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Section 9.3

1. Write the system in the form x’ = Ax + g(x). In this case, it is evident that
d (z 1 0 T — 2
_ — + Yy .
i,)=( %) G+ ()

That is, g(x) = (-2 2?)". Using polar coordinates, ||g(x)|| = r2v/sin’0 + cos*6
and ||x|| = r. Hence

lir% HgH(xXH)H = lirr%] r/ sint0 + costd =0,

and the system is almost linear. The origin is an isolated critical point of the linear

system %(i) _ G _02) (i)

The characteristic equation of the coefficient matrix is 7> + r — 2 = 0, with roots
ry =1 and r, = — 2. Hence the critical point is a saddle, which is unstable.

2. The system can be written as

7= (20 200+ ()

Following the discussion in Example 3, we note that F'(x,y) = — = + y + 2xy and
G(x,y) = —4x —y + 2° — y>. Both of the functions F and G are twice differentiable,
hence the system is almost linear. Furthermore,

Fo=—-142y, Fy=1+2z,G, = —4+2z2,G, = —1-2y.

The origin is an isolated critical point, with
F.(0,0) F,(0,00\ (-1 1
G,(0,0) G,0,0)) \ -4 —1)°
The characteristic equation of the associated linear system is 72 + 27 + 5 = 0, with

complex conjugate roots 7, = — 1=£2¢. The origin is a stable spiral, which is
asymptotically stable.

5(a). The critical points consist of the solution set of the equations
24+2)(y—2x)=0
(4—z)(y+2x)=0.

As shown in Prob. 13 of Section 9.2, the only critical points are at (0,0), (4,4) and
( —2 ) 2)
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(b, c). Firstnote that F(z,y) = (2+z)(y —x) and G(x,y) = (4 —z)(y + x). The
Jacobian matrix of the vector field is

B Gac('r:y) Gy(xvy) B 4—y—23§‘ 4—x)

At the origin, the coefficient matrix of the linearized system is

J(0,0) = ( _42 i)

with eigenvalues r, =1 —+/17 and r, = 1+ /17 . The eigenvalues are real, with
opposite sign. Hence the critical point is a saddle, which is unstable. At the equilibrium
point ( — 2, 2), the coefficient matrix of the linearized system is

s-2.2= (g o).

with eigenvalues r;, = 4 and r, = 6. The eigenvalues are real, unequal and positive,
hence the critical point is an unstable node. At the point (4 ,4), the coefficient matrix

of the linearized system is
—6 6
s =( 23 0):

with complex conjugate eigenvalues r,, = — 3 £171/39 . The critical point is a stable
spiral, which is asymptotically stable.

Based on Table 9.3.1, the nonlinear terms do not affect the stability and type of each
critical point.
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7(a). The critical points are solutions of the equations
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1—y=0
(z—y)(z+y)=0.

The first equation requires that y = 1. Based on the second equation, z = 4+ 1. Hence
the critical points are (— 1,1) and (1,1).

(b,c). F(z,y) =1—1y and G(x,y) = 2> — y*. The Jacobian matrix of the vector

field is
At the critical point ( — 1, 1), the coefficient matrix of the linearized system is

J(—1,1):(_02 :;)

with eigenvalues r, = — 1 — /3 and 7, = — 1+ /3 . The eigenvalues are real, with
opposite sign. Hence the critical point is a saddle, which is unstable. At the equilibrium
point (1, 1), the coefficient matrix of the linearized system is

J(1,1) = ((2) :;)

with complex conjugate eigenvalues 7, = — 1 £¢. The critical point is a stable
spiral, which is asymptotically stable.
(d).
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Based on Table 9.3.1, the nonlinear terms do not affect the stability and type of each
critical point.

8(a). The critical points are given by the solution set of the equations
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z(l—xz—y)=0
y(2—y—3x)=0.
Ifz =0, theneithery =0ory=2. fy=0,thenz =0o0rz=1. fy=1—-2x,

then eitherz = 1/2orz = 1. Ify =2 — 3z, thenz = 0 or x = 1/2. Hence the
critical points are at (0,0), (0,2), (1,0) and (1/2,1/2).

