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Section 6.2

1. Write the function as

3 3 2
s2+4  2s24+4
Hence £L7'[Y(s)] = 2 sin2t.
3. Using partial fractions,
2 21 1
s2+3s—4 5ls—1 s+4]

Hence LY (s)] = 2(e' — e ™).

5. Note that the denominator s? + 2s + 5 is irreducible over the reals. Completing the

square, s>+ 2545 = (s 4 1)> 4+ 4. Now convert the function to a rational function
of the variable £ = s+ 1. That is,

2s+2  2(s+1)
s24+254+5  (s+1)°4+4

We know that
2¢
-1 .
L [52 +4] = 2cos2t.
Using the fact that L[e® f(¢)] = L[f(#)],1s_y»
-1 ﬂ =2 ‘cos2t.
$2+2s+5
6. Using partial fractions,
2s—3 1| 1 7
2 1 T :
s—4 4|s—2 s+42

Hence £7![Y(s)] = 1(e* + 7e~"). Note that we can also write

25—3_2 S 3 2
s2—4 Ts2—4 282-—4

8. Using partial fractions,

832—4s+12_31+5 s 5 2
s(s2+4) s s2+4 s2+4
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Hence £1[Y(s)] =3+ 5cos2t — 2 sin2t.

9. The denominator s?> + 4s + 5 is irreducible over the reals. Completing the square,

s?+4s+5 = (s +2)” + 1. Now convert the function to a rational function of the
variable £ = s + 2. That s,

1-2s  5-2(s+2)
s?+45s4+5  (s+2)°%+1°

We find that
£ [£2i1 - 522_5 J =5Hsint —2cost.
Using the fact that L[e™ f(¢)] = L[f(t)] 5y »
-1 [%} = e (5sint — 2cost).

10. Note that the denominator s* + 2s + 10 is irreducible over the reals. Completing

the square, s? + 2s + 10 = (s + 1)2 + 9. Now convert the function to a rational
function of the variable £ = s+ 1. That s,

2s—3  2(s+1)-5
2 +25+10  (s+1)°+9°

We find that

T 2¢ 5
£ [§2+9_§2+9

Using the fact that L[e” f ()] = L[f(t)]
£ |:82 +2s+ 10

12. Taking the Laplace transform of the ODE, we obtain
s2Y (s) — sy(0) —y'(0) +3[s Y (s) — y(0)] +2Y(s) = 0.

] = 2cos 3t — gsin?)t.

S$s—a ?

e’ (2 cos 3t — g sin 3t) .

Applying the initial conditions,
s2Y(5)+3sY(s) +2Y(s) —s —3=0.
Solving for Y'(s), the transform of the solution is

Y(s) = 5+ 3

s243s+2°
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Using partial fractions,

s+ 3 2 1
2+35s+2 s+1 s+2°

Hence y(t) = L71[Y(s)] = 2e7t — e 2.

13. Taking the Laplace transform of the ODE, we obtain
s2Y(s) —sy(0) —y'(0) —2[s Y(s) —y(0)] +2Y(s) = 0.
Applying the initial conditions,
s°Y(s) —2sY(s) +2Y(s) —1=0.
Solving for Y'(s), the transform of the solution is

1

Y(s)= .
(5) §2—2s54+2

Since the denominator is irreducible, write the transform as a function of { = s — 1.

That is,

1 B 1
s2—25+2 (s—1)72+1

First note that

E_l[@il] = sint.

Using the fact that L[e® f(t)] = L[f(t)]

Ss—a ?

1
-1 ot
L |:—82—28—|—2:| =e'sint.

Hence y(t) = e'sint.

15. Taking the Laplace transform of the ODE, we obtain
S Y(s) = sy(0) = y'(0) = 2[s Y (s) — y(0)] = 2Y () = 0.
Applying the initial conditions,
s*Y(s) —25Y(s) —2Y(s) =25 +4 =0.
Solving for Y'(s), the transform of the solution is

2s — 4

Y(s)= -0 =
(5) §2 —25—2

Since the denominator is irreducible, write the transform as a functionof £ = s — 1.
Completing the square,
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2s -4 2(s—1)-2
2—2s—2 (s—1)°—3

First note that

£—1|:§22_§3 _ 522_3:| :2cosh\/§t— %Sinh\/gt.

the solution of the IVP is

Using the fact that L[e® f(t)] = L[f(¢)]

Ss—a ?

y(t) =1 {%] = ¢l (2008h \/§t— %Sinh \/§t> .

