
—————————————————————————— ——CHAPTER 9. 

________________________________________________________________________
            page 524

Section 9.3

1.  Write the system in the form .  In this case, it is evident thatx Ax g xw œ  a b
. B B  C

.> C C B
œ  Þ

" !
"  #Œ  Œ Œ  Œ #

#

That is,   Using polar coordinates, g x g xa b l la b Èœ Þ œ < =38  -9=a b C ß B# # X # % %) )
and .  Hencel lx œ <

lim lim
<Ä! <Ä!

% %
l la bl l Èg x

x
œ < =38  -9= œ !) ) ,

and the system is almost linear.  The origin is an isolated critical point of the linear
system

. B B

.> C C
œ Þ

" !
"  #Œ  Œ Œ 

The characteristic equation of the coefficient matrix is , with roots<  <  # œ !#

< œ " < œ  #" # and .  Hence the critical point is a saddle unstable, which is .

2.  The system can be written as

. B B #BC

.> C C B  C
œ  Þ

 " "
 %  "Œ  Œ Œ  Œ # #

Following the discussion in Example , we note that  and$ J B ß C œ  B  C  #BCa b
K B ß C œ  %B  C  B  C J Ka b # #.  Both of the functions  and  are twice differentiable,
hence the system is .  Furthermore,almost linear

J œ  "  #C J œ "  #B K œ  %  #B K œ  "  #CB C B C, , , .

The origin is an isolated critical point, with

Œ  Œ a b a ba b a bJ ! ß ! J ! ß !
K ! ß ! K ! ß !  %  "

œ
 " "B C

B C
.

The characteristic equation of the associated linear system is , with<  # <  & œ !#

complex conjugate roots   The origin is a , which is< œ  "„#3 Þ"ß# stable spiral
asymptotically stable.

5 .  The critical points consist of the solution set of the equationsa b+
a ba ba ba b#  B C  B œ !

%  B C  B œ ! Þ

As shown in Prob.  of Section , the only critical points are at ,  and"$ *Þ# ! ß ! % ß %a b a ba b # ß # .
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a b a b a ba b a b a ba b,ß - J B ß C œ #  B C  B K B ß C œ %  B C  B.  First note that  and .  The
Jacobian matrix of the vector field is

J œ Œ  Œ a b a ba b a bJ B ß C J B ß C
K B ß C K B ß C %  C  #B %  B

œ
 #  #B  C #  BB C

B C
.

At the origin, the coefficient matrix of the linearized system is

Ja b! ß ! œ Œ  # #
% %

,

with eigenvalues  and .  The eigenvalues are real, with< œ "  "( < œ "  "(" #
È È

opposite sign.  Hence the critical point is a , which is .  At the equilibriumsaddle unstable
point , the coefficient matrix of the linearized system isa b # ß #

Ja b # ß # œ Œ % !
' '

,

with eigenvalues  and .  The eigenvalues are real, unequal and positive,< œ % < œ '" #

hence the critical point is an  .  At the point , the coefficient matrixunstable node a b% ß %
of the linearized system is

Ja b% ß % œ Œ  ' '
 ) !

,

with complex conjugate eigenvalues .  The critical point is a < œ  $„ 3 $*"ß#
È stable

spiral asymptotically stable, which is .

Based on Table , the nonlinear terms do not affect the stability and type of each*Þ$Þ"
critical point.

a b. .

7   The critical points are solutions of the equationsa b+ Þ
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"  C œ !

B  C B  C œ ! Þa ba b
The first equation requires that .  Based on the second equation, .  HenceC œ " B œ „"
the critical points are  and .a b a b " ß " " ß "

a b a b a b,ß - J B ß C œ "  C K B ß C œ B  C.   and .  The  matrix of the vector# # Jacobian
field is

J œ Œ  Œ a b a ba b a bJ B ß C J B ß C
K B ß C K B ß C #B  #C

œ
!  "B C

B C
.

At the critical point , the coefficient matrix of the linearized system isa b " ß "

Ja b " ß " œ Œ !  "
 #  #

,

with eigenvalues  and .  The eigenvalues are real, with< œ  "  $ < œ  "  $" #
È È

opposite sign.  Hence the critical point is a , which is .  At the equilibriumsaddle unstable
point , the coefficient matrix of the linearized system isa b" ß "

Ja b" ß " œ Œ !  "
#  #

,

with complex conjugate eigenvalues .  The critical point is a < œ  "„ 3"ß# stable
spiral asymptotically stable, which is .

a b. .

