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1.5, to which all other solutions converge.

slopes are positive, and hence the solutions increase. The equilibrium solution appears to

For y > 1.5, the slopes are negative, and hence the solutions decrease. For y < 1.5, the
be y(t)
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For y > — 1.5, the slopes are positive, and hence the solutions increase. Fory < — 1.5

, the slopes are negative, and hence the solutions decrease. All solutions appear to

diverge away from the equilibrium solution y(¢) = — 1.5.
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y < — 1/2, theslopes are negative, and hence the solutions decrease. All solutions

Fory > — 1/2,the slopes are positive, and hence the solutions increase. For
diverge away from



CHAPTER 1. ——

the equilibrium solution y(¢t) = — 1/2.
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For y > — 2,the slopes are positive, and hence the solutions increase. Fory < — 2,
the slopes are negative, and hence the solutions decrease. All solutions diverge away
from

the equilibrium solution y(t) = — 2.

8. For all solutions to approach the equilibrium solution y(¢) = 2/3, we must have
y' <0fory >2/3,and y’' > 0 fory < 2/3. The required rates are satisfied by the
differential equation y’' = 2 — 3y.

9. For solutions other than y(t) = 2 to diverge from y = 2, y(t) must be an increasing
function for y > 2, and a decreasing function for y < 2. The simplest differential
equation

whose solutions satisfy these criteriais y' =y — 2.

10. For solutions other than y(t) = 1/3 to diverge from y = 1/3, we must have y' < 0
fory < 1/3,and y’ > 0 fory > 1/3. The required rates are satisfied by the differential
equation y' =3y — 1.
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Note that y’ = 0 fory = 0 and y = 5. The two equilibrium solutions are y(¢) = 0 and
y(t) = 5. Based on the direction field, y’ > 0 for y > 5; thus solutions with initial
values greater than 5 diverge from the solution y(t) = 5. For 0 < y < 5, the slopes are
negative, and hence solutions with initial values between 0 and 5 all decrease toward the
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solution y(¢) = 0. For y < 0, the slopes are all positive; thus solutions with initial
values
less than 0 approach the solution y(t) = 0.

14.
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Observe that y’ = 0 for y = 0 and y = 2. The two equilibrium solutions are y(¢) = 0
and y(¢) = 2. Based on the direction field, y’ > 0 for y > 2; thus solutions with initial
values greater than 2 diverge from y(¢) = 2. For 0 < y < 2, the slopes are also
positive, and hence solutions with initial values between 0 and 2 all increase toward the
solution

y(t) = 2. Fory < 0, the slopes are all negative; thus solutions with initial

values less than 0 diverge from the solution y(¢) = 0.

16. (a)Let M(t) be the total amount of the drug (in milligrams) in the patient's body at
any

given time ¢ (hrs). The drug is administered into the body at a constant rate of 500
mg/hr.

The rate at which the drug leaves the bloodstream is given by 0.4M (¢). Hence the
accumulation rate of the drug is described by the differential equation

dM
T 500 — 0.4 M (mg/hr).

(b)
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Based on the direction field, the amount of drug in the bloodstream approaches the
equilibrium level of 1250 mg (within a few hours).

18. (a) Following the discussion in the text, the differential equation is
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dv 9
m— =mg—yv
dt g—7
or equivalently,
dv V2
a9 m

(b) After a long time, Z@’ ~ 0. Hence the object attains a terminal velocity given by

mg
V=4 — .
v

(c¢) Using the relation yv?2 = mg, the required drag coefficient is v = 0.0408 kg/sec .

(d)
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All solutions appear to approach a linear asymptote (with slope equalto1). It is easy to
verify that y(¢) =t — 3 is a solution.

20.
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All solutions approach the equilibrium solution y

23.
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which is also a solution corresponding to the initial value y(0) = — 5/2.

All solutions appear to diverge from the sinusoid y(t) =

25.
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= (. First, the rate of change is small. The

All solutions appear to converge to y(t)

slopes

eventually increase very rapidly in magnitude.

26.
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The direction field is rather complicated. Nevertheless, the collection of points at which
the slope field is zero, is given by the implicit equation y*> — 6y = 2t>. The graph of
these points is shown below:

The y-intercepts of these curves are at y = 0, i\@ . It follows that for solutions with
initial values y > \/g , all solutions increase without bound. For solutions with initial
values in the range y < — \/g and 0 <y < \/g , the slopes remain negative, and

hence
these solutions decrease without bound. Solutions with initial conditions in the range

— /6 <y < 0 initially increase. Once the solutions reach the critical value, given by
the equation 3® — 6y = 2t2, the slopes become negative and remain negative. These
solutions eventually decrease without bound.
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Section 1.2

1(a) The differential equation can be rewritten as

dy
S—y

=dt.

Integrating both sides of this equation results in — [n|5 — y| =t + ¢, or equivalently,
5—y=ce '. Applying the initial condition y(0) = y, results in the specification of
the constant as ¢ = 5 — y,. Hence the solutionis y(t) =5+ (y, — 5)e " .

D 2 PN g 10
All solutions appear to converge to the equilibrium solution y(¢) = 5.

1(c). Rewrite the differential equation as

d
b _ .
10 — 2y

Integrating both sides of this equation results in — %ln|10 —2y|=t+cy,or
equivalently,

5 —y = ce 2. Applying the initial condition 3(0) = y, results in the specification of
the constant as ¢ = 5 — . Hence the solution is y(¢) =5 + (y, — 5)e .

D 2 4 t6 8 10

All solutions appear to converge to the equilibrium solution y(¢) = 5, but at a faster rate
than in Problem la .

2(a). The differential equation can be rewritten as
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d
Y
y—95
Integrating both sides of this equation results in In|y — 5| = ¢ + ¢; , or equivalently,
y — 5= ce'. Applying the initial condition y(0) = y, results in the specification of
the constant as ¢ = y, — 5. Hence the solution is y(t) = 5 + (y, — 5)e’.

All solutions appear to diverge from the equilibrium solution y(¢) = 5.

2(b). Rewrite the differential equation as

dy
2y —5

dt .

Integrating both sides of this equation results in %ln!Qy — 5| =t + ¢, or equivalently,
2y — 5 = ce* . Applying the initial condition y(0) = ¥, results in the specification of
the constant as ¢ = 2y, — 5. Hence the solution is y(t) = 2.5 + (y, — 2.5)e? .

104
¥it) /

J'a.rl_r1m.h.u:n0:|
Fr |

All solutions appear to diverge from the equilibrium solution y(t) = 2.5.

2(c). The differential equation can be rewritten as

d
A
2y — 10

Integrating both sides of this equation results in %ln|2y — 10| =t + ¢, or equivalently,
y — 5 = ce? . Applying the initial condition 3(0) = y, results in the specification of
the constant as ¢ = y, — 5. Hence the solution is y(t) = 5 + (y, — 5)e* .
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All solutions appear to diverge from the equilibrium solution y(¢) = 5.

3(a). Rewrite the differential equation as

dy
= dt
b—ay ’

which is valid for y # b /a. Integrating both sides results in =Lin|b — ay| =t + ¢, , or
equivalently, b — ay = ce *". Hence the general solution is y(t) = (b — ce ) /a.
Note that if y = b/a, then dy/dt = 0, and y(t) = b/a is an equilibrium solution.

(b)

0 02 04 t06 08 1

(i)  As a increases, the equilibrium solution gets closer to y(¢) = 0, from above.
Furthermore, the convergence rate of all solutions, that is, a , also increases.

(79) As b increases, then the equilibrium solution y(¢) = b/a also becomes larger. In
this case, the convergence rate remains the same.

(7i7) If @ and b both increase (but b/a = constant), then the equilibrium solution
y(t) = b/a remains the same, but the convergence rate of all solutions increases.

5(a). Consider the simpler equation dy, /dt = — ay, . As in the previous solutions, re-
write the equation as

dy:
()1

= —adt.

at

Integrating both sides results in y,(t) = ce”
(b). Now set y(t) = y,(t) + k, and substitute into the original differential equation. We
find that
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—ay; +0= —a(y, +k)+0.

Thatis, —ak +b=0,and hence k =b/a.

(c). The general solution of the differential equation is y(¢) = ce * + b/a. This is
exactly the form given by Eq. (17) in the text. Invoking an initial condition y(0) = y,,
the solution may also be expressed as y(t) = b/a + (y, — b/a)e ™.

6(a). The general solution is p(t) = 900 + c €'/?, that is, p(t) = 900 + (p, — 900)e"/?.
With p, = 850, the specific solution becomes p(t) = 900 — 50¢"/. This solution is a
decreasing exponential, and hence the time of extinction is equal to the number of
months

it takes, say ¢, for the population to reach zero. Solving 900 — 50e’/? = 0, we find that
t; = 2In(900/50) = 5.78 months.

(b) The solution, p(t) = 900 + (p, — 900)e"/?, is a decreasing exponential as long as

Py < 900. Hence 900 + (p, — 900)e’/? = 0 has only one root, given by

900
to=on —— ).
J ”(900—;90)

(c). The answer in part (b) is a general equation relating time of extinction to the value
of
the initial population. Setting ¢; = 12 months , the equation may be written as
900 6

—— = 5

900 — py
which has solution p, = 897.7691 . Since p, is the initial population, the appropriate
answer is p, = 898 mice .

7(a). The general solution is p(t) = p, €. Based on the discussion in the text, time ¢ is
measured in months . Assuming 1 month = 30 days , the hypothesis can be expressed as
poe”! = 2p,. Solving for the rate constant, r = [n(2), with units of per month.

T™N/30

(b). N days = N /30 months. The hypothesis is stated mathematically as p,e™"° = 2p,

It follows that N /30 = In(2), and hence the rate constant is given by r = 30In(2)/N .
The units are understood to be per month .

9(a). Assuming no air resistance, with the positive direction taken as downward,
Newton's
Second Law can be expressed as

dv

m— =m
a9

in which g is the gravitational constant measured in appropriate units. The equation can
be
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written as dv/dt = g, with solution v(t) = gt + v,. The object is released with an
initial
velocity vy .

(b). Suppose that the object is released from a height of h units above the ground. Using
the

fact that v = dz/dt, in which z is the downward displacement of the object, we obtain
the

differential equation for the displacement as dz/dt = gt + v,. With the origin placed at
the point of release, direct integration results in z(t) = gt>/2 + v,t. Based on the
chosen

coordinate system, the object reaches the ground when z(¢) = h. Lett = T be the time
that it takes the object to reach the ground. Then ¢7?/2 + v,T = h . Using the
quadratic

formula to solve for 1",

— VotV + 2gh
p .

T —

The positive answer corresponds to the time it takes for the object to fall to the ground.
The

negative answer represents a previous instant at which the object could have been
launched

upward (with the same impact speed ), only to ultimately fall downward with speed v, ,
from a height of A units above the ground.

(c). The impact speed is calculated by substituting ¢ = 7" into v(t) in part (a). That is,

v(T) = /vy + 2gh .

10(a,b). The general solution of the differential equation is Q(t) = ce ™. Given that
Q(0) = 100 mg, the value of the constant is given by ¢ = 100. Hence the amount of
thorium-234 present at any time is given by Q(¢) = 100 e . Furthermore, based on the
hypothesis, setting ¢ = 1 results in 82.04 = 100e™". Solving for the rate constant, we
find that » = — In(82.04/100) = .19796/week or r = .02828/day .

(c). Let T be the time that it takes the isotope to decay to one-half of its original
amount.

From part (a), it follows that 50 = 100 e "%, in which r = .19796/week. Taking the
natural logarithm of both sides, we find that 7" = 3.5014 weeks or T' = 24.51 days .

11. The general solution of the differential equation dQ/dt = —rQ is Q(t) = Qe ",
in which @, = Q(0) is the initial amount of the substance. Let 7 be the time that it takes
the substance to decay to one-half of its original amount, (), . Setting t = 7 in the
solution,

we have 0.5 Q, = Qe "". Taking the natural logarithm of both sides, it follows that
—r7 =1In(0.5) or r7 =1In2.

page 11
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12. The differential equation governing the amount of radium-226 is dQ/dt = —r @,
with solution Q(¢) = Q(0)e ™. Using the result in Problem 11, and the fact that the
half-life 7 = 1620 years, the decay rate is given by r = In(2)/1620 per year. The
amount of radium-226, after ¢ years, is therefore Q(¢) = Q(0)e 00012786 et T be
the time that it takes the isotope to decay to 3/4 of its original amount. Then setting
t="1T,

and Q(T) = 2Q(0), we obtain 3Q(0) = Q(0)e~ 0012767 " Solving for the decay
time, it follows that — 0.00042786 T = In(3/4) or T' = 672.36 years.

13. The solution of the differential equation, with Q(0) = 0, is
Q(t) = CV (1 — e lOR),
As t— o0, the exponential term vanishes, and hence the limiting value is @, = C'V.

14(a). The accumulation rate of the chemical is (0.01)(300) grams per hour. At any
giventime ¢, the concentration of the chemical in the pond is Q(t)/10° grams per gallon

Consequently, the chemical /eaves the pond at a rate of (3 x 107*)Q(t) grams per hour .
Hence, the rate of change of the chemical is given by
dQ

i 3 —0.0003Q(t) gm/hr.

Since the pond is initially free of the chemical, Q(0) = 0.

(b). The differential equation can be rewritten as

_ 4@

=0. dt .
10000 — 0.0003

Integrating both sides of the equation results in — (n[10000 — Q| = 0.0003t + C.
Taking

the natural logarithm of both sides gives 10000 — @Q = c e %% Since Q(0) = 0, the
value of the constant is ¢ = 10000. Hence the amount of chemical in the pond at any
time

is Q(t) = 10000(1 — e~00%3%) orams . Note that 1 year = 8760 hours . Setting

t = 8760, the amount of chemical present after one year is Q(8760) = 9277.77 grams ,
that is, 9.27777 kilograms .

(c). With the accumulation rate now equal to zero, the governing equation becomes
dQ/dt = —0.0003 Q(t) gm/hr. Resetting the time variable, we now assign the new
initial value as Q(0) = 9277.77 grams .

(d). The solution of the differential equation in Part (c) is Q(t) = 9277.77 00003,
Hence, one year after the source is removed, the amount of chemical in the pond is
Q(8760) = 670.1 grams .
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(e). Letting t be the amount of time after the source is removed, we obtain the equation
10 = 9277.77 e700903¢ " Taking the natural logarithm of both sides, — 0.0003 ¢ =
= In(10/9277.77) or t = 22,776 hours = 2.6 years .

(f)

10000+
G000+
£000
4000 1

2000

U 3000 5000 10000 14000 18000 22000 25000
t

15(a). It is assumed that dye is no longer entering the pool. In fact, the rate at which the
dye leaves the pool is 200 - [¢(t)/60000] kg/min = 200(60,/1000)[q(t)/60] gm per hour

Hence the equation that governs the amount of dye in the pool is

d
d_jfl = —02q (gm/hr).

