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Section 7.6

2. Setting x = £ €' results in the algebraic equations

(7 8)E)=6)

For a nonzero solution, we require that det(A — 7 1) = r> + 2r +5 = 0. The roots of
the characteristic equation are » = — 1+ 2¢. Substituting » = — 1 — 27, the two
equations reduce to & + 2i &, = 0. The two eigenvectors are £V = ( —2i,1)" and
€ = (2i,1)". Hence one of the complex-valued solutions is given by

x = ( B Qi)e(1+2i)t
1

9
= ( . Z)e_t(co,SQt—isinZt)

T 2s1n 2t viet( T 2cos2t
N cos 2t —sin2t )
Based on the real and imaginary parts of this solution, the general solution is

x— ot —2sin2t feet 2cos 2t
- cos 2t ? sin2t )

ﬂf—‘f'f'f'/,-)/—',-"/

3. Solution of the ODE:s is based on the analysis of the algebraic equations

2—r -5 51 . 0
(7 2)(@)-6)
For a nonzero solution, we require that det(A — 7 1) = 72 + 1 = 0. The roots of the
characteristic equation are » = =+i. Setting r = 7, the equations are equivalent to
& — (2+14)& = 0. The eigenvectors are €V = (2 +4,1)" and £€? = (2 —4,1)".
Hence one of the complex-valued solutions is given by
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91
:( i_z>(cost+isint)

2cost — sint [ cost+2sint
= +1 . .
cost sint

Therefore the general solution is

2cost — sint cost+ 2sint
X=¢ + ¢ . .
cost sint

The solution may also be written as
< dcost n dsint
=c c :
"\ 2cost+ sint *\ —cost+ 2sint

T e e e e e e e e e
e e e e e e e e e e e e T e e e e e e
e e e B
e e e e e e e e e e e e e e e
e e e e e e B e

e g e e e e e
T e e i e e e [ T
L g
g e e
0 -

T e
R ey
A

P e e e T T T T
e e e e e e e e e e e e e ™
e e e R T
T e e R
e e e L T R T T
e e e e e e e R T T e T e

4. Setting x = £ " results in the algebraic equations

2 — T — 5/2 51 . 0

9/5 —1—-r)\&) \0)°
For a nonzero solution, we require that det(A — 1) = r2 — r + % = (. The roots of
the characteristic equation are » = (1 £3¢)/2. With » = (1 + 34)/2, the equations

reduce to the single equation (3 — 37)&;, —5&, = 0. The corresponding eigenvector is
given by €V = (5,3 — 34)" . Hence one of the complex-valued solutions is
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5 .
n _ (1+43i)t/2
¥ (3 - Bi) ‘

241 3 3
:( Tz)et/2<cos§t+isin§t)

3¢ _ aim 3 3 iy 3
:et/2<20032t stt)—I—iet/2<6082t+28m2t>.

3 iy 3
cos 2t sim 2t

The general solution is

2cos 3t — sin 3t cos 3t + 2 sin 3t
chlet/Q 2 ; 2 +c2et/2 2 ] 2" )
cos §t sin it

The solution may also be written as
5cos 3t 5 sin 3t
x=clet/2 . 2" , +626t/2 . 2" .
3cos 5t + 3sin 5t — 3cos 5t + 3sin 5t

i T T T e
T T T

T T T T T T T
T T T T T T T T
T T T T T T T T T
T T T T T T T

5. Setting x = £ ¢" results in the algebraic equations

1-— T -1 51 . 0
(5" 5= 6)
The characteristic equation is 72 + 27 + 2 = 0, with roots 7 = — 1 4. Substituting
r = — 1 — i reduces the system of equations to (2 4 )&, — & = 0. The eigenvectors
are £V = (1,2+i)" and £€® = (1,2 —4)". Hence one of the complex-valued
solutions is given by
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xV — 1 o (L+i)t
241

> e '(cost —isint)
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=e ie .
2cost+ sint cost — 2sint

The general solution is

ot cost feet sint
! 2cost+ sint ? —cost+ 2sint )’
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6. Solution of the ODE:s is based on the analysis of the algebraic equations

(5 -)(@)=6)

For a nonzero solution, we require that det(A — rI) = r> +9 = 0. The roots of the
characteristic equation are » = £ 34. Setting r = 3¢, the two equations reduce to

(1 —3i)& +2& = 0. The corresponding eigenvector is £ = ( — 2,1 — 3i)". Hence
one of the complex-valued solutions is given by

