CHAPTER 10. —

Section 10.5

1. We consider solutions of the form u(z,t) = X (z)T'(¢). Substitution into the partial
differential equation results in

2 X"T+ XT' =0.
Divide both sides of the differential equation by the product X'7T" to obtain

X// + T/ B O
Tx T T
so that
X// B T/
X T

Since both sides of the resulting equation are functions of different variables, each must
be equal to a constant, say A. We obtain the ordinary differential equations

X" - AX=0and T'+ \T =0.

2. In order to apply the method of separation of variables, we consider solutions of the
form u(x,t) = X(z)T'(t). Substituting the assumed form of the solution into the partial
differential equation, we obtain

tX'"T+xXT' =0.
Divide both sides of the differential equation by the product ¢t X7 to obtain

XII T /
X T =Y
so that
X// T !/
X T

Since both sides of the resulting equation are functions of different variables, it follows
that
X// T/
— = - — =\
X tT
Therefore X (x) and 7T'(t) are solutions of the ordinary differential equations

X' X X=0and T+ XMT =0.

page 650



CHAPTER 10. —

4. Assume that the solution of the PDE has the form w(z,t) = X (z)T'(¢). Substitution
into the partial differential equation results in

[p(x)X')'T —r(z)XT" = 0.

Divide both sides of the differential equation by the product r(x) X7 to obtain

p@x) T
r(z)X T ’
that is,
pl) X _T"
r(r)X T

Since both sides of the resulting equation are functions of different variables, each must
be equal to a constant, say — A. We obtain the ordinary differential equations

[p(2)X'] + Mr(z)X =0 and T" + AT =0.

6. We consider solutions of the form u(x,y) = X(z)Y (y). Substitution into the partial
differential equation results in

X"Y + XYY" +2XY =0.
Divide both sides of the differential equation by the product XY to obtain

X// Y//

x Ty te=0
that is,

X// Y/l

X Ty

Since both sides of the resulting equation are functions of different variables, it follows
that
X// Y//

2 4= -1 = .
x 7 Y

We obtain the ordinary differential equations

X'+ (xz+MN)X=0and Y- XY =0.

7. The heat conduction equation, 100 u,, = u;, and the given boundary conditions are
homogeneous. We consider solutions of the form u(z,t) = X(z)7'(t). Substitution
into

the partial differential equation results in
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100 X"T = XT'.
Divide both sides of the differential equation by the product X7 to obtain
X/l T/
X 1007

Since both sides of the resulting equation are functions of different variables, it follows
that

X// T/

= = — .
X 100T

Therefore X (x) and T'(t) are solutions of the ordinary differential equations
X"+AXX=0and T'+100AT =0.

The general solution of the spatial equation is X = ¢,cos \?*x + ¢, sin A\V?z . In order
to satisfy the homogeneous boundary conditions, we require that ¢, = 0, and

A2 =,

Hence the eigenfunctions are X,, = sin nwx , with associated eigenvalues \, = n’7?.

We thus obtain the family of equations 7"/ + 100\, 7" = 0. Solution are given by
T — o 1000t

Hence the fundamental solutions of the PDE are

—100n27%t

u,(x,t) =e sinnme,
which yield the general solution
> 2,2
u(x,t) = g ¢, e 0T sin nra
n=1

Finally, the initial condition u(x,0) = sin 27z — sin 5mx must be satisfied. Therefore
is it necessary that

o0

ch SINNTE = SN 27T — SINOHTX .
n=1
It follows from the othogonality conditions that ¢, = — ¢; = 1, with all other ¢, = 0.

Therefore the solution of the given heat conduction problem is

6—25007r2t

—4007% :
u(z,t) = e " sin 2w — sin b .
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9. The heat conduction problem is formulated as

Ugpy = Ut , 0<ax<40, t>0;
u(0,t) =0, u(40,t) =0, t > 0;
u(z,0) =50, 0 <z <40.