The initial amount of dye in the pool is ¢(0) = 5000 grams .

(b). The solution of the governing differential equation, with the specified initial value,
is q(t) = 5000 e 02,

(c). The amount of dye in the pool after four hours is obtained by setting ¢ = 4. That is,
q(4) = 5000 e~ "® = 2246.64 grams. Since size of the pool is 60, 000 gallons , the
concentration of the dye is 0.0374 grams/gallon .

(d). Let T be the time that it takes to reduce the concentration level of the dye to

0.02 grams/gallon . At that time, the amount of dye in the pool is 1,200 grams. Using
the answer in part (b), we have 5000 e~%2T = 1200 . Taking the natural logarithm of
both sides of the equation results in the required time 7" = 7.14 hours .

(e). Note that 0.2 = 200/1000. Consider the differential equation

@_ T
at 10001

Here the parameter r corresponds to the flow rate, measured in gallons per minute .
Using the same initial value, the solution is given by ¢(t) = 5000 ¢ "/ | In order
to determine the appropriate flow rate, set ¢t = 4 and ¢ = 1200. (Recall that 1200 gm of
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—r /250

dye has a concentration of 0.02 gm/gal). We obtain the equation 1200 = 5000 e
Taking the natural logarithm of both sides of the equation results in the required flow rate
r = 357 gallons per minute .
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Section 1.3

1. The differential equation is second order, since the highest derivative in the equation
is of order two. The equation is linear, since the left hand side is a linear function of y
and

its derivatives.

3. The differential equation is fourth order, since the highest derivative of the function y
is of order four. The equation is also l/inear, since the terms containing the dependent
variable is linear in y and its derivatives.

4. The differential equation is first order, since the only derivative is of order one. The
dependent variable is squared, hence the equation is nonlinear.

5. The differential equation is second order. Furthermore, the equation is nonlinear,
since the dependent variable y is an argument of the sine function, which is not a linear
function.

7. yi(t) = e = y/(t) =y/(t) = e'. Hence y/ —y, =0.
Also, y,(t) = cosht = y/(t) = sinht and y,'(t) = cosht. Thus y; —y, = 0.

9. y(t) = 3t +t*> = y'(t) = 3 + 2t. Substituting into the differential equation, we have
t(3 +2t) — (3t +t%) = 3t + 2t> — 3t — t> = t*. Hence the given function is a solution.

10. yy(t) =t/3 = y/(t) =1/3 and y/"(t) = v, (t) = y""(t) = 0. Clearly, y,(t) is
a solution. Likewise, y,(t) = e ' +t/3 = yj(t) = —e ' +1/3, y)/(t) =,

y) (t) = —e™ ', y,”"(t) = e”'. Substituting into the left hand side of the equation, we
find that e " +4( —e ") +3(e"+t/3) =e ' —4e "+ 3e "+t =t. Hence both
functions are solutions of the differential equation.

1. y(¢t) =t? = y/(t) =t7"*/2 and y/'(t) = — t~**/4. Substituting into the left
hand side of the equation, we have

207 (=t /4) + 3L (t2)2) — 1P = — 12 /2 4 3¢ )2 — 12
=0

Likewise, y,(t) =t' = y,(t) = —t*and y, (t) = 2t . Substituting into the left
hand side of the differential equation, we have 2t*(2¢7%) + 3t( —t2) — ¢t = 4¢7! —
— 3t ' —t' = 0. Hence both functions are solutions of the differential equation.

12. y(t) =t2=y/(t)= —2t° and y,"(t) = 6¢*. Substituting into the left hand
side of the differential equation, we have t2(6¢*) + 5t( — 2t %) + 4t 2 = 62 —
—10t2+4t2=0. Likewise, y,(t) =t *int = y,(t) =t* — 2t *Int and

y, (t) = — 5t 4+ 6t *Int. Substituting into the left hand side of the equation, we have
t2( =5t + 6t nt) +5t(t° — 2t%Int) +4(t2nt) = — 5t +6t2Int +
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+5t2—10t2Int+4t%Int = 0. Hence both functions are solutions of the
differential equation.

13. y(t) = (cost)incost +tsint = y'(t) = — (sint)lncost + tcost and

y"(t) = — (cost)incost — t sint + sect. Substituting into the left hand side of the
differential equation, we have ( — (cost)lncost — tsint + sect) + (cost)lncost +
+tsint = — (cost)lncost —tsint + sect + (cost)lncost +tsint = sect .

Hence the function y(t) is a solution of the differential equation.

15. Let y(t) = ™. Theny”(t) = r?e", and substitution into the differential equation
results in 72e™ + 2™ = 0. Since "’ # 0, we obtain the algebraic equation 7% + 2 = 0.

The roots of this equation are r,, = + z\/§ .

17. y(t) = e™ = y'(t) = re™ and y”(t) = r’e™ . Substituting into the differential
equation, we have r2e’ + re’’ — 6e™ = 0. Since €™ # 0, we obtain the algebraic
equation > +7r — 6 = 0, thatis, (r — 2)(r +3) = 0. Theroots are 7, = — 3, 2.

18. Let y(t) = €. Theny'(t) = re™, y"(t) = r?e" and y"'(t) = r3e™ . Substituting

the derivatives into the differential equation, we have r3e™ — 3r2e’ + 2re™ = 0. Since
e # 0, we obtain the algebraic equation r® — 3r2 + 2r = 0. By inspection, it follows
that r(r — 1)(r — 2) = 0. Clearly, the rootsare r, = 0,7, = 1 and 73 = 2.

20. y(t) =t"=y'(t) =rt"" andy”(t) = r(r — 1)t"*. Substituting the derivatives
into the differential equation, we have t2[r(r — 1)#"72] — 4t(rt"™') + 4" = 0. After
some algebra, it follows that (r — 1)t" — 4rt" +4t" = 0. Fort # 0, we obtain the
algebraic equation 72 — 57 4+ 4 = 0. The roots of this equation are 7, = 1 and 7, = 4.

21. The order of the partial differential equation is two, since the highest derivative, in
fact each one of the derivatives, is of second order. The equation is linear, since the left
hand side is a linear function of the partial derivatives.

23. The partial differential equation is fourth order, since the highest derivative, and in
fact each of the derivatives, is of order four. The equation is /inear, since the left hand
side is a linear function of the partial derivatives.

24. The partial differential equation is second order, since the highest derivative of the
function u(z, y) is of order two. The equation is nonlinear, due to the product u - u, on
the left hand side of the equation.

0%u 0%u
25. uy(x,y) = cosx coshy = G4 = — cosx coshyand W“’l = cosxcoshy.

It is evident that % + %2;? = 0. Likewise, given u,(z,y) = In(z* + y?), the second

derivatives are
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0%u, B 2 422
or2 :c2—|—y2 (x2+y2)2
821,(/2 2 4y2

Oy? 22 + 12 o (:1:2 —I—y2)2

Adding the partial derivatives,

u,  O0*u, 2 A2 2 4y
912 + 2 = 22 + 12 B <$2+y2)2 + 22 + 32 o ($2+y2)2
4 4(2? +y?)
Calty? (22 +y?)°
=0.

Hence u,(x,y) is also a solution of the differential equation.

27. Let u,(z,t) = sin Ax sin Aat. Then the second derivatives are

%2;21 = — \sin Az sin Aat
3;:;1 = — Ma’sin Az sin \at
It is easy to see that a2% = % . Likewise, given u,(z,t) = sin(x — at), we have
%2;22 = — sin(x — at)
8;22 = — a’sin(z — at)

Clearly, u,(x, t) is also a solution of the partial differential equation.

28. Given the function u(x,t) = \/7/t e *"/4 the partial derivatives are
me—ﬁ/llazt \/ml.Qe—szaZt

a 202t * 4at?
Tt efx2/4a2t T x267x2/4a2t

Jaterht \fr

2t 4022\/t

UCECE -

Ut = —

24 p2 71‘2/4(12t
It follows that o u,, = uy = — V7 (20%t—a%)e .

40282/t

Hence u(z,t) is a solution of the partial differential equation.
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29(a).

2,
a ¥

N T o=cendon
ll\.h'\.
L o~

.
A8

W=-mz

(b). The path of the particle is a circle, therefore polar coordinates are intrinsic to the
problem. The variable r is radial distance and the angle # is measured from the vertical.
Newton's Second Law states that > F = ma . In the tangential direction, the equation of

motion may be expressed as Y F;, = m ay, in which the tangential acceleration, that is,

the linear acceleration along the path is ay = L d*0/dt*. (ay is positive in the direction
of increasing # ). Since the only force acting in the tangential direction is the component
of weight, the equation of motion is

d*0

—mgsind =mlL—s; .

dt?
ote that the equation of motion in the radial direction will include the tension in the
Note that the equat f mot the radial direct 11 include the t th
rod).

(c). Rearranging the terms results in the differential equation

a0 g .
E-ﬁ-zsmH—O.
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Chapter Two
Section 2.1
1(a).
Pt AR SR AR MRS
mJl L T A A R il
VUL o S S SRR S
L R O N e i A S )
SN
i ETE eI SRR
HM'{: 4
T J
| l i
4

(b). Based on the direction field, all solutions seem to converge to a specific increasing
function.

(¢). The integrating factor is u(t) = €*, and hence y(t) =t/3 —1/9+ e 2 + ce 3.
It follows that all solutions converge to the function y,(¢t) =¢/3 —1/9.

2(a).
L A A A A
A A A A A )
LA A A Y R A
////fiffffg
AR AS NN
LU P N I
S A A |
et
I A |
et ot a /.f'”.". T
I OIOLATEDS A +.3 1.4 18] 18
R e )
[ e o e T
_2-5\.\\».\.*\.&*——«—:-’/,?
B I |
N T e e e e
B N S e
T T T Al A
B T N Lt

(b). All slopes eventually become positive, hence all solutions will increase without
bound.

(¢). The integrating factor is pu(t) = e~%, and hence y(t) = t3e* /3 4+ ce?. Itis
evident that all solutions increase at an exponential rate.

3(a)
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(b). All solutions seem to converge to the function y,(t) = 1.

(¢). The integrating factor is p(t) = e*, and hence y(t) = t’e /2 + 1+ cet. Itis
clear that all solutions converge to the specific solution y,(t) = 1.

4(a).

1 B O T A Y
3 %\\\kk\\k\w#/////Fx
LR SN ENCIN A Ry
B B T T T
it) R N NN N S S e
¥ R L S R
g N N N A N AN S e
et N A N e S S S e
(o e W S e T e
7 e Ny \\ “vﬁj j; "

! LS =
s SRR RS TS/ &
R EE A i B LA LL S L=
S B B NI I I
I A A B RN
§ R N N e e
2 I 7 e e PN
e T
o e S S S —
-3 VPSSP

(b). Based on the direction field, the solutions eventually become oscillatory.

(c). The integrating factor is u(¢) = ¢, and hence the general solution is

_ 3cos(2t) 3

y(t) pm + 58m(2t) +

~+| O

in which c is an arbitrary constant. As ¢ becomes large, all solutions converge to the
function y, (t) = 3sin(2t)/2.

5(a).
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(b). All slopes eventually become positive, hence all solutions will increase without
bound.

¢). The integrating factor is ;(t) = exp( — [2dt) = e?!. The differential equation
g g M q

can

be written as e 2y’ — 2e 2y = 3¢~!, that is, (e 2'y)’ = 3e!. Integration of both

sides of the equation results in the general solution y(t) = — 3e! + ce?. It follows that
all solutions will increase exponentially.

6(a)

e e e
J
J A e
Fils
S
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%
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i T e Q
B B e Y LY
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3
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4
{

--..
—-e—-.,“

—
1
ey

2
(b). All solutions seem to converge to the function y,(t) = 0.

(c). The integrating factor is (t) = t*, and hence the general solution is

cos(t) sin(2t) ¢

) = — -
y(t) " " "

in which ¢ is an arbitrary constant. As ¢ becomes large, all solutions converge to the
function y,(t) = 0.

7(a).

page 20



CHAPTER 2.

e
PP \
et et ]
e \.
i
et m.
ettt T
PRSI __‘
|
P S LB \
ettt
ot T
\ﬁk\\xxb

b
e

o

e e e
L
e
]
B
I, e
L e
I e
[, S e
B e e
B
NP,
R
R
R LN

exp(t?), and hence y(t)

—
'

LAY
™

(b). All solutions seem to converge to the function y,(¢) = 0.

ﬁe*ﬁ—%ce’ﬂ.ltﬂ

)

a

(

clear that all solutions converge to the function y,(t) = 0.

(c). The integrating factor is p(t)

8

0.
[tan™'(t) + C]/(1 + ).
0.
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(1+ %)%, the general solution is y(t)

It follows that all solutions converge to the function y,(t)

a).

(

(b). All solutions seem to converge to the function y, (%)

(c). Since pu(t)

9
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(b). All slopes eventually become positive, hence all solutions will increase without
bound.

(c). The integrating factor is u(t) = exp([3dt) = e!/?. The differential equation can
be written as e!/2y’ + e'/%y/2 = 3t e!/? /2, that is, (¢'/2y/2)" = 3t e!/?/2. Integration
of both sides of the equation results in the general solution y(t) = 3t — 6 +ce /2. All
solutions approach the specific solution y,(t) = 3t — 6.

10(a).
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(b). Fory > 0, the slopes are all positive, and hence the corresponding solutions
increase

without bound. For y < 0, almost all solutions have negative slopes, and hence solutions
tend to decrease without bound.

(c). First divide both sides of the equation by ¢. From the resulting standard form, the
integrating factor is p(t) = exp(— [}dt) = 1/¢. The differential equation can be
written as y'/t —y/t?> = te~, thatis, (y/t) = te~". Integration leads to the general
solution y(t) = —te '+ ct. For ¢ # 0, solutions diverge, as implied by the direction
field. For the case ¢ = 0, the specific solution is y(t) = — te~!, which evidently
approaches zero as t + 00 .

11(a).

I e T T T T e T S WL
\as—\\xx\x\nﬁaxxxktx
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(b). The solutions appear to be oscillatory.
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(c). The integrating factor is p(t) = €', and hence y(t) = sin(2t) — 2cos(2t) +ce .

It is evident that all solutions converge to the specific solution y,(t) = sin(2t) — 2
cos(2t).

12(a).
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(b). All solutions eventually have positive slopes, and hence increase without bound.

(c). The integrating factor is u(t) = e*. The differential equation can be

written as e'/%y’ + e'/?y/2 = 3¢%/2, that is, (e'/? y/Q)/ = 3t2/2. Integration of both
sides of the equation results in the general solution y(t) = 3t — 12t + 24 + ¢ e 21t
follows that all solutions converge to the specific solution y,(t) = 3t2 — 12t + 24.

