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Preface
So this is a summary of the core concepts covered in the Calculus 2 module in First year. Up
to 2018 you could easily pass the course just by practicing past questions and learning the
patterns of how to solve them, but from 2019 on wards you needed to have a more intuitive
understanding of the stuff you learned in class. In these notes I go over the basics of what you
do in class and try to explain things simply. Obviously I’m not going to every bit of information
from the lectures and the book in here, so if you want further clarification I recommend looking
back at the slides. These notes go in the same order as the lectures so you should have no
problem finding further information. The latest version of these notes is always available on
my website (alanrh.com), along with other resources that I find useful. If you find any mistakes
and you need anything corrected shoot me an email, but please don’t email me if you want
further explanation because I can’t promise individual help to everyone.

Alan Hanrahan
Delft, April 4, 2021
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1
The Chain Rule

1.1. The Basics
You ought to be familiar with the chain rule, at least when it comes to functions of one

variable. You can view simply as being how one function changes with respect to a different
functions independent variable. To put it in mathematical terms; if 𝑦 = 𝑓(𝑥) and 𝑥 = 𝑔(𝑡), and
𝑓 and 𝑔 are both differentiable functions, then;

𝑑𝑦
𝑑𝑡 =

𝑑𝑦
𝑑𝑥
𝑑𝑥
𝑑𝑡 = 𝑓

′𝑔′ (1.1)

Moving on to functions of 2 variables though, we can find: if 𝑧 = 𝑓(𝑥, 𝑦) is a differentiable
function of 𝑥 and 𝑦 and 𝑥 = 𝑔(𝑡), 𝑦 = ℎ(𝑡), and 𝑔 and ℎ are also differentiable functions of 𝑡
then we can find:

𝑑𝑧
𝑑𝑡 =

𝜕𝑧
𝜕𝑥
𝑑𝑥
𝑑𝑡 +

𝜕𝑧
𝜕𝑦
𝑑𝑦
𝑑𝑡 (1.2)

This works really well for linear functions. But it will also work for non­linear functions too.
Provided you can linearise 𝑓(𝑥, 𝑦) at some point (𝑥0, 𝑦0).

1.2. Dependence Charts
A very useful tool for visualising differentials, is a dependence chart, it shows you what

variables each term depends on. With the top layer called the dependent variable, the mid­
dle section called the intermediate variables, and the bottom section called the independent
variables.

𝑧

𝑥

𝑠 𝑡

𝑦

𝑠 𝑡

𝜕𝑧
𝜕𝑥

𝜕𝑥
𝜕𝑠

𝜕𝑥
𝜕𝑡

𝜕𝑧
𝜕𝑦

𝜕𝑦
𝜕𝑠

𝜕𝑦
𝜕𝑡

In the example above, we have 𝑥 and 𝑦 both being functions of 𝑠 and 𝑡, that’s why we use
partial derivatives to show how they change with respect to one of these variables. Otherwise
if they were only dependent on 1 variable we’d use 𝑑 instead/

To find the derivative of 𝑧 with respect to 𝑠 we need to trace all paths from 𝑧 to 𝑠 and add all
the possible routes. In this particular case that would be:

𝜕𝑧
𝜕𝑠 =

𝜕𝑧
𝜕𝑥
𝜕𝑥
𝜕𝑠 +

𝜕𝑧
𝜕𝑦
𝜕𝑦
𝜕𝑠

1



1.3. Implicit Differentiation 1

Simple enough! And if you want to find 𝜕𝑧
𝜕𝑡 it’s the same process. Keep in mind that this

also works for much more complicated functions too, and in such cases drawing a tree might
prove to be extremely useful for you.

𝑧

𝑥

𝑠

𝑤 𝑣

𝑡 𝑢

𝑦

𝑠

𝑤 𝑣

𝑣

𝑝

𝑥

𝑠

𝑤 𝑣

𝑡 𝑢

𝑦

𝑠

𝑤 𝑣

𝑣

As you can see, the function for 𝑧 is very complex, but if you want to find 𝜕𝑧
𝜕𝑣 for example,

you just need to trace all the routes from 𝑧 to 𝑣.

1.3. Implicit Differentiation
One of the applications of the chain rule is implicit differentiation. You’ve done this before,

like in Calculus 1. But here we can do it again. Say we have a function, 𝑧 = 𝑓(𝑥, 𝑦) where 𝑧 is
a constant. You can see this in the equation for a circle for instance. What you can do is draw
out the dependence chart again and get 𝑑𝑧𝑑𝑥 = 0.

𝑧

𝑥 𝑦

𝑥

In such case we find:
𝑑𝑧
𝑑𝑥 =

𝜕𝑧
𝜕𝑥 +

𝜕𝑧
𝜕𝑦
𝑑𝑦
𝑑𝑥

Which as you will be able to recall from Calc 1 translates to:

0 = 𝐹𝑥 + 𝐹𝑦
𝑑𝑦
𝑑𝑥

And from here you can easily calculate the derivative.



2
Directional Derivatives

2.1. The Basics
If 𝑓 is a function of two variables 𝑥 and 𝑦, then:

𝐷𝑢⃗𝑓(𝑎, 𝑏) = lim
ℎ→0

𝑓(𝑎 + ℎ𝑢1, 𝑏 + ℎ𝑢2) − 𝑓(𝑎, 𝑏)
ℎ (2.1)

is called the directional derivative of 𝑓 at the point (𝑎, 𝑏) in the direction of a unit vector 𝑢⃗ =
⟨𝑢1, 𝑢2⟩. In Calculus I B last quarter we took partial derivatives of a multi­variable function in
the 𝑥 and 𝑦 directions. What we’re doing now is essentially a more general version of that.

Imagine you’re standing in a mountain range, depending on the direction that you walk, the
slope you need to climb changes. Essentially that’s what we’re doing here too.

If 𝑓 is a differentiable function of 𝑥 and 𝑦 then 𝑓 has directional derivatives in the direction
of any unit vector 𝑢⃗ such that:

𝐷𝑢⃗𝑓(𝑥, 𝑦) = 𝑓𝑥(𝑥, 𝑦)𝑢1 + 𝑓𝑦(𝑥, 𝑦)𝑢2 (2.2)

To prove this we can use (eq 2.1). 𝑥 + ℎ𝑢1 will be very close to 𝑥 and the same is true for
𝑦 + ℎ𝑢2. As such we can linearise the function.

𝐷𝑢⃗𝑓(𝑥, 𝑦) = lim
ℎ→0

𝑓(𝑥 + 𝑢1ℎ, 𝑦 + 𝑢2ℎ) − 𝑓(𝑥, 𝑦)
ℎ

= lim
ℎ→0

𝐿(𝑥 + 𝑢1ℎ, 𝑦 + 𝑢2ℎ) − 𝑓(𝑥, 𝑦)
ℎ

= lim
ℎ→0

𝑓(𝑥, 𝑦) + 𝑓𝑥(𝑥, 𝑦)(𝑥 + 𝑢1ℎ − 𝑥) + 𝑓𝑦(𝑥, 𝑦)(𝑦 + 𝑢2ℎ − 𝑦) − 𝑓(𝑥, 𝑦)
ℎ

= lim
ℎ→0

𝑓𝑥(𝑥, 𝑦)(𝑢1ℎ) + 𝑓𝑦(𝑥, 𝑦)(𝑢2ℎ)
ℎ

∴𝐷𝑢⃗𝑓(𝑥, 𝑦) = 𝑓𝑥(𝑥, 𝑦)𝑢1 + 𝑓𝑦(𝑥, 𝑦)𝑢2

2.2. Gradient Vectors
If 𝑓 is a function of 2 variables 𝑥 and 𝑦 then the gradient of 𝑓 is the vector function ∇⃗𝑓 defined

by:

∇⃗𝑓(𝑥, 𝑦) = ⟨𝑓𝑥(𝑥, 𝑦), 𝑓𝑦(𝑥, 𝑦)⟩ =
𝜕𝑓
𝜕𝑥 𝚤 +

𝜕𝑓
𝜕𝑦𝚥 (2.3)

2



2.3. Generalised 3

But if you’ll notice, this is looking remarkably similar to (eq 2.2). Well if we multiply with the
vector 𝑢⃗ we find the exact same thing. So we can say:

𝐷𝑢⃗𝑓(𝑥, 𝑦) = ∇⃗𝑓(𝑥, 𝑦) ⋅ 𝑢⃗ = |∇⃗𝑓(𝑥, 𝑦)||𝑢⃗| cos𝜃

From this we can deduce a few things:

• For a given (𝑥, 𝑦) the value of the directional derivative depends only on 𝜃

• The maximum Differential is when 𝜃 = 0, ie, when 𝑢⃗ is parallel to ∇⃗𝑓(𝑥, 𝑦)

• ∇⃗𝑓(𝑥, 𝑦) points in the direction of maximal slope.

