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Preface
So this is a summary of the core concepts covered in the Calculus 1 module in First year. Up
to 2018 you could easily pass the course just by practicing past questions and learning the
patterns of how to solve them, but from 2019 on wards you needed to have a more intuitive
understanding of the stuff you learned in class. In these notes I go over the basics of what you
do in class and try to explain things simply. Obviously I’m not going to every bit of information
from the lectures and the book in here, so if you want further clarification I recommend looking
back at the slides. These notes go in the same order as the lectures so you should have no
problem finding further information. The latest version of these notes is always available on
my website (alanrh.com), along with other resources that I find useful. If you find any mistakes
and you need anything corrected shoot me an email, but please don’t email me if you want
further explanation because I can’t promise individual help to everyone.

Alan Hanrahan
Delft, January 27, 2021
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1
Second Order Differential Equations

1.1. The Basics
You should remember from the previous Calculus subject that we dealt with Differential

equations of the first order. As in, we only had a single differential of 𝑦. Now we’re dealing
with second order Differential Equations (DEs). more specifically we’re dealing with Linear
second order DEs. We call them Linear if they can be written in the form:

𝑃(𝑥)𝑦″ + 𝑄(𝑥)𝑦′ + 𝑅(𝑥)𝑦 = 𝐺(𝑥) (1.1)

where 𝑃,𝑄,𝑅, and 𝐺 are all continuous functions of 𝑥. We call this form linear, because there
are no functions of 𝑦 so nothing like 𝑦′𝑦″ for instance. The function 𝐺 is important. If 𝐺 = 0then
we can say that the DE is Homogeneous, otherwise we say that the DE is Non­Homogeneous.

1.2. Homogeneous Differential Equations
1.2.1. Solving a first order Equation
When solving a first order DE you could go through the steps as you recall it from the last

quarter, and use the integrating factor, or you could make a guess and say that 𝑦 = 𝑒𝑟𝑥
because that’s often the case. But remember, this is a guess. If you substitute this into a first
order DE:

𝑎𝑦′ + 𝑏𝑦 = 0

𝑎𝑟𝑒𝑟𝑥 + 𝑏𝑒𝑟𝑥 = 0

(𝑎𝑟 + 𝑏)𝑒𝑟𝑥 = 0

But exponentials are never equal to zero, so then we can say:

𝑎𝑟 + 𝑏 = 0

𝑟 = −𝑏𝑎

Bring this back into our original format for 𝑦 and we can say that 𝑦 = 𝑒
−𝑏
𝑎 𝑥 is a solution for

the differential equation. But if wemultiply by a constant, our differential equation is unaffected.
And so we can say that our answer is in the form:

𝑦 = 𝐶𝑒
−𝑏
𝑎 𝑥

1



2 1. Second Order Differential Equations

1.2.2. Solving a Second Order Equation
We can use this same approach of guessing the form the differential will be in for second

order DEs too. For example, if we have the equation:

𝑦″ + 4𝑦′ + 3𝑦 = 0

We can substitute in 𝑦 = 𝑒𝑟𝑥 and we find:

𝑟2𝑒𝑟𝑥 + 4𝑟𝑒𝑟𝑥 + 3𝑒𝑟𝑥 = 0

(𝑟2 + 4𝑟 + 3)𝑒𝑟𝑥 = 0

Once again, an exponential is always non­zero, so we can get rid of that to give us a quadratic
equation in 𝑟.

𝑟2 + 4𝑟 + 3 = 0

We are familiar with these, so we can use the quadratic formula to solve for 𝑟.

𝑟 = −𝑏 ± √𝑏2 − 4𝑎𝑐
2𝑎 (1.2)

In this case this gives us 𝑟 = −3 or 𝑟 = −1. Thus with these values for 𝑟 we can say that:

𝑦1 = 𝐶1𝑒−3𝑥

and
𝑦2 = 𝐶2𝑒−1𝑥

This brings us to an interesting principle. If 𝑦1(𝑥) and 𝑦2(𝑥) are both solutions of the linear
homogeneous equation 𝑃(𝑥)𝑦″ + 𝑄(𝑥)𝑦′ + 𝑅(𝑥)𝑦 = 0. And 𝐶1 & 𝐶2 are arbitrary constants,
then the function:

𝑦(𝑥) = 𝐶1𝑦1(𝑥) + 𝐶2𝑦2(𝑥) (1.3)

is also a solution for 𝑦. This is the superposition principle, and this is how we get our
general solution.

1.2.3. Different cases
In the quadratic formula (1.2), we say that the value under the square root is the discriminant

𝐷. If this value is greater than 0, (𝑏2−4𝑎𝑐 > 0), then both 𝑟1 and 𝑟2 will be distinct real numbers,
and both 𝑦1 = 𝑒𝑟1𝑥 and 𝑦2 = 𝑒𝑟2𝑥 will be independent functions, and the general solution will
work nicely as we expect.

An independent function is one where you can’t just multiply one function by a constant to
get the other. For example; 𝑥2 and 2𝑥2 are not independent because you can just multiply
by 2 or 12 to get the other function. But 𝑥

2 and 𝑥3 are independent, because the ratio of their
values is not constant.
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What if the discriminant is zero? In such instance we find that we only get one value for
𝑟 and so we don’t end up with independent equations for 𝑦(𝑥).

𝑟1 = 𝑟2 =
−𝑏
2𝑎

Thus, we don’t get a general solution from this because we can simply write it in the form:

𝑦(𝑥) = 𝐶1𝑒𝑟𝑥 + 𝐶2𝑒𝑟𝑥 = 𝐶3𝑒𝑟𝑥

No good. Instead we multiply one of our possible solutions of 𝑦 by 𝑥. Why? Because it
works. And that’s all we need to know for now. But to prove that it works look at the following:

𝑎𝑦″ + 𝑏𝑦′ + 𝑐𝑦 = 0

𝑦 = 𝑥𝑒𝑟𝑥

𝑦′ = 𝑒𝑟𝑥 + 𝑟𝑥𝑒𝑟𝑥

𝑦″ = 2𝑟𝑒𝑟𝑥 + 𝑟2𝑥𝑒𝑟𝑥

𝑎2𝑟𝑒𝑟𝑥 + 𝑎𝑟2𝑥𝑒𝑟𝑥 + 𝑏𝑒𝑟𝑥 + 𝑏𝑟𝑥𝑒𝑟𝑥 + 𝑐𝑥𝑒𝑟𝑥 = 0

𝑥𝑒𝑟𝑥(𝑎𝑟2 + 𝑏𝑟 + 𝑐) + 𝑒𝑟𝑥(2𝑎𝑟 + 𝑏) = 0
We know that exponentials are non­zero, and we know that the quadratic solves to zero.

So with the value of 𝑟 = −𝑏
2𝑎 , We can check to see if 2𝑎𝑟 + 𝑏 = 0. And sure enough, the

equation works out just right.

But what if the Discriminant is negative? In this case, then we find that 𝑟1 and 𝑟2 are
complex numbers. In the form 𝑟1 = 𝛼 + 𝛽𝑖, and 𝑟2 = 𝛼 − 𝛽𝑖. This isn’t useful for us. But if
you remember the different ways we can write complex numbers, we can use algebra to our
benefit.

