CHAPTER 5. ——

Section 5.3

2. Let y = ¢(x) be a solution of the initial value problem. First note that

y" = — (sinx)y’ — (cosx)y.

Differentiating twice,
n

— (sinx)y" —2(cosx)y’ + (sinx)y

iv "o

y" — (sinx)y

Given that ¢(0) = 0 and ¢’(0) = 1, the first equation gives ¢”(0) = 0 and the last
two equations give ¢”’(0) = —2and ¢*(0) = 0.

3(cosx)y” + 3(sinz)y’ + (cosx)y.

3. Let y = ¢(x) be a solution of the initial value problem. First write

w_ 14z, 3inz
y" = y' - —v.
x? x
Differentiating twice,
—1
y" = — [(z+2*)y" + Bzlnz —z —2)y’ + (3—6Inz)y].

1
y = — [(1’2 +2¥)y" + (32°Inz — 22 — da)y" +
x
+ (6 +8x — 12zilnz)y’ + (18Inx — 15)y].

Given that ¢(1) = 2 and ¢'(1) = 0, the first equation gives ¢" (1) = 0 and the last
two equations give ¢"’(0) = — 6and ¢"(0) = 42.

4. Let y = ¢(x) be a solution of the initial value problem. First note that

y" = —x*y’ — (sinz)y.
Differentiating twice,
y" = —2%y" — 2z + sinz)y’ — (cosx)y
y" = —2ty"” — (dx + sinzx)y” — (2 + 2cosx)y’ + (sinx)y.

Given that ¢(0) = ag and ¢'(0) = a4, the first equation gives ¢"”(0) = 0 and the last
two equations give ¢"'(0) = — ag and ¢™(0) = — 4aj.

5. Clearly, p(x) = 4 and q(z) = 6x are analytic for all . Hence the series solutions
converge everywhere.

7. The zeroes of P(x) = 1 + 3 are the three cube roots of — 1. They all lie on the
unit circle in the complex plane. So for xy = 0, ppin = 1. For xy, = 2, the nearest
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root is €'™/3 = (1 + Z\/§> /2, hence poin = \/3 .

8. The only root of P(z) = x is zero. Hence pm = 1.

9(b). p(x) = —x and g(x) = — 1 are analytic for all x .
(¢). p(x) = —x and g(x) = — 1 are analytic for all z.

(d). p(z) =0 and g(z) = ka?* are analytic for all z .

(e). The only root of P(x) =1 —xis 1. Hence ppi, = 1.
(9). p(z) =z and gq(x) = 2 are analytic for all z .

(). The zeroes of P(x) =1+ % are 4. Hence ppi, = 1.
(7). The zeroes of P(z) =4 — x? are 2. Hence ppin = 2.
(k). The zeroes of P(z) = 3 — 2% are £1/3 . Hence poin = /3 .
(I). The only root of P(z) =1 —xis1. Hence py;, = 1.
(m). p(x) =x/2 and q(x) = 3/2 are analytic for all x .

(n). p(x) = (1+x)/2 and g(x) = 3/2 are analytic for all z .

12. The Taylor series expansion of e, about z, = 0, is
o0 ,'En
=D
n=0
Lety = ay + a;x + a,2® + -+ + a,x™ + ---. Substituting into the ODE,

poei

o0 0
Z(n+2)(n+1)an+2x" —l—xZanq:":O.
n=0

First note that

o0 [e.e]
x E a,x" = E Ap 12" = ayx + a18° + ayx® + -+ ap_ 2"+ -
n=0 n=1

The coefficient of " in the product of the two series is

1 1
12
(n—l)!Jr CL4(n—2)!

Expanding the individual series, it follows that

1
C, = 2agm + 6as +--+m+1Dnap + (n+2)(n+ 1apss .

2a5 + (2ay + 6a3)x + (ag + 6as + 12a4)2”* + (as + 6as + 12a4 + 20a5)z> + -+ +
+apx +az? +Faxd+---=0.
Setting the coefficients equal to zero, we obtain the system 2a, = 0, 2a, + 6as + a, = 0,

as + 6as + 12a4 + a1 = 0, ay + 6as + 12a4 + 20a5 + a3 = 0,---. Hence the
general solution is
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3 4 o 6
y(x) = ap+ a1z — ao% + (ag — al):f2 + (2a1 — ao) 0 <4a0 - al) 120

We find that two linearly independent solutions are

563 I4 Is
_1__ -
v(2) 6 "12 10 "
.%'4 .%'5 .%'6
yg(m)zx—ﬁ—}—%—@—}—

Since p(x) = 0 and g(x) = ze™ " converge everywhere, p = co

13. The Taylor series expansion of cos x, about x, = 0, is

o0
COST = E

Lety = ay + a;x + ayx® + -+ + a,z" + ---. Substituting into the ODE,

[i(_(;ii:!ﬁ] [i(n +2)(n+ Dapoz™| + f:nana:” — Qi apx =0.