Essentially that’s it, a gradient vector is a vector at a given point, that points in the direction of
the greatest slope, and if you think about it, it will always be perpendicular to the level curves.
Prove this to yourself.

2.3. Generalised
To bring a gradient vector into higher dimensions you just need to take more partial deriva­

tives. eg:
∇⃗𝑓(𝑥, 𝑦, 𝑧) = ⟨𝑓𝑥(𝑥, 𝑦, 𝑧), 𝑓𝑦(𝑥, 𝑦, 𝑧), 𝑓𝑧(𝑥, 𝑦, 𝑧)⟩ (2.4)

In 2D, the gradient vector is perpendicular to a level curve, but in 3D the gradient plane
is perpendicular to the level surface. So to find it, Pick a point, find the tangent plane, and
perpendicular to that will be ∇⃗𝑓.

For example, imagine we take the point (𝑎, 𝑏, 𝑐), then the tangent plane can be described
by vectors along it: 𝑣⃗ = ⟨𝑥 − 𝑎, 𝑦 − 𝑏, 𝑧 − 𝑐⟩. Then take the dot product of this, with a vector
on the gradient plane, and you get:

(𝑥 − 𝑎)𝑓1 + (𝑦 − 𝑏)𝑓2 + (𝑧 − 𝑐)𝑓3 = 0



3
Critical Points

3.1. The Basics
A critical point of a function is a point where the first derivative is 0. This is either a maximum,

a minimum, an inflection point, or maybe it’s just a horizontal line, in which case all points are
critical points. We can distinguish these points (a bit) using the second derivative test.

• 𝑓″(𝑎) < 0 ⇒ 𝑎 is a local maximum

• 𝑓″(𝑎) > 0 ⇒ 𝑎 is a local minimum

• 𝑓″(𝑎) = 0 ⇒ we don’t have enough information

This is all stuff that you should have covered in secondary school, so I’m not going to go
over it again here, but, I will show you some examples:

−0.5 0.5 1 1.5 2

−0.5

0.5

1

1.5

𝑥

𝑦

In this function you can see 3 critical points, You can prove this by taking the first derivative
and counting the number of times it crosses the 𝑥 axis.

−0.5 0.5 1 1.5 2

−6

−4

−2

2

4

6

𝑥

𝑦

4



3.2. Higher dimensions 5

Then, we want to see at these critical points if the function is going to start increasing (mean­
ing it’s a minimum point) or if it will start decreasing (meaning it’s a maximum point) so we take
the second derivative.

−0.5 0.5 1 1.5 2

5

10

15

𝑥

𝑦

3.2. Higher dimensions
A function 𝑓 of 2 variables has a local maximum at the point (𝑎, 𝑏) if 𝑓(𝑥, 𝑦) ≤ (𝑎, 𝑏) when

(𝑥, 𝑦) is near (𝑎, 𝑏), and has a local minimum at the point (𝑎, 𝑏) if 𝑓(𝑥, 𝑦) ≥ (𝑎, 𝑏) when (𝑥, 𝑦) is
near (𝑎, 𝑏). Note that when I say 𝑓(𝑥, 𝑦) ≥ (𝑎, 𝑏), the ≥ sign means when (𝑥, 𝑦) = (𝑎, 𝑏) only.

If 𝑓(𝑥, 𝑦) ≤ 𝑓(𝑎, 𝑏) hold for all points (𝑥, 𝑦) in the whole domain of a function then we have
an absolute maximum, sometimes called a global maximum.

If 𝑓 has a local maximum or minimum, at (𝑎, 𝑏) ans the first order partial derivatives of 𝑓
exist there, then 𝑓𝑥(𝑎, 𝑏) = 0 and 𝑓𝑦(𝑎, 𝑏) = 0. This is fact. That’s just how it is. If that’s not the
case, then you don’t have a local maximum or minimum. You must always have a horizontal
tangent plane at a local maximum or minimum in 3D space.

A point (𝑎, 𝑏) is a critical point, or stationary point of 𝑓 if:

𝑓𝑥(𝑎, 𝑏) = 0 & 𝑓𝑦(𝑎, 𝑏) = 0

There are 3 notable critical points that we’ll pay attention to throughout this course. Maxima,
minima, and saddle points. They look like this:

Figure 3.1: Different 3D Critical Points



6 3. Critical Points

Before we go any further we need to define a discriminant. We say that it is:

𝐷(𝑎, 𝑏) = 𝑓𝑥𝑥(𝑎, 𝑏)𝑓𝑦𝑦(𝑎, 𝑏) − (𝑓𝑥𝑦(𝑎, 𝑏))
2

(3.1)

These are the second partial derivatives. So it’s much the same as when we were dealing
with a function of 1 variable.

Suppose the second partial derivatives are continuous on a disk with centre (𝑎, 𝑏) and sup­
pose 𝑓𝑥(𝑎, 𝑏) = 0 and 𝑓𝑦(𝑎, 𝑏) = 0. If:

• 𝐷 > 0 and 𝑓𝑥𝑥(𝑎, 𝑏) > 0 we have a local minimum

• 𝐷 > 0 and 𝑓𝑥𝑥(𝑎, 𝑏) < 0 we have a local maximum

• 𝐷 < 0 Then we have a saddle point

There are all sorts of different conditions that are possible, but really, they’re not important
so we just focus on these 3 possibilities for the most part.



4
Extreme values

4.1. The Basics
In the last chapter we dealt with local maxima and minima, but what we’re doing now s

dealing with the absolute maxima and minima of functions. Before we get there though we
need to define a few things first.

A Closed Set is a set in ℝ2 that contains all of its boundary points. That is, all of the points
on the border that encloses it.

A Bounded Set is a set in ℝ2 is on that is contained within some disk of finite radius.
Essentially if you can draw around it on a graph then you have a bounded set. Note that it is
possible to have a closed, but non­bounded set, provided the boundaries are included in the
set, but extend to infinity. eg: {(𝑥, 𝑦) ∈ ℝ2 | 𝑥2 ≤ 1}.

The Extreme Value Theorem: if 𝑓 is continuous on a closed and bounded set 𝐷 in ℝ2 then,
𝑓 attains an absolute maximum value 𝑓(𝑥1, 𝑦1) and an absolute minimum value 𝑓(𝑥2, 𝑦2) at the
points (𝑥1, 𝑦1) and (𝑥2, 𝑦2) in 𝐷.

Note, that the extreme values aren’t necessarily critical points. And also, if the domain 𝐷 is
unbounded, ther may still be an absolute maximum or minimum present.

4.2. Application

So what is our goal with all of this anyway? Why do we need these definitions? We want to
find the absolute maxima, and minima of functions with closed and bounded domains 𝐷, and
the corresponding coordinates. So let’s think about this for a bit. Where would we find these
extreme points in a domain?

• Critical points on 𝐷

• Along the boundary lines

• At the vertices

From here we can come up with a simple step by step solution to finding extreme values in
a domain.

1. Find the values of 𝑓 at the critical points in 𝐷

2. Find the extreme values of 𝑓 on the boundary of 𝐷

7
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3. Make sure to calculate 𝑓 at the vertices of 𝐷

4. The largest of these values will give the absolute maximum and the smallest will give
the absolute minimum

Note that there is no need to apply the second derivative test.

Let’s try an example. Take the function 4𝑦 − 2𝑥 − 𝑦2 + 𝑥2 with the domain 𝐷 which is a
triangle with vertices (0, 0), (0, 4), (4, 0).