—9 ,
n _ 34t
¥ (1—3z’)€

(2 (cos 3t + i sin 3t)
= 1—3 CcOS 181N

B — 2cos 3t nw —2sin 3t
~ \cos3t+ 3sin3t ¢ —3cos3t+ sin3t )’

The general solution is
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— 2cos 3t n 2sin 3t
X=c¢ c .
! cos 3t + 3 sin 3t >\ 3cos 3t — sin 3t
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8. The eigensystem is obtained from analysis of the equation

—3-r 0 2\ /& 0
1 —1-—r 0 52 = 0
-2 -1 - & 0

The characteristic equation of the coefficient matrix is r* + 472 + 7r + 6 = 0, with
roots r; = — 2,1y = —1—\/51' and 7y = —1—1—\/52'. Setting r = — 2, the
equations reduce to
—&6+26=0
& +&=0.

The corresponding eigenvector is £ = (2, —2,1)". With r = —1— /2 i, the

system of equations is equivalent to

(2-iv2)e —26 =0
& +iV26=0.

T
An eigenvector is given by £@ = < —iv/2,1,—1— zﬁ) . Hence one of the

complex-valued solutions is given by
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—iv?2 ef<1+i\/§>it

1 e_t<cos ﬁt—isin \/gt)
—1-iV/?2

— /2 sin /2t — /2 cos /2t
=e! cos /2t +ie”! — sin+/2t
—cos\/2t — /2 sin /2t — V2 cos /2t — sin+/2t

The other complex-valued solution is x®®) = £@ ¢3!, The general solution is

2
X=c¢| —2 e 24
1

ﬁsinﬁt ﬁcosﬁt

+ e’ — cos /2t +eze! sin\/2t

cos\/2t + /2 sin\/2t V2 cos /2t + sin /2t

It is easy to see that all solutions converge to the equilibrium point (0,0, 0) .

10. Solution of the system of ODEs requires that

(T )E)-()

The characteristic equation is > + 47 + 5 = 0, with roots » = — 244. Substituting
r = — 2+ 1, the equations are equivalent to £, — (1 — )&, = 0. The corresponding
eigenvector is £V = (1 —1i,1)". One of the complex-valued solutions is given by

x = (1 I i>e(2+i)t

1
— ( . Z)e_%(cost—kisint)

_o [ cost + sint . o —cost+ sint
=e + e _ .
cost sint

Hence the general solution is

_o [ coSt + sint _o[ —cost+sint
X=ce +ce . .
cost sint

Invoking the initial conditions, we obtain the system of equations

01_02:1
C = —2.
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Solving for the coefficients, the solution of the initial value problem is

5 _Qt(cost+sint) 3 _2t<—cost+sint)
X = — e - e

cost sint

_ cost —Hsint
N —2cost —3sint)’
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11(a). With x(0) = (2 ,2)", the solution is

- 2cost —2sint .
2cost

11(b).

wl & w2
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11(c).

12. Solution of the ODEs is based on the analysis of the algebraic equations

—3-r 2 &\ _ [0
1 o \e) T o)
The characteristic equation is 2572 — 107 + 26 = 0, with roots r = % + 1. Setting

r = 1/5+ i, the two equations reduce to &, — (1 — )&, = 0. The corresponding
eigenvector is £V = (1 —i,1)". One of the complex-valued solutions is given by

xV — (1Ii>e(%+i)t

1—4\ s
= < ) Z)et/"(cost—i—isz'nt)

_ et/5(cost+sint) —I—z'et/5< —cost—l—sint).

cost sint

Hence the general solution is

< — ¢ ol cost + sint 4 eell? —cost+ sint
! cost ? sint '

(b). Letx(0) = (2! ,23)". The solution of the initial value problem is

_ 0t/ cost+sint 0 oy t/5( —cost+ sint
X =x,¢€ + (z, —x))e . .
2 < cost (=, ! sint

15 [ Tlcost + (2x) — xf)sint
=e :
xycost + (x) — x¥)sint

With x(0) = (1 ,2)", the solution is
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t/5 [ cost+3sint
X=¢e i .
2cost+ sint

144
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13(a). The characteristic equation of the coefficient matrix is * — 2ar + 1 + o2, with
roots r = a 1.

(b). When a < 0 and a > 0, the equilibrium point (0, 0) is a stable spiral and an
unstable spiral, respectively. The equilibrium point is a center when o = 0.

