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Section 11.3

4. The eigensystem of the associated homogeneous problem is given in Prob. 11 of
Section 11.2. The normalized eigenfunctions are

\/5 cos\/ A\, x
1+ sin2\/\,
in which the eigenvalues satisfy cos\/ A, — v/ A, siny/ A, = 0. Rewrite the given

differential equation as — y” = 2y + = . Since u = 2 # A, , the formal solution of
the nonhomogeneous problem is

Pn(T) =

=Yt

n=1

o = [ 1@

1
= L/ T cos\/ A\, zdx
\/1—|—sin2\//\_” 0

\/5(2 cos v/ A, — 1)
A/ 1+ sin2y/ N\,
Therefore we obtain the formal expansion

— 2608\/7—1)008\/733
; Mg = 2) (1 + sin2/N,)

in which

5. The solution follows that in Prob. 1, except that the coefficients are given by

= [ s@onaas

1/2
_f/ Q;L'sznnﬂ'xdaj—}—f 2—2:17 sinnmr dx

\/—sm n7r/2

n?m?

Therefore the formal solution is

_q Zsm (nm/2) sinnmx

— n?m?(n?n? — 2)
n=1
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6. The differential equation can be written as — y” = uy + f(x). Note that g(x) =0
and r(z) = 1. As shown in Prob. 1 in Section 11.2, the normalized eigenfunctions are

¢n($) = ﬁsznw >

with associated eigenvalues \, = (2n — 1)°7%/4. Based on Theorem 11.3.1, the
formal solution is given by

y(z) = V2 i (/\nci 0 sin (@n—l)z

2 b
as long as u # A, . The coefficients in the series expansion are computed as

B ! . (2n—1)z
Cp = \/5/0 f(as)sm# dz.

7. As shown in Prob. 1 in Section 11.2, the normalized eigenfunctions are
2n —1
On(x) = \/5003—( n 5 )z ,

with associated eigenvalues A, = (2n — 1)°72/4. Based on Theorem 11.3.1, the
formal solution is given by

y(w)=\/5§:

n=1

Cn Lo (2n —1)x
O‘n - N) 2 ’

as long as p # A, . The coefficients in the series expansion are computed as

! n—1)x
Cp = \/5/0 f(ac)cos% dz

9. The normalized eigenfunctions are

V2cos /A, @
1+ sin2\/\,

The eigenvalues satisfy cos+/\, — /A, siny/ A, = 0. Based on Theorem 11.3.1, the
formal solution is given by

y(m)=\/§§: Cncos\/An x ’

nzl()\n—,u,) 1+sin2\/)\n

as long as p # A\, . The coefficients in the series expansion are computed as

on(z) =
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)eos /A, x da .

Cp = V2 /1f(ac
\/1+ sin2y/X, 70

13. The differential equation can be written as — y” = w2y + cos 7z — a. Note that
p=m?and f(x) = cosmx — a. Furthermore, 1 = 7 is an eigenvalue corresponding

to the eigenfunction ¢,(z) = \/2sinmz. A solution exists only if f(z) and ¢, (z) are
orthogonal. Since

1
/ (cosmr —a)sinTxdr = — 2a/7,
0

there exists a solution as long as a = 0. In that case, the ODE is
y” + 7T2y = —CcOoSTI.

The complementary solution is y.(x) = ¢,cos Tz + cysinmx . A particular solution is
Y (x) = Az cos mx + Bz sinmx . Using the method of undetermined coefficients, we

find that A =0 and B = — 1/27. Therefore the general solution is
y(z) = ¢cos Tx + cysin T — zisin T .
™

The boundary conditions require that ¢, = 0. Hence the solution of the boundary value
problem is

y(x) = cysinmr — 2 sinma.
2T
15. Let y(z) = ¢1(x) + ¢o(x) . It follows that L[y] = L[¢p,] + L]p,] = f(x). Also,

a1y(0) + axy'(0) = a161(0) + a16,(0) + a2¢,(0) + a>¢,(0)
= 4161 (0) + a2$/(0) + a:1¢(0) + a2, (0)

= .

