
Phase Portraits and Stability

1 Phase Portraits for Linear Systems

1.1 Phase Portraits

Many differential equations can’t be solved analytically. If we have a system, described by a differential
equation, we still want to get an idea of how that system behaves. Let’s consider the system

x′ = Ax. (1.1)

If at some given x the value of x′ = 0, the system doesn’t change. In that case the vector x is an
equilibrium solution, also called a critical point. These points are often of special importance.
However, for a consistent matrix A (det A = 0) only the point 0 is a critical point. In the rest of this
chapter we assume A is consistent.

Let’s suppose we have found a vector function x(t) that satisfies equation 1.1. In case A is a 2×2 matrix,
such a function can be viewed as a parametric representation for a curve in the x1x2-plane. Such a curve
is called a trajectory, the x1x2-plane is called the phase plane and a representative set of trajectories
is called a phase portrait.

Phase portraits can have many shapes. To get a general idea of them, we examine phase portraits of first-
order linear differential equations, which we have already studied in detail. In the following paragraphs
we will only be looking at a 2× 2 matrix A.

1.2 Real unequal eigenvalues of the same sign

If the matrix A has two real unequal eigenvalues of the same sign, then the solution of system 1.1 is

x = c1ξ1e
r1t + c2ξ2e

r2t. (1.2)

If r1 and r2 are both negative, then as t → ∞, x → 0. In this case the point 0 is called a nodal sink.
All trajectories go to this sink.

If, however, r1 and r2 are both positive, then as t → ∞, x diverges away from 0. Now the point 0 is
called a nodal source. All trajectories go away from this source.

Another thing can be noted for these kinds of solutions. If r1 > r2 > 0 or r1 < r2 < 0, then ξ1 has the
most influence on the trajectory of x. Therefore the trajectory will be mostly tangent to ξ1.

1.3 Real eigenvalues of opposite sign

If the matrix A has two eigenvalues of opposite sign, then the solution still has the form of equation 1.2.
However, there won’t be a sink or a source, but a saddle point. Let’s suppose r1 > 0 > r2. As t →∞
the part of the solution ξ2e

r2t disappears and x will be (approximately) a multiple of ξ1. If, however,
c1 = 0 (which is the case if x0 is a multiple of ξ2), then the trajectory of x does converge to 0.

1.4 Equal eigenvalues with independent eigenvectors

If A has two equal eigenvalues (so an eigenvalue with multiplicity 2) with independent eigenvectors, the
solution will still be of the form of equation 1.2. In this case r1 = r2 = r. If r < 0, then all trajectories
will directly converge to 0 in a straight line. If r > 0 all trajectories will diverge away from 0 in a straight
line. As the phase portrait therefore looks like a star, the point 0 is called a star point. It’s also called
a proper node.
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1.5 Equal eigenvalues with a missing eigenvector

If A has only one eigenvalue with one eigenvector, then the solution will be of the form

x = c1ξe
rt + c2(ξtert + ηert). (1.3)

This can also be written as
x = ((c1ξ + c2η) + c2ξt) ert = yert. (1.4)

Here the vector y largely determines the direction of the vector, while ert determines the magnitude. As
t →∞ the part c2ξt will increase, so the direction of y will be in the direction of ξ. It is also interesting
to note that at t = 0 always x = c1ξ + c2η.

The trajectories will always converge to 0 if r < 0 and diverge from it if r > 0. This critical point is in
this case called an improper or degenerate node.

1.6 Complex eigenvalues

Let’s suppose A has only complex eigenvalues λ± µi (with λ 6= 0 and µ > 0). The system is typified by

x′ =

(
λ µ

−µ λ

)
x. (1.5)

We can transfer this system to polar coordinates, such that r =
√

x2
1 + x2

2 and θ = tan−1 x2/x1. Solving
the system will give

r = ceλt and θ = −µt + θ0. (1.6)

As t increases, the trajectory will spiral around the origin, which is thus called a spiral point. If r < 0
it will spiral inward, so then the origin is a spiral sink. If r > 0 it will spiral outward, so then the origin
is a spiral source.

Let’s now look at the same situation, except we assume that λ = 0. In this case r is constant. So the
trajectories are circles, with center at the origin. The origin is therefore called a center.

1.7 Intermediate summary

Eigenvalues Type of Critical Point Stability
r1 > r2 > 0 Nodal Source (Node) Unstable
r1 < r2 < 0 Nodal Sink (Node) Asymptotically Stable
r2 < 0 < r1 Saddle Point Unstable

r1 = r2 > 0, independent eigenvectors Proper node/Star point Unstable
r1 = r2 < 0, independent eigenvectors Proper node/Star point Asymptotically Stable

r1 = r2 > 0, missing eigenvector Improper node Unstable
r1 = r2 < 0, missing eigenvector Improper node Asymptotically Stable
r1 = λ + µi, r2 = λ− µi, λ > 0 Spiral point Unstable
r1 = λ + µi, r2 = λ− µi, λ < 0 Spiral point Asymptotically Stable
r1 = λ + µi, r2 = λ− µi, λ = 0 Center Stable

Table 1: Overview of behavior of linear systems.

