CHAPTER 5. ——

Section 5.2

1. Lety = ay + a1z + ax® + --- + a,z" + ---. Then

o0 [e.0]
Z (n—1Dayz"" :Z (n+2)(n+1)ay22".
= n=0

Substitution into the ODE results in
o0 o0
Z (n+2)(n+ Dayoz" — Z apz" =0
n=0 n=0
or

Z n+2)(n+1)ay2 —ay)z” =0.

Equating all the coefficients to zero,
(n+2)(n+1aps2 —a, =0, n=0,1,2,--

We obtain the recurrence relation

Qn
n - , :(Ll,Qf-n
B (e § ) R
The subscripts differ by two, so for £ =1,2,---
P a2k—2 _ a9k —4 _ _ ag
T 2k—1)2k  (2k —3)(2k — 2)(2k — 1)2k (2k)!
and
a e a2k71 e a2k73 — e — L
T ok(2k+ 1) (2k — 2)(2k — 1)2k(2k + 1) (2k +1)!°

Hence

0 1@k+1

oo .2k
Yy = ao tar) oo
DR it e

The linearly independent solutions are

r?  xt af
ylzao(l—l—a—kﬁ%—ﬁ—k ):aocoshx

B 2 2 B nh
Yo = G x—|—§+5 +F+ =a18tnhx.
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4. Lety = ay + ax + ax> + --- + apx™ + ---. Then
[e.¢] 0
Z (n—1)a,z" :Z (n+2)(n+ 1)a,2z".
n= n=0
Substitution into the ODE results in
o0
Z (n 4 2)(n + Day 22" + k*x QZanx =0.
= n=0
Rewriting the second summation,
o0
Z n+2)(n+ a2 x" +Zk¢ an_o " =0,
n=>0 n=2
that is,
o
2a9 +3-2a3x + Z [(n+2)(n+ 1agss + k*ap_o]z" = 0.
n=2
Setting the coefficients equal to zero, we have ay = 0, a3 =0, and
(n+2)(n+ Daps + k*a,_ o =0, for n=2,34,--
The recurrence relation can be written as

k2an—2
= — , n=23.4,-
Int2 mt2)n+r1)’ "

The indices differ by four, so a4, ag, a,,,--- are defined by

k2a0 k2a4 k2a8
4= — ——,08= — ——,0)p = — —(———
4 4.3 "8 8.7 " 12-11°
Similarly, a5, a9, a,3,--- are defined by
k2a1 k2a5 k2a9
ar = — ———, Qg = — —— , Qi3 = —
’ 5.4° 7 9.8 " 13-12°

The remaining coefficients are zero. Therefore the general solution is

kQ 4 k4 8 kﬁ 12
— 1— 2 _ .
Y “O{ 13" T8 743" "2nsr4a3 T }+
+a’1[x_5_4x T9 854" " 1312.9.84.4" +}

Note that for the even coefficients,
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k2a4m—4
m= - — =1,2,3,---
“ (4m—Dam>
and for the odd coefficients,
k2a4m73
m = - —, :1,2,37"'
(Hm-+1 dm(@m+1)°

X (
- Z: T (4m+3)(4m+4)

B 0 (_1)m+1(k2x4)m+1
p(z) =2 1+Z4.5.8.9---(4m+4)(4m+5)

6. Lety = ay + a,x + axx® + --- + a,z" + ---. Then

[0.9] o
= E na,T E (n+ Day1z"
n=1 n=>0

and

:i (n —1)a,a” :in—i—2 Y(n 4+ Dagyox".

n=

o

Substitution into the ODE results in

o0

o0 o0
(2 + xz)z (n+2)(n+1)ay22" — :L’Z(n + Dapz" + 42 a,z" = 0.
n=0 n=0 n=0

Before proceeding, write

o o
Zn—I—Z Dayiox Z (n —1)a,z"

and

o0
E n+1 aon = E n T
n— n=1

It follows that

o0

dag + 4as + (3a1 + 12a3)x Z (n+2)(n+1)ap2 +n(n — 1a, nan—|—4an]xn =0.
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Equating the coefficients to zero, we find that ay = — ag, a3 = — a1/4, and

n?—2n+4
2(n+2)(n+1)

The indices differ by two, so for £k =0,1,2,---

Apy2 = — ap , 7’L:0,1,2,"'

o (2k)? — 4k + 4 .
HET T o0k+2)(2k+1)
and
(2k +1)* — 4k + 2
agk+3 = —

2(2k + 3)(2k + 2) "

Hence the linearly independent solutions are

4 :L‘6

X
—1— -
()— IL‘_3+7_£L‘5 19:1:7_1_
P =T T 160~ 1920

7. Lety = ay + a1z + axx® + --- + a,z" + ---. Then

o0 o
:Z na,x"" :Zn—l—lanﬂx

=0

3

and
o 0
Z (n—1)a,z" :Zn+2(n+1)an+2x
= n=
Substitution into the ODE results in

i n+2)(n+1)ayoz" —I—xz (n+ 1Da 12" +22an:1: =0.