14. The integrating factor is u(t) = e*. After multiplying both sides by 1(t), the
equation can be written as (eZt y)/ =t . Integrating both sides of the equation results

in the general solution y(t) = t?e %' /2 + c e .. Invoking the specified condition, we
require that e 2 /2 + ce 2 = 0. Hence ¢ = — 1/2, and the solution to the initial value
problemis y(t) = (t* — 1)e % /2.

16. The integrating factor is yu(t) = ( [2dt) = t*. Multiplying both sides by p(t),
the equation can be written as (¢ y) 0s(t) . Integrating both sides of the equation
results in the general solution y(t) = ( )/t? + ct~2. Substituting t = 7 and setting

the value equal to zero gives ¢ = 0. Hence the specific solution is y(t) = sin(t)/t>.

17. The integrating factor is u(t) = e %, and the differential equation can be written as
(ey)" = 1. Integrating, we obtain e > y(t) = ¢ + c. Invoking the specified initial
condition results in the solution y(t) = (t + 2)e?

19. After writing the equation in standard form, we find that the integrating factor is
pu(t) = exp([3dt) = ¢*. Multiplying both sides by (), the equation can be written as

(t'y)" = te ! . Integrating both sides results in t'y(t) = — (t+ 1)e™ +c. Letting

t = — 1 and setting the value equal to zero gives ¢ = 0. Hence the specific solution of
the initial value problem is y(t) = — (¢ 2 + ¢ *)e "

21(a).
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The solutions appear to diverge from an apparent oscillatory solution. From the
direction

field, the critical value of the initial condition seems tobe ¢y = — 1. Fora > — 1, the
solutions increase without bound. For a < — 1, solutions decrease without bound.

(b). The integrating factor is u(t) = e */2. The general solution of the differential
equation is y(t) = (8sin(t) — 4cos(t))/5 + ce'/?. The solution is sinusoidal as long
as ¢ = 0. The initial value of this sinusoidal solution is

ay = (8sin(0) — 4cos(0))/5 = —4/5.

(c). See part (b).

22(a).
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All solutions appear to eventually increase without bound. The solutions initially
increase
or decrease, depending on the initial value a. The critical value seemstobe ay = — 1.

(b). The integrating factor is u(t) = e*/2, and the general solution of the differential
equation is y(t) = — 3e'/? 4 ce!/2. Invoking the initial condition (0) = a, the
solution

may also be expressed as y(t) = — 3e!/3 + (a + 3) e!/2. Differentiating, follows that
y'(0)= —14(a+3)/2=(a+1)/2. The critical value is evidently a, = — 1.
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(¢). For ay = — 1, the solution is y(t) = — 3e!/3 4+ 2¢'/2, which (for large t) is
dominated by the term containing e'/2.

is y(t) = (8sin(t) — 4cos(t))/5 + c e/’

23(a).
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As t—0, solutions increase without bound if y(1) = a > .4, and solutions decrease
without bound if y(1) =a < 4.

(b). The integrating factor is pu(t) = exp([“Ldt) = te’. The general solution of the
differential equation is y(t) =te ' + ce '/t. Invoking the specified value y(1) = a,
we have 1 + ¢ = ae. Thatis,c = ae — 1. Hence the solution can also be expressed as
y(t) =te '+ (ae—1)e t/t. Forsmall values of t , the second term is dominant.
Setting a e — 1 = 0, critical value of the parameter is a, = 1/e.

(c). Fora > 1/e, solutions increase without bound. For a < 1/e, solutions decrease
without bound. When a = 1/e, the solution is y(t) = ¢t e~*, which approaches O as t —+0

24(a).
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As t—0, solutions increase without bound if y(1) = a > .4, and solutions decrease
without bound if y(1) =a < 4.
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(b). Given the initial condition, y( — 7/2) = a, the solution is y(t) = (an?/4 — cost)/t

Since %im cost = 1, solutions increase without bound if @ > 4/72, and solutions

—0
decrease without bound if a < 4/7?. Hence the critical value is
a, = 4/7% = 0.452847....

(¢). Fora = 4/7?, the solution is y(t) = (1 — cost)/t, and %ingy(t) = 1/2. Hence the

solution is bounded.

25. The integrating factor is 1(t) = exp( [ 3dt) = €'/*. Therefore general solution is
y(t) = [4cos(t) + 8sin(t)]/5 + c e /2. Invoking the initial condition, the specific
solution is y(t) = [4cos(t) + 8sin(t) — 9€'/?]/5. Differentiating, it follows that

y'(t) = [ — 4sin(t) + 8cos(t) + 4.5¢7%] /5
y"(t) = [ — 4cos(t) — 8sin(t) — 2.25¢ %] /5

Setting y’(t) = 0, the first solution is ¢, = 1.3643, which gives the location of the first
stationary point. Since y”(¢,) < 0, the first stationary point in a local maximum. The
coordinates of the point are (1.3643,.82008).

26. The integrating factor is p(t) = exp([ %dt) = ¢%/3, and the differential equation
can

be written as (e2/% y)' = /3 — ¢ /3 /2. The general solution is y(t) = (21 — 6t)/8 +
+ce /3, Imposing the initial condition, we have y(t) = (21 — 6t)/8 + (y, — 21/8)e~ /.
Since the solution is smooth, the desired intersection will be a point of tangency. Taking
the derivative, y'(t) = — 3/4 — (2y, — 21/4)e"*/3/3. Setting y'(t) = 0, the solution
is t; = 2In[(21 — 8y,)/9]. Substituting into the solution, the respective value at the
stationary point is y(t,) = 3 + §In3 — 3In(21 — 8y,). Setting this result equal to zero,
we obtain the required initial value y, = (21 — 9¢"?)/8 = — 1.643.

27. The integrating factor is u(t) = e'/*, and the differential equation can be written as
(et )" = 3e!’* + 2el/*cos(2t). The general solution is

y(t) = 12 + [8cos(2t) + 64sin(2t)]/65 + c e /.
Invoking the initial condition, y(0) = 0, the specific solution is

y(t) = 12 + [8cos(2t) + 64sin(2t) — 788 e ] /65.

As t— o0, the exponential term will decay, and the solution will oscillate about an
average

value of 12, with an amplitude of 8/+/65 .

page 26



CHAPTER 2. ——

29. The integrating factor is u(t) = e */2, and the differential equation can be written

as (%2 y) = 3te 32 4 22, The general solution is y(t) = — 2t —4/3 —4e’ +
+ c e*/2. Imposing the initial condition, y(t) = — 2t —4/3 — 4 e’ + (y, + 16/3) /2.
As t— 00, the term containing e*/? will dominate the solution. Its sign will determine
the divergence properties. Hence the critical value of the initial condition is

Yo = —16/3.

The corresponding solution, y(t) = — 2t — 4/3 — 4¢', will also decrease without
bound.

Note on Problems 31-34:

Let g(t) be given, and consider the function y(¢) = y,(¢) + ¢(t) , in which y,(¢) = o0
as t— oo . Differentiating, y'(t) = y/(t) + ¢’(t) . Letting a be a constant, it follows
that y'(t) + ay(t) = y/(t) + ayi(t) + ¢'(t) + ag(t). Note that the hypothesis on the
function y, (¢) will be satisfied, if y,(t) + ay,(t) = 0. Thatis, y,(t) = ce . Hence
y(t) = ce  + g(t), which is a solution of the equation y’ + ay = ¢'(t) + ag(t).
For convenience, choose a = 1.

31. Here ¢(t) = 3, and we consider the linear equation y’ + y = 3. The integrating
factor is p(t) = €', and the differential equation can be written as (e’ )’ = 3¢!. The
general solution is y(t) =3+ ce ™.

33. g(t) = 3 — t. Consider the linear equation y’ +y = — 1 4+ 3 — ¢ .The integrating
factor is su(t) = €', and the differential equation can be written as (e’ )’ = (2 — t)e’.
The general solution is y(t) =3 —t +ce™".

34. g(t) = 4 — t?. Consider the linear equation y’ +y = 4 — 2t — t* .The integrating
factor is 4u(t) = €', and the equation can be written as (e y)’ = (4 — 2t — t?)e'.
The general solution is y(t) = 4 — t> + ce™.
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Section 2.2

2. Forx # — 1, the differential equation may be written as y dy = [#?/(1 + z®)]dx .
Integrating both sides, with respect to the appropriate variables, we obtain the relation

Y’ /2 = %ln\1+x3| + c. Thatis, y(z) = i\/§1n|l+x3| +c.

3. The differential equation may be written as y 2dy = — sinx dz . Integrating both
sides of the equation, with respect to the appropriate variables, we obtain the relation
—y ' =cosx+c. Thatis, (C — cosz)y = 1, in which C is an arbitrary constant.
Solving for the dependent variable, explicitly, y(z) = 1/(C — cosx) .

5. Write the differential equation as cos ? 2y dy = cos’z dx, or sec? 2y dy = cos’z dx.
Integrating both sides of the equation, with respect to the appropriate variables, we obtain
the relation tan 2y = sinxcosx + =+ c.

7. The differential equation may be written as (y + e¥)dy = (x — e”")dz . Integrating
both sides of the equation, with respect to the appropriate variables, we obtain the
relation

v +2e¥ =22 +2e " +ec.

8. Write the differential equation as (1 +3?)dy = x> dx . Integrating both sides of the
equation, we obtain the relation y + y3/3 = 23/3 + ¢, thatis, 3y +y> = 2® + C.

9(a). The differential equation is separable, with y~2dy = (1 — 2x)dz . Integration
yields —y™' = x — 2® + ¢. Substituting z = 0andy = — 1/6, we find thatc = 6.
Hence the specific solution is 3! = 2> — x — 6. The explicit form is

y(x) =1/(* — 2 -6).

(b)

-3

(¢). Note that 2 — z — 6 = (x + 2)(x — 3). Hence the solution becomes singular at
r= —2and z=3.

10(a). y(z) = — 2z — 222+ 4.
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10(b).

O o2 040608 1 1214 16 18
X

11(a). Rewrite the differential equation as = e"dxz = — ydy. Integrating both sides
of the equation results in ze” — e® = — y?/2 + c. Invoking the initial condition, we
obtain ¢ = — 1/2. Hence y? = 2¢” — 2x e® — 1. The explicit form of the solution is

y(z) = \/2e" — 2z e” — 1 . The positive sign is chosen, since y(0) = 1.

(b).

|

0701 02 03 04 05 0F 07 OB
X

e
(c). The function under the radical becomes negative near t = — 1.7 and = = 0.76.

11(a). Write the differential equation as r~2dr = #~' df . Integrating both sides of the
equation results in the relation — ' = in# + ¢. Imposing the condition r(1) = 2, we
obtain ¢ = — 1/2. The explicit form of the solution is r(0) = 2/(1 — 2In9).
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(c). Clearly, the solution makes sense only if # > 0. Furthermore, the solution becomes
singular when In6 = 1/2, thatis, 0 = \/E_

13(a). y(z) = —/2In(1 +22)+ 4.

o)
104
o
.
|
]

AP
WE
£
-2
-10-

14(a). Write the differential equation as y—*dy = z(1 + 22)""* dz . Integrating both
sides of the equation, with respect to the appropriate variables, we obtain the relation
—y?/2=1+/1+42? + c¢. Imposing the initial condition, we obtain ¢ = — 3/2.
Hence the specific solution can be expressed as y 2 = 3 — 21/1 + 22 . The explicit
Sform of the solution is y(z) = 1/\/3 —24y/1+4 22 . The positive sign is chosen to
satisfy the initial condition.
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(¢). The solution becomes singular when 21/1 + z2 = 3. Thatis, at z = +/5 /2.

15(a). y(x) = —1/2+ /2? —15/4 .
(b).

16(a). Rewrite the differential equation as 4y3dy = z(x? + 1)dx . Integrating both
sides

of the equation results in y* = (22 +1)*/4 + c¢. Imposing the initial condition, we obtain
¢ = 0. Hence the solution may be expressed as (22 + 1) — 4y* = 0. The explicit form

of the solution is y(x) = — /(22 +1)/2 . The sign is chosen based on y(0) = —1/1/2.
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-1.24
-1.44
-1.61
-1.84

-2.24
-2.44
-2.61

(c). The solution is valid for all x € R.

17(a). y(z) = —5/2 — /a3 — e+ 13/4 .

(b).

(c). The solution is valid for = > — 1.45. This value is found by estimating the root of
4a% —4e” +13 =10.

18(a). Write the differential equation as (3 + 4y)dy = (e™" — e”)dz . Integrating both
sides of the equation, with respect to the appropriate variables, we obtain the relation

3y +2y* = — (e + e %) + c. Imposing the initial condition, y(0) = 1, we obtain
¢ = 7. Thus, the solution can be expressed as 3y + 2y°> = — (e + e %) + 7. Now by
completing the square on the left hand side, 2(y + 3/4)> = — (e” + e %) + 65/8.

Hence the explicit form of the solution is y(z) = — 3/4 + \/65/16 — cosh x .
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(c). Note the 65 — 16 coshx > 0, as long as |z| > 2.1. Hence the solution is valid on
the interval — 2.1 <z < 2.1.

19(a). y(z) = —7/3 + isin~'(3cos’z).

0.9
0.8

0.7

08 1 12 14,16 18 2 22

20(a). Rewrite the differential equation as y°dy = arcsinz/v/1 — 2% dz . Integrating
both sides of the equation results in y*/3 = (arcsinz)?/2 + ¢. Imposing the condition

y(0) = 0, we obtain ¢ = 0. The explicit form of the solution is y(z) = \:%g(arcsin z)*?.
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(c). Evidently, the solution is defined for — 1 < < 1.

22. The differential equation can be written as (3y> — 4)dy = 3x°dx . Integrating both
sides, we obtain y® — 4y = 2% + ¢. Imposing the initial condition, the specific solution
is y® — 4y = 23 — 1. Referring back to the differential equation, we find that y'— co as
y— 12/\/5. The respective values of the abscissas are x = — 1.276, 1.598.

i 1.2

| 3
\ 1

0.8
\ Y05
0.4

e 1 B
42008 04, 102040608 1421415
0.2 .
0.4
064 !

084 \
-14 1
-1.24 '

Hence the solution is valid for — 1.276 < x < 1.598.

24. Write the differential equation as (3 4+ 2y)dy = (2 — e”)dx . Integrating both sides,
we obtain 3y + y> = 2z — e” + c¢. Based on the specified initial condition, the solution
can be written as 3y + y> = 2x — e* 4 1. Completing the square, it follows that

y(zr) = —3/2+4 \/2z — e* + 13/4 . The solution is defined if 22 — e* + 13/4 > 0,
thatis, — 1.5 <z < 2 (approximately). In that interval, y' = 0, for x = In2. Itcan
be verified that y”(In2) < 0. In fact, y”(x) < 0 on the interval of definition. Hence
the solution attains a global maximum at z = In 2.