(b,c). Note that F(z,y) =2 — 2*> — 2y and G(x,y) = (2y — y*> — 3xy)/4. The
Jacobian matrix of the vector field is

1=(ain o) =(T8n" o)

At the origin, the coefficient matrix of the linearized system is

wo=(2 1)

with eigenvalues r; = 1 and r, = 1/2. The eigenvalues are real and both positive.
Hence the critical point is an unstable node. At the equilibrium point (0, 2), the
coefficient matrix of the linearized system is

02=(2y )

with eigenvalues r, = — 1 and 7, = — 1/2. The eigenvalues are both negative, hence
the critical point is a stable node. At the point (1,0), the coefficient matrix

of the linearized system is
-1 -1
0= (5" 7))

with eigenvalues 7, = — 1 and r, = — 1/4. Both of the eigenvalues are negative, and
hence the critical point is a stable node. At the critical point (1/2,1/2), the coefficient
matrix of the linearized system is

with eigenvalues , = —5/16 — /57 /16 and r, = — 5/16 + /57 /16. The
eigenvalues are real, with opposite sign. Hence the critical point is a saddle, which is
unstable.

OO D=

J(1/2,1/2) = (:

W D=
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Based on Table 9.3.1, the nonlinear terms do not affect the stability and type of each
critical point.

9(a). Based on Prob. 8, in Section 9.2, the critical points are at (0,0),( —2, — 2),
(0,1)and (3, —2).

(b,c). Firstnotethat F'(z,y) = — (x —y)(1 —xz —y) and G(z,y) = (2 +y). The
Jacobian matrix of the vector field is
J— 20 —1 1—-2y
\2+y x

At the origin, the coefficient matrix of the linearized system is
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-1 1
with eigenvalues 7, = 1 and r, = — 2. The eigenvalues are real, with opposite sign.

Hence the critical point is a saddle, which is unstable. At the critical point (0, 1),
the coefficient matrix of the linearized system is

J(0,1) = ( _31 _01>,

with complex conjugate eigenvalues 7, = — 1/241i4/11 /2. The critical point is a
stable spiral, which is asymptotically stable. At the point ( — 2, — 2), the coefficient
matrix of the linearized system is

J<—2,—2>:(‘05 _52),

with eigenvalues r, = — 2 and r, = — 5. The eigenvalues are unequal and negative,
hence the critical point is a stable node. At the point (3, — 2), the coefficient matrix

of the linearized system is
5 9

with eigenvalues 7, = 3 and r, = 5. The eigenvalues are unequal and positive, hence
the critical point is an unstable node.

(d).

Based on Table 9.3.1, the nonlinear terms do not affect the stability and type of each
critical point.
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11(a). The critical points are solutions of the equations

2z +y+ay’ =0
r—2y—xy=0.

Substitution of y = z/(z + 2) into the first equation results in
32" + 132° + 282 + 20z = 0.

One root of the resulting equation is z = 0. The only other real root of the equation is

¢ = é {(287 n 18\/2019>1/3 — 83 (287 n 18\/2019)1/3 . 13} .

Hence the critical points are (0,0) and ( — 1.19345...,1.4797...).

(b,c). F(z,y) = —2®> —zy and G(z,y) = (2y — y* — 3zy)/4. The Jacobian
matrix of the vector field is

J— (Fx(x,y) Fy(m,y)) _ (2+y3 1+3xy2).

At the origin, the coefficient matrix of the linearized system is

J(0,0):(? _12)

with eigenvalues 7, = \/g and r, = — \/g . The eigenvalues are real and of opposite
sign. Hence the critical point is a saddle, which is unstable. At the equilibrium point
(—1.19345...,1.4797...), the coefficient matrix of the linearized system is

—1.2399 — 6.8393)

J(—1.19345,1.4797) = ( — 24797  — 0.8065

with complex conjugate eigenvalues r,, = — 1.0232+£4.1125¢. The critical point is
a stable spiral, which is asymptotically stable.
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In both cases, the nonlinear terms do not affect the stability and type of the critical point.

12(a). The critical points are given by the solution set of the equations

(1+z)siny =0

1—x—cosy=0.

If x = — 1, then we must have cosy = 2, which is impossible. Therefore siny = 0,
which implies that y = nm,n =0,+1,2,.... Based on the second equation,

r=1-—cosnm.
It follows that the critical points are located at (0, 2k7) and (2, (2k + 1)m) , where
E=0,£1,2,....

(b,c). Giventhat F(z,y) = (1 +z)siny and G(x,y) =1 —x — cosy, the
Jacobian matrix of the vector field is

(siny (1+x)cosy)
J= . .
-1 siny

At the critical points (0, 2k), the coefficient matrix of the linearized system is

30, 2km) = ( Y é)

with purely complex eigenvalues 7, = &£ 4. The critical points of the associated linear
systems are centers, which are stable. Note that Theorem 9.3.2 does not provide a
definite conclusion regarding the relation between the nature of the critical points of the
nonlinear systems and their corresponding linearizations. At the points (2, (2k + 1)),
the coefficient matrix of the linearized system is

32, (2 + 1)7] = ( Y _03),
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with eigenvalues r; = \/§ and r, = — \/§ . The eigenvalues are real, with opposite
sign. Hence the critical points of the associated linear systems are saddles, which are
unstable.

