CHAPTER 2. ——

Section 2.8

2. Letz=y—3and 7 =t+ 1. It follows that dz/dT = (dz/dt)(dt/dT) = dz/dt .
Furthermore, dz/dt = dy/dt = 1 — y*. Hence dz/dT = 1 — (z + 3)®. The new initial
condition is z(7 = 0) = 0.

3. The approximating functions are defined recursively by ¢,,,(t) = fo 1]ds.
Setting ¢o(t) = 0, ¢,(t) = 2t. Continuing, ¢,(t) = 2t> + 2t , ¢5(t) = 4t3 —|— 2t2 + 2t,
¢(t) = 2t* + 3¢5+ 2t 4+ 2t ---. Given convergence, set
P(t) )+ Z Gra(t) — i(t)]
k=1
- k:_

Comparing coefficients, a;/3! =4/3,a,/4! =2/3,---. It follows that a; = 8,
a, = 16,
and so on. We find that in general, that a, = 2". Hence

k=1
=2 -1
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5. The approximating functions are defined recursively by

o) = [ 1= 6u(s)/2 + slds.

Setting ¢ (t) = 0, ¢,(t) = t*/2. Continuing, ¢ (t) = t2/2 — t3/12,¢5(t) = t?/2 —
—3/12 +t1/96, ¢u(t) = t2/2 — t3/12 + t1/96 — t7/960, - -- . Given convergence, set
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O(t) = di(t) + ) _[dun(t) — du(t)]

M e

— 42 ke
=}/2+ ) tt.
k=3
Comparing coefficients, a;/3! = —1/12,a,/4' =1/96, a;/5! = —1/960, ---. We
find thatay = — 1/2,a, =1/4,a; = —1/8,---. In general, a;, = 27*"'. Hence
) 2—k+2 1
bt) =3 (— 1
=2
=de "’ +2t—4.
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6. The approximating functions are defined recursively by

o) = [ 6,(s) + 1 — s]ds.

Setting ¢o(t) = 0, ¢i(t) =t — 2/2, ¢(t) = t — £3/6, ¢s(t) =t — t1/24, ¢,(t) =
=t— t5/120, ---. Given convergence, set

6(t) = ou(t) + i[@,ﬂ (t) - 64(2)

=t—12/2+ [t?/2 - £3/6] + [t3/6 — t*/24] + -
=t+0+0+---.

Note that the terms can be rearranged, as long as the series converges uniformly.
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8(a). The approximating functions are defined recursively by

t
Do (t) = / [s2q§n(s) — s]ds.
0
Set ¢ (t) = 0. The iterates are given by ¢,(t) = —t2/2, ¢,(t) = —t*/2 —1°/10,
Bs(t) = —t2/2 —17/10 — t3/80, ¢ (t) = — /2 — t5/10 — t3/80 — t'1/880 ,-- - .

Upon inspection, it becomes apparent that
1t 6 ()"

2]t
ou(t) = — 1t [2+2,5+2.5.8+ +2-5-8~~[2+3(n—1)]

_ tQi (t?))k*l
2425 82180k 1)

t
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-10
The iterates appear to be converging.
9(a). The approximating functions are defined recursively by
o) = [ 1+ 62(9)ds.

Set ¢ (t) = 0. The first three iterates are given by ¢, () = t3/3, ¢,(t) = t3/3 +17/63,
B3(t) = t3/3 +7/63 + 2t11 /2079 + 119 /59535 .
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0TS T 06 06 1 12141618 2
The iterates appear to be converging.

10(a). The approximating functions are defined recursively by
6us(0) = [ [1-6(9)ds.

Set ¢y (t) = 0. The first three iterates are given by ¢, (t) = t, ¢, (t) =t — t*/4,
By(t) =t —t*/4 + 3t7/28 — 3t /160 + ¢13/833.

(b).

U1 020406 08 g 1214 1618 2
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The approximations appear to be diverging.

12(a). The approximating functions are defined recursively by

6
Note that 1/(2y —2) = — 1 > y" 4+ O(y"). For computational purposes, replace the
k=0

above iteration formula by
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b= —3 [

Set ¢y(t) = 0. The first four approximations are given by ¢, (t) = —t — > —t3/2,
G(t) = —t—t2/2+t3/6+t1/4 —t5/5 —15/24 + .-,

Bs(t) = —t—1t2/2+14/12 — 3t7/20 + 416 /45 + -,

Gu(t) = —t—t2/2+t1/8 —Tt°/60 +5/15 + ---

(b).