26. The differential equation can be written as (1+4?) 'dy = 2(1 + z)dx . Integrating
both sides of the equation, we obtain arctany = 2z + x* + c¢. Imposing the given
initial

condition, the specific solution is arctany = 2z + x?. Therefore, y(z) = tan(2z + z2).
Observe that the solution is defined as long as — 7/2 < 2z + 2? < 7/2. Itis easy to
see that 2 4+ 22 > — 1. Furthermore, 2z + 22 = /2 for x = — 2.6 and 0.6. Hence
the solution is valid on the interval — 2.6 < x < 0.6. Referring back to the differential
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equation, the solution is stationary at x = — 1. Since y” () > 0 on the entire interval
of
definition, the solution attains a global minimumat z = — 1.

28(a). Write the differential equation as ' (4 — y) 'dy = t(1 4+ ¢) 'dt. Integrating
both sides of the equation, we obtain In |y| — in|y — 4| = 4t — 4In|1 + t| + ¢ . Taking
the exponential of both sides, it follows that |y/(y — 4)| = C e /(1 +t)*. It follows
thatas t—o0, |y/(y —4)| =1+ 4/(y — 4)|» 0. Thatis, y(t)— 4.

(b). Setting y(0) = 2, we obtain that C = 1. Based on the initial condition, the solution
may be expressed as y/(y —4) = — e* /(1 +)". Note that y/(y — 4) < 0, for all

t > 0. Hence y < 4 forallt > 0. Referring back to the differential equation, it follows
that ' is always positive. This means that the solution is monotone increasing. We find
that the root of the equation e* /(1 +¢)" = 399 is near ¢t = 2.844.

(c). Note the y(t) = 4 is an equilibrium solution. Examining the local direction field,
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we see that if y(0) > 0, then the corresponding solutions converge to y = 4. Referring
back to part (a), we have y/(y — 4) = [yo/(yo — 4)]e* /(1 +t)", for y, # 4. Setting

t =2, weobtain y,/(y, — 4) = (3/62)4y(2)/(y(2) —4). Now since the function

fly) =y/(y —4) is monotone for y < 4 and y > 4, we need only solve the equations
Yo/ (yo — 4) = —399(3/¢?)'and 5,/ (yo — 4) = 401(3/¢?)*. The respective solutions

are y, = 3.6622 and y, = 4.4042.

30(f).

L UL S S S S
e ey s T e i
T e e e e S, e
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31(c)

32(a). Observe that (2% + 3y?)/2xy = %(%)‘1 + 3y,

is homogeneous.

R
T
My e

R R o
By T e e

Y
Y,
L

B

by e maan
L i e e S
e
R

T P e e e el e el el el e,

Hence the differential equation

(b). The substitution y = z v results in v + z v’ = (2% + 32?v?)/22%v. The
transformed equation is v’ = (1 + v?)/2zv. This equation is separable, with general
solution v> + 1 = cx. In terms of the original dependent variable, the solution is

22 +y? =ca’.

(c).

S
o
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e
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33(c).
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34(a). Observe that — (4z + 3y)/(2z +y) = — 2 — £[2+ %] ", Hence the
differential equation is homogeneous.

(b). The substitution y = zvresultsin v + zv' = —2 —v/(2 + v). The transformed
equation is v’ = — (v2 + 5v +4)/(2 + v)z . This equation is separable, with general
solution (v+4)*|v+1| = C/2*. In terms of the original dependent variable, the solution
is (47 +y)*|z+y| = C.

().

o e T T Ty Ty T T T T T T T Ty T T
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35(c).

36(a). Divide by 2% to see that the equation is homogeneous. Substituting y = v, we
obtain v’ = (1 + v)®. The resulting differential equation is separable.

(b). Write the equation as (1 + v) “dv = z~'dz . Integrating both sides of the equation,
we obtain the general solution — 1/(1 + v) = In|z| 4+ c¢. In terms of the original
dependent variable, the solution is y = z [C — In|z|] " — z.
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equation is homogeneous. The substitution y = x v results in zv’ = (1 — 50?)/2v.

Separating variables, we have ; 2; sdv = 1dz.
—oU T

37(a). The differential equation can be expressed as 3/ = 1 (%) = %% Hence the
1

1

(b). Integrating both sides of the transformed equation yields — z

In|1 —50% = In|z| + ¢,
thatis, 1 — 50> = C'/|z|”. In terms of the original dependent variable, the general
solution is 5y% = z2 — C/|xz|".
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(%)_1. Hence the
= (v? — 1)/2v, that

38(a). The differential equation can be expressed as y’' = %
equation is homogeneous. The substitution y = z v results 1

18, Uffldv = %dx.

=N

1
2
xv'

(b). Integrating both sides of the transformed equation yields in|v* — 1| = In|x| + ¢,
that is, v> — 1 = C||z|. In terms of the original dependent variable, the general solution
is y? = C 2?|z| + 2%
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Section 2.3

5(a). Let @ be the amount of salt in the tank. Salt enters the tank of water at a rate of
2 %(1 + %sin t) = % + isint oz/min . It leaves the tank at a rate of 2(Q)/100 oz/min.
Hence the differential equation governing the amount of salt at any time is

dQ 1 1
T §+1827’Lt—Q/50.

The initial amount of salt is (), = 50 oz. The governing ODE is linear, with integrating
factor ju(t) = e'/°0. Write the equation as (et/E’OQ)/ = e!/%0(% + Lsint). The
specific solution is Q(t) = 25 + [12.5sint — 625cos t + 63150 e /%] /2501 oz.

(b).
a0
404
304
204

107

0720 a0 a0 't'aij 00" 120 140

(c). The amount of salt approaches a steady state, which is an oscillation of amplitude
1/4 about a level of 25 oz.

6(a). The equation governing the value of the investment is d.S/dt = r S. The value of
the investment, at any time, is given by S(t) = Sye". Setting S(T') = 25, , the required
time is 7' = In(2)/r.

(b). Forthecase r =7% = .07, T =99 yrs.

(c). Referring to Part(a), r = In(2)/T. Setting 1" = 8, the required interest rate is to
be approximately r = 8.66 % .

8(a). Based on the solution in Eg.(16), with S, = 0, the value of the investments with
contributions is given by S(t) = 25,000(e"" — 1). After fen years, person A has

S, = $25,000(1.226) = $30,640. Beginning at age 35, the investments can now be
analyzed using the equations S, = 30,640¢e%" and Sy = 25,000(e " — 1).

After thirty years, the balances are S, = $337,734 and Sy = $250,579.

(b). For an unspecified rate r , the balances after thirty years are S, = 30,640 3" and
Sy = 25,000(e3" — 1).
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(d). The two balances can never be equal.

11(a). Let S be the value of the mortgage. The debt accumulates at a rate of S, in
which r = .09 is the annual interest rate. Monthly payments of § 800 are equivalent to
89,600 per year. The differential equation governing the value of the mortgage is
dS/dt =.095 —9,600. Given that S, is the original amount borrowed, the debt is
S(t) = Sye™ —106,667(e" — 1). Setting S(30) = 0, it follows that

So = $99,500.

(b). The total payment, over 30 years, becomes § 288,000 . The interest paid on this
purchase is § 188, 500 .

13(a). The balance increases at a rate of S $/yr, and decreases at a constant rate of k
$ per year. Hence the balance is modeled by the differential equation d.S/dt =rS — k.
The balance at any time is given by S(t) = Spe’’ — £(e™ — 1).

(b). The solution may also be expressed as S(t) = (S, — £)e" + . Note that if the

r

withdrawal rate is k, = r S, , the balance will remain at a constant level S, .
(¢). Assuming that k > k,, S(T,) = 0 for T, = %ln[k_LkU]

(d). If r = .08 and k = 2k, , then T; = 8.66 years.

(€). Setting S(t) = 0 and solving for " in Part(b), e’ = k_]j,SU. Now setting t = T
results in k& = rSpe™ /(e —1).

(f). Inpart(e), let k = 12,000, r = .08, and 7" = 20. The required investment
becomes S, = $119,715.

14(a). Let Q' = — r Q. The general solution is Q(t) = Q,e . Based on the
definition of &alf-life, consider the equation @Qy/2 = Qe >"". It follows that
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— 57307 = In(1/2), that is, 7 = 1.2097 x 10~* per year.

(b). Hence the amount of carbon-14 is given by Q(t) = Q, e~ 1.2097x107"t

(¢). Given that Q(T) = Q,/5, we have the equation 1/5 = ¢~ 12097107 Solying for
the decay time, the apparent age of the remains is approximately 7' = 13, 304.65 years.

15. Let P(t) be the population of mosquitoes at any time ¢. The rate of increase of the
mosquito population is 7P. The population decreases by 20,000 per day. Hence the
equation that models the population is given by dP/dt = rP — 20,000. Note that the
variable ¢ represents days . The solution is P(t) = Pye™ — 220 (e — 1), In the
absence of predators, the governing equation is d P, /dt = r P,, with solution

P,(t) = Pje". Based on the data, set P,(7) = 2P, , thatis, 2P, = Pye™. The growth
rate is determined as r = In(2)/7 = .09902 per day. Therefore the population,
including the predation by birds, is P(t) = 2 x 10%e%" — 201, 997(e" — 1) =

= 201,997.3 — 1977.3 "%,

16(a). y(t) = exp[2/10 +t/10 — 2cos(t)/10]. The doubling-time is T ~ 2.9632 .

(b). The differential equation is dy/dt = y/10, with solution y(t) = y(0)e"/'°. The
doubling-time is given by 7 = 10in(2) ~ 6.9315.

(¢). Consider the differential equation dy/dt = (0.5 + sin(2nt))y/5. The equation is
separable, with %dy = (0.1 4 Lsin(27t))dt. Integrating both sides, with respect to the

appropriate variable, we obtain Iny = (7t — cos(2nt))/10m + ¢. Invoking the initial
condition, the solution is y(t) = exp[(1 + 7t — cos(2nt))/10x]. The doubling-time is
T & 6.3804 . The doubling-time approaches the value found in part(b).

(d).

17( ). The differential equation dy/dt = r(t)y — k is linear, with integrating factor
u(t) = exp[ — [r(t)dt]. Write the equation as (py) = — k p(t). Integration of both
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sides yields the general solution y = [ — k[ u(7)d7 + yy #(0)] /p1(t) . In this problem,
the
integrating factor is u(t) = exp|(cost —t)/5].

24
1.84
164
1.44
1.24

E
0.8
0.6
0.4
0.2

TR T h

(b). The population becomes extinct, if y(t*) = 0, for some ¢t = t*. Referring to

part(a),
we find that y(t*) = 0 =

t*
/ exp|(cosT — 1) /5]dT = 5%y
0

It can be shown that the integral on the left hand side increases monotonically, from zero
to a limiting value of approximately 5.0893. Hence extinction can happen only if
5e'/5y, < 5.0893, that is, y. < 0.8333.

(c). Repeating the argument in part(b), it follows that y(t*) = 0 =

t 1
/ expl(cosT — 7)/5ldT = % el/y..
0
Hence extinction can happen only if e'/°y./k < 5.0893, that is, y, < 4.1667k .
(d). Evidently, y. is a linear function of the parameter & .

19(a). Let Q(t) be the volume of carbon monoxide in the room. The rate of increase of
COis (.04)(0.1) = 0.004 ft*/min . The amount of CO leaves the room at a rate of
(0.1)Q(t) /1200 = Q(t) /12000 ft?/min . Hence the total rate of change is given by
the differential equation d@/dt = 0.004 — Q(¢)/12000. This equation is /inear and
separable, with solution Q(t) = 48 — 48 exp( — t/12000) ft*. Note that Q, = 0 ft>.
Hence the concentration at any time is given by z(t) = Q(t)/1200 = Q(t)/12 %.

(b). The concentration of CO in the room is z(t) = 4 — dexp( — t/12000) %. A level
0f 0.00012 corresponds to 0.012 %. Setting z(7) = 0.012, the solution of the equation
4 — dexp( —t/12000) = 0.012 is 7 ~ 36 minutes .
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20(a). The concentration is c¢(t) = k + P/r + (¢, — k — P/r)e "/ ltis easy to see
that c(t—»o0) = k + P/r.

(b). c(t) = cye V. The reduction times are Ty, = In(2)V /r and Ty, = In(10)V /r.
(c). The reduction times, in years, are Ts = In(10)(65.2)/12,200 = 430.85

Ty = In(10)(158) /4,900 = 71.4 ; T, = In(10)(175)/460 = 6.05
T, = In(10)(209) /16,000 = 17.63 .

21(c).
Pasition
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-30 t
22(a). The differential equation for the motion is mdv/dt = — v/30 — mg. Given the
initial condition v(0) = 20 m/s , the solution is v(t) = — 44.1 + 64.1exp( —t/4.5).

Setting v(t;) = 0, the ball reaches the maximum height at ¢, = 1.683 sec. Integrating
v(t), the position is given by z(t) = 318.45 — 44.1¢ — 288.45 exp( — t/4.5). Hence
the maximum height is x(t,) = 45.78 m.

(b). Setting x(t,) = 0, the ball hits the ground at ¢, = 5.128 sec.

().
Yelocity Puosition
204
40
104
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y 2z U3 4 5
0 204
10 107
1 0 T 7 ;3 3 g
23(a). The differential equation for the upward motion is mdv/dt = — pv* — mg,
in which = 1/1325. This equation is separable, with —"—dv = — dt. Integrating
Hnost+mg

page 44



CHAPTER 2. ——

both sides and invoking the initial condition, v(t) = 44.133 tan(.425 — .222t). Setting
v(t;) = 0, the ball reaches the maximum height at ¢, = 1.916 sec. Integrating v(t), the
position is given by z(t) = 198.75In[cos(0.222¢ — 0.425)] 4+ 48.57 . Therefore the
maximum height is x(t,) = 48.56 m.

(b). The differential equation for the downward motion is mdv/dt = + pv? —mg.

This equation is also separable, with mgi’L —dv = —dt. For convenience, sett = 0 at

the top of the trajectory. The new initial condition becomes v(0) = 0. Integrating both
sides and invoking the initial condition, we obtain In[(44.13 — v)/(44.13 + v)] = t/2.25

Solving for the velocity, v(t) = 44.13(1 — €/>%) /(1 + €"/**) . Integrating v(t), the
position is given by z(t) = 99.29n [et/z%/(l + Gt/2'25)2} + 186.2. To estimate the

duration ofthe downward motion, set x(¢,) = 0, resulting in ¢, = 3.276 sec. Hence the
total time that the ball remains in the air is ¢, + ¢, = 5.192 sec.

