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Section 9.7

3. The equilibrium solutions of the ODE
dr

= =r(r—1)(r—23)

are givenby 7 = 0,7, =1 and r; = 3. Note that

%>Ofor0<r<1andr>3; %<Ofor1<r<3.

r = 0 corresponds to an unstable critical point. The equilibrium solution r, = 1 is
asymptotically stable, whereas the equilibrium solution 73 = 3 is unstable. Since the
critical values are isolated, a limit cycle is given by

r=1 , 0=t + to
which is asymptotically stable. Another periodic solution is found to be
T = 3 5 9 - t + tU

which is unstable.

5. The equilibrium solutions of the ODE

dr )

— = Sinmr

dt
are givenby r = n, n=0,1,2,---. Based on the sign of r'in the neighborhood of
each critical value, the equilibrium solutions » = 2k, k =1,2,--- correspond to

unstable periodic solutions, with § = t + t,. The equilibrium solutions r» = 2k + 1,
k=0,1,2,--- correspond to stable limit cycles, with § =t + t,. The solution r = 0
represents an unstable critical point.

10. Given F(z,y) =anx + apy and G(z,y) = ay x + ay y, it follows that
Fx+Gy:a11+a22.

Based on the hypothesis, F;, + G, is either positive or negative on the entire plane.
By Theorem 9.7.2, the system cannot have a nontrivial periodic solution.

12. Given that F(z,y) = — 2z — 3y — xy? and G(x,y) = y + 2° — 2%y,
F,+G,= —1—a2® -y

Since F, + G, < 0 on the entire plane, Theorem 9.7.2 asserts that the system cannot
have a nontrivial periodic solution.
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14(a). Based on the given graphs, the following table shows the estimated values:

p=02|T~=6.29
pw=10|T = 6.66
pw=>50|T=11.60

(b). The initial conditions were chosen as z(0) = 2, y(0) = 0.

mu=0.5

2+ mu =05
R
\\J;/ B 8\\;;/0 14\<i//8 20
t
14
24
T~ 6.38.
mu=20
24
H1A
14
a4
T~ T7.65.
mu=3.0 mu =30
24
14 /_\
2 B
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T ~ 8.86.

mu=4.0

®14

-2

T~ 10.25.

(c). The period, T', appears to be a quadratic function of 1.

117

104

91 -

15(a). Setting z = v and y = u’, we obtain the system of equations

ar _
ar ~ Y

dy 1,
Y 1- -2 )y.
T x+u( 3y>y

(b). Evidently, y = 0. It follows that z = 0. Hence the only critical point of the system
is at (0,0). The components of the vector field are infinitely differentiable everywhere.
Therefore the system is almost linear.
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The Jacobian matrix of the vector field is

0 1
J= .
(—1 u—mf)

At the critical point (0, 0), the coefficient matrix of the linearized system is
0 1
s0.0=( " )

w1
==+ 24,
7“132 2 2 I[L

with eigenvalues

If = 0, the equation reduces to the ODE for a simple harmonic oscillator. For the case
0 < p < 2, the eigenvalues are complex, and the critical point is an unstable spiral. For
1 > 2, the eigenvalues are real, and the origin is an unstable node.

(¢). The initial conditions were chosen as 2:(0) = 2, y(0) = 0.

=110 mu=1.0

2
H /\ /\ /\ [\
T T T T T T T T T T T T }
45&1\10/214U20vzaz n 24 B8 1 12U182U2425U
-1
2

mu=1.0

(3]

=

ra

A~216 and T ~ 6.65.

(d).
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mu =02

*14

< ]
g I
-<;
b
<§
o
<§>
q

24

A=~2.00and T =~ 6.30.

mu=05

A T
I <

A=~204 and T ~ 6.38.

[gul

14

mu=2.0

| //\\ //W\ //q\
\75 g 110 12) 14 15V ] QU 30
t

A~26and T =~ 7.62.

[gul

ra

page 580



CHAPTER 9. ——

rmu =150
ru = 5.0
41 54
*21 ¥1
10 20 E 40
t
2
44
A=~437and T ~ 11.61.
(e).
A T
=02 ]2.00]6.30
(=05 204638
=1.0]216 | 6.65
1 =20]26 |7.62
w=>5.01437|11.61
4.4
Aii 11
38
367 10
34
2323 k]
7]
281 8
257
249 7
221 .
21 : :
1 2 i g 1 3 4 g
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