CHAPTER 3. ——

e’ + [2e" +t(1—t) e v =2(1 —t) e,

thatis, v” + [(2 — t)/(1 — t)]v’ = 2(1 — t) e~ *. This equation is first order linear in
v’, with integrating factor yn = €' /(¢ — 1). The solution is

o' =(t—1)(2e " + ).
Integrating, we obtain v(t) = (1/2 — t)e 2 — ¢;te~! + ¢, . Hence the solution of the
original ODE is y(t) = (1/2 — t)e™ ! — ¢t + cye’.

Section 3.8

1. Rcosé =3and Rsind =4 = R = /25 =5andé = arctan(4/3). Hence
u = 5cos(2t — 0.9273).

3. Rcosé =4and Rsiné = —2 = R=+/20 =2v/5 and 6 = — arctan(1/2).
Hence

u=2v/5 cos(3t + 0.4636).

4. Rcosé = —2and Rsind = —3 = R = /13 and 6 = 7+ arctan(3/2).
Hence

u = /13 cos(mt — 4.1244).

5. The spring constant is k = 2/(1/2) = 4 Ib/ft. Mass m = 2/32 = 1/16 Ib-s*/ft.
Since there is no damping, the equation of motion is

1
Eu'/+4u:0,

thatis, u” 4+ 64w = 0. The initial conditions are w(0) = 1/4 f¢, u/(0) = Ofps . The
general solution is u(t) = A cos 8t + B sin 8t. Invoking the initial conditions, we have
u(t) = icos 8t. R =3 inches, 6 =0rad, wy=8rad/s,and T = 7/4 sec.

7. The spring constant is k = 3/(1/4) = 12 Ib/ft. Mass m = 3/32 Ib-s*/ft. Since
there is no damping, the equation of motion is

3
ﬁu” +12u =0,
that is, u” 4+ 128u = 0. The initial conditions are u(0) = — 1/12ft, v/(0) = 2 fps .

The general solution is u(t) = A cos8v/2t + B sin8+/2t. Invoking the initial
conditions, we have
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1 1
u(t) = —ECOS8\/515+ sin8v/2t.

1,/2

R = \/ﬁ/12ft,5: 7r—atan<3/\/§) rad, wy = 8+/2 rad/s, andT:W/<4\/5) sec.

10. The spring constant is k = 16/(1/4) = 64 Ib/ft. Mass m = 1/2 Ib-s*/ft. The
damping coefficient is v = 2 [b-sec/ft. Hence the equation of motion is

1
§u”—|—2u’—|—64u =0,

thatis, u” + 4u’ 4+ 128u = 0. The initial conditions are «(0) = 0%, v’ (0) = 1/4 fps.
The general solution is u(t) = Acos2+/31t + B sin24/31t. Invoking the initial
conditions, we have

u(t) = 531 e sin24/31t.
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Solving u(t) = 0, on the interval [0.2, 0.4], we obtain ¢ = 7/2+/31 = 0.2821 sec.
Based on the graph, and the solution of u(¢) = 0.01, we have |u(t)| < 0.01 for
t>71=0.2145.

11. The spring constant is k = 3/(.1) = 30 N/m . The damping coefficient is given as
~v = 3/5 N-sec/m . Hence the equation of motion is

2u” + %u/+30u =0,

thatis, u” 4+ 0.3u’ 4+ 15u = 0. The initial conditions are «(0) = 0.05 m and
u'(0) = 0.01m/s. The general solution is u(t) = A cos ut + B sin ut , in which
= 3.87008 rad/s . Invoking the initial conditions, we have

u(t) = e *151(0.05¢c0s pt 4 0.00452sin pt) .

Also, 1/w, = 3.87008/+/15 ~ 0.99925 .

page 124



CHAPTER 3. ——

13. The frequency of the undamped motion is w, = 1. The quasi frequency of the
damped

motion is p = §1/4 —~2 . Setting p1 = 3w, , we obtain v = %\/g

14. The spring constant is k = mg/L . The equation of motion for an undamped system
is
mg

Lu:().

mu 1 +
Hence the natural frequency of the system is wy = /4 . The period is 7' = 27 /wj .

15. The general solution of the system is u(t) = Acos~y(t — t,) + Bsiny(t — t,) .
Invoking the initial conditions, we have u(t) = ugcosy(t — t,) + (u./7)siny(t — t,).
Clearly, the functions v = uycosy(t — t,) and w = (u,/7y)siny(t — t,) satisfy the given
criteria.

