CHAPTER 6. ——

Section 6.5

2. Taking the Laplace transform of both sides of the ODE, we obtain
Y (s) —sy(0) —y'(0) 4+ 4Y (s) = e ™ — 2™,
Applying the initial conditions,
s2Y(s) +4Y(s) = e ™ — e 2,
Solving for the transform,

. CI 6727rs e~ T 6727rs

Y(s) = — - .
(5) s2+4 s24+4 s244

Applying Theorem 6.3.1, the solution of the IVP is
1 1
y(t) = ism(% — 2m)u,(t) — isin(% — A7) Uy, (1)
1
= §sin(2t)[u,r(t) — Uy (t) ]
yit)

0.4+

0.2

0.2

-0.49

4. Taking the Laplace transform of both sides of the ODE, we obtain
Y (s) —sy(0) —y'(0) = Y(s) = —20e .
Applying the initial conditions,
2 Y(s) —Y(s) —s= —20e ™.
Solving for the transform,

S 20 3%

Y(S)ZSQ—l_ s2—1"

Using a table of transforms, and Theorem 6.3.1, the solution of the IVP is
y(t) = cosht — 20 sinh(t — 3)us(t) .
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40

301

20

6. Taking the initial conditions into consideration, the transform of the ODE is
s*Y(s) +4Y(s) — /2 = e 1™,
Solving for the transform,

8/2 6747rs

Y = )
(5) s2+4+32+4

Using a table of transforms, and Theorem 6.3.1, the solution of the IVP is
1 1
y(t) = 5608 2t + §sin(2t — 87y, (t)

1 1
= 5c0s 2t + §sin(2t) U (1) .

¥it)

0.69

0.4
0.2
P G la] 1 12 14 (6|18 20 F2 |24
0 !
0.4

-0.61

]

8. Taking the Laplace transform of both sides of the ODE, we obtain
S2Y(s) — sy(0) —y'(0) + 4Y(s) = 2~ ™/D5,
Applying the initial conditions,
S2Y(s) +4Y (s) = 2e /s,

Solving for the transform,
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2 e—(7/4)s
Yo =31

Applying Theorem 6.3.1, the solution of the IVP is

y(t) = sin (275 - g)uﬂm(t) = —cos(2t) uz(t).

¥t)
1.
0.5
0.6
0.47
0.2
o 2 i, 16 B 10
-0.21
0.4
0.6
-0.8
-14

9. Taking the initial conditions into consideration, the transform of the ODE is

—(7/2)s —27s
€ (/2 + 36—(37r/2)s . €
S S

Y (s)+Y(s) =

Solving for the transform,
e—(w/Q)s 3 e—(37r/2)s e—2ms

@11 #11 s(E1D)

Y(s) = .

Using partial fractions,

1 1 S

s(s24+1) s s2+1°

Hence

ef(ﬂ/Z)s Sef(ﬂ/Z)s N 367(37r/2)s e—2ms N g e 2ms
s s24+1 s24+1 s s24+1°

Based on Theorem 6.3.1, the solution of the IVP is

Y(s) =

3T

y(t) = u,p(t) — cos(t - g)um(t) +3sin (t - E)U?ﬂ/g(t) -
g (t) + cos(t — 2m)us (1)
That is,
y(t) = [1 — sin(t)] wye(t) + 3 cos(t) uso(t) — [1 — cos(t)] ua ().
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10. Taking the transform of both sides of the ODE,

25°Y (s) + sY(s) +4Y (s) = / e 6(75 — %)sintdt
0

_ % o (w/6)s.
Solving for the transform,
e—(m/6)s
Yis) = 2282 +s+4)°
First write
1 _ i
2024548 (5127 8

It follows that

0.144
0124

014
0.034
0.087

0.043
0.02

0 S SN SN N 4
ol 2L AR e T
-0.043

-0.06
-0.03-
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11. Taking the initial conditions into consideration, the transform of the ODE is
s
s2+1

sY(s)+2sY(s) +2Y(s) = T e (/s

Solving for the transform,
S e—(m/2)s

(s24+1)(s2+ 25+ 2) +52+23—|—2'

Y(s) =

Using partial fractions,

S 1 S 2 s+ 4

(2+1)(s2+25+2) 5 S2+1+S2+1_S2+28+2 '

We can also write

s+4  (s+1)+3
$2+25+2  (s+1)7+1
Let
S
Yi(s) = .
) = Fr D 1255 2)
Then

1 2 1
L7HY1(s)] = R cost + = sint — 5 e '[cost + 3 sint].

Applying Theorem 6.3.1,
o~ (7/2)s

s24+25+2

-1

= ¢ (5) sz’n(t - g)um(t) .