Similarly, the boundary condition at z = 1 is satisfied as well.

16. The complementary solution is y.(x) = ¢,cos mx + cy;sin7x . A particular solution
is Y(x) = A + Bz. Using the method of undetermined coefficients, we find that A = 0
and B = 1. Therefore the general solution is

y(x) = cicosmx + cysinma + x.

Imposing the boundary conditions, we find that ¢, = 1. Therefore the solution of the
BVP is

y(r) = cosmx + csinmx + T .

Now attempt to solve the problem as shown in Prob. 15. Let BVP-1 be given by
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uw" 4+ 7 = 1,
u(0) =0, u(l)=0.
The general solution of the ODE is

u(x) = ccos T + sinTr + T .

The boundary conditions require that ¢, = 0 and — ¢, +1 = 0. We find that BVP-1 has
no solution. Let BVP-2 be given by

The general solution of the ODE is v(x) = ¢,cos mx + cysinmx . Imposing the
boundary conditions, we obtain ¢, = 1 and — ¢, = 0. Thus BVP-2 has no solution.

17. Setting y(x) = u(x) 4+ v(x), substitution results in
u +v" + p(@)u + 0T+ q(x)[u+v] = v + plx)u’ + q(z)u +
+ 0" + p(z)v' + q(z)v.
Since the left hand side of the equation is zero,
u” + p(x)u' + qlx)u= — " + plx)v’ + q(x)v].

Furthermore, 4(0) = y(0) —v(0) = 0 and u(1) = y(1) —v(1) = 0. The simplest
function having the assumed properties is v(z) = (b — a)x + a. In this case,
)

g(z) = (a = b)p(x) + (a = b)x q(z) —aq(z).

20. The associated homogeneous PDE is u; = u,,, 0 < z < 1, with
uz(0,t) =0, u,(1,t) +u(l,t) =0 and u(x,0) =1 — =x.

Applying the method of separation of variables, we obtain the eigenvalue problem
X"+ AX = 0, with boundary conditions X'(0) =0 and X'(1) + X(1) = 0. It was
shown in Prob. 4, in Section 11.2, that the normalized eigenfunctions are

2cos\/ A\, T
bn(z) = \/_ >

1+ sin2y/\,

where cosy/A, — /A, siny/A, = 0.

We assume a solution of the form
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Substitution into the given PDE results in

o0

> 0 00nt) = 3000w+

n=1
= =) Mabu(t)n(x) + 77,
n=1

that is,

i + )‘”b” )]¢7L(x) =e '

n=1

We now note that

_ i \/Esm\/x oul(2).

:1\/)‘771 1 +sin2\//\7n

Therefore

-t _ Zﬁn e_td)n(x)
n=1
in which 3, = ﬁsz’n\/)\n/ [\/)\n 1+ sinQ\/)\n] . Combining these results,

S B4(E) + Auba(t) — e () = 0

n=1
Since the resulting equation is valid for 0 < z < 1, it follows that
by () + Aubn(t) = Bpe™', n=1,2,--

Prior to solving the sequence of ODEs, we establish the initial conditions. These are
obtained from the expansion

w(z,0)=1—z= ia,@n(x)
n=1

in which o, = /2 (1 — cos\/\,)/ {)\n 1+ sz‘n2\/>\7]. That is, b, (0) = o, .

Therefore the solutions of the first order ODEs are

671 (eft _ ef)wt)

—Ant
n n’ :172;"'
o —1) + ape n

b, (t) =

Hence the solution of the boundary value problem is
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00 —t =Mt
e =3 2 e .

n=1

21. Based on the boundary conditions, the normalized eigenfunctions are given by

On(x \/ 2sinnrz,

2

with associated eigenvalues )\, = n?m%. We now assume a solution of the form

u(x,t) = ibn(t)qﬁn(x) .

Substitution into the given PDE results in

ib,;(t)%(x) = an )+1—[1—2z]

n=1

- i)‘nbn(t)(ﬁn(x) +1—[1-2x|,

n=1
that is,
> [ba () + Anba(B)]dn(z) = 1 — |1 — 2a].
n=1

It was shown in Prob. 5 that

=1 — 2] = 24\/_sznn7r/2¢()

n2m?