𝑦1(𝑥) = 𝑒𝛼𝑥𝑒𝛽𝑖𝑥

𝑦2(𝑥) = 𝑒𝛼𝑥𝑒−𝛽𝑖𝑥

With these forms, we can write the general solution in the form:

𝑦(𝑥) = 𝑒𝛼𝑥(𝐶1𝑒𝛽𝑖𝑥 + 𝐶2𝑒−𝛽𝑖𝑥)

Recall 𝑒𝑖𝜃 = cos𝜃 + 𝑖 sin𝜃. With this information we can do some algebra (do it yourself to
prove it) and find that:

cos𝜃 = 1
2𝑒

𝑖𝜃 + 12𝑒
−𝑖𝜃

sin𝜃 = 1
2𝑖𝑒

𝑖𝜃 + 1
2𝑖𝑒

−𝑖𝜃

With this knowledge, and the understanding that constants are arbitrary, we can find a
general solution of 𝑦 that gives us real answers:

𝑦(𝑥) = 𝑒𝛼𝑥(𝐶1 cos𝛽𝑥 + 𝐶2 sin𝛽𝑥) (1.4)

Where 𝐶1, 𝐶2 ∈ ℝ
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1.3. Non­Homogeneous Equations
So we’ve dealt with homogeneous equations where the independent function 𝐺(𝑥) is equal

to zero. But to deal with Differential Equations where the function is not zero, we much use
those techniques with other techniques too.

1.3.1. Guessing the Form of Y
It should be noted that throughout this course we are assuming that 𝑃, 𝑄, 𝑅 are all constants

and not complicated functions of 𝑥. As such, we use this information to make a guess at the
format of 𝑦(𝑥). To do so, we look at the form of 𝐺(𝑥). For example:

𝑦″ + 𝑦′ − 2𝑦 = 4𝑥

The highest power of 𝑥 in 𝐺(𝑥) is 𝑥1. This is a linear equation, so in turn we guess that 𝑦(𝑥)
is also linear. Each time we differentiate, we reduce the powers of each term, so the highest
power term will only appear once, in 𝑦(𝑥) and not in any of the derivatives.

The general form of a linear equation is 𝐴𝑥+𝐵, with first derivative 𝐴, and second derivative
0. Thus we substitute this into our equation and solve for 𝑦.

0 + 𝐴 − 2𝐴𝑥 − 2𝐵 = 4𝑥
−2𝐴𝑥 + 𝐴 − 2𝐵 = 4𝑥

𝐴 = −2
−2 + 𝐵 = 0
𝐵 = 2

𝑦 = −2𝑥 + 2

More specifically what we’ve found is a particular solution of 𝑦(𝑥) written as 𝑦𝑝. If we want to
find a particular solution of a DE where 𝐺(𝑥) is a different format, for instance if 𝐺(𝑥) = cos 𝑥,
then the general solution is 𝐴 cos 𝑥 + 𝐵 sin 𝑥. This is just because of the cyclic nature of
trigonometric differentials. Using the same logic as before we can substitute in our guesses
for the function of 𝑦 and work out the coefficients.

1.3.2. Finding a General Solution
We don’t just want one particular solution though, we want the general solution. To find this

we must add the solution to the complimentary homogeneous equation. This is because the
homogeneous equation equals zero, and we can add zero to anything and it will not change
the value.

The steps for getting the general solution then, are as follows:

1. Solve the complimentary equation: 𝑦𝑐
• 𝑎𝑦″ + 𝑏𝑦′ + 𝑐 = 0

2. Solve the particular equation: 𝑦𝑝
• 𝑎𝑦″ + 𝑏𝑦′ + 𝑐 = 𝐺(𝑥)

3. Sum the solutions (1) and (2)
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• 𝑦(𝑥) = 𝑦𝑝 + 𝑦𝑐
4. Apply the initial conditions and calculate the coefficients 𝐶1 and 𝐶2

Essentially, that it. If your exam is tomorrow and you just need a refresher on the topic you
can flick to the next chapter now. But for a more thorough explanation, keep reading.

We saw at the beginning of this section how we solve for the particular solution. If 𝐺 is an
n𝑡ℎ order polynomial then the guess we use is 𝑦𝑝 = 𝐴𝑥𝑛+𝑏𝑥𝑛−1 and so on, then we substitute
it into the equation and solve for the coefficients

But be warned, there are a few special cases you need to watch out for. Starting with:

• if 𝐺(𝑥) = cos 𝑘𝑥 or sin 𝑘𝑥. In that case, use 𝑦𝑝 = 𝐴 cos 𝑘𝑥 + 𝐵 sin 𝑘𝑥

• if 𝐺(𝑥) = 𝛼𝑒𝑘𝑥 then use 𝑦𝑝 = 𝐴𝑒𝑘𝑥

• if 𝐺(𝑥) is a combination of the above, for instance of the form 𝑥2𝑒𝑥 + sin 𝑥, then you
should find two particular solutions 𝑦𝑝 = 𝑦𝑝1 + 𝑦𝑝2 . In this case:
𝑦𝑝1 = (𝐴𝑥2 + 𝐵𝑥 + 𝐶)𝑒𝑥
𝑦𝑝2 = 𝐷 cos 𝑘𝑥 + 𝐸 sin 𝑘𝑥

• if the solution 𝑦𝑝 works out to be a solution to the complimentary equation, for example:
𝑦″ + 𝑦 = cos 𝑥. Then multiply by 𝑥.
𝐴 cos 𝑥 + 𝐵 sin 𝑥 → 𝐴𝑥 cos 𝑥 + 𝐵𝑥 sin 𝑥

1.3.3. Practical Applications
These equations are all pretty useful when we want to combine forces to analyse a physical
system. Like a spring­mass system that has been pushed from equilibrium. The different
forces acting on the mass are:

Mass * accelleration = Spring Force + Friction Force + External force
or in mathematical terms:

𝑚𝑥″ = −𝑘𝑥 − 𝛾𝑥′ + 𝐹
= 𝑚𝑥″ + 𝛾𝑥′ + 𝑘𝑥 = 𝐹



2
Series

2.1. The Basics
2.1.1. Sequences
Before we start talking about series, we must understand a sequence first. A sequence is an
ordered list of numbers. We write it in the form:

{𝑎𝑛}
𝑁
𝑛=1 (2.1)

𝑎1, 𝑎2, 𝑎3, 𝑎4, ...𝑎𝑁
Where we begin with 𝑎𝑛 and keep going to 𝑎𝑁. Most of the time in this course we use 𝑁 = ∞.
An example of one such sequence would be:

{(12)
𝑛
+ 1}

∞

𝑛=1

= 3
2,
5
4 ,
9
8 , ...

We say that a sequence, {𝑎𝑛}
∞
𝑛=1 converges to the limit 𝐿 if:

lim
𝑛→∞

𝑎𝑛 = 𝐿

If the limit does not exist, the sequence is divergent.

2.1.2. Series
A series is what we get when we sum up all of the terms of a sequence. Given the sequence,

{𝑎𝑛}
∞
𝑛=1, we get the series: 𝑎1 + 𝑎2 + 𝑎3.... This is called an infinite series. We denote it as:

∞

∑
𝑛=1

𝑎𝑛 (2.2)

2.1.3. Rules of Calculation
If ∑∞𝑛=1 𝑎𝑛 and ∑

∞
𝑛=1 𝑏𝑛 are convergent series then so are:

• ∑∞𝑛=1 𝑐𝑎𝑛 where 𝑐 is a constant ∈ ℝ

• ∑∞𝑛=1 𝑎𝑛 + 𝑏𝑛

• ∑∞𝑛=1 𝑎𝑛 − 𝑏𝑛

If wemultiply every value in a sequence, thenwe can factorise it out andwrite it as: ∑∞𝑛=1 𝑐𝑎𝑛 =
𝑐 ∑∞𝑛=1 𝑎𝑛

6
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We are able to play around with the starting value so long as we change the form of 𝑎𝑛 to
fit, For example:

∞

∑
𝑛=1

𝑎𝑛 = 𝑎1 + 𝑎2 + 𝑎3...

=
∞

∑
𝑛=0

𝑎𝑛+1 = 𝑎1 + 𝑎2 + 𝑎3...

2.1.4. Converging Series
A series is convergent if there is a number (R) such that ∑∞𝑛=1 𝑎𝑛 = 𝑆. We define a partial

sum as 𝑆𝑁 = ∑
𝑁
𝑛=1 𝑎𝑛 with this, we can define a sequence of all partial sums.