n=0 n=0 n=1 n=0

n2n

The coefficient of x" in the product of the two series is
C, = 2a9b, + 6azb,—1 + 12a4b, 2+ -+ (n+ Dnap1br + (n+ 2)(n + Dayi9bo ,
in which cosx = by + byx + byx? + -+ + b,x" + ---. It follows that
o o0
2a9 — 2ag + Z cpx” + Z(n —2)ayz" =0.
n=1 n=1
Expanding the product of the series, it follows that

2ay — 2ag + 6azz + ( — as + 12a4)x* + ( — 3az + 20as)z® +

—a1x+a3w3+2a4x4+---=0.
Setting the coefficients equal to zero, as — ag =0, 6a3 —a; =0, —ay + 12a4 =0,
— 3as + 20a; + a3 = 0, --- . Hence the general solution is
(ac)—a+am+ax2+ax—3+a$—4+ax5+ax—6+ax—7+
YE) = GoF 1% 7 o 6 T2 T %60 T 120 T 560

We find that two linearly independent solutions are

4 xG

=1 -
Y (z) + 22 +12+120+

page 196



CHAPTER 5. ——

:L’3 1175 $7
y( )—x+€+@+%+

The nearest zero of P(x) = coszisatx = /2. Hence pim = 7/2.

14. The Taylor series expansion of In(1 + x), about x, = 0, is

n(l+ x) i

n=1

n+1

Lety = ay + a,x + ayx® + --- + a,x" + ---. Substituting into the ODE,

n=00<J ( "+1 nz N
+ Z ]Zn-l— Japi1x" —J:Zanx =0.
n=1 n=0

The first product is the series
2ay + ( — 2ay + 6az)x + (ag — 6az + 12a4)2” + ( — ay + 6az — 12a4 + 20a;3)x> 4 - - - .
The second product is the series
a1z + (2a9 — (JL1/2)x2 + (3ag —as + a1/3)x3 + (4aq4 — 3a3/2 + 2a2/3 — a1/4)x3 +
Combining the series and equating the coefficients to zero, we obtain
2a9 =0
— 2a9 4+ 6as +a; —ag =0

120,4 - 6&3 —|—3CL2 - 3&1/2 =0
20a5 — 12a4 + 9a3 — 3a- +6L1/3 =0

Hence the general solution is

6

3 x? 75 5 T
y(z) _ao+a1x+(ag—a1)€+(2ao+a1)24 +aigs + ( 1—ao) TR

We find that two linearly independent solutions are

Xr
I
m@)=1+e+5 -5
() x3+x4+7x"+
)= — —+ — .
& 6 24 120

The coefficient p(x) = e”In(1 + z) is analytic at x, = 0, but its power series has a
radius of convergence p = 1.
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15. If y; = z and y, = x? are solutions, then substituting v, into the ODE results in
2 P(z) + 22 Q(x) + 2*R(z) = 0.

Setting = 0, we find that P(0) = 0. Similarly, substituting y; into the ODE results
in Q(0) = 0. Therefore P(z)/Q(x) and R(x)/P(z) may not be analytic. If they were,
Theorem 3.2.1 would guarantee that y, and y, were the only two solutions. But note
that an arbitrary value of y(0) cannot be a linear combination of 3, (0) and y,(0). Hence
xy = 0 must be a singular point.

16. Lety = ay + a;x + a,x® + --- + a,x" + ---. Substituting into the ODE,

00 00
Z(n + Dayp " — Z apz” =0.
n=0 n=0

That is,
S [(n+ Dt — agla” =0,
n=0

Setting the coefficients equal to zero, we obtain

Qn
Qpy1 =
T T
for n=0,1,2,---. Itis easy to see that a,, = ag/(n!). Therefore the general solution

1S
1 (EQ xS
y(w)—ao +l’+§+§+

= ape”.

The coefficient ay = y(0), which can be arbitrary.

17. Lety = ay + a,x + ayx® + -+ + a,z" + ---. Substituting into the ODE,

[e.0]
(n+ 1Dap4 2" — :UZ a,z" = 0.
0 n=0

1

3

That is,

in-i—l Yani1 " —Zan " =0.

n=1

Combining the series, we have
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ay + Z[(n + Dayi1 —ap—1]z" =0.

n=1

Setting the coefficient equal to zero, a; = 0 and a1 = ap—1/(n+1) forn =1,2,---
Note that the indices differ by two, so for £k =1,2,---

Qs = e A2k 4 .
T2k T (2k — 2)(2k) 2. 4--(2k)
and
asgp4+1 = 0.

Hence the general solution is

B . 2 564 32‘6 x2n
e e T S TR F TR Tr B
= apexp(z*/2).

The coefficient ap = y(0), which can be arbitrary.