().
“elocity Position

204
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101 201
0] 104
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24(a). Measure the positive direction of motion downward . Based on Newton's 2nd
law,
the equation of motion is given by

dv { —0.75v+mg , 0<t<10

m%: —12v4+mg ,t>10

Note that gravity acts in the positive direction, and the drag force is resistive. During the
first ten seconds of fall, the initial value problem is dv/dt = — v/7.5 + 32, with initial

velocity v(0) = 0 fps. This differential equation is separable and linear, with solution
v(t) = 240(1 — e /7%). Hence v(10) = 176.7 fps .

(b). Integrating the velocity, with z(¢) = 0, the distance fallen is given by
z(t) = 240t + 1800 e "™ — 1800.
Hence x(10) = 1074.5 fi.
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(¢). For computational purposes, reset time to ¢ = 0. For the remainder of the motion,
the initial value problem is dv/dt = — 32v/15 + 32, with specified initial velocity

v(0) = 176.7 fps . The solution is given by v(t) = 15 + 161.7e /1>, Ast—oo,

v(t) > v, = 15 fps . Integrating the velocity, with z(0) = 1074.5, the distance fallen
after the parachute is open is given by z(¢) = 15¢ — 75.8 ¢ *?"/% + 1150.3. To find the
duration of the second part of the motion, estimate the root of the transcendental equation
15T — 75.8 ¢~ #7/15 4 1150.3 = 5000 . The resultis T = 256.6 sec.

(d).

“Welocity

“elocity
)
140 140
120 1204
100 1004
B0 a0
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40 404
-0 204
0 : :
0 50 100 150 200 280 5 10 18 A

25(a). Measure the positive direction of motion upward. The equation of motion is
given by mdv/dt = — kv — mg. The initial value problem is dv/dt = — kv/m — g,
with v(0) = v,. The solution is v(t) = — mg/k + (v, + mg/k)e /™. Setting

v(ty) = 0, the maximum height is reached at time ¢, = (m/k)In[(mg + kv,)/mg].
Integrating the velocity, the position of the body is

z(t) = —mgt/k+ [(%)29 + mkvo] (1 — e ktimy,

Hence the maximum height reached is

mu m\ 2 mg—|—]{iv
2o = alt,) = 2~ g(7) l"[Tg}

(b). Recall that for § < 1, In(146) =68 — §8*+ £6° — 36+ ...

26(b). lim _mg+(k”“;mg)efkt/m = lim — L (kv, + mg)e /™ =

k—0 k—0

—gt.

(c). lim [— % + (%e4v,)e ¥/™m] = 0,since lim e /™ =0.

m—0 m—0

28(a). In terms of displacement, the differential equation is mvdv/dz = — kv + mg.

This follows from the chain rule: % = w4z — ,dv The differential equation is

dt dx dt dt *
separable, with
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mv  mig, |mg—kv
#(v) = kR n mg

The inverse exists, since both x and v are monotone increasing. In terms of the given
parameters, z(v) = — 1.25v — 15.311n|0.0816 v — 1|.
dizplacement
309
254
204

u 2 4 6 8 10
(b). x(10) = 13.45 meters . The required value is k = 0.24.

(¢). Inpart(a), set v =10 m/s and x = 10 meters .

29(a). Let x represent the height above the earth's surface. The equation of motion is

given by m% = -G ( é‘i 7;)2 , in which G is the universal gravitational constant. The
symbols M and R are the mass and radius of the earth, respectively. By the chain rule,
dv Mm
mv— = —G——.
dx (R+ )

This equation is separable, with vdv = — GM (R + x)_de . Integrating both sides,
and

invoking the initial condition v(0) = \/2gR , the solution is v> = 2GM (R + =)' +
+2gR — 2GM /R . From elementary physics, it follows that g = GM /R?. Therefore

v(x) = /29 [R/\/R + :1;] (Note that g = 78,545 mi/hr®.)

(b). We now consider dz/dt = /2g [R/\/ R+ w] . This equation is also separable,

with /R + zdx = /29 Rdt. By definition of the variable x, the initial condition is
z(0) = 0. Integrating both sides, we obtain z(¢) = [3 (/29 Rt + %Rm)}?/g ~R.
Setting the distance z(7") + R = 240,000, and solving for T, the duration of such a
flight would be T ~ 49 hours .

32(a). Both equations are linear and separable. The initial conditions are v(0) = u cos
A
and w(0) = usin A. The two solutions are v(t) = ucos Ae " and w(t) = — g/r +

+ (usin A + g/r)e .
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(b). Integrating the solutions in part(a), and invoking the initial conditions, the
coordinates are z(t) = “cos A(1 —e"") and

y(t) = —gt/r+ (g+ursin A+ hr?) /1% — (gsz’nA + g/r2>e_”.
r
().
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(d). Let T be the time that it takes the ball to go 350 f# horizontally. Then from above,
e T/5 = (ucos A —70)/ucos A. At the same time, the height of the ball is given by
y(T) = — 16071 + 267 + 125usin A — (800 + bu sin A)[(ucos A —70)/ucos A].
Hence A and u must satisfy the inequality

ucos A—T70

SOth[ oA

] + 267 + 125usin A — (800 + 5u sin A)[(ucos A — 70)/ucos A] > 10.

33(a). Solving equation (i), y'(z) = [(k* — y)/y]l/Q. The positive answer is
chosen, since y is an increasing function of x .

(b). Let y = k?sin’*t. Then dy = 2k’sint costdt. Substituting into the equation in
part(a), we find that

2k%sint costdt _cost

dx sint

Hence 2k2sin’t dt = dx .

(c). Letting 6 = 2t, we further obtain kQSiHZ% df = dx . Integrating both sides of the

equation and noting that ¢t = # = 0 corresponds to the origin, we obtain the solutions
2(0) = k*(0 — sin0)/2 and [from part(b)] y(0) = k*(1 — cos ) /2.

(d). Note that y/x = (1 — cos0)/(0 — sinf). Setting x = 1,y = 2, the solution of
the equation (1 — cos#)/(0 — sinf) = 2is 0 ~ 1.401. Substitution into either of the
expressions yields k£ ~ 2.193.
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Section 2.4

2. Considering the roots of the coefficient of the leading term, the ODE has unique
solutions on intervals not containing 0 or 4. Since 2 € (0,4), the initial value problem
has a unique solution on the interval (0,4) .

3. The function tant is discontinuous at odd multiples of 5 . Since § < 7 < 37” , the
initial value problem has a unique solution on the interval (g , 37”)

5. p(t) = 2t/(4—*)and g(t) = 3t*/(4 —t2). These functions are discontinuous at

x = £2. The initial value problem has a unique solution on the interval ( — 2, 2).

6. The function [nt is defined and continuous on the interval (0, 00). Therefore the
initial value problem has a unique solution on the interval (0, c0).

7. The function f(¢,y) is continuous everywhere on the plane, except along the straight
line y = — 2t/5. The partial derivative 9f /0y = — 7t/(2t + 5y)* has the same
region of continuity.

9. The function f(¢,y) is discontinuous along the coordinate axes, and on the hyperbola
t> —y?> = 1. Furthermore,
of _ +1 o Y In|tyl

Oy  y(1—2+12) T(1-2+42)>

has the same points of discontinuity.

10. f(t,y) is continuous everywhere on the plane. The partial derivative 0 f/Jy is also
continuous everywhere.

12. The function f(¢,y) is discontinuous along the lines t = +kmandy = — 1. The
partial derivative 9 f /Oy = cot(t)/(1 + y)* has the same region of continuity.

14. The equation is separable, with dy/y?> = 2tdt. Integrating both sides, the solution
is given by y(t) = y,/(1 — yot?). Fory, > 0, solutions exist as long as t*> < 1/y,.
For y, < 0, solutions are defined for all t .

15. The equation is separable, with dy/y> = — dt. Integrating both sides and invoking
the initial condition, y(t) = yo/+/2yst + 1. Solutions exist as long as 2y,t +1 > 0,
that is, 2y,t > — 1. If y, > 0, solutions exist fort > — 1/2y,. Ify, = 0, then the
solution y(¢) = 0 exists for all . If y, < 0, solutions exist fort < — 1/2y,.

16. The function f(¢,y) is discontinuous along the straight linest = — landy = 0.
The partial derivative J f /Oy is discontinuous along the same lines. The equation is
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separable, with y dy = t? dt/(1+¢*). Integrating and invoking the initial condition, the
solution is y(t) = [3In|1 + t*| + y] "2 Solutions exist as long as

%ln\1+t3| +y5 >0,

thatis, y2 > — 2In|1 + ¢3|. Forall y, (it can be verified that y, = 0 yields a valid

solution, even though Theorem 2.4.2 does not guarantee one) , solutions exists as long as

|1+ 3| > exp( — 3y2/2). From above, we must have ¢ > — 1. Hence the inequality

may be written as > > exp( — 3y?/2) — 1. It follows that the solutions are valid for
173

[exp( —3y2/2) — 1] <t < 00.

17.
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Based on the direction field, and the differential equation, for y, < 0, the slopes
eventually become negative, and hence solutions tend to — oo. For y, < 0, solutions
increase without bound if ¢, < 0. Otherwise, the slopes eventually become negative, and
solutions tend to zero. Furthermore, y, = 0 is an equilibrium solution. Note that slopes
are zero along the curves y = O and ty = 3.

19.
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For initial conditions (t,, y,) satisfying ty < 3, the respective solutions all tend to zero .
Solutions with initial conditions above or below the hyperbola ty = 3 eventually tend to
+00. Also, y, = 0 is an equilibrium solution.

20.
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Solutions with ¢, < 0 all tend to — co. Solutions with initial conditions (%, y,) to the
right of the parabola ¢t = 1 + y? asymptotically approach the parabola as t -+ oo . Integral
curves with initial conditions above the parabola (and y, > 0) also approach the curve.
The slopes for solutions with initial conditions below the parabola (and y, < 0) are all
negative. These solutions tend to — co.

21. Define y.(t) = 2(t — ¢)**u(t — ¢), in which u(t) is the Heaviside step function.

5(t—¢) )
Note that y.(c) = y.(0) = 0 and . (c + (3/2)**) = 1.
(a). Letc =1 — (3/2)"".
(b). Letc =2 — (3/2)*".

c). Observe that y,(2) = 23/2,ypt 23/2f0r0<c<2,andthatyc 2) = 0 for
3 3
¢>2. Soforany ¢ >0, £y.(2) € [ - 2,2].

26(a). Recalling Eq. (35) in Section 2.1,
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1 / c
y=——1[ wu(s)g(s)ds + ——=
u(t) (#Jale) u(t)
It is evident that y, (t) = ﬁ and v, (t f u(s
(b). By definition, 5 = exp( — [p(t)dt). Hencey/ = — p(t) 15 = — p(t)y-

That is, y{ + p(t)y: =

A
w

(©) vl = (= () 75 ) u()9(s) ds + (51 ) mBg()) = = p(B)y + g(0).

That is, y, + p(t)y. = g(t).

30. Since n = 3, setv = y>. It follows that % = - 2y 3 ff,i{ and ZZ;’ = — Ly
Substitution into the differential equation yields — % % — ey = — oy?®, which further

results in v’ + 2ev = 20. The latter differential equation is linear, and can be written as

(e2')" = 20. The solution is given by v(t) = 20t e 2 + ce %", Converting back to
the original dependent variable, y = +v~'/2.

31. Since n = 3, set v = y 2. It follows t};at % = =2y 2 and dJ = - L f;tf
The differential equation is written as — % % — (Ccost + T)y = oy*, which upon

further substitution is v’ + 2(I'cost + T')v = 2. This ODE is linear, with integrating
factor u(t) = exp(2[ (Lcost + T)dt) = exp( — 2I'sint + 2T't). The solution is

t
v(t) = 2exp(2Tsint — 2Tt)/ exp( — 2TsinT 4 2T7)dT + cexp( — 2Tsint + 2T't).
0

Converting back to the original dependent variable, y = £v /2

33. The solution of the initial value problem 3/ + 2y, = 0, 3,(0) = 1is y,(¢) = e 2.
Therefore y(17) = 4,(1) = e 2. On the interval (1, 00), the differential equation is
ys + v, = 0, with y,(t) = ce~'. Therefore y(1*) = y,(1) = ce!. Equating the limits
y(17) = y(17), we require that c = e~ . Hence the global solution of the initial value
problem is

e?, 0<t<1
et t>1 '

Note the discontinuity of the derivative

—27% 0<t<l1
t) = ’ .
y( ) { _ e—l—t’ t > 1
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Section 2.5

1.

D™ n2040608 1 12141618 2
¥

For y, > 0, the only equilibrium point is y* = 0. f’(0) = a > 0, hence the equilibrium
solution ¢(t) = 0 is unstable.

2.
o
e
L4
b2
ST 1‘
The equilibrium points are y* = —a/bandy* =0. f'( —a/b) < 0, therefore the
equilibrium solution ¢(t) = — a/b is asymptotically stable.
3.
4-
3_
2-
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The only equilibrium point is y* = 0. f’(0) > 0, hence the equilibrium solution

¢(t) =0

1S unstable.

5.

A
. .

RE ¥

The only equilibrium point is y* = 0. f’(0) < 0, hence the equilibrium solution
¢(t) =0

is asymptotically stable.

6.

-0.24
-0.44
-0.64
-0.84
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The only equilibrium point is y* = 1. Note that f’'(1) = 0, and thaty’ < 0 fory # 1.
As long as y, # 1, the corresponding solution is monotone decreasing. Hence the
equilibrium solution ¢(t) = 1 is semistable.

9.

1.69
1.69
1.49
1.29

0.51
0.64
0.44
0.24

-t08 D 021 028406081 1.21.
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10.

1.5

0.5

A5 05
-0.5

-1.51

05y 1 1.4

The equilibrium points are y* = 0,41. f’(y) = 1 — 3y?>. The equilibrium solution
¢(t) = 0 is unstable, and the remaining two are asymptotically stable.

11.
087
06
044
021
U R 2 25 13
0.2
12.
A4
2_
- 17
-2
44
-4
-7
104
2]
14

The equilibrium points are y* = 0,42. f’(y) = 8y — 4y*. The equilibrium solutions
o(t) = —2and ¢(t) = + 2 are unstable and asymptotically stable, respectively. The

equilibrium solution ¢(t) = 0 is semistable.
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13.

0402 02 04 n.'eyn.'a 112 1.4
The equilibrium points are y* = 0 and 1. f'(y) = 2y — 6y + 4y>. Both equilibrium
solutions are semistable.

15(a). Inverting the Solution (11), Eq. (13) shows ¢ as a function of the population y
and
the carrying capacity K. With y, = K /3,

‘(1/3)[1—(y/K)]‘.

t= — 1ln
a (y/K)[1 = (1/3)]

r

Setting y = 2y,

T= ——In
r

(1/3)[1 = (2/3)] ‘
(2/3)[1 = (1/3)]

Thatis, 7 = %ln4. If r = 0.025 per year, T = 55.45 years.