Substituting on the right hand side and collecting terms, we obtain

i’: £+ b (t) — \/sznmr/Q o) = 0.

2.2
=1 n=m

Since the resulting equation is valid for 0 < z < 1, it follows that

fsm (nm/2)

2
bl (t) + n*m?b,(t) = ) ,n=1,2--
Based on the given initial condition, we also have b, (0) =0, for n =1,2,---. The
solutions of the first order ODEs are
\/_sm (nm/2) 22
bn(t) TL47T4 ( —¢€ )7 n = 1727"'

Hence the solution of the boundary value problem is
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8 o~ st 2
u(z,t) = — ZM (1 —e " ”H) sinnmx .

23(a). Let u(x,t) be a solution of the boundary value problem and v(z) be a solution
of the related BVP. Substituting for u(z,t) = w(x,t) + v(x), we have

r(z)u; = r(x)w,
and

p(x)us], — g(@)u+ F(z) = [p(e)ws], — q(@)w + [p(x)v]" — q(z)v + F(x)
[p(z)w,], — q(x)w — F(z) + F(z)
[

Hence w(x ,t) is a solution of the homogeneous PDE
r(@)wr = [p(x)w.], — q(z)w
The required boundary conditions are

w(0,t) =u(0,t) —v(0) =0,
w(l,t) =u(l,t) —v(1) =0.

The associated initial condition is w(z ,0) = u(z,0) —v(x) = f(x) — v(z).
(b). Let v(x) be a solution of the ODE

[p(z)v'] = g(x)o = — F(x),

and satisfying the boundary conditions v’(0) — h,v(0) =17 , v'(1) + hyv(1) =Tp.
If w(z,t) =u(z,t) — v(x), then it is easy to show the w satisfies the PDE and initial
condition given in Part (a). Furthermore,

wz(0,t) — hyw(0,t) = uy(0,t) —v'(0) — hyu(0,t) + hyv(0)
= u,(0,t) — hu(0,t) — v'(0) + hyv(0)
=0.

Similarly, the other boundary condition is also homogeneous.
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25. In this problem, F'(z) = — m?cos mx . First find a solution of the boundary value
problem

v" = r*cosmx , v'(0) =0, v(l) =1.

The general solution is v(x) = Az + B — cos . Imposing the initial conditions, the
solution of the related BVP is v(x) = — cosmz. Now let w(z,t) = u(x,t) + cos .
It follows that w(x ,t) satisfies the hlomogeneous boundary value problem, and the initial
condition w(z,0) = cos(3mx/2) — cosmx — ( — cosmx) = cos(3mx/2).

We now seek solutions of the homogeneous problem of the form

Zb )n (2

in which ¢, (z) = \/2 cos (2n — 1)7z/2 are the normalized e1genfunct1ons of the
homogeneous problem and \, = (2n —1)*72/4, with n = 1,2, ---. Substitution into
the PDE for w, we have
Y baOn(z) =D ba(t)dy (x)
n=1 n=1
= - ZAnbn(t)¢n(m) .
n=1

Since the latter equation is valid for 0 < z < 1, it follows that
by(t) + Ay (t) =0, n=1,2,---,
with b, (t) = b, (0)exp( — \,t). Hence

o0

w(z,t) =Y ba(0)exp( — At)dn() .

n=1

Imposing the initial condition, we require that

- 2n —1
V2 an(O)cos (2n - Drz = cos?m—x :
n=1

2 2
It is evident that all of the coefficients are zero, except for by(0) = 1/1/2 . Therefore
3
w(z,t) = exp( — 97r2t/4)cos%x ,

and the solution of the original BVP is

3
u(z,t) = exp( — 97T2t/4)008%$ — CcoSTT .
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26(a). Let u(x,t) = X(x)T(t). Substituting into the homogeneous form of (i),
r(2)XT" = [p(x)X']'T — q(z)XT .
Now divide both sides of the resulting equation by X'I" to obtain

T XY @) _
T r(z)X r(x) '

It follows that
— [p(@)X'] + g(2) X = Ar(z) X
Since the boundary conditions (i7) are valid for all ¢ > 0, we also have

X'(0) = mX(0)=0, X'(1)+hX(1)=0.