Based on Table , the nonlinear terms do not affect the stability and type of each*Þ$Þ"
critical point.

8 .  The critical points are given by the solution set of the equationsa b+
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B "  B  C œ !

C #  C  $B œ ! Þ

a ba b
If , then either  or .  If , then  or .  If ,B œ ! C œ ! C œ # C œ ! B œ ! B œ " C œ "  B
then either  or .  If , then  or .  Hence theB œ "Î# B œ " C œ #  $B B œ ! B œ "Î#
critical points are at , ,  and a b a b a b a b! ß ! ! ß # " ß ! "Î# ß "Î# Þ

a b a b a b a b,ß - J B ß C œ B  B  BC K B ß C œ #C  C  $BC Î%.  Note that  and .  The# #

Jacobian matrix of the vector field is

J œ Œ  Œ a b a ba b a bJ B ß C J B ß C
K B ß C K B ß C  $CÎ% "Î#  CÎ#  $BÎ%

œ
"  #B  C  BB C

B C
.

At the origin, the coefficient matrix of the linearized system is

Ja b! ß ! œ Œ " !

! "
#

,

with eigenvalues  and .  The eigenvalues are real and both positive.< œ " < œ "Î#" #

Hence the critical point is an .  At the equilibrium point , theunstable node a b! ß #
coefficient matrix of the linearized system is

Ja b! ß # œ Œ  " !

 $ "
# #

,

with eigenvalues  and .  The eigenvalues are both negative, hence< œ  " < œ  "Î#" #

the critical point is a  .  At the point , the coefficient matrixstable node a b" ß !
of the linearized system is

Ja b" ß ! œ Œ  "  "

!  "
%

,

with eigenvalues  and .  Both of the eigenvalues are negative, and< œ  " < œ  "Î%" #

hence the critical point is a  .  At the critical point , the coefficientstable node a b"Î# ß "Î#
matrix of the linearized system is

Ja b"Î# ß "Î# œ   

 

" "
# #
$ "
) )

,

with eigenvalues  and .  The< œ  &Î"'  &( Î"' < œ  &Î"'  &( Î"'" #
È È

eigenvalues are real, with opposite sign.  Hence the critical point is a , which issaddle
unstable.
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a b. .

    

    

Based on Table , the nonlinear terms do not affect the stability and type of each*Þ$Þ"
critical point.

9 .  Based on Prob. , in Section , the critical points are at a b a b a b+ ) *Þ# ! ß ! ß  # ß  # ßa b a b! ß " $ ß  # Þ and 

a b a b a ba b a b a b,ß - Þ J B ß C œ  B  C "  B  C K B ß C œ B #  C  First note that  and .  The
Jacobian matrix of the vector field is

J œ Œ #B  " "  #C
#  C B

.

At the origin, the coefficient matrix of the linearized system is
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Ja b! ß ! œ Œ  " "
# !

,

with eigenvalues  and .  The eigenvalues are real, with opposite sign.< œ " < œ  #" #

Hence the critical point is a , which is .  At the critical point ,saddle unstable a b! ß "
the coefficient matrix of the linearized system is

Ja b! ß " œ Œ  "  "
$ !

,

with complex conjugate eigenvalues .  The critical point is a< œ  "Î#„ 3 "" Î#"ß#
È

stable spiral asymptotically stable, which is .  At the point , the coefficienta b # ß  #
matrix of the linearized system is

Ja b # ß  # œ Œ  & &
!  #

,

with eigenvalues  and .  The eigenvalues are unequal and negative,< œ  # < œ  &" #

hence the critical point is a  .  At the point , the coefficient matrixstable node a b$ ß  #
of the linearized system is

Ja b$ ß  # œ Œ & &
! $

,

with eigenvalues  and .  The eigenvalues are unequal and positive, hence< œ $ < œ &" #

the critical point is an  .unstable node

a b. .

Based on Table , the nonlinear terms do not affect the stability and type of each*Þ$Þ"
critical point.
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11 .  The critical points are solutions of the equationsa b+
#B  C  BC œ !

B  #C  BC œ ! Þ

$

Substitution of  into the first equation results inC œ BÎ B  #a b
$B  "$B  #)B  #!B œ !% $ # .

One root of the resulting equation is .  The only other real root of the equation isB œ !

B œ #)(  ") #!"*  )$ #)(  ") #!"*  "$
"

*
” •Š ‹ Š ‹È È"Î$ "Î$

.

