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Section 9.2

2. The differential equations can be combined to obtain a related ODE

dy 2

de  x
The equation is separable, with

dy  2dx

y oz

The solution is given by y = C x~2. Note that the system is uncoupled, and hence we
also have = = zye ! and y = y,e*.
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In order to determine the direction of motion along the trajectories, observe that for
positive initial conditions, x will decrease, whereas y will increase.
4. The trajectories of the system satisfy the ODE
dy  bx
de  ay’
The equation is separable, with
aydy = —bxdx.

Hence the trajectories are given by b z? + a y? = C?, in which C is arbitrary. Evidently,
the trajectories are ellipses. Invoking the initial condition, we find that C? = ab. The
system of ODEs can also be written as

dx 0 a
E— —b O X.

Using the methods in Chapter 7, it is easy to show that

T = \/ECOS\/@t
y= — \/gsin\/%t.
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4

Note that for positive initial conditions, x will increase, whereas y will decrease.

5(a). The critical points are given by the solution set of the equations

z(l—y)=0
y(1+2z)=0.
Clearly, (0,0) is a solution. Ifz # 0,theny = 1 and x = — 1/2. Hence the critical
points are (0,0) and (—1/2,1).
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(c). Based on the phase portrait, all trajectories starting near the origin diverge. Hence
the critical point (0,0) is unstable. Examining the phase curves near the critical point

(—1/2,1),
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the equilibrium point has the properties of a saddle, and hence it is unstable.

6(a). The critical points are solutions of the equations

1+2y=20
1-322=0.

There are two equilibrium points, ( —1//3, — 1/2) and (1/\/§, — 1/2).
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(c). Locally, the trajectories near the point < -1//3, -1/ 2) resemble the behavior near
a saddle. Hence the critical point is unstable. Near the point (1 /V3, -1 /2), the
solutions are periodic. Therefore the second critical point is stable.

8(a). The critical points are solutions of the equations

—@-y(l-z-y)=0
z(24+y)=0.

frx=y,thenz=y=0o0orxz=y= —-2. frxr=1—y,thenx=0andy =1, or
x=3and y = — 2. It follows that the critical points are (0,0), (—2, —2),(0,1)
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and (3, — 2).
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Near the critical point (0, 1), the trajectories resemble those of a stable spiral. Hence the

(c). Near the origin, the trajectories resemble those of a saddle, and hence it is unstable.
equilibrium point is asymptotically stable.
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Closer examination reveals that the point ( — 2, — 2) is asymptotically stable, whereas

Based on the global phase portrait, it is evident that the other critical points are nodes.
the point (3, — 2) is unstable.
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9(a). The critical points are given by the solution set of the equations

y2—z—y)=0
—rz—y—2z2y=0.

Clearly, (0,0) is a critical point. If z = 2 — y, then it follows that y(y —2) = 1. The

additional critical points are (1 — V2,14 \/5) and (1 +42,1- \/2_)
(b).
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(c). The behavior near the origin is that of a stable spiral. Hence the point (0, 0) is
asymptotically stable.
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At the critical point (1 — \/5 , 1+ \/5 ), the trajectories resemble those near a saddle.
Hence the critical point is unstable.
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Near the point (1 + \/5 ,1— \/5 ) , the trajectories resemble those near a saddle.

Hence the critical point is also unstable.
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10(a). The critical points are solutions of the equations

theny = 0. If z = y, then either

The origin is evidently a critical point. Ifz = — 2,

y=0orx =y = —1lorz =y =2. Hence the other critical points are ( — 2,0),

(=1, —1)and (2,2).
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(c). Based on the global phase portrait, the critical points (0,0) and ( — 2, 0) have the
characteristics of a saddle. Hence these points are unstable. The behavior near the
remaining two critical points resembles those near a stable spiral. Hence the critical
points ( — 1, — 1) and (2, 2) are asymptotically stable.

11(a). The critical points are given by the solution set of the equations
z(1—2y)=0
y—a*—y*=0.

Ifz =0, theneithery =0ory =1. Ify = 1/2, thenz = +1/2. Hence the critical
points are at (0,0), (0,1), (—1/2,1/2)and (1/2,1/2).
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(c). The trajectories near the critical points ( — 1/2,1/2) and (1/2,1/2) are closed
curves. Hence the critical points have the characteristics of a center, which is stable.
The trajectories near the critical points (0,0) and (0, 1) resemble those near a saddle.
Hence these critical points are unstable.
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13(a). The critical points are solutions of the equations

2+ x)(y—x)=0
(4—2)(y+x)=0.

Ify=x,theneitherx =y=0o0orx=y=4. fxr = —2,theny=2. lfzr = —y,
then y = 2 or y = 0. Hence the critical points are at (0,0), (4,4) and ( — 2, 2).
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(c). The critical point at (4, 4) is evidently a stable spiral, which is asymptotically
stable. Closer examination of the critical point at (0, 0) reveals that it is a saddle,

which is unstable.
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The trajectories near the critical point ( — 2, 2) resemble those near an unstable node.
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14(a). The critical points consist of the solution set of the equations

It is easy to see that the only critical point is at (0, 0).
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(c). The origin is an unstable spiral.

16(a). The trajectories are solutions of the differential equation

4x

dy

b

dx

Y

which can also be written as 4x dx + ydy = 0. Integrating, we obtain

+y? = C%

2

4x

Hence the trajectories are ellipses.
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Based on the differential equations, the direction of motion on each trajectory is
clockwise.

17(a). The trajectories of the system satisfy the ODE

dy 2rx+y
de y

which can also be written as (2x + y)dz — ydy = 0. This differential equation is
homogeneous. Setting y = x v(z), we obtain

dv 2
v+r—=-+1,
de v

that is,

dv  2+v—1°
r— = ——.

dx v
The resulting ODE is separable, with solution 23 (v + 1)(v — 2)> = C. Reverting back
to the original variables, the trajectories are level curves of

H(z,y) = (z+y)(y—22)"
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The origin is a saddle. Along the line y = 2z, solutions increase without bound. Along
the line y = — x, solutions converge toward the origin.

18(a). The trajectories are solutions of the differential equation

dy z+y

dr  x—vy

b

which is homogeneous. Setting y = = v(x), we obtain

that is,

The resulting ODE is separable, with solution

arctan(v) = In|z|v/ 1+ v2.

Reverting back to the original variables, the trajectories are level curves of

H(x,y) = arctan(y/z) — In\/ x> + 3% .
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The origin is a stable spiral.

20(a). The trajectories are solutions of the differential equation

dy — 2xy* + 62y
de 222y — 322 — 4y’

which can also be written as (2zy* — 6 xy)dz + (2z%y — 322 — 4y)dy = 0. The
resulting ODE is exact, with

OH OH
—— =2zxy® — 62y and — = 22%y — 3% — 4y.

ox 0y
Integrating the first equation, we find that H (z,y) = z*y* — 3z%y + f(y). It follows
that

OH
Dy =227y — 32" + f'(y).
Comparing the two partial derivatives, we obtain f(y) = — 23> + ¢. Hence

H(zx,y) = z*y* — 32y — 20/°.
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The associated direction field shows the direction of motion along the trajectories.
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22(a). The trajectories are solutions of the differential equation
@/_-—6x+x3
dr 6y
which can also be written as (6 x — 2°)dz + 6 ydy = 0. The resulting ODE is exact,
with
0H o0H

%:61/‘—%3 anda—y:(iy

Integrating the first equation, we have H(z,y) = 322 — x'/4 + f(y). It follows that

0H

8—y = f'(y).

Comparing the two partial derivatives, we conclude that f(y) = 3y*> + c. Hence
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