{𝑆𝑁}
∞
𝑁=1 = 𝑎1, 𝑎1 + 𝑎2, 𝑎1 + 𝑎2 + 𝑎3, ...

Thus, we can say that the series {𝑆𝑁}
∞
𝑁=1 converges if:

lim
𝑁→∞

𝑆𝑁 = 𝑆

And because this sequence is a sequence of the partial sums of the series of 𝑎𝑛 we can in
turn say:

lim
𝑁→∞

𝑁

∑
𝑛=1

𝑎𝑛 =
∞

∑
𝑛=1

𝑎𝑛 = 𝑆

What we did here is we showed the convergences of the partial sums to show to conver­
gence of a series. If the limit does not exist, then the series is divergent.

2.2. Geometric Series
A geometric series is just a form of a series, written as:

∞

∑
𝑛=1

𝑎𝑟𝑛−1 (2.3)

To find the sum of this series, we can use the partial sums again. Start by writing out the
series 𝑆𝑁

𝑆𝑁
𝑁

∑
𝑛=1

𝑎𝑟𝑛−1 = 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3... + 𝑎𝑟𝑁−1

Then multiply this partial sum by 𝑟 𝑟𝑆𝑁 = 𝑎𝑟 + 𝑎𝑟3 + 𝑎𝑟4... + 𝑎𝑟𝑁

𝑆𝑁 − 𝑟𝑆𝑁 = 𝑎 − 𝑎𝑟𝑁

𝑆𝑁(1 − 𝑟) = 𝑎 − 𝑎𝑟𝑁

𝑆𝑁 =
𝑎 − 𝑎𝑟𝑁
1 − 𝑟
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To show convergence of a geometric series we take the limit as 𝑁 goes to infinity, and from
this we can conclude that the series is only convergent if the magnitude of |𝑟| is less than 1.
Thus, if we know that a geometric series is convergent, we can write the sum of the whole
series as:

𝑆 = 𝑎
1 − 𝑟 (2.4)

2.3. Telescopic Series
A telescopic series is one that can be expanded out into more than one series, kind of like

a telescope. Take for example the series ∑∞𝑛=1
1

𝑛(𝑛−1) we can expand this series out into two

different series of the form ∑∞𝑛=1
𝐴
𝑛 +

𝐵
𝑛−1 . Knowing that these two fractions multiply to give us

our original fraction, we can do some algebra to find:

∞

∑
𝑛=1

1
𝑛(𝑛 − 1) =

∞

∑
𝑛=1

1
𝑛 −

1
𝑛 − 1

But what use is this? Well, if for example you write out the new terms of this series you’ll
start to notice a pattern:

∞

∑
𝑛=1

1
𝑛 −

1
𝑛 − 1 = 1 −

1
2 +

1
2 −

1
3...

Notice how we can cancel pairs of terms? Thus giving us our sum 𝑆 = 1 because nothing
cancels with the first term. In my experience the best understanding of telescopic series just
comes from examples, so here’s another example to wrap your head around:

∞

∑
𝑛=2

2
𝑛2 − 1 ⇒

∞

∑
𝑛=2

1
𝑛 − 1 −

1
𝑛 + 1

= 1 − 13 +
1
2 −

1
4 +

1
3 −

1
5 +

1
4 −

1
6 +

1
5...

And what you start to see here is that every second term cancels, as we approach infinity, all
terms except two of them at the start will cancel out leaving us with 𝑆 = 1 + 1

2 .

2.4. Series Tests
2.4.1. Divergence Test
If we want to take a shortcut to see if a series will converge we can try a test for divergence.

If the limit of the sequence lim𝑛→∞ 𝑎𝑛 is anything other than 0 then the series will diverge.
This is because you’ll be adding infinite non­zero values so it will obviously diverge. On the
other hand, if the limit does equal zero, then we can’t say anything of significance, the test is
inconclusive.

An example of one such series is the harmonic series: ∑∞𝑛=1
1
𝑛 . If we try the divergence test

we find the limit to be 0, and so we can’t say if it’s divergent or convergent.
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2.4.2. Integral Test
The integral test is another check to see if something converges or diverges. Suppose the

function 𝑓(𝑥) is a continuous, positive, decreasing function on [1,∞], and let 𝑎𝑛 = 𝑓(𝑛). Then
we can say that if the integral of ∫∞1 𝑓(𝑥) converges, then so too must the series ∑∞1 𝑎𝑛, and
vise versa. The opposite is also true, in that if the integral diverges, so does the series.

To prove this we can imagine a graph where we plot the sequence {𝑎𝑛}
∞
𝑛=1 and the function

𝑓(𝑛).

Figure 2.1: Visualisation of a Divergent Series

What we can do, is draw the value of the sequence for each value of 𝑛 then multiply it by
Δ𝑥 = 1 to get the appropriate area. Notice in figure (2.1) the area of the series is always larger
than the area of the integral. And because we know the integral diverges, and the series is
always larger than the integral, the series too must diverge.

We can use this same logic to prove convergence too, if instead we shift our vertical bars
representing the sequence to the left, so that the area enclosed by the integral is always
greater than the area enclosed by the series, then, if the integral converges, and the area of
the series is always less than the function, then it follows that the series must also converge.

2.4.3. P Series Test
A power series is one of the form:

∞

∑
𝑛=1

1
𝑛𝑝 (2.5)

Where the series is convergent for all all values 𝑝 > 1, and divergent for all 𝑝 ≤ 1. When
𝑝 = 1 we get the harmonic series again. Ultimately this test is just useful for making compar­
isons and relations with other functions, because well, 1

𝑛𝑝 is not a super common function.
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2.4.4. Comparison Test
In a similar way to how we used comparison tests to see if an integral would converge in

Calculus 1A, we can also compare two series to see if they’ll converge. Suppose that ∑∞𝑛=1 𝑎𝑛
and ∑∞𝑛=1 𝑏𝑛 are two series with positive terms.

1. If ∑∞𝑛=1 𝑏𝑛 is convergent, and 𝑎𝑛 ≤ 𝑏𝑛 for all 𝑛, then 𝑎𝑛 must be convergent too.

2. If ∑∞𝑛=1 𝑏𝑛 is divergent, and 𝑎𝑛 ≥ 𝑏𝑛 for all 𝑛, then 𝑎𝑛 must be divergent too.

Think about it. If ∑𝑏𝑛 converges, it must be a finite number greater than 0. And so if ∑𝑎𝑛 is
less than this finite number, it is obviously also finite. The same logic applies if ∑𝑏𝑛 diverges,
If ∑𝑎𝑛 is greater than an infinite value, it must also be infinite.

For example, ∑∞𝑛=1
1

𝑛3+1 is always smaller than ∑∞𝑛=1
1
𝑛3 , And due to the P series test, we

know that this converges, therefore, so too must ∑∞𝑛=1
1

𝑛3+1 .

Similarly, ∑∞𝑛=1
1+sin𝑥2

√𝑛
is always greater than ∑∞𝑛=1

1
√𝑛
, which diverges. Thus, so too must

∑∞𝑛=1
1+sin𝑥2

√𝑛
.

2.4.5. Limit Comparison Test
Suppose ∑𝑎𝑛 and ∑𝑏𝑛 are series with positive terms, then, if the limit:

lim
𝑛→∞

𝑎𝑛
𝑏𝑛
= 𝐶

where 𝐶 is a finite, positive number, then either; ∑𝑎𝑛 and ∑𝑏𝑛 are both convergent or both
divergent.

Seems straightforward enough really, but why is this the case? Let 𝑚 and 𝑀 be positive
numbers such that 𝑚 < 𝐶 < 𝑀. Because lim𝑛→∞

𝑎𝑛
𝑏𝑛
= 𝐶, there is a number 𝑁 such that for

𝑛 < 𝑎𝑛
𝑏𝑛
< 𝑀 for all 𝑛 ≥ 𝑁. Beyond the point of 𝑛 = 𝑁 the value of 𝑎𝑛𝑏𝑛 will be bounded by 𝑚

and 𝑀.

