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Section 10.6

1. The steady-state solution, v(x), satisfies the boundary value problem

v"(z) =0, 0 <z <50, v(0) =10 ,v(50) = 40.
The general solution of the ODE is v(x) = Az + B. Imposing the boundary conditions,
we have

40 — 10 3T
50 T+ 5 +

v(x)

2. The steady-state solution, v(x), satisfies the boundary value problem
v"(z) =0, 0 <z <40, v(0) =30 ,v(40) = —20.

The solution of the ODE is /inear. Imposing the boundary conditions, we have

—20 — 30 5
— i E+30=— - +30.

v(x) =

4. The steady-state solution is also a solution of the boundary value problem given by
v"(z) =0, 0 <z < L, and the conditions v’(0) = 0, v(L) = T. The solution of the
ODE is v(x) = Az + B. The boundary condition v’(0) = 0 requires that A = 0. The
other condition requires that B = T'. Hence v(z) =T .

5. Asin Prob. 4, the steady-state solution has the form v(x) = Az + B. The boundary
condition v(0) = 0 requires that B = 0. The boundary condition v’(L) = 0 requires
that A = 0. Hence v(z) =0.

6. The steady-state solution has the form v(z) = Ax + B. The first boundary
condition, v(0) = T, requires that B = T'. The other boundary condition, v'(L) =0,
requires that A = 0. Hence v(z) =T .

8. The steady-state solution, v(x), satisfies the differential equation v”(z) = 0, along
with the boundary conditions
v(0)=T , v'(L)+v(L)=0.

The general solution of the ODE is v(z) = Ax + B. The boundary condition v'(0) = 0
requires that B = T'. It follows that v(z) = Az + T, and

v'(L)+v(L)=A+AL+T.

The second boundary condition requires that A = — 7'/(1+ L). Therefore

o(z) = — Tx

T.
1—|—L+
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10(a). Based on the symmetry of the problem, consider only /eft half of the bar. The
steady-state solution satisfies the ODE v” (z) = 0, along with the boundary conditions
v(0) = 0 and v(50) = 100. The solution of this boundary value problem is v(z) = 2.
It follows that the steady-state temperature is the entire rod is given by

fz) = 20, 0<x<50
T)'T1200— 22, 50 <z < 100.

(b). The heat conduction problem is formulated as

Py, = Uy, 0<z<100, t>0;

w(0,1) = 20, w(100,4) =0, ¢t > 0;

u(z,0) = f(z), 0<x<100.
First express the solution as u(x ,t) = g(x) + w(z,t), where g(x) = — x/5 + 20 and
w satisfies the heat conduction problem

Qwg, = wy, 0<xz<100,t>0;

w(0,t) =0, w(100,t) =0, t > 0;

w(z,0) = f(z) —g(x), 0<x<100.

Based on the results in Section 10.5,

o0

—n2r2a2 . nNTx
w(x t) — c, e n o t/IOOOOSZ’N,—
’ 100’

n=1

in which the coefficients ¢, are the Fourier sine coefficients of f(z) — g(x). That is,

L s
o =1 [ V@)= g(@)sin™ T da
1 [0 nmwx
= 50/, [f(z) — g(@)]sinq5dz

20 sm”{ —nm
=40

n2m?
Finally, the thermal diffusivity of copper is 1.14 cm?/sec . Therefore the temperature
distribution in the rod is

Wz t) = 20 — x N @ ©_9() sin% —nm o1 14n22%/10000 nwL '
b oo™ n? 100
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(c). t =5,10,20,40 sec :

501
B0
401

20

t = 100, 200, 300, 500 sec :

. 20 0, & 80 100

w=25cm
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(d). The steady-state temperature of the center of the rod will be g(50) = 10°C'.

¥ =4a0cm
1001
801
B0
401
20
D 1000 2000 2000 1000 5000

t

Using a one-term approximation,

800 — 407 o~ 11472/10000

u(z,t) ~ 10 + 5

™

Numerical investigation shows that 10 < u(50,t) < 11 fort > 3755 sec.
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11(a). The heat conduction problem is formulated as

Upy = Ut , 0<xz<30,t>0;
u(0,t) = 30, u(30,t) =0, t > 0;
u(z,0) = f(z), 0<x<30,

in which the initial condition is given by f(z) = x(60 — x)/30. Express the solution as
u(z,t) = v(z) +w(x,t), where v(z) = 30 — = and w satisfies the heat conduction
problem

Wy = Wy, 0<xz<30,t>0;
w(0,t) =0, w(30,6)=0, t>0;
w(z,0) = f(z) —v(x), 0<z<30.

