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Section 6.4

2. Let h(t) be the forcing function on the right-hand-side. Taking the Laplace transform
of both sides of the ODE, we obtain

'Y (s) = sy(0) —y'(0) + 2[s Y (s) — y(0)] +2Y (s) = L[ (t)].
Applying the initial conditions,
s2Y(s) +25Y(s) +2Y(s) — 1 = L[h(t)].
The forcing function can be written as h(t) = u,(t) — ug.(t) . Its transform is

—TSs __ e—27rs

Solving for Y'(s), the transform of the solution is

1 e~ 6727r5

82+23—|—2+s(52+28+2)'

Y(s) =

First note that

1 1
s2+254+2  (s+1)7°+1

Using partial fractions,

1 111 (s+1)+1

s(s2+254+2) 25 2(s+1)7%4+1

Taking the inverse transform, term-by-term,

1 1 S
——— | =L|————| = ¢ 'sint.
s2+2s+2 (s+1)%+1
Now let
1
G(s) = .
() s(s? +2s+2)
Then
1 1 1
L7G(s)] = 3~ §e*tcost — —e'sint.
Using Theorem 6.3.1,
—11,—cs _ l _ 1 —(t—c) _ . _
L e “G(s)] = 2uc(t) 5¢ [cos(t — ¢) + sin(t — ¢)]u.(t) .

Hence the solution of the IVP is
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y(t) = e 'sint + 1u7r(1f) — %e(t”) [cos(t — ) + sin(t — m)|ux(t) —

2
1 1
— §u27r(t) + 56_@_2”) [cos(t — 2m) + sin(t — 27)]ua. (1) .

That is,

1 1
y(t) = e 'sint + i[uﬁ(t) — ug(t)] + 56_(’5_”) [cost + sint]u,(t) +
1

+ 567(“%) [cost + sintlug,(t) .

hit)

0.8

0.6

0.44

0.21

0.587

0.47

0.3

0.21

0.11

0 24 6 (8 t0 12 14

The solution starts out as free oscillation, due to the initial conditions. The amplitude
increases, as long as the forcing is present. Thereafter, the solution rapidly decays.

4. Let h(t) be the forcing function on the right-hand-side. Taking the Laplace transform
of both sides of the ODE, we obtain

Y (s) = sy(0) — y'(0) +4Y (s) = L[h(?)].

Applying the initial conditions,
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s2Y (s) +4Y(s) = L[h(t)].
The transform of the forcing function is

LIh@®)] =

1 + €_7TS
s24+1 s241°

Solving for Y'(s), the transform of the solution is

1 6777'8
D)2 +1) (A1)

Y(s) =

Using partial fractions,

1 B 1 1 B 1
(s2+4)(s2+1)  3|s2+1 s24+4]
It follows that
1 1 1
_1 _ - . - .
{(32—#4)(324—1)} —3[smt 5 sm2t].

Based on Theorem 6.3.1,

£ [ e Z); K 1)} _ % {sz’n(t - % sin(2t — 27)} un(t)

Hence the solution of the IVP is

() = S sint— = sin2t| — | sint+ = sin2t|u.(t)
= —|stnt — — stn — — | Sth — Sin Ur .
YW=3 2 3 2
hit)

1_

0.84

0.6

0.44

0.2
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0.4

¥it)
0.3
0.2
0.1
o 2 4 B : 10 12
0.1
0.2
0.3

Since there is no damping term, the solution follows the forcing function, after which
the response is a steady oscillation about y = 0.

5. Let f(t) be the forcing function on the right-hand-side. Taking the Laplace transform
of both sides of the ODE, we obtain

s Y (s) = sy(0) —y'(0) + 3[s Y(s) — y(0)] +2Y (s) = LIf(1)].
Applying the initial conditions,
s2Y(s) +3sY(s) +2Y(s) = L[f(t)].

The transform of the forcing function is

Solving for the transform,

v 1 67105
() = s(s24+3s+2) s(s2+3s+2)°

Using partial fractions,

Hence

Based on Theorem 6.3.1,

—10s
-1 € 1 —2(t-10 —(t—10)
£ {S(S2+3s+2)} = 5 (L e —2e7 Wy (1),

Hence the solution of the IVP is
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1)

0.8

0.6

0.47

0.21

U T 10 12 14 16 18 20

yit)
054
0.4
0.3
024

0.1

a 2':iéé=1t'u1'21'41ia1'82i3

The solution increases to a temporary steady value of y = 1/2. After the forcing ceases,
the response decays exponentially toy = 0.