(d).
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As asserted in Theorem 9.3.2, the trajectories near the critical points (2, (2k + 1))
resemble those near a saddle.

———————
B T Ry

Upon closer examination, the critical points (0, 2k7) are indeed centers.
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13(a). The critical points are solutions of the equations

page 532



CHAPTER 9. ——

x—y2:O
y—z>=0.

Substitution of y = z? into the first equation results in
r—z'=0,

with real roots z = 0, 1. Hence the critical points are at (0,0) and (1,1).

(b, c). In this problem, F(x,y) = 2z —y* and G(x,y) = y — 2*. The Jacobian
matrix of the vector field is
_( 1 =2
J= ( — 2 1 )

At the origin, the coefficient matrix of the linearized system is

3(0,0) = (é 2)

with repeated eigenvalues r;, = 1 and r, = 1. Itis easy to see that the corresponding
eigenvectors are linearly independent. Hence the critical point is an unstable proper
node. Theorem 9.3.2 does not provide a definite conclusion regarding the relation
between the nature of the critical point of the nonlinear system and the corresponding
linearization. At the critical point (1, 1), the coefficient matrix of the linearized system

J(1,1) = ( _12 _12)

with eigenvalues r;, = 3 and 7, = — 1. The eigenvalues are real, with opposite sign.
Hence the critical point is a saddle, which is unstable.
(d).

o P e T A e e

Closer examination reveals that the critical point at the origin is indeed a proper node.
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14(a). The critical points are given by the solution set of the equations

l—2y=0

T — y3 =0.
After multiplying the second equation by y, it follows that y = £ 1. Hence the critical
points of the system are at (1,1) and (— 1, — 1).

b,c). Note that F(z,y) =1— 2y and G(z,y) = = — y*. The Jacobian matrix of
( y y y y

the vector field is
I N
J— ( R ) |

At the critical point (1, 1), the coefficient matrix of the linearized system is

-1 -1
= (51 25
with eigenvalues r, = — 2 and r, = — 2. The eigenvalues are real and equal. It is
easy to show that there is only ore linearly independent eigenvector. Hence the critical
point is a stable improper node. Theorem 9.3.2 does not provide a definite conclusion

regarding the relation between the nature of the critical point of the nonlinear system and
the corresponding linearization. At the point ( — 1, — 1), the coefficient matrix of the

linearized system is
1 1

with eigenvalues r, = — 14+ /5 and 7, = — 1 — /5 . The eigenvalues are real,
with opposite sign. Hence the critical point of the associated linear system is a saddle,
which is unstable.
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Closer examination reveals that the critical point at (1, 1) is indeed a stable improper
node, which is asymptotically stable.
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15(a). The critical points are given by the solution set of the equations
—2x—y—:c(a§2+y2) =0
a:—y+y(a;2+y2) =0.

It is clear that the origin is a critical point. Solving the first equation for y, we find that

— 141 — 822 — 44
y: 2 *
xr

Substitution of these relations into the second equation results in two equations of the
form f,(z) =0 and f,(x) = 0. Plotting these functions, we note that only fi(x) =0
has real roots given by =z ~ +0.33076 . It follows that the additional critical points are
at (— 0.33076,1.0924) and (0.33076, — 1.0924).
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(b, c¢). Given that
F(z,y) = —2:1:—y—x(:1:2+y2)
Gz,y)=z—y+y®+y°),

the Jacobian matrix of the vector field is

J— —2—32% — g —1—-2xy
N 1+ 2zy —14+22+3y% )

At the critical point (0, 0), the coefficient matrix of the linearized system is
-2 -1
s0.0-(77 21)

with complex conjugate eigenvalues r,, = ( -3+ z\/g ) /2. Hence the critical point

is a stable spiral, which is asymptotically stable. At the point ( — 0.33076,1.0924),
the coefficient matrix of the linearized system is

—3.5216 —0.27735
J(— 0.33076,1.0924) = ( 0.27735  2.6895 )

with eigenvalues r, = — 3.5092 and r, = 2.6771. The eigenvalues are real, with
opposite sign. Hence the critical point of the associated linear system is a saddle,
which is unstable. Identical results hold for the point at (0.33076, — 1.0924) .