𝑥

𝑦

Figure 4.1: The function in questionf

We start with our critical points in 𝐷. From the previous chapters we can find them as:

𝑓𝑥(𝑥, 𝑦) = 0 = −2 + 2𝑥
𝑓𝑦(𝑥, 𝑦) = 0 = 4 − 2𝑦
⇒ 𝑥 = 1, 𝑦 = 2
𝑓(1, 2) = 3

This is one of our candidate values. From here we check the boundaries of the domain, or,
simply along the sides of the triangle. Starting with Boundary 1:

𝑓(0, 𝑦) = 4𝑦 − 𝑦2
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𝑓′ = 4 − 2𝑦 = 0 ⇒ 𝑦 = 2
𝑓(0, 2) = 4

Boundary 2:
𝑓(𝑥, 0) = −2𝑥 + 𝑥2

𝑓′ = −2 + 2𝑥 = 0 ⇒ 𝑥 = 1
𝑓(1, 0) = −1

Boundary 3:
𝑓(𝑥, 4 − 𝑥) = −2𝑥 + 4(4 − 𝑥) + 𝑥2 − (4 − 𝑥)2

𝑓(𝑥, 4 − 𝑥) = 2𝑥
This is linear and has no maximum

The last points we need to check are the vertices, and thankfully there is no differentiation
needed here.

𝑓(0, 0) = 0
𝑓(4, 0) = 8
𝑓(0, 4) = 0

Now the final step is collect these candidate points and to compare them:

(𝑥, 𝑦) 𝑓(𝑥, 𝑦)
1,2 3
0,2 4
1,0 ­1 (Abs min)
0,0 0
4,0 8 (Abs max)
0,4 0



5
Double Integrals

5.1. The Basics
For a function of one variable, when we integrate we’re essentially finding the area under

the curve of the function, and we do this with the use of a Riemann sum. Go back and revise
this from Calculus 1 A if you don’t remember this. For functions of 2 variables though, we’re
basically finding the volume under the surface of the function using a Riemann sum again.

Figure 5.1: A 3D Riemann Sum

In this section of the course we’re focusing on integrating over a rectangular domain 𝑅. So,
the interval of [𝑎, 𝑏] on the 𝑥 axis, and [𝑐, 𝑑] on the 𝑦 axis. Thus; 𝑅 = [𝑎, 𝑏][𝑐, 𝑑] which can
also be written as: {(𝑥, 𝑦) ∈ ℝ2 | 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑦 ≤ 𝑑}.

Much like in a function of 1 variable, if we divide the domain into smaller and smaller sections
we get a more accurate result. As you can see in (fig 5.1). We divide the interval over 𝑥 into
𝑛 sections, and the interval over 𝑦 into 𝑚 sections to get:

Δ𝑥 = 𝑏 − 𝑎
𝑛 , Δ𝑦 = 𝑑 − 𝑐

𝑚

.

10
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This divides up the domain 𝑅 into little segments that we’ll call 𝑅𝑖𝑗 = [𝑥𝑖−1, 𝑥𝑖][𝑦𝑗−1, 𝑦𝑗]. We
take the midpoint of these segments and evaluate the function at these points:

𝑓(𝑥∗𝑖 , 𝑦∗𝑗 )

This is the height of the cuboid, and to get the volume of the cuboid we multiply by the area;
𝑅𝑖𝑗 = Δ𝑥Δ𝑦.

𝑉𝑖𝑗 = 𝑓(𝑥∗𝑖 , 𝑦∗𝑗 )Δ𝑥Δ𝑦 (5.1)

Thus we can say that the integral of the function over the area of the domain is:

∫∫𝑓𝑑𝐴 ≈
𝑛

∑
𝑖=0

𝑛

∑
𝑗=0
𝑓(𝑥∗𝑖 , 𝑦∗𝑗 )Δ𝑥Δ𝑦 (5.2)

As is usual, we want it to be as accurate as possible so we take a limit:

∫∫𝑓𝑑𝐴 = lim
𝑛→∞

lim
𝑚→∞

𝑛

∑
𝑖=0

𝑛

∑
𝑗=0
𝑓(𝑥∗𝑖 , 𝑦∗𝑗 )Δ𝑥Δ𝑦

5.2. Practicalities
Cool. That’s all well and good but do we need to know this off for the course? No not really.

But what you do need to know is that a double integral is of the format:

∫
𝑏

𝑎
∫
𝑑

𝑐
𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥 (5.3)

To do this calculation you first take the internal integral, in this case ∫𝑑𝑐 𝑓(𝑥, 𝑦)𝑑𝑦, and you
integrate with a constant 𝑥. Then you integrate with the outer limit ∫𝑏𝑎 with respect to 𝑥, and
with a constant 𝑦. According to Fubini’s Theorem, it doesn’t matter which order you take the
integrals, so long as the function is continuous over the domain. So:

∫
𝑏

𝑎
∫
𝑑

𝑐
𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥 = ∫

𝑑

𝑐
∫
𝑏

𝑎
𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

5.3. Non­Rectangular Domains
Excellent, we’ve covered rectangular domains, now let’s get a bit more complex and deal

with a domain that’s sandwiched between functions of 𝑥 (which we call Type 1) or functions of
𝑦 (which we call Type 2). For Type 1 Domains we have:

𝐷 = {(𝑥, 𝑦) ∈ ℝ2 | 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑔1(𝑥) ≤ 𝑦 ≤ 𝑔2(𝑥)} (5.4)

With 𝑔1, 𝑔2 continuous on [𝑎, 𝑏].Type 2 is:

𝐷 = {(𝑥, 𝑦) ∈ ℝ2 | ℎ1(𝑦) ≤ 𝑥 ≤ ℎ2(𝑦), 𝑐 ≤ 𝑦 ≤ 𝑑)} (5.5)

With ℎ1, ℎ2 continuous on [𝑐, 𝑑].
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Figure 5.2: A Type 1 Domain

Figure 5.3: A Type 2 Domain

So how do you go about integrating a function of 2 variables 𝑓(𝑥, 𝑦) over this domain? Well if
you recall from earlier, what we want to do is find the volume of this region, so we ”cut it up” into
slices. Taking a Type 1 what we’d do is make a load of cuts parallel to the 𝑦 axis. Then the vol­
ume of this will be: Area of the slice * thickness

= 𝐴slice ∗ Δ𝑥

= ∫𝑓(𝑥𝑖 , 𝑦)𝑑𝑦 ∗ Δ𝑥

I want to pay a little bit of attention to that integral there. 𝑥𝑖 is a constant, and it’s the midpoint
of each slice we take. What we do is add up all of the heights of the slice to find the area,
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much like if we take a 2D integral.

So that explains the integral for that. But what are the limits of this? Well, they’re the
functions that define the boundaries 𝑔1(𝑥𝑖) and 𝑔2(𝑥𝑖). Meaning that the volume of the slice
is:

∫
𝑔2(𝑥𝑖)

𝑔1(𝑥𝑖)
𝑓(𝑥𝑖 , 𝑦)𝑑𝑦 ∗ Δ𝑥

As I’m sure you’re used to by now, what we want to do is add up all of these slices, and
we want them to be as thin as possible to get ans accurate result, thus Δ𝑥 ⇒ 𝑑𝑥. So the end
result for the volume of the solid defined by the domain is:

∫
𝑏

𝑎
∫
𝑔2(𝑥)

𝑔1(𝑥)
𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥 (5.6)

The logic for a Type 2 integral is pretty much exactly the same, except we take slices parallel
to the 𝑥 axis instead. And we end up with something like:

∫
𝑑

𝑐
∫
ℎ2(𝑦)

ℎ1(𝑦)
𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 (5.7)

What about more complex domains? Good Question! in that case, we just divide it into
more, smaller, domains. Because any domain can be divided into convenient Type 1 and Type
2 domains. Then integrate over these new domains and add up the resulting integrals to find
the total.

5.4. Polar Regions
So now we’ve covered the basics of integrating over any sort of shape in Cartesian coor­
dinates, but now let’s kick things up a notch by introducing polar coordinates. I’m going to
assume you remember how these work, because we did it at the end of Calculus 1 A when
dealing with complex numbers, but if you don’t understand them, then go back and revise
them.

first let’s introduce the concept of a polar rectangle. This is a shape with 4 right angles in it,
defined by two angles, and two radii. See Figure (5.4). With previous integrations we divided
our domain into small, normal, rectangles but for polar regions we will be dividing it into polar
rectangles.
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Figure 5.4: A Polar Rectangle

𝑅 = {(𝑟 cos𝜃, 𝑟 sin𝜃) | 𝑎 ≤ 𝑟 ≤ 𝑏, 𝛼 ≤ 𝜃 ≤ 𝛽} (5.8)

I’m really hoping you understand how Riemann sums work by now, because the process is
really similar for each type of integration. Divide the intervals into subsections, evaluate each
interval at the midpoint, multiply this evaluation by the interval, and then add up all of these
results. That’s the same here.

