and z = 2l

dθ

dz
= 0 at z = 0 and z = 2l (see Eq. (18.19))

Then B = D = 0, F = −A and Eq. (iv) becomes

θ = A( cos λz − 1) (v)

Since θ = 0 when z = 2l

cos λ2l = 1

or

λ2l = 2nπ
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Hence, for n = 1

λ2 = π2

l2

i.e. from Eq. (iii)

I0σCR − GJ

E�
= π2

l2

so that

σCR = 1

I0

(
GJ + π2E�

l2

)
(vi)

For the cross-section of Fig. P.8.15

J =
∑ st3

3
(see Eq. (18.11))

i.e.

J = 8bt3

3
= 8 × 25.0 × 2.53

3
= 1041.7 mm4

and

Ixx = 4bt(b cos 30◦)2 + 2
(2b)3t sin2 60◦

12
(see Section 16.4.5)

i.e.

Ixx = 4b3t = 4 × 25.03 × 2.5 = 156 250.0 mm4

Similarly

Iyy = 4

(
bt3

12
+ btb2

)
+ 2

(2b)3t cos2 60◦

12
= 14b3t

3

so that

Iyy = 14 × 25.03 × 2.5/3 = 182 291.7 mm4

Then

I0 = Ixx + Iyy = 338 541.7 mm4

The torsion-bending constant, �, is found by the method described in Section 27.2 and
is given by

� = b5t = 25.05 × 2.5 = 24.4 × 106 mm4

Substituting these values in Eq. (vi) gives

σCR = 282.0 N/mm2
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S.8.16

The three possible buckling modes of the column are given by Eqs (8.77) i.e.

PCR(xx) = π2EIxx

L2 (i)

PCR(yy) = π2EIyy

L2 (ii)

PCR(θ) = A

I0

(
GJ + π2E�

L2

)
(iii)

From Fig. P.8.16 and taking the x axis parallel to the flanges

A = (2 × 20 + 40) × 1.5 = 120 mm2

Ixx = 2 × 20 × 1.5 × 202 + 1.5 × 403/12 = 3.2 × 104 mm4

Iyy = 1.5 × 403/12 = 0.8 × 104 mm4

I0 = Ixx + Iyy = 4.0 × 104 mm4

J = (20 + 40 + 20) × 1.53/3 = 90.0 mm4 (see Eq. (18.11))

� = 1.5 × 203 × 402

12

(
2 × 40 + 20

40 + 2 × 20

)

= 2.0 × 106 mm6 (see Eq. (ii) of Example 27.1)

Substituting the appropriate values in Eqs (i), (ii) and (iii) gives

PCR(xx) = 22 107.9 N

PCR(yy) = 5527.0 N

PCR(θ) = 10 895.2 N

Thus the column will buckle in bending about the y axis at a load of 5527.0 N.

S.8.17

The separate modes of buckling are obtained from Eqs (8.77), i.e.

PCR(xx) = PCR(yy) = π2EI

L2 (Ixx = Iyy = I , say) (i)

and

PCR(θ) = A

I0

(
GJ + π2E�

L2

)
(ii)
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In this case

Ixx = Iyy = πr3t = π × 403 × 2.0 = 4.02 × 105 mm4

A = 2πrt = 2π × 40 × 2.0 = 502.7 mm2

J = 2πrt3/3 = 2π × 40 × 2.03/3 = 670.2 mm4

From Eq. (8.68)

I0 = Ixx + Iyy + Ax2
s (note that ys = 0)

in which xs is the distance of the shear centre of the section from its vertical diameter;
it may be shown that xs = 80 mm (see S.17.3). Then

I0 = 2 × 4.02 × 105 + 502.7 × 802 = 4.02 × 106 mm4

The torsion-bending constant � is found in a similar manner to that for the section
shown in Fig. P.27.3 and is given by

� = πr5t

(
2

3
π2 − 4

)

i.e.

� = π × 405 × 2.0

(
2

3
π2 − 4

)
= 1.66 × 109 mm6

(a) PCR(xx) = PCR(yy) = π2 × 70 000 × 4.02 × 105

(3.0 × 103)2 = 3.09 × 104 N

(b) PCR(θ) = 502.7

4.02 × 106

(
22 000 × 670.2 + π2 × 70 000 × 1.66 × 109

(3.0 × 103)2

)

= 1.78 × 104 N

The flexural–torsional buckling load is obtained by expanding Eq. (8.79). Thus

(P − PCR(xx))(P − PCR(θ))I0/A − P2x2
s = 0

from which

P2(1 − Ax2
s /I0) − P(PCR(xx) + PCR(θ)) + PCR(xx)PCR(θ) = 0 (iii)

Substituting the appropriate values in Eq. (iii) gives

P2 − 24.39 × 104P + 27.54 × 108 = 0 (iv)

The solutions of Eq. (iv) are

P = 1.19 × 104 N or 23.21 × 104 N

Therefore, the least flexural–torsional buckling load is 1.19 × 104 N.
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Solutions to Chapter 9 Problems

S.9.1

Assuming that the elastic deflection, w, of the plate is of the same form as the initial
curvature, then

w = A sin
πx

a
sin

πy

a
Hence, from Eq. (7.36) in which m = n = 1, a = b and Nx = σt

w = δσt

(4π2D/a2) − σt
sin

πx

a
sin

πy

a
(i)

The deflection, wC, at the centre of the plate where x = a/2, y = a/2 is, from Eq. (i)

wC = δσt

(4π2D/a2) − σt
(ii)

When σt → 4π2D/a, w → ∞ and σt → Nx,CR, the buckling load of the plate. Eq. (ii)
may then be written

wC = δσt

Nx,CR − σt
= δσt/Nx,CR

1 − σt/Nx,CR

from which

wC = Nx,CR
wC

σt
− δ (iii)

Therefore, from Eq. (iii), a graph of wC against wC/σt will be a straight line of slope
Nx,CR and intercept δ, i.e. a Southwell plot.

S.9.2

The total potential energy of the plate is given by Eq. (9.1), i.e.

U + V = 1

2

∫ l

0

∫ b

0

[

D

{(
∂2w

∂x2 + ∂2w

∂y2

)2

− 2(1 − ν)

[
∂2w

∂x2

∂2w

∂y2 −
(

∂2w

∂x ∂y

)2
]}

− Nx

(
∂w

∂x

)2
]

dx dy (i)

in which

w = a11 sin
mπx

l
sin2 πy

b
(ii)

and

Nx = σt
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From Eq. (ii)

∂w

∂x
= a11

mπ

l
cos

mπx

l
sin2 πy

b

∂2w

∂x2 = −a11
m2π2

l2 sin
mπx

l
sin2 πy

b

∂2w

∂y2 = a11
2π2

b2 sin
mπx

l
cos

2πy

b

∂2w

∂x ∂y
= a11

mπ2

bl
cos

mπx

l
sin

2πy

b

Substituting these expressions in Eq. (i) and integrating gives

U + V = D

2
a2

11π
4
(

3m4b

16l3 + m3

2lb
+ l

b3

)
− 3σta2

11m2π2b

32l

The total potential energy of the plate has a stationary value in the neutral equilibrium
of its buckled state, i.e. when σ = σCR. Thus

∂(U + V )

∂a11
= Da11π

4
(

3m4b

16l3 + m2

2lb
+ l

b3

)
− 3σCRta11m2π2b

16l
= 0

whence

σCR = 16lπ2D

3tm2b

(
3m4b

16l3 + m2

2lb
+ l

b3

)
(iii)

When l = 2b, Eq. (iii) gives

σCR = 32π2D

3tb2

(
3m2

128
+ 1

4
+ 2

m2

)
(iv)

σCR will be a minimum when dσCR/dm = 0, i.e. when

6m

128
− 4

m3 = 0

or

m4 = 4 × 128

6

from which

m = 3.04

i.e.

m = 3
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Substituting this value of m in Eq. (iv)

σCR = 71.9D

tb2

whence

σCR = 6E

(1 − ν2)

(
t

b

)2

S.9.3

(a) The length, l, of the panel is appreciably greater than the dimension b so that failure
will occur due to buckling rather than yielding. The modes of buckling will then be
those described in Section 9.5.

(1) Buckling as a column of length l
Consider a stiffener and an associated portion of sheet as shown in Fig. S.9.3. The
critical stress, σCR, is given by Eq. (8.8), i.e.

σCR = π2E

(l/r)2 (i)

b

t

c
x

y

Centroid of
combined section

ys

ds

ts

Fig. S.9.3

In Eq. (i) r is the radius of gyration of the combined section. Thus, r = √
Ix/A, where

A and Ix are the cross-sectional area and the second moment of area of the combined
section respectively. From Fig. S.9.3

A = bt + ts(2d + c) = bt + As (ii)

Also

(bt + As)ȳ = Asys
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so that

ȳ = Asys

bt + As

Then

Ix = bt( ȳ)2 + 2dts
( c

2

)2 + tsc3

12
+ As(ȳ − ys)

2

or

Ix = bt(ȳ)2 + ts
c2

2

(
d + c

6

)
+ As(ȳ − ys)

2 (iii)

The radius of gyration follows from Eqs (ii) and (iii) and hence the critical stress from
Eq. (i).

(2) Buckling of the sheet between stiffeners
The sheet may buckle as a long plate of length, l, and width, b, which is simply supported
on all four edges. The buckling stress is then given by Eq. (9.7), i.e.

σCR = ηkπ2E

12(1 − ν2)

(
t

b

)2

(iv)

Since l is very much greater than b, k is equal to 4 (from Fig. 9.2). Therefore, assuming
that buckling takes place in the elastic range (η = 1), Eq. (iv) becomes

σCR = 4π2E

12(1 − ν2)

(
t

b

)2

(v)

(3) Buckling of stiffener flange
The stiffener flange may buckle as a long plate simply supported on three edges with
one edge free. In this case k = 0.43 (see Fig. 9.3(a)) and, assuming elastic buckling (i.e.
η = 1)

σCR = 0.43π2E

12(1 − ν2)

(
ts
ds

)2

(vi)

(b) A suitable test would be a panel buckling test.

S.9.4

(a) Consider, initially, the buckling of the panel as a pin-ended column. For a section
comprising a width of sheet and associated stiffener as shown in Fig. S.9.4,

A = 120 × 3 + 30 × 3.5 = 465 mm2

Then

465ȳ = 30 × 3.5 × 15 + 120 × 3 × 1.5
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x
y

120 mm

3 mm

3.5 mm

30 mm

Fig. S.9.4

i.e.

ȳ = 4.5 mm

Then

Ix = 120 × 3 × 4.52 + 120 × 33

12
+ 3.5 × 4.53

3
+ 3.5 × 25.53

3

i.e.

Ix = 27 011 mm4

Hence

r =
√

27 011

465
= 7.62 mm

From Eq. (8.8)

σCR = π2 × 70 000

(500/7.62)2

i.e.

σCR = 160.5 N/mm2

From Section 9.5 the equivalent skin thickness is

t̄ = 30 × 3.5

120
+ 3 = 3.875 mm

Overall buckling of the panel will occur when

Nx,CR = σCR t̄ = 160.5 × 3.875 = 621.9 N/mm (i)

Buckling of the sheet will occur when, from Eq. (9.6)

σCR = 3.62E

(
t

b

)2

= 3.62 × 70 000

(
3

120

)2

i.e.

σCR = 158.4 N/mm2
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Hence

Nx,CR = 158.4 × 3.875 = 613.8 N/mm (ii)

Buckling of the stiffener will occur when, from Eq. (9.6)

σCR = 0.385E

(
t

b

)2

= 0.385 × 70 000

(
3.5

30

)2

i.e.

σCR = 366.8 N/mm2

whence

Nx,CR = 366.8 × 3.875 = 1421.4 N/mm (iii)

By comparison of Eqs (i), (ii) and (iii) the onset of buckling will occur when

Nx,CR = 613.8 N/mm

(b) Since the stress in the sheet increases parabolically after reaching its critical value
then

σ = CN2
x (iv)

where C is some constant. From Eq. (iv)

σCR = CN2
x,CR (v)

so that, combining Eqs (iv) and (v)

σ

σCR
=
(

Nx

Nx,CR

)2

(vi)

Suppose that σ = σF, the failure stress, i.e. σF = 300 N/mm2. Then, from Eq. (vi)

Nx,F =
√

σF

σCR
Nx,CR

or

Nx,F =
√

300

158.4
× 613.8

i.e.

Nx,F = 844.7 N/mm
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S.9.5

The beam may be regarded as two cantilevers each of length 1.2 m, built-in at the mid-
span section and carrying loads at their free ends of 5 kN. The analysis of a complete
tension field beam in Section 9.7.1 therefore applies directly. From Eq. (9.29)

tan4 α = 1 + 1.5 × 350/2 × 300

1 + 1.5 × 300/280
= 0.7192

hence

α = 42.6◦

From Eq. (9.19)

FT = 5 × 1.2 × 103

350
+ 5

2 tan 42.6◦
i.e.

FT = 19.9 kN

From Eq. (9.23)

P = 5 × 300 tan 42.6◦

350

i.e.

P = 3.9 kN

S.9.6

(i)The shear stress buckling coefficient for the web is given as K = 7.70[1 + 0.75(b/d)2].
Thus Eq. (9.33) may be rewritten as

τCR = KE

(
t

b

)2

= 7.70

[

1 + 0.75

(
b

d

)2
]

E

(
t

b

)2

Hence

τCR = 7.70

[

1 + 0.75

(
250

725

)2
]

× 70 000

(
t

250

)2

i.e.

τCR = 9.39t2 (i)

The actual shear stress in the web, τ, is

τ = 100 000

750t
= 133.3

t
(ii)
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Two conditions occur, firstly

τ ≤ 165 N/mm2

so that, from Eq. (ii) t = 0.81 mm and secondly

τ ≤ 15τCR

so that, from Eqs (i) and (ii)

15 × 9.39t2 = 133.3

t

whence

t = 0.98 mm

Therefore, from the range of standard thicknesses

t = 1.2 mm

(ii) For t = 1.2 mm, τCR is obtained from Eq. (i) and is

τCR = 13.5 N/mm2

and, from Eq. (ii), τ = 111.1 N/mm2. Thus, τ/τCR = 8.23 and, from the table, the
diagonal tension factor, k, is equal to 0.41.

The stiffener end load follows from Eq. (9.35) and is

Qs = σsAs = Askτ tan α

(As/tb) + 0.5(1 − k)

i.e.

Qs = As × 0.41 × 111.1 tan 40◦

(As/1.2 × 250) + 0.5(1 − 0.41)
= 130As

1 + 0.0113As

The maximum secondary bending moment in the flanges is obtained from Eq. (9.25)
multiplied by k, thus

maximum secondary bending moment = kWb2 tan α

12d

i.e.

maximum secondary bending moment = 0.41 × 100 000 × 2502 × tan 40◦

12 × 750

= 238 910 N/mm
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S.9.7

Stringer local instability:
The buckling stress will be less for the 31.8 mm side than for the 19.0 mm side. Then,

from Eq. (9.6)

σCR = KE

(
t

b

)2

= 3.62 × 69 000

(
0.9

31.8

)2

i.e.

σCR = 200.1 N/mm2

Skin buckling:
Referring to Fig. P.9.7(a)

KE

(
t

b

)2

= 200.1

Then

b2 = 3.62 × 69 000 × 1.62

200.1
i.e.

b = 56.5 mm

Panel strut instability:
Consider stringer and skin as a strut. Add to stringer a length of skin equal to the

lesser of 30t or b.

b = 56.5 mm, 30t = 30 × 1.6 = 48.0 mm

The section is then as shown in Fig. S.9.7

48.0 mm

19.0 mm

1.6 mm

x

y

C

0.9 mm

9.5 mm
31.8 mm

y

Fig. S.9.7
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Taking moments of areas about the skin

[(19.0 + 2 × 31.8 + 2 × 9.5) × 0.9 + 48 × 1.6]ȳ = 19 × 0.9 × 31.8

+ 2 × 31.8 × 0.9 × 15.9

from which ȳ = 8.6 mm.
Then

Ixx = 19.0 × 0.9 × 23.22 + 2

(
0.9 × 31.83

12
+ 0.9 × 31.8 × 7.32

)

+ 2 × 9.5 × 0.9 × 8.62 + 48 × 1.6 × 8.62

i.e.

Ixx = 24 022.7 mm4

From Eq. (8.5)

σ = π2 × 69 000 × 24 022.7

168.2 L2

Therefore

L2 = π2 × 69 000 × 24 022.7

168.2 × 200.1

i.e.

L = 697 mm

say

L = 700 mm

Solutions to Chapter 10 Problems

S.10.1

Referring to Fig. S.10.1(a), with unit load at D (1), RC = 2. Then

M1 = 1z (0 ≤ z ≤ l)

M1 = 1z − RC(z − l) = 2l − z (l ≤ z ≤ 2l)

M1 = −1(z − 2l) (2l ≤ z ≤ 3l)

M2 = 0 (0 ≤ z ≤ 2l)

M2 = 1(z − 2l) (2l ≤ z ≤ 3l)

Hence, from the first of Eqs (5.21)

δ11 = 1

EI

∫ l

0
M2

1 dz + 1

EI

∫ 2l

l
M2

1 dz + 1

EI

∫ 3l

2l
M2

1 dz
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A B (2) C D (1)

l l

z

l

Fig. S.10.1(a)

Substituting for M1 from the above

δ11 = 1

EI

[∫ l

0
z2 dz +

∫ 2l

l
(2l − z)2 dz +

∫ 3l

2l
(z − 2l)2 dz

]

which gives

δ11 = l3

EI

Also

δ22 = 1

EI

∫ 3l

2l
(z − 2l)2 dz

from which

δ22 = l3

3EI

and

δ12 = δ21 = 1

EI

∫ 3l

2l
−(z − 2l)2 dz

i.e.

δ12 = δ21 = − l3

3EI

From Eqs (10.5) the equations of motion are

mv̈1δ11 + 2mv̈2δ12 + v1 = 0 (i)

mv̈1δ21 + 2mv̈2δ22 + v2 = 0 (ii)

Assuming simple harmonic motion, i.e. v = v0 sin ωt and substituting for δ11, δ12 and
δ22, Eqs (i) and (ii) become

−3λω2v1 + 2λω2v2 + v1 = 0

λω2v1 − 2λω2v2 + v2 = 0
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in which λ = ml3/3EI or, rearranging

(1 − 3λω2)v1 + 2λω2v2 = 0 (iii)

λω2v1 + (1 − 2λω2)v2 = 0 (iv)

From Eq. (10.7) and Eqs (iii) and (iv)

∣∣∣∣
(1 − 3λω2) 2λω2

λω2 (1 − 2λω2)

∣∣∣∣ = 0

from which

(1 − 3λω2)(1 − 2λω2) − 2(λω2)2 = 0

or

4(λω2)2 − 5λω2 + 1 = 0

i.e.

(4λω2 − 1)(λω2 − 1) = 0 (v)

Hence

λω2 = 1
4 or 1

so that

ω2 = 3EI

4ml3 or ω2 = 3EI

ml3

Hence

ω1 =
√

3EI

4ml3 ω2 =
√

3EI

ml3

The frequencies of vibration are then

f1 = ω1

2π
= 1

2π

√
3EI

4ml3 f2 = 1

2π

√
3EI

ml3

From Eq. (iii)

v1

v2
= − 2λω2

1 − 3λω2 (vi)

When ω = ω1, v1/v2 is negative and when ω = ω2, v1/v2 is positive. The modes of
vibration are therefore as shown in Fig. S.10.1(b) and (c).



Solution-1-H6739.tex 24/1/2007 9: 28 Page 154

154 Solutions Manual

= 1
2π

3EI
4ml 3

(b)

= 1
2π

3EI

(c)

f1 f2 ml 3

Fig. S.10.1(b) and (c)

S.10.2

Referring to Fig. S.10.2

1 2

4

3EI EI

EI

z

x

l

l

3

l

Fig. S.10.2

M2 = − 1
2 z (0 ≤ z ≤ l)

M2 = − 1
2 (2l − z) (l ≤ z ≤ 2l)

M2 = 0 (0 ≤ x ≤ l)

M4 = 1x (0 ≤ x ≤ l)

M4 = 1
2 z (0 ≤ z ≤ l)

M4 = − 1
2 (2l − z) (l ≤ z ≤ 2l)

Then from the first of Eqs (5.21)

δ22 = 1

3EI

∫ l

0

z2

4
dz + 1

EI

∫ 2l

l

(2l − z)2

4
dz

which gives

δ22 = l3

9EI
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Also

δ44 = 1

EI

∫ l

0
x2 dx + 1

3EI

∫ l

0

z2

4
dz + 1

EI

∫ 2l

l

(2l − z)2

4
dz

from which

δ44 = 4l3

9EI
and

δ42 = δ24 = − 1

3EI

∫ l

0

z2

4
dz + 1

EI

∫ 2l

l

(2l − z)2

4
dz

Thus

δ42 = δ24 = l3

18EI
From Eqs (10.5) the equations of motion are

mv̈4δ44 + 2mv̈2δ42 + v4 = 0 (i)

mv̈4δ24 + 2mv̈2δ22 + v2 = 0 (ii)

Assuming simple harmonic motion, i.e. v = v0 sin ωt and substituting for δ44, δ42 and
δ22, Eqs (i) and (ii) become

−8λω2v4 − 2λω2v2 + v4 = 0 (iii)

−λω2v4 − 4λω2v2 + v2 = 0 (iv)

in which λ = ml3/18EI. Then, from Eq. (10.7)
∣∣∣∣
(1 − 8λω2) −2λω2

−λω2 (1 − 4λω2)

∣∣∣∣ = 0

which gives

(1 − 8λω2)(1 − 4λω2) − 2(λω2)2 = 0

i.e.

30(λω2)2 − 12λω2 + 1 = 0 (v)

Solving Eq. (v)

λω2 = 0.118 or λω2 = 0.282

Hence

ω2 = 0.118 × 18EI

ml3 or ω2 = 0.282 × 18EI

ml3

Then, since f = ω/2π, the natural frequencies of vibration are

f1 = 1

2π

√
2.13EI

ml3 f2 = 1

2π

√
5.08EI

ml3
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S.10.3

The second moment of area, I , of the tube cross-section is given by

I = π

64
(D4 − d4)

in which D and d are the outer and inner diameters respectively. Now,

D = 25 + 1.25 = 26.25 mm d = 25 − 1.25 = 23.75 mm

Thus

I = π

64
(26.254 − 23.754) = 7689.1 mm4

The polar second moment of area, J , for a circular section is 2I , i.e. J = 15 378.2 mm4.
From Eqs (5.21)

δij =
∫

L

MiMj

EI
ds +

∫

L

TiTj

GJ
ds (i)

A

B

C (1,2)

2a

a
y

z

Fig. S.10.3(a)

Then, referring to Fig. S.10.3(a)

M1 = 1y (0 ≤ y ≤ a)

M1 = 1z (0 ≤ z ≤ 2a)

T1 = 0 (0 ≤ y ≤ a)

T1 = 1a (0 ≤ z ≤ 2a)

M2 = 1 (0 ≤ y ≤ a)

T2 = 1 (0 ≤ z ≤ 2a)

Thus, from Eq. (i)

δ11 =
∫ a

0

y2

EI
dy +

∫ 2a

0

z2

EI
dz +

∫ 2a

0

a2

GJ
dz
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which gives

δ11 = a3
(

3

EI
+ 2

GJ

)
= 2503

(
3

70 000 × 7689.1
+ 2

28 000 × 15 378.2

)

i.e.

δ11 = 0.16

Also

δ22 =
∫ a

0

12

EI
dy +

∫ 2a

0

12

GJ
dz

i.e.

δ22 = a

(
1

EI
+ 2

GJ

)
= 250

(
1

70 000 × 7689.1
+ 2

28 000 × 15 378.2

)

which gives

δ22 = 1.63 × 10−6

Finally

δ12 = δ21 =
∫ a

0

y

EI
dy +

∫ 2a

0

a

GJ
dz

so that

δ12 = δ21 = a2
(

1

2EI
+ 2

GJ

)
= 2502

(
1

2 × 70 000 × 7689.1
+ 2

28 000 × 15 378.2

)

Thus

δ12 = δ21 = 3.48 × 10−4

The equations of motion are then, from Eqs (10.5)

mv̈δ11 + mr2θ̈δ12 + v = 0 (ii)

mv̈δ21 + mr2θ̈δ22 + θ = 0 (iii)

Assuming simple harmonic motion, i.e. v = v0 sin ωt and θ = θ0 sin ωt, Eqs (i) and (ii)
may be written

−mδ11ω
2v − mr2δ12ω

2θ + v = 0

−mδ21ω
2v − mr2δ22ω

2θ + θ = 0

Substituting for m, r and δ11, etc.

−20 × 0.16ω2v − 20 × 62.52 × 3.48 × 10−4ω2θ + v = 0

−20 × 3.48 × 10−4ω2v − 20 × 62.52 × 1.63 × 10−6ω2θ + θ = 0



Solution-1-H6739.tex 24/1/2007 9: 28 Page 158

158 Solutions Manual

which simplify to

v(1 − 3.2ω2) − 27.2ω2θ = 0 (iv)

−0.007ω2v + θ(1 − 0.127ω2) = 0 (v)

Hence, from Eqs (10.7)

∣∣∣∣
(1 − 3.2ω2) −27.2ω2

−0.007ω2 (1 − 0.127ω2)

∣∣∣∣ = 0

which gives

(1 − 3.2ω2)(1 − 0.127ω2) − 0.19ω4 = 0

or

ω4 − 15.4ω2 + 4.63 = 0 (vi)

Solving Eq. (vi) gives

ω2 = 15.1 or 0.31

Hence the natural frequencies are

f = 0.62 Hz and 0.09 Hz

From Eq. (iv)

v

θ
= 27.2ω2

1 − 3.2ω2

Thus, when ω2 = 15.1, v/θ is negative and when ω2 = 0.31, v/θ is positive. The modes
of vibration are then as shown in Figs S.10.3(b) and (c).

(b)

ω2 � 15.1

(c)

ω2 � 0.31

Fig. S.10.3(b) and (c)
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S.10.4

Choosing the origin for z at the free end of the tube

M1 = z, S1 = 1 and T1 = 0
M2 = z, S2 = 1 and T2 = 2a

in which the point 1 is at the axis of the tube and point 2 at the free end of the rigid bar.
From Eqs (5.21) and (20.19)

δij =
∫ L

0

MiMj

EI
dz +

∫ L

0

TiTj

GJ
dz +

∫ L

0

(∮
qiqj

Gt
ds

)
dz (i)

in which qi and qj are obtained from Eq. (17.15) in which Sy,i = Sy, j = 1, Sx = 0 and
Ixy = 0. Thus

qi = qj = − 1

Ixx

∫ s

0
ty ds + qs,0

‘Cutting’ the tube at its lowest point in its vertical plane of symmetry gives qs,0 = 0.
Then, referring to Fig. S.10.4

0

a

y

x

θ

qi � qj

Fig. S.10.4

qi = qj = 1

Ixx

∫ θ

0
ta cos θa dθ

i.e.

qi = qj = a2t sin θ

Ixx

From Fig. 16.33, Ixx = πa3t. Hence qi = qj = sin θ/πa and

∮
qiqj

Gt
ds = 2

∫ π

0

sin2 θ

Gπ2a2t
a dθ = 1

Gπat
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Also in Eq. (i) the torsion constant J is obtained from Eq. (18.4), i.e.

J = 4A2
∮

ds/t
= 4(πa2)2

2πa/t
= 2πa3t

Therefore from Eq. (i)

δ11 =
∫ L

0

z2

EI
dz +

∫ L

0

1

Gπat
dz = L3

3EI
+ L

Gπat
(ii)

Putting λ = 3Ea2/GL2, Eq. (ii) becomes

δ11 = L3

3EI
(1 + λ)

Also

δ22 =
∫ L

0

z2

EI
dz +

∫ L

0

4a2

G2πa3t
dz +

∫ L

0

1

Gπat
dz

which gives

δ22 = L3

3EI
(1 + 3λ)

Finally

δ12 = δ21 =
∫ L

0

z2

EI
dz +

∫ L

0

1

Gπat
dz

i.e.

δ12 = δ21 = L3

3EI
(1 + λ)

From Eqs (10.5) the equations of motion are

mv̈1δ11 + mv̈2δ12 + v1 = 0 (iii)

mv̈1δ21 + mv̈2δ22 + v2 = 0 (iv)

Assuming simple harmonic motion, i.e. v = v0 sin ωt, Eqs (iii) and (iv) become

−mδ11ω
2v1 − mδ12ω

2v2 + v1 = 0

−mδ21ω
2v1 − mδ22ω

2v2 + v2 = 0

Substituting for δ11, δ22 and δ12 and writing µ = L3/3EI gives

v1[1 − mω2µ(1 + λ)] − mω2µ(1 + λ)v2 = 0

−mω2µ(1 + λ)v1 + v2[1 − mω2µ(1 + 3λ)] = 0
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Hence, from Eqs (10.7)
∣∣∣∣
[1 − mω2µ(1 + λ)] −mω2µ(1 + λ)

−mω2µ(1 + λ) [1 − mω2µ(1 + 3λ)]

∣∣∣∣ = 0

Then

[1 − mω2µ(1 + λ)][1 − mω2µ(1 + 3λ)] − m2ω4µ2(1 + λ)2 = 0

which simplifies to

1

ω4 − 1

ω2 2 mµ(1 + 2λ) + 2m2µ2λ(1 + λ) = 0

Solving gives

1

ω2 = mµ(1 + 2λ) ± mµ(1 + 2λ + 2λ2)1/2

i.e.

1

ω2 = mL3

3Eπa3t
[1 + 2λ ± (1 + 2λ + 2λ2)1/2]

S.10.5

Choosing the origin for z at the free end of the beam

M1 = z, S1 = 1

Also, from Eqs (5.21) and Eq. (20.19)

δij =
∫ L

0

MiMj

EI
dz +

∫ L

0

(∮
qiqj

Gt
ds

)
dz (i)

in which qi and qj are obtained from Eq. (20.11) and in which Sy,i = Sy, j = 1, Sx = 0,
Ixy = 0 and tD = 0. Thus

qi = qj = − 1

Ixx

n∑

r=1

Bryr + qs,0

where Ixx is given by (see Fig. S.10.5)

Ixx = 2 × 970 × 1002 + 2 × 970 × 1502 = 6.305 × 107 mm4

Thus

qb,i = qb, j = − 1

6.305 × 107

n∑

r=1

Bryr
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150 mm

1.25 mm

1.0 mm 1.0 mm

100 mm

600 mm

1

2

3

4

O
x

Fig. S.10.5

Hence, cutting the tube at O,

qb,O1 = 0

qb,12 = − 970 × 100

6.305 × 107 = −0.0015 N/mm

qb,23 = −0.0015 − 970 × 150

6.305 × 107 = −0.0038 N/mm

Then, from Eq. (17.27)

qs,0 = − 2

2(100/1.0 + 600/1.25 + 150/1.0)

(
−0.0015 × 600

1.25
− 0.0038 × 150

1.0

)

i.e.

qs,0 = 0.0018 N/mm

Therefore

qi,O1 = qj,O1 = 0.0018 N/mm

qi,12 = qj,12 = −0.0015 + 0.0018 = 0.0003 N/mm

qi,23 = qj,23 = −0.0038 + 0.0018 = −0.002 N/mm

Then
∮

qiqj

Gt
ds = 2

26 500

(
0.00182 × 100

1.0
+ 0.00032 × 600

1.25
+ 0.0022 × 150

1.0

)

= 7.3 × 10−8

Hence

δ11 =
∫ 1525

0

z2

EI
dz +

∫ 1525

0
7.3 × 10−8 dz
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i.e.

δ11 = 15253

3 × 70 000 × 6.305 × 107 + 7.3 × 10−8 × 1525 = 3.79 × 10−4

For flexural vibrations in a vertical plane the equation of motion is, from Eqs (10.5)

mv̈1δ11 + v1 = 0

Assuming simple harmonic motion, i.e. v = v0 sin ωt Eq. (ii) becomes

−mδ11ω
2v1 + v1 = 0

i.e.

