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Section 3.3

1. Suppose that « f(t) + Bg(t) = 0, that is, a(t? + 5t) + 3(t* — 5t) = 0 on some
interval /. Then (o + 8)t* + 5(a — 8)t = 0,Vt € I. Since a quadratic .has at most
wo

roots, we must have o+ 3 =0 and o — 3 = 0. The only solutionis o = = 0.
Hence the two functions are linearly independent.

3. Suppose that e*cos ut = A eMsin ut, for some A # 0, on an interval . Since the
function sin ut # 0 on some subinterval 1, C I, we conclude that tan ut = A on I,.
This is clearly a contradiction, hence the functions are linearly independent.

4. Obviously, f(z) = e g(x) for all real numbers = . Hence the functions are linearly
dependent.

5. Here f(x) = 3¢(x) for all real numbers. Hence the functions are linearly dependent.

8. Note that f(x) = g(x) forxz € [0,00), and f(z) = — g(x) forz € (—0c0,0]. It
follows that the functions are linearly dependent on R* and R~ . Nevertheless, they are
linearly independent on any open interval containing zero.

9. Since W (t) = t sint has only isolated zeros, W (t) cannot identically vanish on any
open interval. Hence the functions are linearly independent.

10. Same argument as in Prob. 9.

11. By linearity of the differential operator, ¢y, and c,y, are also solutions.
Calculating

the WI‘OIlSkiaIl, W(clyl y ngg) — (Clyl)(CZyQ)/ - (Clyl)/(CQyQ) = C1Co W(yl ,y2> .
Since W (y, ,y,) is not identically zero, neither is W (c,y, , ¢yys) .

13. Direct calculation results in

W(a1y1 + asys, biyr + bng) = aleW(yl ,yQ) - b1G2W(y1 73/2)
= (a1b2 — agbl)W(yl 7y2) .

Hence the combinations are also linearly independent as long as a,b, — a,b, # 0.

14. Leta(i+j)+ S(i—j)=0i+0j. Thena+ =0 and o — =0. The only
solution is @ = 3 = 0. Hence the given vectors are linearly independent. Furthermore,
any vector ai+ a.j = (% +%)([i+j)+ (% —%)0i—1]).

16. Writing the equation in standard form, we find that P(t) = sint/cost. Hence the
Wronskian is W (t) = bexp(— [22Ldt) = bexp(In|cost|) = bcost, in which b is

cost

some constant.
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17. After writing the equation in standard form, we have P(z) = 1/x. The Wronskian
is W(t) = cexp( — [1dz) = cexp( — In|z|) = ¢/|z|, in which ¢ is some constant.

18. Writing the equation in standard form, we find that P(z) = — 2z/(1 — x?). The
Wronskian is W (t) = cexp( — [2dz) = cexp( —In|l — 2?|) = c|l —2?| ",
in which ¢ is some constant.

19. Rewrite the equation as p(t)y” + p'(t)y’ + q(t)y = 0. After writing the equation
in standard form, we have P(t) = p’(t)/p(t) . Hence the Wronskian is

W(t) = cexp(—/p (t)dt> — cexp(— Inp(t)) = ¢/p(t).

p(t)

21. The Wronskian associated with the solutions of the differential equation is given by
W (t) = cexp( — [Z2dt) = cexp(—2/t). Since W (2) = 3, it follows that for the
hypothesized set of solutions, ¢ = 3e. Hence W (4) = 3,/e .

22. For the given differential equation, the Wronskian satisfies the first order differential
equation W' + p(t)W = 0. Given that W is constant, it is necessary that p(t) = 0.

23. Direct calculation shows that

W(fg,fh) =(fg —(f9)'(fh)
=(f

W)= (f'g+ fa")(fh)

=)
S—
=
3‘\/
+
K.'1/'\«

25. Since y; and y, are solutions, they are differentiable. The hypothesis can thus be
restated as y, (ty) = y, (ty) = 0 at some point ¢, in the interval of definition. This
implies that W (y: , v2)(t,) = 0. But W (y,,v,)(ty) = cexp( — [p(t)dt) , which
cannot be equal to zero, unless ¢ = 0. Hence W (y, ,y,) = 0, which is ruled out for
a fundamental set of solutions.
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