Hence the critical points are  and a b a b! ß !  "Þ"*$%&ÞÞÞ ß "Þ%(*(ÞÞÞ Þ

a b a b a b a b,ß - J B ß C œ B  B  BC K B ß C œ #C  C  $BC Î%.   and .  The # # Jacobian
matrix of the vector field is

J œ Œ  Œ a b a ba b a bJ B ß C J B ß C
K B ß C K B ß C

œ
#  C "  $BC
"  C  #  B

B C

B C

$ #

.

At the origin, the coefficient matrix of the linearized system is

Ja b! ß ! œ Œ # "
"  #

,

with eigenvalues  and .  The eigenvalues are real and of opposite< œ & < œ  &" #
È È

sign.  Hence the critical point is a , which is .  At the equilibrium pointsaddle unstablea b "Þ"*$%&ÞÞÞ ß "Þ%(*(ÞÞÞ , the coefficient matrix of the linearized system is

Ja b "Þ"*$%& ß "Þ%(*( œ Œ  "Þ#$**  'Þ)$*$
 #Þ%(*(  !Þ)!'&

,

with complex conjugate eigenvalues .  The critical point is< œ  "Þ!#$#„%Þ""#& 3"ß#

a , which is .stable spiral asymptotically stable
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a b. .

In both cases, the nonlinear terms do not affect the stability and type of the critical point.

12 .  The critical points are given by the solution set of the equationsa b+
a b"  B =38 C œ !

"  B  -9= C œ ! Þ

If , then we must have , which is impossible.  Therefore ,B œ  " -9= C œ # =38 C œ !
which implies that  ,   Based on the second equation,C œ 8 8 œ ! ß„ " ß # ß ÞÞÞ Þ1

B œ "  -9= 8 Þ1

It follows that the critical points are located at  and , wherea b a ba b! ß #5 # ß #5  "1 1
5 œ ! ß„ " ß # ß ÞÞÞ Þ

a b a b a b a b,ß - J B ß C œ "  B =38 C K B ß C œ "  B  -9= C.  Given that  and , the
Jacobian matrix of the vector field is

J œ Œ a b=38 C "  B -9= C
 " =38 C

.

At the critical points , the coefficient matrix of the linearized system isa b! ß #51

Ja b! ß #5 œ1 Œ ! "
 " !

,

with purely complex eigenvalues .  The critical points of the associated linear< œ „ 3"ß#

systems are , which are .  Note that Theorem  does  provide acenters  stable not*Þ$Þ#
definite conclusion regarding the relation between the nature of the critical points of the
nonlinear systems and their corresponding linearizations.  At the points ,a ba b# ß #5  " 1
the coefficient matrix of the linearized system is

Jc da b# ß #5  " œ1 Œ !  $
 " !

,
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with eigenvalues  and .  The eigenvalues are real, with opposite< œ $ < œ  $" #
È È

sign.  Hence the critical points of the associated linear systems are , which aresaddles
unstable.

a b. .

As asserted in Theorem , the trajectories near the critical points *Þ$Þ# # ß #5  "a ba b1
resemble those near a saddle.

Upon closer examination, the critical points  are indeed centers.a b! ß #51

13 .  The critical points are solutions of the equationsa b+
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B  C œ !

C  B œ ! Þ

#

#

Substitution of  into the first equation results inC œ B#

B  B œ !% ,

with real roots , .  Hence the critical points are at  and .B œ ! " ! ß ! " ß "a b a b
a b a b a b,ß - J B ß C œ B  C K B ß C œ C  B.  In this problem,  and .  The # # Jacobian
matrix of the vector field is

J œ Œ "  #C
 #B "

.

At the origin, the coefficient matrix of the linearized system is

Ja b! ß ! œ Œ " !
! "

,

with  eigenvalues  and .  It is easy to see that the correspondingrepeated < œ " < œ "" #

eigenvectors are linearly independent.  Hence the critical point is an unstable proper
node not.  Theorem  does  provide a definite conclusion regarding the relation*Þ$Þ#
between the nature of the critical point of the nonlinear system and the corresponding
linearization.  At the critical point , the coefficient matrix of the linearized systema b" ß "
is

Ja b" ß " œ Œ "  #
 # "

,

with eigenvalues  and .  The eigenvalues are real, with opposite sign.< œ $ < œ  "" #

Hence the critical point is a , which is .saddle unstable

a b. .