ω2 = 1

mδ11
= 9.81 × 103

4450 × 3.79 × 10−4 = 5816.6

Hence

f = ω

2π
= 1

2π

√
5816.6 = 12.1 Hz

S.10.6

Assume a deflected shape given by

V = cos
2πz

l
− 1 (i)

where z is measured from the left-hand end of the beam. Eq. (i) satisfies the boundary
conditions of V = 0 at z = 0 and z = l and also dV /dz = 0 at z = 0 and z = l. From Eq. (i)

dV

dz
= −2π

l
sin

2πz

l

and

d2V

dz2 = −4π2

l2 cos
2πz

l

Substituting these expressions in Eq. (10.22)

ω2 =
2

[∫ l/4

0
4EI

(
4π2

l2

)2

cos2
(

2πz

l

)
dz +

∫ l/2

l/4
EI

(
4π2

l2

)2

cos2
(

2πz

l

)
dz

]

2

[∫ l/4

0
2m

(
cos

2πz

l
− 1

)2

dz +
∫ l/2

l/4
m

(
cos

2πz

l
− 1

)2

dz

]

+ 2
1

2
ml(−1)2 + 1

4
ml(2)2
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which simplifies to

ω2 =
EI

(
4π2

l2

)2
[∫ l/4

0
4 cos2

(
2πz

l

)
ds +

∫ l/2

l/4
cos2

(
2πz

l

)
dz

]

m

[∫ l/4

0
2

(
cos

2πz

l
− 1

)2

dz +
∫ l/2

l/4

(
cos

2πz

l
− 1

)2

dz + l

] (ii)

Now
∫ l/4

0
cos2 2πz

l
dz = 1

2

(
z + l

4π
sin

4πz

l

)l/4

0
= l

8

∫ l/2

l/4
cos2 2πz

l
dz = 1

2

(
z + l

4π
sin

4πz

l

)l/2

l/4
= l

8

∫ l/4

0

(
cos

2πz

l
− 1

)2

dz =
∫ l/4

0

[
1

2

(
1 + cos

4πz

l

)
− 2 cos

2πz

l
+ 1

]
dz

=
[

1

2

(
z + l

4π
sin

4πz

l

)
− l

π
sin

2πz

l
+ z

]l/4

0
= 3l

8
− l

π

Similarly
∫ l/2

l/4

(
cos

2πz

l
− 1

)2

dz = 3l

8
+ l

π

Substituting these values in Eq. (ii)

ω2 =
EI

(
4π2

l2

)2 (
4l

8
+ l

8

)

m

[
2

(
3l

8
− l

π

)
+ 3l

8
+ l

π
+ l

]

i.e.

ω2 = 539.2
EI

ml4

Then

f = ω

2π
= 3.7

√
EI

ml4

The accuracy of the solution may be improved by assuming a series for the deflected
shape, i.e.

V (z) =
n∑

s=1

BsVs(z) (Eq. (10.23))
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S.11.2

From Eq. (1.40) Young’s modulus E is equal to the slope of the stress–strain curve.
Then, since stress = load/area and strain = extension/original length.

E = slope of the load–extension curve multiplied by (original length/area of
cross-section).

From the results given the slope of the load–extension curve � 402.6 kN/mm. Then

E � 402.6 × 103 × 250
(

π × 252

4

) � 205 000 N/mm2

The modulus of rigidity is given by

G = TL

θJ

Therefore, the slope of the torque-angle of twist (in radians) graph multiplied by (L/J)
is equal to G. From the results given the slope of the torque-angle of twist graph
is �12.38 kNm/rad. Therefore

G � 12.38 × 106 × 250
(

π × 254

32

) � 80 700 N/mm2

Having obtained E and G the value of Poisson’s ratio may be found from Section
1.15, i.e.

ν =
(

E

2G

)
− 1 � 0.27

Finally, the bulk modulus K may be found using Eq. (1.54)

K � E

3(1 − 2ν)
� 148 500 N/mm2.

S.11.3

Suppose that the actual area of cross-section of the material is A and that the original
area of cross-section is Ao. Then, since the volume of the material does not change
during plastic deformation

AL = AoLo

where L and Lo are the actual and original lengths of the material, respectively. The
strain in the material is given by

ε = L − Lo

Lo
= Ao

A
− 1 (i)
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from the above. Suppose that the material is subjected to an applied load P. The actual
stress is then given by σ = P/A while the nominal stress is given by σnom = P/Ao.
Therefore, substituting in Eq. (i) for A/Ao

ε = σ

σnom
− 1

Then

σnom(1 + ε) = σ = Cεn

or

σnom = Cεn

1 + ε
(ii)

Differentiating Eq. (ii) with respect to ε and equating to zero gives

dσnom

dε
= nC(1 + ε)εn−1 − Cεn

(1 + ε)2 = 0

i.e.

n(1 + ε)εn−1 − εn = 0

Rearranging gives

ε = n

(1 − n)
.

S.11.4

Substituting in Eq. (11.1) from Table P.11.4

104

5 × 104 + 105

106 + 106

24 × 107 + 107

12 × 107 = 0.39 < 1

Therefore, fatigue failure is not probable.

Solutions to Chapter 12 Problems

S.12.3

From Example 12.1 and noting that there are two rivets/pitch in double shear

(b − 3) × 2.5 × 465 = 2 × 2 × π × 32

4
× 370

from which

b = 12 mm
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From Eq. (12.5)

η = 12 − 3

12
× 100 = 75%

S.12.4

The loading is equivalent to a shear load of 15 kN acting through the centroid of the
rivet group together with a clockwise moment of 15 × 50 = 750 kN mm.

The vertical shear load on each rivet is 15/9 = 1.67 kN.
From Example 12.2 the maximum shear load due to the moment will occur at rivets

3 and 9. Also

r (rivets 1, 3, 7, 9) = (252 + 252)1/2 = 35.4 mm

r (rivets 2, 4, 6, 8) = 25 mm

r (rivet 5) = 0

Then
∑

r2 = 4 × 35.42 + 4 × 252 = 7500

From Eq. (12.6)

Smax = 750

7500
× 35.4 = 3.54 kN

Therefore, the total maximum shear force on rivets 3 and 9 is given by (see
Example 12.2)

Smax (total) = (1.672 + 3.542 + 2 × 1.67 × 3.54 cos 45◦)1/2

i.e.

Smax (total) = 4.4 kN

Then

350 = 4.4 × 103

πd2/4

which gives

d = 4.0 mm

The plate thickness is given by

4.4 × 103

td
= 600

from which

t = 1.83 mm
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Solutions to Chapter 14 Problems

S.14.1

Suppose that the mass of the aircraft is m and its vertical deceleration is a. Then referring
to Fig. S.14.1(a) and resolving forces in a vertical direction

ma + 135 − 2 × 200 = 0

(a)

200 kN 200 kN

135 kN

ma

(b)

N

M

150 mm
200 kN

2.25 kN

mU.C a

Fig. S.14.1(a) and (b)

which gives

ma = 265 kN

Therefore

a = 265

m
= 265

135/g

i.e.

a = 1.96 g

Now consider the undercarriage shown in Fig. S.14.1(b) and suppose that its mass is
mU.C. Then resolving forces vertically

N + mU.Ca + 2.25 − 200 = 0 (i)

in which

mU.Ca = 2.25

g
× 1.96 g = 4.41 kN

Substituting in Eq. (i) gives

N = 193.3 kN

Now taking moments about the point of contact of the wheel and the ground

M + N × 0.15 = 0
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which gives

M = −29.0 kN m (i.e. clockwise)

The vertical distance, s, through which the aircraft moves before its vertical velocity
is zero, i.e. the shortening of the oleo strut, is obtained using elementary dynamics;
the compression of the tyre is neglected here but in practice could be significant. Thus,
assuming that the deceleration a remains constant

v2 = v2
0 + 2as

in which v0 = 3.5 m/s and v = 0. Then

s = − 3.52

2(−1.96 g)
= 3.52

2 × 1.96 × 9.81

i.e.

s = 0.32 m

Let the mass of the wing outboard of the section AA be mw. Then, referring to
Fig. S.14.1(c) and resolving forces vertically the shear force, S, at the section AA is
given by

S − mwa − 6.6 = 0

(c)

Fig. S.14.1(c)

i.e.

S − 6.6

g
× 1.96 g − 6.6 = 0

which gives

S = 19.5 kN

Now taking moments about the section AA

Mw − mwa × 3.05 − 6.6 × 3.05 = 0
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or

Mw = 6.6

g
× 1.96 g × 3.05 + 6.6 × 3.05

i.e.

Mw = 59.6 kNm

S.14.2

From Example 14.2 the time taken for the vertical velocity of the aircraft to become
zero is 0.099 s. During this time the aircraft moves through a vertical distance, s, which,
from elementary dynamics, is given by

s = v0t + 1
2 at2

where v0 = 3.7 m/s and a = −3.8 g (see Example 14.2). Then

s = 3.7 × 0.099 − 1
2 × 3.8 × 9.81 × 0.0992

i.e.

s = 0.184 m

The angle of rotation, θ1, during this time is given by

θ1 = ω0t + 1
2αt2

in which ω0 = 0 and α = 3.9 rad/s2 (from Example 14.2). Then

θ1 = 1
2 × 3.9 × 0.0992 = 0.019 rad

The vertical distance, s1, moved by the nose wheel during this rotation is, from Fig. 14.5

s1 = 0.019 × 5.0 = 0.095 m

Therefore the distance, s2, of the nose wheel from the ground after the vertical velocity
at the CG of the aircraft has become zero is given by

s2 = 1.0 − 0.184 − 0.095

i.e.

s2 = 0.721 m

It follows that the aircraft must rotate through a further angle θ2 for the nose wheel to
hit the ground where

θ2 = 0.721

5.0
= 0.144 rad

During the time taken for the vertical velocity of the aircraft to become zero the vertical
ground reactions at the main undercarriage will decrease from 1200 to 250 kN and,
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assuming the same ratio, the horizontal ground reaction will decrease from 400 kN to
(250/1200) × 400 = 83.3 kN. Therefore, from Eqs (ii) and (iii) of Example 14.2, the
angular acceleration of the aircraft when the vertical velocity of its CG becomes zero is

α1 = 250

1200
× 3.9 = 0.81 rad/s2

Thus the angular velocity, ω1, of the aircraft at the instant the nose wheel hits the ground
is given by

ω2
1 = ω2

0 + 2α1θ2

where ω0 = 0.39 rad/s (see Example 14.2). Then

ω2
1 = 0.392 + 2 × 0.81 × 0.144

which gives

ω1 = 0.62 rad/s

The vertical velocity, vNW, of the nose wheel is then

vNW = 0.62 × 5.0

i.e.

vNW = 3.1 m/s

S.14.3

With the usual notation the loads acting on the aircraft at the bottom of a symmetric
manoeuvre are shown in Fig. S.14.3.

CGAC

16.7 m0.915 m

D

PL

T

nW
M0

Fig. S.14.3

Taking moments about the CG

0.915L − M0 = 16.7P (i)

and for vertical equilibrium

L + P = nW (ii)
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Further, the bending moment in the fuselage at the CG is given by

MCG = nMLEV.FLT − 16.7P (iii)

Also

M0 = 1
2 pV2Sc̄CM0 = 1

2 × 1.223 × 27.5 × 3.052 × 0.0638V2

i.e.

M0 = 9.98V2 (iv)

From Eqs (i) and (iii)

0.915(nW − P) − M0 = 16.7P

Substituting for M0 from Eq. (iv) and rearranging

P = 0.052nW − 0.567V2 (v)

In cruise conditions where, from Fig. P.14.3, n = 1 and V = 152.5 m/s, P, from Eq. (v)
is given by

P = −2994.3 N

Then, from Eq. (iii) when n = 1

600 000 = MLEV.FLT + 16.7 × 2994.3

which gives

MLEV.FLT = 549 995 Nm

Now, from Eqs (iii) and (v)

MCG = 549 995n − 16.7(0.052nW − 0.567V2)

or

MCG = 379 789n + 9.47V2 (vi)

From Eq. (vi) and Fig. P.14.3 it can be seen that the most critical cases are n = 3.5,
V = 152.5 m/s and n = 2.5, V = 183 m/s. For the former Eq. (vi) gives

MCG = 1 549 500 Nm

and for the latter

MCG = 1 266 600 Nm

Therefore the maximum bending moment is 1 549 500 Nm at n = 3.5 and V =
152.5 m/s.
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S.14.4

With the usual notation the loads acting on the aeroplane are shown in Fig. S.14.4; 	P
is the additional tail load required to check the angular velocity in pitch. Then

	P × 12.2 = 204 000 × 0.25

D

V W

L

40°CG

12.2 m

gR

MCG

WV 2

P � �P

Fig. S.14.4

i.e.

	P = 4180 N

Now resolving perpendicularly to the flight path

L + (P + 	P) = WV2

gR
+ W cos 40◦ (i)

Then resolving parallel to the flight path

fW + W sin 40◦ = D (ii)

where f is the forward inertia coefficient, and taking moments about the CG

(P + 	P) × 12.2 = MCG (iii)

Assume initially that

L = W cos 40◦ + WV2

gR

i.e.

L = 230 000 cos 40◦ + 238 000 × 2152/(9.81 × 1525)
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which gives

L = 917 704 N

Then

CL = L
1
2ρV2S

= 917 704
1
2 × 1.223 × (215)2 × 88.5

= 0.367

and

MCG = 1
2ρV2S(0.427CL − 0.061)

i.e.

MCG = 1
2 × 1.223 × 2152 × 88.5(0.427 × 0.367 − 0.061)

from which

MCG = 239 425 Nm

Then, from Eq. (iii)

P + 	P = 239 425

12.2
i.e.

P + 	P = 19 625 N

Thus, a more accurate value for L is

L = 917 704 − 19 625 = 898 079 N

which then gives

CL = 898 079
1
2 × 1.223 × 2152 × 88.5

= 0.359

Hence

MCG = 1
2 × 1.223 × 2152 × 88.5(0.427 × 0.359 − 0.061)

i.e.

MCG = 230 880 Nm

and, from Eq. (iii)

P + 	P = 18 925 N

Then

L = 917 704 − 18 925 = 898 779 N

so that

n = 898 779

238 000
= 3.78
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At the tail

	n = θ̈l

g
= 230 880

204 000
× 12.2

9.81
= 1.41

Thus the total n at the tail = 3.78 + 1.41 = 5.19.

Now

CD = 0.0075 + 0.045 ×
(

898 779
1
2ρV2S

)2

+ 0.0128

i.e.

CD = 0.026

so that

D = 1
2ρV2S × 0.026 = 65 041 N

Thus, from Eq. (ii)

f = −0.370

S.14.5

From Eq. (14.21) φ, in Fig. 14.10, is given by

tan φ = V2

gR
= 1682

9.81 × 610
= 4.72

so that

φ = 78.03◦

From Eq. (14.20)

n = sec φ = 4.82

Thus, the lift generated in the turn is given by

L = nW = 4.82 × 133 500 = 643 470 N

Then

CL = L
1
2ρV2S

= 643 470
1
2 × 1.223 × 1682 × 46.5

= 0.80

Hence

CD = 0.01 + 0.05 × 0.802 = 0.042

and the drag

D = 1
2 × 1.223 × 1682 × 46.5 × 0.042 = 33 707 N
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The pitching moment M0 is given by

M0 = 1
2ρV2Sc̄CM,0 = − 1

2 × 1.223 × 1682 × 46.5 × 3.0 × 0.03

i.e.

M0 = −72 229 Nm (i.e nose down)

The wing incidence is given by

α = CL

dCL/dα
= 0.80

4.5
× 180

π
= 10.2◦

The loads acting on the aircraft are now as shown in Fig. S.14.5.

CG

10.2°

0.915 m

0.45 m

7.625 m

AC

P

D
W

L
T

M0

Fig. S.14.5

Taking moments about the CG

L(0.915 cos 10.2◦ + 0.45 sin 10.2◦) − D(0.45 cos 10.2◦ − 0.915 sin 10.2◦) − M0

= P × 7.625 cos 10.2◦ (i)

Substituting the values of L, D and M0 in Eq. (i) gives

P = 73 160 N

S.14.6

(a) The forces acting on the aircraft in the pull-out are shown in Fig. S.14.6. Resolving
forces perpendicularly to the flight path

L = WV2

gR
+ W cos θ (i)

The maximum allowable lift is 4.0W so that Eq. (i) becomes

V2

gR
= 4 − cos θ
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gR

L

V

W

CG

WV
2

u

u

Fig. S.14.6

or
Vω

g
= 4 − cos θ (ii)

where ω (= V/R) is the angular velocity in pitch. In Eq. (ii) ω will be a maximum when
cos θ is a minimum, i.e. when θ reaches its maximum allowable value (60◦). Then,
from Eq. (ii)

ω = g

V
(4 − 0.5) = 3.5 g

V
(iii)

From Eq. (iii) ω will be a maximum when V is a minimum which occurs when
CL = CL.MAX. Thus

1
2ρV2SCL.MAX = 4 × 1

2ρV2
s SCL.MAX

whence

V = 2Vs = 2 × 46.5 = 93.0 m/s

Therefore, from Eq. (iii)

ωmax = 3.5 × 9.81

93.0
= 0.37 rad/s

(b) Referring to Fig. 14.10, Eq. (14.17) gives

nW sin φ = WV2

gR

i.e.

4 sin φ = Vω

g
(iv)

Also, from Eq. (14.20) sec φ = 4 whence sin φ = 0.9375. Then Eq. (iv) becomes

ω = 3.87
g

V
(v)
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Thus, ω is a maximum when V is a minimum, i.e. when V = 2Vs as in (a). Therefore

ωmax = 3.87 × 9.81

2 × 46.5
= 0.41 rad/s

The maximum rate of yaw is ωmax cos φ, i.e.

maximum rate of yaw = 0.103 rad/s

S.14.7

The forces acting on the airliner are shown in Fig. S.14.7 where αw is the wing incidence.
As a first approximation let L = W . Then

1

2
ρV2Sαw

∂CL

∂α
= 1 600 000

Fig. S.14.7

i.e.

αw = 1 600 000 × 180
1
2 × 0.116 × 6102 × 280 × 1.5 × π

so that

αw = 10.1◦

From vertical equilibrium

L + P = W (i)

and taking moments about the CG.

P × 42.5 cos 10.1◦ = L × 7.5 cos 10.1◦ + M0 (ii)

Substituting for L from Eq. (i) in Eq. (ii)

P × 42.5 cos 10.1◦ = (1 600 000 − P)7.5 cos 10.1◦

+ 1
2 × 0.116 × 6102 × 280 × 22.8 × 0.01
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from which

P = 267 963 N

Thus, from Eq. (i)

L = 1 332 037 N

giving

αw = 8.4◦

Then, taking moments about the CG

P × 42.5 cos 8.4◦ = (1 600 000 − P)7.5 cos 8.4◦ + 1
2

× 0.116 × 6102 × 280 × 22.8 × 0.01

which gives

P = 267 852 N

This is sufficiently close to the previous value of tail load to make a second approxi-
mation unnecessary.

The change 	α in wing incidence due to the gust is given by

	α = 18

610
= 0.03 rad

Thus the change 	P in the tail load is

	P = 1

2
ρV2ST

∂CL.T

∂α
	α

i.e.

	P = 1
2 × 0.116 × 6102 × 28 × 2.0 × 0.03 = 36 257 N

Also, neglecting downwash effects, the change 	L in wing lift is

	L = 1

2
ρV2S

∂CL

∂α
	α

i.e.

	L = 1
2 × 0.116 × 6102 × 280 × 1.5 × 0.03 = 271 931 N

The resultant load factor, n, is then given by

n = 1 + 36 257 + 271 931

1 600 000

i.e.

n = 1.19
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S.14.8

As a first approximation let L = W . Then

1

2
ρV2S

dCL

dα
αw = 145 000

Thus

αw = 145 000
1

2
× 1.223 × 2502 × 50 × 4.8

= 0.0158 rad = 0.91◦

Also

CD = 0.021 + 0.041 × 0.082

i.e.

CD = 0.0213

Referring to Fig. P.14.8 and taking moments about the CG and noting that cos 0.91◦ � 1

L × 0.5 − D × 0.4 + M0 = P × 8.5

i.e.

0.5(145 000 − P) − 0.4 × 1

2
ρV2SCD + 1

2
ρV2Sc̄CM,0 = 8.5P

Thus

0.5(145 000 − P) − 0.4 × 1

2
× 1.223 × 2502 × 50 × 0.0213 − 1

2

× 1.223 × 2502 × 50 × 2.5 × 0.032 = 8

which gives

P = −10 740 N

Hence

L = W − P = 145 000 + 10 740 = 155 740 N

The change 	P in the tail load due to the gust is given by

	P = 1

2
ρV2ST

∂CL.T

∂α
	α

in which

	α = − 6

250
= −0.024 rad

Thus

	P = −1

2
× 1.223 × 2502 × 9.0 × 2.2 × 0.024 = −18 162 N

Therefore the total tail load = −10 740 − 18 162 = −28 902 N.
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The increase in wing lift 	L due to the gust is given by

	L = −1

2
ρV2S

∂CL

∂α
	α = −1

2
× 1.223 × 2502 × 50 × 4.8 × 0.024

i.e.

	L = −220 140 N

Hence

n = 1 − (220 140 + 18 162)

145 000
= −0.64

Finally the forward inertia force fW is given by

f W = D = 1
2ρV2SCD = 1

2 × 1.223 × 2502 × 50 × 0.0213

i.e.

f W = 40 703 N

Solutions to Chapter 15 Problems

S.15.1

Substituting the given values in Eq. (15.3)

Sa = 2 × 230

(
1 − Sa

2 × 870

)

from which

Sa = 363 N/mm2

S.15.2

From Eq. (15.4)

Sa = 2 × 230

[

1 −
(

Sa

2 × 870

)2
]

i.e.

Sa = 460 − 1.519 × 10−4S2
a

or

S2
a + 6581.7Sa − 3 027 600 = 0

Solving,

Sa = 432 N/mm2.
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S.15.3

From Eq. (15.5) and supposing that the component fails after N sequences of the three
stages

N

(
200

104 + 200

105
+ 600

2 × 105

)
= 1

which gives

N = 40

The total number of cycles/sequence is 1000 so that at 100 cycles/day the life of the
component is

40 × 1000

100
= 400 days.

S.15.4

From Eq. (15.30)

3320 = S(π × 2.0)½ × 1.0

which gives

S = 1324 N/mm2.

S.15.5

From Eq. (15.30)

K = S(πaf )½ × 1.12

so that

af = 18002

π × 1802 × 1.122

i.e.

af = 25.4 mm

Now from Eq. (15.44)

Nf = 1

30 × 10−15(180 × π½)4

(
1

0.4
− 1

25.4

)

i.e.

Nf = 7916 cycles.
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S.15.6

From Eq. (15.26)

Dg = F(Ve)5.26

so that

Dg(200) = F(200)5.26 = 1.269F

Dg(220) = F(220)5.26 = 2.095F

Then
Dg(220)

Dg(200)
= 2.095F

1.269F
= 1.65

i.e.

Increase = 65%.

S.15.7

From Eq. (15.26)

Dg(240) = F(240)5.26 = 3.31 × 1012F

Dg(235) = F(235)5.26 = 2.96 × 1012F

Then, since

Dgag = 0.1DTOT

DTOT(240) = 0.1DTOT + 3.31 × 1012F

and

DTOT(235) = 0.1DTOT + 2.96 × 1012F

Therefore

0.9DTOT(240) = 3.31 × 1012F

DTOT(240) = 3.68 × 1012F

Similarly

DTOT(235) = 3.29 × 1012F

Then, the increase in flights = 3.68 × 1012F

3.29 × 1012F
= 1.12

i.e. a 12% increase.
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Solutions to Chapter 16 Problems

S.16.1

From Section 16.2.2 the components of the bending moment about the x and y axes
are, respectively

Mx = 3000 × 103 cos 30◦ = 2.6 × 106 N mm

My = 3000 × 103 sin 30◦ = 1.5 × 106 N mm

The direct stress distribution is given by Eq. (16.18) so that, initially, the position of
the centroid of area, C, must be found. Referring to Fig. S.16.1 and taking moments of
area about the edge BC

(100 × 10 + 115 × 10) x̄ = 100 × 10 × 50 + 115 × 10 × 5

i.e.

x̄ = 25.9 mm

C

E

B

DC

A

F

x

y

100 mm

125 mm

30°

x

y

10 mm

10 mm

Fig. S.16.1

Now taking moments of area about AB

(100 × 10 + 115 × 10) ȳ = 100 × 10 × 5 + 115 × 10 × 67.5

from which

ȳ = 38.4 mm
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The second moments of area are then

Ixx = 100 × 103

12
+ 100 × 10 × 33.42 + 10 × 1153

12
+ 10 × 115 × 29.12

= 3.37 × 106 mm4

Iyy = 10 × 1003

12
+ 10 × 100 × 24.12 + 115 × 103

12
+ 115 × 10 × 20.92

= 1.93 × 106 mm4

Ixy = 100 × 10 × 33.4 × 24.1 + 115 × 10(−20.9)(−29.1)

= 1.50 × 106 mm4

Substituting for Mx, My, Ixx, Iyy and Ixy in Eq. (16.18) gives

σz = 0.27x + 0.65y (i)

Since the coefficients of x and y in Eq. (i) have the same sign the maximum value of
direct stress will occur in either the first or third quadrants. Then

σz(A) = 0.27 × 74.1 + 0.65 × 38.4 = 45.0 N/mm2 (tension)

σz(C) = 0.27 × (−25.9) + 0.65 × (−86.6) = −63.3 N/mm2 (compression)

The maximum direct stress therefore occurs at C and is 63.3 N/mm2 compression.

S.16.2

The bending moments half-way along the beam are

Mx = −800 × 1000 = −800 000 N mm My = 400 × 1000 = 400 000 N mm

By inspection the centroid of area (Fig. S.16.2) is midway between the flanges. Its
distance x̄ from the vertical web is given by

(40 × 2 + 100 × 2 + 80 × 1) x̄ = 40 × 2 × 20 + 80 × 1 × 40

i.e.

x̄ = 13.33 mm

The second moments of area of the cross-section are calculated using the approxima-
tions for thin-walled sections described in Section 16.4.5. Then

Ixx = 40 × 2 × 502 + 80 × 1 × 502 + 2 × 1003

12
= 5.67 × 105 mm4

Iyy = 100 × 2 × 13.332 + 2 × 403

12
+ 2 × 40 × 6.672 + 1 × 803

12

+ 1 × 80 × 26.672

= 1.49 × 105 mm4

Ixy = 40 × 2(6.67)(50) + 80 × 1(26.67)(−50) = −0.8 × 105 mm4
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40 mm

2.0 mm

2.0 mm

y

100 mm

1.0 mm

80 mm

y

xC

x

Fig. S.16.2

The denominator in Eq. (16.18) is then (5.67 × 1.49 − 0.82) × 1010 = 7.81 × 1010.
From Eq. (16.18)

σ =
(

400 000 × 5.67 × 105 − 800 000 × 0.8 × 105

7.81 × 1010

)

x

+
(

−800 000 × 1.49 × 105 + 400 000 × 0.8 × 105

7.81 × 1010

)

y

i.e.

σ = 2.08x − 1.12y

and at the point A where x = 66.67 mm, y = −50 mm

σ(A) = 194.7 N/mm2 (tension)

S.16.3

Initially, the section properties are determined. By inspection the centroid of area, C,
is a horizontal distance 2a from the point 2. Now referring to Fig. S.16.3 and taking
moments of area about the flange 23

(5a + 4a)tȳ = 5at(3a/2)

from which

ȳ = 5a/6
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1

2 3

C
t

t

y

x

5a

4a

3a

y

Fig. S.16.3

From Section 16.4.5

Ixx = 4at(5a/6)2 + (5a)3t(3/5)2/12 + 5at(2a/3)2 = 105a3t/12

Iyy = t(4a)3/12 + (5a)3t(4/5)2/12 = 12a3t

Ixy = t(5a)3(3/5) (4/5)/12 = 5a3t

From Fig. P.16.3 the maximum bending moment occurs at the mid-span section in a
horizontal plane about the y axis. Thus

Mx = 0 My(max) = wl2/8

Substituting these values and the values of Ixx, Iyy and Ixy in Eq. (16.18)

σz = wl2

8a3t

(
7

64
x − 1

16
y

)
(i)

From Eq. (i) it can be seen that σz varies linearly along each flange. Thus

At 1 where x = 2a y = 13a

6
σz,1 = wl2

96a2t

At 2 where x = −2a y = −5a

6
σz,2 = −wl2

48a2t

At 3 where x = 2a y = −5a

6
σz,3 = 13wl2

384a2t

Therefore, the maximum stress occurs at 3 and is 13wl2/384a2t.
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S.16.4

Referring to Fig. S.16.4.

A

B

D

W

1

2

4

l/2

l/2

z

2W

3

Fig. S.16.4

In DB

Mx = −W (l − z) (i)

My = 0

In BA

Mx = −W (l − z) (ii)

My = −2W

(
l

2
− z

)
(iii)

Now referring to Fig. P.16.4 the centroid of area, C, of the beam cross-section is at the
centre of antisymmetry. Then

Ixx = 2

[

td

(
d

2

)2

+ td3

12

]

= 2td3

3

Iyy = 2

[

td

(
d

4

)2

+ td3

12
+ td

(
d

4

)2
]

= 5td3

12

Ixy = td

(
d

4

) (
d

2

)
+ td

(
−d

4

) (
−d

2

)
= td3

4

Substituting for Ixx, Iyy and Ixy in Eq. (16.18) gives

σz = 1

td3 [(3.10My − 1.16Mx)x + (1.94Mx − 1.16My)y] (iv)
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Along the edge l, x = 3d/4, y = d/2. Equation (iv) then becomes

σz,1 = 1

td2 (1.75My + 0.1Mx) (v)

Along the edge 2, x = −d/4, y = d/2. Equation (iv) then becomes

σz,2 = 1

td2 (−1.36My + 1.26Mx) (vi)

From Eqs (i)–(iii), (v) and (vi)
In DB

σz,1 = −0.1W

td2 (1 − z) whence σz,1(B) = −0.05Wl

td2

σz,2 = −1.26W

td2 (1 − z) whence σz,2(B) = −0.63Wl

td2

In BA

σz,1 = W

td2 (3.6z − 1.85l) whence σz,1(A) = −1.85Wl

td2

σz,2 = W

td2 (−1.46z + 0.1l) whence σz,2(A) = 0.1Wl

td2

S.16.5

By inspection the centroid of the section is at the mid-point of the web. Then

Ixx =
(

h

2

)
(2t)h2 + ht h2 + 2t(2h)3

12
= 10h3t

3

Iyy = 2t(h/2)3

3
+ th3

3
= 5h3t

12

Ixy = 2t

(
h

2

) (
−h

4

)
(h) + ht

(
h

2

)
(−h) = −3h3t

4

Since My = 0, Eq. (16.18) reduces to

σz = −MxIxy

IxxIyy − I2
xy

x + MxIyy

IxxIyy − I2
xy

y (i)

Substituting in Eq. (i) for Ixx, etc.

σz = +Mx

h3t

[
3/4

(10/3)(5/12) − (3/4)2 x + 5/12

(10/3)(5/12) − (3/4)2 y

]

i.e. σz = Mx

h3t
(0.91x + 0.50y) (ii)
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x

h

t

2t

y

2t
34

l

h

2

C

h

h
2

Fig. S.16.5

Between 1 and 2, y = −h and σz is linear. Then

σz,1 = Mx

h3t
(0.91 × h − 0.5h) = 0.41

h2t
Mx

σz,2 = Mx

h3t
(0.91 × 0 − 0.5h) = −0.5

h2t
Mx

Between 2 and 3, x = 0 and σz is linear. Then

σz,2 = −0.5

h2t
Mx

σz,3 = Mx

h3t
(0.91 × 0 + 0.5h) = 0.5

h2t
Mx

σz,4 = Mx

h3t

(
−0.91 × h

2
+ 0.5h

)
= 0.04

h2t
Mx

S.16.6

The centroid of the section is at the centre of the inclined web. Then,

Ixx = 2 ta(a sin 60◦)2 + t(2a)3 sin2 60◦

12
= 2a3t

Iyy = 2 × ta3

12
+ t(2a)3 cos2 60◦

12
= a3t

3

Ixy = t(2a)3 sin 60◦ cos 60◦

12
=

√
3a3t

6
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x

t
y

C

2

l

a

A

N

60°

α

Fig. S.16.6

Substituting in Eq. (16.18) and simplifying (My = 0)

σz = Mx

a3t

(
4

7
y − 2

√
3

7
x

)

(i)

On the neutral axis, σz = 0. Therefore, from Eq. (i)

y =
√

3

2
x

and

tan α =
√

3

2
so that

α = 40.9◦
The greatest stress will occur at points furthest from the neutral axis, i.e. at points 1
and 2. Then, from Eq. (i) at 1,

σz,max = Mx

a3t

(
4

7
× a

√
3

2
+ 2

√
3

7
× a

2

)

i.e. σz,max = 3
√

3Mx

7a2t
= 0.74

ta2 Mx

S.16.7

Referring to Fig. P.16.7, at the built-in end of the beam

Mx = 50 × 100 − 50 × 200 = −5000 N mm

My = 80 × 200 = 16 000 N mm
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and at the half-way section

Mx = −50 × 100 = −5000 N mm

My = 80 × 100 = 8000 N mm

1

2 3

24 mm

36 mm

1.25 mm

1.25 mm

C

y

y

x

x

Fig. S.16.7

Now referring to Fig. S.16.7 and taking moments of areas about 12

(24 × 1.25 + 36 × 1.25) x̄ = 36 × 1.25 × 18

which gives

x̄ = 10.8 mm

Taking moments of areas about 23

(24 × 1.25 + 36 × 1.25) ȳ = 24 × 1.25 × 12

which gives

ȳ = 4.8 mm

Then

Ixx = 1.25 × 243

12
+ 1.25 × 24 × 7.22 + 1.25 × 36 × 4.82 = 4032 mm4

Iyy = 1.25 × 24 × 10.82 + 1.25 × 363

12
+ 1.25 × 36 × 7.22 = 10 692 mm4

Ixy = 1.25 × 24 × (−10.8)(7.2) + 1.25 × 36 × (7.2)(−4.8) = −3888 mm4

Substituting for Ixx, Iyy and Ixy in Eq. (16.18) gives

σz = (1.44My + 1.39Mx) × 10−4x + (3.82Mx + 1.39My) × 10−4y (i)

Thus, at the built-in end Eq. (i) becomes

σz = 1.61x + 0.31y (ii)
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whence σz,1 = −11.4 N/mm2, σz,2 = −18.9 N/mm2, σz,3 = 39.1 N/mm2. At the half-
way section Eq. (i) becomes

σz = 0.46x − 0.80y (iii)

whence σz,1 = −20.3 N/mm2, σz,2 = −1.1 N/mm2, σz,3 = −15.4 N/mm2.

