CHAPTER 1. ——

Section 1.2

1(a) The differential equation can be rewritten as

dy
5—y

=dt.

Integrating both sides of this equation results in — [n|5 — y| =t + ¢, or equivalently,
5—y=ce '. Applying the initial condition y(0) = y, results in the specification of
the constant as ¢ = 5 — y,. Hence the solutionis y(t) =5+ (y, — 5)e " .
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All solutions appear to converge to the equilibrium solution y(¢) = 5.

1(c). Rewrite the differential equation as

d
b _ .
10 — 2y

Integrating both sides of this equation results in — %ln|10 —2y|=t+cy,or
equivalently,

5 —y = ce 2. Applying the initial condition 3(0) = y, results in the specification of
the constant as ¢ = 5 — . Hence the solution is y(¢) =5 + (y, — 5)e .
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All solutions appear to converge to the equilibrium solution y(¢) = 5, but at a faster rate
than in Problem la .

2(a). The differential equation can be rewritten as
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d
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Integrating both sides of this equation results in In|y — 5| = ¢ + ¢; , or equivalently,
y — 5= ce'. Applying the initial condition y(0) = ¥, results in the specification of
the constant as ¢ = y, — 5. Hence the solution is y(t) = 5 + (y, — 5)e’.

All solutions appear to diverge from the equilibrium solution y(¢) = 5.

2(b). Rewrite the differential equation as

dy
2y —5

dt .

Integrating both sides of this equation results in %ln!Qy — 5| =t + ¢, or equivalently,
2y — 5 = ce* . Applying the initial condition y(0) = ¥, results in the specification of
the constant as ¢ = 2y, — 5. Hence the solution is y(t) = 2.5 + (y, — 2.5)e? .

104
¥it) /

J'a.rl_r1m.h.u:n0:|
Fr |

All solutions appear to diverge from the equilibrium solution y(t) = 2.5.

2(c). The differential equation can be rewritten as

d
A
2y — 10

Integrating both sides of this equation results in %ln|2y — 10| =t + ¢, or equivalently,
y — 5 = ce? . Applying the initial condition 3(0) = y, results in the specification of
the constant as ¢ = y, — 5. Hence the solution is y(t) = 5 + (y, — 5)e* .
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All solutions appear to diverge from the equilibrium solution y(¢) = 5.

3(a). Rewrite the differential equation as

dy
= dt
b—ay ’

which is valid for y # b /a. Integrating both sides results in =Lin|b — ay| =t + ¢, , or
equivalently, b — ay = ce *". Hence the general solution is y(t) = (b — ce ) /a.
Note that if y = b/a, then dy/dt = 0, and y(t) = b/a is an equilibrium solution.

(b)

0 02 04 t06 08 1

(i)  As a increases, the equilibrium solution gets closer to y(¢) = 0, from above.
Furthermore, the convergence rate of all solutions, that is, a , also increases.

(79) As b increases, then the equilibrium solution y(¢) = b/a also becomes larger. In
this case, the convergence rate remains the same.

(7i7) If @ and b both increase (but b/a = constant), then the equilibrium solution
y(t) = b/a remains the same, but the convergence rate of all solutions increases.

5(a). Consider the simpler equation dy, /dt = — ay, . As in the previous solutions, re-
write the equation as

dy:
()1

= —adt.

at

Integrating both sides results in y,(t) = ce”
(b). Now set y(t) = y,(t) + k, and substitute into the original differential equation. We
find that

page 9



CHAPTER 1. ——

—ay; +0= —a(y, +k)+0.

Thatis, —ak +b=0,and hence k =b/a.

(c). The general solution of the differential equation is y(¢) = ce * + b/a. This is
exactly the form given by Eq. (17) in the text. Invoking an initial condition y(0) = y,,
the solution may also be expressed as y(t) = b/a + (y, — b/a)e ™.