6. Taking the Laplace transform of both sides of the ODE, we obtain

Y (s) — s(0) — y'(0) +3[s Y(s) — y(0)] +2Y(s) = & :

s
Applying the initial conditions,

6—25

s2Y(s)+3sY(s) +2Y(s) — 1=

S

Solving for the transform,
1 6725

82+3s+2+s(82+38+2)'

Y(s) =

Using partial fractions,
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1 1 1
$24+35+2 s+1 s+2

and

1 A, 2
s(s24+35+2) 2|s s+2 s+1]

Taking the inverse transform. term-by-term, the solution of the IVP is

1 1
y(t) =e ' —e 2+ {5 —e 72 4 562@2)} us(t) .
fit)
1_
0.5
067
0.4
0.2]
0 1 2 ? 4 5 5
¥t
0.5
0.4
0.3
0.2
0.1
g 2 1, 6 ! 10

Due to the initial conditions, the response has a transient overshoot, followed by an
exponential convergence to a steady value of y, = 1/2.

7. Taking the Laplace transform of both sides of the ODE, we obtain

6737&9

Y (s) = sy(0) —y'(0) + Y (s) =

S

Applying the initial conditions,
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6737rs
S2Y(s)+ Y(s)—s =
S
Solving for the transform,
—37s
s e
Y(s) = .
(s) s2+1  s(s2+1)
Using partial fractions,
1 1 S
s(s2+1) s s2+1

Hence

Y(s) =

S _*_67371'51_ S
s2+1 s 8241

Taking the inverse transform, the solution of the IVP is

y(t) = cost+ [1 — cos(t — 3m)]us,(t)
= cost + [1 + cost|us,(t).

fit)

0.51

067

0.47

0.24

g ﬁfiéE'i1iJ1'2t1'41'E1'82'02'22'4

il

o \Ué v 12 13@1'8 QEWQA
t
14

Due to initial conditions, the solution temporarily oscillates about y = 0. After the
forcing is applied, the response is a steady oscillation about y,, = 1.
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9. Let g(t) be the forcing function on the right-hand-side. Taking the Laplace transform
of both sides of the ODE, we obtain

s*Y (s) — sy(0) —y'(0) + Y (s) = L[g(t)].
Applying the initial conditions,
s*Y (s) +Y(s) — 1 = L[g(t)].

The forcing function can be written as

o) = 2[1 — ug(t)] + 3ug(t)

t 1
- — _(t— t
9 9 (t = 6)ug(t)
with Laplace transform
1 6765
Llgt)] = — —
[g( )] 282 282
Solving for the transform,
1 1 e %

Y(s) = — .
(s) s2+1 * 2s2(s24+1)  2s2(s?2+1)

Using partial fractions,

1 11 1
252(s2+1)  2|s2 s2+1)
Taking the inverse transform, and using Theorem 6.3.1, the solution of the IVP is
1 1
y(t) = sint + 5[75 — sint] — 5[(1& —6) — sin(t — 6)]ug(t)

1 _ 1 :
= 5[75 + sint] — 5[(15 —6) — sin(t — 6)]ug(t).

art)
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yt)

U754 % E'=1t|1'2t1}11i31'82'u2'2214

The solution increases, in response to the ramp input, and thereafter oscillates about a
mean value of y,, = 3.

11. Taking the Laplace transform of both sides of the ODE, we obtain

e~ T 6737r5
2Y(s) = 5y(0) = y'(0) +4Y(s) = —— = &
Applying the initial conditions,
—ms —3ms
9 e e
Y 4Y (s) = —

SV () +4Y () = =

Solving for the transform,
e~ TS efSTrs

Using partial fractions,
1 11 s
s(s24+4)  4|s s24+4]
Taking the inverse transform, and applying Theorem 6.3.1,

y(t) = iu — cos(2t — 2m)|us(t) — 3[1 — cos(2t — 67)]ug(£)

1

= Z[Uﬂ'(t) - USW(t)] - iCOS 2t - [uﬂ'(t) - u37"(t)] ’
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Since there is no damping term, the solution responds immediately to the forcing input.
There is a temporary oscillation about y = 1/4.