First write

o0

o.¢]
QJ'Z(TL + Day12" = Zn apx".

n=0 n=1

We then obtain

o0
2a9 + 2a¢ + Z[(n +2)(n+ 1)ay2 + na, + 2a,]z" =0.

n=1
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It follows that as = — ap and a2 = —a,/(n+1),n=0,1,2,---. Note that the
indices differ by two, so for k =1,2,---
a = — a2k—2 = A2k—4 — ces — ( _ 1)ka0
2 2k —1  (2k—3)(2k — 1) 1-3-5---(2k —1)
and
o oamer ays (= Dfa
A2k+1 = — = == :
2k (2k —2)2k 2.4-6--(2k)
Hence the linearly independent solutions are
2 4 6 0 n, on
x x x (- 1"z
n(@) 1713 135 +nzll 3-5--(2n—1)
3 5 7 % n_on+1
x x x (- 1"z
(@) =z -5+ 5 - 2-4-6+"'_x+;2-4-6---(2n)'
9. Lety = ay + a1z + axx® + --- + a,z" + ---. Then
:Znan Z n—|—1 an+1£C
n=1 n=>0
and
Z Dayz (n+2)(n+1)ay2z"
n= n=0
Substitution into the ODE results in
(1 —|—;1;2)Z (n+2)(n+1a,22" —43:2 n+ 1)a, 12" +62 axz” =0.
n=>0 n= n=>0

Before proceeding, write

o0

in—l—Z Dayox Z (n —1a,z"

and

It follows that
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o0
6ag + 2as + (2a1 + 6az)x + Z [(n +2)(n+ Dapgo + n(n — Da, — 4na, + 6a”]$n =0.
n=2
Setting the coefficients equal to zero, we obtain as = — 3ag, a3 = — a1/3, and
(n—2)(n - 3)

Qpy2 = — Ay, n:0,1727""

(n+1)(n+2)

Observe that for n = 2 and n = 3, we obtain a4 = a5 = 0. Since the indices differ by
two, we also have a,, = 0 for n > 4. Therefore the general solution is a polynomial

y = ag + a1 — 3agxr® — a12°/3.
Hence the linearly independent solutions are

yi(r) =1—32> and y(z) =z —2°/3.

10. Lety = ay + a1z + ax® + --- + a,z" + ---. Then
o
Z (n—1Dayz"" :Z (n+2)(n+1)ay22".
= n=0
Substitution into the ODE results in
o
( — 22 Z (n+2)(n+ a2 x" —I—QZanx =0.
n=0 n=0

First write
a:QZ (n+2)(n+ Day22" = Z n(n —1)a,z"
n=0
It follows that

2ag + 8as + (2a1 + 24a3)x + Z [4(n+2)(n + Va2 — n(n — 1)a, + 2a,]x" = 0.

We obtain as = — ag/4,a3 = —ay/12 and
4(n+2)apio =(n—2)a,, n=0,1,2,---.

Note that for n = 2, a4, = 0. Since the indices differ by two, we also have as;, = 0 for
k =2,3,---. On the other hand, for k = 1,2, ---,

(2k — 3)a2k_1 . (2k' — 5)(2k — 3)a2k_3 o — a

42k +1) 422k -1)(2k+1) 4Rk —1)(2k+1)°

a2k+1 =

Therefore the general solution is
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$2 00 x2n+l
Yy =ay+ ax —ay—

4 alnzlzw(m —1)(2n+1)"

Hence the linearly independent solutions are y,(z) = 1 — z?/4 and

2n+1

T o0
B =T =5 -9 T T Z Cn—-1D)@n+1)