Hence the solution of the IVP is

1 2 1
y(t) = gcost+ 5sint— ge_t[cost—f—?)smt] -

— e (75) cos(t) Unpa(t) -
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0.4
0.2
o 2 4 5,8 L 10 14
.0.24
.0.44

12. Taking the initial conditions into consideration, the transform of the ODE is

'Y (s) = Y(s) =e ",

Solving for the transform,

Using partial fractions,

It follows that

1
st—1

= 1 sinht — = sint
—QSZ’H 282’”.

aes
Applying Theorem 6.3.1, the solution of the IVP is

y(t)

yit)

— i

%[smh(t —1) —sin(t — 1)]u,(t) .
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14(a). The Laplace transform of the ODE is

s*Y(s) + %s Y(s)+ Y(s) =e".

Solving for the transform of the solution,

678

Y(s)= — .
(s) s2+s/2+1

First write

1 1

s2+s/2+1: (S+i)2+%'

Taking the inverse transform and applying both shifting theorems,

4 v/ 15
t) = e~ t=/4 gin
y( ) \/175 4

(t—1)w(t).

0.67
0.4

0.27

0 R L AT AT
0.2

(b). As shown on the graph, the maximum is attained at some ¢, > 2. Note that for
t>2,

4
y(t) = ﬁ

Setting y'(t) = 0, we find that ¢, ~ 2.3613. The maximum value is calculated as
y(2.3613) ~ 0.71153.

v 15
e =D/ gip

(t—1).

(c). Setting v = 1/4, the transform of the solution is

e—S

Y(s) = —o .
(s) s2+s/4+1

Following the same steps, it follows that
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t) = m—— (t —1 t
y(t) = ——= sin g (t = 1) w(t)
¥l

0.8
0.6
0.4
0.2 /\
0 3 N “RET
0.2
-0.44

Once again, the maximum is attained at some ¢, > 2. Setting y'(¢) = 0, we find that
t, ~ 2.4569, with y(¢,) ~ 0.8335.

(d). Now suppose that 0 < v < 1. Then the transform of the solution is

—S

e
Y(s) = R
First write
1 B 1
s2+ys+1 (s+7/2)° 4+ (1—~2/4)
It follows that
At = £ [32 + is + 1] RVZ 2— v? B_WQSM(\/W ' t)'

Hence the solution is
y(t) = h(t — 1) u(t).

The solution is nonzero only if ¢ > 1, in which case y(t) = h(t — 1). Setting y'(t) =0

5

we obtain
1
tcm[\/l —2/4 - (t— 1)] = —y/4—72,
Y
that is,

tan[y/1—~2/4 - (t —1)]
Ny

2
.
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As y—0, we obtain the formal equation tan(t — 1) = oco. Hence ¢, »1+ 7. Setting
t =7/2 in h(t), and letting v— 0, we find that y; - 1. These conclusions agree with
the case v = 0, for which it is easy to show that the solution is

y(t) = sin(t — 1) u,(t) .

15(a). See Prob. 14. It follows that the solution of the IVP is

4k Vv 15

y(t) = ——=e D/ gip
V15 4

This function is a multiple of the answer in Prob. 14(a). Hence the peak value occurs at

t; ~ 2.3613. The maximum value is calculated as y(2.3613) ~ 0.71153 k. We find
that the appropriate value of k is &k, = 2/0.71153 ~ 2.8108.

(t—1)u(t).

(b). Based on Prob. 14(c), the solution is

8k 37

y(t) = —=e DB gip V7
37

Since this function is a multiple of the solution in Prob. 14(c), we have ¢, ~ 2.4569,

with y(¢,) ~ 0.8335 k. The solution attains a value of y = 2, for k;, = 2/0.8335,
that is, k; ~ 2.3995.

(t—1)u(t).

(c). Similar to Prob. 14(d), for 0 < v < 1, the solution is
y(t) = h(t = 1w (t),

in which

2k

h(t) = ﬁ eﬂt/zsin<\/ 1-— ’}/2/4 . t) .
-

It follows that ¢, — 1 -7 /2. Setting ¢t = 7/2 in h(t), and letting y— 0, we find that

y, — k. Requiring that the peak value remains at y = 2, the limiting value of £ is

k, = 2. These conclusions agree with the case v = 0, for which it is easy to show

that the solution is

y(t) = ksin(t — 1) u(t).

16(a). Taking the initial conditions into consideration, the transformation of the ODE is

1 —(4—k)s —(4+k)s
s2Y(s)+ Y(s) = o7 [e ¢ :

S S

Solving for the transform of the solution,
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1 —(4—k)s —(4+k)s
Y(s)= — | < _° .
2k | s(s2+1)  s(s2+1)
Using partial fractions,
1 1 S

Now let

h@)::ﬁ]{gggijj}::l—cost

Applying Theorem 6.3.1, the solution is

B, k) = S bt~ 4+ k) i (t) — bt — 4 — K) (1)

That is,
ot k) = i[uzlk(t) — wgip(t)] —
1
- ﬁ[cos(t — 44+ k)u, 1 (t) — cos(t —4 — k) uy i (2)].