S.16.8

The section properties are, from Fig. S.16.8

Ixx = 2
∫ π

0
t(r − r cos θ)2r dθ = 3πtr3

Iyy = 2
∫ π

0
t(r sin θ)2r dθ = πtr3

Ixy = 2
∫ π

0
t(−r sin θ)(r − r cos θ)r dθ = −4tr3

N

A

B

C

D

y

x

r

t

r

α

θ

Fig. S.16.8

Since My = 0, Eq. (16.22) reduces to

tan α = − Ixy

Iyy
= 4tr3

πtr3

i.e.

α = 51.9◦
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Substituting for Mx = 3.5 × 103 N mm and My = 0, Eq. (16.18) becomes

σz = 103

tr3 (1.029x + 0.808y) (i)

The maximum value of direct stress will occur at a point a perpendicular distance
furthest from the neutral axis, i.e. by inspection at B or D. Thus

σz(max) = 103

0.64 × 53 (0.808 × 2 × 5)

i.e.

σz(max) = 101.0 N/mm2

Alternatively Eq. (i) may be written

σz = 103

tr3 [1.029(−r sin θ) + 0.808(r − r cos θ)]

or

σz = 808

tr2 (1 − cos θ − 1.27 sin θ) (ii)

The expression in brackets has its greatest value when θ = π, i.e. at B (or D).

S.16.9

The beam is as shown in Fig. S.16.9

30 kN/m

90 kN/m

RA RBz

6 m

BA

Fig. S.16.9

Taking moments about B

RA × 6 − 30 × 62

2
− 60

2
× 6 × 6

3
= 0
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which gives

RA = 150 kN

The bending moment at any section a distance z from A is then

M = −150z + 30z2

2
+ (90 − 30)

( z

6

) ( z

2

) ( z

3

)

i.e.

M = −150z + 15z2 + 5z3

3

Substituting in the second of Eqs (16.33)

EI

(
d2v

dz2

)
= 150z − 15z2 − 5z3

3

EI

(
dv

dz

)
= 75z2 − 5z3 − 5z4

12
+ C1

EIv = 25z3 − 5z4

4
− z5

12
+ C1z + C2

When x = 0, v = 0 so that C2 = 0 and when z = 6 m, v = 0. Then

0 = 25 × 63 − 5 × 64

4
− 65

12
+ 6C1

from which

C1 = −522

and the deflected shape of the beam is given by

EIv = 25z3 − 5z4

4
− z5

12
− 522z

The deflection at the mid-span point is then

EIvmid-span = 25 × 33 − 5 × 34

4
− 35

12
− 522 × 3 = −1012.5 kN m3

Therefore

vmid-span = −1012.5 × 1012

120 × 106 × 206 000
= −41.0 mm (downwards)
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S.16.10

Take the origin of x at the free end of the cantilever. The load intensity at any section a
distance z from the free end is wz/L. The bending moment at this section is given by

Mz =
( z

2

) (wz

L

) ( z

3

)
= wz3

6L

Substituting in Eqs (16.32)

EI

(
d2v

dz2

)
= −wz3

6L

EI

(
dv

dz

)
= −wz4

24L
+ C1

EIv = −wz5

120L
+ C1z + C2

When z = L, (dv/dz) = 0 so that C1 = wL3/24. When z = L, v = 0, i.e. C2 = −wL4/30.
The deflected shape of the beam is then

EIv = −
( w

120L

)
(z5 − 5zL4 + 4L5)

At the free end where z = 0

v = − wL4

30EI

S.16.11

The uniformly distributed load is extended from D to F and an upward uniformly
distributed load of the same intensity applied over DF so that the overall loading is
unchanged (see Fig. S.16.11).

A

RA

1 m 2 m 2 m 1 m

D

F

1 kN/m

4 kN
1 kN/m

6 kN

RF

CB

z

Fig. S.16.11

The support reaction at A is given by

RA × 6 − 6 × 5 − 4 × 3 − 1 × 2 × 2 = 0
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Then

RA = 7.7 kN

Using Macauley’s method, the bending moment in the bay DF is

M = −7.7z + 6[z − 1] + 4[z − 3] + 1[z − 3]2

2
− 1[z − 5]2

2

Substituting in Eqs (16.33)

EI

(
d2v

dz2

)
= 7.7z − 6[z − 1] − 4[z − 3] − [z − 3]2

2
+ [z − 5]2

2

EI

(
dv

dz

)
= 7.7z2

2
− 3[z − 1]2 − 2[z − 3]2 − [z − 3]3

6
− [z − 5]3

6
+ C1

EIv = 7.7z3

6
− [z − 1]3 − 2[z − 3]3

3
− [z − 3]4

24
− [z − 5]4

24
+ C1z + C2

When z = 0, v = 0 so that C2 = 0. Also when z = 6 m, v = 0. Then

0 = 7.7 × 63

6
− 53 − 2 × 33

3
− 34

24
− 14

24
+ 6C1

which gives

C1 = −21.8

Guess that the maximum deflection lies between B and C. If this is the case the slope
of the beam will change sign from B to C.
At B

EI

(
dv

dz

)
= 7.7 × 12

2
− 21.8 which is clearly negative

At C

EI

(
dv

dz

)
= 7.7 × 32

2
− 3 × 22 − 21.8 = +0.85

The maximum deflection therefore occurs between B and C at a section of the beam
where the slope is zero.
i.e.

0 = 7.7z2

2
− 3[z − 1]2 − 21.8

Simplifying

z2 + 7.06z − 29.2 = 0

Solving

z = 2.9 m
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The maximum deflection is then

EIvmax = 7.7 × 2.93

6
− 1.93 − 21.8 × 2.9 = −38.8

i.e.

vmax = −38.8

EI
(downwards)

S.16.12

Taking moments about D

RA × 4 + 100 − 100 × 2 × 1 + 200 × 3 = 0

from which

RA = −125 N

Resolving vertically

RB − 125 − 100 × 2 − 200 = 0

Therefore

RB = 525 N

The bending moment at a section a distance z from A in the bay DF is given by

M = +125z − 100[z − 1]0 + 100[z − 2]2

2
− 525[z − 4] − 100[z − 4]2

2

in which the uniformly distributed load has been extended from D to F and an upward
uniformly distributed load of the same intensity applied from D to F.

Substituting in Eqs (16.33)

EI

(
d2v

dz2

)
= −125z + 100[z − 1]0 − 50[z − 2]2 + 525[z − 4] + 50[z − 4]2

EI

(
dv

dz

)
= −125z2

2
+ 100[z − 1]1 − 50[z − 2]3

3
+ 525[z − 4]2

2
+ 50[z − 4]3

3
+ C1

EIv = −125z3

6
+ 50[z − 1]2 − 50[z − 2]4

12
+ 525[z − 4]3

6

+ 50[z − 4]4

12
+ C1z + C2

When z = 0, v = 0 so that C2 = 0 and when z = 4 m, v = 0 which gives C1 = 237.5. The
deflection curve of the beam is then

v = 1

EI

(−125z3

6
+ 50[z − 1]2 − 50[z − 2]4

12
+ 525[z − 4]3

12
+ 50[z − 4]4

12
+ 237.5z

)
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S.16.13

From Eqs (16.30) the horizontal component of deflection, u, is given by

u′′ = MxIxy − MyIxx

E(IxxIyy − I2
xy)

(i)

in which, for the span BD, referring to Fig. P.16.13, Mx = −RDz, My = 0, where RD is
the vertical reaction at the support at D. Taking moments about B

RD2l + Wl = 0

so that

RD = −W/2 (downward)

Eq. (i) then becomes

u′′ = WIxy

2E(IxxIyy − I2
xy)

z (ii)

From Fig. P.16.13

Ixx = t(2a)3

12
+ 2at(a)2 + 2

[
t(a/2)3

12
+ t

a

2

(
3a

4

)2
]

= 13a3t

4

Iyy = t(2a)3

12
+ 2

a

2
t(a)2 = 5a3t

3

Ixy = a

2
t(−a)

(
3a

4

)
+ at

(
−a

2

)
(a) + a

2
t(a)

(
−3a

4

)
+ at

(a

2

)
(−a) = −7a3t

4

Equation (ii) then becomes

u′′ = − 42W

113Ea3t
(iii)

Integrating Eq. (iii) with respect to z

u′ = − 21W

113Ea3t
z2 + A

and

u = − 7W

113Ea3t
z3 + Az + B (iv)

When z = 0, u = 0 so that B = 0. Also u = 0 when z = 2l which gives

A = − 28Wl2

113Ea3t
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Then

u = 7W

113Ea3t
(−z3 + 4l2z) (v)

At the mid-span point where z = l, Eq. (v) gives

u = 0.186Wl3

Ea3t

Similarly

v = 0.177Wl3

Ea3t

S.16.14

(a) From Eqs (16.30)

u′′ = MxIxy − MyIxx

E(IxxIyy − I2
xy)

(i)

Referring to Fig. P.16.14

Mx = −w

2
(l − z)2 (ii)

and

My = −T (l − z) (iii)

in which T is the tension in the link. Substituting for Mx and My from Eqs (ii) and (iii)
in Eq. (i).

u′′ = − 1

E(IxxIyy − I2
xy)

[
w

Ixy

2
(l − z)2 − TIxx(l − z)

]

Then

u′ = − 1

E(IxxIyy − I2
xy)

[
w

Ixy

2

(
l2z − lz2 + z

3

3
)

− TIxx

(
lz − z2

2

)
+ A

]

When z = 0, u′ = 0 so that A = 0. Hence

u = − 1

E(IxxIyy − I2
xy)

[
w

Ixy

2

(
l2 z2

2
− l

z3

3
+ z4

12

)
− TIxx

(
l
z2

2
− z3

6

)
+ B

]

When z = 0, u = 0 so that B = 0. Hence

u = − 1

E(IxxIyy − I2
xy)

[
w

Ixy

2

(
l2 z2

2
− l

z3

3
+ z4

12

)
− TIxx

(
l
z2

2
− z3

6

)]
(iv)
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Since the link prevents horizontal movement of the free end of the beam, u = 0 when
z = l. Hence, from Eq. (iv)

w
Ixy

2

(
l4

2
− l4

3
+ l4

12

)
− TIxx

(
l3

2
− l3

6

)
= 0

whence

T = 3wlIxy

8Ixx

(b) From Eqs (16.30)

v′′ = MxIyy − MyIxy

E(IxxIyy − I2
xy)

(v)

The equation for v may be deduced from Eq. (iv) by comparing Eqs (v) and (i). Thus

v = 1

E(IxxIyy − I2
xy)

[
w

Iyy

2

(
l2 z2

2
− l

z3

3
+ z4

12

)
− TIxy

(
l
z2

2
− z3

6

)]
(vi)

At the free end of the beam where z = l

vFE = 1

E(IxxIyy − I2
xy)

(
wIyyl4

8
− TIxy

l3

3

)

which becomes, since T=3wlIxy/8Ixx

vFE = wl4

8EIxx

S.16.15

The beam is allowed to deflect in the horizontal direction at B so that the support
reaction, RB, at B is vertical. Then, from Eq. (5.12), the total complementary energy,
C, of the beam is given by

C =
∫

L

∫ M

0
dθ dM − RB	B − W	C (i)

From the principle of the stationary value of the total complementary energy of the
beam and noting that 	B = 0

∂C

∂RB
=

∫

L
dθ

∂M

∂RB
= 0

Thus
∂C

∂RB
=

∫

L

M

EI

∂M

∂RB
dz = 0 (ii)
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In CB

M = W (2l − z) and ∂M/∂RB = 0

In BA

M = W (2l − z) − RB(l − z) and ∂M/∂RB = −(l − z)

Substituting in Eq. (ii)

∫ l

0
[W (2l − z) − RB(l − z)](l − z)dz = 0

from which

RB = 5W

2
Then

MC = 0 MB = Wl MA = −Wl/2

and the bending moment diagram is as shown in Fig. S.16.15.

Fig. S.16.15

S.16.16

From Eq. (16.50) and Fig. P.16.4

NT = Eα(4T0 dt + 2 × 2T0 dt + T0 dt)

i.e.

NT = 9Eα dt T0

From Eq. (16.50)

MxT = Eα

[
4T0 dt

(
d

2

)
+ 2 × 2T0 dt(0) + T0 dt

(
−d

2

)]

i.e.

MxT = 3Eα d2t T0

2
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From Eq. (16.52)

MyT = Eα

[
4T0 dt

(
d

4

)
+ 2T0 dt

(
d

4

)
+ 2T0 dt

(
−d

4

)
+ T0 dt

(
−d

4

)]

i.e.

MyT = 3Eα d2t T0

4

S.16.17

Taking moments of areas about the upper flange

(at + 2at)ȳ = 2at a

y

a

x

t

C

2a

x

y

Fig. S.16.17

which gives

ȳ = 2

3
a

Now taking moments of areas about the vertical web

3atx̄ = at
a

2

so that

x̄ = a

6
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From Eq. (16.53)

NT =
∫

A
Eα

T0y

2a
t ds = Eα T0t

2a

∫

A
y ds

But t
∫

A y ds is the first moment of area of the section about the centroidal axis Cx,
i.e.

∫
A y ds = 0. Therefore

NT = 0

From Eq. (16.54)

MxT =
∫

A
Eα

T0

2a
ty2 ds = EαT0

2a

∫

A
ty2 ds

But

∫

A
ty2 ds = Ixx = at

(
2

3
a

)2

+ t
(2a)3

3
+ 2at

(a

3

)2

i.e.

Ixx = 10a3t

3

Therefore

MxT = 5Eα a2t T0

3

From Eq. (16.55)

MyT =
∫

A
Eα

T0

2a
txy ds = EαT0

2a

∫

A
txy ds

But
∫

A
txy ds = Ixy = at

(a

3

) (
2

3
a

)
+ 2at

(
−a

6

) (
−a

3

)

i.e.

Ixy = a3t

3

Then

MyT = Eα a2t T0

6
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Solutions to Chapter 17 Problems

S.17.1

In Fig. S.17.1 the x axis is an axis of symmetry (i.e. Ixy = 0) and the shear centre, S,
lies on this axis. Suppose S is a distance ξS from the web 24. To find ξS an arbitrary
shear load Sy is applied through S and the internal shear flow distribution determined.
Since Ixy = 0 and Sx = 0, Eq. (17.14) reduces to

qs = − Sy

Ixx

∫ s

0
ty ds (i)

Fig. S.17.1

in which

Ixx = th3

12
+ 2

[
td3 sin2 α

12
+ td

(
h

2

)2
]

i.e.

Ixx = th3

12
(1 + 6ρ + 2ρ3 sin2 α) (ii)

Then

q12 = − Sy

Ixx

∫ s1

0
ty ds1

i.e.

q12 = Sy

Ixx

∫ s1

0
t

[
h

2
+

(
d

2
− s1

)
sin α

]
ds1
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so that

q12 = Syt

2Ixx
(hs1 + ds1 sin α − s2

1 sin α) (iii)

Also

q32 = − Sy

Ixx

∫ s2

0
ty ds2 = Syt

Ixx

∫ s2

0

[
h

2
−

(
d

2
− s2

)
sin α

]
ds2

whence

q32 = Syt

2Ixx
(hs2 − ds2 sin α + s2

2 sin α) (iv)

Taking moments about C in Fig. S.17.1

SyξS = −2
∫ d/2

0
q12

h

2
cos α ds1 + 2

∫ d/2

0
q32

h

2
cos α ds2 (v)

Substituting in Eq. (v) for q12 and q32 from Eqs (iii) and (iv)

SyξS = Syth cos α

Ixx

[∫ d/2

0
−(hs1 + ds1 sin α − s2

1 sin α)ds1

+
∫ d/2

0
(hs2 − ds2 sin α + s2

2 sin α)ds2

]

from which

ξS = − thd3 sin α cos α

12Ixx
(vi)

Now substituting for Ixx from Eq. (ii) in (vi)

ξS = −d
ρ2 sin α cos α

1 + 6ρ + 2ρ3 sin2 α

S.17.2

The x axis is an axis of symmetry so that Ixy = 0 and the shear centre, S, lies on this
axis (see Fig. S.17.2). Therefore, an arbitrary shear force, Sy, is applied through S and
the internal shear flow distribution determined.

Since Sx = 0 and Ixy = 0, Eq. (17.14) reduces to

qs = − Sy

Ixx

∫ s

0
ty ds (i)

in which, from Fig. S.17.2.,

Ixx = 2

[
a3t sin2 α

12
+ at

(
a sin α + a

2
sin α

)2 + a3t sin2 α

12
+ at

(a

2
sin α

)2
]
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1

2

3

4

5

S
x

a

Sy

s

ξS

α
α

2α

2α

t

Fig. S.17.2

which gives

Ixx = 16a3t sin2 α

3
(ii)

For the flange 54, from Eq. (i)

q54 = − Sy

Ixx

∫ s

0
t(s − 2a) sin α ds

from which

q54 = −Syt sin α

Ixx

(
s2

2
− 2as

)
(iii)

Taking moments about the point 3

SyξS = 2
∫ a

0
q54a sin 2α ds (iv)

Substituting in Eq. (iv) for q54 from Eq. (iii)

SyξS = −2a sin 2αSyt sin α

Ixx

∫ a

0

(
s2

2
− 2as

)
ds

which gives

ξS = 2at sin 2α sin α

Ixx

(
5a3

6

)
(v)

Substituting for Ixx from Eq. (ii) in (v) gives

ξS = 5a cos α

8
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S.17.3

The shear centre, S, lies on the axis of symmetry a distance ξS from the point 2 as
shown in Fig. S.17.3. Thus, an arbitrary shear load, Sy, is applied through S and since
Ixy = 0, Sx = 0, Eq. (17.14) simplifies to

qs = − Sy

Ixx

∫ s

0
ty ds (i)

S

1

2

3

x

t

r

s

Sy

q12

ξS

θ

Fig. S.17.3

in which Ixx has the same value as the section in S.16.8, i.e. 3πr3t. Then Eq. (i) becomes

q12 = Sy

Ixx

∫ θ

0
t(r + r cos θ)r dθ

or

q12 = Sy

3πr
[θ + sin θ]θ0

i.e.

q12 = Sy

3πr
(θ + sin θ) (ii)

Taking moments about the point 2

SyξS = 2
∫ π

0
q12(r + r cos θ)r dθ (iii)
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Substituting in Eq. (iii) for q12 from Eq. (ii)

SyξS = 2Syr

3π

∫ π

0
(θ + sin θ)(1 + cos θ)dθ

Thus

ξS = 2r

3π

∫ π

0
(θ + θ cos θ + sin θ + sin θ cos θ)dθ

i.e.

ξS = 2r

3π

[
θ2

2
+ θ sin θ − cos 2θ

4

]π

0

from which

ξS = πr

3

S.17.4

The x axis is an axis of symmetry so that Ixy = 0 and the shear centre, S, lies on this
axis (see Fig. S.17.4). Further Sx = 0 so that Eq. (17.14) reduces to

qs = − Sy

Ixx

∫ s

0
ty ds (i)

S

1 2 3

t

t

d

h x

Sy

ξS

s1 s2

βd

t /β

Fig. S.17.4

Referring to Fig. S.17.4

Ixx = th3

12
+ 2

[

td

(
h

2

)2

+ t

β
βd

(
h

2

)2
]

= th2
(

h

12
+ d

)



Solution-2-H6739.tex 24/1/2007 9: 30 Page 210

210 Solutions Manual

From Eq. (i)

q12 = − Sy

Ixx

∫ s1

0
t

(
−h

2

)
ds1

i.e.

q12 = Syth

2Ixx
s1 (ii)

Also

q32 = − Sy

Ixx

∫ s2

0

t

β

(
−h

2

)
ds2

so that

q32 = Syth

2βIxx
s2 (iii)

Taking moments about the mid-point of the web

SyξS = 2
∫ d

0
q12

h

2
ds1 − 2

∫ βd

0
q32

h

2
ds2 (iv)

Substituting from Eqs (ii) and (iii) in Eq. (iv) for q12 and q32

SyξS = Syth2

2Ixx

∫ d

0
s1 ds1 − Syth2

2βIxx

∫ βd

0
s2 ds2

i.e.

ξS = th2

2Ixx

(
d2

2
− β

d2

2

)

i.e.

ξS = th2d2(1 − β)

4th3(1 + 12d/h)/12

so that

ξS

d
= 3ρ(1 − β)

(1 + 12ρ)

S.17.5

Referring to Fig. S.17.5 the shear centre, S, lies on the axis of symmetry, the x axis, so
that Ixy = 0. Therefore, apply an arbitrary shear load, Sy, through the shear centre and
determine the internal shear flow distribution. Thus, since Sx = 0, Eq. (17.14) becomes

qs = − Sy

Ixx

∫ s

0
ty ds (i)
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Fig. S.17.5

in which

Ixx = t3h3

12
+ 2

(t1 + t2)

2
d

(
h

2

)2

i.e.

Ixx = h2

12
[t3h + 3(t1 + t2)d] (ii)

The thickness t in the flange 12 at any point s1 is given by

t = t1 − (t1 − t2)

d
s1 (iii)

Substituting for t from Eq. (iii) in (i)

q12 = − Sy

Ixx

∫ s1

0

[
t1 − (t1 − t2)

d
s1

] (
−h

2

)
ds1

Hence

q12 = Syh

2Ixx

[

t1s1 − (t1 − t2)

d

s2
1

2

]

(iv)

Taking moments about the mid-point of the web

SyξS = 2
∫ d

0
q12

(
h

2

)
ds1

i.e.

SyξS = Syh2

2Ixx

[

t1
s2

1

2
− (t1 − t2)

d

s3
1

6

]d

0
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from which

ξS = h2d2

12Ixx
(2t1 + t2)

Substituting for Ixx from Eq. (ii)

ξS = d2(2t1 + t2)

3d(t1 + t2) + ht3

S.17.6

The beam section is shown in Fig. S.17.6(a). Clearly the x axis is an axis of symmetry
so that Ixy = 0 and the shear centre, S, lies on this axis. Thus, apply an arbitrary shear
load, Sy, through S and determine the internal shear flow distribution. Since Sx = 0, Eq.
(17.14) simplifies to

qs = − Sy

Ixx

∫ s

0
ty ds (i)

1

2

3

4

l

b

hx

a

p

t
ξS

Sy

S

5

α

s2
s1

Fig. S.17.6(a)

in which, from Fig. S.17.6(a)

Ixx = 2

[∫ b

0
t

(
h

2b
s

)2

ds +
∫ a

0
t

(
h

2a
s

)2

ds

]

(ii)

where the origin of s in the first integral is the point 1 and the origin of s in the second
integral is the point 3. Equation (ii) then gives

Ixx = th2(b + a)

6
(iii)

From Eq. (i)

q12 = − Sy

Ixx

∫ s1

0
t

(
− h

2b
s1

)
ds1
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from which

q12 = Syth

2bIxx

s2
1

2

or, substituting for Ixx from Eq. (iii)

q12 = 3Sy

2bh(b + a)
s2

1 (iv)

and

q2 = 3Syb

2h(b + a)
(v)

Also

q23 = − Sy

Ixx

∫ s2

0
t

[
− h

2a
(a − s2)

]
ds2 + q2

Substituting for Ixx from Eq. (iii) and q2 from Eq. (v)

q23 = 3Sy

h(b + a)

(

s2 − s2
2

2a
+ b

2

)

(vi)

and

q3 = 3Sy

2h
(vii)

Equation (iv) shows that q12 varies parabolically but does not change sign between 1
and 2; also dq12/ds1 = 0 when s1 = 0. From Eq. (vi) q23 = 0 when s2 − s2

2/2a + b/2 = 0,
i.e. when

s2
2 − 2as2 − ba = 0 (viii)

Solving Eq. (viii)

s2 = a ±
√

a2 + ba

Thus, q23 does not change sign between 2 and 3. Further

dq23

ds2
= 3Sy

h(b + a)

(
1 − s2

a

)
= 0 when s2 = a

Therefore q23 has a turning value at 3. The shear flow distributions in the walls 34 and
45 follow from antisymmetry; the complete distribution is shown in Fig. S.17.6(b).

Referring to Fig. S.17.6(a) and taking moments about the point 3

SyξS = 2
∫ b

0
q12p ds1 (ix)

where p is given by

p

l
= sin α = h

2b
i.e. p = hl

2b
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1

2

3

4

5

3Sy

2h

3Sy b

2h (b + a)

Fig. S.17.6(b)

Substituting for p and q12 from Eq. (iv) in (ix) gives

SyξS = 3Sy

bh(b + a)

∫ b

0

hl

2b
s2

1 ds1

from which

ξS = l

2(1 + a/b)

S.17.7

Initially the position of the centroid, C, must be found. From Fig. S.17.7, by inspection
ȳ = a. Also taking moments about the web 23

(2at + 2a2t + a2t)x̄ = a2t
a

2
+ 2ata

from which x̄ = 3a/8.
To find the horizontal position of the shear centre, S, apply an arbitrary shear load,

Sy, through S. Since Sx = 0 Eq. (17.14) simplifies to

qs = SyIxy

IxxIyy − I2
xy

∫ s

0
tx ds − SyIyy

IxxIyy − I2
xy

∫ s

0
ty ds

i.e.

qs = Sy

IxxIyy − I2
xy

(
Ixy

∫ s

0
tx ds − Iyy

∫ s

0
ty ds

)
(i)
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Fig. S.17.7

in which, referring to Fig. S.17.7

Ixx = a2t(a)2 + 2at(a)2 + t(2a)3/12 = 16a3t/3

Iyy = 2ta3/12 + 2ta(a/8)2 + t(2a)3/12 + 2at(5a/8)2 + 4at(3a/8)2 = 53a3t/24

Ixy = a2t(a/8)(a) + 2at(5a/8)( − a) = −a3t

Substituting for Ixx, Iyy and Ixy in Eq. (i) gives

qs = 9Sy

97a3t

(
−

∫ s

0
tx ds − 53

24

∫ s

0
ty ds

)
(ii)

from which

q12 = 9Sy

97a3

[
−

∫ s

0

(
13a

8
− s

)
ds − 53

24

∫ s

0
(−a)ds

]
(iii)

i.e.

q12 = 9Sy

97a3

(
7as

12
+ s2

2

)
(iv)

Taking moments about the corner 3 of the section

SyξS = −
∫ 2a

0
q12(2a)ds (v)

Substituting for q12 from Eq. (iv) in (v)

SyξS = −18Sy

97a2

∫ 2a

0

(
7as

12
+ s2

2

)
ds
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from which

ξS = −45a

97
Now apply an arbitrary shear load Sx through the shear centre, S. Since Sy = 0

Eq. (17.14) simplifies to

qs = − Sx

IxxIyy − I2
xy

(
Ixx

∫ s

0
tx ds − Ixy

∫ s

0
ty ds

)

from which, by comparison with Eq. (iii)

q12 = − 9Sx

97a3t

[
16

3

∫ s

0
t

(
13a

8
− s

)
ds +

∫ s

0
t( − a)ds

]

i.e.

q12 = − 3Sx

97a3 (23as − 8s2) (vi)

Taking moments about the corner 3

Sx(2a − ηS) = −
∫ 2a

0
q12(2a)ds

Substituting for q12 from Eq. (vi)

Sx(2a − ηS) = 6Sx

97a2

∫ 2a

0
(23as − 8s2)ds

which gives

ηS = 46a

97

S.17.8

The shear centre is the point in a beam cross-section through which shear loads must
be applied for there to be no twisting of the section.

The x axis is an axis of symmetry so that the shear centre lies on this axis. Its position
is found by applying a shear load Sy through the shear centre, determining the shear flow
distribution and then taking moments about some convenient point. Equation (17.14)
reduces to

qs = − Sy

Ixx

∫ s

0
ty ds (i)

in which, referring to Fig. S.17.8

Ixx = 2

(
tr3

3
+ 2rtr2 +

∫ π/2

0
tr2 cos2 θr dθ

)



Solution-2-H6739.tex 24/1/2007 9: 30 Page 217

Solutions to Chapter 17 Problems 217

2r

2r

t

1

2 3

4
xO

u

xS

s1

Sy

S

s2

r

Fig. S.17.8

i.e.

Ixx = 6.22tr3

In the wall 12, y = s1. Therefore substituting in Eq. (i)

q12 = − Sy

Ixx

∫ s

0
ts1 ds = − Sy

Ixx

ts2
1

2

Then

q2 = − Sy

Ixx

tr2

2

In the wall 23, y = r, then

q23 = −
(

Sy

Ixx

) (∫ s

0
tr ds + tr2

2

)

i.e.

q23 = −
(

Sy

Ixx

) (
trs2 + tr2

2

)

and

q3 = −5
Sy

Ixx

tr2

2

In the wall 34, y = r cos θ, then

q34 = − Sy

Ixx

(∫ θ

0
tr2 cos θ dθ + 5tr2

2

)

i.e.

q34 = − Sy

Ixx
tr2

(
sin θ + 5

2

)
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Taking moments about O

SyxS = −2

[∫ r

0
q122r ds +

∫ 2r

0
q23r ds +

∫ π/2

0
q34r2 dθ

]

The negative sign arises from the fact that the moment of the applied shear load is in
the opposite sense to the moments produced by the internal shear flows. Substituting
for q12, q23 and q34 from the above

SyxS = Sy

Ixx
t

[∫ r

0

(
s2

1

2

)

2r ds +
∫ 2r

0

(
rs2 + r2

2

)
r ds +

∫ π/2

0
r4

(
sin θ + 5

2

)
dθ

]

which gives

xS = 2.66r

S.17.9

In this problem the axis of symmetry is the vertical y axis and the shear centre will lie on
this axis so that only its vertical position is required. Therefore, we apply a horizontal
shear load Sx through the shear centre, S, as shown in Fig. S.17.9.

y

ys

S

4

3

21

O

u

Sx

s1
s2

50 mm

100 mm 25 mm25 mm

50
m

m

Fig. S.17.9

The thickness of the section is constant and will not appear in the answer for the
shear centre position, therefore assume the section has unit thickness.

Equation (17.14), since Ixy = 0, t = 1 and only Sx is applied, reduces to

qs = − Sx

Iyy

∫ s

0
x ds (i)
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where

Iyy = 253

12
+ 25 × 62.52 + 50 × 502 +

∫ π/2

0
(50 cos θ)250 dθ

i.e.

Iyy = 6.44 × 105 mm4

In the flange 12, x = −75 + s1 and

q12 = − Sx

Iyy

∫ s

0
(−75 + s1)ds = − Sx

Iyy

(

−75s1 + s2
1

2

)

and when s1 = 25 mm, q2 = 1562.5Sx/Iyy
In the wall 23, x = −50 mm, then

q23 = − Sx

Iyy

(∫ s

0
−50 ds − 1562.5

)
= Sx

Iyy
(50s2 + 1562.5)

when s2 = 50 mm, q3 = 4062.5Sx/Iyy.
In the wall 34, x = −50 cos θ, therefore

q34 = − Sx

Iyy

(∫ θ

0
−50 cos θ 50 dθ − 4062.5

)
= Sx

Iyy
(2500 sin θ + 4062.5)

Now taking moments about O

SxyS = 2

(

−
∫ 25

0
q1250 ds1 +

∫ 50

0
q2350 ds2 +

∫ π
2

0
q34502 dθ

)

Note that the moments due to the shear flows in the walls 23 and 34 are opposite in sign
to the moment produced by the shear flow in the wall 12. Substituting for q12, etc. gives

yS = 87.5 mm

S.17.10

Apply an arbitrary shear load Sy through the shear centre S. Then, since the x axis is an
axis of symmetry, Ixy = 0 and Eq. (17.14) reduces to

qs = − Sy

Ixx

∫ s

0
ty ds

Ixx = 2

[∫ r

0
ty2 ds +

∫ π/4

0
t(r sin θ)2r dθ

]

= 2

[∫ r

0
t(2r sin 45◦ − s1 sin 45◦)2ds1 +

∫ π/4

0
tr3 sin2 θ dθ

]

= 2

[
t sin2 45◦

∫ r

0
(4r2 − 4rs1 + s2

1)ds1 + tr3

2

∫ π

0
(1 − cos 2θ)dθ

]
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1

2

O
xS 3

4

5

s1

xS

Sy

r

r

θ

φ

Fig. S.17.10

which gives

Ixx = 2.62 tr3

Then

q12 = − Sy

Ixx

∫ s1

0
t(2r sin 45◦ − s1 sin 45◦)ds1

i.e.

q12 = −0.27Sy

r3

(

2rs1 − s2
1

2

)

(i)

and

q2 = −0.4Sy

r
Also

q23 = − Sy

Ixx

∫ φ

0
t

[
r sin (45◦ − φ)r dφ − 0.4Sy

r

]
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from which

q23 = − Sy

2.62r
cos (45◦ − φ) − 0.13Sy

r
(ii)

Taking moments about O

SyxS = −2

[∫ r

0
q12r ds1 +

∫ π/4

0
q23r2 dφ

]
(iii)

Substituting for q12 and q23 from Eqs (i) and (ii) in Eq. (iii) gives

xS = 1.2r

S.17.11

Since the x axis is an axis of symmetry and only Sy is applied Eq. (17.14) reduces to

qs = − Sy

Ixx

∫ s

0
ty ds

Sy

s2

s1

xS

S

3

1

2

4

6

52 mm

30 mm

15 mm

60 mm

25 mm

Fig. S.17.11

Also

s32 = (152 + 602)1/2 = 61.8 mm
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and

Ixx = 2

[
2 × 253

12
+ 2 × 25 × 57.52 + 2 × 61.83

12
×

(
15

61.8

)2

+ 2 × 61.8 × 37.52 + 2 × 603

12

]

which gives

Ixx = 724 094 mm4

Then

q12 = − Sy

Ixx

∫ s1

0
2(−70 + s1)ds1

i.e.

q12 = Sy

Ixx
(140s1 − s2

1) (i)

and

q2 = 2875Sy

Ixx

Also

q23 = − Sy

Ixx

∫ s2

0
2

(
−45 + 15

61.8
s2

)
ds2 + 2875Sy

Ixx

Then

q23 = Sy

Ixx

(
90s2 − 15

61.8
s2

2 + 2875

)
(ii)

Taking moments about the mid-point of the web 34 (it therefore becomes unnecessary
to determine q34)

Sy xS = 2

[

−
∫ 25

0
60q12 ds1 +

∫ 61.8

0
30 × 60

61.8
q23 ds2

]

Substituting for q12 and q23 from Eqs (i) and (ii)

xS = 20.2 mm

S.17.12

Referring to Fig. S.17.12 the x axis is an axis of symmetry so that Ixy = 0 and since
Sx = 0. Eq. (17.15) reduces to

qs = − Sy

Ixx

∫ s

0
ty ds + qs,0 (i)
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in which

Ixx = (2r)3t sin2 45◦

12
+ 2

∫ π/2

0
t(r sin θ)2r dθ

Fig. S.17.12

i.e.