Assume a solution of the form w(z,t) = X (z)T'(t). Following the procedure in this
section, we obtain the eigenfunctions X,, = sinnmx /40, with associated eigenvalues
A\, = n?72/1600. The solutions of the temporal equations are

T, = e M,

Hence the general solution of the given problem is

d > nwx
— 2 :C —n’r t/1600 sin )
40

n=1

The coefficients ¢, are the Fourier sine coefficients of u(x,0) = 50. That is,

/ f(x sinwdx

nmwx
= - —d
2/0 sin 10 ®

The sine series of the initial condition is

sin

1001 — cosnm . nrx
50 = T Z n 40 -

n=1

Therefore the solution of the given heat conduction problem is

100 1 —cosnm 20 nm
u(z,t) = - Zl p e £/1600 mﬂ'

11. Refer to Prob. 9 for the formulation of the problem. In this case, the initial condition
is given by

0, 0<z<10,
u(z,0) =< 50, 10<z <30,
0, 30<x<40.

All other data being the same, the solution of the given problem is
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o0

nmTx
U(:L‘ ’ t) _ ch e " 7r2t/1600 znﬂ .

n=1

The coefficients ¢, are the Fourier sine coefficients of u(x,0). Thatis,

/ f(x sin@dm

. nrT
= — sin——dx
2 /10 40

nro__ 3nm
cos™ 4 COS=5~

=100
nmw

Therefore the solution of the given heat conduction problem is

0 nm 3nm
100 COST™ — COSTm 21600 . ML
e sin——.
n 40

u(x,t) = -
n=1

12. Refer to Prob. 9 for the formulation of the problem. In this case, the initial condition
is given by
u(z,0) =z, 0<ax<40.

All other data being the same, the solution of the given problem is

00
_ 2 nmTx
_ 207 n’r f/lGOO sin )
a 40

The coefficients ¢, are the Fourier sine coefficients of u(x,0) = = . That s,

/ f(x sin@dx

Therefore the solution of the given heat conduction problem is

n+1

80 oA /1600 o) VL
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13. Substituting x = 20, into the solution, we have

100 X1 — ‘
u(20,t) = - Z c:s o e_"zﬂ/moosin% :

n=1

We can also write

200 - (—1)k+1 —(2k—1)*7%t/160
u(20,t) = e~ (2k—1)"mt/1600
T ]; 2k -1

Therefore,

00 k’+1 2 s
(20,5) Z ~(2k=1)"72/320

Let

n+1
A, = (-1 1200 67(21671)271'2/320
m(2k — 1) '

It follows that | A;| < 0.005 for k > 9. So for n = 2k — 1 > 17, the summation is
unaffected by additional terms.

For t = 20,

00 k+1 2

Let

A, = (— 1)n+1200 67(%71)2#2/80
m(2k — 1) '

It follows that | A;| < 0.003 for k > 5. So for n = 2k — 1 > 9, the summation is
unaffected by additional terms.

For t = 80,
o0 k'+1
(20 80 Z 2k 1)2 2/20
Let
Ay = (- 1)n+1200 e—(2k—1)27r2/20.
m(2k — 1)

It follows that | A;| < 0.00005 for k > 3. So for n = 2k — 1 > 5, the summation is
unaffected by additional terms.
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The series solution converges faster as t increases.

14(a). The solution of the given heat conduction problem is

[o¢]
100 T COSTUT__n2r2i/1600 o, VT
40

M

U

Setting ¢ = 5, 10, 20, 40, 100, 200 :

a0

401

307

u

207

104

(b). Setting x = 5,10, 15,20 :

501
45
40

U35_
30

257

201

30 40 50
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(c). Surface plot of u(x,t) :

(d). 0 <wu(x,t) <1 fort>675sec.

t=675

14

0.8

0.6

u

0.4

0.2

a 10 0 30 40

16(a). The solution of the given heat conduction problem is

3nm
100 X cos™™ — cos® 5, . nTx
u(z,t) = Z 1 ,—n?rt/1600
™ n=1

4
n zn40
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Setting ¢ = 5, 10, 20, 40, 100, 200 :