11. Lety = ay + a1z + aa® + --- + a,z" + ---. Then

o0 o0
y' = E na,x"” E (n+ Da,qz"
n=1 n=0
and

= Z n(n —1)a,z"? = Z(n +2)(n+ 1)ayi92".
n=2

n=

o

Substitution into the ODE results in

oo o
Zn+2 (n+ 1Day2z" — Zn—klanﬂx —Zanm =0.
= = n=>0

Before proceeding, write

o0
QZ (n+2)(n+ a2z Z (n—1)a,z"
n=0 n=
and
o0 o0
QJ'Z(TL + Day12" = Zn apx".
n=20 n=1
It follows that
o0
6as — ap + ( — 4ay + 18as)x + Z [B(n +2)(n + 1)ay2 — n(n — a, — 3na, —a,)z" = 0.
n=2

We obtain ay = a¢/6, 2a3 = a1/9, and
3(n+2)apo =(n+1)a,, n=0,1,2,---
The indices differ by two, so for £ =1,2,---

. <2k— 1)a2k_2 . (2k—3)(2k— l)agk_4 o 3'5"'(2]6— 1)&0
T30 0 322k—2)(2k) 3F-2-4---(2k)

and
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(2k)agk—1 (2k — 2)(2k)agk—3 2:4-6---(2k) ay
a = = — .
P32k + 1) 322k — 1)(2k + 1) 35.3-5---(2k + 1)

Hence the linearly independent solutions are
x?  at 5af X 3-5---(2n — 1)z
nw) =1+t o T +nzl 37-2-4--(2n)
223 8x° 1627 X.2-4-6---(2n) x>t
velr) =2+ 5=+ 13+ ot +"'_x+z3 35-(2n+1)

n=1

12. Lety = ay + a1z + ax® + --- + a,z" + ---. Then

0 0
y/ = Z nanm”_l = Z(’I’L + 1)an+1:c”

n=1 n=0

and

[e.¢] 0

Z n(n —1)a,z" * = (n+2)(n+1)a,2z".

n= n=0

Substitution into the ODE results in
o0 [e.0] o0
(1-— :I?)Z (n+2)(n+ Dagox" + :I:Z(n + Dap1z" — Z apz” =0.
n=0 n=0 n=0
Before proceeding, write
o o

x Z (n+2)(n+ 1ag22" = Z(n + Dnayz”

n=>0 n=1

and

o0 o0
x E (n+ 1a,12" = E na,x"
n=0 n=1

It follows that

2a9 — ap + Z [(n+2)(n+ Dapi2 — (n+ Dnaysr + na, —ay)z" = 0.
n=1
We obtain as = ay/2 and
(n+2)(n+1aps — (n+1)napm + (n—1)a, =0

for n =0,1,2,---. Writing out the individual equations,
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3-2a3——2-1a2::0
4-3a4—3'2a3+a2:0
5-4da5—4-3as+2a3=0
6-5a6—5~4a5+3a4=0

The coefficients can be calculated successively as a3 = a¢/(2-3), ay = a3/2 — ay/12
= ap/24, a5 = 3a4/5 — a3/10 = ao/120, ---. We can now see that forn > 2, a,, is
proportional to ag. In fact, forn > 2, a, = ag/(n!). Therefore the general solution is

a ZE2 a 1133 a 334

o T3 T

y=ay+ax+

Hence the linearly independent solutions are y,(z) = x and

x)zl%—ii—?.
n=2"""

13. Lety = ay + a1,z + a2’ + --- + a,z" + ---. Then

o0 o0
y' = Z na,z" ' = Z(n + Dap1z"
n=1 n=0
and
o0 o
Z (n — Dayz"™ =Zn+2(n+1)an+2x

o

n=

Substitution into the ODE results in

2 Z (n+2)(n+ 1apo 2" + $Z(TL + Day, 2" + BZ ap,z” =0.
n=0

n=>0 n=>0

First write

[e.¢] o0
x E (n+ 1Da,12" = E na,x"
n=0 n=1

We then obtain

4das + 3ag + Z[Q(n +2)(n+ 1)ayi2 +na, + 3a,]z" =0.
n=1

It follows that as = — 3ay/4 and
2(n+2)(n+ Dayo+ (n+3)a, =0
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forn =0,1,2,---. The indices differ by two, so for k =1,2,---
(21{? —+ 1)@2]@,2 . (2]{3 — 1)(2]{3 —+ 1)@2]@,4