16. Taking the Laplace transform of the ODE, we obtain
s2Y (s) — sy(0) —y'(0) + 2[s Y(s) — y(0)] +5Y(s) = 0.
Applying the initial conditions,
s*Y(s) +25Y(s)+5Y(s) =25 —3=0.
Solving for Y'(s), the transform of the solution is

2s+3
Y = —
(5) s2+2s+5

Since the denominator is irreducible, write the transform as a function of £ = s+ 1.
That is,

2s+3 2(s+1)+1
s24+25+5  (s+1)7+4

We know that

Lt 2¢ + L —20082t+lsin2t
£2+4  £+4) 2 '

Using the fact that L[e® f(t)] = L[f(t)] the solution of the IVP is

S$s—a ?

2s+3 1
t) = = = -t —S7 .
y(t)=L [82+2s+5] e (20082254—28271225)

17. Taking the Laplace transform of the ODE, we obtain

'Y (s) = ’y(0) — s”y'(0) — sy"(0) —y"(0) = 4[s°Y (s) — s”y(0) — s3(0) —y"(0)] +
+6[s*Y(s) —sy(0) —y'(0)] —4[sY(s) —y(0)] + Y(s) =0

Applying the initial conditions,
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sV (5) —45°Y (s) + 65 Y (s) —4sY(s) + Y(s) — s> +4s —7=0.
Solving for the transform of the solution,

Y()— s2—4s+ 7T _82—48+7
VT 431652 —4s + 1 (s—1*

Using partial fractions,

Sods+7_ 42 1
s—1"  (s—=D" (s=1)° (s-1)7"
Note that £[#"] = (n!)/s""! and L[e* f(t)] = L[f(t)],., ,- Hence the solution
of the IVP is
2 4s+ T 2
O ] iy RN
y(t) [ 1) 3

18. Taking the Laplace transform of the ODE, we obtain
s'Y (s) = 5°y(0) — s°y"(0) — sy"(0) —y""(0) = Y(s) = 0.
Applying the initial conditions,
sV (s) = Y(s) —s*—s=0.

Solving for the transform of the solution,

s
s2—1"

Y(s) =

By inspection, it follows that y(t) = L[] = cosht.

s2—1
19. Taking the Laplace transform of the ODE, we obtain
s'Y(s) = s°y(0) — s°y"(0) —sy"(0) —y""(0) —4Y (s) = 0.
Applying the initial conditions,
sV (s) — 4Y(s) — s> + 25 = 0.

Solving for the transform of the solution,

S

Y(s)= — |
() s2+2

It follows that y(t) = £7![2%5] = cos V2t

20. Taking the Laplace transform of both sides of the ODE, we obtain
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S

s2Y (s) —sy(0) —y'(0) + w* Y (s) = R

Applying the initial conditions,

g ="
S Y(s)—l—w Y(s) S 24
Solving for Y(s), the transform of the solution is
S S

Y(s) =

(s2 +w?)(s% +4) T +w?’

Using partial fractions on the first term,

S B 1 S S
(82 +w?)(s24+4) 4—uw?|s2+w?  s244]
First note that

s
s2 44

Lt {L} = coswt and El{

PR }zcos?t.
s w

Hence the solution of the IVP is

1 1
y(t) = 1 coswt — 2 cos 2t + coswt

— W2 — w2

cos 2t .
4 — w2 —w?