As shown in Section 10.5,

o
Z o nAmt/900 o VT
n b
— 30

in which the coefficients ¢, are the Fourier sine coefficients of f(z) — v(x). That s,

g m
Cp = %/0 [f(z) — g(x )]sznan;c
30 -
— 5| @)~ gosin’s do
60 2(1 — cosnm) — n?m*(1 + cosnm)

n3ms

Therefore the temperature distribution in the rod is

w(z,t) =30 —x+ i_o HZ:I 2(1 — cosnm) *nng 731+ cosnm) /900 n% ‘

(b). t =5,10,20,40 sec :
304
25
20
u15

107
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t = 50, 75,100,200 sec :
304
251
201

U154

¥=75
244

229

201

o

20 0, & 80 100
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Based on the heat conduction equation, the rate of change of the temperature at any given
point is proportional to the concavity of the graph of u versus x, that is, u,, . Evidently,
near ¢t = 60, the concavity of u(z,t) changes.

13(a). The heat conduction problem is formulated as

Upw = duy, 0<x<40,t>0;
uz(0,t) =0, uzy(40,t) =0, t > 0;
u(z,0) = f(z), 0<x <40,

in which the initial condition is given by f(z) = (60 — x)/30.

As shown in the discussion on rods with insulated ends, the solution is given by

00
Co 22,2 nmx
u(x,t):5+ § :cne n7rat/160()cosﬂ,

n=1

where ¢, are the Fourier cosine coefficients. In this problem,
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/fdx

0 2(60 — x)
)y
20 . 30 °
— 400/9,

and forn > 1,

/ f(x coswdm

02(60 — ) nwx
= d
20 . 30 “a ™
_ 160(3 + cosnm)

3n2m2

Therefore the temperature distribution in the rod is

200 160 = (34 cosnm) 20 nwL
u(r,t) = 5 " 3.2 - e t/64oocosﬁ.
n=1

(b). t = 50,100, 150,200 sec :

26
263
24
224
20

183
163
14
123
10

8_
0 10 20 0 40
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t = 40, 600, 800, 1000 sec :
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(c). Since
2.2 nmwx
: —n m-t/6400
lim e /6400065~ = )
t— o0 40

for each x , it follows that the steady-state temperature is u,, = 200/9.

page 673



CHAPTER 10. —

(d). We first note that

200 160 o~ (= 1)"(3+ cosnm) 2026000
_ (& .

9 32 n?
n=1

u(40,t) =

287
27
287
287
247

237

0 200 400 600 800 mt'nuubnmbmahmabn 2000

For large values of ¢, an approximation is given by

200 320
u(40,t) ~ ? + ﬁ e*Tl'Qt/6400'

Numerical investigation shows that 22.22 < u(40,t) < 23.22 fort > 1550 sec .

16(a). The heat conduction problem is formulated as

Ugy = Ut , O0<x<d30,t>0;
u(0,t) =0, uz(30,t) =0, t >0;
u(z,0) = f(z), 0<x<30,

in which the initial condition is given by f(z) = 30 — x. Based on the results of Prob.
15,
the solution is given by

0
2, nmwTx
w(z,t) = c, e—(2n—1)z7rzt/36005in_’
@)= e -

in which

L
c, = %/0 f(x)sin%dm
1 (2n — 1)z
T 15/, 60
2cosnm+ (2n — )7

(2n — 1)*n?

(30 — x)sin dz

=120
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Therefore the solution of the heat conduction problem is

Sin

2003n7r+ 2n— D7 o0 12223600 . NI
xt-l?OZ e o~ (n—17%/ -0 -

n=1

(b). t = 10,20, 30,40 sec :

20
18
16
14

¢ = 40, 60,80, 100 sec :
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¢ = 100, 150, 200, 250 sec :
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20 40 B0 , B0 100 120 140
The location of x5, moves fromz = 0 to x = 30.

(d).

304
251
261
24
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uh 207
184
161
144
124
104 e

17(a). The heat conduction problem is formulated as

Ugpy = Ut , 0<ax<30,t>0;
u(0,t) = 40, uz(30,t) =0, t > 0;
u(z,0) =30 —x, 0<x<30,

The steady-state temperature satisfies the boundary value problem
v" =0, v(0) =40 and v'(30) = 0.
It easy to see we must have v(x) = 40. Express the solution as

u(z,t) =40+ w(z, 1),
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in which w satisfies the heat conduction problem

Wyy = Wi, 0<ax<30,t>0;
w(0,t) =0, w,(30,t) =0, t>0;
w(z,0)= —10—=x, 0<x<30.