Ixx = 0.62tr3

‘Cut’ the section at O. Then, from the first term on the right-hand side of Eq. (i)

qb,O1 = − Sy

0.62tr3

∫ θ

0
tr sin θr dθ

i.e.

qb,O1 = − Sy

0.62r
[−cos θ]θ0

so that

qb,O1 = − Sy

0.62r
(cos θ − 1) = 1.61

Sy

r
(cos θ − 1) (ii)

and

qb,1 = −0.47Sy

r

Also

qb,12 = − Sy

0.62tr3

∫ s

0
t(r − s) sin 45◦ ds − 0.47Sy

r
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which gives

qb,12 = Sy

r3 (−1.14rs + 0.57s2 − 0.47r2) (iii)

Now take moments about the point 2

Syr = 2
∫ π/4

0
qb,O1rr dθ + 2 × πr2

4
qs,0

Substituting in Eq. (iv) for qb,O1 from Eq. (ii)

Syr = 2
∫ π/4

0
1.61

Sy

r
(cos θ − 1)r2 dθ + πr2

2
qs,0

i.e.

Syr = 3.22Syr[sin θ − θ]π/4
0 + πr2

2
qs,0

so that

qs,0 = 0.80Sy

r

Then, from Eq. (ii)

qO1 = Sy

r
(1.61 cos θ − 0.80)

and from Eq. (iii)

q12 = Sy

r3 (0.57s2 − 1.14rs + 0.33r2)

The remaining distribution follows from symmetry.

S.17.13

The x axis is an axis of symmetry so that Ixy = 0 and, since Sx = 0, Eq. (17.15)
simplifies to

qs = − Sy

Ixx

∫ s

0
ty ds + qs,0 (i)

in which, from Fig. S.17.13(a)

Ixx = th3

12
+ (2d)3t sin2 α

12
= th2

12
(h + 2d) (ii)

‘Cut’ the section at 1. Then, from the first term on the right-hand side of Eq. (i)

qb,12 = − Sy

Ixx

∫ s1

0
t(−s1 sin α)ds1 = Syt sin α

2Ixx
s2

1
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Fig. S.17.13(a)

Substituting for Ixx and sin α

qb,12 = 3Sy

hd(h + 2d)
s2

1 (iii)

and

qb,2 = 3Syd

h(h + 2d)

Also

qb,23 = − Sy

Ixx

∫ s2

0
t

(
−h

2
+ s2

)
ds2 + qb,2

so that

qb,23 = 6Sy

h(h + 2d)

(

s2 − s2
2

h
+ d

2

)

(iv)

Now taking moments about the point 1 (see Eq. (17.18))

0 =
∫ h

0
qb,23d cos α ds2 + 2

h

2
d cos αqs,0

i.e.

0 =
∫ h

0
qb,23 ds2 + hqs,0 (v)

Substituting in Eq. (v) for qb,23 from Eq. (iv)

0 = 6Sy

h(h + 2d)

∫ h

0

(

s2 − s2
2

h
+ d

2

)

ds2 + hqs,0
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which gives

qs,0 = −Sy(h + 3d)

h(h + 2d)
(vi)

Then, from Eqs (iii) and (i)

q12 = 3Sy

hd(h + 2d)
s2

1 − Sy(h + 3d)

h(h + 2d)

i.e.

q12 = Sy

h(h + 2d)

(
3s2

1

d
− h − 3d

)

(vii)

and from Eqs (iv) and (vi)

q23 = Sy

h(h + 2d)

(

6s2 − 6s2
2

h
− h

)

(viii)

The remaining distribution follows from symmetry.
From Eq. (vii), q12 is zero when s2

1 = (hd/3) + d2, i.e. when s1 > d. Thus there is no
change of sign of q12 between 1 and 2. Further

dq12

ds1
= 6s1

d
= 0 when s1 = 0

and

q1 = −Sy(h + 3d)

h(h + 2d)

Also, when s1 = d

q2 = − Sy

(h + 2d)

From Eq. (viii) q23 is zero when 6s2 − (6s2
2/h) − h = 0, i.e. when s2

2 − s2h + (h2/6) = 0.
Then

s2 = h

2
± h√

12

Thus q23 is zero at points a distance h/
√

12 either side of the x axis. Further, from
Eq. (viii), q23 will be a maximum when s2 = h/2 and q23( max ) = Sy/2(h + 2d). The
complete distribution is shown in Fig. S.17.13(b).
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Fig. S.17.13(b)

S.17.14

Since the section is doubly symmetrical the centroid of area, C, and the shear centre, S,
coincide. The applied shear load, S, may be replaced by a shear load, S, acting through
the shear centre together with a torque, T , as shown in Fig. S.17.14. Then

T = Sa cos 30◦ = 0.866Sa (i)

1

2

3

4

5

6

7

8

C (S)

30°

x

y

S

a

T

s2

s1

Fig. S.17.14

The shear flow distribution produced by this torque is given by Eq. (18.1), i.e.

qT = T

2A
= 0.866Sa

2A
(from Eq. (i))
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where

A = a2a cos 30◦ + 2 × a cos 30◦ × a sin 30◦ = 2.6a2

Then

qT = 0.17S

a
(clockwise) (ii)

The rate of twist is obtained from Eq. (18.4) and is

dθ

dz
= 0.866Sa

4(2.6a2)2G

(
6a

t

)

i.e.

dθ

dz
= 0.192S

Gta2 (iii)

The shear load, S, through the shear centre produces a shear flow distribution given
by Eq. (17.15) in which Sy = −S, Sx = 0 and Ixy = 0. Hence

qs = S

Ixx

∫ s

0
ty ds + qs,0 (iv)

in which

Ixx = 2
ta3

12
+ 4

∫ a

0
t(−a + s1 sin 30◦)2ds1 = 5a3t

2

Also on the vertical axis of symmetry the shear flow is zero, i.e. at points 7 and 3.
Therefore, choose 7 as the origin of s in which case qs,0 in Eq. (iv) is zero and

qs = S

Ixx

∫ s

0
ty ds (v)

From Eq. (v) and referring to Fig. S.17.14

q78 = S

Ixx

∫ s1

0
t(−a + s1 sin 30◦)ds1

i.e.

q78 = 2S

5a3

∫ s

0

(
−a + s1

2

)
ds

so that

q78 = S

5a3

(

2as1 − s2
1

2

)

(vi)

and

q8 = − 3S

10a
(vii)
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Also

q81 = S

Ixx

∫ s2

0
t
(
−a

2
+ s2

)
ds2 + q8

i.e.

q81 = 2S

5a3

∫ s2

0

(
−a

2
+ s2

)
ds2 − 3S

10a

from which

q81 = S

10a3 (−2as2 + 2s2
2 − 3a2) (viii)

Thus

q1 = − 7S

20a

The remaining distribution follows from symmetry.
The complete shear flow distribution is now found by superimposing the shear flow

produced by the torque, T , (Eq. (ii)) and the shear flows produced by the shear load
acting through the shear centre. Thus, taking anticlockwise shear flows as negative

q1 = −0.17S

a
− 0.35S

a
= −0.52S

a

q2 = q8 = −0.17S

a
− 0.3S

a
= −0.47S

a
(from Eq. (vii))

q3 = q7 = −0.17S

a

q4 = q6 = −0.17S

a
+ 0.3S

a
= 0.13S

a

q5 = −0.17S

a
+ 0.35S

a
= 0.18S

a

The distribution in all walls is parabolic.

S.17.15

Referring to Fig. P.17.15, the wall DB is 3 m long so that its cross-sectional
area, 3 × 103 × 8 = 24 × 103 mm2, is equal to that of the wall EA, 2 × 103 × 12 =
24 × 103 mm2. If follows that the centroid of area of the section lies mid-way between
DB and EA on the vertical axis of symmetry. Also since Sy = 500 kN, Sx = 0 and Ixy = 0,
Eq. (17.15) reduces to

qs = −500 × 103

Ixx

∫ s

0
ty ds + qs,0 (i)
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If the origin for s is taken on the axis of symmetry, say at O, then qs,0 is zero. Also

Ixx = 3 × 103 × 8 × (0.43 × 103)2 + 2 × 103 × 12 × (0.43 × 103)2

+ 2 × (1 × 103)3 × 10 × sin2 60◦/12

i.e.

Ixx = 101.25 × 108 mm4

Equation (i) then becomes

qs = −4.94 × 10−5
∫ s

0
ty ds

In the wall OA, y = −0.43 × 103 mm. Then

qOA = 4.94 × 10−5
∫ s

0
12 × 0.43 × 103 ds = 0.25sA

and when sA = 1 × 103 mm, qOA = 250 N/mm.
In the wall AB, y = −0.43 × 103 + sB cos 30◦. Then

qAB = −4.94 × 10−5
∫ s

0
10(−0.43 × 103 + 0.866sB)ds + 250

i.e.

qAB = 0.21sB − 2.14 × 10−4s2
B + 250

When sB = 1 × 103 mm, qAB = 246 N/mm.
In the wall BC, y = 0.43 × 103 mm. Then

qBC = −4.94 × 10−5
∫ s

0
8 × 0.43 × 103 ds + 246

i.e.

qBC = −0.17sC + 246

Note that at C where sC = 1.5 × 103 mm, qBC should equal zero; the discrepancy,
−9 N/mm, is due to rounding off errors.

The maximum shear stress will occur in the wall AB (and ED) mid-way along its
length (this coincides with the neutral axis of the section) where sB = 500 mm. This
gives, from Eq. (ii), qAB(max) = 301.5 N/mm so that the maximum shear stress is equal
to 301.5/10 = 30.2 N/mm2.
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S.18.1

Referring to Fig. P.18.1 the maximum torque occurs at the built-in end of the beam and
is given by

Tmax = 20 × 2.5 × 103 = 50 000 N m

From Eq. (18.1)

τmax = qmax

tmin
= Tmax

2Atmin

i.e.

τmax = 50 000 × 103

2 × 250 × 1000 × 1.2

so that

τmax = 83.3 N/mm2

From Eq. (18.4)

dθ

dz
= T

4A2

∮
ds

Gt

i.e.

dθ

dz
= 20(2500 − z) × 103 × 2

4 × (250 × 1000)2

(
1000

18 000 × 1.2
+ 250

26 000 × 2.1

)

which gives

dθ

dz
= 8.14 × 10−9(2500 − z)

Then

θ = 8.14 × 10−9
(

2500z − z2

2

)
+ C1

When z = 0, θ = 0 so that C1 = 0, hence

θ = 8.14 × 10−9
(

2500z − z2

2

)

Thus θ varies parabolically along the length of the beam and when z = 2500 mm

θ = 0.0254 rad or 1.46◦
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S.18.2

The shear modulus of the walls of the beam is constant so that Eq. (18.5) may be written

ws − w0 = Tδ

2AG

(
δOs

δ
− AOs

A

)
(i)

in which

δ =
∮

ds

t
and δOs =

∫ s

0

ds

t

Also, the warping displacement will be zero on the axis of symmetry, i.e. at the mid-
points of the walls 61 and 34. Therefore take the origin for s at the mid-point of the
wall 61, then Eq. (i) becomes

ws = Tδ

2AG

(
δOs

δ
− AOs

A

)
(ii)

in which

l23 =
√

5002 + 1002 = 509.9 mm and l12 =
√

8902 + 1502 = 902.6 mm

Then

δ = 200

2.0
+ 300

2.5
+ 2 × 509.9

1.25
+ 2 × 902.6

1.25
= 2479.9

and

A = 1
2 (500 + 200) × 890 + 1

2 (500 + 300) × 500 = 511 500 mm2

Equation (ii) then becomes

ws = 90 500 × 103 × 2479.9

2 × 511 500 × 27 500

(
δOs

2479.9
− AOs

511 500

)

i.e.

ws = 7.98 × 104(4.03δOs − 0.0196AOs) (iii)

The walls of the section are straight so that δOs and AOs vary linearly within each wall. It
follows from Eq. (iii) that ws varies linearly within each wall so that it is only necessary
to calculate the warping displacement at the corners of the section. Thus, referring to
Fig. P.18.2

w = 7.98 × 10−4
(

4.03 × 100

2.0
− 0.0196 × 1

2
× 890 × 100

)

i.e.

w1 = −0.53 mm = −w6 from antisymmetry
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Also

w2 = 7.98 × 10−4
(

4.03 × 902.6

1.25
− 0.0196 × 1

2
× 250 × 890

)
− 0.53

i.e.

w2 = 0.05 mm = −w5

Finally

w3 = 7.98 × 10−4
(

4.03 × 509.9

1.25
− 0.0196 × 1

2
× 250 × 500

)
+ 0.05

i.e.

w3 = 0.38 mm = −w4

S.18.3

Referring to Fig. P.18.3 and considering the rotational equilibrium of the beam

2R = 2 × 450 × 1.0 × 2000

so that

R = 1450 Nm

In the central portion of the beam

T = 450 + 1.0(1000 − z) − 1450 = −z Nm (z in mm) (i)

and in the outer portions

T = 450 + 1.0(1000 − z) = 1450 − z Nm (z in mm) (ii)

From Eq. (i) it can be seen that T varies linearly from zero at the mid-span of the beam
to −500 Nm at the supports. Further, from Eq. (ii) the torque in the outer portions of
the beam varies linearly from 950 Nm at the support to 450 Nm at the end. Therefore
Tmax = 950 Nm and from Eq. (18.1)

τmax = qmax

tmin
= Tmax

2Atmin

i.e.

τmax = 950 × 103

2 × π × 502 × 2.5
= 24.2 N/mm2

For convenience the datum for the angle of twist may be taken at the mid-span section
and angles of twist measured relative to this point. Thus, from Eqs (18.4) and (i), in the
central portion of the beam

dθ

dz
= z × 103 × π × 100

4(π × 502)2 × 30 000 × 2.5
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i.e.

dθ

dz
= −1.70 × 10−8z

Then

θ = −1.70 × 10−8 z2

2
+ B

When z = 0, θ = 0 (datum point) so that B = 0. Then

θ = −0.85 × 10−8z2 (iii)

In the outer portions of the beam, from Eqs (18.4) and (ii)

dθ

dz
= (1450 − z) × 103 × π × 100

4(π × 502)2 × 30 000 × 2.5

i.e.

dθ

dz
= 1.70 × 10−8(1450 − z)

Hence

θ = 1.70 × 10−8
(

1450z − z2

2

)
+ C (iv)

When z = 500 mm, θ = −2.13 × 10−3 rad from Eq. (iii). Thus, substituting this value
in Eq. (iv) gives C = −12.33 × 10−3 and Eq. (iv) becomes

θ = 1.70 × 10−8
(

1450z − z2

2

)
− 12.33 × 10−3 rad (v)

The distribution of twist along the beam is then obtained from Eqs (iii) and (v) and
is shown in Fig. S.18.3. Note that the distribution would be displaced upwards by
2.13 × 10−3 rad if it were assumed that the angle of twist was zero at the supports.

2.13 � 10�3 rad

3.82 � 10�3 rad
θ

Fig. S.18.3
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S.18.4

The total torque applied to the beam is 20 × 4 × 103 Nm. From symmetry the reactive
torques at A and D will be equal and are 40 × 103 Nm. Therefore,

TAB = 40 000 N m

TBC = 40 000 − 20(z − 1000) = 60 000 − 20z N m (z in mm)

Note that the torque distribution is antisymmetrical about the centre of the beam. The
maximum torque in the beam is therefore 40 000 Nm so that, from Eq. (18.1)

τmax = 40 000 × 103

2 × 200 × 350 × 4
= 71.4 N/mm2

The rate of twist along the length of the beam is given by Eq. (18.4) in which
∮

= 2 × 200

4
+ 2 × 350

6
= 216.7

Then

dθ

dz
=

[
216.7

4 × (200 × 350)2 × 70 000

]
T = 15.79 × 10−14T

In AB, TAB = 40 000 Nm so that

θAB = 6.32 × 10−6z + B

When z = 0, θAB = 0 so that B = 0 and when z = 1000 mm, θAB = 0.0063 rad (0.361◦)
In BC, TBC = 60 000 − 20z N m. Then, from Eq. (18.4)

θBC = 15.79 × 10−14(60 000z − 10z2) × 103 + C

When z = 1000 mm, θBC = 0.0063 so that C = −0.0016. Then

θBC = 1.579 × 10−10(60 000z − 10z2) − 0.0016

At mid-span where z = 3000 mm, θBC=0.0126 rad (0.722◦).

S.18.5

The torque is constant along the length of the beam and is 1 kN m. Also the thickness
is constant round the beam section so that the shear stress will be a maximum where
the area enclosed by the mid-line of the section wall is a minimum, i.e. at the free end.
Then

τmax = 1000 × 103

2 × 50 × 150 × 2
= 33.3 N/mm2
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The rate of twist is given by Eq. (18.4) in which
∮

ds/t varies along the length of the
beam as does the area enclosed by the mid-line of the section wall. Then

∮
ds

t
=

⎡

⎢⎢
⎣

2 × 50 +
(

150 + 50z

2500

)

2

⎤

⎥⎥
⎦ = 125 + 0.01z

Also

A = 50

(
150 + 50z

2500

)
= 7500 + z

Then

dθ

dz
=

(
1 × 106

4 × 25 000

)
(125 + 0.01z)

(7500 + z)2

or

dθ

dz
= 10

[
12 500 + z

100(7500 + z)2

]

i.e.

dθ

dz
= 0.1

[
5000

(7500 + z)2 + 1

7500 + z

]

Then

θ = 0.1

[ −5000

(7500 + z)
+ loge (7500 + z) + B

]

When z = 2500 mm, θ = 0 so that B = −6.41 and

θ = 0.1

[ −5000

(7500 + z)
+ loge (7500 + z) − 6.41

]
rad

When z = 0, θ = 10.6◦, etc.

S.18.6

In Eq. (18.4), i.e.

dθ

dz
= T

4A2

∮
ds

Gt

Gt = constant = 44 000 N/mm. Thus, referring to Fig. S.18.6

dθ

dz
= 4500 × 103

4(100 × 200 + π × 502/2)2

(
2 × 200 + 100 + π × 50

44 000

)
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i.e.

dθ

dz
= 29.3 × 10−6 rad/mm

C

1

2

4

3

1.6 mm

1.6 mm

2 mm 50 mm

100 mm

200 mm

1.6 mm

φ

Fig. S.18.6

The warping displacement is zero on the axis of symmetry so that Eq. (18.5) becomes

ws = Tδ

2A

(
δOs

δ
− AOs

A

)
(i)

where

δ =
∮

ds

Gt
and δOs =

∫ s

0

ds

Gt

Since Gt = constant, Eq. (i) may be written

ws = T

2AGt

∮
ds

(∫ s
0 ds
∮

ds
− AOs

A

)

(ii)

in which
∮

ds = 2 × 200 + 100 + π × 50 = 657.1 mm

and

A = 100 × 200 + π × 502/2 = 23 927.0 mm2

Equation (ii) then becomes

ws = 4500 × 103 × 657.1

2 × 23 927.0 × 44 000

( ∫ s
0 ds

657.1
− AOs

23 927.0

)

i.e.

ws = 1.40 × 10−3
(

1.52
∫ s

0
ds − 4.18 × 102AOs

)
(iii)



Solution-2-H6739.tex 24/1/2007 9: 30 Page 238

238 Solutions Manual

In the straight walls
∫ s

0 ds and AOs are linear so that it is only necessary to calculate the
warping displacement at the corners. Thus

w3 = −w4 = 1.40 × 10−3(1.52 × 50 − 4.18 × 10−2 × 1
2 × 200 × 50) = −0.19 mm

w2 = −w1 = 1.40 × 10−3(1.52 × 200 − 4.18 × 10−2 × 1
2 × 200 × 50) − 0.19

i.e.

w2 = −w1 = −0.056 mm

In the wall 21
∫ s

0
ds = 50φ and AOs = 1

2 × 502φ

Then Eq. (iii) becomes

w21 = 1.40 × 10−3(1.52 × 50φ − 4.18 × 10−2 × 1
2 × 502φ) − 0.056

i.e.

w21 = 0.033φ − 0.056 (iv)

Thus w21 varies linearly with φ and when φ = π/2 the warping displacement should
be zero. From Eq. (iv), when φ = π/2, w21 = −0.004 mm; the discrepancy is due to
rounding off errors.

S.18.7

Suppose the mass density of the covers is ρa and of the webs ρb. Then

ρa = k1Ga ρb = k1Gb

Let W be the weight/unit span. Then

W = 2ataρag + 2btbρbg

so that, substituting for ρa and ρb

W = 2k1g(ataGa + btbGb) (i)

The torsional stiffness may be defined as T /(dθ/dz) and from Eq. (8.4)

dθ

dz
= T

4a2b2

(
2a

Gata
+ 2b

Gbtb

)
(ii)

Thus, for a given torsional stiffness, dθ/dz = constant, i.e.

a

Gata
+ b

Gbtb
= constant = k2 (iii)
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Let tb/ta = λ. Equation (iii) then becomes

ta = 1

k2

(
a

Ga
+ b

λGb

)

and substituting for ta in Eq. (i)

W = 2k1gta(aGa + λbGb) = 2
k1

k2
g

(
a2 + b2 + abGa

λGb
+ λabGb

Ga

)

For a maximum

dW

dλ
= 0

i.e.

λ2 =
(

Ga

Gb

)2

from which

λ = Ga

Gb
= tb

ta

For the condition Gata = Gbtb knowing that a and b can vary. Eq. (i) becomes

W = 2k1Gatag(a + b) (iv)

From Eq. (ii), for constant torsional stiffness

a + b

a2b2 = constant = k3 (v)

Let b/a = x. Equation (iv) may then be written

W = 2k1Gataga(1 + x) (vi)

and Eq. (v) becomes

k3 = 1 + x

a3x2

which gives

a3 = 1 + x

k3x2

Substituting for a in Eq. (vi)

W = 2k1Gatag

k1/3
3

(
1 + x

x2

)1/3

(1 + x)
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i.e.

W = 2k1Gatag

k1/3
3

(1 + x)4/3

x2/3

Hence for (dW /dx) = 0

0 = 4

3

(1 + x)1/3

x2/3 − 2

3
x−5/3(1 + x)4/3

i.e.

4x − 2(1 + x) = 0

so that

x = 1 = b/a

S.18.8

The maximum shear stress in the section is given by Eq. (18.13) in which, from
Eqs. (18.11)

J = 2 × 23
(

20 + 15 + 25 + 25

3

)
= 453.3 mm4

Then

τmax = 50 × 103 × 2

453.3
= 220.6 N/mm2

From Eq. (18.12)

dθ

dz
= T

GJ

i.e.

dθ

dz
= 50 × 103

25 000 × 453.3
= 0.0044 rad/mm

S.18.9

The rate of twist/unit torque is given by Eq. (18.12).
i.e.

dθ

dz
= 1

GJ

where

J =
∑ st3

3
= 8

3
(2 × 25 + 2 × 61.8 + 60) = 623 mm4
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Then

dθ

dz
= 1

25 000 × 623
= 6.42 × 10−8rad/mm

S.18.10

From the second of Eqs (18.13) the maximum shear stress is given by

τmax = ± tT

J
(i)

in which J , from Eqs (18.11), is given by (see Fig. P.18.10)

J = 100 × 2.543

3
+ 2 × 38 × 1.273

3
+ 2

3

∫ 50

0

(
1.27 + 1.27

s

50

)3
ds

where the origin for s is at the corner 2 (or 5). Thus

J = 854.2 mm4

Substituting in Eq. (i)

τmax = ±2.54 × 100 × 103

854.2
= ±297.4 N/mm2

The warping distribution is given by Eq. (18.20) and is a function of the swept area, AR
(see Fig. 18.11). Since the walls of the section are straight AR varies linearly around
the cross-section. Also, the warping is zero at the mid-point of the web so that it is only
necessary to calculate the warping at the extremity of each wall. Thus

w1 = −2AR
T

GJ
= −2 × 1

2
× 25 × 50 × 100 × 103

26 700 × 854.2

= −5.48 mm = −w6 from antisymmetry

Note that pR, and therefore AR, is positive in the wall 61.

w2 = −5.48 + 2 × 1

2
× 50 × 50 × 100 × 103

26 700 × 854.2
= 5.48 mm = −w5

( pR is negative in the wall 12)

w3 = 5.48 + 2 × 1

2
× 38 × 75 × 100 × 103

26 700 × 854.2
= 17.98 mm = −w4

( pR is negative in the wall 23)
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S.18.11

The maximum shear stress in the section is given by the second of Eqs (18.13), i.e.

τmax = ± tmaxTmax

J
(i)

in which tmax = t0 and the torsion constant J is obtained using the second of Eqs (18.11).
Thus

J = 2

[
1

3

∫ a

0

( s

a
t0

)3
ds + 1

3

∫ 3a

0

( s

3a
t0

)3
ds + at3

0

3

]

In the first integral s is measured from the point 7 while in the second s is measured
from the point 1. Then

J = 4at3
0

3

Substituting in Eq. (i)

τmax = ± t0T

4at3
0/3

= ± 3T

4at2
0

The warping distribution is given by Eq. (18.19). Thus, for unit rate of twist

ws = −2AR (ii)

Since the walls are straight AR varies linearly in each wall so that it is only necessary to
calculate the warping displacement at the extremities of the walls. Further, the section
is constrained to twist about O so that w0 = w3 = w4 = 0. Then

w7 = −2 × 1
2 aa = −a2 = −w8 (pR is positive in 37)

w2 = −2 × 1
2 a2a cos 45◦ = √

2a2 = −w5 (pR is negative in 32)

w1 = √
2a2 + 2 × 1

2 a(2a sin 45◦ + a) = a2(1 + 2
√

2) = −w6 (pR is negative in 21)

S.18.12

The torsion constant J is given by the first of Eqs (18.11)
i.e.

J = 1

3
(πrt3 + 4rt3) = 2.38rt3

The maximum shear stress/unit torque is, from Eqs (18.13)

τmax = ± t

2.38rt3 = ±0.42/rt2

The warping distribution is obtained from Eq. (18.19)
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5
4

u

0 R

3
s1

2

1

s2

6

Fig. S.18.12

i.e.

w = −2AR/unit rate of twist

ln 03

AR = −1

2
r2θ

so that

w03 = r2θ

and

w3 = r2π

2
= 1.571 r2 = −w4

ln 32

AR = −πr2

4
− 1

2
s1r

and

w32 = r

2
(πr + 2s1)

Then

w2 = r

2
(πr + 2r) = 2.571 r2 = −w5

In 21

AR = − r

4
(πr + 2r) + 1

2
s2r
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which gives

w21 = − r

2
(2s2 − 5.142r)

and

w1 = +1.571r2 = −w6

With the centre of twist at 0

AR,1 = −
(

πr2

4
− r

2

2
)

− 1

2
r2 + 1

2
r2r = +0.215 r2

and

w1 = −0.43r2

Maximum shear stress is unchanged but torsional stiffness increases since the warping
is reduced.

S.18.13

The loading is equivalent to a pure torque of 1 × 25 = 25 kN/mm acting as shown in
Fig. S.18.13 together with a shear load of 1 kN acting at 2 (the shear centre).

s1

1

C

3
2

1 KN
T�25 KN mm

4

x

y

Fig. S.18.13

The maximum shear stress due to the torque is given by Eq. (18.13) in which

J = 100 × 33

3
+ 80 × 23

3
= 1113.3 mm4

Then

τmax(324) = 25 × 103 × 3

1113.3
= 67.4 N/mm2

τmax(12) = 25 × 103 × 2

1113.3
= 44.9 N/mm2
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From Eq. (18.12)

dθ

dz
= 25 × 103

25 000 × 1113.3
= 9.0 × 10−4 rad/mm

The shear flow distribution due to shear is given by Eq. (17.14) in which Sx = 0 and
Ixy = 0, i.e.

qs = − Sy

Ixx

∫ s

0
ty ds

Taking moments of area about the top flange

(100 × 3 + 80 × 2)ȳ = 80 × 2 × 40

i.e.

ȳ = 13.9 mm

Then

Ixx = 100 × 3 × 13.92 + 2 × 803

12
+ 80 × 2 × 26.12 = 252 290 mm4

Therefore

q12 = − Sy

Ixx

∫ s1

0
2(−66.1 + s1)ds1

i.e.

q12 = −7.93 × 10−3

(

66.1s1 − s2
1

2

)

(i)

From Eq. (i), q12 is a maximum when s1 = 66.1 mm. Then

q12(max) = −17.4 N/mm

and

τ12(max) = −8.7 N/mm2

Also, from Eq. (i) the shear flow at 2 in 12 = −16.6 N/mm so that the maximum shear
flow in the flange occurs at 2 and is −16.6/2 = −8.3 N/mm. Then the maximum shear
stress in the flange is −8.3/3 = −2.8 N/mm2 in the directions 32 and 42.

The maximum shear stress due to shear and torsion is then 67.4 + 2.8 = 70.2 N/mm2

on the underside of 24 at 2 or on the upper surface of 32 at 2.
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Solutions to Chapter 19 Problems

S.19.1

From Example 19.1

Ixx = 14.5 × 106 mm4

From Eq. (16.18) in which My = 0 and Ixy = 0

σz = Mx

Ixx
y

Therefore

σz = 20 × 106

14.5 × 106 y = 1.38y (i)

The Cx axis is 75 mm (see Example 19.1) from the upper wall 2367 so that, from Eq. (i),
the maximum direct stress due to bending will occur in the wall 45 where y = −125 mm.
Then

σz(max) = 1.38 × (−125) = −172.5 N/mm2 (compression)

S.19.2

2

C x200 mm

200 mm

500 mm

600 mm

100
mm

100
mm

1

8

7

100 KN

y

s3

s2

s6

s5

s4

s1O

y
9

6
5

4

3

Fig. S.19.2

Take moments of areas about 23

2(4 × 500 + 2 × 200 + 2 × 400 + 600)ȳ = 2(2 × 500 × 50 + 2 × 500 × 350

+ 2 × 400 × 200 + 2 × 200 × 200)

from which

ȳ = 168.4 mm
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Then (see Section 16.4.5)

Ixx = 4 × 5003 × 2

12

(
100

500

)2

+ 2 × 500 × 2 × 118.42 + 2 × 500 × 2 × 181.62

+ 2 × 2 × 4003

12
+ 2 × 2 × 400 × 31.62 + 2 × 2 × 2003

12

+ 2 × 2 × 200 × 31.62 + 2 × 600 × 168.42

i.e.