0 5 10 15 20
0

2

4

6

8

𝑛

𝑦
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Note how after around 𝑛 = 2.5 the function 𝑎𝑛
𝑏𝑛

is bound between the two blue lines? From
this we can say that 𝑁 = 2.5, but that doesn’t matter. What matters is that point 𝑁 exists. With
this information at hand, knowing that we’re taking a limit at infinity, we can do some algebra:

𝑚 < 𝑎𝑛
𝑏𝑛
< 𝑀

𝑏𝑛𝑚 < 𝑎𝑛 < 𝑏𝑛𝑀

.

So from this we can now say, that if ∑𝑏𝑛 is convergent, multiplying it by a constant won’t
change this. So ∑𝑏𝑛𝑀 is also convergent, and because this is greater than 𝑎𝑛 then we can
say that ∑𝑎𝑛 is also convergent.

Similarly, if ∑𝑏𝑛 is divergent, so is ∑𝑏𝑛𝑚 and thus ∑𝑎𝑛 is also divergent.

2.5. Alternating Series
2.5.1. The Basics
An alternating series is one where the sequence alternates between positive and negative.

Consider the following alternating series:

∞

∑
𝑛=1
(−1)𝑛 ⋅ 𝑎𝑛 (2.6)

If the series is constantly decreasing, or in other words, if 𝑎𝑛+1 ≤ 𝑎𝑛 for all values of 𝑛.
And, if the limit, lim𝑛→∞ 𝑎𝑛 = 0, then we can say that this series is convergent. An interesting
concept to introduce now is the idea of Absolute convergence.

2.5.2. Absolute Convergence
A series ∑𝑎𝑛 is called absolutely convergent if the series ∑ |𝑎𝑛| is convergent. And we

have a theorem that tells us that if a series is absolutely convergent then it is also normally
convergent too. As in if ∑ |𝑎𝑛| is convergent, so too is ∑𝑎𝑛.

A series is called conditionally convergent if it is convergent, but not absolutely conver­
gent. As in ∑𝑎𝑛 converges, but ∑ |𝑎𝑛| diverges. For the most part, we don’t actually care if
something is conditionally convergent because we are able to manipulate terms to make pretty
much any series converge or diverge as we please. For example, the alternating harmonic
series ∑∞𝑛=1) (

−1
𝑛 )

𝑛
. This will converge, but only conditionally.

To check for convergence in an alternating series we have, almost a decision tree to follow.
First check for absolute convergence, if this is the case then we know the series is convergent.
If not, check for conditional convergence, then we see if something is convergent or divergent.

For example, if you want to know if ∑∞𝑛=1
sin𝑛
𝑛2 converges, you can take the absolute value

for this series and easily find that it converges absolutely, and thus so too must the original
series.
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2.5.3. Ratio Test
The ratio test is yet another test we can use for series. It will tell us is a series is absolutely
convergent, or divergent. That’s it. What we do is we take the ratio of two values of 𝑎

lim
𝑛→∞

|𝑎𝑛+1𝑎𝑛
| = 𝐿 (2.7)

Using the limit 𝐿 that we calculate we can make some statements about the series. If 𝐿 < 1
then the series is absolutely convergent, if 𝐿 > 1 then the series is divergent. And if 𝐿 = 1
then the ratio test is inconclusive and you need to do some other test for convergence.

If you think about this for a moment this will make sense. If the terms keep increasing, then
of course the series will diverge, and naturally if the terms keep getting smaller, then it will
diverge too.

2.6. Power Series
2.6.1. The Basics
A power series is one of the form:

∞

∑
𝑛=0

𝐶𝑛𝑥𝑛 (2.8)

This will expand out into:
𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2....

Where the constants, in the sequence {𝐶𝑛}
∞
𝑛=0 are called the coefficients of the power series.

If these are all the same as each other (i.e. 𝐶0 = 𝐶1 = 𝐶2) then we have a geometric series on
our hands.

To put this in a more general way we can put a constant 𝑎 into our format.
∞

∑
𝑛=0

𝐶𝑛 (𝑥 − 𝑎)
𝑛 (2.9)

= 𝐶0 + 𝐶1(𝑥 − 𝑎) + 𝐶2(𝑥 − 𝑎)2...

2.6.2. Radius of Convergence
We call this a power series centred at 𝑥 = 𝑎, or simply, a power series about 𝑎. From this we

can introduce the concept of The Radius of Convergence. To illustrate it; let’s do an example.
Say we have a series: ∑∞𝑛=1

𝑥𝑛−1
𝑛2 which is a power series about 𝑥 = 0. But for which values of

x does it converge? From equation (2.7) we can just try the ratio test to find out.

lim
𝑛→∞

| 𝑥𝑛
(𝑛 + 1)2

𝑛2
𝑥𝑛−1 |

lim
𝑛→∞

|𝑥| ⋅ | 𝑛2
𝑛2 + 2𝑛 + 1|

|𝑥| ⋅ lim
𝑛→∞

| 𝑛2
𝑛2 + 2𝑛 + 1|

= |𝑥|
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What we’ve deduced here is that the series will absolutely converge when |𝑥| < 1 Why?
Well, remember the basis of the ratio test, if the limit of the ratio between terms is less than 1,
then we have absolute convergence. We found that the limit is |𝑥| so for the series to converge
absolutely, |𝑥| must be less than 1. As with the ratio test, you must separately analyse the
limit when it is equal to 1. The ratio is in conclusive.

But what if we want to make this a bit more general? In that case, take a look at our form
(2.9). To check where it converges we first do the ratio test.

lim
𝑛→∞

|𝐶𝑛+1(𝑥 − 𝑎)
𝑛+1

𝐶𝑛(𝑥 − 𝑎)𝑛
|

lim
𝑛→∞

|𝐶𝑛+1𝐶𝑛
| ⋅ |𝑥 − 𝑎|

The series will absolutely converge when this is less than 1. But we can rearrange this a bit
more.

lim
𝑛→∞

|𝐶𝑛+1𝐶𝑛
| ⋅ |𝑥 − 𝑎| < 1

|𝑥 − 𝑎| < lim
𝑛→∞

| 𝐶𝑛𝐶𝑛+1
|

With this we can see what the radius of convergence is. It is the radius, about point 𝑎 where
the series will converge. We can use shorthand for further analysis, we’ll call lim𝑛→∞ |

𝐶𝑛
𝐶𝑛+1

|
the radius of convergence 𝑅.

It might make a bit more sense if we draw this out.

Figure 2.2: Radius of convergence

Moving away from inequalities, we can then just write the equation normally. And see the
interval for which the series will converge. Remember, this is for a power series about 𝑎. So
the centre of the interval will be 𝑎.

−𝑅 < 𝑥 − 𝑎 < 𝑅

𝑎 − 𝑅 < 𝑥 < 𝑎 + 𝑅

There are 3 possibilities if you do this calculation to find 𝑅

• 𝑅 = 0 in this case, the series will only converge for 𝑥 = 𝑎

• 𝑅 = ∞ in this case, the series will always converge.

• 𝑅 > 0 in this case, the series is absolutely convergent for |𝑥 − 𝑎| < 𝑅, and you need to
check what happens when 𝑥 = 𝑎 − 𝑅 or 𝑥 = 𝑎 + 𝑅
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Finding the radius of convergence is a simple task once you work on it enough. You’ll need
to do some practice but eventually it’ll click with you and it will make perfect sense. Try clear
this up before we move onto the next topic.

2.7. Functions as a Series
2.7.1. The Basics
So the reason we’re dealing with series so much is that they actually become good ap­

proximations of functions. In the previous quarter we dealt with linearization to approximate
functions, but if we add in more terms (like with a series) we can get more accurate approxi­
mations.