As shown in Prob. 15, the solution is given by

00
_ _1)2.2 . nmx
w(sc t) _ c, e (2n 1)7rt/360087,n—,
)
n=1

60
in which
2 [* 2n — 1
Cn = Z/o f(x)sin%dx

I 2n — 1
=15 i (—10— x)sin%dz
_ 4060087’Lﬂ' - (2721 — )

(2n — 1) 72

Therefore the solution of the original heat conduction problem is

6 —(2n -1 2
cos nm — ( ? )T o~ (2n—1)7/3600 o VL
(2n — 1)"7? 60

u(z,t) =40+40 )

n=1

(b). t =10,30,50,70 sec :
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t = 100, 200, 300, 400 sec :

w =30

x=1a 204
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(c). Observe the concavity of the curves. Note also that the temperature at the insulated
end tends to the value of the fixed temperature at the boundary x = 0.

18. Setting A = p2, the general solution of the ODE X" + p2X = 0 is
X(2) = ke’ 4 ke 7,
The boundary conditions y’(0) = y'(L) = 0 lead to the system of equations

| why — gk2 =0 (%)
pkie™t — pk,e” " =0,

If © = 0, then the solution of the ODE is X = Az 4+ B. The boundary conditions
require that X = B.

If p # 0, then the system algebraic equations has a nontrivial solution if and only if the
coefficient matrix is singular. Set the determinant equal to zero to obtain

e~ b _ginl —
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Let 4 =v + 0. Then iyl =L — oL, and the previous equation can be written
as

eGLeAWVL __efaLezVL =0.

Using Euler's relation, e’ = cosvL + i sinvL , we obtain

—UL(

e"F(cosv —isinv) —e L(cosv +isinv)=0.

Equating the real and imaginary parts of the equation,

(e”L - e_”L) cosvL =0

(e”L + e_"L) sinvL = 0.

Based on the second equation, vL. = nmw, n € . Since cosnL # 0, it follows that

el =e L or et =1. Henceoc =0,and y=nw/L,n €.

Note that if o # 0, then the last two equations have no solution. It follows that the
system
of equations (x) has no nontrivial solutions.

20(a). Consider solutions of the form u(z,t) = X (x)T'(¢). Substitution into the partial
differential equation results in

*X'T =T’

Divide both sides of the differential equation by the product X7 to obtain
)(H IM
X Q2T

Since both sides of the resulting equation are functions of different variables, each must
be equal to a constant, say — A\. We obtain the ordinary differential equations

X'+AX=0and 7'+ a*T =0.
Invoking the first boundary condition,
u(0,t) = X(0)T(t) =0.
At the other boundary,
uy(L,t) +yu(L,t)=[X"(L)+~vyX(L)]T(t) =0.
Since these conditions are valid for all ¢ > 0, it follows that

X(0)=0and X'(L)+~vX(L)=0.
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(b). We consider the boundary value problem

X' +XX=0,0<z<0L; (%)
X(0)=0, X(L)+~vX(L)=0.

Assume that \ is real, with A\ = — p2. The general solution of the ODE is
X(z) = ¢icosh(ux) + cysinh(ux) .

The first boundary condition requires that ¢; = 0. Imposing the second boundary
condition,

¢y peosh(puLl) + vy cysinh(pul) = 0.
If ¢, # 0, then pcosh(puL) + 7 sinh(uL) = 0, which can also be written as
(n+7)e't = (+y)e ™ =0.

If vy = — p, then it follows that cosh(uL) = sinh(uL), and hence pp = 0. Ify # — p,
then e*f = e # again implies that u = 0. For the case . = 0, the general solution is
X(x) = Az + B. Imposing the boundary conditions, we have B = 0 and

A+~AL=0.
Ify= —1/L,then X(x) = Az is a solution of (x). Otherwise A =0.

(c). Let A = p?, with u > 0. The general solution of (*) is
X(x) = eicos(pux) + eysin(pr) .

The first boundary condition requires that ¢, = 0. From the second boundary condition,
¢y peos(pul) + vy casin(ul) = 0.
For a nontrivial solution, we must have

pcos(pL) + v sin(pL) =0.
(d). The last equation can also be written as
tanul = — ) (k)
g

The eigenvalues A obtained from the solutions of (), which are infinite in number.
In the graph below, we assume vL = 1.
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Denote the nonzero solutions of (k) by 14, o, i3, -+ .

(€). We can in principle calculate the eigenvalues )\, = u? . Hence the associated
eigenfunctions are X, = sin u,r . Furthermore, the solutions of the temporal equations
are T, = exp( — o®p? t). The fundamental solutions of the heat conduction problem
are given as

o2t
u,(z,t) = e “Felsin p,x,

which lead to the general solution

o0

—a2y? .
u(z,t) = E o e Fnlsin

n=1
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