21. Taking the Laplace transform of both sides of the ODE, we obtain
s
2417

sY (s) — sy(0) —y'(0) — 2[s Y (s) — y(0)] +2Y(s) =

Applying the initial conditions,

5 s
Y(s)—2sY 2Y(s) — 2=
s°Y(s) —2sY(s)+2Y(s) —s+ 71
Solving for Y'(s), the transform of the solution is
s s—2

Y(s) = .
(5) (2 —2s4+2)(s>+1) +32—23+2

Using partial fractions on the first term,

S 1 s—=2 s—4
(s2—25+2)(s2+1) 5|s2+1 s2—2s5+2]°

Thus we can write
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1 s 2 1 +2 25 — 3
5241 58241 H5Hs2—2s+2°

Y{(s)

For the last term, we note that s> — 25+ 2 = (s — 1)> + 1. So that
25—3  2As—1)—1
s2—2s+2 (s—1)°+1

We know that

2¢ 1
-1 . .
L [£2+1—52+1}—2c03t—8mt.

Based on the translation property of the Laplace transform,

25 — 3
-1 ¢ o
L |:—82—28—|—2:| =e'(2cost — sint).

Combining the above, the solution of the IVP is

1 2 2
y(t) = gcost— gsmt+ get(2cost— sint).

23. Taking the Laplace transform of both sides of the ODE, we obtain

4

Y (s) = sy(0) = y'(0) +2[s Y (s) — y(0)] + Y (s) = pan

Applying the initial conditions,
4

2
Y 2sY Y —2s—3= .
s°Y(s)+2sY(s)+ Y(s) S po|

Solving for Y'(s), the transform of the solution is

4 n 2s+3
(s+1)°  (s+1)*

Y(s) =

First write

(s+1)  (s+1)7%  s+1  (s+1)*

2543 _2s+1)+1_ 2 1

We note that

c‘l{é+§+€—12} =282+ 2+¢.

So based on the translation property of the Laplace transform, the solution of the IVP is
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y(t) =2t% " +te ' +2e".

25. Let f(t) be the forcing function on the right-hand-side. Taking the Laplace
transform
of both sides of the ODE, we obtain

SY(s) — sy(0) —y'(0) + Y(s) = LIF(1)].
Applying the initial conditions,
s*Y (s) + Y(s) = L[f(t)].

Based on the definition of the Laplace transform,

Clf(0) = / N

1
= / te Stdt
0

s? s s?
Solving for the transform,
1 s+ 1
Y(s) = o .
(s) s2(s?2+1) s2(s?2+1)
Using partial fractions,
1 1 1

and

We find, by inspection, that
1
LY ———
e
Referring to Line 13, in Table 6.2.1,
Lluc(t)f(t—c)] = e “LIf(?)].

] =t—sint.

Let

s+1 1 1 S 1

Llgt)]|=55—<=—+—5 — — :
L9(®)] s2(s2 4+ 1) s+s2 $24+1 s2+1
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Then g(t) = 1+t — cost — sint. It follows, therefore, that

s+1

L1 [es . m] =u(t)[1+(t—1)—cos(t—1)—sin(t—1)].

Combining the above, the solution of the IVP is
y(t) =t —sint —u (t)[1+ (t = 1) —cos(t — 1) — sin(t — 1)].

26. Let f(t) be the forcing function on the right-hand-side. Taking the Laplace
transform
of both sides of the ODE, we obtain

'Y (s) = sy(0) —y'(0) +4Y (s) = LIf(1)].
Applying the initial conditions,
s2Y(s) + 4Y(s) = L[f(2)].

Based on the definition of the Laplace transform,

CIf(1) = / f) et

1 00
= / te Stdt + / e stdt
0 1

1 e’
2
Solving for the transform,
1 1
Y(s) = —e’ .
() s2(s?2+4) ¢ s2(s?2 +4)

Using partial fractions,

We find that

1 1 1
o S
L [32(32+4)} 4t Ssmt.

Referring to Line 13, in Table 6.2.1,
Lluc(t) f(t —c)] = e LI (1))
It follows that
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c {e—s - m] — i (t) E(t - ésin(t - 1)}.

Combining the above, the solution of the IVP is

1 1

o) =4t gsmt—ul(t)E(t— 1) - ésin(t— 1)}.