When it comes down to it, if we have a converging series we can manipulate it to represent
a function. We most commonly work with power series (I will often call them ”P Series”, don’t
worry about it) and manipulate them along with the functions. This stems from:

1
1 − 𝑥 =

∞

∑
𝑛=0

𝑥𝑛 (2.10)

Valid for |𝑥| < 1

2.7.2. Manipulations
This is all well and good but if we want to use this in any meaningful way we can manipulate

the functions. What if we want to represent 1
5−𝑥? Well to do that we’d change it around to get

it in a geometric format.

1
5 − 𝑥 →

1
5

1 − 𝑥
5
= 1
1 − (𝑥 − 4) =

1
2

1 − 𝑥−3
2

Any one of these representations will work, and there are many more that you could choose
as well. Taking the first one, if you replace 𝑥 with 𝑥

5 then, it is then valid for |
𝑥
5 | < 1 or in other

terms, −5 < 𝑥 < 5.

Essentially we can represent a function as a P series about almost any value of 𝑥, which
gives convergence with different radii of convergence (𝑅). So lets make a power series for
1
5−𝑥 about 𝑎.

1
5 − 𝑥 =

1
(5 − 𝑎) − (𝑥 − 𝑎) =

1
5−𝑎

1 − 𝑥−𝑎
5−𝑎

And this can then easily be written as a geometric series:

1
5 − 𝑥

∞

∑
𝑛=0

1
5 − 𝑎 (

𝑥 − 𝑎
5 − 𝑎)

𝑛

The centre of convergence is, obviously, 𝑎. Because that what we chose it to be. but to find
the radius of convergence it’s:

|𝑥 − 𝑎5 − 𝑎| < 1
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𝑎 − 5 < 𝑥 − 𝑎 < 5 − 𝑎
2𝑎 − 5 < 𝑥 < 5

In general, to use this for any function you need to:

1. Start with a function that has a known power series equivalent. (eg: 1
1−𝑥 = ∑

∞
𝑛=0 𝑥𝑛)

2. Find a series of manipulations that transform your standard function (eg: 1
1−𝑥 ) into the

desired function.

3. Apply these same manipulations to the P series to get a representation of the function
as a series.

There are a whole load of different ways to manipulate functions, but for the purposes of
generalisation, I’m going to define two functions as: 𝑓(𝑥) = ∑∞𝑛=0 𝑎𝑛𝑥𝑛 for |𝑥| < 𝑅1 and
𝑔(𝑥) = ∑∞𝑛=0 𝑏𝑛𝑥𝑛 for |𝑥| < 𝑅2

• Substitution: 𝑓(𝑐𝑥𝑘) = ∑∞𝑛=0 𝑎𝑛𝑐𝑛𝑥𝑘𝑛 for |𝑐𝑥𝑘| < 𝑅1
• Multiplication: 𝑐𝑥𝑘 ⋅ 𝑓(𝑥) = ∑∞𝑛=0 𝑐𝑎𝑛𝑥𝑛+𝑘 |𝑥| < 𝑅1
• Translation: 𝑓(𝑥 − 𝑐) = ∑∞𝑛=0 𝑎𝑛(𝑥 − 𝑐)𝑛 for |𝑥 − 𝑐| < 𝑅1
• Addition: 𝑓(𝑥) + 𝑔(𝑥) = ∑∞𝑛=0(𝑎𝑛 + 𝑏𝑛)𝑥𝑛 for |𝑥| < {𝑅1, 𝑅2}𝑚𝑖𝑛
• Differentiation: 𝑓′(𝑥) = ∑∞𝑛=0 𝑛𝑎𝑛𝑥𝑛−1 for |𝑥| < 𝑅1
• Integration: ∫𝑓(𝑥)𝑑𝑥 = ∑∞𝑛=0

𝑎𝑛
𝑛+1𝑥

𝑛+1 for |𝑥| < 𝑅1

Again, these all rely on you beginning with a known power series. For example:

1
1 − 𝑥 =

∞

∑
𝑛=0

𝑥𝑛

For |𝑥| < 1

𝑒𝑥 =
∞

∑
𝑛=0

1
𝑛!𝑥

𝑛

For all 𝑥 ∈ ℝ

2.8. Taylor Series
2.8.1. The Basics
”The Taylor series of a function is an infinite sum of terms that are expressed in terms of

the function’s derivatives at a single point”­(from Wikipedia). Essentially, the Taylor series is
another was of representing functions as a series. But it comes from taking lots and lots of
derivatives. It’s used all the time in computing to calculate complex functions, and in engineer­
ing, we use it all the time to simplify our calculations.

Instead of calculating a really long function to 100% accuracy, instead what we can do is
just take the first 4 terms of the Taylor series, and we’ll get a result that’s close enough. Before
we get started though there are a few things we need to cover.
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Derivatives should make sense to you by now, but all we need to do now is introduce some
new notation. The first, second, and third derivatives are written like this:

𝑓′, 𝑓″.𝑓‴

This is fair enough, but what if you want to take the tenth derivative?

𝑓′′′′′′′′′′

You can see where this is going. With the Taylor series we take (in theory) infinitely many
derivatives so the notation gets a bit out of hand. So to combat this we just write the number
of dashes that should be there:

𝑓‴ = 𝑓(3); 𝑓′′′′′′′′′′ = 𝑓(10)

So, let’s condense this down a bit into an actual mathematical sentence. If 𝑓(𝑥) has a power
series expansion at 𝑥 = 𝑎, that is, for some Radius of convergence 𝑅 which is greater than 0;

𝑓(𝑥) =
∞

∑
𝑛=0

𝐶𝑛 (𝑥 − 𝑎)
𝑛 ∶ |𝑥 − 𝑎| < 𝑅

then its coefficients are given by:

𝐶𝑛 =
𝑓(𝑛)(𝑎)
𝑛! (2.11)

To understand this for yourself you can write out the different derivatives of the power series
and see the pattern that emerges.

2.8.2. Taylor Polynomials
The Taylor series of 𝑓(𝑥) = 𝑓(𝑎) is what we call the following series:

∞

∑
𝑛=0

𝑓(𝑛)(𝑎)
𝑛! (𝑥 − 𝑎)𝑛

= 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) + 12𝑓
″(𝑎)(𝑥 − 𝑎)2...

There is a special name for Taylor series about the origin (or when 𝑎 = 0), it’s called a
Maclaurin series, after the Colin Maclaurin.

A Taylor Polynomial is a truncated Taylor series. So instead of using infinite terms to repre­
sent the function, we cut it off at a point and use that as an approximation of the function. This
is the most common use of a Taylor series.

𝑇𝑁(𝑥) =
𝑁

∑
𝑛=0

𝑓(𝑛)(𝑎)
𝑛! (𝑥 − 𝑎)𝑛 (2.12)
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With this you can start to recognise a few things:

• 𝑇0(𝑥) = 𝑓(𝑎); Which is a constant.

• 𝑇1(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎); Which is a linearisation of a function. We covered this in
much more detail last quarter.

• 𝑇2(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) + 𝑓″(𝑎)(𝑥 − 𝑎)2 Notice how with each term our polynomial
gets closer to the real function?

A very nice visualisation of this is the Taylor polynomial of sin 𝑥 about 𝑎 = 0. You can see
that with increasing terms we get a polynomial that’s closer and closer to sin 𝑥, and that close
to 𝑥 = 0 the taylor functions are extremely close to the original. This shows us how we can
approximate and still get a useful answer.

Figure 2.3: Taylor polynomials of increasing degrees.

2.8.3. Applications
Taylor polynomials are great for approximating a lot of functions, but in particular, we’re

going to look at how it helps us with integrals and with limits.