(c).
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T P, e T e e e

2

14(a). The roots of the characteristic equation, 7 — ar +5 =0, are

a 1

== +>va2—20.
T2 5 5 (6%

(b). Note that the roots are complex when — /20 < a < /20 . For the case when
a € ( — /20, 0), the equilibrium point (0, 0) is a stable spiral. On the other hand,

when a € (O , v/ 20 ), the equilibrium point is an unstable spiral. For the case o = 0,

the roots are purely imaginary, so the equilibrium point is a center. When a? > 20,
the roots are real and distinct. The equilibrium point becomes a node, with its stability
dependent on the sign of o . Finally, the case a® = 20 marks the transition from spirals
to nodes.

().
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a=-05

e e e

17. The characteristic equation of the coefficient matrix is 72 + 2r + 1+« = 0, with
roots given formally as 7, = — 1+ ./ — a . The roots are real provided that o« < 0.
First note that the sum of the roots is — 2 and the product of the roots is 1 + ««. For
negative values of «, the roots are distinct, with one always negative. When v < — 1,
the roots have opposite signs. Hence the equilibrium point is a saddle. For the case

— 1 < a < 0, the roots are both negative, and the equilibrium point is a stable node.
a = — 1 represents a transition from saddle to node. When v = 0, both roots are
equal. For the case o > 0, the roots are complex conjugates, with negative real part.
Hence the equilibrium point is a stable spiral.

a=-15
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19. The characteristic equation for the system is given by
4+ (4 —a)r+10 — 4a = 0.
The roots are

ris = —2+%i\/a2+8a—24.

First note that the roots are complex when — 4 — 2\/5 <a< —4+ 2\/5 . We also
find that when —4 — 21/10 < a < 2, the equilibrium point is a stable spiral. For the
case o = 2, the equilibrium point is a center. When2 < o < —4 + 2\/ﬁ , the
equilibrium point is an unstable spiral. For all other cases, the roots are real. When

a > 2.5, the roots have opposite signs, with the equilibrium point being a saddle. For

the case —4 + 21/10 < a < 2.5, the roots are both positive, and the equilibrium point
is an unstable node. Finally, when o < — 4 — 24/10 , both roots are negative, with the
equilibrium point being a stable node.
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, the roots

— 3, both roots
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— 25/8. Since the real part is negative, the origin
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are negative, and hence the equilibrium point is a stable node. For « > — 3

is a stable spiral. Otherwise the roots are real. When — 25 < a <
are of opposite sign and the origin is a saddle.

20. The characteristic equation is 72 + 27 —
The roots are complex when o <
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22. Based on the method in Prob. 19 of Section 7.5, setting x = £ ¢" results in the
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algebraic equations

7 ST)E)-(6)

The characteristic equation for the system is 72 4+ 1 = 0, with roots r,, = 4=7. With
r = i, the equations reduce to the single equation &, — (2 + )&, = 0. A corresponding
eigenvector is £V = (24 1i,1)". One complex-valued solution is

2410
W= ¢
<= ()

We can write ¢! = e!'"*, Hence

x — (2 + i)eilnt
1

_ (2 N Z) [cos(int) + i sin(int)]
_ (2003(lnt) - sin(lnt)) _l_i(cos(lnt) 4 zsm(zm))

cos(Int) sin(lnt)
Therefore the general solution is

. (QCos(lnt) - sin(lnt)) e <cos(lnt) +2 sin(lnt))

cos(Int) sin(lnt)

Other combinations are also possible.

24(a). The characteristic equation of the system is

2 81 17
3 2
Il Bt S
TEET TR 160
with eigenvalues 7, = 1/10,and o3 = — 1/4+ 4. For r = 1/10, simple calculations
reveal that a corresponding eigenvectoris &% = (0,0,1)". Setting r = — 1/4 — i,

we obtain the system of equations

51—i€2:0
53:0-

A corresponding eigenvector is €% = (i, 1,

1
xO — (

Another solution, which is complex-valued, is given by

T . .
. Hence one solution is

0)
0
0 et/lO.
1
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7
x? = | 1 e GHit
0
7
= |1 |e*(cost—isint)
0
sint cost
=e | cost | +ie | — sint
0 0

Using the real and imaginary parts of x®, the general solution is constructed as

0 sint cost
x=c | 0|’ +ce | cost | +cse | —sint
1 0 0

(b). Let x(0) = («¥, 2y, %) . The solution can be written as

0 zy sint + xY cost
X = 0 + e 2l cost — 20 sint
g et/10 0

With x(0) = (1,1, 1), the solution of the initial value problem is

0 sint+ cost
X = 0 +e_t/4 cost — sint
et/lo 0

5 R /i\ 1\ 3
S
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25(a). Based on Probs. 18 — 20 of Section 7.1, the system of differential equations is