19. Lety = ay + ;= + axx® + --- + a,x" + ---. Substituting into the ODE,

1—J:Zn+ Apiq T —Zan =0.
= n=0

That is,

Combining the series, we have

[e.0]
a1 —ag + Z[(n + Dap1 —na, —ay]z" =0.
n=1

Setting the coefficients equal to zero, a; = ag and a,+1 = a, for n =0,1,2,---
Hence the general solution is

y(z) =a[l+a+2>+2°+ - +2" + -]
1
1—2z

= aO
The coefficient ag = y(0), which can be arbitrary.

21. Lety = ay + a1z + a,x® + --- + a,2" + ---. Substituting into the ODE,
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o0
(n+1)an+1x"+x2ana¢”:1+x.
0 n=0

I M8

<

3

That is,

o0

Z (n+ a1 2" + Zan ' =1+z.

- n=1
Combining the series, and the nonhomogeneous terms, we have
o0
(e — 1)+ (2a2 +ag — 1)z + Z[(n + Day1 +ap1] 2" =0.
n=2

Setting the coefficients equal to zero, we obtaina; = 1, 2as + a9 — 1 =0, and

Ap—2

ap = — , n=34,--
n
The indices differ by two, so for £ = 2,3, ---
R = S (—1)]971@2: (= 1)(ap—1)
2 (2k) — (2k — 2)(2k) 4.6---(2k)  2-4-6---(2k)
and for k =1,2,---
" I B a2k—3 _ (— 1)
2h (2k+1)  (2k—1)(2k+1) 3.5--(2k+1)
Hence the general solution is
() n +1—a02 x3+ x4+935 0
r)=a+T+—F]—2" — —a —
Y 0 2 3 9291 T35 W93
Collecting the terms containing ay,
z? x? x0
y<x):“°[1_?+ﬁ_23—m+"' *
x2 $3 I4 $5 $6 $7
+[x+§_§_222!+3-5+233!_3-5-7+"']'

Upon inspection, we find that

$2 x3 $4 $5 $6 $7
— —2%/9 - _ .
y(x) = agexp( x/)+{x+2 5 2221 "3.5 731 3.5.7 " }

Note that the given ODE is first order linear, with integrating factor u(t) = ¢’ /2. The
general solution is given by
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y(z) = ex2/2/ e“du + (y(0) — e ™ /2 4+1.
0

23. Ifa =0, then y,(x) = 1. If @ = 2n, then ay,, =0 form > n+ 1. Asaresult,

=1

a=0]|1
a=2]1-23z2
a=4 1—103:2—}—%:134

If a« =2n+ 1, then a9y, 1 =0 form >n+ 1. Asaresult,

=1

|4
a=3|x— 3w

a=5|x— 4 Uy

3 5

24(a). Based on Prob. 23,
a=2|1-32> ()= —2
a=4 1—10:132-1—?})—51'4 yl(l)zg

Normalizing the polynomials, we obtain

P()(JJ) =1
1 3
Pz(l’): —§+§I2
3 15 39

Py(x) = 3 Z:/r:2 3 z?
a=1|=z y(l) =1
a=3|x %x‘g (1) = — %
a=5|z- Y+ 255 | yp(l)=32

Similarly,
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P(z)=1=z
3 )
Pg(.’]f) = — §.T+ 5[133
15 35 63 -
Py(z) = e ng + gl‘o
(b).
Legendre Palynomials
1
0.5
0B

(¢). Py(z) has no roots. P,(z) has one root at x = 0. The zeros of P,(x) are at
r=4 1/\/§ The zeros of Py(x) are z = 0,4+/3/5 . The roots of P,(x) are given

by 2? = (15 + 2\/%) /35, (15 — 2\/%) /35 . The roots of P;(x) are given by

2 =0 and 22 = (35+2\/%)/63, <35 - 2\/%)/63.

25. Observe that

(—1)" &2 (= 1D)f@n -2k
20 £~k I(n— k)l(n — 2k)!
= (= 1)"Py(1).

Pn(_l) =

But P,(1) = 1 for all nonnegative integers n.

27. We have

" n _ 1)71,—kn!
(CCQ . 1) — ( ka"
= kl(n—k)!

which is a polynomial of degree 2n. Differentiating n times,

" t(—1)""n!
ddxn (:I?2 - 1)” = Zﬂ%(?k)@k — 1)- --(2]{ —n+ 1);52/67”,

in which the lower index is ;1 = [n/2] + 1. Note thatif n = 2m + 1, then py = m + 1.
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Now shift the index, by setting

Hence

dTL

—1
dx™ x

Based on Prob. 25,

k=n-—j.

J

2])(27’L — 27— 1)(7’L —2j+ 1)xn—2j

2n— 27)!
(n — 2j)!

n—2j

(/2]
Z

dn

dxm

(z* — l)n =nl2"P, (z).

29. Since the n + 1 polynomials F,, P, ---, P, are linearly independent, and the degree
of P, is k, any polynomial, f, of degree n can be expressed as a linear combination

x) = iakPk.(x)
k=0

Multiplying both sides by P, and integrating,

Based on Prob. 28,

Hence

/_1f(:v)Pm(x)d:z: = ;}ak/_lpk(flf)Pm(:v)dx.
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