Ixx = 157.8 × 106 mm4

Since O lies on an axis of symmetry q at O is zero. Then, from Eq. (17.14), the ‘basic’
or ‘open section’ shear flows are

qO3 = − Sy

Ixx
t(168.4)s1

and

q3 in O3 = −Syt

Ixx
× 168.4 × 300 = −50 520

Syt

Ixx

‘Cut’ the section at mid-point of 54. Then

q94 = −Syt

Ixx

∫ s2

0
(s2 − 31.6)ds2 = −Syt

Ixx

(
s2

2

2
− 31.6s2

)

Then

q4 = −1840
Syt

Ixx

q43 = −Syt

Ixx

[∫ s3

0

(
31.6 + 100

500
s3

)
ds3 + 1840

]

which gives

q43 = −Syt

Ixx

(

31.6s3 + s2
3

10
+ 1840

)

and

q3 (in 43) = −42 640
Syt

Ixx

q36 = −Syt

Ixx

[∫ s4

0
(168.4 − s4)ds4 + 50 520 + 42 640

]
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i.e.

q36 = −Syt

Ixx

(

168.4s4 − s2
4

2
+ 93 160

)

and

q6 = −80 520
Syt

Ixx

Similarly

q65 = −Syt

Ixx

(

231.6s5 + s2
5

10
+ 80 520

)

and

q5 = 10 280
Syt

Ixx

Also

q59 = −Syt

Ixx

(

131.6s6 − s2
6

2
− 10 280

)

From Eq. (17.28)

∮
qb ds = −

∫ 300

0
qO3 ds1 −

∫ 100

0
q94 ds2 −

∫ 500

0
q43 ds3 −

∫ 400

0
q36 ds4

−
∫ 500

0
q65 ds5 −

∫ 100

0
q59 ds6

Then, substituting for qO3, etc.
∮

qb ds = −65 885 801
Syt

Ixx

Also
∮

ds = 4 × 500 + 2 × 400 + 2 × 200 + 600 = 3800

Then

qs,0 = 34 677
Syt

Ixx

Hence, the total shear flows are

qO3 = −168.4
Syt

Ixx
s1

q36 = −Syt

Ixx

(

168.4s4 − s2
4

2
+ 93 160 + 34 677

)
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and so on and at the mid-point of 36.

q = −179.4 N/mm (in direction 63)

and the shear stress is
179.4

2
= 89.7 N/mm2

S.19.3

For the closed part of the section, from Eq. (18.4)

GJ (closed) = 4A2G
∮

ds

t

= 4A2 × 25 000
2(400 + 200 + 2 × 500)

2

(i)

But

A = 1

2
(400 + 200)(5002 − 1002)1/2 × 2 = 293 938.8 mm2

Substituting in Eq. (i)

GJ (closed) = 5.4 × 1012 N mm2

From Eq. (18.11)

GJ (open) = G
∑ st3

3
= 25 000 × 600 × 23

3
= 40 × 106 N mm2

(negligible compared to GJ (closed))

Therefore

Total GJ = 5.4 × 1012 N mm2

From Eq. (18.4)

dθ

dz
= 100 × 106

5.4 × 1012 = 18.5 × 10−6 rad/mm

Then

q = T

2A
= GJ (closed)

2A

dθ

dz
= 5.4 × 1012 × 18.5 × 10−6

2 × 293 938.8

2

i.e.

q = 340 N/mm (in closed part)
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Therefore

τmax = 170 N/mm2

The maximum shear stress in the open part is, from Eqs (18.12) and (18.13)

τmax = ±25 000 × 2 × 18.5 × 10−6 = ±0.9 N/mm2

Solutions to Chapter 20 Problems

S.20.1

From either Eq. (20.1) or (20.2)

B1 = 60 × 10 + 40 × 10 + 500 × 10

6
(2 + 1) + 300 × 10

6
(2 − 1)

Sy

S

xS

x300 mm

500 mm

4 3

1 2

Fig. S.20.1(a)

i.e.

B1 = 4000 mm2 = B4

B2 = 50 × 8 + 30 × 8 + 500 × 10

6
(2 + 1) + 300 × 8

6
(2 − 1)

i.e.

B2 = 3540 mm2 = B3

Since the section is now idealized, the shear flow distribution due to an arbitrary shear
load Sy applied through the shear centre is, from Eq. (20.11), given by

qs = − Sy

Ixx

n∑

r=1

Bryr + qs,0 (i)
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in which

Ixx = 2 × 4000 × 1502 + 2 × 3540 × 1502 = 339 × 106 mm4.

‘Cut’ the section in the wall 12. Then

qb,12 = qb,43 = 0

qb,41 = − Sy

Ixx
× 4000 × (−150) = 1.77 × 10−3Sy

qb,32 = − Sy

Ixx
× 3540 × (−150) = 1.57 × 10−3Sy

Since the shear load is applied through the shear centre the rate of twist is zero and qs,0
is given by Eq. (17.28) in which

∮
ds

t
= 2 × 500

10
+ 300

10
+ 300

8
= 167.5

Then

qs,0 = − 1

167.5
Sy

(
1.57 × 10−3 × 300

8
− 1.77 × 10−3 × 300

10

)

which gives

qs,0 = −0.034 × 10−3Sy

The complete shear flow distribution is then as shown in Fig. S.20.1(b).

S

SyxS

0.034 x 10�3 Sy

0.034 x 10�3 Sy

1.804 x 10�3 Sy 1.536 x 10�3 Sy

Fig. S.20.1(b)

Taking moments about the intersection of the horizontal axis of symmetry and the
left-hand web

SyxS = 1.536 × 10−3Sy × 300 × 500 − 2 × 0.034 × 10−3Sy × 500 × 150

from which

xS = 225 mm
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S.20.2

From Eq. (20.6)

qs = − Sy

Ixx

n∑

r=1

Bryr

8

1
2 3

4

7 6

5

Sy

xS

S50 mm 40 mm

40 mm

80 mm

80 mm
50 mm

150 mm 200 mm 150 mm

Fig. S.20.2(a)

where

Ixx = 4 × 2.0 × 802 + 2 × 200 × 502 + 2 × 200 × 402

i.e.

Ixx = 8.04 × 106 mm4

Then

qs = −1.86 × 10−4
n∑

r=1

Bryr

from which

q12 = −1.86 × 10−4 × 200 × (−50) = 1.86 N/mm

q43 = −1.86 × 10−4 × 200 × (−40) = 1.49 N/mm

q32 = 1.49 − 1.86 × 10−4 × 250 × (−80) = 5.21 N/mm

q27 = 1.86 + 5.21 − 1.86 × 10−4 × 250(−80) = 10.79 N/mm.

The remaining shear flow distribution follows from symmetry; the complete distribution
is shown in Fig. S.20.2(b).

Taking moments about the mid-point of web 27

SyxS = 2(q12 × 150 × 80 − q32 × 200 × 80 − q43 × 150 × 80 − q43 × 40 × 200)

which gives

xS = −122 mm (i.e. to the left of web 27)
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1

2 3

4

8

67

Sy

xS

5

10.79

1.86

1.86

5.21

5.21

1.49

1.49

All shear flows
in N/mm

Fig. S.20.2(b)

S.20.3

The shear centre, S, lies on the horizontal axis of symmetry, the x axis. Therefore
apply an arbitrary shear load, Sy, through S (Fig. S.20.3(a)). The internal shear flow
distribution is given by Eq. (20.11) which, since Ixy = 0, Sx = 0 and tD = 0, simplifies to

qs = − Sy

Ixx

n∑

r=1

Bryr + qs,0 (i)

12

3 41.0 mm
0.8 mm

0.8 mm

500 mm

1.2 mm 100 mm

100 mm
S

x

SyξS

Fig. S.20.3(a)

in which

Ixx = 2 × 450 × 1002 + 2 × 550 × 1002 = 20 × 106 mm4

Equation (i) then becomes

qs = −0.5 × 10−7Sy

n∑

r=1

Bryr + qs,0 (ii)

The first term on the right-hand side of Eq. (ii) is the qb distribution (see Eq. (17.16)).
To determine qb ‘cut’ the section in the wall 23. Then

qb,23 = 0

qb,34 = −0.5 × 10−7Sy × 550 × (−100) = 2.75 × 10−3Sy = qb,12

qb,41 = 2.75 × 10−3Sy − 0.5 × 10−7Sy × 450 × (−100) = 5.0 × 10−3Sy
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The value of shear flow at the ‘cut’ is obtained using Eq. (17.28) which, since
G = constant becomes

qs,0 = −
∮

(qb/t)ds
∮

ds/t
(iii)

In Eq. (iii)
∮

ds

t
= 580

1.0
+ 2 × 500

0.8
+ 200

1.2
= 1996.7

Then, from Eq. (iii) and the above qb distribution

qs,0 = − Sy

1996.7

(
2 × 2.75 × 10−3 × 500

0.8
+ 5.0 × 10−3 × 200

1.2

)

i.e.

qs,0 = −2.14 × 10−3Sy

The complete shear flow distribution is shown in Fig. S.20.3(b).

12

3 4

S

Syξ

0.61 x 10�3 Sy

0.61 x 10�3 Sy

2.86 x 10�3 Sy

2.14 x 10�3 Sy

O

S

Fig. S.20.3(b)

Now taking moments about O in Fig. S.20.3(b) and using the result of Eq. (20.10)

SyξS = 2 × 0.61 × 10−3Sy × 500 × 100 + 2.86 × 10−3Sy × 200 × 500

− 2.14 × 10−3Sy × 2(135 000 − 500 × 200)

which gives

ξS = 197.2 mm

S.20.4

The x axis is an axis of symmetry so that Ixy = 0, also the shear centre, S, lies on this
axis. Apply an arbitrary shear load, Sy, through S. The internal shear flow distribution
is then given by Eq. (20.11) in which Sx = 0 and Ixy = 0. Thus

qs = − Sy

Ixx

(∫ s

0
tDy ds +

n∑

r=1

Bryr

)

+ qs,0 (i)
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in which from Fig. S.20.4

Ixx = 4 × 100 × 402 + 2 × 0.64 × 240 × 402 + 0.36 × 803

12
+ 0.64 × 803

12

i.e.

Ixx = 1.17 × 106 mm4

S

Fig. S.20.4

‘Cut’ the section at O. Then, from the first two terms on the right-hand side of Eq. (i)

qb,O1 = − Sy

Ixx

∫ s1

0
0.64s1 ds1

i.e.

qb,O1 = −0.27 × 10−6Sys2
1 (ii)

and

qb,1 = −4.32 × 10−4Sy

Also

qb,12 = − Sy

Ixx

(∫ s2

0
0.64 × 40 ds2 + 100 × 40

)
− 4.32 × 10−4Sy

i.e.

qb,12 = −10−4Sy(0.22s2 + 38.52) (iii)

whence

qb,2 = −91.32 × 10−4Sy

Finally

qb,23 = − Sy

Ixx

[∫ s3

0
0.36(40 − s3)ds3 + 100 × 40

]
− 91.32 × 10−4Sy
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i.e.

qb,23 = −10−4Sy(0.12s3 − 0.15 × 10−2s2
3 + 125.52) (iv)

The remaining qb distribution follows from symmetry. From Eq. (17.27)

qs,0 = −
∮

(qb/t)ds
∮

ds/t
(v)

in which
∮

ds

t
= 80

0.64
+ 2 × 240

0.64
+ 80

0.36
= 1097.2

Now substituting in Eq. (v) for qb,O1, qb,12 and qb,23 from Eqs (ii)–(iv), respectively

qs,0 = 2 × 10−4Sy

1097.2

[∫ 40

0

0.27 × 10−2

0.64
s2

1 ds1 +
∫ 240

0

1

0.64
(0.22s2 + 38.52)ds2

+
∫ 40

0

1

0.64
(0.12s3 − 0.15 × 10−2s2

3 + 125.52)ds3

]

from which

qs,0 = 70.3 × 10−4Sy

The complete shear flow distribution is then

qO1 = −10−4Sy(0.27 × 10−2s2
1 − 70.3) (vi)

q12 = q34 = −10−4Sy(0.22s2 − 31.78) (vii)

q23 = −10−4Sy(0.12s3 − 0.15 × 10−2s2
3 − 55.22) (viii)

Taking moments about the mid-point of the wall 23

SyξS = 2

[∫ 40

0
qO1 × 240 ds1 +

∫ 240

0
q12 × 40 ds2

]
(ix)

Substituting for qO1 and q12 from Eqs (vi) and (vii) in Eq. (ix)

SyξS = −2 × 10−4Sy

[∫ 40

0
(0.27 × 10−2s2

1 − 70.3) × 240 ds1

+
∫ 240

0
(0.22s2 − 31.78) × 40 ds2

]

from which

ξS = 142.5 mm
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S.20.5

Referring to Fig. S.20.5(a) the x axis of the beam cross-section is an axis of symmetry
so that Ixy = 0. Further, Sy at the end A is equal to −4450 N and Sx = 0. The total
deflection, 	, at one end of the beam is then, from Eqs (20.17) and (20.19)

	 =
∫

L

Mx,1Mx,0

EIxx
dz +

∫

L

(∫

sect

q0q1

Gt
ds

)
dz (i)

in which q0, from Eqs (20.20) and (20.11) is given by

q0 = −Sy,0

Ixx

n∑

r=1

Bryr + qs,0 (ii)

1

23

4

S

100 mm

100 mm

75 mm

75 mm

250 mm

(a)

300 mm

4450 N

x

5

6

A
B C

(b)

D

4450 N

1250 mm 500 mm 1250 mm

4450 N

RB RC

z

Fig. S.20.5

and

q1 = q0

4450
Since the booms carrying all the direct stresses, Ixx in Eq. (i) is, from Fig. S.20.5(a)

Ixx = 2 × 650 × 1002 + 2 × 650 × 752 + 2 × 1300 × 1002 = 46.3 × 106 mm4

Also, from Fig. S.20.5(b) and taking moments about C

RB × 500 − 4450 × 1750 − 4450 × 1250 = 0
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from which

RB = 26 700 N

Therefore in AB

Mx,0 = 4450z Mx,1 = z

and in BC

Mx,0 = 33.4 × 106 − 22 250z Mx,1 = 7500 − 5z

Thus the deflection, 	M, due to bending at the end A of the beam is, from the first term
on the right-hand side of Eq. (i)

	M = 1

EIxx

{∫ 1250

0
4450z2 dz +

∫ 1500

1250
4450(7500 − 5z)2dz

}

i.e.

	M = 4450

69 000 × 46.3 × 106

{[
z3

3

]1250

0
− 1

15
[(7500 − 5z)3]1500

1250

}

from which

	M = 1.09 mm

Now ‘cut’ the beam section in the wall 12. From Eq. (20.11), i.e.

qs = − Sy

Ixx

n∑

r=1

Bryr + qs,0 (iii)

qb,12 = 0

qb,23 = − Sy

Ixx
× 1300 × 100 = −130 000

Sy

Ixx

qb,34 = −130 000
Sy

Ixx
− Sy

Ixx
× 650 × 100 = −195 000

Sy

Ixx

qb,16 = − Sy

Ixx
× 650 × 75 = −48 750

Sy

Ixx

The remaining distribution follows from symmetry. The shear load is applied through
the shear centre of the cross-section so that dθ/dz = 0 and qs,0 is given by Eq. (17.28), i.e.

qs,0 = −
∮

qb ds
∮

ds
(t = constant)

in which
∮

ds = 2 × 300 + 2 × 250 + 2 × 100 + 2 × 75 = 1450 mm
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i.e.

qs,0 = − 2Sy

1450Ixx
(−130 000 × 250 − 195 000 × 100 + 48 750 × 75)

from which

qs,0 = 66 681Sy/Ixx

Then

q12 = 66 681Sy/Ixx

q23 = −63 319Sy/Ixx

q34 = −128 319Sy/Ixx

q16 = −115 431Sy/Ixx

Therefore the deflection, 	S, due to shear is, from the second term in Eq. (i)

	S =
∫

L

(∫

sect

q0q1

Gt
ds

)
dz

i.e.

	S =
∫

L

{
2

Sy,0Sy,1

GtI2
xx

(115 4312 × 75 + 66 6812 × 300 + 63 3192 × 250

+ 128 3192 × 100)

}
dz

Thus

	S =
∫

L
2

Sy,0Sy,1 × 4.98 × 1012

26 700 × 2.5 × (46.3 × 106)2 dz =
∫

L
6.96 × 10−8Sy,0Sy,1 dz

Then

	S =
∫ 1250

0
6.96 × 10−8 × 4450 × 1 dz +

∫ 1500

1250
6.96 × 10−8 × 22 250 × 5 dz

from which

	S = 2.32 mm

The total deflection, 	, is then

	 = 	M + 	S = 1.09 + 2.32 = 3.41 mm
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S.20.6

At any section of the beam the applied loading is equivalent to bending moments in
vertical and horizontal planes, to vertical and horizontal shear forces through the shear
centre (the centre of symmetry C) plus a torque. However, only the vertical deflection
of A is required so that the bending moments and shear forces in the horizontal plane
do not contribute directly to this deflection. The total deflection is, from Eqs (20.14),
(20.17) and (20.19)

	 =
∫

L

T0T1

GJ
dz +

∫

L

Mx,1Mx,0

EIxx
dz +

∫

L

(∫

sect

q0q1

Gt
ds

)
dz (i)

Fig. S.20.6

Referring to Fig. S.20.6 the vertical force/unit length on the beam is

1.2p0
c

2
+ p0

c

2
+ 0.8p0

c

2
− p0

c

2
= p0c (upwards)

acting at a distance of 0.2c to the right of the vertical axis of symmetry. Also the
horizontal force/unit length on the beam is

1.2p0
t

2
+ p0

t

2
+ 0.8p0

t

2
− p0

t

2
= p0t

acting to the right and at a distance 0.2t above the horizontal axis of symmetry. Thus,
the torque/unit length on the beam is

p0c × 0.2c − p0t × 0.2t = 0.2p0(c2 − t2)

acting in an anticlockwise sense. Then, at any section, a distance z from the built-in
end of the beam

T0 = 0.2p0(c2 − t2)(L − z) T1 = −1
c

2
(unit load acting upwards at A)
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Comparing Eqs (3.12) and (18.4)

J = 4A2
∮

ds

t

i.e.

J = 4

(
2

t

2

c

2

)2/2a

t0
= t2c2t0

2a

Then
∫ L

0

T0T1

GJ
dz = −

∫ L

0

0.1p0(c2 − t2)c

Gt2c2t0/2a
(L − z)dz = 0.1p0aL2(t2 − c2)

Gt2t0c
(ii)

The bending moment due to the applied loading at any section a distance z from the
built-in end is given by

Mx,0 = −p0c

2
(L − z)2 also Mx,1 = −1(L − z)

Thus
∫ L

0

Mx,1Mx,0

EIxx
dz = p0c

2EIxx

∫ L

0
(L − z)3dz

in which

Ixx = 2
(a)3t0 sin2 α

12
= a3t0

6

(
t/2

a/2

)2

= at2t0
6

Then
∫ L

0

Mx,1Mx,0

EIxx
dz = 3p0c

Eat2t0

[
−1

4
(L − z)4

]L

0
= 3p0cL4

4Eat2t0
(iii)

The shear load at any section a distance z from the built-in end produced by the actual
loading system is given by

Sy,0 = p0c(L − z) also Sy,1 = 1

From Eq. (17.15), in which Ixy = 0 and Sx = 0

qs = − Sy

Ixx

∫ s

0
ty ds + qs,0 (iv)

If the origin of s is taken at the point l, qs,0 = 0 since the shear load is applied on the
vertical axis of symmetry, Eq. (iv) then becomes

qs = − Sy

Ixx

∫ s

0
ty ds
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and

q12 = − 6Sy

at2t0

∫ s

0
t0

(
− t

2
+ s sin α

)
ds

i.e.

q12 = 6Sy

at2

(
t

2
s − t

a

s2

2

)

Thus

q12 = 3Sy

at

(
s − s2

a

)

The remaining distribution follows from symmetry. Then

∫

sect

q0q1

Gt
ds = 4 × 9p0c(L − z)

Ga2t2t0

∫ a/2

0

(
s − s2

a

)2

ds

i.e.
∫

sect

q0q1

Gt
ds = 3p0ca(L − z)

5Gt2t0

Then
∫ L

0

(∫

sect

q0q1

Gt
ds

)
dz = 3p0ca

5Gt2t0

∫ L

0
(L − z)dz = 3p0caL2

10Gt2t0
(v)

Now substituting in Eq. (i) from Eqs (ii), (iii) and (v)

	 = 0.1p0aL2(t2 − c2)

Gt2t0c
+ 3p0cL4

4Eat2t0
+ 3p0caL2

10Gt2t0

i.e.

	 = p0L2

t2t0

[
a(t2 − c2)

10Gc
+ 3cL2

4Ea
+ 3ca

10G

]

Substituting the given values and taking a � c

	 = p0(2c)2

(0.05c)2t0

[
c[(0.05c)2 − c2]

4E
+ 3c(2c)2

4Ec
+ 3c2

4E

]

Neglecting the term (0.05c)2 in [(0.05c)2 − c2] gives

	 = 5600p0c2

Et0
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S.20.7

The pressure loading is equivalent to a shear force/unit length of 3bp0/2 acting in the ver-
tical plane of symmetry together with a torque = 3bp0(3b/2−b)/2 = 3b2p0/4 as shown
in Fig. S.20.7. The deflection of the beam is then, from Eqs (20.14), (20.17) and (20.19)

	 =
∫

L

T0T1

GJ
dz +

∫

L

Mx,1Mx,0

EIxx
dz +

∫

L

(∫

sect

q0q1

Gt
ds

)
dz (i)

Fig. S.20.7

Now

T0 = 3b2p0(L − z)/4 T1 = 3b/2

Also, from Eqs (3.12) and (18.4)

J = 4A2
∮

ds/t
= 4(3b2)2

8b/t
= 9b3t

2

Thus
∫

L

T0T1

GJ
dz =

∫ L

0

p0

4Gt
(L − z)dz = p0L2

8Gt
(ii)

Also

Mx,0 = 3bp0(L − z)2/4 Mx,1 = 1(L − z)

Then
∫

L

Mx,1Mx,0

EIxx
dz =

∫ L

0

3bp0

4EIxx
(L − z)3dz

in which

Ixx = 2 × 3bt × (b/2)2 + 2tb3/12 = 5b3t/3
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Thus
∫

L

Mx,1Mx,0

EIxx
dz = 9p0

20Eb2t

∫ L

0
(L − z)3dz = 9p0L4

80Eb2t
(iii)

Further

Sy,0 = −3bp0

2
(L − z) Sy,1 = −1

Taking the origin for s at 1 in the plane of symmetry where qs,0 = 0 and since Ixy = 0
and Sx = 0, Eq. (17.15) simplifies to

qs = − Sy

Ixx

∫ s

0
ty ds

Then

q12 = − 3Sy

5b3t

∫ s1

0
t

(
b

2

)
ds1

i.e.

q12 = − 3Sy

10b2 s1

from which

q2 = − 9Sy

20b

Also

q23 = − Sy

Ixx

∫ s2

0
t

(
b

2
− s2

)
ds2 − 9Sy

20b

i.e.

q23 = −3Sy

5b3

(
b

2
s2 − s2

2

2

)

− 9Sy

20b

Hence

q23 = − 3Sy

20b

(

2
s2

b
− 2

s2
2

b2 + 3

)

Then

∫

sect

q0q1

Gt
ds = 4

∫ 3b/2

0

3bp0(L − z)

2Gt

(
3

10b2

)2

s2
1ds1

+ 2
∫ b

3b/2

3bp0(L − z)

2Gt

(
3

20

)2
(

2
s2

b
− 2

s2
2

b2 + 3

)2

ds2
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which gives
∫

sect

q0q1

Gt
ds = 1359p0

1000Gt
(L − z)

Hence
∫ L

0

(∫

sect

q0q1

Gt
ds

)
dz = 1359p0

1000Gt

∫ L

0
(L − z) dz = 1359p0L2

2000Gt
(iv)

Substituting in Eq. (i) from Eqs (ii)–(iv) gives

	 = p0L2

8Gt
+ 9p0L4

80Eb2t
+ 1359p0L2

2000Gt

Thus

	 = p0L2

t

(
9L2

80Eb2 + 1609

2000G

)

Solutions to Chapter 21 Problems

S.21.1

Referring to Fig. P.21.1 the bending moment at section 1 is given by

M1 = 15 × 12

2
= 7.5 kN m

Thus

Pz,U = −Pz,L = 7.5

300 × 10−3 = 25 kN

Also

Py,U = 0 and Py,L = −25 × 100

1 × 103 = −2.5 kN (see Eqs (21.1))

Then

PU =
√

P2
z,U + P2

y,U = 25 kN (tension)

PL = −
√

252 + 2.52 = −25.1 kN (compression)

The shear force at section 1 is 15 × 1 = 15 kN. This is resisted by Py,L, the shear
force in the web. Thus

shear in web = 15 − 2.5 = 12.5 kN
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Hence

q = 12.5 × 103

300
= 41.7 kN/mm

At section 2 the bending moment is

M2 = 15 × 22

2
= 30 kN m

Hence

Pz,U = −Pz,L = 30

400 × 10−3 = 75 kN

Also

Py,U = 0 and Py,L = −75 × 200

2 × 103 = −7.5 kN

Then

PU = 75 kN (tension)

and

PL = −
√

752 + 7.52 = −75.4 kN (compression)

The shear force at section 2 is 15 × 2 = 30 kN. Hence the shear force in the web
= 30 − 7.5 = 22.5 kN which gives

q = 22.5 × 103

400
= 56.3 N/mm

S.21.2

The bending moment at section 1 is given by

M = 15 × 12

2
= 7.5 kN m

The second moment of area of the beam cross-section at section 1 is

Ixx = 2 × 500 × 1502 + 2 × 3003

12
= 2.7 × 107 mm4

The direct stresses in the flanges in the z direction are, from Eq. (16.18)

σz,U = −σz,L = 7.5 × 106 × 150

2.7 × 107 = 41.7 N/mm2

Then

Pz,U = 41.7 × 500 = 20 850 N = PU (tension)
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Also

Pz,L = −20 850 N (compression)

Hence

Py,L = −20 850 × 100

1 × 103 = −2085 N (compression)

Therefore, the shear force in the web at section 1 is given by

Sy = −15 × 1 × 103 + 2085 = −12 915 N

Fig. S.21.2

The shear flow distribution is obtained using Eq. (21.6). Thus, referring to Fig. S.21.2

q = 12 915

2.7 × 107

[∫ s

0
2(150 − s)ds + 500 × 150

]

Hence

q = 4.8 × 10−4(300s − s2 + 75 000)

The maximum value of q occurs when s = 150 mm, i.e.

qmax = 46.8 N/mm

S.21.3

The beam section at a distance of 1.5 m from the built-in end is shown in Fig. S.21.3.
The bending moment, M, at this section is given by

M = −40 × 1.5 = −60 kN m

Since the x axis is an axis of symmetry Ixy = 0; also My = 0. The direct stress
distribution is then, from Eq. (16.18)

σz = Mx

Ixx
y (i)
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1

2

3

4

5

6

C
225 mm

250 mm250 mm

100 mm

y

x

SF in panels = 26 669.8 N

Fig. S.21.3

in which Ixx = 2 × 1000 × 112.52 + 4 × 500 × 112.52 = 50.63 × 106 mm4. Then, from
Eq. (i), the direct stresses in the flanges and stringers are

σz = ±60 × 106 × 112.5

50.63 × 106 = ±133.3 N/mm2

Therefore

Pz,1 = −Pz,2 = −133.3 × 1000 = −133 300 N

and

Pz,3 = Pz,5 = −Pz,4 = −Pz,6 = −133.3 × 500 = −66 650 N

From Eq. (21.9)

Py,1 = Py,2 = 133 300 × 75

3 × 103 = 3332.5 N

and

Py,3 = Py,4 = Py,5 = Py,6 = 66 650 × 75

3 × 103 = 1666.3 N

Thus the total vertical load in the flanges and stringers is

2 × 3332.5 + 4 × 1666.3 = 13 330.2 N

Hence the total shear force carried by the panels is

40 × 103 − 13 330.2 = 26 669.8 N
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The shear flow distribution is given by Eq. (20.11) which, since Ixy = 0, Sx = 0 and
tD = 0 reduces to

qs = − Sy

Ixx

n∑

r=1

Bryr + qs,0

i.e.

qs = − 26 669.8

50.63 × 106

n∑

r=1

Bryr + qs,0

or

qs = −5.27 × 10−4
n∑

r=1

Bryr + qs,0 (ii)

From Eq. (ii)

qb,13 = 0

qb,35 = −5.27 × 10−4 × 500 × 112.5 = −29.6 N/mm

qb,56 = −29.6 − 5.27 × 10−4 × 500 × 112.5 = −59.2 N/mm

qb,12 = −5.27 × 10−4 × 1000 × 112.5 = −59.3 N/mm

The remaining distribution follows from symmetry. Now taking moments about the
point 2 (see Eq. (17.17))

26 669.8 × 100 = 59.2 × 225 × 500 + 29.6 × 250 × 225 + 2 × 500 × 225qs,0

from which

qs,0 = −36.9 N/mm (i.e. clockwise)

Then

q13 = 36.9 N/mm = q42

q35 = 36.9 − 29.6 = 7.3 N/mm = q64

q65 = 59.2 − 36.9 = 22.3 N/mm

q21 = 36.9 + 59.3 = 96.2 N/mm

Finally

P1 = −
√

P2
z,1 + P2

y,1 = −
(√

133 3002 + 3332.52
)

× 10−3 = −133.3 kN = −P2

P3 = −
√

P2
z,3 + P2

y,3 = −
(√

66 6502 + 1666.32
)

× 10−3

= −66.7 kN = P5 = −P4 = −P6
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Solutions to Chapter 22 Problems

S.22.1

The direct stresses in the booms are obtained from Eq. (16.18) in which Ixy = 0 and
My = 0. Thus

σz = Mx

Ixx
y (i)

From Fig. P.22.1 the y coordinates of the booms are

y1 = −y6 = 750 mm

y2 = y10 = −y5 = −y7 = 250 + 500 sin 45◦ = 603.6 mm

y3 = y9 = −y4 = −y8 = 250 mm

Then Ixx = 2 × 150(7502 + 2 × 603.62 + 2 × 2502) = 4.25 × 108 mm4. Hence, from
Eq. (i)

σz = 100 × 106

4.25 × 108 y

i.e.

σz = 0.24y

Thus

Boom 1 2 10 3 9 4 8 5 7 6
σz(N/mm2) 180.0 144.9 60.0 −60.0 −144.9 −180.0

From Eq. (20.11)

qs = − Sy

Ixx

n∑

r=1

Bryr + qs,0

i.e.

qs = −50 × 103 × 150

4.25 × 108

∑
yr + qs,0

so that

qs = −0.018yr + qs,0 (ii)

‘Cut’ the wall 89. Then, from the first term on the right-hand side of Eq. (ii)

qb,89 = 0

qb,9 10 = −0.018 × 250 = −4.5 N/mm

qb,10 1 = −4.5 − 0.018 × 603.6 = −15.4 N/mm
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qb,12 = −15.4 − 0.018 × 750 = −28.9 N/mm

qb,23 = −28.9 − 0.018 × 603.6 = −39.8 N/mm

qb,34 = −39.8 − 0.018 × 250 = −44.3 N/mm

The remaining qb distribution follows from symmetry and the complete distribution
is shown in Fig. S.22.1. The moment of a constant shear flow in a panel about a specific
point is given by Eq. (20.10). Thus, taking moments about C (see Eq. (17.17))

50 × 103 × 250 = 2(−2 × 4.5A9 10 − 2 × 15.4A10 1 − 2 × 28.9A12 − 2 × 39.8A23

− 2 × 44.3A34) − 2Aqs,0 (iii)

in which

A34 = 1
2 × 500 × 250 = 62 500 mm2

A23 = A9 10 = 62 500 + 45
360 × π × 5002 − 1

2 × 250 × 353.6 = 116 474.8 mm2

A12 = A10 1 = 1
2 × 250 × 353.6 + 45

360 × π × 5002 = 142 374.8 mm2

1

2

3

4

5

6

7

8

9

10

250
mm

50 kN

15.4

4.5

28.9

39.8

44.3

39.8

28.915.4

4.5

C

A12

A23

A34

A9 10

A89

A10 1

y

x

Shear flows
in N/mm

Fig. S.22.1

Also the total area, A, of the cross-section is

A = 500 × 1000 + π × 5002 = 1 285 398.2 mm2

Eq. (iii) then becomes

50 × 103 × 250 = −2 × 2(4.5 × 116 474.8 + 15.4 × 142 374.8 + 28.9 × 142 374.8

+39.8 × 116 474.8 + 44.3 × 62 500) − 2 × 1 285 398.2qs,0
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from which

qs,0 = −27.0 N/mm (clockwise)

Then

q89 = 27.0 N/mm, q9 10 = q78 = 22.5 N/mm, q10 1 = q67 = 11.6 N/mm,

q21 = q65 = 1.9 N/mm, q32 = q54 = 12.8 N/mm, q43 = 17.3 N/mm

Solutions to Chapter 23 Problems

S.23.1

The beam section is unsymmetrical and Mx = −120 000 Nm, My = −30 000 Nm.
Therefore, the direct stresses in the booms are given by Eq. (16.18), i.e.