(b). Let A\, and ¢, (x) denote the eigenvalues and eigenfunctions of the BVP in Part (a).
Assume a solution, of the PDE (i), of the form

o0

U(QS‘ ) t) = an(t)¢n(x) .

n=1
Substituting into (%),

() S bl (1)
n=1

/

¢n)’ = a(@)dn} + F(z 1)

x)on] + F(z,t).

=2
i

Rearranging the terms,
(2) Db (1) + Auba(B)] 60 = P, 1),

or

S0 (0) + Abn(t))n = 122

n=1 T(I)

Now expand the right hand side in terms of the eigenfunctions. That is, write

t) = i’yn (t)¢n (x)

in which
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Combining these results, we have
[e e}

S 102 () + Auba(t) = ()] ba = 0.

n=1

It follows that
b (t) + Aabn(t) = 7u(t) , n=1,2,---

In order to solve this sequence of ODEs, we require initial conditions b,,(0) and b, (0) .
Note that

0¢] 0.¢]

u(@,0) = bu(0)pn(z) and w(z,0) = b)(0)¢n().

n=1 n=1

Based on the given initial conditions,

o0

f(z) = ibnmm(as) and g(x) = 3 01(0)0(x).

n=1

Hence b,(0) = a, and b, (0) = 3, , the expansion coefficients for f(z) and g(z) in
terms of the eigenfunctions, ¢, ().

27(a). Since the eigenvectors are orthogonal, they form a basis. Given any vector b,

b= ibg@.

i=1
Taking the inner product, with £, of both sides of the equation, we have

(b,§u§ :Zy(gm,gu»_

(b). Consider solutions of the form

n
X = Zaié'(”.
i=1

Substituting into Eq. (), and using the above form of b,
D A" =Y pai? = big"
i=1 i=1 i=1

It follows that
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n

Z[az)\z —pna; — bi]E(i) =0.

i=1
Since the eigenvectors are linearly independent,
ai\i —pa;—b; =0, fori =1,2,---/n.
That is,
a; =bi/(Ni—p), i=1,2--n.
Assuming that the eigenvectors are normalized, the solution is given by

_(b.€Y)

as long as p is not equal to one of the eigenvalues.

29. First write the ODE as y” +y = — f(z). A fundamental set of solutions of the
homogeneous equation is given by

Yy, = cosx and y, = sinx.

The Wronskian is equal to Wcosx, sinx] = 1. Applying the method of variation of
parameters, a particular solution is

Y(z) = yi(@)us(w) + ya(x)us() ,

in which
u(z) = /Oxsin(s)f(s)ds and u,(z) = — /O:Ecos(s)f(s)ds.
Therefore the general solution is
y = ¢(x) = cicosx + eysinx + cos x/oxsin(s)f(s)ds — sin x/oxcos(s)f(s)ds.
Imposing the boundary conditions, we must have ¢, = 0 and
¢y sin 1+ cos 1/013in(s)f(s)ds — sin 1/Olcos(s)f(s)ds =0.

It follows that

1
sinl

Cy =

/Olsmu _ $)f(s)ds.

and
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sinx

¢(x) =

1 z
e 1/0 sin(l —s)f(s)ds — /0 sin(z — s) f(s)ds.
Using standard identities,

sinx - sin(l —s) —sinl-sin(x —s) = sins- sin(l — x).
Therefore

sinx - sin(1 — s) sins - sin(l —x)

—sin(z — s) =

sinl sinl

Splitting up the first integral, we obtain

Ysins-sin(l —x Lsina - sin(l —s
o) = [ pgas B9 1)

sinl sinl
1
- [[Ga.s)(s)ds,
0

in which

sin z-sin(1—s) r<s<1

sin 1 ’ —

sin s-sin(l—x)
G(m,s):{T: 0<s<zx

31. The general solution of the homogeneous problem is
Yy=c +cx.

By inspection, it is easy to see that y,(z) = 1 satisfies the BC y’(0) = 0 and that the
function y,(z) = 1 — x satisfies the BC y(1) = 0. The Wronskian of these solutions is
Wy, ,y2] = — 1. Based on Prob. 30, with p(z) = 1, the Green's function is given by

1—2), 0<s<x
G<x’s):{gl—s)), r<s<l1.