Closer examination reveals that the critical point at the origin is indeed a proper node.
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14 .  The critical points are given by the solution set of the equationsa b+
"  BC œ !

B  C œ ! Þ$

After multiplying the second equation by , it follows that .  Hence the criticalC C œ „"
points of the system are at  and .a b a b" ß "  " ß  "

a b a b a b,ß - J B ß C œ "  BC K B ß C œ B  C.  Note that  and .  The  matrix of$ Jacobian
the vector field is

J œ Œ  C  B

"  $C#
.

At the critical point , the coefficient matrix of the linearized system isa b" ß "

Ja b" ß " œ Œ  "  "
"  $

,

with eigenvalues  and .  The eigenvalues are real and .  It is< œ  # < œ  #" # equal
easy to show that there is only  linearly independent eigenvector.  Hence the criticalone
point is a .  Theorem  does  provide a definite conclusionstable improper node not*Þ$Þ#
regarding the relation between the nature of the critical point of the nonlinear system and
the corresponding linearization.  At the point , the coefficient matrix of thea b " ß  "
linearized system is

Ja b " ß  " œ Œ " "
"  $

,

with eigenvalues  and .  The eigenvalues are real,< œ  "  & < œ  "  &" #
È È

with opposite sign.  Hence the critical point of the associated linear system is a ,saddle
which is .unstable
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a b. .

Closer examination reveals that the critical point at  is indeed a  impropera b" ß " stable
node, which is asymptotically stable.

15 .  The critical points are given by the solution set of the equationsa b+
 #B  C  B B  C œ !

B  C  C B  C œ ! Þ

ˆ ‰
ˆ ‰

# #

# #

It is clear that the origin is a critical point.  Solving the  equation for , we find thatfirst C

C œ Þ
 "„ "  )B  %B

#B

È # %

Substitution of these relations into the  equation results in two equations of thesecond
form  and .  Plotting these functions, we note that only 0 B œ ! 0 B œ ! 0 B œ !" # "a b a b a b
has real roots given by   It follows that the additional critical points areB ¸ „!Þ$$!(' Þ
at  and a b a b !Þ$$!(' ß "Þ!*#% !Þ$$!(' ß  "Þ!*#% Þ
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a b,ß - .  Given that

J B ß C œ  #B  C  B B  C

K B ß C œ B  C  C B  C

a b ˆ ‰
a b ˆ ‰

# #

# # ,

the  matrix of the vector field isJacobian

J œ Œ  #  $B  C  "  #BC

"  #BC  "  B  $C

# #

# # .

At the critical point , the coefficient matrix of the linearized system isa b! ß !

Ja b! ß ! œ Œ  #  "
"  "

,

with complex conjugate eigenvalues .  Hence the critical point< œ  $„ 3 $ Î#"ß# Š ‹È
is a , which is .  At the point ,stable spiral  asymptotically stable a b !Þ$$!(' ß "Þ!*#%
the coefficient matrix of the linearized system is

Ja b !Þ$$!(' ß "Þ!*#% œ Œ  $Þ&#"'  !Þ#(($&
!Þ#(($& #Þ')*&

,

with eigenvalues  and .  The eigenvalues are real, with< œ  $Þ&!*# < œ #Þ'(("" #

opposite sign.  Hence the critical point of the associated linear system is a ,saddle
which is .  Identical results hold for the point at  .unstable a b!Þ$$!(' ß  "Þ!*#%

a b. .

A closer look at the origin reveals a spiral:
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Near the point  the nature of the critical point is evident:a b!Þ$$!(' ß  "Þ!*#%

Based on Table , the nonlinear terms do not affect the stability and type of each*Þ$Þ"
critical point.

16 .  The critical points are solutions of the equationsa b+
C  B "  B  C œ !

 B  C "  B  C œ ! Þ

ˆ ‰
ˆ ‰

# #

# #

Multiply the  equation by  and the  equation by .  The difference of thefirst secondC B
two equations gives .  Hence the only critical point is at the origin.B  C œ !# #

a b a b a b a b a b,ß - J B ß C œ C  B "  B  C K B ß C œ  B  C "  B  C.  With  and ,# # # #

the  matrix of the vector field isJacobian

J œ Œ "  $B  C "  #BC

 "  #BC "  B  $C

# #

# # .

At the origin, the coefficient matrix of the linearized system is

Ja b! ß ! œ Œ " "
 " "

,

with complex conjugate eigenvalues .  Hence the origin is an < œ "„ 3"ß# unstable
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spiral.

a b. Þ

17 .  The Jacobian matrix of the vector field isa b+
J œ Œ ! "

"  'B !# .