But what’s the area of a polar rectangle? Well, the area of a ring around the origin, is
𝜋𝑟2𝑖 − 𝜋𝑟2𝑖−𝑗, and we want just a fraction of this, so the total area is:

𝜋(𝑟2𝑖 − 𝑟2𝑖−1)
𝜃𝑗 − 𝜃𝑗−1
2𝜋

= 1
2(𝑟𝑖 + 𝑟𝑖−1)(𝑟𝑖 − 𝑟𝑖−1)(𝜃𝑗 − 𝜃𝑗−1)

Δ𝐴𝑖𝑗 = 𝑟∗𝑖 Δ𝑟Δ𝜃 (5.9)

As is the usual next step, we want to add up all of these regions and we take limits so the
areas become infinitesimally small, giving us the final result that:

∫∫𝑓(𝑥, 𝑦)𝑑𝐴 = ∫
𝛽

𝛼
∫
𝑏

𝑎
𝑓(𝑟 cos𝜃, 𝑟 sin𝜃)𝑟𝑑𝑟𝑑𝜃 (5.10)

A few things to note from this:
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• 𝑑𝑥𝑑𝑦 = 𝑑𝐴 = 𝑟𝑑𝑟𝑑𝜃

• 𝑓(𝑥, 𝑦) = 𝑓(𝑟 cos𝜃, 𝑟 sin𝜃)

• Integration boundaries are: 𝑅 = {(𝑟 cos𝜃, 𝑟 sin𝜃) | 𝑎 ≤ 𝑟 ≤ 𝑏, 𝛼 ≤ 𝜃 ≤ 𝛽} ⇒ {𝑎, 𝑏, 𝛼, 𝛽}

if you want to have a more general region, for instance if you want to have a radius 𝑟 defined
by a function of 𝜃 you can do that too! That can be:

𝐷 = {(𝑟 cos𝜃, 𝑟 sin𝜃) | 𝛼 ≤ 𝜃 ≤ 𝛽, ℎ1(𝜃) ≤ 𝑟 ≤ ℎ2(𝜃)}

∫∫𝑓(𝑥, 𝑦)𝑑𝐴 = ∫
𝛽

𝛼
∫
ℎ2(𝜃)

ℎ1(𝜃)
𝑓(𝑟 cos𝜃, 𝑟 sin𝜃)𝑟𝑑𝑟𝑑𝜃 (5.11)

5.5. Applications of Double Integrals

So what can we do with double integrals? Assuming we have density in units of mass per
unit area, we can calculate a load of things! For instance:

Mass:
𝑚 = ∫∫𝜌(𝑥, 𝑦)𝑑𝐴 (5.12)

Moments:
𝑀𝑦 = ∫∫𝑥𝜌(𝑥, 𝑦)𝑑𝐴 (5.13)

𝑀𝑥 = ∫∫𝑦𝜌(𝑥, 𝑦)𝑑𝐴 (5.14)

Centre of Mass:
𝑥̄ =

𝑀𝑦
𝑚 (5.15)

𝑦̄ = 𝑀𝑥
𝑚 (5.16)

Moment of Inertia:
𝐼𝑥 = ∫∫𝑦2𝜌(𝑥, 𝑦)𝑑𝐴 (5.17)

𝐼𝑦 = ∫∫𝑥2𝜌(𝑥, 𝑦)𝑑𝐴 (5.18)

𝐼𝑜 = 𝐼𝑥 + 𝐼𝑦 (5.19)



6
Triple Integrals

6.1. The Basics
Wonderful! We’ve integrated over 2D domains, but now we’re going to integrate over a 3D

domain. If we have a single integral, we integrate over a 1D domain to get an area. If we
integrate over a 2D domain we get a volume, and if we integrate over a 3D domain we get...
a hypervolume? Well, yes, but we don’t exist in a 4D universe so we’re not able to visualise
what that looks like.

Another useful function that we can get with a triple integral is a density function. That is,
we have mass per unit volume, and it’s given as a function of (𝑥, 𝑦, 𝑧). We use this to find the
mass of a volume.

∫∫∫𝜌(𝑥, 𝑦, 𝑧)𝑑𝑉

Once again we take aRiemann sum. We’re integrating over a region 𝐸 = [𝑎, 𝑏]×[𝑐, 𝑑]×[𝑒, 𝑓].
Divide the volume into small sub boxes. Find the mass of each sub box, by evaluating at the
midpoints. Add up all point masses, and take a limit. Thus giving us an integral.

Fubini’s Theorem applies for triple integrals too! So, if 𝑓(𝑥, 𝑦, 𝑧) is continuous on a rectan­
gular box 𝐸 = [𝑎, 𝑏] × [𝑐, 𝑑] × [𝑒, 𝑓] then the order of integration doesn’t matter.

Sometimes we end up with a separable integral, for example: ∫∫∫ 𝑥𝑦𝑧𝑑𝑥𝑑𝑦𝑑𝑧. Notice how
𝑥, 𝑦, 𝑧 are all independent of each other? That means that 𝑦, 𝑧 are constants when we integrate
over 𝑥 and so on. And when we integrate, we take the constants out of the integral. Thus:

∫∫∫𝑥𝑦𝑧𝑑𝑥𝑑𝑦𝑑𝑧 = ∫𝑥𝑑𝑥∫𝑦𝑑𝑦∫𝑧𝑑𝑧

6.2. Region Types
As with double integrals we have region types. A triple integral over a type 1 region is: a

solid region in ℝ3 that lies between the graphs of 2 continuous functions of (𝑥, 𝑦):

16
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Figure 6.1: A Type 1 Region in 3D

∫∫∫𝑓(𝑥, 𝑦, 𝑧)𝑑𝑉 = ∫∫∫
𝑢2(𝑥,𝑦)

𝑢1(𝑥,𝑦)
𝑓(𝑥, 𝑦, 𝑧)𝑑𝑧𝑑𝐴 (6.1)

To solve a triple integral of this type, first integrate over 𝑧, then solve the double integral over
𝐷. Similarly, we have Type 2, and Type 3 integrals. A Type 2 is one where 𝐷 is on the 𝑦 − 𝑧
plane, and a Type 3 is one where 𝐷 is on the 𝑥 − 𝑧 plane.

6.3. Cylindrical Coordinates
For double integrals we sometimes integrated over polar regions. For this we introduced

the idea of a polar rectangle. For triple integrals we’ll be doing something similar. Cylindrical
coordinates are basically just polar coordinates, but extended up with a 𝑧 component:

• 𝑥 = 𝑟 cos𝜃

• 𝑦 = 𝑟 sin𝜃

• 𝑧 = 𝑧

Converting from Cartesian coordinates to cylindrical coordinates is a little bit trickier but it’s
just given by the formulae:

• 𝑟 = √𝑥2 + 𝑦2

• 𝜃 = arctan 𝑦
𝑥 for when 𝑥 > 0

• 𝜃 = arctan 𝑦
𝑥 + 𝜋 for when 𝑥 < 0

I wont bore you with the details of deriving an integral, but what we’re doing is just taking a
polar double integral, and adding a dimension. It’s just another Riemann sum.

To integrate over the region 𝐸 we’ll define it with the domain 𝐷 on the 𝑥 − 𝑦 plane.