(d).
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A closer look at the origin reveals a spiral:
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Near the point (0.33076, — 1.0924) the nature of the critical point is evident:
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Based on Table 9.3.1, the nonlinear terms do not affect the stability and type of each
critical point.

16(a). The critical points are solutions of the equations
y+x(1—x2—y2) =0
—x+y(1—x2—y2) =0.

Multiply the first equation by y and the second equation by x. The difference of the
two equations gives x? + y? = 0. Hence the only critical point is at the origin.

(b,c). With F(z,y) =y +x(1—2?—y*)and G(z,y) = —z +y(l —2*> - y?),
the Jacobian matrix of the vector field is

J— 1—3x% — 9 1 —2zy
S\ —1-2zy 1-22-32)°

At the origin, the coefficient matrix of the linearized system is

3(0,0) = ( ! })

with complex conjugate eigenvalues r,, = 1 +7. Hence the origin is an unstable
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spiral.
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17(a). The Jacobian matrix of the vector field is

0 1
J = (1+63:2 O)'

At the origin, the coefficient matrix of the linearized system is

30,0) = ((1) (f)

with eigenvalues r;, = 1 and r, = — 1. The eigenvalues are real, with opposite sign.
Hence the critical point is a saddle point.

(b). The trajectories of the linearized system are solutions of the differential equation

dy @
de vy’
which is separable. Integrating both sides of the equation z dx — y dy = 0, the solution
is 22 —y?> = C. The trajectories consist of a family of hyperbolas.
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It is easy to show that the general solution is given by z(t) = c,e’ + c,e”? and
t

y(t) = cie! — c,e”!. The only bounded solutions consist of those for which ¢, = 0.

In that case, z(t) = c,e ™' = — y(t).

(c). The trajectories of the given system are solutions of the differential equation
dy =+ 213
de  y
which can also be written as (x + 223)dx — y dy = 0. The resulting ODE is exact,
with
0H

H
%:x-i-ng and%—y: — .

Integrating the first equation, we find that H (z,y) = 22/2 + z'/2 + f(y). It follows
that

OH ,
8—y = f'(y).
Comparing the partial derivatives, we obtain f(y) = — y?/2 + c¢. Hence the solutions

are level curves of the function
H(x,y) = */2 +a* )2 — /2.

The trajectories approaching to, or diverging from, the origin are no longer straight lines.
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19(a). The solutions of the system of equations

y=0
—W’sinz =0
consist of the points (£ n7,0),n=0,1,2,---. The functions F(x,y) = y and
G(x,y) = — w’sinx are analytic on the entire plane. It follows that the system is

almost linear near each of the critical points.

(b). The Jacobian matrix of the vector field is

0 1
J= ( — WPcosx 0>'

At the origin, the coefficient matrix of the linearized system is

s0.0=( ", o).

with purely complex eigenvalues 7, = +iw. Hence the origin is a center. Since the
eigenvalues are purely complex, Theorem 9.3.2 gives no definite conclusion about the
critical point of the nonlinear system. Physically, the critical point corresponds to the
state # = 0, 6’ = 0. That is, the rest configuration of the pendulum.

(c). At the critical point (7, 0), the coefficient matrix of the linearized system is

J(m,0) = <£2 é)

with eigenvalues 7, = £ w. The eigenvalues are real and of opposite sign. Hence the
critical point is a saddle. Theorem 9.3.2 asserts that the critical point for the nonlinear
system is also a saddle, which is unstable. This critical point corresponds to the state

6 =, 60" = 0. Thatis, the upright rest configuration.

page 540



CHAPTER 9. ——

(d). Let w? = 1. The following is a plot of the phase curves near (0, 0).
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(€).

It should be noted that the phase portrait has a periodic pattern, since 6 = x mod 27 .

20(a). The trajectories of the system in Problem 19 are solutions of the differential
equation

2

dy  —wsinw
dr y ’
which can also be written as w?sin x dx + ydy = 0. The resulting ODE is exact,
with
on _ w’sinz and 8_H =
or oy v
Integrating the first equation, we find that H (z,y) = — w?cosx + f(y). It follows
that
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OH

3—y = f,(y)-

Comparing the partial derivatives, we obtain f(y) = y*>/2 + C'. Hence the solutions
are level curves of the function

H(z,y) = —w?cosx +y*/2.

Adding an arbitrary constant, say w?, to the function H (z ,y) does not change the nature
of the level curves. Hence the trajectories are can be written as

1
§y2 +w?(1—cosz) =c,

in which c is an arbitrary constant.

