CHAPTER 2. ——

Section 2.3

5(a). Let @ be the amount of salt in the tank. Salt enters the tank of water at a rate of
2 %(1 + %sin t) = % + isint oz/min . It leaves the tank at a rate of 2(Q)/100 oz/min.
Hence the differential equation governing the amount of salt at any time is

dQ 1 1
T §+1827’Lt—Q/50.

The initial amount of salt is (), = 50 oz. The governing ODE is linear, with integrating
factor ju(t) = e'/°0. Write the equation as (et/E’OQ)/ = e!/%0(% + Lsint). The
specific solution is Q(t) = 25 + [12.5sint — 625cos t + 63150 e /%] /2501 oz.

(b).
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(c). The amount of salt approaches a steady state, which is an oscillation of amplitude
1/4 about a level of 25 oz.

6(a). The equation governing the value of the investment is d.S/dt = r S. The value of
the investment, at any time, is given by S(t) = Sye". Setting S(T') = 25, , the required
time is 7' = In(2)/r.

(b). Forthecase r =7% = .07, T =99 yrs.

(c). Referring to Part(a), r = In(2)/T. Setting 1" = 8, the required interest rate is to
be approximately r = 8.66 % .

8(a). Based on the solution in Eg.(16), with S, = 0, the value of the investments with
contributions is given by S(t) = 25,000(e"" — 1). After fen years, person A has

S, = $25,000(1.226) = $30,640. Beginning at age 35, the investments can now be
analyzed using the equations S, = 30,640e%" and Sy = 25,000(e " — 1).

After thirty years, the balances are S, = $337,734 and Sy = $250,579.

(b). For an unspecified rate r , the balances after thirty years are S, = 30,640 3" and
Sy = 25,000(e3" — 1).
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(d). The two balances can never be equal.

11(a). Let S be the value of the mortgage. The debt accumulates at a rate of S, in
which r = .09 is the annual interest rate. Monthly payments of § 800 are equivalent to
89,600 per year. The differential equation governing the value of the mortgage is
dS/dt =.095 —9,600. Given that S, is the original amount borrowed, the debt is
S(t) = Sye™ —106,667(e" — 1). Setting S(30) = 0, it follows that

So = $99,500.

(b). The total payment, over 30 years, becomes § 288,000 . The interest paid on this
purchase is § 188, 500 .

13(a). The balance increases at a rate of S $/yr, and decreases at a constant rate of k
$ per year. Hence the balance is modeled by the differential equation d.S/dt =rS — k.
The balance at any time is given by S(t) = Spe’’ — £(e™ — 1).

(b). The solution may also be expressed as S(t) = (S, — £)e" + . Note that if the

r

withdrawal rate is k, = r S, , the balance will remain at a constant level S, .
(¢). Assuming that k > k,, S(T,) = 0 for T, = %ln[k_LkU]

(d). If r = .08 and k = 2k, , then T, = 8.66 years.

(€). Setting S(t) = 0 and solving for e in Part(b), e’ = k_]j,SU. Now setting t = T
results in k = rSpe™ /(e —1).

(f). Inpart(e), let k = 12,000, r = .08, and 7" = 20. The required investment
becomes S, = $119,715.

14(a). Let Q' = — r Q. The general solution is Q(t) = Q,e . Based on the
definition of &alf-life, consider the equation @Qy/2 = Qe >"". It follows that
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— 57307 = In(1/2), that is, 7 = 1.2097 x 10~* per year.

(b). Hence the amount of carbon-14 is given by Q(t) = Q, e~ 1.2097x107"t

(¢). Given that Q(T) = Q,/5, we have the equation 1/5 = ¢~ 12097107 Solying for
the decay time, the apparent age of the remains is approximately 7' = 13, 304.65 years.