(b). InEq. (13), set yo/K = aand y/K = (3. As a result, we obtain

1 el g
=5

r
Given a = 0.1, 8 = 0.9 and r = 0.025 per year, T = 175.78 years.

16(a).
r=075 K=B0ER
2417
1.5e+17
Te+17 ]
5e-HI5
0 o417  de+l7  Be+l7 sehgg
¥
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17. Consider the change of variable u = In(y/K). Differentiating both sides with
respect

tot,u’ = y’'/y. Substitution into the Gompertz equation yields u’ = — ru, with
solution u = uye . It follows that in(y/K) = In(y,/K)e ™. Thatis,

% = exp [ln(yO/K)e’”} .

(a). Given K = 80.5 x 10°%, y,/K = 0.25 and r = 0.71 per year, y(2) = 57.58 x 10°.

(b). Solving for ¢,

In(y/K)

Setting y(7) = 0.75K, the corresponding time is 7 = 2.21 years.

1 [ln(y/K)]'

t= ——In
r

19(a). The rate of increase of the volume is given by rate of flow in — rate of flow out.
That is, dV /dt = k — aa/2gh . Since the cross section is constant, dV /dt = Adh/dt.
Hence the governing equation is dh/dt = (k — aay/2gh ) / A.

(b). Setting dh/dt = 0, the equilibrium height is h, = 2%} (i)z Furthermore, since

f'(h.) < 0, it follows that the equilibrium height is asymptotically stable.

(c). Based on the answer in part(b), the water level will intrinsically tend to approach h,.
Therefore the height of the tank must be greater than h.; that is, h, < V / A.

22(a). The equilibrium points are at y* = 0 and y* = 1. Since f'(y) = a — 2ay, the
equilibrium solution ¢ = 0 is unstable and the equilibrium solution ¢ = 1 is
asymptotically stable.

(b). The ODE is separable, with [y(1 — y)]'dy = adt. Integrating both sides and
invoking the initial condition, the solution is

_ Yo e(xt
L —yo+yoet

y(t)
It is evident that (independent of y;) tlim y(t) =0 and tlim y(t)=1.

23(a). y(t) = yye .

(b). From part(a), dz/dt = axy,e 7. Separating variables, dz/z = ay,e Pdt.
Integrating both sides, the solution is z(t) = z, exp[ay,/B(1 — e )].

(c). Ast—=o0, y(t)—=0 and z(t) > x,exp(ay,/F). Over along period of time, the
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proportion of carriers vanishes. Therefore the proportion of the population that escapes
the epidemic is the proportion of susceptibles left at that time, z, exp(a y,/3).

25(a). Note that f(x) = 2[(R — R.) — a2?],and f'(x) = (R — R.) — 3ax?. Soif
(R — R.) < 0, the only equilibrium point is z* = 0. f’(0) < 0, and hence the solution
o(t) = 0 is asymptotically stable.

(b). If (R — R,) > 0, there are three equilibrium points z* = 0,++/(R — R.)/a .
Now f/(0) > 0, and f'(++/(R — R.)/a ) < 0. Hence the solution ¢ = 0 is unstable,
and the solutions ¢ = £./(R — R.)/a are asymptotically stable.

(c).
44
201
0
20
A0
o 1 2R3 4 &
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Section 2.6

l. M(z,y) =2x+3and N(x,y) =2y — 2. Since M, = N, = 0, the equation is
exact. Integrating M with respect to «, while holding y constant, yields ¢ (z,y) =
=22+ 3z + h(y). Now ¢, = h'(y), and equating with N results in the possible
function h(y) = y* — 2y. Hence ¢(z,y) = 2* + 3z + 3> — 2y, and the solution is
defined implicitly as z* + 3z +y*> — 2y = c.

2. M(z,y) =2x + 4y and N (z,y) = 2z — 2y . Note that M, # N, , and hence the
differential equation is not exact.

4. First divide both sides by (2zy + 2). We now have M (z,y) = y and N(z,y) = .
Since M, = N, = 0, the resulting equation is exact. Integrating M with respect to x,
while holding y constant, results in ¢)(x,y) = xy + h(y) . Differentiating with respect
toy, 1, =x+ h'(y). Setting b, = N, we find that h'(y) = 0, and hence h(y) =0
is acceptable. Therefore the solution is defined implicitly as xy = c¢. Note that if

zy + 1 = 0, the equation is trivially satisfied.

6. Write the given equation as (az — by)dx + (bx — cy)dy . Now M (z,y) = ax — by
and N(z,y) = bx — cy. Since M, # N, , the differential equation is not exact.

8. M(z,y) =e"siny+ 3y and N(x,y) = — 3z + e”siny. Note that M, # N, , and
hence the differential equation is not exact.

10. M(z,y) =y/x + 6z and N(z,y) = Inx — 2. Since M, = N, = 1/z, the given
equation is exact. Integrating N with respect to y, while holding = constant, results in
W(z,y) = ylnx — 2y + h(x). Differentiating with respect to z, ¢, = y/x + h'(x).
Setting ), = M, we find that ' (z) = 6x, and hence h(x) = 3x2. Therefore the
solution

is defined implicitly as 3z + ylnxz — 2y = c.

1. M(z,y) =xlny+ xyand N(x,y) = ylnx + zy. Note that M, # N, , and hence
the differential equation is not exact.

13. M(z,y) =2z —yand N(z,y) = 2y — . Since M, = N, = — 1, the equation is
exact. Integrating M with respect to «, while holding y constant, yields ¢ (z,y) =

=22 — 2y + h(y). Now ), = — z + h'(y). Bquating , with N results in h'(y) = 2y,
and hence h(y) = y?. Thus ¢(x,y) = ¥* — xy + y*, and the solution is given implicitly
as 2 — xy + y? = c. Invoking the initial condition y(1) = 3, the specific solution is
z? — zy + y? = 7. The explicit form of the solution is y(z) = 3 [x + /28 — 322 } :

Hence the solution is valid as long as 3x? < 28.

16. M(x,y) =ye*¥ +x and N(z,y) = bx e*¥. Note that M, = > + 2xy e*™,
and N, = b eV + 2bxy Y. The given equation is exact, as long as b = 1. Integrating
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N with respect to y, while holding  constant, results in 1(x,y) = €*¥/2 + h(z). Now
differentiating with respect to x, 1, = y e**¥ + h/(x). Setting 1), = M, we find that
h'(z) = x, and hence h(x) = x?/2. Conclude that 1(x,y) = €**¥/2 + x?/2. Hence
the solution is given implicitly as €**Y 4+ x* = c.

17. Integrating 1), = N, while holding = constant, yields

Y(w,y) = [ N(z,y)dy + h(z).

Taking the partial derivative with respect tox, ¢x i 881 N(z,y)dy + h'(x). Now

set 1, = M (x,y) and therefore h/(x) = — [Z N(z,y)dy. Based on the fact
that M, = N, , it follows that (% W (z)] = 0. Hence the expression for 2’ (x) can be

integrated to obtain
:/M(x,y)dfc—/V;N(fc,y)dy}dx
x

18. Observe that a%[M(:c)] = Z[N(y)]=0.

20. M, =y 'cosy —y?siny and N, = — 2e "(cosz + sinx)/y. Multiplying
both sides by the integrating factor p(x,y) = ye”, the given equation can be written as
(e"siny — 2y sinx)dz + (e"cosy + 2cosx)dy = 0. Let M = uM and N = uN.
Observe that M, = N, , and hence the latter ODE is exact. Integrating N with respect
to i, while holdmg x constant, results in Y(z,y) = e"siny + 2y cosx + h(z). Now
differentiating with respect to x, 1, = e*siny — 2y sinx + h'(z). Setting 1), = M,
we find that A/(z) = 0, and hence h(z) = 0 is feasible. Hence the solution of the given
equation is defined implicitly by e*siny + 2y cosx = (3.

21. M, =1 and N, = 2. Multiply both sides by the integrating factor u(x,y) = y to
obtain y2d93 + (2zy — y?e¥)dy = 0. Let M = yM and N = yN. Itis easy to see that
M,=N,, and hence the latter ODE is exact. Integrating M with respect to x yields
Y(z,y) = xy? + h(y). Equating v, with N results in h'(y) = — y?eY, and hence
h(y) = — e¥(y?* — 2y + 2). Thus ¥(z,y) = zy* — ¥ (y* — 2y + 2), and the solution
is defined implicitly by zy? — e¥(y? — 2y +2) = c.

24. The equation M + pNy' = 0 has an integrating factor if (uM) = (uN),, thatis,
w,M — ., N = uN, — uM, . Suppose that N, — M, = R (xM — yN), in which R is
some function depending only on the quantity z = xy. It follows that the modified form
of the equation is exact, if u,M — u,N = uR (zM —yN) =R (pzM — pyN). This
relation is satisfied if pu, = (px)R and p, = (py)R. Now consider u = u(xy). Then
the partial derivatives are p, = p'y and pu, = p/x. Note that 4/ = dp/dz. Thus g must
satisfy p/(z) = R(z). The latter equation is separable, with dy = R(z)dz, and

= [R(z)dz. Therefore, given R = R(xy), it is possible to determine p = pu(xy)
which becomes an integrating factor of the differential equation.
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28. The equation is not exact, since N, — M, = 2y — 1. However, (N, — M,)/M =

= (2y — 1)/y is a function of y alone. Hence there exists i = u(y), which is a solution
of the differential equation i/ = (2 — 1/y)u. The latter equation is separable, with
du/p =2 —1/y. One solution is u(y) = exp(2y — Iny) = €% /y. Now rewrite the
given ODE as e*dz + (2ze* — 1/y)dy = 0. This equation is exact, and it is easy to
see that (z,y) = xe? — Iny. Therefore the solution of the given equation is defined
implicitly by ze? —Iny =c.

30. The given equation is not exact, since N, — M, = 8z3/y> + 6/y*. But note that
(N, — M,)/M = 2/y is a function of y alone, and hence there is an integrating factor
p = p(y). Solving the equation p' = (2/y)u, an integrating factor is u(y) = y*>. Now
rewrite the differential equation as (42° + 3y)dx + (3z + 4y®)dy = 0. By inspection,
Y(z,y) = z* + 3zy + y*, and the solution of the given equation is defined implicitly by
2+ 3zy+yt=c.

32. Multiplying both sides of the ODE by u = [zy(2z + y)] ', the given equation is
equivalent to [(3z + y)/(22? + zy)]dz + [(z + y)/(2zy + y?)]dy = 0. Rewrite
the differential equation as

2—!— 2 dx + 1+ ! d 0
— x — =0.
r 2x4vy y 2x+4y Y

It is easy to see that M, = N,. Integrating M with respect to x, while keeping y
constant, results in ¢(x, y) = 2in|z| + In|2z + y| + h(y) . Now taking the partial
derivative with respect to i, 1, = (2o + %)~ + h'(y). Setting v», = N, we find that
h'(y) = 1/y, and hence h(y) = In|y|. Therefore

W(z,y) = 2n|x| + In]2x + y| + Inly|,

and the solution of the given equation is defined implicitly by 23y + 2%y* = c.
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Section 2.7

2(a). The Euler formula is v, = 9, + h(2y, — 1) = (1 +2h)y, — h.
(d). The differential equation is /inear, with solution y(t) = (1 + ') /2.
4(a). The Euler formula is y,., = (1 — 2h)y, + 3h cost, .

(d). The exact solution is y(t) = (6cost + 3sint —6e~2)/5.

5.
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T e e o I . 8 I i i % e
A g g Sl i P A g

0237777979979747757577
Vi
Tpdleddaraiiaenadd
1-’I§FI§II%III.’J'I.’§?F§
igj['lfiljli?j{g'jlsil
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All solutions seem to converge to ¢(t) = 25/9.
6.
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Solutions with positive initial conditions seem to converge to a specific function. On the
other hand, solutions with negative coefficients decrease without bound. ¢(¢) = 0 is an
equilibrium solution.

7.
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the other hand, solutions to the 'right’ of the curve seem to converge to zero. Also, ¢(t)
;
;
/‘
-

Solutions with initial conditions to the 'eft’ of the curve t = 0.1y? seem to diverge. On
is an equilibrium solution.

All solutions seem to converge to a specific function.

All solutions seem to diverge.
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Solutions with positive initial conditions increase without bound. Solutions with
negative
initial conditions decrease without bound. Note that ¢(¢) = 0 is an equilibrium solution.

11. The Euler formulais y,,; = v, — 3h\/y, + 5h. The initial value is y, = 2.
12. The iteration formula is y,.; = (1 + 3h)y, — ht,y>. (to, ) = (0,0.5).
14. The iteration formula is 4, = (1 — ht, )y, + hy? /10. (to,5,) = (0,1).

17. The Euler formula is
h(y2 + 2t,y,)

yn+1 :yn+ 3+t2
The initial point is (¢y, yo) = (1,2).
18(a). See Problem 8.
19(a).
_../' - /'_.
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(b). The iteration formula is y,,; = v, + hy> — ht>. The critical value of @ appears
to be near oy ~ 0.6815. For y, > «, the iterations diverge.
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20(a). The ODE is linear, with general solution y(t) =t + ce’. Invoking the specified
initial condition, y(t,) = y,, we have y, = t, + ce®. Hence ¢ = (y, — t;)e . Thus
the solution is given by ¢(¢) = (yo — to)e' " +¢t.

(b). The Euler formulais y,.;, = (1+h)y, +h —ht,. Nowset k =n+1.

(c). Wehavey, = (1+h)yo+h —hty=(1+ h)y,+ (t, — ty) — ht,. Rearranging
the terms, 1, = (1 + h)(yo — to) + t;. Now suppose that 3, = (1 4+ h)"(yo — to) + s,
forsome k£ > 1. Theny,., = (1 + h)y, + h — ht,. Substituting for y,, we find that
Yr = (L+R)" (o —to)+ L+ R )ty +h—ht, = (L+ 1) (yo—to) +ti + 1.
Noting that t,,, = ¢, + k, the result is verified.

(d). Substituting h = (t — t;)/n, with t, = ¢,

t—to\"
yn:(1+ no) (yo_to)+t

Taking the limit of both sides, as n— oo, and using the fact that lim (1 + a/n)" = €°,

n—oo
pointwise convergence is proved.

21. The exact solution is ¢(t) = e’. The Euler formula is y,.;, = (1 + h)y, . Itis easy
to see that y, = (1 + h)"y, = (L + h)". Givent > 0, set h = t/n. Taking the limit,

we find that lim y, = lim (1 +¢/n)" = €.