G T T 90k — 1)(2k) | 22(2k — 3)(2k — 2)(2k — 1)(2k)
(=135 (26 + 1)
- ok (2k)! o
and
a _ (2]{3 + 2)&2]@,1 _ (2k)(2]€ + 2)a2]€,3 _
bt 2(2k)(2k +1)  22(2k—2)(2k— 1)(2k)(2k + 1)
(DM 6ER)RE )
2k (2k +1)! b
Hence the linearly independent solutions are
3 5 7 — ~(2n+1)
—q1_2232 4 O 2n
n(@) = 1= gat o+ goat = g+ nzo on ( 2n) ’
_ s, 15 7 _ ~(—1)"-6--2n+2) 5,4
A R TR 2 9" (2n + 1)
15(a). From Prob. 2, we have
x 113'2” x 2nn!$2n+l
= — and yo(x) =
;]2 n = 2n+1)

Since ayp = y(0) and a; = y'(0), we have y(z) = 2y,(x) + yo(z). That s,

1 1 1 1
y(z) :2—|—:z:—|—x2—|—§a:3—|— Zx4—|—1—5x5+ ﬁxﬁ—i—m.
The four- and five-term polynomial approximations are
pr=2+z+z°+2°/3
ps=2+z+2*+2%/3+2"/4.
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Partial Sums - p4 is solid

408 06 04 02 02 04,06 08 1

(¢). The four-term approximation p, appears to be reasonably accurate (within 10%)
on the interval |z| < 0.7.
17(a). From Prob. 7, the linearly independent solutions are

-1 nx2n

00 ( )
() :1+;1.3.5...(2n—1)

Since ayp = y(0) and a; = y'(0), we have y(z) =4y, (x) — yo(z). That s,
1 4

1 4
:4_ _42 =3 -4 -5 76
y(z) r —4x” + 5% + 3% g% T % +

The four- and five-term polynomial approximations are
1
p4:4—33—4x2+§x3

1 4
p5:4—x—4x2+§x3+§:134.
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Partial Sums - pd is solid

A 05 05 04 02 02 04,06 08 1

(c). The four-term approximation p, appears to be reasonably accurate (within 10%)
on the interval |z| < 0.5.

18(a). From Prob. 12, we have

oo xn
p(e)=1+3 0 and (o) ==,
n=2""

Since ap = y(0) and a; = y'(0), we have y(x) = — 3y, (z) + 2y,(x). Thatis,
3 1 1 1 1
- _ 2 22 -3 -4 5 6
ylo) = =3+ 20— ga” = 5w — g = 5%~ 5pp”

The four- and five-term polynomial approximations are

3 1
P4 = —3+2$—§$2—§$3

3 1 1
ps = —3+2x—§x2—§x3—§x4.
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Partial Sums - pd is solid

A4 708 04 D02040608 11214
H

(c). The four-term approximation p, appears to be reasonably accurate (within 10%)
on the interval |z| < 0.9.

20. Two linearly independent solutions of Airy's equation (about x, = 0) are

o 3n

yi(z) = 1+22~3---(3n— 1)(3n)

371+1

T Z 3.4---(3n)@Bn+1)
Applying the ratio test to the terms of y, (),
2-3--3n — 1)(3n) 2*" 3| 1

lz> = 0.

li =1
n5o]2-3--(3n + 2)(3n + 3) 23] noo (3n + 1)(3n + 2)(3n + 3)

Similarly, applying the ratio test to the terms of y,(x),

|3-4---(3n)(3n + 1) z*" ™| , 1
lim =

— 1 5=0.
R o POt g gy e R v o e

Hence both series converge absolutely for all x .

21. Lety:a0+a1x+a2x2+---+anx”+---. Then

00 00
y/ = Z nanx Z n + 1 (17,+1.717

n=1 n=>0

and
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o0 o
Z (n — Dayz"™ =Zn+2(n+1)an+2x

n=0
Substitution into the ODE results in
(0.0
Z (n+2)(n+ a2 2" —2932 (n+1ay 12" +)\Zanaz =0.
= n=>0 n=0

First write

[e.¢] o0
x E (n+ 1a,12" = E na,x"
n=>0 n=1

We then obtain

2a, +)\a0+2[(n+2)(n+ Va2 —2na, + Aa,)z" =0.

n=1
Setting the coefficients equal to zero, it follows that

(2n — \)
(nt+ Dn+2) "

Ap4+2 =

for n =0,1,2,---. Note that the indices differ by two, so for k =1,2,---
(4k —4 — )\)CLQ}C,Q . (4]€ —8— )\)(4]6 —4 — )\)agk74 .