At the origin, the coefficient matrix of the linearized system is

Ja b! ß ! œ Œ " !
! "

,

with eigenvalues  and .  The eigenvalues are real, with opposite sign.< œ " < œ  "" #

Hence the critical point is a .saddle point

a b, .  The trajectories of the system are solutions of the differential equationlinearized 

.C B

.B C
œ ,

which is separable.  Integrating both sides of the equation , the solutionB.B  C .C œ !
is .  The trajectories consist of a family of hyperbolas.B  C œ G# #
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It is easy to show that the general solution is given by  andB > œ - /  - /a b " #
> >

C > œ - /  - / Þ - œ !a b " # "
> >   The only  solutions consist of those for which .bounded

In that case, .B > œ - / œ  C >a b a b#
>

a b- .  The trajectories of the given system are solutions of the differential equation

.C B  #B

.B C
œ

$

,

which can also be written as .  The resulting ODE is ,a bB  #B .B  C .C œ !$ exact
with

`L `L

`B `C
œ B  #B œ  C$  and .

Integrating the first equation, we find that .  It followsL B ß C œ B Î#  B Î#  0 Ca b a b# %

that

`L

`C
œ 0 Cwa b.

Comparing the partial derivatives, we obtain .  Hence the solutions0 C œ  C Î#  -a b #

are level curves of the function

L B ß C œ B Î#  B Î#  C Î# Þa b # % #

The trajectories  to, or  from, the origin are no longer straight lines.approaching diverging
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19 .  The solutions of the system of equationsa b+
C œ !

 =38B œ !=#

consist of the points ,   The functions  anda b a b„8 ß ! 8 œ ! ß " ß # ßâ Þ J B ß C œ C1
K B ß C œ  =38Ba b =#  are  on the entire plane.  It follows that the system isanalytic
almost linear near each of the critical points.

a b, .  The Jacobian matrix of the vector field is

J œ Œ ! "

 -9= B !=# .

At the origin, the coefficient matrix of the linearized system is

Ja b! ß ! œ Œ ! "

 !=# ,

with purely complex eigenvalues .  Hence the origin is a .  Since the< œ „ 3"ß# = center
eigenvalues are purely complex, Theorem  gives no definite conclusion about the*Þ$Þ#
critical point of the nonlinear system.  Physically, the critical point corresponds to the
state ,   That is, the rest configuration of the pendulum.) )œ ! œ ! Þw

a b a b- ß !.  At the critical point , the coefficient matrix of the linearized system is1

Ja b1 ß ! œ Œ ! "

!=# ,

with eigenvalues .  The eigenvalues are real and of opposite sign.  Hence the< œ „"ß# =
critical point is a .  Theorem  asserts that the critical point for the nonlinearsaddle *Þ$Þ#
system is also a saddle, which is unstable.  This critical point corresponds to the state
) 1 )œ œ ! Þ,   That is, the  rest configuration.w upright
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a b. .  Let =# œ " ! ß ! Þ.  The following is a plot of the phase curves near a b

The local phase portrait shows that the origin is indeed a center.

a b/ .

It should be noted that the phase portrait has a periodic pattern, since  .) 1œ B 79. #

20 .  a b+ The trajectories of the system in Problem  are solutions of the differential"*
equation

.C  =38 B

.B C
œ

=#

,

which can also be written as .  The resulting ODE is ,=#=38 B .B  C .C œ ! exact
with

`L `L

`B `C
œ =38 B œ C=#  and .

Integrating the first equation, we find that .  It followsL B ß C œ  -9= B  0 Ca b a b=#

that
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`L

`C
œ 0 Cwa b.

Comparing the partial derivatives, we obtain .  Hence the solutions0 C œ C Î#  Ga b #

are level curves of the function

L B ß C œ  -9= B  C Î# Þa b =# #

Adding an arbitrary constant, say , to the function  does not change the nature=# L B ß Ca b
of the level curves.  Hence the trajectories are can be written as

"

#
C  "  -9= B œ -# #= a b ,

in which  is an arbitrary constant.-

a b, 7P.  Multiplying by  and reverting to the original physical variables, we obtain#

" .

# .>
7P 7P "  -9= œ 7P - Þ# # # #

#Œ  a b)
= )

Since , the equation can be written as=# œ 1ÎP

" .