12. Taking the Laplace transform of the ODE, we obtain

S (s) — $25(0) — s%'(0) — 5" (0) — y"(0) — Y(s) = — —

Applying the initial conditions,

—5 —2s
4 e e
Y(s)— Y(s) = —
Y (s) = Vis) = = &
Solving for the transform of the solution,
e s 6*28

Yis) = s(st—1) s(st—1)"

Using partial fractions,

It follows that
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1 1

Based on Theorem 6.3.1, the solution of the IVP is

1
y(t) = = [ur(t) —ua(®)] + 5 [e=0Y D 1 2cos(t — 1)]us(t) —
1
~1 [e_(t_Q) +e2 £ 2cos(t — 2)]ua(t) .
ft)
1_
0.8]
0.6
0.4
0.21
0 27, 3 4 g
yit)
B_
E-
d_
2-
u 1 2 4 3 4 g

The solution increases without bound, exponentially.

13. Taking the Laplace transform of the ODE, we obtain
'Y (s) = s°y(0) — sy’ (0) — sy"(0) —y""(0) +
1
+ 5[82Y(s) —sy(0) —y'(0)] +4Y(s) = . ¢

—TSs

S

Applying the initial conditions,

6*7’1’8

s'Y (s) + 55%Y (s) + 4Y(s) = % -

Solving for the transform of the solution,
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1 6771'8
Y(s) = - .
() s(s*+5s2+4)  s(st+5s2+4)

Using partial fractions,

1 13 . s 4s
s(s* +5s2+4) 12|s s2+4  s24+1]°
It follows that
£t ! = i[34—005215—400515]
s(s* 4+ 5s% +4) 12 '
Based on Theorem 6.3.1, the solution of the IVP is
(1) = 211~ up(8)] + - [cos 2t — 4 cos ]
y(t) = 1 Uy 12 cos cos

— %[cos 2(t — ) — 4 cos(t —m)]ur(t).

That 1s,
(1) = ~[1 = un(t)] + — [cos 2% — dcos ]
y(t) =5 Un 15 lcos cos
1
— —[cos2t + 4 cost|u(t).
12
ft)
1
0.8
0.6
0.41
0.2
S TR - D T T AT
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yit)
0.6
0.4
0.24
2 ] : ]

By ooz

After an initial transient, the solution oscillates about y,, = 0.

14. The specified function is defined by

0, 0<t<t
f)=3 2t—t), ty<t<t +k
h, t>t +k

which can conveniently be expressed as
h

P = 00— to) i (8) = (0t — K g (0).

15. The function is defined by

0, 0<t<t
(1) = Lt —t), ty<t<t,+k
TIOZN bty —2k), ty+k<t<ty+2k
0, t>t, + 2k
which can also be written as
h 2h h
g(t) = E(t — to) Uto(t) — ?(t — to — k’) Ut0+k(t) + E(t — to — 2]{7) Ut0+2k(t).

16(d). From Part (c), the solution is

Mﬂzz#nwxwh(t—g)—ﬂMuwxﬂh(t—§),

where

1
4 84 8 4

7 37t 1 37t
— £ e”%in(—) — e M3¢cos (%)

Due to the damping term, the solution will decay to zero. The maximum will occur
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shortly after the forcing ceases. By plotting the various solutions, it appears that the
solution will reach a value of y = 2, aslong as k > 2.51.

(e).
uft)y [k=21]

163

1.4]

123

“I_

063

06

043

023

ool 2 U 10 th 18,20 22 24726 28 30
0.4

0.6
0.8
RE

Based on the graph, and numerical calculation, |u(t)| < 0.1 for ¢ > 25.6773.

17. We consider the initial value problem

Y+ Ay = %[(t S5 us(t) — (t— 5 — k) us (b)),
with y(0) =y'(0) =0.

(a). The specified function is defined by

0, 0<t<5
ft)=1< z(t=5), 5<t<5+k
1, t>5+k
fit
1_
081
06
0.44
0.2
o 2004 6 48 w12 14

(b). Taking the Laplace transform of both sides of the ODE, we obtain
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9 e
£Y(s) = sy(0) = y'(0) +4Y(s) = S5 —
Applying the initial conditions,

—5s e—(5+k)s

92 o e
s7Y(s)+4Y(s) = 2 he?

