CHAPTER 9. ——

Section 9.6

2. We consider the function V (z,y) = ax? + cy?. The rate of change of V along any
trajectory is

. dx dy
V =V,— +V,—
dt + Ydt

1
= 2@3:( - 5:1:3 + Qxyz) + QCy( — y3)

= —az’ + daz?y® — 2cy’.

2

Letu=2%,v=9y>,a= —a,B =4a,andy = — 2c. We then have

— az + dax’y® — 2cyt = au® + fuv + 02

Ifa > 0and ¢ > 0, then V (z,y) is positive definite. Furthermore, « < 0. Recall that
Theorem 9.6.4 asserts that if 4ay — 3% = 8ac — 16 a®> > 0, then the function

au® + Buv + v

is negative definite. Hence if ¢ > 2a, then V (x,) is negative definite. One such
example is V (z,y) = 2® + 3y?. It follows from Theorem 9.6.1 that the origin is an
asymptotically stable critical point.

4. Given V(x,y) = ax® + cy?, the rate of change of V along any trajectory is

i dx dy
= 2ax (:1:3 — y3) + 2cy(23:y2 + da’y + 2y3)

= 202" + (4¢ — 2a)xy® + 8c x*y* + 4cy’.
Setting a = 2c,

V =dcat + 8ca’y? + dey?
> dext + eyt

As long as a = 2¢ > 0, the function V (z, y) is positive definite and V (z,y) is also
positive definite. Tt follows from Theorem 9.6.2 that (0, 0) is an unstable critical point.

5. Given V (z,y) = c(z? + y?), the rate of change of V along any trajectory is

. dx dy
VeV
=2cxly —xf(x,y)] + 2cy[ —z — yf(z,y)]

= —2c(z® +9*) f(z,y).

If ¢ > 0, then V(x,y) is positive definite. Furthermore, if f(x,y) is positive in some
neighborhood of the origin, then V' (x,y) is negative definite. Theorem 9.6.1 asserts that
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the origin is an asymptotically stable critical point.

On the other hand, if f(z,y) is negative in some neighborhood of the origin, then

Vi(z,y)
and V (x, y) are both positive definite. Tt follows from Theorem 9.6.2 that the origin is an
unstable critical point.

9(a). Letting x = u and y = u’, we obtain the system of equations

dz _
dt
dy _
dt

y
—g(z) —y.

Since g(0) = 0, it is evident that (0, 0) is a critical point of the system. Consider the
function

L,

Viz,y) = 3Y +/Omg(8)d8-

It is clear that V' (0,0) = 0. Since g(u) is an odd function in a neighborhood of u = 0,
/ g(s)ds > 0for x >0,
0

and

T 0
/ g(s)ds = — / g(s)ds >0 forz < 0.
0 x

Therefore V (z,y) is positive definite.

The rate of change of V' along any trajectory is

i dx dy
V=V—-+V-=
dt + Ydt

=g(@) - (y) +y[— g(z) —y]
_ 2
= —y".
It follows that V' (z,y) is only negative semidefinite . Hence the origin is a stable critical
point.
(b). Given
1

1 T
Viz,y) = §y2 + Y sin(z) —i—/o sin(s)ds,

It is easy to see that V' (0,0) = 0. The rate of change of V along any trajectory is
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i dx dy
V=V—+V-2
dt+ Ydt

. Yy I .
= sznx+§cosx](y)+ Y+ 5N [— sinx — Y]

1 1
= §y2 cos T — 537)712

T — ysin:v — 9
5 :

For — /2 < x < /2, we can write sinx =z — ax?/6 and cosx =1 — 31?/2,
in which o = a(z), 8 = f(z). Note that 0 < o, 3 < 1. Then

2 2 3\ 2 3
; _ Yy BEr\ 1 axt\T oyl ezt

Using polar coordinates,

2
V(r,0) = — %[1+sin60039+h(r,9)]

T2

1
= —— |14 =sin2 .
5 [ +28'm 9—|—h(7’,9)]

It is easy to show that

1 1
< —r? 4 —rt

So if 7 is sufficiently small, then |h(r,0)| < 1/2 and |}sin20 + h(r,6)| < 1. Hence
V(x,y) is negative definite.

Now we show that V' (x, y) is positive definite. Since g(u) = sinu,

1 1
Viz,y) = §y2 + §y sin(z) +1—cosz.
This time we set
x? x?
-1 i
CcoS T 5 + 51

Note that 0 < v < 1 for — /2 < x < w/2. Converting to polar coordinates,

2 2 2
Vir,8) = 5 [1 + sinfcosf — Esin 0 cos®0 — v ﬁcos40]
2 1 2 2
= % [1 + §sin 20 — %sinﬁ cos®0 — ;—400840] .

page 573



CHAPTER 9. ——

Now
2 2 1
—I—Qsinﬁcos39—7;—400549> —gforr< 1.
It follows that when r > 0,
r[7 1 372
"l Zsin20] > 25 > 0.
V(r,0) > 5 [8+28m 9] 2 15 >

Therefore V (x, y) is indeed positive definite, and by Theorem 9.6.1, the origin is an
asymptotically stable critical point.

12(a). We consider the linear system

2\’ [ an ap x

Yy Qo1 Q2 Yy '
Let V(z,y) = Az? + Bzy + Cy?, in which

2 2
ay + ay, + (a1 — a15a2)

A= —
2A
Q12020 + Q1109
B = 202 T Gulxn
A
C = _ a3, + a3, + (41102 — a1pa2)
2A ’

and A = (ay; + ax)(aas — apa,). Based on the hypothesis, the coefficients A and
B are negative. Therefore, except for the origin, V' (x, y) is negative on each
of the coordinate axes. Along each trajectory,

V = (2Az + By)(an & + any) + (2Cy + Br)(ax & + axny)

= — 22—

Hence V (z,y) is negative definite. Theorem 9.6.2 asserts that the origin is an unstable
critical point.

(b). We now consider the system
4 /: (au a12)<x) n (Fl(xay))
y Gy Gz )\ y Gi(z,y))’
in which Fi(z,y)/r—0 and G,(x,y)/r—0 as r—=0. Let

Viz,y) = Az® + Bxy + C’yQ,

in which
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2 2
a5, + A5 + (a11a22 — algagl)
2A

Q12099 + Q1109
A
a’%l + a%a + (1102 — a12a9;)
2A ’
and A = (ay; + ay)(anas — apay ). Based on the hypothesis, A, B > 0. Except
for the origin, V' (x, y) is positive on each of the coordinate axes. Along each trajectory,

V =2+ ¢’ + (24z + By)Fi(z,y) + (2Cy + Bz)Gi(z,y) .

A=

O =

Converting to polar coordinates, for r # 0,
V =1?+r(2Acos0 + Bsin®) F, + r(2Csin 6 + Bcos ) G,

F
=72 fr? [(QACOS 0 + Bsin®) — + (2Csin 6 + Bcos b) ﬁ] .

T

r

Since the system is a/most linear, there is an R such that

F G 1
‘(2A0059+Bsz’n9) 71 + (2Csin 6 + Bcos0) 71 < 3
and hence
F) G 1
(2Acos 6 4+ Bsin6) 71 + (2Csin 6 + Bcos ) 71 > -5

for r < R. It follows that

. 1
V>
5"
aslongas 0 <7 < R. Hence V is positive definite on the domain
D ={(z,y)|2* +y* < R*}.

By Theorem 9.6.2, the origin is an unstable critical point.
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