σz =
(

MyIxx − MxIxy

IxxIyy − I2
xy

)

x +
(

MxIyy − MyIxy

IxxIyy − I2
xy

)

y (i)

C

1 2
3

4

5678

240 mm
180 mm

400 mm 400 mm 400 mm

xx
y

y

Fig. S.23.1

In Fig. S.23.1 x̄ = 600 mm by inspection. Also, taking moments of area about the
line of the bottom booms

(4 × 1000 + 4 × 600)ȳ = 1000 × 240 + 1000 × 180 + 600 × 220 + 600 × 200

from which

ȳ = 105 mm

Then

Ixx = 2 × 1000 × 1052 + 2 × 600 × 1052 + 1000 × 1352 + 1000 × 752 + 600 × 1152

+ 600 × 952 = 72.5 × 106 mm4

Iyy = 4 × 1000 × 6002 + 4 × 600 × 2002 = 1536.0 × 106 mm4

Ixy = 1000[(−600)(135) + (600)(75)] + 600[(−200)(115) + (200)(95)]

= −38.4 × 106 mm4
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Table S.23.1

Boom 1 2 3 4 5 6 7 8

x (mm) −600 −200 200 600 600 200 −200 −600
y (mm) 135 115 95 75 −105 −105 −105 −105
σz (N/mm2) −190.7 −181.7 −172.8 −163.8 140.0 164.8 189.6 214.4

Note that the sum of the contributions of booms 5, 6, 7 and 8 to Ixy is zero. Substituting
for Mx, My, Ixx, etc. in Eq. (i) gives

σz = −0.062x − 1.688y (ii)

The solution is completed in Table S.23.1.

S.23.2

From Eq. (23.6) for Cell I

dθ

dz
= 1

2AIG
[qI(δ21 + δ16 + δ65 + δ52) − qIIδ52] (i)

and for Cell II

dθ

dz
= 1

2AIIG
[−qIδ52 + qII(δ32 + δ25 + δ54 + δ43)] (ii)

In Eqs (i) and (ii)

AI = 7750 + (250 + 600) × 500/2 = 220 250 mm2

AII = 6450 + (150 + 600) × 920/2 = 351 450 mm2

δ21 = (
√

2502 + 5002)/1.63 = 343.0 δ16 = 300/2.03 = 147.8

δ65 = (
√

1002 + 5002)/0.92 = 554.2 δ52 = 600/2.54 = 236.2

δ54 = (
√

2502 + 9202)/0.92 = 1036.3 δ43 = 250/0.56 = 446.4

δ32 = (
√

2002 + 9202)/0.92 = 1023.4

Substituting these values in Eqs (i) and (ii) gives, for Cell I

dθ

dz
= 1

2 × 220 250G
(1281.2qI − 236.2qII) (iii)

and for Cell II

dθ

dz
= 1

2 × 351 450G
(−236.2qI + 2742.3qII) (iv)
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Equating Eqs (iii) and (iv) gives

qII = 0.73qI (v)

Then, in Cell I

τmax = τ65 = qI

0.92
= 1.087qI

and in Cell II

τmax = qII

0.56
= 1.304qI

In the wall 52

τ52 = qI − qII

2.54
= 0.106qI

Therefore

τmax = 1.304qI = 140 N/mm2

which gives

qI = 107.4 N/mm

and, from Eq. (v)

qII = 78.4 N/mm

Substituting for qI and qII in Eq. (23.4)

T = (2 × 220 250 × 107.4 + 2 × 351 450 × 78.4) × 10−3

i.e.

T = 102 417 Nm

From Eq. (iii) (or Eq. (iv))

dθ

dz
= 1

2 × 220 250 × 26 600
(1281.2 × 107.4 − 236.2 × 78.4)

i.e.

dθ

dz
= 1.02 × 10−5 rad/mm

Hence

θ = 1.02 × 10−5 × 2500 ×
(

180

π

)
= 1.46◦

The torsional stiffness is obtained from Eq. (3.12), thus

GJ = T

(dθ/dz)
= 102 417 × 103/(1.02 × 10−5) = 10 × 1012 Nmm2/rad
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S.23.3

From Eq. (23.6) for Cell I

dθ

dz
= 1

2AIG
[qI(δ45◦ + δ45i ) − qIIδ45i ] (i)

For Cell II

dθ

dz
= 1

2AIIG
[−qIδ45i + qII(δ34 + δ45i + δ56 + δ63) − qIIIδ63] (ii)

For Cell III

dθ

dz
= 1

2AIIIG
[−qIIδ63 + qIII(δ23 + δ36 + δ67 + δ72) − qIVδ72] (iii)

For Cell IV

dθ

dz
= 1

2AIVG
[−qIIIδ72 + qIV(δ27 + δ78 + δ81 + δ12)] (iv)

where

δ12 = δ78 = 762/0.915 = 832.8 δ23 = δ67 = δ34 = δ56 = 812/0.915 = 887.4

δ45i = 356/1.220 = 291.8 δ45◦ = 1525/0.711 = 2144.9

δ36 = 406/1.625 = 249.8 δ72 = 356/1.22 = 291.8 δ81 = 254/0.915 = 277.6

Substituting these values in Eqs (i)–(iv)

dθ

dz
= 1

2 × 161 500G
(2436.7qI − 291.8qII) (v)

dθ

dz
= 1

2 × 291 000G
(−291.8qI + 2316.4qII − 249.8qIII) (vi)

dθ

dz
= 1

2 × 291 000G
(−249.8qII + 2316.4qIII − 291.8qIV) (vii)

dθ

dz
= 1

2 × 226 000G
(−291.8qIII + 2235.0qIV) (viii)

Also, from Eq. (23.4)

T = 2(161 500qI + 291 000qII + 291 000qIII + 226 000qIV) (ix)

Equating Eqs (v) and (vi)

qI − 0.607qII + 0.053qIII = 0 (x)

Now equating Eqs (v) and (vii)

qI − 0.063qII − 0.528qIII + 0.066qIV = 0 (xi)
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Equating Eqs (v) and (viii)

qI − 0.120qII + 0.089qIII − 0.655qIV = 0 (xii)

From Eq. (ix)

qI + 1.802qII + 1.802qIII + 1.399qIV = 3.096 × 10−6T (xiii)

Subtracting Eq. (xi) from (x)

qII − 1.068qIII + 0.121qIV = 0 (xiv)

Subtracting Eq. (xii) from (x)

qII + 0.074qIII − 1.345qIV = 0 (xv)

Subtracting Eq. (xiii) from (x)

qII + 0.726qIII + 0.581qIV = 0 (xvi)

Now subtracting Eq. (xv) from (xiv)

qIII − 1.284qIV = 0 (xvii)

Subtracting Eq. (xvi) from (xiv)

qIII + 0.256qIV = 0.716 × 10−6T (xviii)

Finally, subtracting Eq. (xviii) from (xvii)

qIV = 0.465 × 10−6T

and from Eq. (xvii)

qIII = 0.597 × 10−6T

Substituting for qIII and qIV in Eq. (viii)

dθ

dz
= 1.914 × 10−9T

G

so that

T/(dθ/dz) = 522.5 × 106G Nmm2/rad

S.23.4

In this problem the cells are not connected consecutively so that Eq. (23.6) does not
apply. Therefore, from Eq. (23.5) for Cell I

dθ

dz
= 1

2AIG
[qI(δ12U + δ23 + δ34U + δ41) − qIIδ34U − qIII(δ23 + δ41)] (i)
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For Cell II
dθ

dz
= 1

2AIIG
[−qIδ34U + qII(δ34U + δ34L ) − qIIIδ34L ] (ii)

For Cell III

dθ

dz
= 1

2AIIIG
[−qI(δ23 + δ41) − qIIδ34L + qIII(δ14 + δ43L + δ32 + δ21L )] (iii)

In Eqs (i)–(iii)

δ12U = 1084/1.220 = 888.5 δ12L = 2160/1.625 = 1329.2

δ14 = δ23 = 127/0.915 = 138.8 δ34U = δ34L = 797/0.915 = 871.0

Substituting these values in Eqs (i)–(iii)

dθ

dz
= 1

2 × 108 400G
(2037.1qI − 871.0qII − 277.6qIII) (iv)

dθ

dz
= 1

2 × 202 500G
(−871.0qI + 1742.0qII − 871.0qIII) (v)

dθ

dz
= 1

2 × 528 000G
(−277.6qI − 871.0qII + 2477.8qIII) (vi)

Also, from Eq. (23.4)

565 000 × 103 = 2(108 400qI + 202 500qII + 528 000qIII) (vii)

Equating Eqs (iv) and (v)

qI − 0.720qII + 0.075qIII = 0 (viii)

Equating Eqs (iv) and (vi)

qI − 0.331qII − 0.375qIII = 0 (ix)

From Eq. (vii)

qI + 1.868qII + 4.871qIII = 260.61 (x)

Now subtracting Eq. (ix) from (viii)

qII − 1.157qIII = 0 (xi)

Subtracting Eq. (x) from (viii)

qII + 1.853qIII = 100.70 (xii)

Finally, subtracting Eq. (xii) from (xi)

qIII = 33.5 N/mm
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Then, from Eq. (xi)

qII = 38.8 N/mm

and from Eq. (ix)

qI = 25.4 N/mm

Thus

q12U = 25.4 N/mm q21L = 33.5 N/mm q14 = q32 = 33.5 − 25.4 = 8.1 N/mm

q43U = 38.8 − 25.4 = 13.4 N/mm q34L = 38.8 − 33.5 = 5.3 N/mm

S.23.5

In Eq. (23.10) the qb shear flow distribution is given by Eq. (20.6) in which, since the
x axis is an axis of symmetry (Fig. S.23.5), Ixy = 0; also Sx = 0. Thus

qb = − Sy

Ixx

n∑

r=1

Bryr (i)

1
2

3

4
5

6

254 mm 406 mm

635 mm 763 mm

101 mm

101 mm

44 500 N

I II

x

Fig. S.23.5

in which

Ixx = 2 × 1290 × 1272 + 2 × 1936 × 2032 + 2 × 645 × 1012 = 214.3 × 106 mm4

Then Eq. (i) becomes

qb = − 44 500

214.3 × 106

n∑

r=1

Bryr = −2.08 × 10−4
n∑

r=1

Bryr
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‘Cut’ the walls 65 and 54. Then

qb,65 = qb,54 = 0

qb,61 = −2.08 × 10−4 × 1290 × 127 = −32.8 N/mm

qb,12 = qb,23 = 0 (from symmetry)

qb,25 = −2.08 × 10−4 × 1936(−203) = 81.7 N/mm

qb,34 = −2.08 × 10−4 × 645(−101) = 13.6 N/mm

From Eq. (23.10) for Cell I

dθ

dz
= 1

2AIG
[qs,0,I(δ56 + δ61 + δ12 + δ24) − qs,0,IIδ25 + qb,25δ25 + qb,61δ61] (ii)

For Cell II

dθ

dz
= 1

2AIIG
[−qs,0,Iδ25 + qs,0,II(δ45 + δ52 + δ23 + δ34) + qb,34δ34 + qb,52δ25] (iii)

in which

δ56 = δ12 = 647/0.915 = 707.1 δ45 = δ23 = 775/0.559 = 1386.4

δ61 = 254/1.625 = 156.3 δ52 = 406/2.032 = 199.8 δ34 = 202/1.220 = 165.6

Substituting these values in Eqs (ii) and (iii)

dθ

dz
= 1

2 × 232 000G
(1770.3qs,0,I − 199.8qs,0,II + 11 197.0) (iv)

dθ

dz
= 1

2 × 258 000G
(−199.8qs,0,I + 3138.2qs,0,II − 14 071.5) (v)

Also, taking moments about the mid-point of the web 25 and from Eq. (23.11) (or
Eq. (23.12))

0 = 13.6 × 202 × 763 − 32.8 × 254 × 635 + 2AIqs,0,I + 2AIIqs,0,II (vi)

Equating Eqs (iv) and (v)

qs,0,I − 1.55qs,0,II + 12.23 = 0 (vii)

From Eq. (vi)

qs,0,I + 1.11qs,0,II − 6.88 = 0 (viii)

Subtracting Eq. (viii) from (vii) gives

qs,0,II = 7.2 N/mm

Then, from Eq. (vii)

qs,0,I = −1.1 N/mm
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Thus

q16 = 32.8 + 1.1 = 33.9 N/mm q65 = q21 = 1.1 N/mm

q45 = q23 = 7.2 N/mm q34 = 13.6 + 7.2 = 20.8 N/mm

q25 = 81.7 − 1.1 − 7.2 = 73.4 N/mm

S.23.6

Referring to Fig. P.23.6, the horizontal x axis is an axis of symmetry so that Ixy = 0.
Further, Sx = 0 so that, from Eq. (20.6)

qb = − Sy

Ixx

n∑

r=1

Bryr (i)

in which

Ixx = 4 × 1290 × 1532 + 4 × 645 × 1532 = 181.2 × 106 mm4

Eq. (i) then becomes

qb = − 66 750

181.2 × 106

n∑

r=1

Bryr = −3.68 × 10−4
n∑

r=1

Bryr

Now, ‘cutting’ Cell I in the wall 45 and Cell II in the wall 12

qb,45 = 0 = qb,12

qb,43 = −3.68 × 10−4 × 645 × 153 = −36.3 N/mm = qb,65 (from symmetry)

qb,18 = −3.68 × 10−4 × 1290 × 153 = −72.6 N/mm

qb,78 = 0 (from symmetry)

qb,76 = −3.68 × 10−4 × 645 × (−153) = 36.3 N/mm = qb,32 (from symmetry)

qb,63 = 36.3 + 36.3 − 3.68 × 10−4 × 1290 × (−153) = 145.2 N/mm

The shear load is applied through the shear centre of the section so that the rate of
twist of the section, dθ/dz, is zero and Eq. (23.10) for Cell I simplifies to

0 = 1

2AIGREF
[qs,0,I(δ34 + δ45 + δ56 + δ63)

− qs,0,IIδ63 + qb,63δ63 + qb,34δ34 + qb,56δ56] (ii)

and for Cell II

0 = 1

2AIIGREF
[−qs,0,Iδ63 + qs,0,II(δ12 + δ23 + δ36 + δ67 + δ78 + δ81) + qb,81δ81

+ qb,23δ23 + qb,36δ36 + qb,67δ67] (iii)
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in which GREF = 24 200 N/mm2. Then, from Eq. (23.9)

t∗34 = t∗56 = 20 700

24 200
× 0.915 = 0.783 mm

t∗36 = t∗81 = t∗45 = 24 800

24 200
× 1.220 = 1.250 mm

Thus

δ34 = δ56 = 380/0.783 = 485.3

δ12 = δ23 = δ67 = δ78 = 356/0.915 = 389.1

δ36 = δ81 = 306/1.250 = 244.8

δ45 = 610/1.250 = 488.0

Eq. (ii) then becomes

1703.4qs,0,I − 244.8qs,0,II + 70 777.7 = 0

or

qs,0,I − 0.144qs,0,II + 41.55 = 0 (iv)

and Eq. (iii) becomes

−244.8qs,0,I + 2046qs,0,II − 46 021.1 = 0

or

qs,0,I − 8.358qs,0,II + 188.0 = 0 (v)

Subtracting Eq. (v) from (iv) gives

qs,0,II = 17.8 N/mm

Then, from Eq. (v)

qs,0,I = −39.2 N/mm

The resulting shear flows are then

q12 = q78 = 17.8 N/mm q32 = q76 = 36.3 − 17.8 = 18.5 N/mm

q63 = 145.2 − 17.8 − 39.2 = 88.2 N/mm

q43 = q65 = 39.2 − 36.3 = 2.9 N/mm q54 = 39.2 N/mm

q81 = 72.6 + 17.8 = 90.4 N/mm

Now taking moments about the mid-point of the web 63

66 750xS = −2 × q76 × 356 × 153 + 2 × q78 × 356 × 153 + q81 × 306 × 712

− 2 × q43 × 380 × 153 − q54 × 2(51 500 + 153 × 380) (see Eq. (20.10))

from which

xS = 160.1 mm



Solution-3-H6739.tex 24/1/2007 9: 30 Page 282

282 Solutions Manual

S.23.7

Referring to Fig. P.23.7 the horizontal x axis is an axis of symmetry so that Ixy = 0 and
the shear centre lies on this axis. Further, applying an arbitrary shear load, Sy, through
the shear centre then Sx = 0 and Eq. (20.6) simplifies to

qb = − Sy

Ixx

n∑

r=1

Bryr (i)

in which

Ixx = 2 × 645 × 1022 + 2 × 1290 × 1522 + 2 × 1935 × 1502 = 162.4 × 106 mm4

Eq. (i) then becomes

qb = −6.16 × 10−9Sy

n∑

r=1

Bryr (ii)

‘Cut’ the walls 34◦ and 23. Then, from Eq. (ii)

qb,34◦ = qb,23 = 0 = qb,45 (from symmetry)

qb,43i = −6.16 × 10−9Sy × 1935 × (−152) = 1.81 × 10−3Sy N/mm

qb,65 = −6.16 × 10−9Sy × 645 × (−102) = 0.41 × 10−3Sy N/mm = qb,21

(from symmetry)

qb,52 = 0.41 × 10−3Sy − 6.16 × 10−9Sy × 1290 × (−152) = 1.62 × 10−3Sy N/mm

Since the shear load, Sy, is applied through the shear centre of the section the rate of
twist, dθ/dz, is zero. Thus, for Cell I, Eq. (23.10) reduces to

0 = qs,0,I(δ34◦ + δ34i ) − qs,0,IIδ34i + qb,43iδ34i (iii)

and for Cell II

0 = −qs,0,Iδ43i + qs,0,II(δ23 + δ34i + δ45 + δ52) + qb,52δ52 − qb,43iδ43i (iv)

in which

δ34◦ = 1015/0.559 = 1815.7 δ34i = 304/2.030 = 149.8

δ23 = δ45 = 765/0.915 = 836.1

δ25 = 304/1.625 = 187.1

Thus Eq. (iii) becomes

1965.5qs,0,I − 149.8qs,0,II + 0.271Sy = 0
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or

qs,0,I − 0.076qs,0,II + 0.138 × 10−3Sy = 0 (v)

and Eq. (iv) becomes

−149.8qs,0,I + 2009.1qs,0,II + 319.64 × 10−4Sy = 0

or

qs,0,I − 13.411qs,0,II − 0.213 × 10−3Sy = 0 (vi)

Subtracting Eq. (vi) from (v)

13.335qs,0,II + 0.351 × 10−3Sy = 0

whence

qs,0,II = −0.026 × 10−3Sy

Then from Eq. (vi)

qs,0,I = −0.139 × 10−3Sy

Now taking moments about the mid-point of the web 43

Syxs = −2qb,21(508 × 152 + 50 × 762) + qb,52 × 304 × 762 + 2 × 258 000qs,0,II

+ 2 × 93 000qs,0,I

from which

xs = 241.4 mm

S.23.8

The direct stresses in the booms are given by the first of Eqs (16.21) in which, referring
to Fig. P.23.8, at the larger cross-section

Ixx = 2 × 600 × 1052 + 4 × 800 × 1602 = 95.2 × 106 mm4

Then, from Eq. (21.8)

Pz,r = σz,rBr = MxBr

Ixx
yr

or

Pz,r = 1800 × 103

95.2 × 106 Bryr = 1.89 × 10−2Bryr (i)

The components of boom load in the y and x directions (see Fig. 21.4(a) for the axis
system) are found using Eqs. (21.9) and (21.10). Then, choosing the intersection of
the web 52 and the horizontal axis of symmetry (the x axis) as the moment centre
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Table S.23.8

Boom Pz,r (N) δyr /δz δxr /δz Py,r (N) Px,r (N) Pr (N) ηr ξr Py,rξr Px,rηr
(mm) (mm) (N mm) (N mm)

1 1190.7 0.045 −0.12 53.6 −142.9 1200.4 590 105 31 624 −15 004.5
2 2419.2 0.060 0 145.2 0 2423.6 0 160 0 0
3 2419.2 0.060 0.18 145.2 435.5 2462.4 790 160 −114 708 69 680
4 −2419.2 −0.060 0.18 145.2 −435.5 −2462.4 790 160 −114 708 69 680
5 −2419.2 −0.060 0 145.2 0 −2423.6 0 160 0 0
6 −1190.7 −0.045 −0.12 53.6 142.9 −1200.4 590 105 31 624 −15 004.5

and defining the boom positions in relation to the moment centre as in Fig. 21.5 the
moments corresponding to the boom loads are calculated in Table S.23.8. In Table S.23.8
anticlockwise moments about the moment centre are positive, clockwise negative. Also

n∑

r=1

Px,r = 0

n∑

r=1

Py,r = 688.0 N

n∑

r=1

Py,rξr = −166 168 N mm

n∑

r=1

Px,rηr = 109 351 N mm

The shear load resisted by the shear stresses in the webs and panels is then

Sy = 12 000 − 688 = 11 312 N

‘Cut’ the walls 12, 23 and 34◦ in the larger cross-section. Then, from Eq. (20.6) and
noting that Ixy = 0

qb = − Sy

Ixx

n∑

r=1

Bryr

i.e.

qb = − 11 312

95.2 × 106

n∑

r=1

Bryr = −1.188 × 10−4
n∑

r=1

Bryr

Thus

qb,12 = qb,23 = qb,34◦ = qb,45 = qb,56 = 0

qb,61 = −1.188 × 10−4 × 600 × (−105) = 7.48 N/mm

qb,52 = −1.188 × 10−4 × 800 × (−160) = 15.21 N/mm

qb,43i = −1.188 × 10−4 × 800 × (−160) = 15.21 N/mm
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From Eq. (23.10) for Cell I

dθ

dz
= 1

2AIG
[qs,0,I(δ34◦ + δ34i ) − qs,0,IIδ34i + qb,43iδ43i ] (ii)

For Cell II

dθ

dz
= 1

2AIIG
[−qs,0,Iδ34i + qs,0,II(δ23 + δ34i + δ45 + δ52) − qs,0,IIIδ52

+ qb,52δ52 − qb,43iδ43i ] (iii)

For Cell III

dθ

dz
= 1

2AIIIG
[−qs,0,IIδ52 + qs,0,III(δ12 + δ25 + δ56 + δ61) + qb,61δ61 − qb,52δ52] (iv)

in which

δ12 = δ56 = 600/1.0 = 600 δ23 = δ45 = 800/1.0 = 800

δ34◦ = 1200/0.6 = 2000 δ34i = 320/2.0 = 160 δ52 = 320/2.0 = 160

δ61 = 210/1.5 = 140

Substituting these values in Eqs (ii)–(iv)

dθ

dz
= 1

2 × 100 000G
(2160qs,0,I − 160qs,0,II + 2433.6) (v)

dθ

dz
= 1

2 × 260 000G
(−160qs,0,I + 1920qs,0,II − 160qs,0,III) (vi)

dθ

dz
= 1

2 × 180 000G
(−160qs,0,II + 1500qs,0,III − 1384.8) (vii)

Also, taking moments about the mid-point of web 52, i.e. the moment centre (see
Eq. (23.13))

0 = qb,61 × 210 × 590 − qb,43i × 320 × 790 + 2AIqs,0,I + 2AIIqs,0,II

+ 2AIIIqs,0,III +
n∑

r=1

Px,rηr +
n∑

r=1

Py,rξr (viii)

Substituting the appropriate values in Eq. (viii) and simplifying gives

qs,0,I + 2.6qs,0,II + 1.8qs,0,III − 14.88 = 0 (ix)

Equating Eqs (v) and (vi)

qs,0,I − 0.404qs,0,II + 0.028qs,0,III + 1.095 = 0 (x)
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Equating Eqs (v) and (vii)

qs,0,I − 0.033qs,0,II − 0.386qs,0,III + 1.483 = 0 (xi)

Now subtracting Eq. (x) from (ix)

qs,0,II + 0.590qs,0,III − 5.318 = 0 (xii)

and subtracting Eq. (xi) from (ix)

qs,0,II + 0.830qs,0,III − 6.215 = 0 (xiii)

Finally, subtracting Eq. (xiii) from (xii) gives

qs,0,III = 3.74 N/mm

Then, from Eq. (xiii)

qs,0,II = 3.11 N/mm

and from Eq. (ix)

qs,0,I = 0.06 N/mm

The complete shear flow distribution is then

q12 = q56 = 3.74 N/mm q32 = q45 = 3.11 N/mm

q34◦ = 0.06 N/mm q43i = 12.16 N/mm

q52 = 14.58 N/mm q61 = 11.22 N/mm

S.23.9

Consider first the flange loads and shear flows produced by the shear load acting through
the shear centre of the wing box. Referring to Fig. S.23.9(a), in bay ① the shear load is
resisted by the shear flows q1 in the spar webs. Then

q1 = 2000

2 × 200
= 5 N/mm

Similarly in bay ②

q2 = 2000

2 × 200
= 5 N/mm

From symmetry the bending moment produced by the shear load will produce equal
but opposite loads in the top and bottom flanges. These flange loads will increase with
bending moment, i.e. linearly, from zero at the free end to

±2000 × 1000

2 × 200
= ±5000 N
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500 mm

500 mm 400 mm

200 mm

1

2

3

4

q1

q1

q2

q2

Bay  1

Bay  2

2000 N

Fig. S.23.9(a)

at the built-in end. Then, at the built-in end

P1 = P4 = −P2 = −P3 = 5000 N

Alternatively, the flange loads may be determined by considering the equilibrium of a
single flange subjected to the flange load and the shear flows in the adjacent spar webs.

Now consider the action of the applied torque in Fig. S.23.9(b). In bay ① the torque
is resisted by differential bending of the spar webs. Thus

q1 × 200 × 400 = 1000 × 103

which gives

q1 = 12.5 N/mm

The differential bending of the spar webs in bay ① induces flange loads as shown in
Fig. S.23.9(c). For equilibrium of flange 1

2P1 = 500q1 = 500 × 12.5

so that

P1 = 3125 N

Now considering the equilibrium of flange 1 in bay ②

P1 + q2 × 500 − q3 × 500 = 0

whence

q2 − q3 = −6.25 (i)
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500 mm

500 mm 400 mm

200 mm

1

2

3

4

q1

q1

q2

q2

Bay  1

Bay  2

1000 Nmq3

q3

Fig. S.23.9(b)

Bay  1

1

2

500 mm

P2

P1

P2

P1

q1

Fig. S.23.9(c)

Also, the resultant of the shear flows in the spar webs and skin panels in bay ② is
equivalent to the applied torque. Thus

2 × 2 × 1
2 × 200 × 200q2 + 2 × 2 × 1

2 × 400 × 100q3 = 1000 × 103

i.e.

q2 + q3 = 12.5 (ii)

Adding Eqs (i) and (ii) gives

q2 = 3.125 N/mm

whence

q3 = 9.375 N/mm
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The shear flows due to the combined action of the shear and torsional loads are then
as follows:

Bay ①

Spar webs: q = 12.5 − 5 = 7.5 N/mm

Bay ②

Spar webs: q = 5 − 3.125 = 1.875 N/mm

Skin panels: q = 9.375 N/mm

The flange loads are:
Bay ①

At the built-in end: P1 = 5000 − 3125 = 1875 N (tension)

At the central rib: P1 = 2500 + 3125 = 5625 N (tension)

Bay ②

At the central rib: P1 = 3625 N (tension)

At the free end: P1 = 0

Finally the shear flows on the central rib are:

On the horizontal edges: q = 9.375 N/mm

On the vertical edges: q = 7.5 + 1.875 = 9.375 N/mm

Solutions to Chapter 24 Problems

S.24.1

From the overall equilibrium of the beam in Fig. S.24.1(a)

RF = 4 kN RD = 2 kN

The shear load in the panel ABEF is therefore 4 kN and the shear flow q is given by

q1 = 4 × 103

1000
= 4 N/mm

Similarly

q2 = 2 × 103

1000
= 2 N/mm

Considering the vertical equilibrium of the length h of the stiffener BE in
Fig. S.24.1(b)

PEB + (q1 + q2)h = 6 × 103
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A CB

DEF

6 kN

2000 mm1000 mm

1000 mmq1 q2

RDRF

Fig. S.24.1(a)

B

E

6 kN

1000 mm

h

q1 q2

Fig. S.24.1(b)

where PEB is the tensile load in the stiffener at the height h, i.e.

PEB = 6 × 103 − 6h (i)

Then from Eq. (i), when h = 0, PEB = 6000 N and when h = 1000 mm. PEB = 0.
Therefore the stiffener load varies linearly from zero at B to 6000 N at E.

A

F

1000 mm

z

q1

PAB

PFE

RF

Fig. S.24.1(c)
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Consider now the length z of the beam in Fig. S.24.1(c). Taking moments about the
bottom flange at the section z

PAB × 1000 + RFz = 0

whence

PAB = −4z N

Thus PAB varies linearly from zero at A to 4000 N (compression) at B. Similarly PCB
varies linearly from zero at C to 4000 N (compression) at B.

S.24.2

Referring to Fig. P.24.2 and considering the vertical equilibrium of the stiffener CDF

8000 sin 30◦ − q1 × 200 − q2 × 200 = 0

from which

q1 + q2 = 20 (i)

Now considering the horizontal equilibrium of the stiffener ED

8000 cos 30◦ − q1 × 300 + q2 × 300 = 0

whence

q1 − q2 = 23.1 (ii)

Adding Eqs (i) and (ii)

2q1 = 43.1

i.e.

q1 = 21.6 N/mm

so that, from Eq. (i)

q2 = −1.6 N/mm

The vertical shear load at any section in the panel ABEGH is 8000 sin 30◦ = 4000 N.
Hence

400q3 = 4000

i.e.

q3 = 10 N/mm

Now consider the equilibrium of the flange ABC in Fig. S.24.2(a). At any section z
between C and B

PCB = 21.6z (iii)
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so that PCB varies linearly from zero at C to 6480 N (tension) at B. Also at any section
z between B and A

PBA = 21.6 × 300 + 10(z − 300)

A CB

10 N/mm 21.6 N/mm

300 mm 300 mm

z

Fig. S.24.2(a)

i.e.

PBA = 3480 + 10z (iv)

Thus PBA varies linearly from 6480 N (tension) at B to 9480 N (tension) at A.
Referring to Fig. S.24.2(b) for the bottom flange HGF, the flange load PFG at any

section z is given by

PFG = 1.6z (v)

GH F

10 N/mm 1.6 N/mm

300 mm 300 mm

z

Fig. S.24.2(b)

Thus PFG varies linearly from zero at F to 480 N (tension) at G. Also at any section z
between G and H

PGH + 10(z − 300) − 1.6 × 300 = 0

i.e.

PGH = 3480 − 10z (vi)

Hence PGH varies linearly from 480 N (tension) at G to −2520 N (compression) at H.
The forces acting on the stiffener DE are shown in Fig. S.24.2(c). At any section a

distance z from D

PDE + 21.6z + 1.6z − 8000 cos 30◦ = 0

i.e.

PDE = −23.2z + 6928.2 (vii)
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E

1.6 N/mm

300 mm

z

21.6 N/mm

30°

8000 N

D

Fig. S.24.2(c)

Therefore PDE varies linearly from 6928 N (tension) at D to zero at E. (The small value
of PDE at E given by Eq. (vii) is due to rounding off errors in the values of the shear
flows.)

C

F

200 mm

200 mm

30°
D

21.6 N/mm

1.6 N/mm
8000 N

h

Fig. S.24.2(d)

The forces in the stiffener CDF are shown in Fig. S.24.2(d). At any section in CD a
distance h from C the stiffener load, PCD, is given by

PCD = 21.6h (viii)

so that PCD varies linearly from zero at C to 4320 N (tension) at D. In DF

PDF + 8000 sin 30◦ + 1.6(h − 200) − 21.6 × 200 = 0

from which

PDF = 640 − 1.6h (ix)

Hence PDF varies linearly from 320 N (tension) at D to zero at F.
The stiffener BEG is shown in Fig. S.24.2(e). In BE at any section a distance h from

B

PBE + 21.6h − 10h = 0

i.e.

PBE = −11.6h (x)
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B

G

200 mm

200 mm

E10 N/mm

1.6 N/mm

h
21.6 N/mm

Fig. S.24.2(e)

PBE therefore varies linearly from zero at B to −2320 N (compression) at E. In EG

PEG − 1.6(h − 200) + 21.6 × 200 − 10h = 0

i.e.

PEG = 11.6h − 4640 (xi)

Thus PEG varies linearly from −2320 N (compression) at E to zero at G.

S.24.3

A three flange wing section is statically determinate (see Section 23.1) so that the shear
flows applied to the wing rib may be found by considering the equilibrium of the wing
rib. From Fig. S.24.3(a) and resolving forces horizontally

600q12 − 600q34 − 1200 = 0

whence

q12 − q34 = 20 (i)

Now resolving vertically and noting that q51 = q45

400q45 − 400q23 + 8000 = 0

i.e.

q45 − q23 = −20 (ii)

Taking moments about 4

q12 × 600 × 400 + 2

(
π × 2002

2
+ 1

2
× 400 × 600

)
q23 − 12 000 × 200 − 8000 × 600 = 0
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200
mm

600 mm

200 mm

200 mm

12 000 N

8000 N

12

3 4

q1 q2

q3

q12

q23

q34

q45

q51

56

Fig. S.24.3(a)

so that

q12 + 1.52q23 = 30 (iii)

Subtracting Eq. (iii) from (i) and noting that q34 = q23

−2.52q23 = −10

or

q23 = 4.0 N/mm = q34

Then from Eq. (i)

q12 = 24.0 N/mm

and from Eq. (ii)

q45 = −16.0 N/mm = q51

200 mm
400 mm

4.0 N/mm

2

3

q1

P2

P3

Fig. S.24.3(b)
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Consider the nose portion of the wing rib in Fig. S.24.3(b). Taking moments about 3

P2 × 400 − 2 × π × 2002

2
× 4.0 = 0

from which

P2 = 1256.6 N (tension)

From horizontal equilibrium

P3 + P2 = 0

whence

P3 = −1256.6 N (compression)

and from vertical equilibrium

q1 = 4.0 N/mm

From the vertical equilibrium of the stiffener 154 in Fig. S.24.3(c)

q2 × 200 + q3 × 200 − 16 × 400 = 0

200 mm

200 mm

12 000 N

1

4

q3

q2

5

16.0 N/mm

16.0 N/mm

h

Fig. S.24.3(c)

i.e.

q2 + q3 = 32 (iv)

Also, in 15 at any distance h from 1

P15 + 16h − q2h = 0

i.e.