Solving for the transform,
—5s e—(5+k)s

ks2(s>+4)  ks?(s2+4)°

1 1
s s244]

Y(s) =

Using partial fractions,
1
s2(s2+4) 4
It follows that
1
S Frsey
Using Theorem 6.3.1, the solution of the IVP is

y(t) = LIh(t — 5)us(t) — h(t — 5~ K usa )]

1 1

in which h(t) = §t — §sin2t.

(c). Note that for ¢ > 5 + k, the solution is given by

1 1 1

= - — —sin(2t —1 — sin(2t — 10 — 2

y(t) 1 8k8m< t—10) + % sin(2t — 10 — 2k)

1 sink

= - — 2t — 10 — k).
1 P cos(2t — 10 — k)

So for t > 5 + k, the solution oscillates about y,, = 1/4, with an amplitude of
|sin (k)|
A= )
4k
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0.44

0.31

0.21

0.11

k=3

0.2624
0.26
0.2587
0.2569
0.2544
0.2524
0.254
0.2487
0.246
0.2444
0.2424
0.244
0.2384

10 12 14

0.281

0.26

0.241

0.22

16 18 20
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18(a).

fit) [k=2]

0.243
0.224

0187
0.167
0147
0124

0.084
0.064
0.047
0.024

(b). The forcing function can be expressed as

Fult) = g (1) — (1)

Taking the Laplace transform of both sides of the ODE, we obtain
—(4—k)s

e ef(
s Y (s) — sy(0) —y'(0) + %[s Y(s)— y(0)] +4Y(s) = ST

4+k)s

Applying the initial conditions,

—(4—k)s

1 e 67(
2 L _ _
s°Y(s) + 3SY(3) +4Y(s) T T

4+k)s

Solving for the transform,
3 67(4*]6)8 3 67(4+k‘)s

Y(s) = - .
() 2ks(3s2+s+12)  2ks(3s® + s+ 12)

Using partial fractions,

1 1 1+ 3s
s(3s2+s54+12) 12 352 4+ 5+ 12

Let

It follows that
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vV 143

143t
5 .
Based on Theorem 6.3.1, the solution of the IVP is
y(t) =h(t —4+k)us 4 (t) —h(t —4 — k) ug 1 (2) .

0.17
0.054
0.06 4
0.041
0.0z /\

0 A5 20
o] \/ E‘\/ V15 B 2

1 el 143 ¢
h(t) = £7H(s)] = o - e8k [ sm< . ) + cos

-0.044

A Lo

0 R
ool v \)q 1V14 YE 1820

0.1

0157

0.39

0.2 /\
0.1

2 va\?/\vﬁ\w 1820
0.1

[

0.21

As the parameter k decreases, the solution remains null for a longer period of time.
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Since the magnitude of the impulsive force increases, the initial overshoot of the
response also increases. The duration of the impulse decreases. All solutions eventually
decayto y = 0.

19(a).

0737788 8 0 1z 14 1B 18
t

(c). From Part (b),

u(t) =1—cost + 2&( — D1 = cos(t — k)] (t).
k=1

304
204

10+

-104

ﬁh/\EJ\ﬂD o, [ ko) | g0
vv\/\/

204

-301
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21(a).

189
167
1.4
124

0.84
064
0.49
0.2

R M R T T TR TR
t

2_
1.84
1.6
1.44
1.24

1
0.8
0.6
0.4
024

D777 46 8 10 12 14 16 18
t

(b). Taking the Laplace transform of both sides of the ODE, we obtain

n - keflmrs
SU(s) - su(0) —u'(0) + U(s) = L4 2D

S h—1 S

Applying the initial conditions,

n k_—kns
32U(s)+U(s)=§+Zﬂ
k=1

. .
Solving for the transform,

n _ ke_kﬁs
U(S) — ; + ZL .

s(s2+1)

Using partial fractions,

Let

page 303



CHAPTER 6. ——

h(t) = L‘l[s( !

T]_):| =1—-cost.

Applying Theorem 6.3.1, term-by-term, the solution of the IVP is

u(t) = h(t) + zn:( — DFR(t — k) (t).
k=1

Note that
h(t — km) = u(t — km) — cos(t — k)
= u,(t) — (= DFcost.
Hence
u(t) =1—cost+ Z( — )"y (t) — (cos t)Zuk.W(t) .
k=1 k=1
(c).

164
144
124

.y
[ =
TR

on Bors
TR

A AT
AT

10
121
14
164

The ODE has no damping term. Each interval of forcing adds to the energy of the
system.