23. The exact solution is ¢(t) = t/2 + e*. The Euler formula is y,,; = (1 + 2h)y, +
+h/2—ht,. Sincey, =1,y = (1 +2h)+h/2=(1+2h)+t,/2. Ttiseasy to

show by mathematical induction, that y, = (1 4+ 2h)" +¢,/2. Fort > 0,seth =t/n
and thus ¢, = ¢. Taking the limit, we find that nhrglo Yo = nhngo [(1+2t/n)"+t/2] =

= e?! +t/2. Hence pointwise convergence is proved.
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Section 2.8

2. Letz=y—3and 7 =t+ 1. It follows that dz/dT = (dz/dt)(dt/dT) = dz/dt .
Furthermore, dz/dt = dy/dt = 1 — y*. Hence dz/dT = 1 — (z + 3)®. The new initial
condition is z(7 = 0) = 0.

3. The approximating functions are defined recursively by ¢,,,(t) = fo 1]ds.
Setting ¢o(t) = 0, ¢,(t) = 2t. Continuing, ¢,(t) = 2t> + 2t , ¢5(t) = 4t3 —|— 2t2 + 2t,
¢(t) = 2t* + 3¢5+ 2t 4+ 2t ---. Given convergence, set
P(t) )+ Z Gra(t) — i(t)]
k=1
- k:_

Comparing coefficients, a;/3! =4/3,a,/4! =2/3,---. It follows that a; = 8,
a, = 16,
and so on. We find that in general, that a, = 2". Hence

k=1
=2 -1
errar

S0
] 40
251
207 304
151 a0
104

104
5_ -
0" 02040608 1 12141618 2 0° 02040608 1 12141618 2

t

t
5. The approximating functions are defined recursively by

o) = [ 1= 6u(s)/2 + slds.

Setting ¢ (t) = 0, ¢,(t) = t*/2. Continuing, ¢ (t) = t2/2 — t3/12,¢5(t) = t?/2 —
—3/12 +t1/96, ¢u(t) = t2/2 — t3/12 + t1/96 — t7/960, - -- . Given convergence, set
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O(t) = di(t) + ) _[drn(t) — du(t)]

M 11e

— 42 Ak ok
=1}/2+ ) it
k=3
Comparing coefficients, a;/3! = —1/12,a,/4' =1/96, a;/5! = —1/960, ---. We
find thatay = — 1/2,a, =1/4,a; = —1/8,---. In general, a;, = 27*"'. Hence
) 2—k+2 1
bt) =3 (— 1
=2
=de "’ +2t—4.
errar
2 ]
164 057
1.6 3
ot D.AE
121 / 0.3
14 e b
0.8 0.2
0.5 e ]
0.4 0.1
0.2 ]
00203 06 08 1t 12141618 2 U n2040808 1t 12141618 2

6. The approximating functions are defined recursively by

o) = [ 6,(s) + 1 — s]ds.

Setting ¢o(t) = 0, ¢i(t) =t — 2/2, ¢o(t) = t — £3/6, ¢s(t) =t — t1/24, ¢, (t) =
=t— t5/120, ---. Given convergence, set

6(t) = ou(t) + i[@,ﬂ (t) - 64(2)

=t—12/2+ [t?/2 - £3/6] + [t3/6 — t"/24] + -
=t+0+0+---.

Note that the terms can be rearranged, as long as the series converges uniformly.
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errar

2_

1.6 183
1.44 164
1.24 1.44
1 1.24
0.6 14
os{ . 0%
041 0.4
0.24 0.24

002040608 1t 12141618 2 0D 2040608 1t 121416818 2

8(a). The approximating functions are defined recursively by

t
Do (t) = / [s2q§n(s) — s]ds.
0
Set ¢ (t) = 0. The iterates are given by ¢,(t) = —t2/2, ¢,(t) = —t*/2 —1°/10,
Bs(t) = —t2/2 —17/10 — t3/80, ¢ (t) = — /2 — t5/10 — t3/80 — t'1/880 ,-- - .

Upon inspection, it becomes apparent that
1t 6 ()"

2]t
ou(t) = — 1t [2+2,5+2.5.8+ +2-5-8~~[2+3(n—1)]

_ tQi (t?))k*l
2425 82180k 1)

t
02040608 1 121416 18 2

i

-8

-10
The iterates appear to be converging.
9(a). The approximating functions are defined recursively by
bunt) = [ 1+ 629 ds.

Set ¢ (t) = 0. The first three iterates are given by ¢, () = t3/3, ¢,(t) = t3/3 +17/63,
B3(t) = t3/3 +7/63 + 2t11 /2079 + 119 /59535 .
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0TS T 06 06 1 12141618 2
The iterates appear to be converging.

10(a). The approximating functions are defined recursively by
6us(0) = [ [1-6(9)ds.

Set ¢y (t) = 0. The first three iterates are given by ¢, (t) = t, ¢, (t) =t — t*/4,
By(t) =t —t*/4 + 3t7/28 — 3t /160 + ¢13/833.

(b).

U1 020406 08 g 1214 1618 2

-1

2]
The approximations appear to be diverging.

12(a). The approximating functions are defined recursively by

6
Note that 1/(2y — 2) = — 1 > y" 4+ O(y"). For computational purposes, replace the
k=0

above iteration formula by
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b= —3 [

Set ¢y(t) = 0. The first four approximations are given by ¢, (t) = —t — > —t3/2,
G(t) = —t—t2/2+t3/6+t1/4 —t5/5 —15/24 + .-,

Bs(t) = —t—1t2/2+14/12 — 3t7/20 + 416 /45 + -,

Gu(t) = —t—t2/2+t1/8 —Tt°/60 +5/15 + ---

(b).

02 04 tog 08 1

The approximations appear to be converging to the exact solution,

G(t) =1 — /142t +22+ 13,

13. Note that ¢,,(0) =0and ¢,(1) =1,YVn >1. Leta € (0,1). Then ¢,(a) = a”.
Clearly, lim a" = 0. Hence the assertion is true.

n—oo

14(a). ¢,(0)=0,Yn>1. Leta € (0,1]. Then ¢,(a) = 2nae " = 2na/e" .
Using I'Hospital's rule, lim 2az/e®" = lim 1/ze% = 0. Hence lim ¢,(a)=0.

Z—00

b). [l 2nze " de = — e‘”""2|; =1 — e ". Therefore,

lim 1¢n(:c)dx7é 1lim ¢n(x)dx.
0

n—oo 0 n—oo

15. Let ¢ be fixed, such that (¢, y,), (t,y,) € D. Without loss of generality, assume that
Yy, < ¥y, . Since f is differentiable with respect to y, the mean value theorem asserts that

3¢ € (yi,y2) such that f(¢,y,) — f(t,y.) = fy(t,€)(ys — y2). Taking the absolute
value of both sides, | (¢, 1) — f(t,v)| = |fy(t,€)||y: — vo|. Since, by assumption,
df /0y is continuous in D, f, attains a maximum on any closed and bounded subset of D
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Hence ‘f(tayl) —flt, )| < K|y — ?/2|-

16. For a sufficiently small interval of t, ¢, ,(t),d,(t) € D. Sl nce f satisfies a
Lipschitz condition, |f(t,®,(t)) — f(t, .1 ()| < K |p.(t) — ¢,1(t)|. Here
K = maz|f,|.

17(a). ¢(t) = [ f(s,0)ds. Hence |¢,(t)] < [ f(s,0)|ds < [\ Mds = M]t|, in
which M is the maximum value of | f(¢,y)| on D.

(b). By definition, ¢,(t) — = [1f( — f(s,0)]ds. Taking the absolute
value of both sides, |¢,(t) | < f't‘ [ (s)) — f(s,0)]|ds. Based on the
results in Problems 16 and 17 ]qbQ( & (1) | < me|q§1 — O|ds < KM [)|s|ds.

Evaluating the last integral, we obtain |¢2(t) o) <M K It|*/2.

(c). Suppose that

MKt
il

|$i(t) — i (t)| <

for some 7 > 1. By definition, ¢,,,(t) — = [T1( — f(s,¢i1(s))]ds.
It follows that
1t

P (t) — ¢i(t)] < ; |f(s,0i(s)) — f(s,¢i-1(s))|ds

It]
< K|¢i(s) — ¢i-1(s)|ds

0

[t] i—1
o [ g ME S
- ) il
_ ME" MK
G+ T G+

Hence, by mathematical induction, the assertion is true.
18(a). Use the triangle inequality, |a + b| < |a| + |b] .

(b). For|t| < h,|p.(t)] < Mh,and |¢,(t) — ¢, 1(t)| < MK™'h"/(n!). Hence

n Kz—lhz
9u(D] < MY =
i=1 :

M (KD)
_E;
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(c). The sequence of partial sums in (b) converges to 3% (e®"

test, the sums in (a) also converge. Furthermore, the sequence |9, (t)| is bounded, and
hence has a convergent subsequence. Finally, since individual terms of the series must
tend to zero, |¢,(t) — ¢, (t)| =0, and it follows that the sequence |¢,(t)| is convergent.

— 1). By the comparison

19(a). Let ¢(t) fO ))ds and w = [I f( . Then by linearity of
the integral, ¢(t) fo[f f(s,w( ))]ds.

(b). Tt follows that [¢(t) — $(t)] < [1f(s. 6(s)) — f(s,%(s))|ds

(c). We know that f satisfies a Lipschitz condition,
|f(t>y1) - f(tay2)| < Klyl _y2|’
based on |0f/0y| < K in D. Therefore,
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Section 2.9

1. Writing the equation foreachn > 0,4y, = —0.9y,, .= —09y,,y3 = — 0.9y,
and so on, it is apparent that y, = ( — 0.9)" y, . The terms constitute an alternating
series, which converge to zero, regardless of ¥, .

3. Write the equation for eachn > 0, y, = \/§y0 s Y = \/4/2 Y1, ys = /D)3 Yy,
Upon substitution, we find that y, = /(4 -3)/2 y1, y3 = \/(5 4-3)/(3-2) yo, -
It can be proved by mathematical induction, that

1 [(n+2)
yn_ﬁ ol Yo
1
:ﬁ\/(n+1)(n+2)y0.

This sequence is divergent, except for y, = 0.

4. Writing the equation foreachn > 0, y1 = — Yy, Yo = Y1, Ys = — Yo, Ys = Y3,
and so on, it can be shown that

_ Yo , forn=4korn=4k—1
U= =y , forn=4k—2orn=4k—3

The sequence is convergent only for y, = 0.

6. Writing the equation for eachn > 0,

y1 = 0.5y, +6
Yo = 0.59; +6 = 0.5(0.5y, + 6) + 6 = (0.5)%y, 4+ 6 + (0.5)6
ys = 0.5, 4+ 6 = 0.5(0.5y, + 6) + 6 = (0.5)%yy + 6[1 + (0.5) + (0.5)?]

g = (05)"90 + 12[1 — (0.5)"

which can be verified by mathematical induction. The sequence is convergent for all y, ,
and in fact y, »12.

7. Let y, be the balance at the end of the n-th day. Then y,,, = (1 + r/356)y, . The
solution of this difference equation is y, = (1 4 r/365)" y, , in which y, is the initial
balance. At the end of one year, the balance is y;; = (1 + r/365)” y,. Given that

r = .07, yss = (1 +7/365)*" 35 = 1.0725 3, . Hence the effective annual yield is
(1.0725 90 — o) /Yo = 7.25%.

8. Let y, be the balance at the end of the n-th month. Then y,., = (1 +7/12)y, + 25.
As in the previous solutions, we have
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y —p"[y 25 } n 25

n 0 1 —p 1 —p s
in which p = (1 + r/12). Here r is the annual interest rate, given as 8 %. Therefore
ys = (1.0066)* | 1000 + %] — U225 _ 9 983.63 dollars.

r

9. Let y, be the balance due at the end of the n-th month. The appropriate difference
equation is y,., = (1 +r/12)y, — P. Here r is the annual interest rate and P is the
monthly payment. The solution, in terms of the amount borrowed, is given by

P
1—p°

P
y":pn[yo—i_l ]
—p

in which p = (1 4+ r/12) and y, = 8,000 . To figure out the monthly payment, P, we
require that ¢33 = 0. That s,

P ] P

P36 [?JU + 1
—p

pr— 1 — p .
After the specified amounts are substituted, we find the P = $258.14.

11. Let y, be the balance due at the end of the n-th month. The appropriate difference

equation is y,,; = (1 +r/12)y, — P, in which r = .09 and P is the monthly payment.
The initial value of the mortgage is y, = 100,000 dollars. Then the balance due at the
end of the n-th month is

P}_P

where p = (1 +7/12). In terms of the specified values,

S 12P]  12P
y, = (0.0075)"10° — =— | 4+ =

r r

Setting n = 30(12) = 360, and 34 = 0, we find that P = 804.62 dollars. For the
monthly payment corresponding to a 20 year mortgage, set n = 240 and 3,y = 0.

12. Let y, be the balance due at the end of the n-t2 month, with y, the initial value of the
mortgage. The appropriate difference equation is y,.;, = (1 +r/12) y, — P, in which

r = 0.1 and P = 900 dollars is the maximum monthly payment. Given that the life of
the mortgage is 20 years, we require that 1,,, = 0. The balance due at the end of the n-
th month is

T P

In terms of the specified values for the parameters, the solution of
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210 12(1000) 12(1000)
(.00833)20 |y, — | = -
0.1 0.1
is yo = 103,624.62 dollars.
15.
p=25 p=2.8
e 073e
084y 0eal o
0.624 oooooooooooooooooooooooo 0.664 @ o 5
0.6 o 0643 . o e c®a%eP00000R0000
1 062y _°
0.55 051
0.561 0] °
0.541 0.56+
0.544
0.52 0523
054 . . . . . , .54 . . . . . ,
5 10 15 20 25 30 =} 10 15 20 25 30
n n
p=3.2 p=3.4
0.5 g @ o 0 0 0 0o ® o ® 5 ® g ® g 0 0 O O O O O
[+]
o © e 0.84
n74 ¢ °
¢ g o
06 - 0.7
0.5 R 0.6
0.4 054
0.3 . . . . . . O‘I’o"lo"?ooIOo?ool
5 10 15 20 25 30 5 10 15 20 25 30
n n
16. For example, take p = 3.5 and uy = 1.1:
ud=1.1
-2 -1 . i 2
_5_
_‘ll]_
_]5_
_2']_
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19(a). 6, = (pr — p1)/(ps — ps) = (3.449 — 3)/(3.544 — 3.449) = 4.7263 .

(b). % diff = 2 x 100 = L2 AT 5 100 ~1.22 % .