P15 = (q2 − 16)h (v)

and in 54

P54 + 16h − q2 × 200 − q3(h − 200) = 0
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whence

P54 = 200(q2 − q3) + (q3 − 16)h (vi)

600 mm

12 000 N

q3

5
6

q2

z

Fig. S.24.3(d)

Fig. S.24.3(d) shows the stiffener 56. From horizontal equilibrium

600q2 − 600q3 − 12 000 = 0

or

q2 − q3 = 20 (vii)

Adding Eqs (iv) and (vii)

2q2 = 52

i.e.

q2 = 26 N/mm

and from Eq. (iv)

q3 = 6 N/mm

Then, from Eq. (v)

P15 = 10h (viii)

and P15 varies linearly from zero at 1 to 2000 N (tension) at 5. From Eq. (vi)

P54 = 200(26 − 6) + (6 − 16)h

i.e.

P54 = 4000 − 10h (ix)

so that P54 varies linearly from 2000 N (tension) at 5 to zero at 4. Now from
Fig. S.24.3(d) at any section z

P56 + q2z − q3z − 12 000 = 0

i.e.

P56 = −20z + 12 000 (x)

Thus P56 varies linearly from 12 000 N (tension) at 5 to zero at 6.
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600 mm

12

z

24.0 N/mm

26.0 N/mm

Fig. S.24.3(e)

Consider the flange 12 in Fig. S.24.3(e). At any section a distance z from 1

P12 + 24z − 26z = 0

i.e.

P12 = 2z (xi)

Hence P12 varies linearly from zero at 1 to 1200 N (tension) at 2.
Now consider the bottom flange in Fig. S.24.3(f). At any section a distance z from 4

P43 + 6z − 4z = 0

600 mm

43

z

6.0 N/mm

4.0 N/mm

Fig. S.24.3(f)

i.e.

P43 = −2z (xii)

Thus P43 varies linearly from zero at 4 to −1200 N (compression) at 3. (The discrepancy
between P2 in 12 and P2 in 23 and between P3 in 43 and P3 in 23 is due to the rounding
off error in the shear flow q1.)

In Fig. S.24.3(g) the load in the stiffener at any section a distance h from 2 is given by

P26 + 26h + 4h = 0

i.e.

P26 = −30h (xiii)

Therefore P26 varies linearly from zero at 2 to −6000 N (compression) at 6. In 63

P63 + 26 × 200 + 4h + 6(h − 200) = 0
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2

3

200 mm

200 mm

4.0 N/mm

6.0 N/mm

h
26.0 N/mm

6

8000 N

Fig. S.24.3(g)

i.e.

P63 = −4000 − 10h (xiv)

Thus P63 varies linearly from −6000 N (compression) at 6 to −8000 N (compres-
sion) at 3.

Solutions to Chapter 25 Problems

S.25.1

From Eq. (25.5) the modulus of the bar is given by

E1 = 140 000 × 100 × 10

100 × 55
+ 3000 × 100 × 45

100 × 55

i.e.

E1 = 27 909.1 N/mm2

The overall direct stress in the longitudinal direction is given by

σ1 = 500 × 103

100 × 55
= 90.9 N/mm2

Therefore, from Eq. (25.2), the longitudinal strain in the bar is

ε1 = 90.9

27 909.1
= 3.26 × 10−3

The shortening, 	1, of the bar is then

	1 = 3.26 × 10−3 × 1 × 103 = 3.26 mm
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The major Poisson’s ratio for the bar is obtained using Eq. (25.7). Thus

νlt = 100 × 45

100 × 55
× 0.16 + 100 × 10

100 × 55
× 0.28 = 0.18

Hence the strain across the thickness of the bar is

εt = 0.18 × 3.26 × 10−3 = 5.87 × 10−4

so that the increase in thickness of the bar is

	t = 5.87 × 10−4 × 55

i.e.

	t = 0.032 mm

The stresses in the polyester and Kevlar are found from Eqs (25.3). Hence

σm(polyester) = 3000 × 3.26 × 10−3 = 9.78 N/mm2

σf (Kevlar) = 140 000 × 3.26 × 10−3 = 456.4 N/mm2

S.25.2

For each cover

bitiEZ ,i = 150 × 1.0 × 20 000 = 3 × 106

For each web

bitiEZ ,i = 100 × 2.0 × 60 000 = 12 × 106

Then
n∑

i=1

bitiEZ ,i = 2 × 3 × 106 + 2 × 12 × 106 = 30 × 106

From Eq. (25.37)

εZ = 40 × 103

30 × 106 = 1.33 × 10−3

Therefore

P(covers) = 1.33 × 10−3 × 3 × 106 = 4000 N = 4 kN

P(webs) = 1.33 × 10−3 × 12 × 106 = 16 000 N = 16 kN

Check: 2 × 4 + 2 × 16 = 40 kN
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S.25.3

Since I ′
xy = 0 and My = 0, Eq. (25.39) reduces to

σz = Ez,i
Mx

I ′
xx

Y

where

I ′
xx = 2 × 60 000 × 2.0 × 1003

12
+ 2 × 20 000 × 1.0 × 150 × 502

i.e.

I ′
xx = 3.5 × 1010 N mm2

Then

σZ = EZ ,i × 1 × 106

3.5 × 1010 Y = 2.86 × 10−5Ez,iY (i)

The direct stress will be a maximum when Y is a maximum, i.e. at the top and bottom
of the webs and in the covers. But EZ ,i for the webs is greater than that for the covers,
therefore

σZ (max) = ±2.86 × 10−5 × 60 000 × 50

i.e.

σz(max) = ±85.8 N/mm2 (at the top and bottom of the webs)

S.25.4

The second moments of area are, from Example 25.5

I ′
xx = 2.63 × 1010 N mm2

I ′
yy = 0.83 × 1010 N mm2

I ′
xy = 2.50 × 1010 N mm2

Also MX = 0 and MY = 0.5 kN m so that Eq. (25.39) becomes

σZ = EZ ,i(−3.23 × 10−5X + 3.07 × 10−5Y ) (i)

On the top flange, EZ ,i = 50 000 N/mm2 and Y = 50 mm. Then, from Eq. (i)

σZ = −1.62X + 76.75

so that at 1 where X = 50 mm

σZ ,1 = −4.3 N/mm2
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and at 2, X = 0

σZ ,2 = 76.8 N/mm2

In the web, EZ ,i = 15 000 N/mm2, X = 0 so that

σZ = 0.46Y

and at 2

σZ ,2 = 0.46 × 50 = 23.0 N/mm2

The maximum direct stress is therefore 76.8 N/mm2

S.25.5

From Example 25.5 the second moments of area are

I ′
xx = 2.63 × 1010 N mm2

I ′
yy = 0.83 × 1010 N mm2

I ′
xy = 2.50 × 1010 N mm2

C

s2

2

Y

s1

2 kN

100 mm

4 3

2.0 mm

50 mm

1.0 mm

1

X

Fig. S.25.5
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In this case SX = 0, SY = 2 kN so that Eq. (25.40) becomes

qs = −EZ ,i

(
1.15 × 10−7

∫ s

0
tiX ds − 0.382 × 10−7

∫ s

0
tiY ds

)
(i)

On the top flange, X = 50 − s1, Y = 50 mm, EZ ,i = 50 000 N/mm2. Eq. (i) then becomes

q12 = −11.5 × 10−3
∫ s1

0
(50 − s1)ds1 + 190 × 10−3

∫ s1

0
ds1

which gives

q12 = 0.00575s2
1 − 0.385s1

when s1 = 50 mm q2 = −4.875 N/mm
In the web, X = 0, Y = 50− s2, EZ ,i = 15 000 N/mm2. Eq. (i) then becomes

q23 = 5.73 × 10−4
∫ s2

0
(50 − s2)ds2 − 4.875

so that

q23 = 0.0287s2 − 2.865s2
2 − 4.875

S.25.6

Referring to Fig. P.25.6, if the origin for s is chosen on the vertical axis of symmetry
qs,0, at 0, is zero.

Also since SX = 0 and I ′
XY = 0, Eq. (25.41) reduces to

qs = −EZ ,i
SY

I ′
XX

∫ s

0
tYds

in which

I ′
XX = 2(54 100 × 200 × 252) + 2

(
17 700 × 0.5 × 503

12

)

i.e.

I ′
XX = 13.7 × 109 N mm2

Then

q01 = −54 100 × 20 × 103

13.7 × 109

∫ s1

0
1.0 × 25 ds1

i.e.

q01 = −1.98s1

so that

q1 = −1.98 × 100 = −198 N/mm
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Also

q12 = −17 700 × 20 × 103

13.7 × 109

∫ s2

0
0.5(25 − s2)ds2 − 198

which gives

q12 = 6.5 × 10−3s2
2 − 0.325s2 − 198

The remaining distribution follows from symmetry

S.25.7

The shear flow is obtained from Eq. (25.42), i.e.

q = 1 × 106

2 × 200 × 50
= 50 N/mm

The maximum shear stress will occur in the webs and is

τmax = 50

0.5
= 100 N/mm2

From Eq. (25.45)

GJ = 4 × (50 × 200)2/[2 × 200/(20 700 × 1.0) + 2 × 50/(36 400 × 0.5)]

i.e.

GJ = 1.6 × 1010 N mm2

Then

dθ

dz
= T

GJ
= 1 × 106

1.6 × 1010 = 6.25 × 10−5 rad/mm

Finally, from Eq. (25.47)

W4 = 1 × 106

2 × 200 × 50

[
100

20 700 × 1.0
−

( 1
2 × 100 × 25

)

50 × 200

(
2 × 200

20 700 × 1.0

+ 2 × 50

36 400 × 0.5

)]

i.e.

W4 = −0.086 mm
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S.25.8

From Eq. (25.48)

GJ = 2 × 16 300 × 50 × 13

3
+ 20 900 × 100 × 0.53

3
= 6.3 × 105 N mm2

Then, from Eq. (25.49)

dθ

dz
= 0.5 × 103

6.3 × 105
= 0.8 × 10−3 rad/mm

From Eq. (25.50)

τmax(flanges) = ±2 × 16 300 × 1.0

2
× 0.8 × 10−3

i.e.

τmax(flanges) = ±13.0 N/mm2

τmax(web) = ±2 × 20 900 × 0.5

2
× 0.8 × 10−3

i.e.

τmax(web) = ±8.4 N/mm2

Therefore

τmax = ±13.0 N/mm2

The warping at 1 is, from Eq. (18.19)

W1 = −2 × 1

2
× 50 × 50 × 0.8 × 10−3 = −2.0 mm

Solutions to Chapter 26 Problems

S.26.1

In Fig. S.26.1 α = tan−1 127/305 = 22.6◦. Choose O as the origin of axes then, from
Eq. (26.1), since all the walls of the section are straight, the shear flow in each wall is
constant. Then

q12 = 1.625G(254θ′ − u′) (i)

q23 = 1.625G(254θ′ cos 22.6◦ − u′ cos 22.6◦ − v′ sin 22.6◦)
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127 mm

127 mm

254 mm

254 mm

305 mm 254 mm

O

12

3

4

5 6

111 250 N

q23

q12

q52

q34

q45
q56

x

α

Fig. S.26.1

i.e.

q23 = 1.625G(234.5θ′ − 0.923u′ − 0.384v′) (ii)

q34 = 2.03G(305θ′ − v′) (iii)

q52 = 2.54Gv′ (iv)

q45 = 1.625G(234.5θ′ + 0.923u′ − 0.384v′) (v)

q56 = 1.625G(254θ′ + u′) (vi)

From symmetry q12 = q56 and q23 = q45 so that, from Eqs (i) and (vi) (or Eqs (ii) and
(v)) u′ = 0. Now resolving forces vertically

q52 × 508 − q23 × 127 − q34 × 254 − q45 × 127 = 111 250

i.e.

508q52 − 2 × 127q23 − 254q34 = 111 250

Substituting for q52, q23 and q34 from Eqs (iv), (ii) and (iii), respectively gives

v′ − 129.3θ′ = 56.63

G
(vii)

Now taking moments about O

2q12 × 254 × 254 + 2q23 × 305 × 254 + q34 × 254 × 305 = 0

Substituting for q12, q23 and q34 from Eqs (i), (ii) and (iii), respectively gives

v′ − 631.1θ′ = 0 (viii)
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Subtracting Eq. (viii) from (vii) gives

θ′ = 0.113

G
(ix)

Hence, from Eq. (viii)

v′ = 71.2

G
(x)

Now substituting for θ′ and v′ from Eqs (ix) and (x) in Eqs (i)–(vi) gives

q12 = q56 = 46.6 N/mm q32 = q54 = 1.4 N/mm

q43 = 74.6 N/mm q52 = 180.8 N/mm

Finally, from Eq. (17.11)

xR = −v′

θ′ = − 71.2

0.113
= −630.1 mm yR = u′

θ′ = 0

S.26.2

In Fig. S.26.2, α = tan−1 125/300 = 22.6◦. Also, since the walls of the beam section
are straight the shear flow in each wall, from Eq. (26.1), is constant. Choosing O, the
mid-point of the wall 42, as the origin, then, from Eq. (26.1) and referring to Fig. S.26.2.

q51 = 1.6G(250θ′ + v′) (i)

q12 = 1.2G(125θ′ − u′) (ii)

q23 = 1.0G(125θ′ cos 22.6◦ − u′ cos 22.6◦ − v′ sin 22.6◦)

12

3

4 5

125 mm

125 mm

300 mm 250 mm

O

11 000 Nm
q23

q12

q51

q45

q34
q24

x

Fig. S.26.2
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i.e.

q23 = 1.0G(115.4θ′ − 0.923u′ − 0.384v′) (iii)

q34 = 1.0G(115.4θ′ + 0.923u′ − 0.384v′) (iv)

q45 = 1.2G(125θ′ + u′) (v)

q24 = 1.6G(−v′) (vi)

From antisymmetry q12 = q45 and q23 = q34. Thus, from Eqs (ii) and (v) (or Eqs (iii)
and (iv)), u′ = 0. Resolving forces vertically

q51 × 250 − q24 × 250 − q23 × 125 − q34 × 125 = 0

i.e.

q51 − q24 − q23 = 0 (vii)

Substituting in Eq. (vii) for q51, q24 and q23 from Eqs (i), (vi) and (iii), respectively
gives

v′ + 79.41θ′ = 0 (viii)

Now taking moments about O

2q12 × 250 × 125 + 2q23 × 300 × 125 + q51 × 250 × 250 = 11 000 × 103

i.e.

q12 + 1.2q23 + q51 = 176 (ix)

Substituting in Eq. (ix) for q12, q23 and q51 from Eqs (ii), (iii) and (i), respectively gives

v′ + 604.4θ′ = 154.5

G
(x)

Subtracting Eq. (x) from (viii) gives

θ′ = 0.294

G
(xi)

whence, from Eq. (viii)

v′ = −23.37

G
(xii)

Substituting for θ′ and v′ from Eqs (xi) and (xii) in Eqs (i)–(vi) gives

q51 = 80 N/mm q12 = q45 = 44.1 N/mm

q23 = q34 = 42.9 N/mm q24 = 37.4 N/mm

The centre of twist referred to O has coordinates, from Eq. (17.11)

xR = −v′

θ′ = 23.37

0.294
= 79.5 mm yR = u′

θ′ = 0
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S.26.3

Referring to Fig. S.26.3 the shear flows in the walls 12 and 23 are constant since the
walls are straight (see Eq. (26.1)). Choosing O as the origin of axes, from Eq. (26.1)

q12 = Gt(θ′R cos 30◦ + u′ cos 30◦ + v′ sin 30◦)

1

2

3

10 000 N

30°
O

q 12

q23
q31

R

x

φ

Fig. S.26.3

i.e.

q12 = Gt(0.866Rθ′ + 0.866u′ + 0.5v′) (i)

q23 = Gt(0.866Rθ′ − 0.866u′ + 0.5v′) (ii)

q31 = Gt(Rθ′ − u′ cos φ − v′ sin φ) (iii)

Resolving forces vertically

q12R + q23R −
∫ π

0
q31 sin φ R dφ = 10 000 sin 30◦

i.e.

q12 + q23 −
∫ π

0
q31 sin φ dφ = 5000

R
(iv)

Substituting in Eq. (iv) for q12, q23 and q31 from Eqs (i)–(iii), respectively gives

Rθ′ − 9.59v′ = −18 656.7

GtR
(v)

Resolving forces horizontally

q12(R/tan 30◦) − q23(R/tan 30◦) −
∫ π

0
q31 cos φ R dφ = 10 000 cos 30◦

i.e.

1.732q12 − 1.732q23 −
∫ π

0
q31 cos φ dφ = 8660.3

R
(vi)
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Substituting in Eq. (vi) for q12, q23 and q31 from Eqs (i)–(iii), respectively gives

u′ = 1894.7

GtR
(vii)

Taking moments about O

q12(R/tan 30◦)R + q23(R/tan 30◦)R +
∫ π

0
q31R2dφ = 10 000R cos 30◦

i.e.

1.732q12 + 1.732q23 +
∫ π

0
q31dφ = 8660.3

R
(viii)

Substituting in Eq. (viii) for q12, q23 and q31 from Eqs (i)–(iii), respectively gives

Rθ′ − 0.044v′ = 1410.0

GtR
(ix)

Now subtracting Eq. (ix) from (v)

−9.546v′ = −20 066.7

GtR

whence

v′ = 2102.1

GtR
(x)

Then, from Eq. (v)

Rθ′ = 1502.4

GtR
(xi)

Substituting for u′, v′ and θ′ from Eqs (vii), (x) and (xi), respectively in Eqs (i)–(iii)
gives

q12 = 3992.9/R N/mm, q23 = 711.3/R N/mm

q31 = (1502.4 − 1894.7 cos φ − 2102.1 sin φ)/R N/mm

S.26.4

From Fig. P.26.4 the torque at any section of the beam is given by

T = 20 × 103(2500 − z) Nmm (i)

Eq. (26.16) for the warping distribution along boom 4 then becomes

w = C cosh µz + D sinh µz + 20 × 103(200 − z)

8abG

(
b

tb
− a

ta

)
(ii)
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where

µ2 = 8Gtbta
BE(bta + atb)

Comparing Figs 26.6 and P.26.4, tb = ta = 1.0 mm, a = 500 mm, b = 200 mm and
B = 800 mm. Then

µ2 = 8 × 0.36 × 1.0 × 1.0

800(200 × 1.0 + 500 × 1.0)

from which

µ = 2.27 × 10−3

Eq. (ii) then becomes

w = C cosh 2.27 × 10−3z + D sinh 2.27 × 10−3z − 3.75 × 10−4(2500 − z) (iii)

When z = 0, w = 0, hence, from Eq. (iii), C = 0.9375. At the free end the direct stress in
boom 4 is zero so that the direct strain ∂w/∂z = 0 at the free end. Hence, from Eq. (iii),
D = −0.9386 and the warping distribution along boom 4 is given by

w = 0.9375 cosh 2.27 × 10−3z − 0.9386 sinh 2.27 × 10−3z

− 3.75 × 10−4(2500 − z) (iv)

Substituting for w from Eq. (iv) and T from Eq. (i) in Eq. (26.11)

dθ

dz
= −10−5[1.6069 cosh 2.27 × 10−3z − 1.6088 sinh 2.27 × 10−3z

− 3.4998 × 10−3(2500 − z)] (v)

Then

θ = −10−5
[

1.6069

2.27 × 10−3 sinh 2.27 × 10−3z − 1.6088

2.27 × 10−3 cosh 2.27 × 10−3z

− 3.4998 × 10−3
(

2500z − z2

2

)]
+ F (vi)

When z = 0, θ = 0 so that, from Eq. (vi)

F = −10−5 × 1.6088

2.27 × 10−3

and

θ = −10−5
[

707.9 sinh 2.27 × 10−3z − 708.7 cosh 2.27 × 10−3z

− 3.4998 × 10−3
(

2500z − z2

2

)
+ 708.7

]
(vii)

At the free and where z = 2500 mm Eq. (vii) gives

θ = 0.1036 rad = 5.9◦
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S.26.5

The warping distribution along the top right-hand corner boom is given by Eq. (26.16),
i.e.

w = C cosh µz + D sinh µz + w0 (i)

where

µ2 = 8Gt2t1
BE(bt1 + at2)

and w0 = T

8abG

(
b

t2
− a

t1

)

At each end of the beam the warping is completely suppressed, i.e. w = 0 at z = 0 and
z = l. Thus, from Eq. (i)

0 = C + w0

i.e.

C = −w0

and

0 = C cosh µl + D sinh µl + w0

which gives

D = w0

sinh µl
(cosh µl − 1)

Hence, Eq. (i) becomes

w = w0

[
1 − cosh µz + (cosh µl − 1)

sinh µl
sinh µz

]
(ii)

The direct load, P, in the boom is then given by

P = σzB = BE
∂w

∂z

Thus, from Eq. (ii)

P = µBEw0

[
−sinh µz + (cosh µl − 1)

sinh µl
cosh µz

]
(iii)

or, substituting for w0 from above

P = µBET

8abGt1t2
(bt1 − at2)

[
−sinh µz + (cosh µl − 1)

sinh µl
cosh µz

]
(iv)

For a positive torque, i.e. T is anticlockwise when viewed along the z axis to the
origin of z, the term in square brackets in Eq. (iv) becomes, when z = 0

cosh µl − 1

sinh µl
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which is positive. Thus at z = 0 the load in the boom is tensile. At z = l the term in
square brackets in Eq. (iv) becomes

1 − cosh µl

sinh µl

which is negative. Thus at z = l the load in the boom is compressive. Also, from Eq. (iv)
∂P/∂z = 0 at z = l/2 and the distribution of boom load is that shown in Fig. S.26.5. The
reverse situation occurs for a negative, i.e. a clockwise, torque.

Fig. S.26.5

S.26.6

The warping distribution is given by Eq. (26.16), i.e.

w = C cosh µz + D sinh µz + T

8abG

(
b

tb
− a

ta

)
(i)

in which the last term is the free warping, w0, of the section. Eq. (i) may therefore be
written

w = C cosh µz + D sinh µz + w0 (ii)

When z = 0, w = kw0 so that, from Eq. (ii)

C = w0(k − 1)

When z = L, the direct stress is zero. Then, from Chapter 1

σ = E
∂w

∂z
= 0

so that

0 = µC cosh µL + µD sinh µL

which gives

D = −w0(k − 1) tanh µL
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Eq. (ii) then becomes

w = w0

[
1 + (k − 1)

cosh µ(L − z)

cosh µL

]
(iii)

Then

σ = E
∂w

∂z

so that

σ = −µEw0(k − 1)
sinh µ(L − z)

cosh µL

When k = 0,

σ = µEw0
sinh µ(L − z)

cosh µL

i.e. a rigid foundation.
When k = 1,

σ = 0

i.e. free warping (also from Eq. (iii)).

S.26.7

Initially directions for the shear flows, q, are chosen as shown in Fig. S.26.7(a). The
panel is symmetrical about its horizontal centre line so that only half need be considered.

b

b
B

q

q

P

P

z

l

AS

PS

S/unit length

Fig. S.26.7(a)
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S

q

PB �PB

δz

δz
∂PB

∂z

Fig. S.26.7(b)

For equilibrium of the element of the top boom shown in Fig. S.26.7(b)

PB + ∂PB

∂z
δz − PB − Sδz + qδz = 0

i.e.

∂PB

∂z
= S − q (i)

q

PA�PA

δz

δz
∂PA
∂z

q

Fig. S.26.7(c)

Also, for equilibrium of the element of the central stringer shown in Fig. 26.7(c)

PA + ∂PA

∂z
δz − PA − 2qδz = 0

i.e.

∂PA

∂z
= 2q (ii)

For equilibrium of the length, z, of the panel shown in Fig. S.26.7(d)

2PB + PA − 2Sz − 2P − PS = 0

i.e.

PA = 2P + PS + 2Sz − 2PB (iii)

The compatibility of displacement condition for the top boom and central stringer is
shown in Fig. S.26.7(e). Thus

(1 + εA)δz = (1 + εB)δz + b
dγ

dz
δz
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S

z

P

P

PS

PB

PA

PB

S

Fig. S.26.7(d)

b

(I�εB) δz

(I�εA) δz

γ
γ� δz

∂γ
∂z

Fig. S.26.7(e)

i.e.

dγ

dz
= 1

b
(εA − εB) (iv)

Now

εA = σA

E
and εB = σB

E
= σe

E
= constant



Solution-3-H6739.tex 24/1/2007 9: 30 Page 317

Solutions to Chapter 26 Problems 317

Also σA = 0.8σe so that Eq. (iv) becomes

dγ

dz
= −0.2σe

bE
(v)

In Eq. (v) γ = q/Gt, hence

dq

dz
= −0.2Gt

bE
σe (vi)

Substituting for q in Eq. (vi) from (i) gives

∂2PB

∂z2 = 0.2Gt

bE
σe

so that

PB = 0.1Gtσe

bE
z2 + Cz + D (vii)

When z = 0, PB = P so that, from Eq. (vii), D = P. Also, when z = l, q = 0 so that, from
Eq. (i), ∂PB/∂z = S at z = l. Hence, from Eq. (vii)

C = −0.2Gtσe

bE
l + S

and

PB = 0.1Gtσe

bE
z2 +

(
S − 0.2Gtσel

bE

)
z + P (viii)

Now PB = σeB so that, from Eq. (viii)

B = 0.1Gt

bE
z2 + 1

σe

[(
S − 0.2Gtσel

bE

)
z + P

]
(ix)

Substituting for PB from Eq. (viii) in (iii) gives

PA = 0.4Gtσe

bE

(
lz − z2

2

)
+ PS (x)

But PA = AS0.8σe so that, from Eq. (x)

AS = Gt

2bE

(
lz − z2

2

)
+ 1.25PS

σe
(xi)

Substituting the given values in Eqs (ix) and (xi) gives

B = 3.8 × 10−4z2 + 0.3227z + 1636.4 (xii)

and

AS = 2.375z − 9.5 × 10−4z2 + 659.1 (xiii)
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From Eq. (xiii) when z = 1250 mm, AS = 2143.5 mm. Then

PA = 0.8σeAS = 0.8 × 275 × 2143.5 = 471 570 N

The total load, PT, carried by the panel at the built-in end is

PT = 2 × 450 000 + 145 000 + 2 × 350 × 1250 = 1 920 000 N

Therefore, the fraction of the load carried by the stringer is 471 570/1 920 000 = 0.25.

S.26.8

The panel is symmetrical about its vertical center line and therefore each half may be
regarded as a panel with a built-in end as shown in Fig. S.26.8(a). Further, the panel is
symmetrical about its horizontal centre line so that only the top half need be considered;
the assumed directions of the shear flows are shown.

q

q

1

2

d

d

B 1

B 2

B1

z

l/2

Fig. S.26.8(a)

q

P1� P1

δz

δz
∂P1

∂z

Fig. S.26.8(b)

Consider the equilibrium of the element of longeron 1 shown in Fig. S.26.8(b).

P1 + ∂P1

∂z
δz − P1 − qδz = 0
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Hence

∂P1

∂z
= q (i)

Now consider the equilibrium of the element of longeron 2 shown in Fig S.26.8(c).

P2 + ∂P2

∂z
δz − P2 + 2qδz = 0

whence

∂P2

∂z
= −2q (ii)

q

P2� P2

δz

δz
∂P2

∂z

q

Fig. S.26.8(c)

P1

P1

P2

z

Fig. S.26.8(d)

From the overall equilibrium of the length z of the panel shown in Fig. S.26.8(d)

2P1 + P2 = 0 (iii)

The compatibility condition for an element of the top half of the panel is shown in
Fig. S.26.8(e). Thus

(1 + ε1)δz = (1 + ε2)δz + d
dγ

dz
δz
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d

(I�ε1) δz

(I + ) δz

γγ � δz
∂γ
∂z

ε2

Fig. S.26.8(e)

i.e.

dγ

dz
= 1

d
(ε1 − ε2) (iv)

In Eq. (iv)

ε1 = P1

B1E

Also, an element, δz, of the central longeron would, without restraint, increase in
length by an amount αTδz. The element therefore suffers an effective strain equal to
(ε2 − αT )δz/δz. Thus

P2

B2E
= ε2 − αT

so that Eq. (iv) becomes

dγ

dz
= 1

dE

(
P1

B1
− P2

B2
− αTE

)
(v)

Also γ = q/Gt and from Eq. (ii) q = −(∂P2/∂z)/2. Therefore, substituting for γ and
then q in Eq. (v) and for P1 from Eq. (iii) in (v)

−1

2

∂2P2

∂z2 = Gt

dE

(
− P2

2B1
− P2

B2
− αTE

)
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or

∂2P2

∂z2 − 2GT

dE

(
1

2B1
+ 1

B2

)
= 2GtαT

d
(vi)

The solution of Eq. (vi) is

P2 = C cosh µz + D sinh µz − 2GtαT

µ2d
(vii)

where

µ2 = 2Gt

dE

(
1

2B1
+ 1

B2

)

When z = 0, P2 = 0 so that, from Eq. (vii)

C = 2GtαT

µ2d

Also when z = l/2, q = 0 and, from Eq. (ii), ∂P2/∂z = 0. Hence, from Eq. (vii)

0 = µC sinh µ
l

2
+ µD cosh µ

l

2

from which

D = −C tanh
µl

2
= −2GtαT

µ2d
tanh

µl

2

Thus,

P2 = 2GtαT

µ2d

(
cosh µz − tanh

µl

2
sinh µz − 1

)
(viii)

or, substituting for µ2

P2 = EαT

(
cosh µz − tanh

µl

2
sinh µz − 1

)

(
1

2B1
+ 1

B2

) (ix)

From Fig. S.26.8(e) the relative displacement of the central longeron at one end of
the panel is d(γ)z=0. Now

γz=0 =
( q

Gt

)

z=0
= − 1

2Gt

(
∂P2

∂z

)

z=0
(from Eq. (ii))

Hence, from Eq. (ix)

relative displacement = αT

µ
tanh

µl

2



Solution-3-H6739.tex 24/1/2007 9: 30 Page 322

322 Solutions Manual

S.26.9

The panel is unsymmetrical so that the shear flows in the top and bottom halves will
have different values as shown in Fig. S.26.9(a).

q1

q 2

b

b

l
z

S1

S2

A

σ3

P1,0

P2,0

Fig. S.26.9(a)

S1

P1�P1

δz

δz∂z
∂P1

q1

Fig. S.26.9(b)

For equilibrium of the element of the top member shown in Fig. 26.9(b)

P1 + ∂P1

∂z
δz − P1 − S1δz − q1δz = 0

i.e.

∂P1

∂z
= S1 + q1 (i)

Similarly, for the equilibrium of the element of the central stringer shown in
Fig. S.26.9(c)

P3 + ∂P3

∂z
δz − P3 − q2δz + q1δz = 0

i.e.

∂P3

∂z
= q2 − q1 (ii)
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q1

P3�P3

δz

δz
∂P3

∂z

q2

Fig. S.26.9(c)

S2

q2

P2 �P2

δz

δz
∂P2
∂z

Fig. S.26.9(d)

Also, from Fig. S.26.9(d)

P2 + ∂P2

∂z
δz − P2 − S2δz + q2δz = 0

whence

∂P2

∂z
= S2 − q2 (iii)

Now, from the longitudinal equilibrium of a length z of the panel (Fig. S.26.9(e))

P1 + P3 + P2 − P1,0 − P2,0 − S1z − S2z = 0

b

b

P1

P3

P2

S2

S1P1,0

P2,0

z

Fig. S.26.9(e)
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i.e.

P1 + P3 + P2 = P1,0 + P2,0 + (S1 + S2)z (iv)

and from its moment equilibrium about the bottom edge member

P12b + P3b − P1,02b − S1z2b = 0

i.e.