15. Let P(t) be the population of mosquitoes at any time ¢. The rate of increase of the
mosquito population is 7P. The population decreases by 20,000 per day. Hence the
equation that models the population is given by dP/dt = rP — 20,000. Note that the
variable ¢ represents days . The solution is P(t) = Pye™ — 220 (e — 1), In the
absence of predators, the governing equation is d P, /dt = r P, with solution

P,(t) = Pje". Based on the data, set P,(7) = 2P, , thatis, 2P, = Pye™. The growth
rate is determined as r = In(2)/7 = .09902 per day. Therefore the population,
including the predation by birds, is P(t) = 2 x 10%e%" — 201, 997(e" — 1) =

= 201,997.3 — 1977.3 "%,

16(a). y(t) = exp[2/10 +t/10 — 2cos(t)/10]. The doubling-time is T ~ 2.9632 .

(b). The differential equation is dy/dt = y/10, with solution y(t) = y(0)e"/'°. The
doubling-time is given by 7 = 10in(2) ~ 6.9315.

(¢). Consider the differential equation dy/dt = (0.5 + sin(2nt))y/5. The equation is
separable, with %dy = (0.1 4 Lsin(27t))dt. Integrating both sides, with respect to the

appropriate variable, we obtain Iny = (7t — cos(2nt))/10m + ¢. Invoking the initial
condition, the solution is y(t) = exp[(1 + 7t — cos(2nt))/10x]. The doubling-time is
T & 6.3804 . The doubling-time approaches the value found in part(b).

(d).

17( ). The differential equation dy/dt = r(t)y — k is linear, with integrating factor
pu(t) = exp[ — [r(t)dt]. Write the equation as (py) = — k p(t). Integration of both
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sides yields the general solution y = [ — k[ u(7)d7 + yy #(0)] /p1(t) . In this problem,
the
integrating factor is u(t) = exp|(cost —t)/5].
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(b). The population becomes extinct, if y(t*) = 0, for some ¢t = t*. Referring to

part(a),
we find that y(t*) = 0 =

t*
/ exp|(cosT — 1) /5]dT = 5%y
0

It can be shown that the integral on the left hand side increases monotonically, from zero
to a limiting value of approximately 5.0893. Hence extinction can happen only if
5e'/5y, < 5.0893, that is, y. < 0.8333.

(c). Repeating the argument in part(b), it follows that y(t*) = 0 =

t 1
/ expl(cosT — 7)/5ldT = % el/y..
0
Hence extinction can happen only if e'/°y./k < 5.0893, that is, y, < 4.1667 k.
(d). Evidently, y. is a linear function of the parameter & .

19(a). Let Q(t) be the volume of carbon monoxide in the room. The rate of increase of
COis (.04)(0.1) = 0.004 ft*/min . The amount of CO leaves the room at a rate of
(0.1)Q(t) /1200 = Q(t) /12000 ft?/min . Hence the total rate of change is given by
the differential equation d@/dt = 0.004 — Q(¢)/12000. This equation is /inear and
separable, with solution Q(t) = 48 — 48 exp( — t/12000) ft*. Note that Q, = 0 ft>.
Hence the concentration at any time is given by z(t) = Q(t)/1200 = Q(t)/12 %.

(b). The concentration of CO in the room is z(t) = 4 — dexp( — t/12000) %. A level
0f 0.00012 corresponds to 0.012 %. Setting z(7) = 0.012, the solution of the equation
4 — dexp( —t/12000) = 0.012 is 7 ~ 36 minutes .
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20(a). The concentration is c¢(t) = k + P/r + (¢, — k — P/r)e "/ ltis easy to see
that c(t—»o0) = k + P/r.

(b). c(t) = coe V. The reduction times are Ty, = In(2)V /r and Ty, = In(10)V /r.
(c). The reduction times, in years, are Ts = In(10)(65.2)/12,200 = 430.85

Ty = In(10)(158) /4,900 = 71.4 ; T, = In(10)(175)/460 = 6.05
T, = In(10)(209) /16,000 = 17.63 .