(b). Consider various values of ¢. For any fixedt < 4, ¢(t,k) =0, as long as
4—k>t Ift>4,thenfor4+k<t,

o(t, k)= — %[cos(t—él%—k) —cos(t—4—k)].

It follows that

, L cos(t —4+ k) —cos(t —4 — k)
fimoit.4) = fn, i
=sin(t —4).
Hence

l}er}) ot k) = sin(t —4) uy(t) .

(c). The Laplace transform of the differential equation
y' +y=0(t—4),
with y(0) =y’(0) =0, is
7Y (s)+ Y(s) = e ™.

Solving for the transform of the solution,
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6—45

Y(s) = .
(S) 82+1

It follows that the solution is

do(t) = sin(t — 4) uy(t) .

0.6
0.6
0.4
0.2

0.2
0.4
il
0.6

12

18(b). The transform of the ODE (given the specified initial conditions) is

20

SY(s)+ Y(s) =) (-1 et
k=1
Solving for the transform of the solution,
1 2L k+1 —krs
Y(s) = o ;(—1) ehms,

Applying Theorem 6.3.1 , term-by-term,

y(t) = Z( — )" sin(t — k) u (t)

20

= —sin(t) - Z Ui (1) -

k=1
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101

-20+

204

104

m/\/\/\/\

=

\ffh\;’f{u/ UauU :ti 5 N

19(b). Taking the initial conditions into consideration, the transform of the ODE is

Solving for the transform of the solution,

20
82 Y(S) + Y(S) — ZB_(IW/Q)S_
k=1

Y(s) =

52

Applying Theorem 6.3.1 , term-by-term,

1.4

1.2

0.8

0.6

0.4

0.2

y(t) = :Zolszn (t - %”) U (£)

1 220 (km/2)
—(km/2)s
e .
+1 i

10

0

a0

40
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20(b). The transform of the ODE (given the specified initial conditions) is

20
Y (s Z k+1 —(km/2)s
Solving for the transform of the solution,
20 —(km/2)s
Y(s) = L .
0= (-0

Applying Theorem 6.3.1 , term-by-term,

20 Lk
= Z( - 1)k+15in (t - 7) /U/kﬂ—/g(t) .
k=1

0.8
0.61
0.4
0.24

0.2
0.4
067
0.8

22(b). Taking the initial conditions into consideration, the transform of the ODE is

k L~
SQY +1,-(11k/4)s

” Mo

Solving for the transform of the solution,

—(11k/4)s

40
_ Z( . 1)k+1€—
— s2+1 7

Applying Theorem 6.3.1 , term-by-term,
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23(b). The transform of the ODE (given the specified initial conditions) is

SY(s)+01sY(s)+ Y(s) = > (=1 et
k=1

Solving for the transform of the solution,

20 eflmrs
Y(s) = —_—
(=) kleQ—f—O.ls—{—l
First write
1 B 1
2 - 1\2 | 399 °

It follows that

20

s2+0.1s+1

E_l[ 1 } _ 2 e_t/Qosin< 399 t).
v/ 399

Applying Theorem 6.3.1, term-by-term,
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20
y(t) = (= D" h(t — k) un(t),
k=1
in which
20 v/ 399
h(t) = t/20 t].
(t) =90 sin 50
(c).

24(b). Taking the initial conditions into consideration, the transform of the ODE is
15
s2Y (s) +0.1s Y (s) E: (2k=1)m

Solving for the transform of the solution,

15 —(2k—1)7s
Y(s) = .

-
= +0.1s+1

As shown in Prob. 23,

E_l[ 1 } = 20 e 1 gin (ﬂ t).

s24+0.1s+1 \/399

Applying Theorem 6.3.1, term-by-term,

th— (2k — 1)) wapr)x (1)

in which
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25(a). A fundamental set of solutions is ¥, () = e ‘cost and y,(t) = e 'sint .
Based on Prob. 22, in Section 3.7, a particular solution is given by

~ [Ty(8)ya(t) = yi(t)ya(s)
w)= | Wy 9)(5)

f(s)ds.

In the given problem,

Yp(1)

_ /O ¢ eos(s)sin(t) — sinls)eos®)]

exp( — 2s)
= /te(ts)sin(t —s)f(s)ds.
0

Given the specified initial conditions,

(b). Let f(t) = 6(t — ). Itiseasytoseethatift < m, y(t)=0. If t >,
¢
/ e sin(t — 5)6(s — m)ds = e sin(t — 7).
0

Setting t = m + £, and letting ¢ » 0, we find that y(7) = 0. Hence
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y(t) = e T sin(t — 1) up(t) .

(c). The Laplace transform of the solution is

6*71'5

2+ 25+ 2

6*7'!'5

(s+1)°+1

Y(s) =

Hence the solutions agree.
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