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1.5, to which all other solutions converge.

slopes are positive, and hence the solutions increase. The equilibrium solution appears to

For y > 1.5, the slopes are negative, and hence the solutions decrease. For y < 1.5, the
be y(t)
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For y > — 1.5, the slopes are positive, and hence the solutions increase. Fory < — 1.5

, the slopes are negative, and hence the solutions decrease. All solutions appear to

diverge away from the equilibrium solution y(¢) = — 1.5.
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y < — 1/2, theslopes are negative, and hence the solutions decrease. All solutions

Fory > — 1/2,the slopes are positive, and hence the solutions increase. For
diverge away from
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the equilibrium solution y(¢t) = — 1/2.
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For y > — 2,the slopes are positive, and hence the solutions increase. Fory < — 2,
the slopes are negative, and hence the solutions decrease. All solutions diverge away
from

the equilibrium solution y(t) = — 2.

8. For all solutions to approach the equilibrium solution y(¢) = 2/3, we must have
y' <0fory >2/3,and y’' > 0 fory < 2/3. The required rates are satisfied by the
differential equation y’' = 2 — 3y.

9. For solutions other than y(t) = 2 to diverge from y = 2, y(t) must be an increasing
function for y > 2, and a decreasing function for y < 2. The simplest differential
equation

whose solutions satisfy these criteriais y' =y — 2.

10. For solutions other than y(t) = 1/3 to diverge from y = 1/3, we must have y' < 0
fory < 1/3,and y’ > 0 fory > 1/3. The required rates are satisfied by the differential
equation y' =3y — 1.
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Note that y’ = 0 fory = 0 and y = 5. The two equilibrium solutions are y(¢) = 0 and
y(t) = 5. Based on the direction field, y’ > 0 for y > 5; thus solutions with initial
values greater than 5 diverge from the solution y(t) = 5. For 0 < y < 5, the slopes are
negative, and hence solutions with initial values between 0 and 5 all decrease toward the
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solution y(¢) = 0. For y < 0, the slopes are all positive; thus solutions with initial
values
less than 0 approach the solution y(t) = 0.
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Observe that y’ = 0 for y = 0 and y = 2. The two equilibrium solutions are y(¢) = 0
and y(¢) = 2. Based on the direction field, y’ > 0 for y > 2; thus solutions with initial
values greater than 2 diverge from y(¢) = 2. For 0 < y < 2, the slopes are also
positive, and hence solutions with initial values between 0 and 2 all increase toward the
solution

y(t) = 2. Fory < 0, the slopes are all negative; thus solutions with initial

values less than 0 diverge from the solution y(¢) = 0.

16. (a)Let M(t) be the total amount of the drug (in milligrams) in the patient's body at
any

given time ¢ (hrs). The drug is administered into the body at a constant rate of 500
mg/hr.

The rate at which the drug leaves the bloodstream is given by 0.4M (¢). Hence the
accumulation rate of the drug is described by the differential equation

dM
T 500 — 0.4 M (mg/hr).

(b)
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Based on the direction field, the amount of drug in the bloodstream approaches the
equilibrium level of 1250 mg (within a few hours).

18. (a) Following the discussion in the text, the differential equation is
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dv 9
m— =mg—yv
dt g—7
or equivalently,
dv V2
a9 m

(b) After a long time, Z@’ ~ 0. Hence the object attains a terminal velocity given by

mg
V=4 — .
v

(c¢) Using the relation yv?2 = mg, the required drag coefficient is v = 0.0408 kg/sec .

(d)
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All solutions appear to approach a linear asymptote (with slope equalto1). It is easy to
verify that y(¢) =t — 3 is a solution.

20.
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(t)

All solutions approach the equilibrium solution y

23.
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sin(t +

— 3
V2

which is also a solution corresponding to the initial value y(0) = — 5/2.

All solutions appear to diverge from the sinusoid y(t) =

25.
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= 0. First, the rate of change is small. The

All solutions appear to converge to y(t)

slopes

eventually increase very rapidly in magnitude.

26.
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The direction field is rather complicated. Nevertheless, the collection of points at which
the slope field is zero, is given by the implicit equation y*> — 6y = 2t>. The graph of
these points is shown below:

The y-intercepts of these curves are at y = 0, i\@ . It follows that for solutions with
initial values y > \/g , all solutions increase without bound. For solutions with initial
values in the range y < — \/g and 0 <y < \/g , the slopes remain negative, and

hence
these solutions decrease without bound. Solutions with initial conditions in the range

—4/6 <y < 0 initially increase. Once the solutions reach the critical value, given by
the equation 3® — 6y = 2t2, the slopes become negative and remain negative. These
solutions eventually decrease without bound.
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