Therefore the solution of the given BVP is

mwzé7umﬁ@M+/a—@ﬂmw

32. The general solution of the homogeneous problem is
Yy=c +cx.

We find that y,(z) = = satisfies the BC y(0) = 0. Imposing the boundary condition
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y(1) +y'(1) = 0, we must have ¢, + 2¢, = 0. Hence choose y,(z) = — 2+ x . The
Wronskian of these solutions is Wy, ,v,] = 2. Based on Prob. 30, with p(x) = 1, the
Green's function is given by

_Js(x-2)/2, 0<s<z
G(%S)—{x(s—z)/m r<s<l1.

Therefore the solution of the given BVP is

b(z) = —/Oxs(as ) f(s)ds + %/ (s — 2)f(s)ds

34. The general solution of the homogeneous problem is
Y=C+CT.
By inspection, it is easy to see that y, () = x satisfies the BC y(0) = 0 and that the

function y,(z) = 1 satisfies the BC y’(1) = 0. The Wronskian of these solutions is
Wy, ,y,) = — 1. Based on Prob. 30, with p(x) = 1, the Green's function is given by

s, 0<s<z
G(x’s)_{:c, r<s<1.

Therefore the solution of the given BVP is

o) = [ sreps+ | e (s)ds.

35(a). We proceed to show that if the expression given by Eq. (iv) is substituted into
the

integral of Eq. (ii7), then the result is the solution of the nonhomogeneous problem. As
long as we can interchange the summation and integration,

Note that

Therefore
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as given by Eq. (13) in the text. It is assumed that the eigenfunctions are normalized and
Ai F

(b). For any fixed value of z, G(z, s, 1) is a function of s and the parameter 1. With
appropriate assumptions on GG, we can write the eigenfunction expansion

G(z,s,p) Zaw 1) ¢i(s

i=1

Since the eigenfunctions are orthonormal with respect to r(z),
1
/ G(x,s,u)r(s)pi(s)ds = a;j(z,p).
0
Now let
1
=[G s prosas
0

Based on the association f(z) = r(x)¢;(z), it is evident that
Llyi| = pr(z)y:(z) + r(z)di(z).

In order to evaluate the left hand side, we consider the eigenfunction expansion

£) = bide(x)
k=1

It follows that

Z ik L0
Z ik Ak () Pr () .

Therefore

and since 7(z) # 0,
mem qum + ¢i(x).

Rearranging the terms, we find that
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0i() = > b — )n(e)
k=1

Since the eigenfunctions are linearly independent, b;z(Ay — i) = 6ix , and thus

ule) = D3 ) = o).

We conclude that

which verifies that

36. First note that — d?y/ds*> = 0 for s # x. On the interval 0 < s < x, the solution
of the ODE is y,(s) = ¢; + ¢3s. Given that y(0) = 0, we have y,(s) = ¢;s. On the
interval z < s < 1, the solution is y,(s) = d, + d,s. Imposing the condition (1) =0,
we have y,(s) = d;(1 — s). Assuming continuity of the solution, at s = z,

cr=d(l—1),

which gives ¢, = d,(1 — x)/x. Next, integrate both sides of the given ODE over an
infinitesimal interval containing s = x :

+

I+d2 x
—/x_ d—s‘gds:/x_ 6(s—x)ds=1.

y'(@)—y'@") =1,
and hence ¢, — ( — d;) = 1. Solving for the two coefficients, we obtain ¢, = 1 — z and
d, = x . Therefore the solution of the BVP is given by

(s) = s(l—z), 0<s<ux
yis) = x(1—s), z<s<1,

It follows that

which is identical to the Green's function in Prob. 28.
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