as = (2k —1)2k  (2k —3)(2k — 2)(2k — 1)2k
B 1k)\...(/\_4k;+8)()\—4k+4)
= (-1 (2k)! -

and

@k —2—-XNag1  (4k—6—-N)(4k —2— Nag-—3

GRS TRk 1 1) (k—2)@k—12k@k+ 1)
A2 (A -k 4 6N — 4k £ 2)
=(=1 2k + 1) o

Hence the linearly independent solutions of the Hermite equation (about x, = 0) are

A(A—4 AA—=4)(A—8
2 A0 MO0

Yo(r) =2 — )\?)_!251:3+ ()\_2;(!)\_6)335 _ =2 ;!6)()‘_ 10)$7+

(b). Based on the recurrence relation
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(2n — )
(n+D(n+2) ™

Qpy2 =

the series solution will terminate as long as \ is a nonnegative even integer. If A = 2m,
then one or the other of the solutions in Part (b) will contain at most m/2 + 1 terms. In
particular, we obtain the polynomial solutions corresponding to A = 0,2,4,6, 8,10 :

A=0 |wyl(z )—1

A=2 | (@)=

A=4 yl(:v)—l—Qx

A=6 |y(x)=x—22%/3

A=8 |y(x)=1-42>+ 42/3
A=10 | yo(x) = ¢ — 423 /3 + 425 /15

(c). Observe that if A = 2n, and ag = a; = 1, then

p2n---(2n — 4k 4+ 8)(2n — 4k + 4)

aze = (= 1) (2h)!

and

r(2n—2)---2n —4k+6)(2n — 4k + 2)
(2k + 1)! ’

fork =1,2,---[n/2]. 1t follows that the coefficient of 2", in y, and y,, is

agprr = (—1)

(—1)]“2““)' for n = 2k

(—l)k(ifl') for n =2k + 1

Ay =

Then by definition,

Hn(x) = { (- ) 2 Ejkk)' yl('%.) =(- 1)k %yl(ﬂf) for n = 2k

(— 0 2 S () = (- ) 26 () for n =2k + 1

Therefore the first six Hermite polynomials are

= 162* — 482% + 12
= 322° — 1602° + 120z

23. The series solution is given by
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1 1 1 1
y(ill')=1—|-—£lj2—|— 4 6 8_‘_.__

2 92917 T osgt Tt iy
Partial Sums

?_

6_

54

24. The series solution is given by

4 :IZ'G .%'8

X
1?4 24
y() Tt T30 120"

Partial Sums
2_

N R

25. The series solution is given by

3 5 7 9

(@) =c— %+ 5 +
y\aw == 2.4-6-8

x
2 2-4 2-4-6
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Parttial Sums
2_

26. The series solution is given by

3 5 $7 x9

12 240 2240 16128

Partial Sums
1.4

1.2

0.5
0.6+
0.44
0.24

2
0.4
06
087

| RE
é=_// -1.24

-1.44

27. The series solution is given by

(x)—l_x_4_|_x_8_ le +
YW =27 19 T 672~ 88704
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Partial Sums
1.2

+
0.8
0.6
0.4

0.2

-0.21

‘—h_‘_____r\i\_
5]

0.4

28. Lety = ay +a;x + ax® +--- +a,z" + ---. Then

o0 o0
y' = E na,x"” E (n+ Da,qz"
n=1 n=>0
and

= Z n(n —1)a,z"? = Z(n +2)(n+ 1)ay192".
n=2

n

o

Substitution into the ODE results in

o0

o
1—xz (n+2)(n+ 1ag2x" +xz n+ 1)a, 12" 2Zanx”:().

= n=0
After appropriately shifting the indices, it follows that

205 — 2a0+ Y _ [(n+2)(n + D)ansa — (n+ D)nanss + na, — 2a,)2" = 0.

n=1
We find that as = ag and
(n+2)(n+1)ap2 — (n+1)nays + (n—2)a, =0
for n =1,2,.--. Writing out the individual equations,

3'2@3—2'10,2—0,1:0
4-3a4—3-2a3:O
5-4a—4-3a4+a3=0
6-5a¢—5-4a5+2a4=0

Since ag = 0 and a; = 1, the remaining coefficients satisfy the equations
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3:-2a3—1=0
4-3a4—3-2a3=0
5-4da5—4-3a4+a3=0
6-5a¢—5-4a5+2a4=0

Thatis, a3 = 1/6,a4 = 1/12,a5 = 1/24,a¢ = 1/45,---. Hence the series solution
of the initial value problem is

1 1 1 1 13
yr)=z+ —2* + —a'+ =2 + —2f +

[ 7 .« oo
6 12 24" T 15 008" T

Partial Surns
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