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Section 11.2

2. Based on the boundary conditions, A > 0. The general solution of the ODE is

y(z) = crcosV/ Az + crsiny/ Az |

The boundary condition y’(0) = 0 requires that ¢, = 0. Imposing the second boundary

condition, we find that ¢,cosy/A = 0. So for a nontrivial solution, \/A = (2n — 1)7/2,
n =1,2,---. Therefore the eigenfunctions are given by

on(x) = kncosw .

In this problem, r(z) = 1, and the normalization condition is

T (2n -z’
i [ [eos 2 e =1
0

It follows that k2 = 2. Therefore the normalized eigenfunctions are

2n —1
¢n(x):\/§cosw’ n:]_,z’...

3. Based on the boundary conditions, A > 0. For A = 0, the eigenfunction is

d)o(fﬁ) = ko.
Set ky = 1. With A > 0, the general solution of the ODE is

y(x) = 1005V Az + cysiny/ Az .

Invoking the boundary conditions, we require that ¢, = 0 and ¢, \A sinﬁ =0.
Since

A > 0, the eigenvalues are \,, = n?

7%, n =1,2,---, with corresponding eigenfunctions
¢n(x) = kycosnme.

The normalization condition is
1
ki/ cos’nrwr dr = 1.
0

It follows that k2 = 2. Therefore the normalized eigenfunctions are

do(z) =1, and ¢, (z) = V2cosnmz, n=1,2,

4. From Prob. 8 in Section 11.1, the eigenfunctions are ¢, (x) = k,cos \/ A\, x, in
which
cos\/ A\p — \/ Ap stny/ A, = 0. The normalization condition is
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1
k:?,/ cos*\/ A\, xdr =1,
0

First note that

/1"’052\/7”(11;: cos V/An sin v/ A+ An-
0

2v/ A\,

Based on the determinantal equation,

cos\/ Ap Sin\/An +/An 1+ sin® /A,
2v/\n B 2

3 —cos2\/ N\,

= f.

Therefore
4

3—0082\/)\771

and the normalized eigenfunctions are given by

2 _
kn_

2cos\/ A\, x

\/3—0032 n

6. As shown in Prob. 1, the normalized eigenfunctions are

2n—1
bn(z) = ﬂsmw, n=1,2--

¢71

Based on Eq. (34), with r(x) = 1, the coefficients in the eigenfunction expansion are

given by
1
- [ f@ona)do

_\/—/ @m—Ymz

(2m - 1)
Therefore we obtain the formal expansion

m/ii 1 (2n- Dz

1=
T Zaop—1""T 2
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8. We consider the normalized eigenfunctions

(2n— 1)
(bn fSZTL n 9 n= 1727"'

Based on Eq. (34), with r(x) = 1, the coefficients in the eigenfunction expansion are
given by

1 cos T

T @m-)r

Therefore we obtain the formal expansion

(@) 2[ 3 {1 o2 1)7r]8m (2n — Drz

n=1 4 2

9. The normalized eigenfunctions are
2n —1
_ ﬁsmw, n=1,9

Based on Eq. (34), with r(x) = 1, the coefficients in the eigenfunction expansion are

given by
1
- [ f@n@)ds

1/2 _
—\/_/ 2xsm dx—i—\/_/ '2m71da:

8 [ . mm mﬂ}

=  —— |StTN—— — COS—— | .
(2m — 1)*72 2 2

Therefore the formal expansion of the given function is

Sin

E ism7 —cos'y  (2n— 1)z
—~  (2n—1) 2 '

11. From Prob. 4, the normalized eigenfunctions are given by

2cos\/ A\, x
\/3—0082 An
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in which the eigenvalues satisfy cosy/ A, — v/ A, siny/ A, = 0. Based on Eq. (34), the
coefficients in the eigenfunction expansion are given by

en = /0 £(@) () dac
2

1
= T cos\/ Ay, xdx
\/3 — 082~/ A\, /0

ﬁ(QcosM—l)

Am O,

2

in which «,, = \/1 + sin?y\/ A, .