𝐸 = {(𝑥, 𝑦, 𝑧) | (𝑥, 𝑦) ∈ 𝐷, 𝑢1(𝑥, 𝑦) ≤ 𝑧 ≤ 𝑢2(𝑥, 𝑦)}

𝐷 = {(𝑟 cos𝜃, 𝑟 sin𝜃) | 𝛼 ≤ 𝜃 ≤ 𝛽, ℎ1(𝜃) ≤ 𝑟 ≤ ℎ2(𝜃)}
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∫∫∫𝑓(𝑥, 𝑦, 𝑧)𝑑𝑉 = ∫
𝛽

𝛼
∫
ℎ2(𝜃)

ℎ1(𝜃)
∫
𝑢2(𝑟 cos𝜃,𝑟 sin𝜃)

𝑢1(𝑟 cos𝜃,𝑟 sin𝜃)
𝑓(𝑟 cos𝜃, 𝑟 sin𝜃, 𝑧)𝑟𝑑𝑧𝑑𝑟𝑑𝜃 (6.2)

6.4. Spherical Coordinates
When we measure the position of something on the surface of the earth, we use cylindrical

coordinates. Similarly we can generalise this to any position in space as long as we have a
distance, 𝜌, to the origin.

Figure 6.2: Spherical Coordinates of a Point

To convert from Cartesian to Spherical coordinates it is as follows:

• 𝑥 = 𝜌 sinΦ cos𝜃

• 𝑦 = 𝜌 sinΦ sin𝜃

• 𝑧 = 𝜌 cosΦ

Or the other way around;

• 𝜌 = √𝑥2 + 𝑦2 + 𝑧2

• Φ = arccos 𝑧
𝜌

• 𝜃 = arctan 𝑦
𝑥m Or if 𝑥 < 0; arctan 𝑦

𝑥 + 𝜋

The way that we integrate with spherical coordinates is just the same as always. Divide
the volume into small elements 𝑑𝑉 and then sum them all together. There’s no new ideas to
understand here, you just need to know what 𝑑𝑉 is.
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Figure 6.3: Volume Element in Spherical Coordinates (it says 𝑟 but it should say 𝑟ℎ𝑜)

From (fig. 6.3) you can see that the element is defined by the difference between two
angles, the difference between two other, angles, and the difference between two radii. As
such To find the volume of this ”Polar Cuboid” we get:

Δ𝑉 = Δ𝜌 ⋅ 𝜌ΔΦ ⋅ 𝜌 sinΦΔ𝜃
Which simplifies down to:

𝑑𝑉 = 𝜌2 sinΦ𝑑𝜌𝑑Φ𝑑𝜃 (6.3)

If we want to integrate over a region 𝐸 which is defined by:

𝐸 = {(𝜌 sinΦ cos𝜃, 𝜌 sinΦ sin𝜃, 𝜌 cosΦ) | 𝑎 ≤ 𝜌 ≤ 𝑏, 𝛼 ≤ 𝜃𝛽, 𝛾 ≤ Φ ≤ 𝛿}
Then the integral is:

∫∫∫𝑓(𝑥, 𝑦, 𝑧)𝑑𝑉 = ∫
𝛽

𝛼
∫
𝛿

𝛾
∫
𝑏

𝑎
𝑓(𝜌 sinΦ cos𝜃, 𝜌 sinΦ sin𝜃, 𝜌 cosΦ) ⋅ 𝜌2 sinΦ𝑑𝜌𝑑Φ𝑑𝜃

(6.4)



7
Coordinate Transformation

7.1. The Basics
Okay in my opinion this stuff is the hardest in this module, We cover more of this sort of stuff

later on in 3D, but for now we’re dealing with the very basics. This will be our introduction to
Parametisation. If we have a region defined by functions of 𝑥 and 𝑦. We might want to change
these to be functions of 𝑢 and 𝑣 to make integrating easier. Essentially U­Substitution, but on
steroids.

A Transformation function: 𝑇 ∶ 𝑆 → 𝑅 is called one­to­one if each point (𝑥, 𝑦) in 𝑅 is the
image of exactly one point (𝑢, 𝑣) in 𝑆.If this is the case then the transformation 𝑇 is invertable.

𝑇(𝑢, 𝑣) = (𝑥, 𝑦) ∶ {𝑥 = 𝑔(𝑢, 𝑣)𝑦 = ℎ(𝑢, 𝑣)} (7.1)

As an example let’s take a look at a rectangle defined in 𝑢 − 𝑣. this region would be really
easy to integrate over. We’ve covered it earlier in this summary. But anyway, what would this
look like in the 𝑥 − 𝑦 plane?

𝑇 = {𝑥 = 𝑢
2 − 𝑣2

𝑦 = 2𝑢𝑣 }

With:

𝑆 ∶ {(𝑢, 𝑣) | 0 ≤ 𝑢 ≤ 1, 0 ≤ 𝑣 ≤ 1}

𝑢

𝑣

20
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To find the area of the region 𝑆 it’s simply Δ𝑢 ⋅ Δ𝑣. It’s a rectangle. But what about finding
the area of 𝑅? That’s a weird shape. Well if we have divide the area into small regions of 𝑅,
we can draw position vectors 𝑟 as functions of 𝑢 and 𝑣. With these little parallelograms, we
can draw vectors to each vertex.

Figure 7.1: A Crude Drawing of a Parallelogram Defined by Position Vectors

• 𝑟(𝑢0, 𝑣0)

• 𝑟(𝑢0, 𝑣1)

• 𝑟(𝑢1, 𝑣0)

• 𝑟(𝑢1, 𝑣1)

But, as is usual, we want to define 𝑢1 as 𝑢0 + Δ𝑢 so that we can do some integration. This
gives us the new position vectors:

• 𝑟(𝑢0, 𝑣0)

• 𝑟(𝑢0, 𝑣0 + Δ𝑣)
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• 𝑟(𝑢0 + Δ𝑢, 𝑣0)

• 𝑟(𝑢0 + Δ𝑢, 𝑣0 + Δ𝑣)

If you remember back from the very beginning of first year, you’ll remember that the area of
a parallelogram is the magnitude of the cross product of two vectors spanning the sides of the
shape. these vectors are:

𝑟(𝑢0 + Δ𝑢, 𝑣0) − 𝑟𝑟(𝑢0, 𝑣0)
𝑟(𝑢0, 𝑣0 + Δ𝑣) − 𝑟𝑟(𝑢0, 𝑣0)

These look familiar, don’t they. Well, the partial derivatives with respect to 𝑢 and 𝑣 are:

𝑟𝑢 =
𝑟(𝑢0 + Δ𝑢, 𝑣0) − 𝑟𝑟(𝑢0, 𝑣0)

Δ𝑢

𝑟𝑣 =
𝑟(𝑢0, 𝑣0 + Δ𝑣) − 𝑟𝑟(𝑢0, 𝑣0)

Δ𝑢
So we can describe the area of 𝑅 as |𝑟𝑢Δ𝑢 × 𝑟𝑣Δ𝑣|.

7.2. Application to Integrals
The area of 𝑅 is the same as Δ𝐴 which means that if we’re to put this into an integral we

would get the following:

∫∫
𝑅
𝑓(𝑥, 𝑦)𝑑𝐴 = ∫∫

𝑆
𝑓(𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣)) |𝑟𝑢 × 𝑟𝑣| 𝑑𝑢𝑑𝑣 (7.2)

This is how we translate from one form to another. We need to have the cross product of the
partial derivatives. This is so important that we get to have a new name for something here!

𝑅 = Δ𝐴 = |𝑟𝑢 × 𝑟𝑣| Δ𝑢Δ𝑣 = |
𝜕(𝑥, 𝑦)
𝜕(𝑢, 𝑣)| Δ𝑢Δ𝑣 (7.3)

The Result of the cross product will give us the Jacobian: |𝜕(𝑥,𝑦)𝜕(𝑢,𝑣) | Which can be written in

many ways. key among them: |𝜕𝑥𝜕𝑢
𝜕𝑦
𝜕𝑣 −

𝜕𝑥
𝜕𝑣

𝜕𝑦
𝜕𝑢 |

Suppose that 𝑇 is a one­to­one transformation ans its Jacobian is non­zero, and that 𝑇maps
a region 𝑆 (on 𝑢 − 𝑣) onto a region 𝑅 (on 𝑥 − 𝑦). Suppose also that 𝑓 is a continuous function
on 𝑅 and that 𝑅𝑆 are plane regions of Type I or Type II, Then:

∫∫
𝑅
𝑓(𝑥, 𝑦)𝑑𝐴 = ∫∫

𝑆
𝑓(𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣)) |𝜕(𝑥, 𝑦)𝜕(𝑢, 𝑣)| 𝑑𝑢𝑑𝑣 (7.4)

This is how we use it in double integrals, but if we want to generalise into triple integrals,
then we simply add in a third variable.