504
400
307

201

(b). Setting = = 5,10, 15,20 :
50
407
207

u
207

. 10 W, o 40 50

(¢). Surface plot of u(x,1t) :
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(d). 0 <wu(x,t) <1 fort>615sec.

t=E15
1 4
0.5
0.6
u
0.41
0.2
u 10 20 30 40

17(a). The solution of the given heat conduction problem is
80 <X (— )" s
u(z,t) = ;;';ggg——jﬁl——-6_”7r”1mm3inzzgg.
Setting ¢ = 5,10, 20, 40, 100, 200 :

307
25—3
20
U5
10—3

5

T - -

(b). Analyzing the individual plots, we find that the 'hot spot' varies with time:

t |5 | 10|20 |40 | 100 | 200
T, [ 331311292622 |21
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Location of the 'hot spot', x;, , versus time :

@

324
304
281
xh
26 .

24

221 ¢

0740 B0 8D 1@ BT T8 30
Evidently, the location of the greatest temperature migrates to the center of the rod.

(¢). Setting x = 5,10, 15,20 :

304
281
26
244
224
U2D-
184
16
144
123
10

0 20 0, 60 a0 100

(d). Surface plot of u(x,t) :
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(e). 0 <wu(x,t) <1 fort>525sec.

t=45825

0.84
0.6
0.4

0.2

19. The solution of the given heat conduction problem is

n

200 =1 — :
u(x , t) _ - Z CT(ZS nm 6_”2720‘2’5/40051' n;)x .

n=1

Setting x = 10cm,,

w(10,1) = 200 i 1 —cosnm eanWzazt/Zloosin% '
7T

n=1 n

A two-term approximation is given by

u(10,t) ~ 40—0 [3 e~ t/400 _ —97m%a?t/400 |
3m
From Table 10.5.1 :
o2
silver 1.71

aluminum | 0.86
cast iron 0.12
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2

(a). a* =1.71:

100

50

50

404

20

(b). a® = 0.86 :

1001

804

G0

404

204

(c). > =0.12:
1004
80
G0
404

204

u(10 4

0 40 B0 &0 100

w10,y

20 40 80 100 120 140

[}

w104

[am)

200 400 500 800 1000
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21(a). Given the partial differential equation
aUyy —bus +cu=0,

in which a, b, and c are constants, set u(x,t) = e*w(z,t). Substitution into the PDE
results in

aew,, — b(6 elw + e‘%wt) +ecefw=0.
Dividing both sides of the equation by e, we obtain
AWy —bw, + (¢ —bd)w =0.
Aslong as b # 0, choosing 6§ = ¢/b yields

a
_w:px_wt:():

b

which is the heat conduction equation with dependent variable w .

23. The heat conduction equation in polar coordinates is given by
9 1 1
« urr+_u7'+_2u90 = Ut .
r r

We consider solutions of the form u(r, 6 ,t) = R(r)O(0)T'(t). Substitution into the
PDE
results in

o’ [R”@T +irery % R@”T] = ROT'.
r r

Dividing both sides of the equation by the factor RO, we obtain
R"” 1R 16" T’

R rR 720 o
Since both sides of the resulting differential equation depend on different variables, each
side must be equal to a constant, say — \. That is,

R/l 1 R/ 1 @// T/
R TRTEe T ar
It follows that T/ + o?X?>T = 0, and
R/I 1 RI 1 @Il
RTRTPe

— A\,

— — 2.

Multiplying both sides of this differential equation by 72, we find that

" / "
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which can be written as

R// RI @//
2°v v 22: _
r I +7r 7 + \°r 5

Once again, since both sides of the resulting differential equation depend on different
variables, each side must be equal to a constant. Hence
1 !/ @ 1/

7“2%4—7“?—#)\21"2:#2 and — 5

The resulting ordinary equations are
?R"+rR' + (Nr? — > )R =0
0"+ u*0=0
T' 4+ a*X°T =0.
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