Starting with limits, for the most part we only really do this if we encounter a limit of indeter­
minate form (ie; 00 ). Let’s walk through an example.

lim𝑥→0
sin𝑥
𝑥

Well, if you write out the Taylor series of sin 𝑥 about 𝑎 = 0 you will find that it is: 𝑥 − 𝑥3
6 +

𝑥5
120 ...., so with this at hand, we can rewrite our fraction as: 1 −

𝑥2
6 +

𝑥4
120 ..... Getting the limit of

this is easy, it’s 1.
Another example of finding a limit would be using the Taylor series of 𝑒𝑥:

𝑙𝑖𝑚𝑥→0
𝑒𝑥 − 1 − 𝑥

𝑥2
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𝑒𝑥 =
∞

∑
𝑛=0

𝑥𝑛
𝑛! = 1 + 𝑥 +

1
2𝑥

2 + 16𝑥
3....

⇒ 𝑙𝑖𝑚𝑥→0
1
2𝑥

2 + 1
6𝑥

3....
𝑥2

= 1
2

Integrals are a little bit trickier,

∫
1
2

0
𝑥𝑒−4𝑥𝑑𝑥

𝑒𝑥 =
∞

∑
𝑛=0

𝑥𝑛
𝑛!

This is a series around 𝑥 = 𝑎 = 0 which not ideal but it’s easy. Ideally we’d select 𝑎 to be the
midpoint of the limits, but it doesn’t make too much of a difference.

⇒ 𝑥𝑒−4 ⋅
∞

∑
𝑛=0

(−1)𝑛
𝑛! 𝑥4𝑛+1

2.9. The Binomial Series
2.9.1. The Basics
The binomial series is kind of a shortcut we can use to express (𝑥 + 𝑦)𝑛. This is something

you’re probably familiar with from secondary school but for example, (𝑥+𝑦)2 absolutely cannot
be written as just 𝑥2 + 𝑦2 that’s just, completely wrong, instead you need to write it out as
(𝑥 + 𝑦)(𝑥 + 𝑦) and multiply it out. Now, this is all well and good for small powers, but what if
you want to raise it to a higher power? Not so easy then. That’s where the Binomial series
comes into play.

2.9.2. Combinations
If you have a collection of 𝑛 things and you want to know howmany combinations of𝑚 things

you can choose from this collection how would you work that out? Well, when you select your
first item, you have 𝑛 options. Then for your second item you have 𝑛 − 1 choices, and so on
until you get to your 𝑚th item, when you have (𝑛 + 1) − 𝑚 options.

But then we must deal with the order of items picked. Because a combination of 𝐴𝐵𝐶 is the
same as 𝐶𝐵𝐴, and so on. So if you recall from secondary school; if you have 𝑚 items then
you can arrange it in 𝑚! ways. If you don’t understand this go to khan academy and revise it.

Because this is such a common thing to want to calculate we have a specific notation for
it: (𝑛𝑚), you read this is ”𝑛 choose 𝑚”, meaning choose 𝑚 items from a collection of 𝑛. Your
calculator probably has a function to do this too, probably written as 𝑛𝐶𝑟

Putting this all together then, how do we write it mathematically?

(𝑛𝑚) =
𝑛(𝑛 − 1)(𝑛 − 2)...(𝑛 + 1 −𝑚)

𝑚! = 𝑛!
(𝑛 − 𝑚)!𝑚! (2.13)
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2.9.3. Using The Binomial Series
The binomial series for (𝑥 + 𝑦)𝑛 is as follows:

(𝑥 + 𝑦)𝑛 =
𝑚

∑
𝑛=0

(𝑛𝑚)𝑥
𝑛𝑦𝑚−𝑛 (2.14)

The combinations bit gives us the binomial coefficients of the series. If you do out a whole
load you’ll notice a pattern emerging in the coefficients, and that’s with an increasing 𝑚. You’ll
see Pascal’s triangle, where each new layer is a for an increased 𝑚.

Figure 2.4: The First Seven Rows of Pascal’s Triangle

2.9.4. Non­Integers
What we’ve covered so far is basically everything that you would have covered in secondary

school, depending on where you went to school that is. But what about if you don’t want to
use an integer? Like what about (1 + 𝑥)

1
2 ? In such cases, we have a very similar process.

(1 + 𝑥)𝛼 =
∞

∑
𝑛=0

(𝛼𝑛)𝑥
𝑛 (2.15)

This holds for |𝛼| < 1 and |𝑥| < 1. What we see here is that this is actually another Taylor
series. if you do out the differentials you’ll see that we’re essentially just creating the binomial
coefficients again:

𝑓(𝑥) = (1 + 𝑥)𝛼

𝑓′(0) = 1
0!

𝑓″(0) = 𝛼
1!

𝑓3(0) = 𝛼(𝛼 − 1)
2!

And so on.
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As an example let’s find √1 + 𝑥 using this method. Because this is just another way of
getting Taylor polynomials we can phrase it that way too. Let’s find 𝑇4 of this function.

√1 + 𝑥 = (1 + 𝑥)
1
2

4

∑
𝑛=0

(
1
2
𝑛)𝑥

𝑛

(
1
2
0) = 1

(
1
2
1) =

1
2

(
1
2
2) =

−1
8

(
1
2
3) =

1
16

(
1
2
4) =

1
2 ⋅

−1
2 ⋅

−3
2 ⋅

−5
2

4! = −5
128

𝑇4 = 1 +
1
2𝑥 −

1
8𝑥

2 + 1
16𝑥

3 − 5
128𝑥

4

2.10. Series for Differential Equations
That’s right! Once again we’re taking a look at differential equations. They’re quite common

in Calculus apparently. Recalling the standard formats for a linear second order differential
(eq:1.1) and a power series (eq:2.8):

𝑃(𝑥)𝑦″ + 𝑄(𝑥)𝑦′ + 𝑅(𝑥)𝑦 = 𝐺(𝑥)

𝑦(𝑥) =
∞

∑
𝑛=0

𝐶𝑛𝑥𝑛

1. Substitute the format for the power series into the Differential Equation

2. Rewrite the sums in order to match the powers of 𝑥

3. Combine the the sums into one sum

4. Find a recursive formula for the coefficients

5. Split the solutions into independent solutions.
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This sounds a bit confusing, and rightfully so. So let’s just work our way through an example
and think about each step.

𝑦″ + 𝑦 = 0 ∶𝑦(0)=1𝑦′(0)=0

Recalling step 1, substitute in 𝑦 = ∑∞𝑛=0 𝐶𝑛𝑥𝑛 for |𝑥| < 𝑅. To do this though, we need to
calculate the differentials of a series. That’s simple enough;

𝑦′ =
∞

∑
𝑛=0

𝑛𝐶𝑛𝑥𝑛−1

𝑦″ =
∞

∑
𝑛=0

𝑛(𝑛 − 1)𝐶𝑛𝑥𝑛−2

Now you can substitute this into the differential equation:

∞

∑
𝑛=0

𝑛(𝑛 − 1)𝐶𝑛𝑥𝑛−2 +
∞

∑
𝑛=0

𝐶𝑛𝑥𝑛 = 0

For step 2 you need to rewrite the sums in the same powers of 𝑥. Because as you’ll notice
𝑥𝑛 ≠ 𝑥𝑛−2. But, what happens if we write out the terms of the series ∑∞𝑛=0 𝑛(𝑛 − 1)𝐶𝑛𝑥𝑛−2?
due to that term of 𝑛 in there we’re multiplying by 0, meaning our terms look like:

0 + 0 + 2𝐶2 + 6𝐶3𝑥...