∫∫
𝑅
𝑓(𝑥, 𝑦, 𝑧)𝑑𝑉 = ∫∫

𝑆
𝑓(𝑥(𝑢, 𝑣, 𝑤), 𝑦(𝑢, 𝑣, 𝑤), 𝑧(𝑢, 𝑣, 𝑤)) | 𝜕(𝑥, 𝑦, 𝑧)𝜕(𝑢, 𝑣, 𝑤)| 𝑑𝑢𝑑𝑣 (7.5)
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Vector Fields

8.1. The Basics
8.1.1. 2D Vector Fields
A vector field is a function of a space whose value at each point is a vector quantity. It is a

vector function of 𝑥 and 𝑦.
𝐹⃗(𝑥, 𝑦) (8.1)

Let 𝐷 be a set in ℝ2, A vector field on ℝ2 is a ”function 𝐹⃗ that assigns to each point (𝑥, 𝑦) in
𝐷, a 2D vector; 𝐹⃗(𝑥, 𝑦).

𝐹⃗ = ⟨𝑃(𝑥, 𝑦), 𝑄(𝑥, 𝑦)⟩ = 𝑃𝚤 + 𝑄𝚥 (8.2)

The functions 𝑃 and 𝑄 are called the component functions of the vector fields.

Examples of such vector fields are:

• Velocity fields in fluids or gasses, like weather maps.

• Velocity fields of rotating rigid objects.

• Gradient Fields

8.1.2. 3D Vector Fields
Let 𝐸 be a set in ℝ3, A vector field on ℝ3 is a function, 𝐹⃗, that assigns to each point (𝑥, 𝑦, 𝑧)

in 𝐸, a 3D vector; 𝐹⃗(𝑥, 𝑦, 𝑧)

𝐹⃗ = ⟨𝑃(𝑥, 𝑦, 𝑧), 𝑄(𝑥, 𝑦, 𝑧), 𝑅(𝑥, 𝑦, 𝑧)⟩ = 𝑃𝚤 + 𝑄𝚥 + 𝑅𝑘⃗ (8.3)

Examples of such vector fields are:

• Velocity fields in 3D fluids or gasses, like explosions, turbulence, and aerodynamic sim­
ulations

• Force fields of Gravitation and electromagnetism

8.1.3. Gradient Vector Fields
If 𝑓 is a scalar function of 2 variables then;

∇⃗𝑓(𝑥, 𝑦) = 𝑓𝑥(𝑥, 𝑦)𝚤 + 𝑓𝑦(𝑥, 𝑦)𝚥 (8.4)

is a gradient vector field on ℝ2. Similarly, this can be expanded out to 3D to give the form:

∇⃗𝑓(𝑥, 𝑦, 𝑧) = 𝑓𝑥(𝑥, 𝑦, 𝑧)𝚤 + 𝑓𝑦(𝑥, 𝑦, 𝑧)𝚥 + 𝑓𝑧(𝑥, 𝑦, 𝑧)𝑘⃗ (8.5)

23



24 8. Vector Fields

8.1.4. Conservative Vector Fields
A Vector field 𝐹⃗ is conservative if it is the gradient of some scalar function that, there is a
function of 𝑓 such that 𝐹⃗ = ∇⃗𝑓. 𝑓 is, under these conditions, called a potential function for 𝐹⃗

The properties of a conservative vector field are:
Vectors in a conservative vector field do not make loops. (This is because ∇⃗𝑓 points to the
highest point, and it ends at the peak)
line integrals over conservative vector fields are independent of the path of integration.
Force fields are usually described by conservative vector fields

8.2. Parametric Equations
8.2.1. 2D Plane Curves
So far we’ve become quite used to drawing curves in 2D, it’s a simple 𝑦 = 𝑚𝑥+𝑐, secondary

school things. but oftentimes it’s nice for us to be able to describe a curve by the positions of
all points with 𝑟. You’ll remember that 𝑟 is a position vector.

We introduce a new variable 𝑡 which could be time, or whatever, it doesn’t matter. We now
define 𝑥 and 𝑦 as functions of 𝑡. A Plane Curve 𝐶 in ℝ2 is the set of points (𝑥, 𝑦) where:

{𝑥 = 𝑓(𝑡)𝑦 = 𝐺(𝑡)}

With 𝑎 ≤ 𝑡 ≤ 𝑏. This is called a Parametrisation of 𝐶. For 𝐶 we have:

𝑟(𝑡) = ⟨𝑥(𝑡), 𝑦(𝑡)⟩ = 𝑓(𝑡)𝚤 + 𝑔(𝑡)𝚥 (8.6)

With the limitation of 𝑎 ≤ 𝑡 ≤ 𝑏.

8.2.2. 3D Curves
Similarly we are able to extrapolate this out into ℝ3 as:

𝐶 ∶ 𝑟(𝑡) = ⟨𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)⟩ (8.7)

8.3. Calculating Arc Length
Something you might want to do from time to time is to calculate the length of an arc. This

becomes much easier if you first parametrize the function for 𝐶.

Let 𝐶 be a curve defined by the vector function 𝑟(𝑡)with 𝑎 ≤ 𝑡 ≤ 𝑏. If the curve 𝐶 is traversed
(that means to be travelled along) exactly once as 𝑡 increases from 𝑎 to 𝑏, then the length 𝐿
can be calculated as:

𝐿 = ∫
𝑏

𝑎
|𝑟′(𝑡)| 𝑑𝑡 = ∫

𝑏

𝑎
𝑑𝑠 (8.8)

In this equation, the variable 𝑠 is a parameter along 𝐶 that measures length, as you will
be familiar with from Mechanics. This should make sense if you think about it, If you recall
the fundamental theorem of calculus, the integral of a derivative is the same as the original
function. But because we’re finding length (a scalar variable) from a vector function, we must
take the magnitude.
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From here, we can make a function of the arc length. Let 𝐶 be a curve defined by the vector
𝑟(𝑡) with 𝑎 ≤ 𝑡 ≤ 𝑏. If 𝑟′(𝑡) is continuous , and 𝐶 is traversed exactly once as t increases from
𝑎 to 𝑏, then:

𝑠(𝑡) = ∫
𝑡

𝑎
|𝑟′(𝑢)| 𝑑𝑢 = ∫

′

𝐶
𝑑𝑠 (8.9)

Note, that 𝑢 is just representing a position in the same way that 𝑡 is, but because 𝑡 is the
upper limit, we use 𝑢 to avoid confusion. Also note that 𝐶′ is the curve 𝑎 ≤ 𝑢 ≤ 𝑡; it’s a part of
the full curve 𝐶.

The length 𝑠 is always positive, Negative length is not possible, that would be weird. If you
want to integrate in the opposite direction, then you need to change the parametrization such
that you integrate from a smaller 𝑡 to a larger 𝑡.

8.4. Line Integrals
We’re used to line integrals already. When we do a 2D line integral we integrate along a line

on the 𝑥 axis. But what if the line is in 3D, and what if it’s wiggly? In that case, the function will
look a bit like a curtain, and we want to find the area of this weird shape.

