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Chapter Seven
Section 7.1

1. Introduce the variables x; = u and x, = u’. It follows that =] = x, and
xy =u"
= —2u—05u".
In terms of the new variables, we obtain the system of two first order ODEs

/
Ty = To
!/
Ty = — 2z —0.57,.

3. First divide both sides of the equation by ¢2, and write

1 1
"no__ /

Set x; = u and x, = u’. It follows that x| = x, and

I
Ty = U

1, 1 1
= ——-u' — - — |u.
t 4¢?

We obtain the system of equations

!/
Ty = Ty

1 1
T, = — (1—E>x1—¥x2.

6. One of the ways to transform the system is to assign the variables
Y=o, 9225171/ , Ys =Ty , y4::1:2/.

Before proceeding, note that

1
xl” = E[ — (l{fl + ]{12)1'1 + k2$2 + Fl(t)]
1
1
2l = —[kywy — (ko + ks)xy + Fy(t)] .
my

Differentiating the new variables, we obtain the system of four first order equations
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Y =Y

= [ O R+ g+ Fi(0)
Ys = Ys

Y, = %[kﬂh — (ky + k3)ys + Fy(1)] -

7(a). Solving the first equation for x,, we have x, = x| + 2x, . Substitution into the
second equation results in

(z] +22,) = 21 — 2(z] + 22,).

Thatis, ' + 4z + 3x, = 0. The resulting equation is a second order differential
equation with constant coefficients. The general solution is

T,(t) = cre™t 4 e

With z, given in terms of x,, it follows that

T5(t) = ce — et

(b). Imposing the specified initial conditions, we obtain

c+cy = 2
Ci — Cy = 3,
with solution ¢, = 5/2 and ¢, = — 1/2. Hence
5 1 5 1
x,(t) = ie_t - 56_‘% and x,(t) = ie_t + 56_:%
().
4
3
¥2 21
]
0 i 2 3 i

10. Solving the first equation for x,, we obtain z, = (x; — x/)/2. Substitution into
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the second equation results in
(z, —z))' )2 =3z, — 2(z; — z)).
Rearranging the terms, the single differential equation for z; is
' +3x+2x,=0.
The general solution is
z,(t) = e 4 e
With x, given in terms of x, , it follows that

3
Ty(t) = cre ™t + S

2
Invoking the specified initial conditions, c, = — 7 and ¢, = 6. Hence
z(t)= —Te ' +6e % and z,(t) = —Te ' +9e7.

11. Solving the first equation for x,, we have x, = x//2. Substitution into the
second equation results in

/2= —2ux,.
The resulting equation is x;" + 4z, = 0, with general solution
x,(t) = c1c08 2t + cysin 2t .
With z, given in terms of x, , it follows that
xy(t) = — e18in 2t + ¢y cos 2t .

Imposing the specified initial conditions, we obtain ¢; = 3 and ¢, = 4. Hence

x1(t) = 3cos2t + 4sin 2t and x,(t) = — 3sin 2t + 4cos 2t.
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12. Solving the first equation for z,, we obtain =, = x;/2 + x,/4. Substitution into
the second equation results in

v/ 242/ /A= —2x, — (x]/2+x,/4)/2.

Rearranging the terms, the single differential equation for z; is

17
$1/I+.CU1/—|—Z£E1=0.

The general solution is
z,(t) = e ?[e,co8 2t + cysin 2t].
With x, given in terms of x, , it follows that
() = e 7% — ¢icos 2t + cysin 2t] .
Imposing the specified initial conditions, we obtain ¢, = — 2 and ¢, = 2. Hence

2, (t) = e %[ — 2c0s 2t + 2sin 2t] and z,(t) = e /*[2c0s 2t + 2sin 2t] .

w2
1_
52 K; J 3
-2
3

13. Solving the first equation for V', we obtain V = L - I’. Substitution into
the second equation results in
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Rearranging the terms, the single differential equation for [ is

LRC-1"+L-I'+R-1=0.

15. Direct substitution results in
(11 (1) + e2za(t)) = pu(t) [ () + coza(t)] + pro(B)[cryn () + coys(t)]
(cryi(t) + e (t)) = pau(D)[erzi (t) + c2ma(t)] + pa(t) [y () + ey (1)) -
Expanding the left-hand-side of the first equation,

iy (t) + exy(t) = ci[pu(t)zi(t) + p()y: (t)] +
+ cy [pu(t)% (t) + p12(t)y2 (t)] .

Repeat with the second equation to show that the system of ODEs is identically satisfied.

