CHAPTER 9. ——

Chapter Nine
Section 9.1

2(a). Setting x = & " results in the algebraic equations

5—r —1 51 . 0
3 1-7)\&/) \o/)
For a nonzero solution, we must have det(A — r1) = r> — 67 + 8 = 0. The roots of
the characteristic equation are r;, = 2 and 7, = 4. For r = 2, the system of equations

reduces to 3¢, = &,. The corresponding eigenvector is £V = (1,3)". Substitution of
r = 4 results in the single equation & = &,. A corresponding eigenvector is

£¥ =(1,1)".
(b). The eigenvalues are real and positive, hence the critical point is an unstable node.

(c,d).
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3(a). Solution of the ODE requires analysis of the algebraic equations

(5 50 )E)=(6)

For a nonzero solution, we must have det(A — r1) = r> — 1 = 0. The roots of the

characteristic equation are , = 1 and r, = — 1. For r = 1, the system of equations
reduces to & = &,. The corresponding eigenvector is £ = (1,1)". Substitution of

r = — 1 results in the single equation 3¢, — & = 0. A corresponding eigenvector is
£ =(1,3)".

(b). The eigenvalues are real, with 7, 7, < 0. Hence the critical point is a saddle.

(c,d).
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5(a). The characteristic equation is given by

1—r -5 2 .
‘ 1 _3_r‘—r +2r+2=0.
The equation has complex roots r, = —1+d¢and r, = —1—14. Forr= —1+1,
the components of the solution vector must satisfy & — (2 4 )&, = 0. Thus the
corresponding eigenvector is € = (2 +4,1)". Substitution of » = — 1 — 4 results

in the single equation &, — (2 — )&, = 0. A corresponding eigenvector is
£ =(2—-14,1)".

(b). The eigenvalues are complex conjugates, with negative real part. Hence the origin
is a stable spiral.
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6(a). Solution of the ODE:s is based on the analysis of the algebraic equations

i SR)E)-(6)

For a nonzero solution, we require that det(A — rI) = r> + 1 = 0. The roots of the
characteristic equation are » = 4. Setting r = 7, the equations are equivalent to
& — (2414)& = 0. The eigenvectors are £V = (2+i,1)" and €2 = (2 —1i,1)".

(b). The eigenvalues are purely imaginary. Hence the critical point is a center.
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(c,d).
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7(a). Setting x = £ " results in the algebraic equations

(i ) =(6)

For a nonzero solution, we require that det(A — 7 1) = r? — 2r +5 = 0. The roots
of the characteristic equation are » = 1 £ 2¢. Substituting » = 1 — 27, the two
equations reduce to (1 + )& — & = 0. The two eigenvectors are €0 = (1,1 +4)"
and €% = (1,1 —1i)".

(b). The eigenvalues are complex conjugates, with positive real part. Hence the origin
is an unstable spiral.
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8(a). The characteristic equation is given by

1—-7r -5
’ 1 _S_T‘—(r+1)(r+0.25)—0,
with roots 7, = — 1l and r, = — 0.25. For r = — 1, the components of the solution
vector must satisfy & = 0. Thus the corresponding eigenvector is £V = (1,0)".
Substitution of » = — 0.25 results in the single equation 0.75&, +& = 0. A

corresponding eigenvector is £? = (4, — 3)”.

(b). The eigenvalues are real and both negative. Hence the critical point is a stable
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9(a). Solution of the ODE:s is based on the analysis of the algebraic equations

L)) =6)

For a nonzero solution, we require that det(A — 71) = 7> — 2r + 1 = 0. The single
root of the characteristic equation is 7 = 1. Setting » = 1, the components of the
solution vector must satisfy &, —2¢&, = 0. A corresponding eigenvector is

£E=(2,1".

(b). Since there is only one linearly independent eigenvector, the critical point is an
unstable, improper node.
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10(a). The characteristic equation is given by

]_ — T 2 2 .
5 1, =T +9=0.
The equation has complex roots r,, = £ 3i. For r = — 31, the components of the

solution vector must satisfy 5 &, + (1 — 3¢)&, = 0. Thus the corresponding eigenvector
is € = (1 —3i, —5)". Substitution of r = 3i resultsin 5&, + (1 +3i)&, =0. A
corresponding eigenvector is £% = (143, —5)".

(b). The eigenvalues are purely imaginary, hence the critical point is a center.
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(c,d).
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12(a). Setting x = £ e" results in the algebraic equations

2—r —5/2 &\ (0

95 —1-r)\&) " \o)
For a nonzero solution, we require that det(A — 1) = r? — r +5/2 = 0. The roots
of the characteristic equation are » = 1/2+3i/2. Substituting » = 1/2 — 3i/2, the

equations reduce to (3 + 37)&; — 5&, = 0. Therefore the two eigenvectors are
€V =(5,34+3i)" and £€® = (5,3 — 34)".

(b). Since the eigenvalues are complex, with positive real part, the critical point is an
unstable spiral.

(c,d).
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14. Setting x’ = 0, that is,

(7 L))

we find that the critical point is X" = ( — 1,0)". With the change of dependent variable,
x = x’ + u, the differential equation can be written as

du [ —2 1
%— 1 _9 u.

The critical point for the transformed equation is the origin. Setting u = £ e" results in

the algebraic equations
—2—r 1 &\ (0
1 -2-rJ\&/) \o)

For a nonzero solution, we require that det(A — r1) = r? + 4r + 3 = 0. The roots
of the characteristic equation are » = — 3, — 1. Hence the critical point is a stable
node.

15. Setting x" = 0, that is,

-1 -1 < — 1
2 —-1)7 \=5)’
we find that the critical point is X" = ( — 2,1)". With the change of dependent variable,
x = x’ + u , the differential equation can be written as

du (-1 -1
it~ \ 2 —1)%
The characteristic equation is det(A — 1) = r? + 2r + 3 = 0, with complex conjugate

roots r = — 1=+ 2\/5 . Since the real parts of the eigenvalues are negative, the critical
point is a stable spiral.

16. The critical point x° satisfies the system of equations
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0 -8\, [ —«a
(¢ )=(57)
It follows that 2 = /6 and y° = /(3. Using the transformation, x = x" + u , the
differential equation can be written as

du 0o —-p

dt (6 0 )“'
The characteristic equation is det(A — 1) = r> + 36 = 0. Since 86 > 0, the roots
are purely imaginary, with » = +4,/(36 . Hence the critical point is a center.

20. The system of ODEs can be written as
d_X _ (G G X.
dt Qs A
The characteristic equation is 72 — pr + ¢ = 0. The roots are given by

pV/P —dg _pEt VA
2 2

T =

The results can be verified using Table 9.1.1.

21(a). If ¢ > 0 and p < 0, then the roots are either complex conjugates with negative
real parts, or both real and negative.

(b). If ¢ > 0 and p = 0, then the roots are purely imaginary.

(c). If ¢ < 0, then the roots are real, with r, - 7, > 0. If p > 0, then either the roots
are real, with r, - 7, > 0 or the roots are complex conjugates with positive real parts.
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