So we can start at 𝑛 = 2 and it won’t actually make any difference to the sum of the series.
We can then just, shift the series back to 𝑛 = 0 as long as wemanipulate the terms accordingly

∞

∑
𝑛=0

𝑛(𝑛 − 1)𝐶𝑛𝑥𝑛−2 =
∞

∑
𝑛=0
(𝑛 + 2)(𝑛 + 1)𝐶𝑛+2𝑥𝑛

⇒
∞

∑
𝑛=0
(𝑛 + 2)(𝑛 + 1)𝐶𝑛+2𝑥𝑛 +

∞

∑
𝑛=0

𝐶𝑛𝑥𝑛 = 0

Now that we’ve put the terms of 𝑥 to the same power, for step 3 we can easily combine the
sums into:

∞

∑
𝑛=0
(𝑛 + 2)(𝑛 + 1)𝐶𝑛+2 + 𝐶𝑛𝑥𝑛 = 0

For step 4we need to find a recursion formula for the coefficients. How do we do that? Well,
we know that (𝑛 + 2)(𝑛 + 1)𝐶𝑛+2 + 𝐶𝑛 = 0, and from here we can extrapolate. Rearranging
our equation we can get a definition of 𝐶𝑛+2

𝐶𝑛+2 =
−𝐶𝑛

(𝑛 + 2)(𝑛 + 1)
If we have say, 𝐶0 then we can find 𝐶2 and if we have 𝐶2 we can find 𝐶4 and so on. Let’s

write out some terms to see if we notice a pattern emerging.
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𝐶2 =
−𝐶0
(2)(1)

𝐶3 =
−𝐶1
(3)(2)

𝐶4 =
−𝐶2
(4)(3) = 𝐶0(4)(3)(2)(1)

𝐶5 =
−𝐶3
(5)(4) =

𝐶1
(5)(4)(3)(2)

You might see where this is going, for even values of 𝑛 you have one pattern based off of
𝐶0 and for odd values you have a pattern based off of 𝐶0. This brings us to step 5 where we
split out solution into 2 different solutions, independent of one another.

𝐶2𝑛 =
−1𝑛
(2𝑛)!𝐶0 ∶ 𝐶2𝑛+1 =

−1𝑛
(2𝑛 + 1)!𝐶1

⇒ 𝑦(𝑥) =
∞

∑
𝑛=0

𝐶2𝑛𝑥2𝑛 +
∞

∑
𝑛=0

𝐶2𝑛+1𝑥2𝑛+1

𝑦(𝑥) = 𝐶0
∞

∑
𝑛=0

−1𝑛
(2𝑛)!𝑥

2𝑛 + 𝐶1
∞

∑
𝑛=0

−1𝑛
(2𝑛 + 1)!𝑥

2𝑛+1

From this point, you can then use the initial conditions to find the values of 𝐶0 and 𝐶1.

𝑦(0) =
∞

∑
𝑛=0

𝐶𝑛𝑥𝑛 = 𝐶0 + 0 + 0 + 0....

𝑦′(0) =
∞

∑
𝑛=0

𝑛𝐶𝑛𝑥𝑛−1 = 0 + 𝐶1 + 0 + 0 + 0....



3
Multi­variable Functions

3.1. The Basics
Up to this point we have dealt with functions of just one variable (𝑓(𝑥)). But here we deal

with functions of more than one, but usually two (𝑓(𝑥, 𝑦)). With this we have to rethink some
of the definitions we used for terms in the last quarter.

Maximal Domain, or the Natural Domain of 𝑓(𝑥, 𝑦) is the set of all points (𝑥, 𝑦) for which a
function value exists. You can test this mathematically, by looking at the function at hand, and
then drawing it on a plane.

𝑓(𝑥, 𝑦) = √𝑥 + 𝑦

⇒ 𝑥 + 𝑦 ≥ 0

−10 −5 5 10

−10

−5

5

10

𝑥

𝑦

𝐷𝑓 = {(𝑥, 𝑦)|𝑦 ≥ −𝑥} (3.1)

To describe the domain we can write it in a format similar to (eq 3.1). Dissecting that to see
what it means: 𝐷𝑓 means the domain of 𝑓. The curly brackets {} means a set of points, and
the | means ’with the property of’.

The Range is the set of all possible values 𝑓(𝑥, 𝑦) with (𝑥, 𝑦) ∈ 𝐷𝑓. Essentially, it’s just all
possible outputs of the function. Not very different from what we did last quarter.

A Graph of a multi­variable Function is a set of all points (𝑥, 𝑦, 𝑧) where 𝑧 = 𝑓(𝑥, 𝑦). This is
a two variable function, and as such we can represent it in 3D. Going to higher dimensions is
difficult due to the physical limitations of the universe, though it can in theory be done.

23



24 3. Multi­variable Functions

Figure 3.1: A 3D Graph of a 2 Variable Function

A Level Curve is a curve in ℝ2 with a constant value of 𝑓(𝑥, 𝑦). It makes more sense if you
look at a contour plot, or map. Whatever you want to call it.

A Contour Map is a way of representing a 3D graph in a 2D picture. It’s made up of many
level curves, each of them a section of the graph taken at a different height. These are often
used in maps of terrain to show altitude differences. They’re also used to show pressure
differences in the atmosphere with isobars. They’re useful.

Figure 3.2: How a Contour Map is Drawn
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3.2. Limits
3.2.1. Non­existant Limits
Oh joy, how fun it is to be working with limits again. I know, we’ve dealt with them an awful

lot already, but bear with me on this. Let’s just go over limits of 1 variable again to clear up
some things.

lim𝑥→𝑎 𝑓(𝑥) = 𝐿

When we write out this equation what we’re saying is ”if 𝑥 approaches 𝑎, the 𝑓(𝑥) ap­
proaches 𝐿”. With two variables it’s much the same. ”if (𝑥, 𝑦) approaches (𝑎, 𝑏), the 𝑓(𝑥, 𝑦)
approaches 𝐿”

lim
(𝑥,𝑦)→(𝑎,𝑏)

𝑓(𝑥) = 𝐿 (3.2)

So while a limit of 1 variable exists if you approach it from the left or the right, a limit of
two variables exists if you can approach from any direction and still get the same answer. If
you take a top down view of the 𝑋𝑌 plane you can approach (𝑎, 𝑏) from the north, south, east,
west, or anywhere in between. There are infinitely many ways to approach a point so it’s much
harder to prove that a limit does exist.

To prove that a limit does not exist though, all you need to do i show that any two paths
approaching (𝑎, 𝑏) will give a different result. In mathematical terms:

if lim
(𝑥,𝑦)→(𝑎,𝑏)

𝑓(𝑥, 𝑦) = 𝐿1 along 𝐶2

and lim
(𝑥,𝑦)→(𝑎,𝑏)

𝑓(𝑥, 𝑦) = 𝐿3 along 𝐶2

and 𝐿1 ≠ 𝐿2, then lim
(𝑥,𝑦)→(𝑎,𝑏)

𝑓(𝑥, 𝑦) does not exist

To give you an example, take the function 𝑓(𝑥, 𝑦) = 𝑥𝑦
𝑥2+𝑦2

−1
−0.5 0

0.5 1−1
0

1−50

0

50

If we want to find the limit as the function approaches (0, 0) we can pick any path we like.
Taking the path of 𝑦 = 𝑥 we find that the limit is:

𝑓(𝑥, 𝑥) = 𝑥 ⋅ 𝑥
𝑥2 + 𝑥2 =

1
2
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This is one limit given by one path. And we can find this extremely easily because a 3D
graph is essentially just infinite 2D graphs, and we already know how to deal with 2D limits.
Taking another path of 𝑦 = 0 we find:

𝑓(𝑥, 0) = 𝑥 ⋅ 0
𝑥2 + 0 = 0

The limit clearly doesn’t exist.

3.2.2. Limits That do Exist
So it’s impossible to show that a limit exists, but we can show that a limit probably exists.

So we can use the epsilon­delta definition of a limit: Say we want |𝑓(𝑥)−𝐿| to be very small;
smaller than a given value 𝜖. Then there is a value 𝛿 > 0 such that for all 𝑥; with |𝑥 − 𝑎| < 𝛿
we have |𝑓(𝑥) − 𝐿 < 𝜖|

Figure 3.3: Proving the existence of a limit

If a limit doesn’t exist, you won’t be able to draw an infinitely small ”box” around the whole
function, ie, at a discontinuation. To bring this into 3D we instead try to draw a cylender around
the function at the point.