H0-(F L))
dt\V z - |4

With R, = Ry, = 4o0hms, C = % farads and L = 8 henrys , the eigenvalue problem is
—5-r -3 &\ _ (0
2 NS 0/

(b). The characteristic equation of the system is 7° + r + % = 0, with eigenvalues

1 1.
Tio = — 5 + 57, .
Setting r = — 1/2 + /2, the algebraic equations reduce to 4i&, + & = 0. It follows

that £V = (1, — 4i)". Hence one complex-valued solution is
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o)
\" _ (1 NS
Vv — 4

_ ( _142_) e 2[cos(t/2) + i sin(t)2)]

s e (s )

Therefore the general solution is
I _ oo th? cojs(t/Q) et sin(t/2) '
Vv 4 sin(t/2) —4cos(t/2)

(c). Imposing the initial conditions, we arrive at the equations ¢, = 2 and ¢, = —
and

=

(v) = (ot aomtra)):

(d). Since the eigenvalues have negative real parts, all solutions converge to the origin.

26(a). The characteristic equation of the system is

with eigenvalues

_ 1,1 [ Tarc
"2 = T 9RC T 2RC L

The eigenvalues are real and different provided that

B 4R*C

1 > 0.

The eigenvalues are complex conjugates as long as

AR*C
1— <0.
L
(b). With the specified values, the eigenvalues are r,, = — 1+¢. The eigenvector
corresponding to » = — 1+ is &Y = (1, — 44)". Hence one complex-valued solution

1S
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m
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v 14

1
= ( _1 +i)e_t(cost+isint)

—t cost I sint
=e . + 1€ . .
—cost — sint cost — sint

Therefore the general solution is

I y cost Lot sint
= cie cye .
Vv ! —cost — sint ? cost — sint

(¢). Imposing the initial conditions, we arrive at the equations

01:2
—a+e=1,

with ¢; = 2 and ¢, = 3. Therefore the solution of the IVP is
I [ 2cost+ 3sint
= e .
%4 cost — dsint
(d). Since Re(r;,) = — 1, all solutions converge to the origin.

27(a). Suppose that c;a+ c;b = 0. Since a and b are the real and imaginary parts of
the vector £V, respectively, a = (£% + £1) /2 and b = (¢ — £0) /2. Hence

o (€9 + ) — (6 - E7) =0,
which leads to
(e, — i)Y + (¢; +ic,)€ED = 0.
Now since £V and €U are linearly independent, we must have

c,—1c, =0
Cl‘i_iCQ:O.

It follows that ¢, = ¢, = 0.

(c). Recall that

u(t) = eM(acos ut — b sin ut)
v(t) = eM(acos ut + b sin ut) .

Consider the equation c,u(t) + ¢;v(ty) = 0, for some ¢,. We can then write
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ce’(acos puty — b sin pity) + e (

acos uty +bsin ut)) = 0. (x)
Rearranging the terms, and dividing by the exponential,

(¢, + ¢y)cos ptoa + (¢y — ¢)sinuty, b = 0.
From Part (b), since a and b are linearly independent, it follows that

(¢ + ¢y)cos pty = (cy — ¢p)sinuty = 0.

Without loss of generality, assume that the trigonometric factors are nonzero. Otherwise
proceed again from Equation (x), above. We then conclude that

Cl+02:o and 02_0120,
which leads to ¢, = ¢, = 0. Thus u(t,) and v(t,) are linearly independent for some ¢,

and hence the functions are linearly independent at every point.

28(a). Letx; = u and x, = u’. It follows that ] = z, and

/
Ty =U

k
= — —u.
m

In terms of the new variables, we obtain the system of two first order ODEs
!/
CEI = X9
, k

3:2: — — T .
m

(b). The associated eigenvalue problem is

—Tr 1 61 o 0
—k/m —rJ\&) \0)
The characteristic equation is 72 + k/m = 0, with roots r,, = +i\/k/m .

(c). Since the eigenvalues are purely imaginary, the origin is a center. Hence the phase
curves are ellipses, with a clockwise flow. For computational purposes, let k = 1 and
m=2.
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(d). The general solution of the second order equation is

k , k
u(t) = cicos | —t + cysiny| —t.
m m

The general solution of the system of ODE:s is given by
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,/% sim/%t \/%cos\/%t
X =¢ + .
cos\/%t —sin\/%t

It is evident that the natural frequency of the system is equal to Im(r;,).
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