21(c).
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22(a). The differential equation for the motion is mdv/dt = — v/30 — mg. Given the
initial condition v(0) = 20 m/s , the solution is v(t) = — 44.1 + 64.1exp( —t/4.5).

Setting v(t;) = 0, the ball reaches the maximum height at ¢, = 1.683 sec. Integrating
v(t), the position is given by z(t) = 318.45 — 44.1¢ — 288.45 exp( — t/4.5). Hence
the maximum height is x(t,) = 45.78 m.

(b). Setting x(t,) = 0, the ball hits the ground at ¢, = 5.128 sec.
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23(a). The differential equation for the upward motion is mdv/dt = — pv* — mg,
in which = 1/1325. This equation is separable, with —"—dv = — dt. Integrating
Hnost+mg
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both sides and invoking the initial condition, v(t) = 44.133 tan(.425 — .222t). Setting
v(t;) = 0, the ball reaches the maximum height at ¢, = 1.916 sec. Integrating v(t), the
position is given by z(t) = 198.75In[cos(0.222¢ — 0.425)] 4+ 48.57 . Therefore the
maximum height is x(t,) = 48.56 m.

(b). The differential equation for the downward motion is mdv/dt = + pv? —mg.

This equation is also separable, with mgi’L —dv = —dt. For convenience, sett = 0 at

the top of the trajectory. The new initial condition becomes v(0) = 0. Integrating both
sides and invoking the initial condition, we obtain In[(44.13 — v)/(44.13 + v)] = t/2.25

Solving for the velocity, v(t) = 44.13(1 — €/>%) /(1 + €"/**) . Integrating v(t), the
position is given by z(t) = 99.29n [et/z%/(l + Gt/2'25)2} + 186.2. To estimate the

duration of the downward motion, set x(¢,) = 0, resulting in ¢, = 3.276 sec. Hence the
total time that the ball remains in the air is ¢, + ¢, = 5.192 sec.
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24(a). Measure the positive direction of motion downward . Based on Newton's 2nd
law,
the equation of motion is given by

dv { —0.75v+mg , 0<t<10

m%: —12v4+mg ,t>10

Note that gravity acts in the positive direction, and the drag force is resistive. During the
first ten seconds of fall, the initial value problem is dv/dt = — v/7.5 + 32, with initial

velocity v(0) = 0 fps. This differential equation is separable and linear, with solution
v(t) = 240(1 — e /7%). Hence v(10) = 176.7 fps .

(b). Integrating the velocity, with z(¢) = 0, the distance fallen is given by
z(t) = 240t + 1800 e /™ — 1800.
Hence x(10) = 1074.5 fi.
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(¢). For computational purposes, reset time to ¢ = 0. For the remainder of the motion,
the initial value problem is dv/dt = — 32v/15 + 32, with specified initial velocity

v(0) = 176.7 fps . The solution is given by v(t) = 15 + 161.7e /1>, Ast—oo,

v(t) > v, = 15 fps . Integrating the velocity, with z(0) = 1074.5, the distance fallen
after the parachute is open is given by z(¢) = 15¢ — 75.8 ¢ *?"/% + 1150.3. To find the
duration of the second part of the motion, estimate the root of the transcendental equation
15T — 75.8 ¢~ #7/15 4 1150.3 = 5000 . The resultis T = 256.6 sec.

(d).
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25(a). Measure the positive direction of motion upward. The equation of motion is
given by mdv/dt = — kv — mg. The initial value problem is dv/dt = — kv/m — g,
with v(0) = v,. The solution is v(t) = — mg/k + (vo + mg/k)e /™. Setting

v(ty) = 0, the maximum height is reached at time ¢, = (m/k)In[(mg + kv,)/mg].
Integrating the velocity, the position of the body is

z(t) = —mgt/k+ [(%)29 + mkvo] (1 — e ktimy,

Hence the maximum height reached is

mu m\ 2 mg—|—]{iv
2= alt,) = 0~ g(7) l"[Tg}

(b). Recall that for § < 1, In(146) =68 — §8*+ £6° — 36+ ...