Let 𝑓 be a function of 2 variables with the domain 𝐷 that includes points that are arbitrarily
close to (𝑎, 𝑏). Then the limit exists, if for every 𝜖 > 0 there is a 𝛿 > 0 such that for all (𝑥, 𝑦) ∈ 𝐷
with √(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 < 𝛿 we have |𝑓(𝑥, 𝑦) − 𝐿| < 𝜖.

Again, this means that for a limit to exist, you need to be able to enclose the entire function
at the given point. think this over a bit and recall that √(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 is the formula for a
circle.
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Figure 3.4: The area around point a in the Domain in 2D and 3D

3.2.3. Continuity
Continuity is the same again as in 2D. A function 𝑓(𝑥, 𝑦) is continuous at (𝑎, 𝑏) if the limit
lim(𝑥,𝑦)→(𝑎,𝑏) = 𝑓(𝑎, 𝑏).

3.3. Partial Derivatives
The Basics So a partial derivative is very closely related to a derivative of a single variable.
If you can recall that those are given by:

𝑓′(𝑎) = lim
ℎ→0

𝑓(𝑎 + ℎ) − 𝑓(𝑎)
ℎ (3.3)

In a similar manner, partial derivatives with respect to 𝑥 and 𝑦 at (𝑎, 𝑏) are given by:

𝑓𝑥(𝑎, 𝑏) = lim
ℎ→0

𝑓(𝑎 + ℎ, 𝑏) − 𝑓(𝑎, 𝑏)
ℎ (3.4)

𝑓𝑦(𝑎, 𝑏) = lim
ℎ→0

𝑓(𝑎, 𝑏 + ℎ) − 𝑓(𝑎, 𝑏)
ℎ (3.5)

The notation involved is, for some reason, extensive. The subscript 𝑓𝑥 means that you take
a partial derivative with respect to x, i.e. with a constant 𝑦. This can also be written as 𝜕𝑓

𝜕𝑥 ,

or 𝜕
𝜕𝑥𝑓(𝑥, 𝑦), or

𝜕𝑓
𝜕𝑥 ∣𝑦. It makes more sense if you look at a diagram. We take a plane, at a

constant point of 𝑦 = 𝑏, or if we’re differentiating with respect to 𝑦, we take a constant 𝑥 = 𝑎.
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Figure 3.5: Partial Derivative With a Constant Y

Figure 3.6: Partial Derivative With a Constant X

3.3.1. Clairaut’s Theorem
When it comes to taking higher partial derivatives the notation matters. For example 𝑓𝑥𝑥

means you differentiate with respect to 𝑥, then again with respect to 𝑥. 𝑓𝑥𝑦 means differentiate
with respect to 𝑥 and then with respect to 𝑦. You get the picture.

Clairaut’s theorem is; If 𝑓𝑥𝑦 and 𝑓𝑦𝑥 are both continuous in a neighbourhood around (𝑎, 𝑏),
then 𝑓𝑥𝑦 = 𝑓𝑦𝑥. That’s the theorem, but what’s the proof?

𝑓𝑥(𝑥0, 𝑦0) lim𝑥→𝑥0
𝑓(𝑥, 𝑦0) − 𝑓(𝑥0, 𝑦0)

𝑥 − 𝑥0

𝑓𝑥𝑦(𝑥0, 𝑦0) lim𝑦→𝑦0
𝑓𝑥(𝑥0, 𝑦) − 𝑓𝑥(𝑥0, 𝑦0)

𝑦 − 𝑦0
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= lim
𝑦→𝑦0

lim
𝑥→𝑥0

𝑓(𝑥, 𝑦) − 𝑓(𝑥0, 𝑦) − 𝑓(𝑥, 𝑦0) + 𝑓(𝑥0, 𝑦0)
(𝑥 − 𝑥0)(𝑦 − 𝑦0)

If the derivatives are both continuous, then all limits are OK.

3.4. Tangent Planes
3.4.1. The Basics
The tangent plan to the graph of 𝑓, at the point 𝑃 is the plane through the tangent lines 𝑇1

and 𝑇2, which are tangent to the curves 𝐶1 and 𝐶2 at point 𝑃, on the surface 𝑥 = 𝑓(𝑥, 𝑦). Noting
that 𝐶1 and 𝐶2 should not be parallel neat point 𝑃.

Finding a tangent plan involves a simple step­by­step procedure:

1. Find 𝑇1 and 𝑇2
2. Construct a vector normal to the surface of the graph (and the tangent plane)

3. Use the normal vector to find a formula for the tangent plane

You can find the normal vector 𝑛⃗ by getting the cross product of two vectors along the tangent
lines 𝑇1 and 𝑇2. We’ll call these 𝑣⃗1 and 𝑣⃗2 respectively.

𝑣⃗1 = (
1
0
𝑓𝑥
) , 𝑣⃗1 = (

0
1
𝑓𝑦
)

Notice that we’re using the partial derivatives to define our vectors. If we take a cross product
of these (the order we take them doesn’t matter, as the vector will still be normal to the tangent
plane), we get a resultant vector of:

𝑣⃗2 × 𝑣⃗1 = 𝑛⃗ = (
𝑓𝑥
𝑓𝑦
−1
)

Note the dot product of 𝑛⃗ with any vector in the tangent plan must be 0. Therefore:

• Construct a vector in the tangent plane

• Choose point 𝐴 = (𝑥, 𝑦, 𝑧) in the plane

• Draw the vector 𝑃𝐴

𝑃𝐴 = (
𝑥 − 𝑎
𝑦 − 𝑏

𝑧 − 𝑓(𝑎, 𝑏)
)

𝑛⃗ ⋅ 𝑃𝐴 = 0

Writing this out the long way yields:

𝑧 = 𝑓𝑥(𝑥 − 𝑎) + 𝑓𝑦(𝑦 − 𝑏) + 𝑓(𝑎, 𝑏)
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Does this look familiar to you? It should, it’s the 3D version of the linearisation function we
saw in the last quarter. 𝐿(𝑥) = 𝑦 = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎). If we want to bring it into 4D we get:
𝑤 = 𝑓(𝑎, 𝑏, 𝑐) + 𝑓𝑥(𝑥 − 𝑎) + 𝑓𝑦(𝑦 − 𝑏) + 𝑓𝑧(𝑧 − 𝑐).

Linearisation is good when you have a reasonably smooth surface, i.e. if we’re looking for
the linearisation of 𝑓(𝑥, 𝑦) near point (𝑎, 𝑏) then the linearisation is a good approximation, only
if the function is differentiable. If the partial derivatives of 𝑓𝑥 and 𝑓𝑦 exist in a neighbourhood
around (𝑎, 𝑏), and are continuous at (𝑎, 𝑏), then 𝑓(𝑥, 𝑦) is differentiable at (a,b)

3.4.2. Differentials
For a differentiable function of 2 variables, 𝑧 = 𝑓(𝑥, 𝑦), we define the differentials 𝑑𝑥 and 𝑑𝑦

to be independent variables. Then the total differential 𝑑𝑧 is defined by:

𝑑𝑧 = 𝑓𝑥(𝑥, 𝑦)𝑑𝑥 + 𝑓𝑦(𝑥, 𝑦)𝑑𝑦 (3.6)

If we merge this with our tangent plane formula we get:

𝑧 − 𝑓(𝑎, 𝑏) = 𝑓𝑥(𝑎, 𝑏)(𝑥 − 𝑎) + 𝑓𝑦(𝑎, 𝑏)(𝑦 − 𝑏)
Where

• 𝑑𝑧 = 𝑧 − 𝑓(𝑎𝑏)

• 𝑑𝑥 = (𝑥 − 𝑎)

• 𝑑𝑦 = (𝑦 − 𝑏)

We can call the differentials ”Errors” or ”Deviations”or ”changes”, if we like, it depends on
the context. 𝑑𝑧 being the resulting error etc.
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