CHAPTER 7. ——

Section 7.7

1. The eigenvalues and eigenvectors were found in Prob. 1, Section 7.5.

1 2
T = —1, 5(1): (2>, 7”2:2, 6(2): (1)

The general solution is
e ! 2 et

Hence a fundamental matrix is given by
We now have

So that

_ —e 4+ 4e?  2e7t — 2e%
o) = wiow o) = (o T

3. The eigenvalues and eigenvectors were found in Prob. 3, Section 7.5. The general

solution of the system is
_ el et
X = ot + c 3e—t |

Given the initial conditions x(0) = e!’), we solve the equations

cte=1
c + 302 =0 .
to obtain ¢, = 3/2, ¢, = — 1/2. The corresponding solution is

Given the initial conditions x(0) = e, we solve the equations

C1+02:O
¢, +3c=1,

to obtain ¢, = — 1/2, ¢, = 1/2. The corresponding solution is
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_ %et + %eft
Therefore the fundamental matrix is
1/ 3el —et —el et
d(t) = - .
(*) 2 (3et —3e! —el4+3e!
5. The general solution, found in Prob. 3, Section 7.6, is given by

H5cost n 5sint
X=c c .
! 2cost+ sint ’ —cost+2sint

Given the initial conditions x(0) = eV, we solve the equations

501:1
261—62:0,

resulting in ¢, = 1/5, ¢, = 2/5. The corresponding solution is

< — cost+ 2sint
- sint )

Given the initial conditions x(0) = e, we solve the equations

501 - 0
201 — Cy = 1,
resulting in ¢, =0, c, = — 1. The corresponding solution is

—5sint
X = .
cost — 2sint

Therefore the fundamental matrix is

B(t) = (

cost+ 2sint —5Hsint
sint cost—2sint )’

7. The general solution, found in Prob. 15, Section 7.5, is given by

B o2t olt
X=0 3e2t + 6 edt |-

Given the initial conditions x(0) = eV, we solve the equations

Cl+02:1
3C1+02:O,
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resulting in ¢, = — 1/2, ¢, = 3/2. The corresponding solution is
1/ —e? 4+ 3e*
X=— )
2\ — 3e?t + 3ett

The initial conditions x(0) = e® require that

c+c = 0
3c,+c =1,
resulting in ¢, =1/2, ¢, = — 1/2. The corresponding solution is

1 €2t _ e4t
X= 2 (3th — e4t>'
Therefore the fundamental matrix is

_ 6215 + 3647,‘ 6215 _ 647,‘
B(t) = =
( ) 9 ( - 3627,‘ +3€4t 3627,‘ _ e4t

8. The general solution, found in Prob. 5, Section 7.6, is given by

s cost Yoot sint
X = ¢e€ cye .
! 2cost+ sint ’ —cost+2sint

The specific solution corresponding to the initial conditions x(0) = e is

;[ cost+2sint
X=e . .
osint

For the initial conditions x(0) = e, the solution is

s —sint
X=¢e . .
cost — 2sint

Therefore the fundamental matrix is

_ _4fcost+2sint —sint
o(t) =e ( S5sint cost — 2sint )’

9. The general solution, found in Prob. 13, Section 7.5, is given by

de~2t 3e ! 0
x=c¢| =52 | +e| —det | 5| €*
— Te 2 — 27t — et

Given the initial conditions x(0) = e!”), we solve the equations
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401"’302:1
_501_4CQ+03:0
—701—202—0320,

resultingin ¢, = — 1/2,¢, =1, ¢s = 3/2. The corresponding solution is
—2e % 4 3e7!
x= | Be? — et 4 B
Te2 _9e~t — 32

The initial conditions x(0) = e, we solve the equations
4:01 + 302 =0
—501—402‘1‘03: 1

—701—202—03:0,

resultingin ¢, = —1/4,¢, =1/3, ¢; = 13/12. The corresponding solution is

The initial conditions x(0) = e®, we solve the equations

4C1+302:O
—501—4CQ+03:0
—Tci—2¢c—c3 =1,

resultingin ¢, = —1/4, ¢, =1/3, ¢; = 1/12. The corresponding solution is

—e et
ot 4t | 1 9t
3¢ + 5€

e
-2t 2 -t 1 2t
e e 3¢

Therefore the fundamental matrix is

— 272 4 3e7? —e 2 f et —e et
52 4t 3.2 5.-2  4.—t, 13.% 5.-% 4.—t, 1. %
o(t) = | 3¢ 4e”" 57 je 3¢ T et g€ 3¢t 1€
T % o~ 3.2 T=2 2t 13.% T-2% 2 .-t 1 _%
2¢ 2e 2€ 1€ 3¢ 12¢ 1€ 3¢ 12€¢

12. The solution of the initial value problem is given by
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=®(t
(e tcos 2t —2etsin2t\ (3
o %e Fsin 2t e tcos 2t 1
_ 3608 2t — 2sin 2t
N sm 2t + cos 2t
13. Let
i (t) 1" (t)
U(t) = :
zP(t) M (t)
It follows that
(k) o 2 (k)
W(t)) = : :
) o aln)

is a scalar matrix, which is invertible, since the solutions are linearly independent.
Let ¥'(¢y) = (¢;). Then

II:<11) (t) e x(ln) (t) i cen Cin
‘I'(t)‘I’_l(to) = : : :
CC<1) (t) s .T(”) (t) Cnl o Cpp

n

The j-th column of the product matrix is

W) =3 e x®,
k=1

which is a solution vector, since it is a linear combination of solutions. Furthermore, the
columns are all linearly independent, since the vectors x*) are. Hence the product is

a fundamental matrix. Finally, setting ¢t = t,, W(¢,) ¥ '(¢,) = I. This is precisely the
definition of ®(¢).