Hence the amplitude will increase. Forn = 15, g(¢) = 0 when ¢ > 157 . Therefore the
oscillation will eventually become steady, with an amplitude depending on the values of
u(157) and w'(157).

(d). As n increases, the interval of forcing also increases. Hence the amplitude of the

transient will increase with n. Eventually, the forcing function will be constant. In fact,
for large values of ¢,

1, neven
g(t) = {0, n odd

Further, for t > n,
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1—(-1)"
u(t)zl—cost—ncost—%

Hence the steady state solution will oscillate about 0 or 1 , depending on n, with an
amplitude of A =n+1.

In the limit, as n— oo, the forcing function will be a periodic function, with period 27 .
From Prob. 27, in Section 6.3,

1

Llg(t)] = sAte )

As n increases, the duration and magnitude of the transient will increase without bound.

22(a). Taking the initial conditions into consideration, the transform of the ODE is

k —k7rs
s2U(s) +0.1sU(s) + ——-I-Z
Solving for the transform,
1 ( . 1)k —kms
Ul(s) =
O = P ots+ 1) Z: (2+01s+1)
Using partial fractions,
1 1 5+0.1

s(s?+0.1s+ 1) T s S2401ls+1°

Since the denominator in the second term is irreducible, write

s+0.1  (s+0.05)+0.05
s2+0.1s+1  (s+0.05)* + (399/400) -

Let

Ay (3-50.05) - 0.05 ]
s (s+0.05)% +(399/400) (s 4 0.05)% + (399/400)

Lt/ v/ 399 1 . v/ 399
= e cos| ——t | + sin t]]|.
20 \/399 20

Applying Theorem 6.3.1, term-by-term, the solution of the IVP is

= h(t) + Z( — 1)*h(t — k) u(t) .
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For odd values of n, the solution approaches y = 0.

n==5a

/\A/\/\f\r\
vvvyvm

)

For even values of n, the solution approaches y = 1.

n=6

| /\1\ |
i

(b). The solution is a sum of damped sinusoids, each of frequency w = /399 /20 ~ 1.
Each term has an 'initial' amplitude of approximately 1. For any given n, the solution
contains n + 1 such terms. Although the amplitude will increase with n, the amplitude
will also be bounded by n + 1.

(c). Suppose that the forcing function is replaced by ¢(t) = sint. Based on the

methods
in Chapter 3, the general solution of the differential equation is

c cos( /399 t) + ¢y sin( /399 t)

+ u,(t).

_ /20
u(t) = e 20 20

Note that u,(t) = Acost + B sint. Using the method of undetermined coefficients,
A= —10 and B = 0. Based on the initial conditions, the solution of the IVP is
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\/ 1 \/
u(t) =10 e 20 cos 399 t] + sin 399 t —10cost.
20 \/399 20

Observe that both solutions have the same frequency, w = 1/399/20 ~ 1.
urt)

—_
o
1 1

—
——

e B = I S e
R

I
=
=
=
[}
-

L,
=]
o

23(a). Taking the initial conditions into consideration, the transform of the ODE is

k e~ (11k/4)s
s*U(s)+U(s) = = + 2 Z
Solving for the transform,
k o—(11k/4)s
U 2
(s) = + Z 82 +1)

Using partial fractions,

Let
— | =1 t.
332+1)} cos

Applying Theorem 6.3.1, term-by-term, the solution of the IVP is

D425 (= fnfe- BE Uya(t)
EEPNESI(EE < PO

That is,
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u(t) =1 — cost + 2;”:( —1)* [1 — cos (t - %)] Uy (t) .

=1

n=235

bk
=

/ .
AR

!

(c). Based on the plot, the 'slow period' appears to be 88. The 'fast period' appears to
be about 6. These values correspond to a 'slow frequency' of w, = 0.0714 and a 'fast
frequency' w; = 1.0472.

(d). The natural frequency of the system is wy, = 1. The forcing function is initially
periodic, with period T'= 11/2 = 5.5. Hence the corresponding forcing frequency is
w = 1.1424 . Using the results in Section 3.9, the 'slow frequency' is given by

g = 2 =0.0712
2
and the 'fast frequency' is given by
Wy = |w—;w0| = 1.0712.

Based on theses values, the 'slow period' is predicted as 88.247 and the 'fast period' is
given as 5.8656.
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