28(a). Assuming that the conditions of Theorem 6.2.1 are satisfied,

Fi(s) = 2 / e f (1)t

/ g5 I
= [ 1= tes)ar

(b). Using mathematical induction, suppose that for some k& > 1,
FOs) = [ et rw)]ar
0
Differentiating both sides,
d o0

Fl(s) = - 0 et [(—t)k f(t)}dt

- /OOO% e (= 0 1 (1) at

:/OOO[—te—S’f(—t)’“f(t)}dt

29. We know that

Based on Prob. 28,
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Therefore,
1
Llte"] = 5
s—a)
31. Based on Prob. 28,
n d"
LI 0)"] = S]]
_4a1
Cds" | s |
Therefore,
" o (=1)"n!
o) = (-
n!
= gntl ’

33. Using the translation property of the Laplace transform,

b

L [@(Lt sin bt] = m .

Therefore,

L [t e sin bt] =

d [ b
2b(s — a)
(s2 — 2as + a2 4 b2)*

34. Using the translation property of the Laplace transform,

,C[e“t cos bt] = # )
(s —a)” + b2
Therefore,
d _
E[te”tcosbt] = — — %
ds | (s —a)” + b2
(s —a)*—b2

(s — 2as + a? + b2)*

35(a). Taking the Laplace transform of the given Bessel equation,
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Llty"]+L[y'T+L[ty] =0.

Using the differentiation property of the transform,

~ Ly ely) - ely) =0,

That is,
~ 12V (5) — 59(0) ' (O)] + ¥ (5) — y(0) ~ V() = 0
ds ds
It follows that
(1+s°)Y'(s) +sY(s) =0.
(b). We obtain a first-order linear ODE in Y (s):
Y’ —Y(s)=0
(5) + V() =0,
with integrating factor
_ 5 as) =211
w(s) = exp ayids)=Vs +1.
The first-order ODE can be written as
d
%[ s2+1 -Y(s)} =0,
with solution
c
Y(5) = —/—.
() o
(c). In order to obtain negative powers of s, first write
1 1 1772
S N {1 n _} |
s?+1 s s?
. NV .
Expanding (1 + ?> in a binomial series,
1 1 1-3 1-3-5
]ty 0 -6, ...
V14 (1/s?%) 2 ° +2-4S 2.4-6° T

valid for s72 < 1. Hence, we can formally express Y (s) as

Y() 1 11+1-31 1-3-51+
S)=¢Cc|l—— — — —_—  _
s 28 248 2.4.6s7
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Assuming that term-by-term inversion is valid,
0 . 1t2+1-3t4 1-3-5t6+
= C R — _ [— “oe
y 2921 2441 2-4-6 6
{ 2! ¢2 4! 4 6! 6 }
=c

rat e en 2. oea

It follows that

1, 1 4 1
y(t) :C|:1_2_2t +22,42t _22,42,62

S (_1)ﬂ 2n
= CZ 2”(n!)2 .

The series is evidently the expansion, about z = 0, of J,(¢).

t6_|_...:|

[\

36(b). Taking the Laplace transform of the given Legendre equation,
Lly"—L[Py"] —2L[ty']+ala+1)L[y] =0.

Using the differentiation property of the transform,

Ly =L ety + 29 20yl + ala+ 1)Lly] = 0.

ds? ds
That is,
(2 () — 59(0) ~ y/(0)] — 5 [*¥ (5) — 53(0) ~y'(0)] +
+ 2%[3 Y(s) = y(0)] + a(a+1)Y(s) =0

Invoking the initial conditions, we have

s°Y(s) —1— % [s°Y(s) — 1] + 2%[3 Y(s)|+ala+1)Y(s) =0.

After carrying out the differentiation, the equation simplifies to

., d 2 _
1 [s°Y (s)] — 2£[s Y(s)] = [s°+ala+1)]Y(s)= —1.
That is,
s2d—Y(s) + 2s iY(s) — [ +ala+1)]Y(s)= —1.

ds? ds

37. By definition of the Laplace transform, given the appropriate conditions,
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00 t
L[g(t)] :/ e st {/ f(T)dT:| dt
0 0
oo pt
= / / e S f(r)drdt.
0o Jo
Assuming that the order of integration can be exchanged,
L[g(t)] :/ f(r) [/ eStdt] dr
0 T
o0 6757'
= /0 f(r) [ . :|d7'.

[Note the region of integration is the area between the lines 7(¢) =t and 7(¢) = 0.]
Hence

£lo0) = - / Cfm) e dr
Lerren
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