02 04 tog 08 1

The approximations appear to be converging to the exact solution,

G(t) =1 — /142t +22+ 13,

13. Note that ¢,,(0) =0and ¢,(1) =1,Vn >1. Leta € (0,1). Then ¢,(a) = a”.
Clearly, lim a" = 0. Hence the assertion is true.

n—oo

14(a). ¢,(0)=0,Yn>1. Leta € (0,1]. Then ¢,(a) = 2nae " = 2na/e" .
Using I'Hospital's rule, lim 2az/e®" = lim 1/ze% = 0. Hence lim ¢,(a)=0.

Z—00

b). [l 2nze " de = — e‘”""2|; =1 — e ". Therefore,

lim 1¢n(:c)dx7é 1lim ¢n(x)dx.
0

n—oo 0 n—oo

15. Let ¢ be fixed, such that (¢, y,), (t,y,) € D. Without loss of generality, assume that
Yy, < ¥y, . Since f is differentiable with respect to y, the mean value theorem asserts that

3¢ € (yi,y2) such that f(¢,y,) — f(t,y.) = fy(t,€)(ys — y2). Taking the absolute
value of both sides, | (¢, 1) — f(t,v2)| = |fy(t,€)||y: — vo|. Since, by assumption,
df /0y is continuous in D, f, attains a maximum on any closed and bounded subset of D
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Hence ‘f(tayl) —flt, )| < K|y — ?/2|-

16. For a sufficiently small interval of t, ¢, ,(t),d,(t) € D. Sl nce f satisfies a
Lipschitz condition, |f(t,®,(t)) — f(t, .1 ()| < K |p.(t) — ¢,1(t)|. Here
K = maz|f,|.

17(a). ¢(t) = [ f(s,0)ds. Hence |¢,(t)] < [ f(s,0)|ds < [\ Mds = M]t|, in
which M is the maximum value of | f(¢,y)| on D.

(b). By definition, ¢,(t) — = [1f( — f(s,0)]ds. Taking the absolute
value of both sides, |¢,(t) | < f't‘ [ (s)) — f(s,0)]|ds. Based on the
results in Problems 16 and 17 ]qbQ( & (1) | < me|q§1 — O|ds < KM [)|s|ds.

Evaluating the last integral, we obtain |¢2(t) o) <M K It|*/2.

(c). Suppose that

MKt
il

|$i(t) — i (t)| <

for some 7 > 1. By definition, ¢,,,(t) — = [T1( — f(s,¢i1(s))]ds.
It follows that
1t

P (t) — ¢i(t)] < ; |f(s,0i(s)) — f(s,¢i-1(s))|ds

It]
< K|¢i(s) — ¢i-1(s)|ds

0

[t] i—1
o [ g ME S
- ) il
_ ME" MK
G+ T G+

Hence, by mathematical induction, the assertion is true.
18(a). Use the triangle inequality, |a + b| < |a| + |b].

(b). For|t| < h, |p.(t)] < Mh,and |¢,(t) — ¢, 1(t)| < MK™'h"/(n!). Hence

n Kz—lhz
9u(D] < MY =
i=1 :

M (KD)
_E;
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(c). The sequence of partial sums in (b) converges to 3% (e®"

test, the sums in (a) also converge. Furthermore, the sequence |9, (t)| is bounded, and
hence has a convergent subsequence. Finally, since individual terms of the series must
tend to zero, |¢,(t) — ¢, 1 (t)| =0, and it follows that the sequence |¢,(t)| is convergent.

— 1). By the comparison

19(a). Let ¢(t) fO ))ds and w = [1f( . Then by linearity of
the integral, ¢(t) fo[f f(s,w( ))]ds.

(b). Tt follows that [¢(t) — $(t)] < [!1f(s. 6(s)) — f(s,%(s))|ds

(c). We know that f satisfies a Lipschitz condition,
|f(t>y1) - f(tay2)| < Klyl _y2|’
based on |0f/0y| < K in D. Therefore,
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