(b). Multiplying by mL? and reverting to the original physical variables, we obtain

1 A%
§mL2 (%> + mL**(1 — cos@) = mL’c.

Since w? = g/L, the equation can be written as

1, (do\>
§mL — ) +mgL(1 —cosf)=F,

in which E = mIL2c.

(c). The absolute velocity of the point mass is given by v = L df/dt. The kinetic
energy of the mass is 7' = mv?/2. Choosing the rest position as the datum, that is, the
level of zero potential energy, the gravitational potential energy of the point mass is

V =mgL(1 — cos ).

It follows that the total energy, I + V, is constant along the trajectories.

21(a). A=0.25
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A=025
0.27
X
0.1
3y 5 B
0.1
-0.24

Since the system is undamped, and y(0) = 0, the amplitude is 0.25. The period is
estimated at 7 ~ 3.16.

(b).

A=05
- /\ / :
1 2 3 5 [
-0.2
02 -0.4
-0.6
04 -0.5
A=148 A=20
13 2
0.69
D.fi:
02 ] 3 3 A ] ; i ’ ] 11 5 B
26, 4
14
-1.24
1.4 5
R T
A=0510513.20
A=1.0|1.013.35
A=15|151|3.63
A=2012014.17

(c). Since the system is conservative, the amplitude is equal to the initial amplitude. On
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the other hand, the period of the pendulum is a monotone increasing function of the
initial
position A .

3.4

32, o
04 0B 08 1 A1.'2 14 16 18 2

It appears that as A — 0, the period approaches 7, the period of the corresponding linear
pendulum (27 /w).

(d).

104

0 Z 4, B 5
The pendulum is released from rest, at an inclination of 4 — 7 radians from the vertical.
Based on conservation of energy, the pendulum will swing past the lower equilibrium
position (# = 27) and come to rest, momentarily, at a maximum rotational displacement
of Oppar = 3™ — (4 — m) = 4w — 4. The transition between the two dynamics occurs

at A = m, that is, once the pendulum is released beyond the upright configuration.

24(a). It is evident that the origin is a critical point of each system. Furthermore, it is
easy to see that the corresponding linear system, in each case, is given by

dr _
dt
dy _
dt

Y

—X.

The eigenvalues of the coefficient matrix are 7, = £ 4. Hence the critical point of the
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linearized system is a center.

(b). Using polar coordinates, it is also easy to show that

el
P x]

Alternatively, the nonlinear terms are analytic in the entire plane. Hence both systems
are
almost linear near the origin.

(c). For system (i), note that

dx dy
r— +y— =azy—2° (2 +y*) — 2y — y*(2* + ).
dt dt
Converting to polar coordinates, and differentiating the equation r* = x? + y? with
respect to ¢, we find that

dr  dx dy 9 . N2 4
Ta—xa—FyE— (3? +y) = .
Thatis, r' = — 73. It follows that r? = 1/(2t + ¢), where ¢ = 1/r2. Since r—0 as

t—0, regardless of the value of r,, the origin is an asymptotically stable equilibrium
point.

On the other hand, for system (i),

dr  dx dy 5 N2 4
T T i G

Thatis, ' = 73. Solving the differential equation results in

T —m

Imposing the initial condition r(0) = r,, we obtain a specific solution

2
2 Ty

= -2
272t —1

Since the solution becomes unbounded as t—1/2r? , the critical point is unstable.

25. The characteristic equation of the coefficient matrix is 7> + 1 = 0, with complex
roots 7, = * 1. Hence the critical point at the origin is a center. The characteristic
equation of the perturbed matrix is 7> — 2er + 1 + ¢ = 0, with complex conjugate
roots ., = e+ ¢. Aslongas e # 0, the critical point of the perturbed system is a
spiral point. Its stability depends on the sign of € .

26. The characteristic equation of the coefficient matrix is (r + 1)2 = 0, with roots
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r, =r, = — 1. Hence the critical point is an asymptotically stable node. On the
other hand, the characteristic equation of the perturbed systemis 7> +2r +1+¢ =0,
withroots 7, = — 1%,/ —€. Ife >0, then r,, = — 1+4,/€ are complex roots.
The critical point is a stable spiral. If e < 0,then r;, = — 1+ \/H are real and

both negative (|¢| < 1). The critical point remains a stable node.

27(d). Set k = sin(a/2) = sin(A/2) and g/L = 4.
Period T

16

141

121

107
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