6(a). The general solution is p(t) = 900 + c €'/?, that is, p(t) = 900 + (p, — 900)e"/?.
With p, = 850, the specific solution becomes p(t) = 900 — 50¢"/. This solution is a
decreasing exponential, and hence the time of extinction is equal to the number of
months

it takes, say ¢, for the population to reach zero. Solving 900 — 50e’/? = 0, we find that
t; = 2In(900/50) = 5.78 months.

(b) The solution, p(t) = 900 + (p, — 900)e"/?, is a decreasing exponential as long as

Py < 900. Hence 900 + (p, — 900)e’/? = 0 has only one root, given by

900
to=on —— ).
J ”(900—;90)

(c). The answer in part (b) is a general equation relating time of extinction to the value
of
the initial population. Setting ¢; = 12 months , the equation may be written as
900 6

—— = 5

900 — py
which has solution p, = 897.7691 . Since p, is the initial population, the appropriate
answer is p, = 898 mice .

7(a). The general solution is p(t) = p, €. Based on the discussion in the text, time ¢ is
measured in months . Assuming 1 month = 30 days , the hypothesis can be expressed as
poe”! = 2p,. Solving for the rate constant, r = [n(2), with units of per month.

T™N/30

(b). N days = N /30 months. The hypothesis is stated mathematically as p,e™"° = 2p,

It follows that N /30 = In(2), and hence the rate constant is given by r = 30In(2)/N .
The units are understood to be per month .

9(a). Assuming no air resistance, with the positive direction taken as downward,
Newton's
Second Law can be expressed as

dv

m— =m
a9

in which g is the gravitational constant measured in appropriate units. The equation can
be
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written as dv/dt = g, with solution v(t) = gt + v,. The object is released with an
initial
velocity vy .

(b). Suppose that the object is released from a height of h units above the ground. Using
the

fact that v = dz/dt, in which z is the downward displacement of the object, we obtain
the

differential equation for the displacement as dz/dt = gt + v,. With the origin placed at
the point of release, direct integration results in z(t) = gt>/2 + v,t. Based on the
chosen

coordinate system, the object reaches the ground when z(¢) = h. Lett = T be the time
that it takes the object to reach the ground. Then ¢7?/2 + v,T = h . Using the
quadratic

formula to solve for 1",

— VoAV + 2gh
p .

T —

The positive answer corresponds to the time it takes for the object to fall to the ground.
The

negative answer represents a previous instant at which the object could have been
launched

upward (with the same impact speed ), only to ultimately fall downward with speed v, ,
from a height of A units above the ground.

(c). The impact speed is calculated by substituting ¢ = 7" into v(t) in part (a). That is,

v(T) = /vy + 2gh .

10(a,b). The general solution of the differential equation is Q(t) = ce ™. Given that
Q(0) = 100 mg, the value of the constant is given by ¢ = 100. Hence the amount of
thorium-234 present at any time is given by Q(¢) = 100 e . Furthermore, based on the
hypothesis, setting ¢ = 1 results in 82.04 = 100e™". Solving for the rate constant, we
find that » = — In(82.04/100) = .19796/week or r = .02828/day .

(c). Let T be the time that it takes the isotope to decay to one-half of its original
amount.

From part (a), it follows that 50 = 100 e "%, in which r = .19796/week. Taking the
natural logarithm of both sides, we find that 7" = 3.5014 weeks or T' = 24.51 days .

11. The general solution of the differential equation dQ/dt = —rQ is Q(t) = Qe ",
in which @, = Q(0) is the initial amount of the substance. Let 7 be the time that it takes
the substance to decay to one-half of its original amount, (), . Setting t = 7 in the
solution,

we have 0.5 Q, = Qe "". Taking the natural logarithm of both sides, it follows that
—r7 =1In(0.5) or r7 =1In2.
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12. The differential equation governing the amount of radium-226 is dQ/dt = —r @,
with solution Q(¢) = Q(0)e ™. Using the result in Problem 11, and the fact that the
half-life 7 = 1620 years, the decay rate is given by r = In(2)/1620 per year. The
amount of radium-226, after ¢ years, is therefore Q(¢) = Q(0)e 00012786 et T be
the time that it takes the isotope to decay to 3/4 of its original amount. Then setting
t="1T,

and Q(T) = 2Q(0), we obtain 3Q(0) = Q(0)e~ 0012767 " Solving for the decay
time, it follows that — 0.00042786 T = In(3/4) or T' = 672.36 years.