16. Note that r sin( wyt — 0) = r sinw,t cos 8 — r coswyt sinf . Comparing the given

expressions, we have A = —rsinf and B =rcosf. Thatis,r = R = /A% + B2,
and tanf = — A/B = — 1/tan 6. The latter relation is also tan + cot 6 = 1.

18. The system is critically damped, when R = 2./L/C . Here R = 1000 ohms .

21(a). Letu = Re ""/?"cos(ut — ). Then attains a maximum when ut, — § = 2k.
Hence T; =t — t, = 27/ 1.

(). u(te)/u(tes) = exp(—yti/2m)/exp( —typ1/2m) = exp|(Vtrer — i)/ 2m].
Hence u(t;)/u(tr 1) = exp[y(2n/pn)/2m] = exp(yTy/2m).

(©). A= Infuty)/utn)] = ~y(2r/p)/2m = 7y /pm .

22. The spring constant is k = 16/(1/4) = 64 Ib/ft. Mass m = 1/2 [b-s*/ft. The
damping coefficient is v = 2 [b-sec/ft . The quasi frequency is u = 21/31 rad/s.

_ 2
Hence A = v 1.1285.

25(a). The solution of the IVP is u(t) = e */* (2 cos %\/?t + 0.252sin gﬁt).
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: va WA
t
-0.57

Using the plot, and numerical analysis, 7 ~ 41.715.

(b). Fory=0.5,7~20.402; fory=1.0,7~9.168; fory= 15,7~ 7.184.

().
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(d). Fory=1.6,7~7.218; fory= 17,7~ 6.767; fory= 1.8, 7 ~ 5.473;
fory=1.9, 7~ 6.460. 7 steadily decreases to about 7,,;,, ~ 4.873, corresponding to
the critical value v, ~ 1.73.

(¢). We have u(t) = 2 cos(ut — §) ,in which 1 = }1/2 =77 , and

_ a e /2
6 = tan 1\/417 . Hence |u(t)| < jm .

26(a). The characteristic equation is mr* + yr 4+ k = 0. Since 4> < 4km , the roots
are 7y, = — 5-+i 7W . The general solution is

\Amk — 2 Vamk — 2
u(t) = e MM Acos#t—i—Bsin%t :
m m

Invoking the initial conditions, A = u, and

(2muvy, — yuy)

Amk —~2
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(b). We can write u(t) = Re "/*"cos(ut — 6), in which

(2mu, — *)/uo)Z
R=/ul
\/uo + dmk — 2

and
0 = arctan @2muvy — yu)
U/ dmk — 2
. 2 (2muv,— 'yu(, m(ku? +’yu(,vu+muo) . a+by
(C)' R = \/’LLO + T dmk—? 2\/ dmk—~? - dmk—~*

It is evident that R increases (monotonically) without bound as v — (2\/ mk:) )

28(a). The general solutlon is u(t) = Acos /2t + Bsin\/2t. Invoking the initial
conditions, we have u(t) = \/2 sin /2 t.

(b).

-
L

02040608 1 121)4

The condition v’(0) = 2 implies that u(t) initially increases. Hence the phase point
travels clockwise.
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29. u(t) = %e*t/gsin @t.

31. Based on Newton's second law, with the positive direction to the right,
ZF = mu”
where

ZF: — ku —~yu'.

Hence the equation of motion is mu"” 4+ yu’ + ku = 0. The only difference in this
problem is that the equilibrium position is located at the unstretched configuration of
the spring.

32(a). The restoring force exerted by the spring is F, = — (ku + cu®). The opposing
viscous force is F; = — yu’'. Based on Newton's second law, with the positive direction
to the right,

F,+ F;=mu”.

Hence the equation of motion is mu” + yu’ + ku +cu® = 0.

(b). With the specified parameter values, the equation of motion is u” +u = 0. The
general solution of this ODE is u(t) = A cost + B sint. Invoking the initial
conditions,

the specific solution is u(t) = sint. Clearly, the amplitude is R = 1, and the period of
the motion is 7" = 2.

(¢). Given e = 0.1, the equation of motion is u” +u + 0.1u? = 0. A solution of the
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IVP can be generated numerically:
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(e). The amplitude and period both seem to decrease.
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