All that we have discussed in this part can be summarized in a table. This is done in table 1. In this
table is also a column concerning stability. This topic will be discussed in the next part.
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2 Stability

2.1 Autonomous systems

Previously we have looked at systems of linear first order differential equations. Linear meant that only
x1, x2 and such appeared in the equation, and not something like x2

1 or ln x1. First order meant that
only x′ and not x′′ or x′′′ appeared.

Now let’s widen our view a bit more. Let’s also consider systems of nonlinear first order differential
equation. But we won’t consider all nonlinear systems. We only consider systems that can be written as

x′ = f(x). (2.1)

Here the function f(x) does not depend on t. So given any position vector x, the velocity x′ will always
be the same. In other words, the phase portrait of the system is constant in time. Such a system is said
to be autonomous. An example of such a system is the linear system x′ = Ax′ (with A a constant
matrix).

2.2 Stability Definitions

A point for which x′ = 0 is called a critical point. Now imagine a circle with radius ε around a critical
point xcr. Also imagine a second smaller circle with radius δ. Let’s take a point x0 in the δ-circle. If
the trajectory of that point leaves the ε-circle, then the critical point is called unstable. If, however, the
trajectory of every starting point x0 in the δ-circle remains entirely within the ε-circle, the critical point
is called stable.

If a point is stable, it can also be asymptotically stable. This is the case if also

lim
t→∞

x(t) = xcr, (2.2)

meaning that the trajectory of the starting point x0 goes to xcr. If a trajectory forms, for example, a
circle around the critical point, then it is stable but not asymptotically stable.

For asymptotically stable points, certain trajectories approach the origin. If all trajectories approach
the origin, then the critical point is said to be globally asymptotically stable. Linear systems with
det A = 0 always have only 1 critical point xcr = 0. If 0 is then stable, it is also globally asymptotically
stable.

2.3 Almost linear systems

Let’s now consider an isolated critical point xcr. A critical point is isolated if there are no other critical
points very close next to it. For simplicity, let’s assume xcr = 0.

An autonomous nonlinear system can be written like

x′ = Ax + g(x). (2.3)

If g(x) is small, then this system is close to the linear system x′ = Ax. More precisely, the system is said
to be an almost linear system if g has continuous partial derivatives and

|g(x)|
|x|

→ 0 as x→ 0. (2.4)

If we define r = |x|, then this can be written in scalar form as

g1(x)
r

→ 0, . . . ,
g2(x)

r
→ 0 as r → 0. (2.5)
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It can be shown that if g(x) is twice differentiable, then the system is always an almost linear system.

Previously we have treated stability for linear systems. An overview was shown in table 1. The stability
for an almost linear system is shown in table 2. It is important to note the difference. For most eigenvalues
the stability and the type of critical point stay the same. There are a few exceptions.

Let’s consider the case when r1 = λ+µi and r2 = λ−µi with λ = 0. If small deviations occur, it is likely
that λ 6= 0. So the critical point has become a spiral point. The other difference occurs when r1 = r2.
But now there are several more types to which the critical point can change.

Eigenvalues of linear system Type of Critical Point Stability
r1 > r2 > 0 Nodal Source (Node) Unstable
r1 < r2 < 0 Nodal Sink (Node) Asymptotically Stable
r2 < 0 < r1 Saddle Point Unstable

r1 = r2 > 0, independent eigenvectors Node or Spiral Point Unstable
r1 = r2 < 0, independent eigenvectors Node or Spiral Point Asymptotically Stable

r1 = r2 > 0, missing eigenvector Node or Spiral Point Unstable
r1 = r2 < 0, missing eigenvector Node or Spiral Point Asymptotically Stable
r1 = λ + µi, r2 = λ− µi, λ > 0 Spiral point Unstable
r1 = λ + µi, r2 = λ− µi, λ < 0 Spiral point Asymptotically Stable
r1 = λ + µi, r2 = λ− µi, λ = 0 Center or Spiral Point Indeterminate

Table 2: Overview of behavior of almost linear systems.

2.4 Periodic Solutions

It may occur that autonomous systems x′ = f(x) have periodic solutions. Such solutions satisfy

x(t + T ) = x(t), (2.6)

where T > 0 is called the period. This period is usually the smallest value such that the above relation
is satisfied. The corresponding trajectories form closed curves. If other non-closed curves spiral towards
this curve, then it is called a limit cycle.

If all trajectories that start near the limit cycle (both inside and outside) spiral towards it, then it is
called asymptotically stable. If all trajectories spiral outward, then the limit cycle is called unstable.
If trajectories on one side spiral inward and on the other side spiral outward, it is called semistable. It
may also occur that other trajectories neither spiral to nor away from a limit cycle. In that case the limit
cycle is called stable.

It is usually difficult to determine whether limit cycles exist in a system. However, there are a few rules
that may help. A closed trajectory always encloses at least one critical point. If it encloses only one
critical point, then that critical point can not be a saddle point.

We can also consider the value
df1(x)
dx1

+
df2(x)
dx2

+ . . . +
dfn(x)
dxn

. (2.7)

If this has the same sign throughout a simply connected region D (meaning that D has no holes), then
there is no closed trajectory lying entirely in D.

Suppose a region R contains no critical points. If a certain trajectory lies entirely in R, then this trajectory
either is a closed trajectory or spirals towards one. In either case, there is a closed trajectory present.
This last rule is called the Poincaré-Bendixson Theorem.
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