2P1 + P3 = 2P1,0 + 2S1z (v)

(I�ε1) δz

γ1�
∂v
∂z

(I�ε3) δz

γ1�
∂v
∂z

δz
∂γ1

∂z
�

∂v
∂z

∂
∂z

δz�

Fig. S.26.9(f)

From the compatibility condition between elements of the top edge member and the
central stringer in Fig. S.26.9(f)

(1 + ε1)δz = (1 + ε3)δz + b

(
dγ1

dz
+ ∂2v

∂z2

)
δz

or

dγ1

dz
= 1

b
(ε1 − ε3) − ∂2v

∂z2 (vi)

Similarly for elements of the central stringer and the bottom edge member

dγ2

dz
= 1

b
(ε3 − ε2) − ∂2v

∂z2 (vii)

Subtracting Eq. (vii) from (vi)

dγ1

dz
− dγ2

dz
= 1

b
(ε1 − 2ε3 + ε2) (viii)
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Now γ = q/Gt, ε1 = σ1/E, ε3 = σ3/E and ε2 = σ2/E. Eq. (viii) may then be written

dq1

dz
− dq2

dz
= Gt

bE
(σ1 − 2σ3 + σ2)

or, from Eq. (i)

−∂2P3

∂z2 = Gt

bE
(σ1 − 2σ3 + σ2)

Then, since σ3 = P3/A

∂2σ3

∂z2 = Gt

bEA
(2σ3 − σ1 − σ2)

or

∂2σ3

∂z2 − 2Gt

bEA
σ3 = − Gt

bEA
(σ1 + σ2) (ix)

The solution of Eq. (ix) is

σ3 = C cosh µz + D sinh µz + (σ1 + σ2)/2

where µ2 = 2Gt/bEA.
When z = 0, σ3 = 0 so that C = −(σ1 + σ2)/2. When z = l, σ3 = 0 which gives

D = σ1 + σ2

2 sinh µl
(cosh µl − 1)

Thus

σ3 =
(

σ1 + σ2

2

) [
1 − cosh µz − (1 − cosh µl)

sinh µl
sinh µz

]
(x)

From Eq. (i)

q1 = ∂P1

∂z
− S1 (xi)

Substituting for P1 from Eq. (v) in (xi)

q1 = −1

2

∂P3

∂z
= −1

2
A

∂σ3

∂z

Therefore, from Eq. (x)

q1 = A

(
σ1 + σ2

4

)
µ

[
sinh µz + (1 − cosh µl)

sinh µl
cosh µz

]
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S.26.10

The assumed directions of shear flow are shown in Fig. S.26.10(a). For the equilibrium
of an element of the top boom, Fig. S.26.10(b).

P1 + ∂P1

∂z
δz − P1 + q1δz = 0

B

A

A q1

q2

d

d

L

z

3P

2P

P

1

2

3

Fig. S.26.10(a)

P1 � δz

δz

∂P1

∂z
q1

P1

Fig. S.26.10(b)

from which
∂P1

∂z
= −q1 (i)

Similarly for an element of the central boom

∂P2

∂z
= q1 − q2 (ii)

For overall equilibrium of the panel, at any section z

P1 + P2 + P3 = −6P (iii)
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and taking moments about boom 3

P12d + P2d + 3P2d + 2Pd = 0

so that

2P1 + P2 = −8P (iv)

The compatibility condition is shown in Fig. S.26.10(c) for an element of the top panel.

d

(I�ε
1) δz

(I�ε2) δz

γ1�
∂υ
∂z

γ1� δz
∂ γ1
∂z

� �
∂υ
∂z

∂
∂z

δz
∂υ
∂z

Fig. S.26.10(c)

Then

(1 + ε2)δz = (1 + ε1)δz + d

(
∂γ1

∂z
+ ∂2v

∂z2

)
δz

i.e.

∂γ1

∂z
= 1

d
(ε2 − ε1) − ∂2v

∂z2 (v)

Similarly for an element of the lower panel

∂γ2

∂z
= 1

d
(ε3 − ε2) − ∂2v

∂z2 (vi)

Subtracting Eq. (vi) from (v)

∂γ1

∂z
− ∂γ2

∂z
= 1

d
(2ε2 − ε1 − ε3) (vii)

But

γ1 = q1

Gt
γ2 = q2

Gt
ε2 = P2

BE
ε1 = P1

AE
ε3 = P3

AE
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Then, from Eq. (vii)

dq1

dz
− dq2

dz
= Gt

dE

(
2P2

B
− P1

A
− P3

A

)
(viii)

Substituting in Eq. (viii) for q1 − q2 from Eq. (ii) and for P1 and P3 from Eqs (iv) and
(iii) and rearranging

∂2P2

∂z2 − µ2P2 = 6GtP

dEA
(ix)

where

µ2 = Gt(2A + B)

dEAB
The solution of Eq. (ix) is

P2 = C cosh µz + D sinh µz − 6PB

2A + B

When z = 0, P2 = −2P and when z = L, q1 = q2 = 0 so that, from Eq. (ii) ∂P2/∂z = 0.
These give

C = 4P

(
B − A

2A + B

)
D = −4P

(
B − A

2A + B

)
tanh µL

Then

P2 = 6P

2A + B

[
−B + 2

3
(B − A)

cosh µ(L − z)

cosh µL

]

From Eq. (iv)

P1 = 6P

2A + B

[
−

(
B + 8A

6

)
− 1

3
(B − A)

cosh µ(L − z)

cosh µL

]

and from Eq. (iii)

P3 = 6P

2A + B

[
−

(
4A − B

6

)
− 1

3
(B − A)

cosh µ(L − z)

cosh µL

]

When A = B

P1 = −3P P2 = −2P P3 = −P

and there is no shear lag effect.

S.26.11

This problem is similar to that of the six-boom beam analysed in Section 26.4
(Fig. 26.11) and thus the top cover of the beam is subjected to the loads shown in
Fig. S.26.11(a). From symmetry the shear flow in the central panel of the cover is zero.
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Considering the equilibrium of the element δz of the corner longeron (1) in
Fig. S.26.11(b)

P1 + ∂P1

∂z
δz − P1 + S

2h
δz − qδz = 0

q

q

B

z

h

h

h

l

1

2

3B

S/2h

S/2h

Fig. S.26.11(a)

q

P
1

� P1

δz

δz
∂P1
∂z

S/2h

Fig. S.26.11(b)

i.e.
∂P1

∂z
= q − S

2h
(i)

Now considering the equilibrium of the element δz of longeron 2 in Fig. S.26.11(c)

P2 + ∂P2

∂z
δz − P2 + qδz = 0

which gives

∂P2

∂z
= −q (ii)

From the equilibrium of the length z of the panel shown in Fig. S.26.11(d)

2P1 + 2P2 + 2
S

2h
z = 0
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q

δz

P2

∂P2

∂z
δz P2 �

Fig. S.26.11(c)

P1

P2

P2

P1

z

S/2h

S/2h

Fig. S.26.11(d)

or

P1 + P2 = − Sz

2h
(iii)

The compatibility of the displacement condition between longerons 1 and 2 is shown
in Fig. S.26.11(e). Thus

(1 + ε1)δz = (1 + ε2)δz + h
dγ

dz
δz

from which

dγ

dz
= 1

h
(ε1 − ε2) (iv)

In Eq. (iv) γ = q/Gt, ε1 = P1/3BE, and ε2 = P2/BE. Equation (iv) then becomes

dq

dz
= Gt

hBE

(
P1

3
− P2

)
(v)

From Eq. (i)

dq

dz
= ∂2P1

∂z2
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h

(I�ε1) δz

(I�ε2) δz

γγ � δz
∂γ
∂z

Fig. S.26.11(e)

and from Eq. (iii)

P2 = −P1 − Sz

2h
Substituting in Eq. (v)

∂2P1

∂z2 = Gt

hBE

(
4P1

3
+ Sz

2h

)

or

∂2P1

∂z2 − 4Gt

3hBE
P1 = GtSz

2h2BE
(vi)

The solution of Eq. (vi) is

P1 = C cosh µz + D sinh µz − 3Sz

8h
(vii)

where µ2 = 4GT/3hBE.

When z = 0, P1 = 0 so that, from Eq. (vii), C = 0. When z = l, q = 0 so that, from
Eq. (i), ∂P1/∂z = −S/2h. Hence from Eq. (vii)

D = − S

8hµ cosh µl

and Eq. (vii) becomes

P1 = − S

8h

(
sinh µz

µ cosh µl
+ 3z

)
(viii)
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Substituting for P1 in Eq. (i) gives

q = − S

8h

(
cosh µz

cosh µl
− 1

)
(ix)

If the effect of shear lag is neglected then Eq. (ix) reduces to

q = S

8h

and the shear flow distribution is that shown in Fig. S.26.11(f) in which q12 = q43 =
q65 = q78 = S/8h and q81 = q54 = S/2h. The deflection 	 due to bending and shear is
given by Eqs (20.17) and (20.19) in which

M0 = −Sz and M1 = −1 × z

S

1234

5 7 86

Fig. S.26.11(f)

Also Ixx = 4 × 3B × (h/2)2 + 4 × B × (h/2)2 = 4Bh2 and q1 = q0/S. Thus

	 =
∫ L

0

Sz2

4Bh2E
dz +

∫ l

0

(∮
q0q1

Gt
ds

)
dz (x)

In Eq. (x)
∮

q0q1

Gt
ds = S

G

(
4h

64h2t
+ 2h

4h23t

)
= 11S

48Ght

Hence, substituting in Eq. (x)

	 = Sl

12h

(
l2

BhE
+ 11

4Gt

)

S.26.12

The forces acting on the top cover of the box are shown in Fig. 26.12(a). Then for the
equilibrium of the element δz of the edge boom shown in Fig. S.26.12(b).

∂PB

∂z
= −q + wz

2h
(i)
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B

B

A

q

q

d

d

wz/2h

L

z

Fig. S.26.12(a)

PB� δz
∂PB
∂z PB

wz/2h

q

Fig. S.26.12(b)

Similarly, for the central boom

∂PA

∂z
= 2q (ii)

For the equilibrium of a length z of the cover

2PB + PA − 2
wz2

4h
= 0 (iii)

The compatibility of displacement condition is shown in Fig. S.26.12(c).
Then

(1 + εA)δz = (1 + εB)δz + ∂γ

∂z
δzd

which gives

∂γ

∂z
= 1

d
(εA − εB) (iv)

But

γ = q

Gt
, εA = PA

AE
, εB = PB

BE
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(I�εB) δz

(I�εA) δz

∂g
∂z

δz��
�

Fig. S.26.12(c)

Substituting in Eq. (iv)

dq

dz
= Gt

dE

(
PA

A
− PB

B

)

Substituting for q from Eq. (ii) and PB from Eq. (iii) and rearranging

∂2PA

∂z2 − µ2PA = − Gtw

2dEhB
z2 (v)

where

µ2 = Gt(2B + A)

dEAB

The solution of Eq. (v) is

PA = C cosh µz + D sinh µz + w

2h

A

(2B + A)

(
2

µ2 + z2
)

When z = 0, PA = 0 which gives

C = − wA

h(2B + A)µ2

When z = L, ∂PA/∂z = 0 since q = 0 at z = L. This gives

D = − wA

µh(2B + A) cosh µh

(
L + sinh µL

µ

)

Hence

PA = − wA

h(2B + A)

[
cosh µz

µ2 +
(

µL + sinh µL

µ2 cosh µL

)
sinh µz − l

µ2 − z

2

]
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Solutions to Chapter 27 Problems

S.27.1

The position of the shear centre, S, is given and is also obvious by inspection (see
Fig. S.27.1(a)). Initially, then, the swept area, 2AR,0 (see Section 27.2) is deter-
mined as a function of s. In 12, 2AR,0 = 2sd/2 = sd. Hence, at 2, 2AR,0 = d2. In
23, 2AR,0 = 2(s/2)(d/2) + d2 = sd/2 + d2. Therefore at 3, 2AR,0 = 3d2/2. In 34, 2AR,0
remains constant since p = 0. The remaining distribution follows from antisymmetry
and the complete distribution is shown in Fig. S.27.1(b). The centre of gravity of the
‘wire’ 1′2′3′4′5′6′ (i.e. 2A′

R) is found by taking moments about the s axis. Thus

2A′
R5dt = dt

(
d2

2
+ 5d2

4
+ 3d2

2
+ 5d2

4
+ d2

2

)

12

3
4

56

s

s

S

d

d

d

x

y

Fig. S.27.1(a)

which gives 2A′
R = d2. Therefore, instead of using Eq. (27.9), the moment of inertia of

the wire (i.e. �R) may be found directly, i.e.

�R = 2dt
(d2)2

3
+ 2dt

(
d2

2

)2

3
+ dt

(
d2

2

)2

which gives

�R = 13d5t

12
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�

�

�

� �

�

�

Fig. S.27.1(b)

S.27.2

By inspection the shear centre, S, lies at the mid-point of the wall 34 (Fig. S.27.2(a)).
The swept area, 2AR,0, is then determined as follows. In 12, 2AR,0 = (2sa sin 2α)/2,
i.e. 2AR,0 = a2 sin 2α. In 23, 2AR,0 = 2 × 1

2 sa sin 2α + a2 sin 2α = (sa + a2) sin 2α and
at 3, 2AR,0 = 2a2 sin 2α.

1

2

3

4

5

6

S

s
s

α α

Fig. S.27.2(a)

In 34 there is no contribution to 2AR,0 since p = 0. The remaining distribution follows
from anti-symmetry and the complete distribution is shown in Fig. S.27.2(b).

The centre of gravity of the ‘wire’ 1′2′3′4′5′6′ (i.e. 2A′
R) is found by taking moments

about the s axis. Thus

2A′
R6at = at(2 × 2a2 sin 2a + 2 × 2a2 sin 2α)

i.e.

2A′
R = 4

3 a2 sin 2α



Solution-3-H6739.tex 24/1/2007 9: 30 Page 337

Solutions to Chapter 27 Problems 337

Fig. S.27.2(b)

Then, from Eq. (27.9)

�R = 2 × 2at
(2a2 sin 2α)2

3
+ 2at(2a2 sin 2α)2 −

(
4

3
a2 sin 2α

)2

6at

which gives

�R = 8
3 a5t sin2 2α

S.27.3

The shear centre, S, of the section is at a distance πr/3 above the horizontal through
the centers of the semicircular arcs (see P.17.3). Consider the left-hand portion of the
section in Fig. S.27.3(a).

2AR,0 = −2(Area BCS − Area BSO)

= −2(Area CSF + Area CFOD + Area BCD − Area BSO)

i.e.

2AR,0 = −2

[
1

2
(r cos θ1 + r)

(πr

3
− r sin θ1

)
+ 1

2
(2r + r cos θ1)r sin θ1

+1

2
r2θ1 − 1

2
2r

πr

3

]

i.e.

2AR,0 = r2
(π

3
− θ1 − sin θ1 − π

3
cos θ1

)
(i)

When θ1 = π, 2AR,0 = −πr2/3.
Note that in Eq. (i) AR,0 is negative for the tangent in the position shown.
Consider now the right-hand portion of the section shown in Fig. S.27.3(b). The

swept area 2AR,0 is given by

2AR,0 = 2 Area OSJ − πr2/3
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B D O

S

F
G

C

p y

x

AR,0

πr
3

θ1

Fig. S.27.3(a)

IO

S

J G

y

x

πr
3

θ2

θ2

M
K

Fig. S.27.3(b)

i.e.

2AR,0 = 2(Area OSJ − Area OJI − Area SJI) − πr2/3

which gives

2AR,0 = 2

[
1

2
r
πr

3
− 1

2
r2θ2 − 1

2
rKS

]
− πr2

3
(ii)

In Eq. (ii)

KS = MS cos θ2 =
(πr

3
− r tan θ2

)
cos θ2

i.e.

KS = πr

3
cos θ2 − r sin θ2

Substituting in Eq. (ii) gives

2AR,0 = r2
(

sin θ2 − θ2 − π

3
cos θ2

)
(iii)
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In Eq. (27.3)
∫

C 2AR,0t ds
∫

C t ds
= 1

2πr

[∫ π

0
r3

(π

3
− θ1 − sin θ1 − π

3
cos θ1

)
dθ1

+
∫ π

0
r3

(
sin θ2 − θ2 − π

3
cos θ2

)
dθ2

]

i.e.
∫

C 2AR,0t ds
∫

C t ds
= −πr2

3

Hence, Eq. (27.3) becomes

2AR = 2AR,0 + πr2

3

Then

�R =
∫

C
(2AR)2t ds =

∫ π

0
r4

(π

3
− θ1 − sin θ1 − π

3
cos θ1 + π

3

)2
dθ1

+
∫ π

0
r4

(
sin θ2 − θ2 − π

3
cos θ2 + π

3

)2
dθ2

which gives

�R = π2r5t

(
π

3
− 3

π

)

S.27.4

The applied loading is equivalent to a shear load, P, through the shear centre (the centre
of symmetry) of the beam section together with a torque T = −Ph/2. The direct stress
distribution at the built-in end of the beam is then, from Eqs (16.21) and (27.1)

σ = Mx

Ixx
y − 2ARE

d2θ

dz2 (i)

In Eq. (i)

Mx = Pl (ii)

and

Ixx = 2td3/12 = td3/6 (iii)

Also d2θ/dz2 is obtained from Eq. (27.6), i.e.

T = GJ
dθ

dz
− E�R

d3θ

dz3
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or, rearranging

d3θ

dz3 − µ2 dθ

dz
= −µ2 T

GJ
(iv)

in which µ2 = GJ/E�R. The solution of Eq. (iv) is

dθ

dz
= C cosh µz + D sinh µz + T

GJ
(v)

At the built-in end the warping is zero so that, from Eq. (18.19) dθ/dz = 0 at the built-in
end. Thus, from Eq. (v), C = −T /GJ. At the free end the direct stress, σ�, is zero so
that, from Eq. (27.1), d2θ/dz2 = 0 at the free end. Then, from Eq. (v)

D =
(

T

GJ

)
tanh µl

and Eq. (iii) becomes

dθ

dz
= T

GJ

[
1 − cosh µ(l − z)

cosh µl

]
(vi)

Differentiating Eq. (vi) with respect to z gives

d2θ

dz2 = T

GJ
µ

sinh µ(l − z)

cosh µl
(vii)

Hence, from Eq. (27.1)

σ� = −2ARE
T

GJ
µ

sinh µ(l − z)

cosh µl

which, at the built-in end becomes

σ� = −
√

E

GJ�R
T2AR tanh µl (viii)

In Eq. (viii)

J = (h + 2d)t3/3 (see Eq. (18.11)) (ix)

The torsion bending constant, �R, is found using the method described in Section 27.2.
Thus, referring to Fig. S.27.4(a), in 12, 2AR,0 = sh/2 and at 2, 2AR,0 = hd/4. Also,
at 3, 2AR,0 = hd/2. Between 2 and 4, 2AR,0 remains constant and equal to hd/4.
At 5, 2AR,0 = hd/4 + hd/4 = hd/2 and at 6, 2AR,0 = hd/4 − hd/4 = 0. The complete
distribution is shown in Fig. S.27.4(b). By inspection 2A′

R = hd/4. Then

�R = 4t
d

2

1

3

(
hd

4

)2
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Fig. S.27.4(a)

3'

2'

1'

4'

5'

6'

1 2 3 4 6

2AR,0

2AR

2A'R

h

hd
4

hd
4

s
d/2

d/2d/2

Fig. S.27.4(b)

i.e.

�R = td3h2

24
(x)

Substituting the given values in Eqs (ii), (iii), (ix) and (x) gives

Mx = 200 × 375 = 75 000 N mm

Ixx = 2.5 × 37.53/6 = 21 973.0 mm4

J = (75 + 2 × 37.5)2.53/3 = 781.3 mm4

�R = 2.5 × 37.53 × 752/24 = 3.09 × 107 mm6

Then

µ2 = 781.3/(2.6 × 3.09 × 107) = 9.72 × 10−6

and

µ = 3.12 × 10−3
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Thus from Eqs (i) and (viii)

σ = 3.41y + 0.064(2AR) (xi)

Then, at 1 where y = −d/2 = −18.75 mm and 2AR = −hd/4 = −703.1 mm2,

σ1 = −108.9 N/mm2 = −σ3

Similarly

σ5 = −18.9 N/mm2 = −σ6

and

σ2 = σ4 = σ24 = 0

S.27.5

The rate of twist in each half of the beam is obtained from the solution of Eq. (27.6).
Thus, referring to Fig. S.27.5, for BC

dθ

dz1
= T

8GJ
+ A cosh 2µz1 + B sinh 2µz1 (i)

where µ2 = GJ/E� and for BA

dθ

dz2
= T

GJ
+ C cosh µz2 + D sinh µz2 (ii)

A

B

C

l

l

T

Tt

2t

z2

z1

Fig. S.27.5
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The boundary conditions are as follows:
When

z1 = z2 = 0, dθ/dz1 = dθ/dz2 (iii)

When

z1 = z2 = l, d2θ/dz2
1 = d2θ/dz2

2 = 0 (see Eq. (27.1)) (iv)

When

z1 = z2 = 0, 2d2θ/dz2
1 = −d2θ/dz2

2 (v)

(since the loads at B in each half of the section are equal and opposite). From Eqs (i),
(ii) and (iv)

B = −A tanh 2µl (vi)

D = −C tanh µl (vii)

From Eqs (i)–(iii)

T

8GJ
+ A = T

GJ
+ C

i.e.

A − C = 7T

8GJ
(viii)

From Eqs (i), (ii) and (v)

D = −4B (ix)

Solving Eqs (vi)–(ix) gives

B = − 7T tanh µl tanh 2µl

8GJ(4 tanh 2µl + tanh µl)

D = 7T (4 tanh µl tanh 2µl)

8GJ(4 tanh 2µl + tanh µl)

A = 7T tanh µl

8GJ(4 tanh 2µl + tanh µl)

C = − 7T (4 tanh 2µl)

8GJ(4 tanh 2µl + tanh µl)

Integrating Eq. (i)

θ1 = T

8GJ
z1 + A

2µ
sinh 2µz1 + B

2µ
cosh 2µz1 + F
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When z1 = 0, θ1 = 0 so that F = −B/2µ. Integrating Eq. (ii)

θ2 = T

GJ
z2 + C

µ
sinh µz2 + D

µ
cosh µz2 + H

When z2 = 0, θ2 = 0 so that H = −D/µ. Hence, when z1 = l and z2 = l the angle of twist
of one end of the beam relative to the other is

θ1 + θ2 = T

8GJ
(l + 8l) + 7T

8GJµ(4 tanh 2µl + tanh µl)

× [ 1
2 ( tanh µl sinh 2µl − tanh µl tanh 2µl cosh 2µl − 4 tanh 2µl sinh µl

+ 4 tanh µl tanh 2µl cosh µl − 7
2 ( tanh µl tanh 2µl)

]

which simplifies to

θ1 + θ2 = Tl

8GJ

[
9 − 49 sinh 2µl

2µl(10 cosh2 µl − 1)

]

S.27.6

Initially the swept area 2AR,0 is plotted round the section and is shown in Fig. S.27.6(b).

3

6

5 4

2

1

s

S

a

a

a

AR10

a

2

Fig. S.27.6(a)

Then, using the ‘wire’ analogy and taking moments about the s axis

2A′
R5at = 2

3a

2
t

(
3a2

4

)
+ 2at

(
3a2

2

)
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3

1�

2�

3�
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6�

5�

4�

5a2

a2

2

3a2

2

2AR

2AR10

2A�
R

2a1 a
2

a
2

Fig. S.27.6(b)

which gives

2A′
R = 21a2

20

Then

�R = 2
3a

2
t
1

3

(
3a2

2

)2

+ 2at

(
3a2

2

)2

− 5at

(
21a2

20

)2

i.e.

�R = 1.25a5t

From Eq. (27.6), i.e.

d3θ

dz3 − µ2 dθ

dz
= −µ2 T

GJ

where

µ2 = GJ

E�R

dθ

dz
= C cosh µz + D sinh µz + T

GJ

When z = 0, the warping, w, is zero so that dθ/dz = 0 (see Eq. (18.19)), then

A = − T

GJ

When z = L, the direct stress is zero. Therefore, from Eq. (27.1) d2θ/dz2 = 0. Therefore

B = T

GJ
tanh µL
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so that the rate of twist is

dθ

dz
= T

GJ

[
1 − cosh µ(L − z)

cosh µL

]

and

θ = T

GJ

[
z + sinh µ(L − z)

µ cosh µL
+ C

]

When z = 0, θ = 0 which gives

C = − 1

µ
tanh µL

and

θ = T

GJ

[
z + sinh µ(L − z)

µ cosh µL
− tanh µL

µ

]

At the free end when z = L

θT = TL

GJ

(
1 − tanh µL

µL

)
(i)

Inserting the given values in Eq. (i)

T = 100 × 30 = 3000 N mm J = 5 × 30 × 2.03

3
= 400 mm4

µ2 = 2.35 × 10−6 µL = 1.53 θT = 6.93◦

S.27.7

The torsion bending constant is identical to that in S.27.4, i.e.

�R = th2d3

24

The expression for rate of twist is (see S.27.6)

dθ

dz
= A cosh µz + B sinh µz + T

GJ

In AB, T = 0 and dθ/dz = 0 at z = 0 which gives A = 0
Therefore, in AB

dθ

dz
= B sinh µz

In BC
dθ

dz
= [1 − α cosh µ(z − L) − β sinh µ(z − L)] + β sinh µz
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where [ ] is a Macauley bracket
i.e.

[ ] = 0 for z < L

= ( ) ordinary bracket for z > L

For continuity of dθ/dz and d2θ/dz2 at z = L the Macauley bracket and its first derivative
must be zero at z = L. Then

1 − α = 0 and β = 0

For the complete beam

dθ

dz
= T

GJ
[1 − cosh µ(z − L)] + B sinh µz

At

z = 2L d2θ/dz2 = 0 (σ� = 0 at z = 2L).

Then

θ = − T

GJ
µ sinh µL + µB cosh 2µL

which gives

B = T

GJ

sinh µL

cosh 2µL

Then

dθ

dz
= T

GJ

{
[1 − cosh µ(z − L)] + sinh µL

cosh 2µL
sinh µz

}

Also since θ = 0 at z = 0 and the Macauley bracket is zero for z < L

θ = T

GJ

{[
z − L − 1

µ
sinh µ(z − L)

]
+ sinh µL

cosh 2µL
( cosh µz − 1)

}

At z = 2L

θT = T

GJ

(
L − sinh µL

µL cosh 2µL

)

S.27.8

The variation of swept area is shown in Fig. S.27.8(b)
Using the ‘wire’ analogy

2A′
R4at = at

a2

2
+ 2at

5

8
a2 + at

3

4
a2
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i.e.

2A′
R = 5a2

8

Then

�R = at
1

3
(a2)2 + 2at

[
1

3

(
3

8
a2

)2

+
(

5

8
a2

)2
]

+ at

[
1

3

(
a2

2

)2

+
(

3

4
a2

)2
]

− 4at

(
5a2

8

)2
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which gives

�R = 7a5t

24
The rate of twist is identical to that given by Eq. (vi) in S.27.4, i.e.

dθ

dz
= T

GJ

[
1 − cosh µ(L − z)

cosh µL

]
(i)

The direct stress distribution at the built-in end is, from Eq. (ix) of Example 27.1

σ� = −
√

E

GJ�R
T 2AR

sinh µL

cosh µL

Evaluating the different constants

�R = 9.33 × 105 mm6 J = 26.67 mm4 T = 1125 N mm

µ2 = 8.56 × 10−6 and µL = 1.46

Then

σ� = −0.369 2AR

At 2,

2AR = a2 − 5a2

8
= 3a2

8
= 3 × 202

8
= 150 mm2

so that

σ�,2 = −55.3 N/mm2

The direct stress due to elementary bending theory is, from Eqs (16.21)

σz = Mxy

Ixx

where

Mx = −150 × 500 = −75 000 N mm

and

Ixx = 2 × 1.0 × 20 × 202 + 1.0 × 403

12
= 21.3 × 103 mm4

Then

σz,2 = −75 000 × 20

21.3 × 103 = −70.4 N/mm2

The total direct stress at 2 is therefore

σ2 = −55.3 − 70.4 = −125.7 N/mm2
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S.27.9

The torsion bending constant is identical to that in S.27.4,
i.e.

�R = th2d3

24

The rate of twist is, from Eq. (27.6)

dθ

dz
= A cosh µz + B sinh µz + wh

2GJ
(L − z)

when z = 0, dθ/dz = 0 (w = 0 at z = 0) which gives

A = −whL

2GJ

When z = L, d2θ/dz2 = 0 (σ� = 0 at z = L) which gives

B = wh

2GJ

[
L tanh µL + 1

µ cosh µL

]

Hence

dθ

dz
= wh

2GJ

[
−L cosh µz +

(
µL sinh µL + 1

µ cosh µL

)
sinh µz + L − z

]

Then

σ� = −2ARE
d2θ

dz2

is

σ� = −2ARE
wh

2GJ

[
−µL sinh µz +

(
µL sinh µL + 1

cosh µL

)
cosh µz − 1

]

At the built-in end when z = 0

σ� = −2ARE
wh

2GJ

[
µL sinh µL + 1 − cosh µL

cosh µL

]

Evaluating the constants

�R = 1040 × 106 mm6, J = 12 500 mm4, µ2 = 4.0 × 10−6, µL = 3.0.

Then

σ� = −0.025(2AR)

The distribution of 2AR is linear round the section so that σ� is also linear.
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At 1,

2AR = −hd

4
(see S.27.4)

Then

σ�,1 = +0.025 × 200 × 50

4
= +62.5 N/mm2.

From symmetry of the 2AR distribution

σ�,3 = −σ�,1 = −σ�,4 = σ�,6 = −62.5 N/mm2,

σ�,2 = σ�,5 = 0

From Eqs (16.21)

σz = Myx

Iyy

where

My = 0.5 × 15002

2
= 562 500 N mm

and

Iyy = 2 × 5 × 503

12
= 104 200 mm4

Then

σz = 5.4y,

i.e.

σz,1 = +135 N/mm2

From symmetry

σz,1 = −σz,3 = −σz,4 = σz,6 = +135 N/mm2

σz,2 = σz,5 = 0

The complete direct stresses are

σ1 = 62.5 + 135 = +197.5 N/mm2 = −σ3

σ4 = 62.5 − 135 = −72.5 N/mm2 = −σ6

σ2 = σ5 = 0
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Solutions to Chapter 28 Problems

S.28.1

The solution is obtained directly from Eq. (28.9) in which ∂c1/∂α = a, α = α0 and
cm,0 = CM,0. Thus

θ =
(

CM,0

ea
+ α0

) [
cos λ(s − y)

cos λs
− 1

]

which gives

θ =
(

CM,0

ea
+ α0

)
cos λ(s − y)

cos λs
− CM,0

ea
− α0

Thus

θ + α0 =
(

CM,0

ea
+ α0

)
cos λ(s − y)

cos λs
− CM,0

ea

where

λ2 = ea 1
2ρV2c2

GJ
Also, from Eq. (28.11) the divergence speed Vd is given by

Vd =
√

π2GJ

2ρec2s2a

S.28.2

Since the additional lift due to operation of the aileron is at a distance hc aft of the
flexural axis the moment equilibrium equation (28.25) for an elemental strip becomes

dT

dy
δy − 	Lec − 	Lξhc = 0 (i)

in which, from Eq. (28.23)

	L = 1

2
ρV2cδy

[
a1

(
θ − py

V

)
+ a2fa(y)ξ

]

where fa(y) = 0 for 0 ≤ y ≤ ks and fa(y) = 1 for ks ≤ y ≤ s. Also

	Lξ = 1
2ρV2cδya2 fa(y)ξ

Then, substituting for T (= GJ dθ/dy), 	L and 	Lξ in Eq. (i) and writing λ2 =
ρV2 ec2a1/2GJ

d2θ

dy2 + λ2θ = λ2 py

V
+ λ2 h

e

a2

a1
fa(y)ξ (ii)
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The solution of Eq. (ii) is obtained by comparison with Eq. (28.29). Thus

θ1(0 − ks) = p

V

(
y − sin λy

λ cos λs

)
− ha2ξ

ea1
( tan λs cos λks − sin λks) sin λy (iii)

and

θ2(ks − s) = p

V

(
y − sin λy

λ cos λs

)

+ ha2ξ

ea1
(1 − cos λy cos λks − tan λs cos λks sin λy) (iv)

Then, from Eq. (28.32)

∫ ks

0
a1

(
θ1 − py

V

)
y dy +

∫ s

ks
a1

(
θ2 − py

V

)
y dy = −a2ξ

∫ s

ks
y dy (v)

Substituting for θ1 and θ2 in Eq. (v) from Eqs (iii) and (iv) gives

− tan λs
∫ s

0
y sin λy dy + tan λks

∫ ks

0
y sin λy dy −

∫ s

ks
y cos λy dy + (e + h)

h cos λks

∫ s

ks
y dy

= pea1

ha2ξλV cos λs cos λks

∫ s

0
y sin λy dy

Hence the aileron effectiveness is given by

(ps/V )

ξ
=

− tan λs
∫ s

0
y sin λy dy + tan λks

∫ ks

0
y sin λy dy

−
∫ s

ks
y cos λy dy + (e + h)

2h cos λks
[s2 − (ks)2]

ea

ha2λs cos λs cos λks

∫ s

0
y sin λy dy

(vi)

The aileron effectiveness is zero, i.e. aileron reversal takes place, when the numerator
on the right-hand side of Eq. (vi) is zero, i.e. when

tan λks
∫ ks

0
y sin λy dy − tan λs

∫ s

0
y sin λy dy −

∫ s

ks
y cos λy dy = (e + h)

2h cos λks
[(ks)2 − s2]