# .>
7P 71P "  -9= œ I#

#Œ  a b)
) ,

in which .I œ 7P -#

a b- @ œ P. Î.>.  The  of the point mass is given by .  The kineticabsolute velocity )
energy of the mass is .  Choosing the rest position as the , that is, theX œ 7@ Î## datum
level of , the gravitational potential energy of the point mass iszero potential energy

Z œ 71P "  -9= Þa b)
It follows that the total energy, , is  along the trajectories.X  Z constant

21 .  a b+ E œ !Þ#&
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Since the system is , and , the amplitude is .  The period isundamped C ! œ ! !Þ#&a b
estimated at .7 ¸ $Þ"'

a b, .

    

    

V
E œ !Þ& !Þ& $Þ#!
E œ "Þ! "Þ! $Þ$&
E œ "Þ& "Þ& $Þ'$
E œ #Þ! #Þ! %Þ"(

7

a b- Þ  Since the system is conservative, the amplitude is equal to the initial amplitude.  On
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the other hand, the period of the pendulum is a  function of themonotone increasing
initial
position .E

It appears that as , the period approaches , the period of the corresponding Ep! 1 linear
pendulum .a b# Î1 =

a b. .

The pendulum is released from rest, at an inclination of   from the vertical.%  1 radians
Based on , the pendulum will swing past the lower equilibriumconservation of energy
position  and come to rest, momentarily, at a maximum rotational displacementa b) 1œ #
of .  The transition between the two dynamics occurs) 1 1 17+B œ $  %  œ %  %a b
at , that is, once the pendulum is released  the upright configuration.E œ 1 beyond

24 .  It is evident that the origin is a critical point of each system.  Furthermore, it isa b+
easy to see that the corresponding linear system, in each case, is given by

.B

.>
œ C

.C

.>
œ  B Þ

The eigenvalues of the coefficient matrix are .  Hence the critical point of the< œ „ 3"ß#
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linearized system is a .center

a b, .  Using polar coordinates, it is also easy to show that

lim
<Ä!

l la bl lg x
x

œ ! .

Alternatively, the nonlinear terms are analytic in the entire plane.  Hence both systems
are
almost linear near the origin.

a b a b- 33.  For system , note that

B  C œ BC  B B  C  BC  C B  C Þ
.B .C

.> .>
# # # # # #ˆ ‰ ˆ ‰

Converting to polar coordinates, and differentiating the equation  with< œ B  C# # #

respect to , we find that>

< œ B  C œ  B  C œ  < Þ
.< .B .C

.> .> .>
ˆ ‰# # %#

That is,   It follows that , where .  Since  as< œ  < Þ < œ "Î #>  - - œ "Î< <p!w $ # #a b !

> p ! < +=C7:>9>3-+66C =>+,6/, regardless of the value of , the origin is an  equilibrium!

point.

On the other hand, for system ,a b3
< œ B  C œ B  C œ < Þ
.< .B .C

.> .> .>
ˆ ‰# # %#

That is,   Solving the differential equation results in< œ < Þw $

< œ
-  #>

#>  -
#

#a b .

Imposing the initial condition , we obtain a specific solution< ! œ <a b !

< œ 
<

# < >  "
#

#

#
!

!

.

Since the solution becomes  as , the critical point is .unbounded unstable> p "Î#<!
#

25.  The characteristic equation of the coefficient matrix is , with complex<  " œ !#

roots .  Hence the critical point at the origin is a .  The characteristic< œ „ 3"ß# center
equation of the perturbed matrix is , with complex conjugate<  # <  "  œ !# #% %
roots .  As long as , the critical point of the perturbed system is a< œ „ 3 Á !"ß# % %
spiral point.  Its stability depends on the sign of  % Þ

26.  The characteristic equation of the coefficient matrix is , with rootsa b<  " œ !#
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< œ < œ  "" # .  Hence the critical point is an .  On theasymptotically stable node
other hand, the characteristic equation of the perturbed system is ,<  #<  "  œ !# %
with roots .  If , then  are complex roots.< œ  "„   ! < œ  "„ 3"ß# "ß#È È% % %

The critical point is a .  If , then  are real andstable spiral % % ! < œ  "„"ß#
Èk k

both negative .  The critical point remains a .a bk k% ¥ " stable node

27 .  Set  and .a b a b a b. 5 œ =38 Î# œ =38 EÎ# 1ÎP œ %!