Figure 8.1: Integrate to find the area of the ”curtain”

If 𝑓 is a scalar function defined on a smooth curve 𝐶, which is in turn defined by the parametriza­
tion 𝑟(𝑡) with 𝑎 ≤ 𝑡 ≤ 𝑏. Then the integral along the line 𝐶 is defined as:

∫
𝐶
𝑓(𝑥, 𝑦, 𝑧)𝑑𝑠 = ∫

𝑏

𝑎
𝑓(𝑟(𝑡) |𝑟′(𝑡)| 𝑑𝑡 (8.10)

From (Eq. 8.8) we know that 𝑑𝑠 = |𝑟′(𝑡)| 𝑑𝑡. Note that because this is a scalar function, the
integral is independent of the orientation.
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If we want the line integral of a Vector Field, then this will be dependant of the orientation.
It will be defined as:

∫
𝐶
𝐹⃗(𝑥, 𝑦, 𝑧) ⋅ 𝑑𝑟 = ∫

𝑏

𝑎
𝐹⃗(𝑟(𝑡)) ⋅ 𝑟′(𝑡)𝑑𝑡 (8.11)

8.4.1. Fundamental Theorem for Line Integrals
Let 𝐶 be a smooth curve given by the vector field 𝐹⃗(𝑡), with 𝑎 ≤ 𝑡 ≤ 𝑏. Let 𝑓 be a differen­

tiable function of two or three variables, which has a gradient ∇⃗𝑓 is continuous on 𝐶. This in
turn implies:

∫
𝐶
∇⃗𝑓 ⋅ 𝑑𝑟 = 𝑓(𝑟(𝑏)) − 𝑓(𝑟(𝑎)) (8.12)

Compare this to the similarities of the normal fundamental theorem of calculus:

∫
𝑏

𝑎
𝑓′(𝑥) = 𝑓(𝑏) − 𝑓(𝑎)

8.4.2. Conservative Vector Fields and Line Integrals
In Section (8.1.4) we had a look at conservative vector fields. When it comes to integrating

over such vector fields there are a few interesting characteristics to pick up on. Take the Vector
field

• 𝐹⃗ = ∇⃗𝑓

• ∫𝐶 𝐹⃗ ⋅ 𝑑𝑟 Is independent of the Path 𝐶

• 𝜕𝑃
𝜕𝑦 =

𝜕𝑄
𝜕𝑥

• ∮ 𝐹⃗ ⋅ 𝑑𝑟 = 0 (integral over a closed path)

The fun thing about these qualities is that they are all exclusive to conservative vector fields.
So, if you know that one of these applies, then you can infer that the other 3 qualities must
also be true.

8.5. Green’s Theorem
8.5.1. Orientation
Let’s start with a definition of orientation. A simple closed curve 𝐶 has a positive orientation

if the enclosed region 𝐷 is always on the left, as you traverse along 𝐶. The orientation of the
curve is thus described by the parametric equation that you use.

This is important to keep in mind, because for the duration of this section, we’ll be integrating
over a closed loop.
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Figure 8.2: An Example of a Positively Oriented Curve

8.5.2. The Theorem
Green’s Theorem is as such: Let 𝐶 be a positively oriented, piece­wise (this means that

can be constructed neatly out of smaller surfaces. A lot like 3D computer models, for example
figure 8.3),smooth, simple, closed curve in the plane. And let 𝐷 be the region enclosed by the
curve 𝐶.

Figure 8.3: A Piece­wise Surface

If 𝑃 and 𝑄 have continuous partial derivatives on an open region that contains 𝐷 then:

∮
𝐶
𝑃𝑑𝑥 + 𝑄𝑑𝑦 =∬

𝐷
(𝜕𝑄𝜕𝑥 −

𝜕𝑃
𝜕𝑦)𝑑𝐴 (8.13)

In this case the curve 𝐶 is in fact, the partial derivative of the region 𝐷.
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If we have a vector field 𝐹⃗ = 𝑃𝚤 + 𝑄𝚥Then we can say that

∮
𝐶
𝐹⃗ ⋅ 𝑑𝑟 = ∬

𝐷
(𝜕𝑄𝜕𝑥 −

𝜕𝑃
𝜕𝑦)𝑑𝐴

8.5.3. Calculating Area
If we have a fun case where 𝜕𝑄

𝜕𝑥 −
𝜕𝑃
𝜕𝑦 = 1 then we can write a conclusion about the area of

the region 𝐷:

∬
𝐷
𝑑𝐴 = ∮

𝐶
𝑃𝑑𝑥 + 𝑄𝑑𝑦

8.5.4. General Areas
As you should know from, geometry, a region can be cut up into smaller regions. What you

can do is cut up a region and then integrate over these regions, and the result will still be the
same.

Figure 8.4: A Domain cut up Into Smaller Domains

You can see an example of this sort of thing in figure (8.4). If you’ll notice, because we retain
the direction of integration when we cut the domain, the boundaries along where we cut (In
this case 𝑃2 and 𝑃4) cancel each other out, because we integrate in opposite directions there.
As such we can say:

∬
𝐷1∪𝐷2

(𝜕𝑄𝜕𝑥 −
𝜕𝑃
𝜕𝑦)𝑑𝐴 =∬𝐷

(𝜕𝑄𝜕𝑥 −
𝜕𝑃
𝜕𝑦)𝑑𝐴 (8.14)

8.6. Curl and Divergence
8.6.1. What Is Curl?
Curl describes the localised rotation at a point in a vector field. A good analogy is that of

an object floating on water. You can think of a the surface of the water as being a vector field,
with the vectors describing the direction that the water flows.

The item on the water, will move, like if it’s a river, then the item will flow downstream. But,
as well as that, the item will rotate about itself. This is curl.
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8.6.2. Defenitions
We’re going to start by defining the ∇ operator. ∇⃗ is not a vector, however, we can think of

it as such so that we can do our calculations.

∇⃗ = 𝚤 𝜕𝜕𝑥 + 𝚥
𝜕
𝜕𝑦 + 𝑘⃗

𝜕
𝜕𝑧 (8.15)

To use this you need to take the vector field 𝐹⃗ Which is defined as: 𝐹⃗ = 𝑃𝚤 + 𝑄𝚥 + 𝑅𝑘⃗. The
curl of 𝐹⃗ is:

∇⃗ × 𝐹⃗ (8.16)

Remember how the operator isn’t a vector but we can treat is as such? Yeah, well you can
just use the amsterdam method to find the ”cross product”, giving you

∇⃗ × 𝐹⃗ =

(𝜕𝑅𝜕𝑦 −
𝜕𝑄
𝜕𝑧 ) 𝚤

(𝜕𝑃𝜕𝑧 −
𝜕𝑅
𝜕𝑥 ) 𝚥

(𝜕𝑄𝜕𝑥 −
𝜕𝑃
𝜕𝑦) 𝑘⃗

8.6.3. Useful Relations
If 𝑓 is a function of 3 variables that has continuous second order partial derivatives then the

curl of (∇⃗𝑓) will be zero. Similar to how 𝑎⃗ × 𝑎⃗ = 0. The rotation of the gradient of a function is
always zero. because at this point you’re already at the max slope.

If we imagine the river flowing again, the gradient vector would be the vector in the centre of
the river, where the water is flowing fastest. to either side of this point, the vectors are slower
than the gradient vector.

If the Curl of a Vector field is zero, then we can say it’s a conservative vector field, and vice
versa.

∇⃗ × 𝐹⃗ = 0 ⇔ 𝐹⃗ = ∇⃗𝑓 (8.17)

8.6.4. What is Divergence?
So if Curl is a measure of rotation, then Divergence is a measure of expansion. It describes

how much something is radiation out. We define it as:

𝑑𝑖𝑣 𝐹⃗ = ∇⃗ ⋅ 𝐹⃗ = 𝜕𝑃
𝜕𝑥 𝚤 +

𝜕𝑄
𝜕𝑦 𝚥 +

𝜕𝑅
𝜕𝑧 𝑘⃗ (8.18)

The Divergence of Curl, is zero, for obvious reasons. In such cases, where the divergence
of a vector field is zero, we call the field incompressible.

∇⃗ ⋅ (∇⃗ × 𝐹⃗) = 0 (8.19)
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8.7. Useful Relations
The Curl of a gradient vector field is always zero, but the divergence of a gradient vector

field is not. In such instance we get a new operator, the Laplace operator, ∇2 = ∇⃗ ⋅ ∇⃗

∇2𝑓 = ∇⃗ ⋅ (∇⃗𝑓) (8.20)

If we want to get the vector form of Green’s Theorem, it is as follows:

∮
𝜕𝐷
𝐹⃗ ⋅ 𝑑𝑟 = ∬

𝐷
(∇⃗ × 𝐹⃗) ⋅ 𝑑𝐴 (8.21)
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Parametric Surfaces

9.1. The Basics
9.1.1. Equations
Much like with parametric curves from the previous chapter, what we’re trying to do here is,

we want a parametric way of describing a surface similar to Parametric Curves. In a curve of
2 dimensions we have a the function 𝑟, of one variable, which then gives us two coordinates
(Eq. 9.1). A Parametric Surface would instead be a function of two variables, and would turn
this into 3 coordinates (Eq. 9.2).