14. The fundamental matrix ®(¢) for the system
=1
S \4 1

1/ 2e% +2et 3 —et
o(t) = 4 (4€3t —4et 23 4 2¢71

is given by

Direct multiplication results in
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@(t)@(s) B i 26315 + 26—15 6315 _ e—t 2635 + 2¢~8 635 —e 8
16\ 4e¥ —de7t 2e3t 4 2t 4e35 — de™  2e3 4 2e7F

B 1 8( 3t+3s + eftfs) 4(63t+35 _ eftfs)
- 16 16( 3t+3s __ eftfs) 8(€3t+38 _{_eftfs) :

Hence

1 [ 2e3(45) 4 9e=(t4s)  3lits) _ o (t4s)
= Z 4e3t+s) _ go—(t+s)  9o3(t+s) + 2¢~(t+s)

15(a). Let s be arbitrary, but fixed, and ¢ variable. Similar to the argument in Prob. 13,
the columns of the matrix ®(¢)®(s) are linear combinations of fundamental solutions.
Hence the columns of ®(¢)®(s) are also solution of the system of equations. Further,
settingt = 0, ®(0)®(s) =1®(s) = ®(s). Thatis, ®(¢t)®(s) is a solution of the
initial value problem Z' = AZ, with Z(0) = ®(s). Now consider the change of
variable 7 =t + s. Let W(7) = Z(7 — s). The given initial value problem can be
reformulated as

d

d—W AW , with W(s) = ®(s).

-

Since ®(t) is a fundamental matrix satisfying ®' = A®, with ®(0) =1, it follows
that

|
oA
\i

Thatis, ®(t + s) = ®(7) = W(7) = Z(t) = ®(1)P(s) .

(b). Based on Part (a), ®(£)®( —t) = ®(t+ (—t)) = ®(0) = I. Hence
&(—t) = (1)

(¢). It also follows that ®(t — s) = ®(t + (—5)) = B(1)®( — s) = ®()® !(s).

16. Let A be a diagonal matrix, with A = [a,eV, a,e®,--- a,e™]. Note that for any

positive integer, k ,
Al = [alf eV ale?®, ... o e™].

It follows, from basic matrix algebra, that
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ik
Zaly 0 0
k=0
LN 0 S~ g 0
k: ' . . .
QL ktF
0 0 Zanm
k=0

It can be shown that the partial sums on the left hand side converge for all ¢. Taking the
limit (as m — co) on both sides of the equation, we obtain

e 0 -~ 0
at |
exp(At) = 0 € : 0
0 0 v e“nt

Alternatively, consider the system x’ = Ax . Since ODEs are uncoupled, the vectors
xV = exp(a;t) eV, j=1,2,---n,are a set of linearly independent solutions. Hence
the matrix

X = [exp(a;t) eV, exp(ast) e?, - exp(a,t) "]
is a fundamental matrix. Finally, since X(0) = I, it follows that

lexp(ait) eV, exp(ast) e, -+, exp(a,t) e™] = ®(t) = exp(At).

17(a). Assuming that x = ¢(¢) is a solution, then ¢’ = A¢, with ¢(0) = x°. Integrate
both sides of the equation to obtain

$(t) — $(0) = / Ad(s)ds

Hence

o(t) =x"+ /0 A¢(s)ds.

(b). Proceed with the iteration
t

%”szx“ﬁ/AMWQM-

0

With ¢©(t) = x°, and noting that A is a constant matrix,
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t
pV(t) =x" + / Ax’ds
0
=x"4 Ax"t.
That is, ¢V (t) = (I + At)x".

(c). We then have

t

&Wﬂ:ﬂ+/Aa+MM@
0
2

t
=x"+ Ax’t + AQXOE

£2
= <I + At + A25>x°.
Now suppose that

t2 t"
o™ (t) = (I+At +A2§ N +A”—'>x°.
n.

It follows that
t t2 tn
/ A(I+At—|—A2— + .- +A"—)x0ds =
0 2 n'
t2 2t3 tn+1 .
=AlIt+A—+A"— +.-.-+ A"
( + 2+ 3!+ + (n+1>!>x
o 12 t3 tn
= (At + A A o AT X
2 3! n!
Therefore

¢(”+1)(t) — I—|—At—|—A2ﬁ 4. +An+1ﬂ x’.
2 (n+1)!

By induction, the asserted form of ¢(™(t) is valid for alln. > 0.

(d). Define ¢ (t) = lim ¢™ (). It can be shown that the limit does exist. In fact,

¢ (t) = exp(At)x".

Term-by-term differentiation results in
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That is,

d t"
I+At+A2 +o AT 4 )X
2 n!

(n—1)!

tnfl
<I+At+A2—+ A" 1—)—|—)x°.

d
tn—l
<A At + .-+ A" +)x°
=A
(n—1)!

d ) _ oo
S0 (1) = AO(1).

Furthermore, ¢ (0) = x’. Based on uniqueness of solutions, ¢(t) = ¢©)(t).
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