12. The normalized eigenfunctions are given by
2cos\/ A\, x

)= \/3—0032 An ,

in which the eigenvalues satisfy cosy/ A, — v/ Ay siny/ A, = 0. Based on Eq. (34), the
coefficients in the eigenfunction expansion are given by

bn(z

1
Cm :/0 f(l')qu(.fE)dl'
2

1
= 1 —z)cos\/ A\, xdx
\/3—0082\/)\7,1 /0 (
\/5(1 — cos\/Am)

A O,
in which «,, = \/1 + sin?y/ A, .

13. We consider the normalized eigenfunctions

3

2cos\/ A\, x

)= \/3—0032 An ,

in which the eigenvalues satisfy cosy/\, — \/ A, siny/ A\, = 0. The coefficients in the
eigenfunction expansion are given by

bn(z
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o = [ 1@on@s
2

1/2
/ cos v/ \, xdx
0

- \/3—0032 An

_ VEsin(y/R/2)

b
ATL a’IL

in which «,, = /1 + sin2\/\, .

15. The differential equation can be written as

[(1+2%)y] +y=0,
with p(z) = — 1 —2? and ¢(x) = 1. The boundary conditions are homogeneous and

separated. Hence the BVP is self-adjoint.

16. Since the boundary conditions are not separated, the inner product is computed:
Given u and v, sufficiently smooth and satisfying the boundary conditions,

(L[u],v) :/0 [u"v + uv]dz

1 1
:u’v‘ —/ [u'v" + uv]dx
0 Jo
1
= [u'v —uv'] ‘0 + (u, L[v)).

Based on the given boundary conditions,
uw' (Dv(1) —u'(0)v(0) = u(0)v(1) + 2u(1)v(0)
—u(1)v'(1) + u(0)v'(0) = — u(1)v(0) — 2u(0)v(1) .
Since

mw—quzummm—mmmm,

the BVP is not self-adjoint.
18. The differential equation can be written as
- [y/]/ = >\y )

with p(z) =1, ¢(z) =0, and r(z) = 1. The boundary conditions are homogeneous
and separated. Hence the BVP is self-adjoint.
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19. If a, = 0, then

u'(0)v(0) — u(0)v'(0) = 0.
If b, = 0, then u(1) = v(1) = 0 implies that
u'(1)v(1) —u(1)v'(1) = 0.

Furthermore,

Clearly, the results are also true if a, = b, = 0.

20. Suppose that ¢, (z) and ¢,(x) are linearly independent eigenfunctions associated
with an eigenvalue A. The Wronskian is given by

W1, 0:)(x) = d1(2)dy(x) — do() ¢y ().

Each of the eigenfunctions satisfies the boundary condition a,y(0) + a,y'(0) = 0. If
either a; = 0 or a, = 0, then clearly W (¢, ,¢,)(0) = 0. On the other hand, if a, is
not equal to zero, then

W(¢1 5 ¢2)(0) = ¢1(0)¢2/(0) - ¢2(0)¢1/(O)
— — L6,(0),(0) + Z—;¢2(0)¢1<0>

By Theorem 3.3.2, W(¢,,¢,)(x) =0 forall 0 <z < 1. Based on Theorem 3.3.3,
¢1(z) and ¢,(x) must be linearly dependent. Hence A must be a simple eigenvalue.

22. We consider the operator
Lly) = — [p(x)y"] +a(z)y
on the interval 0 < x < 1, together with the boundary conditions
a,y(0) + ay’'(0) =0, biy(l) +by'(1) =0.