𝑟(𝜃) = ⟨cos (𝜃), sin (𝜃)⟩ (9.1)

𝑟(𝑥, 𝑦) = ⟨𝑥, 𝑦, 𝑓(𝑥, 𝑦)⟩ (9.2)

You can also limit the domains to alter the surface, consider, a portion of a cylinder. With
the given parametrisation 𝑟(𝑢, 𝑣) = 2 cos𝑢𝚤 + 𝑣𝚥 + 2 sin𝑢𝑘⃗. This will give us a cylinder along
the 𝑦 axis., but if we but the limits of 0 ≤ 𝑢 ≤ 𝜋

2 and 0 ≤ 𝑣 ≤ 3, we can see how that would
limit the surface.

Figure 9.1: A Cylindrical parametric Surface

31
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9.1.2. Grid Curves
Grid curves are lines with a constant 𝑢 or a constant 𝑣. In the domain on the 𝑢−𝑣 plane, they

make up an orthogonal grid. but then, these lines get projected onto the parametric surface
with the functions 𝑟(𝑢0, 𝑣) and 𝑟(𝑢, 𝑣0)

Figure 9.2: Grid Curves on a Parametric Surface

9.1.3. Area of a Parametric Surface
If we want to calculate the area of a parametric surface we’ll need the following: Let 𝑆 be

the surface
𝑟(𝑢, 𝑣) = 𝑥(𝑢, 𝑣)𝚤 + 𝑦(𝑢, 𝑣)𝚥 + 𝑧(𝑢, 𝑣)𝑘⃗

With a given domain 𝐷 such that (𝑢, 𝑣) ∈ 𝐷. then the area of this surface 𝑆 will be the integral,
of the magnitude of the cross product, of the partial derivatives with respect to 𝑢 and 𝑣 (Eq.
9.3). Think about it. The partial derivatives will be vectors perpendicular to each other, and
the magnitude of a cross product is the area of a parallelogram spanned by the vectors.

∬
𝐷
|𝑟𝑢 × 𝑟𝑣| 𝑑𝑢𝑑𝑣 (9.3)

9.2. Surface Integrals
9.2.1. Scalar Functions
the integral of a scalar function on a parametric surface in ℝ3 is:

∬
𝑆
𝑓(𝑥, 𝑦, 𝑧) = ∬

𝐷
𝑓(𝑟(𝑢, 𝑣)) |𝑟𝑢 × 𝑟𝑣| 𝑑𝐴 (9.4)

The way that we arrive at this conclusion is basically the same way we always found an
integral, we divided up the surface into small sections (with the grid curves) and we evaluated
the function for each section. The Riemann sum, as usual.

The term |𝑟𝑢 × 𝑟𝑣| 𝑑𝐴 in on account of the fact that the small sub areas spanned by the grid
curves is the same as the small section of the surface 𝑑𝑆.

9.2.2. Orientation
We don’t pay attention to non­orientable surfaces like mobius strips or Klein bottles. Instead

we prefer much nicer surfaces like a sphere, which has 2 distinct sides to the surface, and as
such, can have a positive direction, and a negative direction.
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To define the positive direction, we use the unit normal vector 𝑛⃗. This vector, will point in the
positive outward direction from the surface.

𝑛⃗ = 𝑟𝑢 × 𝑟𝑣
|𝑟𝑢 × 𝑟𝑣|

(9.5)

For closed surfaces however, the positive orientation will always be outward from the en­
closed region.

9.2.3. Vector Fields
If 𝐹⃗ is a continuous vector field defined on an orientated surface 𝑆 with unit normal vector

𝑛⃗, then the integral is:

∬
𝑆
𝐹⃗ ⋅ 𝑑𝑆 = ∬

𝑆
𝐹⃗ ⋅ 𝑛⃗𝑑𝑆 = ∬

𝐷
𝐹⃗ (𝑟(𝑢, 𝑣)) ⋅ (𝑟𝑢 × 𝑟𝑣) 𝑑𝐴 (9.6)

If you’ll remember from earlier:

𝑛⃗𝑑𝑆 = ( 𝑟𝑢 × 𝑟𝑣|𝑟𝑢 × 𝑟𝑣|
) |𝑟𝑢 × 𝑟𝑣| 𝑑𝑢𝑑𝑣 = 𝑟𝑢 × 𝑟𝑣𝑑𝑢𝑑𝑣

9.3. Stokes’ Theorem
9.3.1. The Basics
In general, Stokes’ Theorem is a pretty central concept in calculus. It states that the total

change on the outside, is the same as the sum of all small changes on the inside. This is a
very general statement, but again, it can be applied in an awful lot of circumstances.

Think of a standard integral, one of the basic 2D integrals you’re used to from Q1 or even
secondary school. How much does the function change from one limit 𝑎 to the other limit 𝑏?

Figure 9.3: A Basic Integral
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∫𝑑𝑓 = ∫
𝑏

𝑎

𝑑𝑓
𝑑𝑥𝑑𝑥 = 𝑓(𝑏) − 𝑓(𝑎) (9.7)

We can see even here, that the sum of small changes ∫𝑑𝑓, is the same as the total change
from 𝑎 to 𝑏, 𝑓(𝑏) − 𝑓(𝑎). Remember Green’s Theorem? That’s basically the 2D version of
what Stokes’ theorem. What we’re aiming to do here then, is to find a way of applying Green’s
theorem in ℝ3.

9.3.2. Green’s Theorem
Recall Green’s Theorem and see how similar it is to stokes theorem:

∮
𝜕𝐷
𝐹⃗ ⋅ 𝑑𝑟 = ∬

𝐷
(∇⃗ × 𝐹⃗) ⋅ 𝑑𝐴

In this case 𝑑𝐴 is on the 𝑥 −𝑦 plane. Stokes theorem is very very similar, but instead of being
on the 𝑥 − 𝑦 plane, it is on any 2D surface in ℝ3.

∮
𝜕𝐷
𝐹⃗ ⋅ 𝑑𝑟 = ∬

𝐷
(∇⃗ × 𝐹⃗) ⋅ 𝑑𝑆 (9.8)

In fact, if the Vector field 𝐹⃗ is such that 𝐹⃗ = ⟨𝑃, 𝑄, 0⟩ then Stokes’ theorem is Green’s theorem.
So, we can see that Green’s Theorem is just a special case of Stokes’s Theorem.

9.3.3. Orientation
So, Finally, let’s consider the effects of orientation. If you remember from earlier, the positive

side of a surface will be to the left, as you traverse along the boundary. In 3D, this is more fun,
because as you traverse along the boundary, there will be some surface on both the left and
right. so the positive normal vector 𝑛⃗ will depend on the parametisation.

Figure 9.4: The normal vector shows the positive orientation

At last, we can describe Stokes’ theorem. Let 𝑆 be an oriented, piece­wise, smooth surface,
bounded by a piece­wise smooth boundary curve,

S=C.𝑊𝑖𝑡ℎpositive𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛.𝐿𝑒𝑡𝐹⃗ be a vector field whose components have continuous
partial derivatives on an open region in ℝ3 that contains 𝑆. Then:

∮
𝜕𝑆
𝐹⃗ ⋅ 𝑑𝑟 = ∬

𝑆
Curl𝐹⃗ ⋅ 𝑑𝑆 = ∬

𝑆
(∇⃗ × 𝐹⃗) ⋅ 𝑑𝑆 (9.9)
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9.4. Divergence Theorem
9.4.1. The Basics
So while in Stokes’ Theorem the surface 𝑆, did not enclose a region, for the Divergence

Theorem (Also called Gauss’ Theorem) the Surface 𝑆 does encloses a solid region, like the
outer surface of a solid object, Or maybe a balloon if you will. Consider the latex to the surface
and the air inside it to be the enclosed region 𝐸.

9.4.2. Specifics
Let 𝐸 be a simple solid region and let 𝑆 (or 𝜕𝐸 if you like), given with positive (the direc­

tion pointing outwards) orientation. Let 𝐹⃗ be a vector field whose component functions have
continuous partial derivatives on an open region containing 𝐸. Then it is true that:

∬
𝑆
𝐹⃗ ⋅ 𝑑𝑆 =∭

𝐸
∇⃗ ⋅ 𝐹⃗𝑑𝑉 (9.10)

Figure 9.5: The Expansion of a Solid Object

For this course you really don’t need to know how to derive or prove this, but once again,
this is another example of ”sum of small changes on the inside is the same as the total change
on the outside”.
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