13. The solution of the differential equation, with Q(0) = 0, is
Q(t) = CV (1 — e lOR),
As t— o0, the exponential term vanishes, and hence the limiting value is @, = C'V.

14(a). The accumulation rate of the chemical is (0.01)(300) grams per hour. At any
giventime ¢, the concentration of the chemical in the pond is Q(t)/10° grams per gallon

Consequently, the chemical /eaves the pond at a rate of (3 x 107*)Q(t) grams per hour .
Hence, the rate of change of the chemical is given by
dQ

i 3 —0.0003Q(t) gm/hr.

Since the pond is initially free of the chemical, Q(0) = 0.

(b). The differential equation can be rewritten as

_ 4@

=0. dt .
10000 — 0.0003

Integrating both sides of the equation results in — (n[10000 — Q| = 0.0003t + C.
Taking

the natural logarithm of both sides gives 10000 — Q = c e %% Since Q(0) = 0, the
value of the constant is ¢ = 10000. Hence the amount of chemical in the pond at any
time

is Q(t) = 10000(1 — e~00%3%) orams . Note that 1 year = 8760 hours . Setting

t = 8760, the amount of chemical present after one year is Q(8760) = 9277.77 grams ,
that is, 9.27777 kilograms .

(c). With the accumulation rate now equal to zero, the governing equation becomes
dQ/dt = —0.0003 Q(t) gm/hr. Resetting the time variable, we now assign the new
initial value as Q(0) = 9277.77 grams .

(d). The solution of the differential equation in Part (c) is Q(t) = 9277.77 00003,
Hence, one year after the source is removed, the amount of chemical in the pond is
Q(8760) = 670.1 grams .
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(e). Letting t be the amount of time after the source is removed, we obtain the equation
10 = 9277.77 e700903¢ " Taking the natural logarithm of both sides, — 0.0003 ¢ =
= In(10/9277.77) or t = 22,776 hours = 2.6 years .

(f)

10000+
G000+
£000
4000 1

2000

U 3000 5000 10000 14000 18000 22000 25000
t

15(a). It is assumed that dye is no longer entering the pool. In fact, the rate at which the
dye leaves the pool is 200 - [¢(t)/60000] kg/min = 200(60,/1000)[q(t)/60] gm per hour

Hence the equation that governs the amount of dye in the pool is

d
d_jfl = —02q (gm/hr).

The initial amount of dye in the pool is ¢(0) = 5000 grams .

(b). The solution of the governing differential equation, with the specified initial value,
is q(t) = 5000 e 02,

(c). The amount of dye in the pool after four hours is obtained by setting ¢ = 4. That is,
q(4) = 5000 e~ "® = 2246.64 grams. Since size of the pool is 60, 000 gallons , the
concentration of the dye is 0.0374 grams/gallon .

(d). Let T be the time that it takes to reduce the concentration level of the dye to

0.02 grams/gallon . At that time, the amount of dye in the pool is 1,200 grams. Using
the answer in part (b), we have 5000 e~%2T = 1200 . Taking the natural logarithm of
both sides of the equation results in the required time 7" = 7.14 hours .

(e). Note that 0.2 = 200/1000. Consider the differential equation

@_ T
at 10001

Here the parameter r corresponds to the flow rate, measured in gallons per minute .
Using the same initial value, the solution is given by ¢(t) = 5000 ¢ "/ | In order
to determine the appropriate flow rate, set ¢t = 4 and ¢ = 1200. (Recall that 1200 gm of
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—r /250

dye has a concentration of 0.02 gm/gal). We obtain the equation 1200 = 5000 e
Taking the natural logarithm of both sides of the equation results in the required flow rate
r = 357 gallons per minute .
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