16. Based on the hypothesis,

xl/(t) = pll(t)xl(t) + Pty (t) + gi(t)
xz/(t) = pn(t)%(t) + pra(t)ya(t) + gi(t) -

Subtracting the two equations,

() — 25(t) = pu )]z (t) — 2,(0)] + pa(t) [y) (t) — w2 (2)]
Similarly,

yi(t) =y, (8) = pa(®)[z](t) — 25(6)] + P2 (D) [y (£) — , (1))

Hence the difference of the two solutions satisfies the homogeneous ODE.

17. For rectilinear motion in one dimension, Newton's second law can be stated as
E F=mz".

The resisting force exerted by a linear spring is given by Fy; = k¢, in which ¢ is the
displacement of the end of a spring from its equilibrium configuration. Hence, with

0 < z; < x4, the first two springs are in tension, and the last spring is in compression.
The sum of the spring forces on m is

Fl = — klxl — k‘g(flfg — xl) .

S

The total force on m; 1s
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ZFl - — klxl + kQ(IQ - :L‘l) + Fl(t) .

Similarly, the fotal force on my is

ZFQ - — kQ(IQ - :L“l) - k:gxg + FQ(t) .

18(a). Taking a clockwise loop around each of the paths, it is easy to see that voltage
drops are givenby V; — Vo =0,and V5, — V3 =0.

(b). Consider the right node. The current in is given by I + I . The current leaving
the node is — I3. Hence the current passing through the node is (I; + Iz) — ( — I3).
Based on Kirchhoff's first law, Iy + I, + 13 = 0.

(c). In the capacitor,

cv/ =1I.
In the resistor,

Vo=RI,.
In the inductor,

LI;=V;.

(d). Based on part (a), V3 = V5 = V4. Based on part (b),

1
CV{+§V2+13:0.

It follows that

1
cCV = —EVl—Ig and LI, =V].

20. Let Iy, I5, I3, and I, be the current through the resistors, inductor, and capacitor,
respectively. Assign Vi, V5, Vi, and V) as the respective voltage drops. Based on
Kirchhoff's second law, the net voltage drops, around each loop, satisfy

Vi+Va+Vy=0,Vi+Vs+Vo=0and V,—Vo=0.
Applying Kirchhoff's first law to the upper-right node,
Is— (Iy+14) =0.

Likewise, in the remaining nodes,
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L—Iy=0and b+ 1,— 1, =0.
That is,
Vi—-Vo=0,Vi+Vs+Vy=0and Io+ 1, —1I3=0.
Using the current-voltage relations,
Vi=Rih, Vo=Roly, LI; =V3, CV/ =1,

Combining these equations,

v
Ris+ LI, +V,=0and CV,/ =1I5— 54'
2
Now set I3 = I and V; = V', to obtain the system of equations
/ / V
LlI'= —RI—-V and CV' =1— —.
Ry
22(a).
3 gal/min 1 galimin
— -——
qloz*’gal 3 q,02/gal
Eﬁ"‘——\\ S~ (
2 gal/min
O e lp—r 0 L
1 gal/min

Tank 2 ' 2 galimin

Let Q1(t) and Q2(t) be the amount of salt in the respective tanks at time ¢ . Note that
the volume of each tank remains constant. Based on conservation of mass, the rate of
increase of salt, in any given tank, is given by

rate of increase = ratein — rateout.

For Tank 1, the rate of salt flowing into Tank 1 is
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o oz gal Q2 oz [ gal]
Tin = [%gal] [3min] T |:100 gal:| 1min

- Q2 0z

The rate at which salt flow out of Tank 1 is

Tout = {%%} [4g_al} - % 0z

60 gal minl 15 min
Hence
dQ1 Q2
i 20T 00 15
Similarly, for Tank 2,
iQ:_ Q3@
dt 730 100
The process is modeled by the system of equations
Q1 Q>
/
= -4+ —43
@ 15 100 °®
Q1 3Q
, e —
@2= 35 700 %

The initial conditions are @1(0) = QY and Q2(0) = QY.

(b). The equilibrium values are obtain by solving the system

Q1 | @ B
15 T10p T30 =Y
Q1 3Q B
30 100 T2

Its solution leads to Q¥ =54¢, +6¢, and Q¥ =60¢q +40¢,.

(c). The question refers to possible solution of the system

60q, +40¢g, = 50.

It is possible for formally solve the system of equations, but the unique solution gives

s d%:—loz

_7
Q1—6 2w’

gal

which is not physically possible.
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(d). We can write

FE

q> = _9(114‘%
3 QF
4> = _591"' 409

which are the equations of two lines in the ¢, ¢,-plane:

0 : ; 3 y
q1

The intercepts of the first line are QF /54 and QF /6. The intercepts of the second
line are Q% /60 and QF /40. Therefore the system will have a unique solution, in the
first quadrant, as long as QF /54 < Q¥ /60 or Q¥ /40 < Q¥ /6. That is,

E
W _QF 20
9 ~QF = 3
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