Let u =¢ + i1 and v = €& + 9. Ifu and v both satisfy the boundary conditions, then
the real and imaginary parts also satisfy the same boundary conditions. Using the inner
product

(u,v) = /Olu(m)@(x)dx,
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(Llu],v) = / [~ [p(@)u] 7+ q(z)ut]do
:/{ z)(¢' + iy )]v+q uv}dm

= p(@)(@ + i) /{p (' + )0 + q(z)uv}da

Integrating by parts, again,

[ @6 + w5z = (0 + ]~ [ i) u}e.
Collecting the boundary terms,

P[0+ )T — (6 +i)0']|| = p(@)[(6' + )€~ in) — (& + i) (€'~ in)]]

The real part is given by
= p@)(¢'c — 6€") + (6'n — v,
= p@)l9'¢ — 9¢'|, + p()lw'n — ]|

p()[(8'€ + ') — (66" + vn)]|

Since ¢, ¢, £ and 7 satisfy the boundary conditions, it follows that

1
p(@)[(@'E+9"n) = ($€" +ym)]| =
Similarly, the imaginary part also vanishes. That is,

p(@)[($'E —vE') = (6'n— én’)] ; _

Therefore

The result follows from the fact that (w, L[v]) = (u, L[v]).

24. Based on the physical problem, A = P/EI > 0. Let A\ = p?. The characteristic
equation is 7* + p?r? = 0, with roots r,, = 0, r; = — ui and 7, = pi. Hence the
general solution is

y(z) = ¢1 + ¢y x + c3c08 px + c48in px .
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(a). Simply supported on both ends : y(0) =y"(0) =0; y(L)=y"(L)=0.
Invoking the boundary conditions, we obtain the system of equations

¢ +ec;=0
C3 = 0
cscos pL + cysinpl =0
¢+ L+ cscos pL+ cysinpl = 0.
The determinantal equation is
sinul = 0.
The nonzero roots are p, = nw/L, n=1,2,---. Therefore the eigenfunctions are

¢n = sin p,x , with corresponding eigenvalues )\, = n?7?/L?. Hence the smallest
eigenvalue is A\, = 72 /L2

(b). Simply supported : y(0) = y”(0) =0; clamped : y(L) =y'(L) =0.
Invoking the boundary conditions, we obtain the system of equations

c+ec;=0
C3 = O
¢y — czpsin L + cypicos pL = 0
¢, +cL+cscospul+cysinpl =0.
The determinantal equation is

uLcospul —sinpl =0.

It follows that the eigenfunctions are given by

On(z) = Sin\/)\_nx — (\/)\_nCOS\/)\_nL)EB,

and the eigenvalues satisfy the equation L+/ )\, cos /A, L — sin\/ A\, L =0.
The smallest eigenvalue is estimated as A, ~ (4.4934)%/L2.

(c). Clamped : y(0) =y’(0) =0; clamped : y(L) =y'(L) =0.
Invoking the boundary conditions, we obtain the system of equations

¢ +ec;=0
Cy+ pcy, =0
¢+ e L+ cycos pL 4+ cysin pl =0
¢y — ¢z psin pL + ¢y pcos pL = 0.
The determinantal equation is

2 —2cospul = pLsinpl .

It follows that the eigenfunctions are given by
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On(x) =1 —cos\/ A\, z,

and the eigenvalues satisfy the equation 2 — 2cos \/ A\, L = \/ A\, Lsin /A, L.
The smallest eigenvalue is \, = (27)> /L.

26. As shown is Prob. 25, the general solution is
y(z) = ¢ + ¢y + 3008 px + ¢ysin P .

Imposing the boundary conditions, we obtain the system of equations

C2:0
Cl+03:O
CQ+,LLC4:0

cscos pL 4+ cysinpl = 0.
For a nontrivial solution, it is necessary that
cospuL =0.
We find that ¢, = ¢, = 0, and hence the eigenfunctions are given by

On(x) =1 —cosv/ A,z

The corresponding eigenvalues are A, = (2n — 1)*72/4L%, n = 1,2,---. The smallest
eigenvalue is \, = 72 /4L>,
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