26(b). lim _mg+(k”“;mg)efkt/m = lim — L (kv, + mg)e /™ =

k—0 k—0

—gt.

(c). lim [— % + (%e4v,)e ¥/™m] = 0,since lim e /™ =0.

m—0 m—0

28(a). In terms of displacement, the differential equation is mvdv/dz = — kv + mg.

This follows from the chain rule: % = w4z — v The differential equation is

dt dx dt dt *
separable, with
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mv  mig, |mg—kv
#(v) = kR n mg

The inverse exists, since both x and v are monotone increasing. In terms of the given
parameters, z(v) = — 1.25v — 15.311n|0.0816 v — 1|.
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(b). x(10) = 13.45 meters . The required value is k = 0.24.

(¢). Inpart(a), set v =10 m/s and x = 10 meters .

29(a). Let x represent the height above the earth's surface. The equation of motion is

given by m% = -G ( é‘i 7;)2 , in which G is the universal gravitational constant. The
symbols M and R are the mass and radius of the earth, respectively. By the chain rule,
dv Mm
mv— = —G——.
dx (R+ )

This equation is separable, with vdv = — GM (R + x)_de . Integrating both sides,
and

invoking the initial condition v(0) = \/2gR , the solution is v> = 2GM (R + =)' +
+2gR — 2GM /R . From elementary physics, it follows that g = GM /R?. Therefore

v(x) = /29 [R/\/R + :1;] (Note that g = 78,545 mi/hr®.)

(b). We now consider dz/dt = /2g [R/\/ R+ w] . This equation is also separable,

with /R + zdx = /29 Rdt. By definition of the variable x, the initial condition is
z(0) = 0. Integrating both sides, we obtain z(¢) = [3 (/29 Rt + %Rm)}?/g ~R.
Setting the distance z(7") + R = 240,000, and solving for T, the duration of such a
flight would be T ~ 49 hours.

32(a). Both equations are linear and separable. The initial conditions are v(0) = u cos
A
and w(0) = usin A. The two solutions are v(t) = ucos Ae " and w(t) = — g/r +

+ (usin A + g/r)e .
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(b). Integrating the solutions in part(a), and invoking the initial conditions, the
coordinates are z(t) = “cos A(1 —e"") and

y(t) = —gt/r+ (g+ursin A+ hr?) /1% — (gsz’nA + g/r2>e_”.
r
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(d). Let T be the time that it takes the ball to go 350 f# horizontally. Then from above,
e T/5 = (ucos A —70)/ucos A. At the same time, the height of the ball is given by
y(T) = — 16071 + 267 + 125usin A — (800 + bu sin A)[(ucos A —70)/ucos A].
Hence A and u must satisfy the inequality

ucos A—T70

SOth[ oA

] + 267 + 125usin A — (800 + 5u sin A)[(ucos A — 70)/ucos A] > 10.

33(a). Solving equation (i), y'(z) = [(k* — y)/y]l/Q. The positive answer is
chosen, since y is an increasing function of x .

(b). Let y = k?sin’*t. Then dy = 2k’sint costdt. Substituting into the equation in
part(a), we find that

2k%sint costdt _cost

dx sint

Hence 2k2sin’t dt = dx .

(c). Letting 6 = 2t, we further obtain kQSiHZ% df = dx . Integrating both sides of the

equation and noting that ¢t = # = 0 corresponds to the origin, we obtain the solutions
2(0) = k*(0 — sin ) /2 and [from part(b)] y(0) = k*(1 — cos ) /2.

(d). Note that y/x = (1 — cos0)/(0 — sinf). Setting x = 1,y = 2, the solution of
the equation (1 — cos#)/(0 — sinf) = 2is 0 ~ 1.401. Substitution into either of the
expressions yields k£ ~ 2.193.
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