(d). A period 16 solutions appears near p =~ 3.565.
p=3.565
1 -

o o % o e % o e ® o
0.8

064
Y ] o ] o o ]

0.4+ o o o

0.21

Uso &0 70 , &0 90 100

(e). Note that (p,,1 — p.) = 6, (p, — pu_1). With the assumption that 6, = 8, we have
(Pns1 — Pu) = 6 (pn — pu_1), which is of the form y,,, = ay,,n > 3. It follows that
(pr — pk_l) 6% "(pg, — py) fork > 4. Then

Pr = Pt (2= p) (P = p2) + (pu = p) -+ (P = pi1)
=pit+(p—p)+(ps—p)[1+6"+67 4+ 67

1_54 n
= p1+ (pa— p1) + (3 — p2) 161 |

Hence lim p, = py + (ps — ps) [6%1] Substitution of the appropriate values yields
n—oo

lim p, = 3.5699

n—oo
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Miscellaneous Problems

1. Linear [y=c/a®+23/5].

2. Homogeneous [arctan(y/z) — In\/z2 + 2 = ¢ ].
3. Exact (2?2 + 2y —3y—y>=0].

4. Linear in z(y) [z =ceV+yeY].

5. Exact [y + 2y’ +x=c].

6. Linear [y=az'(1—e"")].

7. Letu = 2? (22 +1y2+1=ce’].

8. Linear [y = (4+cos2—cosz)/z?].

9. Exact [2?y+ 2 +9y° =c].

10. p = p(z) [y /2 +y/a? =c].

11. Exact [23/3 + 2y +e¥ =c].

12. Linear [y=ce " +e "In(l+e")].

13. Homogeneous [2\/y/x —In|z|=c].

14. Exact/Homogeneous [ z? + 2zy + 2y* = 34].
15. Separable [y =c/cosh?(x/2)].

16. Homogeneous | (2/\/§) arctan [(Zy - x)/\/gx} —In|z| = c].
17. Linear [y = ce’ — e ].

18. Linear/Homogeneous [y =cz 2 —x].

19. p = p(z) [3y — 22y — 10z = 0].

20. Separable [e" +e ¥ =c].

21. Homogeneous [e ¥/* +in|z| = c].

22. Separable [y + 3y — 2% + 3z = 2].

23. Bernoulli [1/y= —z[x2e* dx + cx].
24. Separable [ sin*z siny = c].

25. Exact [ 22y + arctan(y/x) = c].

26. pu = p(x) [ 22 + 22%y — y? = c].

27. u= pu(z) [ sinx cos2y — § sin*z = c].
28. Exact  [2zy+azy® — 2P =c].

29. Homogeneous [arcsin(y/x) —In|z| = c].
30. Linearinz(y) [zy® —Inly| =0].

31. Separable [z +in|z|+z +y—2Inlyl =c].
32. p=p(y) [2%y® + oy’ = —4].
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Chapter Three
Section 3.1

1. Let y = €', sothaty’ = re" and y” = re". Direct substitution into the differential
equation yields (1% + 2r — 3)e" = 0. Canceling the exponential, the characteristic
equation is 72 + 2r — 3 = 0. The roots of the equation are 7 = — 3,1. Hence the
general solution is y = c,e! + c,e 3.

2. Let y = €. Substitution of the assumed solution results in the characteristic equation
72 4+ 3r +2 = 0. The roots of the equation are 7 = — 2, — 1. Hence the general
solution is y = c;e™ + c,e 2.

4. Substitution of the assumed solution y = e"* results in the characteristic equation
272 — 3r +1 = 0. The roots of the equation are 7 = 1/2,1. Hence the general
solution is y = ¢,e/2 + c,e.

6. The characteristic equation is 47> — 9 = 0, with roots r = £3/2. Therefore the
general solution is y = ¢;e 32 4 ¢,e%/2.

8. The characteristic equation is 7> — 27 — 2 = 0, with roots r = 1i\/§ . Hence the
general solution is y = clexp<1 — \/§)t + cgexp<1 + \/§> t.

9. Substitution of the assumed solution y = €' results in the characteristic equation

72 + 1 — 2 = 0. The roots of the equation are 7 = — 2,1. Hence the general
solution is y = c;e 2" + cyet. Its derivative is y’' = — 2c,e™% + c,e!. Based on the
first condition, y(0) = 1, we require that ¢, + ¢, = 1. In order to satisfy y'(0) =1,
we find that — 2¢; 4+ ¢; = 1. Solving for the constants, ¢; = 0 and ¢; = 1. Hence the
specific solution is y(t) = €.

11. Substitution of the assumed solution y = e’* results in the characteristic equation
6r> — 5r + 1 = 0. The roots of the equation are r = 1/3,1/2. Hence the general
solution is y = c,e'/? + c,e!/?. Its derivative is 3’ = c,e/3/3 + c,e!/? /2. Based

on the first condition, y(0) = 1, we require that ¢; + ¢; = 4. In order to satisfy the
condition y’(0) = 1, we find that ¢;/3 + ¢;/2 = 0. Solving for the constants, ¢; = 12

and ¢, = — 8. Hence the specific solution is y(t) = 12e!/? — 8 ¢et/2.

12. The characteristic equation is 72 + 3r = 0, with roots r = — 3, 0. Therefore the
general solution is y = ¢; + c,e ¥, with derivative y’ = — 3 c,e 3. In order to
satisfy the initial conditions, we find that ¢; + ¢, = —2,and — 3¢, = 3. Hence the
specific solution is y(t) = — 1 — e~ .

13. The characteristic equation is 7> + 5r + 3 = 0, with roots
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5 13

= — —+—
T12 9 9

The general solution is y = clexp( — 5=/ 13) t/2 + c2e:z:p< — 5+ 4/ 13) t/2, with
derivative
—5—+13 —54++4/13
y' = — clea:p< —5—1/ 13)t/2 + % cgexp< — 5+ 13>t/2.

In order to satisfy the initial conditions, we require that ¢; + ¢, = 1, and
_5_2\/E c+ _5+2‘/1—3 ¢, = 0. Solving for the coefficients, ¢, = (1 —5/4/13 ) /2 and

e, = (1+5/v/13) /2.

1.8
1.6
1.44
1.29

0.81
0.6
0.4
0.2

14. The characteristic equation is 2r® + r — 4 = 0, with roots

1. V33

o Voo
"2 171

The general solution is y = clewp( —1— 33) t/4+ cgexp( -1+ 33) t/4, with
derivative
—1—-+/33 —14+/33
y' = — 1 clexp( e Y/ 33)t/4+ % cgexp< -1+ \/33)1&/4.

In order to satisfy the initial conditions, we require that ¢, + ¢; = 0, and
7174\/§ ca+ 71+4\/§ ¢, = 1. Solving for the coefficients, ¢, = — 2/4/33 and
¢, = 2/4/33 . The specific solution is

y(t) = — 2[6:13‘]?( —1- \/ﬁ)t/él — e:z:p( -1+ \/ﬁ)lﬁ/@/\/ﬁ
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16. The characteristic equation is 47> — 1 = 0, with roots 7 = 4-1/2 . Therefore the
general solution is 3y = c,e /2 + ¢,e!/?. Since the initial conditions are specified at

t = — 2, is more convenient to write y = d,e~2/2 4 d,e(1+2)/2, The derivative
is givenby y' = — [die=("2/2] /2 + [dye™+?/2] /2. In order to satisfy the initial
conditions, we find that d, + d; = 1,and —d,/2+ d,/2 = — 1. Solving for the
coefficients, d, = 3/2,and d, = — 1/2. The specific solution is
3 1
_° —(t+2)/2 _ ~ (t+2)/2
y(t) 5¢ 5¢
_ 3 i € up
=3¢ ¢
14
124
104
8_
E_
_d.
2_
2 53 2 ? i 5 6
44
F
I
10
12
141

18. An algebraic equation with roots — 2 and — 1/2is 2r* + 5r + 2 = 0. This is the
characteristic equation for the ODE 2y” + 5y’ +2y =0.

20. The characteristic equation is 272 — 3r + 1 = 0, with roots r = 1 /2, 1. Therefore
the general solution is y = ¢,e”/? + c,e!, with derivative 3’ = c,e/?/2 + c,e!. In

order to satisfy the initial conditions, we require ¢; + ¢; = 2 and ¢;/2 + ¢, = 1/2.
Solving for the coefficients, ¢, = 3, and ¢, = — 1. The specific solution is

y(t) = 3e'/? — e'. To find the stationary point, sety’ = 3e'/?/2 — et = 0. There is

a unique solution, with ¢, = In(9/4). The maximum value is then y(t;) = 9/4. To find
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t/2

the x-intercept, solve the equation 3e'/? — e = 0. The solution is readily found to be

ty = In9 ~ 2.1972.

22. The characteristic equation is 472 — 1 = 0, with roots 7 = +1/2. Hence the
general solution is y = cie /2 + c,e!/?, with derivative y’ = — cie t/2/2 + cet/?)2.
Invoking the initial conditions, we require that ¢; +c¢; =2 and — ¢, + ¢, = 3.

The specific solution is y(t) = (1 — B)e /2 + (1 + 3)e'/?. Based on the form of the
solution, it is evident that as t + o0, y(t)—=0 aslongas f = — 1.

23. The characteristic equation is r* — (2a — 1)7 + a(a — 1) = 0. Examining the
coefficients, the roots are » = o, & — 1. Hence the general solution of the differential
equation is y(t) = c;e® 4 c,e(* V!, Assuming o € R, all solutions will tend to zero
as long as a < 0. On the other hand, all solutions will become unbounded as long as
a—1>0,thatis,a > 1.

25. y(t) =2€'?/5+3e72/5.

2.44
229

2_
1.5
1.6
1.44
1.24

1_
0.5
0.6
0.47
0.24

D 02040608 1 1.2 1.'4t1.'5 T8 2 22242628 3
The minimum occurs at (¢, ,1,) = (0.7167,0.7155).

26(a). The characteristic roots are » = — 3, — 2. The solution of the initial value
problem is y(t) = (6 + B)e > — (4 + B)e .

3(4+ﬂ)} _ 46+9)°
26+5) |* Y0 T rarp?

(b). The maximum point has coordinates ¢, = ln[

(c). yoz%24,aslongasﬁz6+6\/§.

d). limt, =In3. I = 00.
@) fimto=ing. Jim = oo

29. Setv =y’ and v’ = y”. Substitution into the ODE results in the first order equation
tv' + v = 1. The equation is linear, and can be written as (tv)’ = 1. Hence the general
solutionis v =1+ ¢, /t. Hencey’ =1+ ¢, /t,and y =t + cilnt + ¢, .

31. Settingv =y’ and v’ = ", the transformed equation is 2t>v’ 4+ v = 2tv. This
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is a Bernoulli equation, with n = 3. Let w = v~2. Substitution of the new dependent
variable yields — t?w’ 4+ 1 = 2tw, or t>w’ + 2tw = = 1. Integrating, we find that
w= (t+c,)/t?. Hence v = &t/\/t + c,, thatis,y’ = +t/\/t + c,. Integrating one
more time results in y(t) = +2(¢ — 2¢,)\/t + ¢, +¢;. (Notethat v =0isalsoa
solution of the transformed equation).

32. Setting v =y’ and v’ = y”, the transformed equation is v’ + v = e~'. This ODE
is linear, with integrating factor u(t) = e'. Hence v =y’ = (t + ¢,)e"". Integrating,
we obtain y(t) = — (t+c)e '+ ¢, .

33. Setv =y’ and v’ = y”. The resulting equation is t>v’ = v?. This equation is
separable, with solution v =y’ = t/(1 + ¢,t). Integrating, the general solution is

y(t) =t/c; — ¢ n|l + et| + ¢y,

aslong as ¢; # 0. For ¢, = 0, the solution is y(¢) = t?/2 + ¢, . Note that v = 0 is
also a solution of the transformed equation.

35. Lety’ =wvand y” = vdv/dy. Then vdv/dy + y = 0 is the transformed equation
for v = v(y) . This equation is separable, with vdv = — ydy. The solution is given by
v> = — 9% + ¢,. Substituting for v, we find that y’ = ++/¢; — y2. This equation is
also

separable, with solution arcsin(y/ \/c_l) =+t+c,or y(t) =disin(t + d,).

36. Lety’ = vand y” = vdv/dy. It follows that vdv/dy + yv® = 0 is the differential
equation for v = v(y) . This equation is separable, with v dv = — ydy. The solution
is given by v = [y2/2 + ;] . Substituting for v, we find that y’ = [y2/2 + ¢,]"'. This
equation is also separable, with (y?/2 + ¢,)dy = dt. The solution is defined implicitly
by ¥*/6+cy+c, =t.

38. Settingy’ = vand y” = vdv/dy, the transformed equation is yvdv/dy — v* = 0.
This equation is separable, with v=> dv = dy/y . The solution is v(y) = [c; — In|y|] "
Substituting for v, we obtain a separable equation, (¢, — In|y|)dy = dz . The solution is
given implicitly by ¢,y — ylnly| + ¢ =t.

39. Lety’ = vand y” = vdv/dy . It follows that vdv/dy + v* = 2e™¥ is the equation
for v = v(y) . Inspection of the left hand side suggests a substitution w = v?. The
resulting

equation is dw/dy + 2w = 4e~ Y. This equation is linear, with integrating factor
pw=e?.

We obtain d(e? w)/dy = 4 ¥, which upon integration yields w(y) = 4e™ + ce™%.
Converting back to the original dependent variable, y’ = +e Y\/4¢e¥ + ¢, . Separating
variables, e¥(4e¥ + cl)*l/2dy = +dt. Integration yields y/4e¥+ ¢, = +2t+c,.

41. Setting y’ = vand y” = vdv/dy, the transformed equation is vdv/dy — 3y = 0.
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This equation is separable, with vdv = 3y*dy . The solutionisy’ = v = /2y3 + ¢, .
The positive root is chosen based on the initial conditions. Furthermore, whent¢ = 0,
y =2,and y' = v = 4. The initial conditions require that ¢, = 0. It follows that

y' = /2y? . Separating variables and integrating, 1/ \/_ = — t/\/§ + ¢, . Hence
the solution is y(¢) = 2/(1 —¢)*.

42. Settingv =y’ and v’ = y”, the transformed equation is (1 + t?)v’ + 2tv =
= — 3t~2. Rewrite the equation as v’ + 2tv/(1 +t*) = — 3t72/(1 +t*). This
equation is /inear, with integrating factor u = 1 4 t>. Hence we have

[(1+)0] = -3t

Integrating both sides, v = 3t7!/(1 + t?) + ¢, /(1 + t?). Invoking the initial condition
v(l) = — 1, we require that ¢; = — 5. Hence y’ = (3 — 5t)/(t +t3). Integrating,
we obtain y(t) = 3In[t?/(1 + t*)] — 5arctan(t) + ¢, . Based on the initial condition
y(1) = 2, we find that ¢, = 3in2 + 27 + 2.
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—2sinfcos —2sin20

Section 3.2
1.
W(e% 73t/2) B o2t e—3t/2 -~ zet/Q
, = 2 3 ,—3t/2 )
22t 5€ t/ 2
3.
—2 te*Qt
Wie2t te2) = | © -
(e™te™) =| ) (1—2t)e%
5.
teint elcost
W (et sint . oteost) — e'sin — _ 2
(6 simnt,ecos ) et(sint + cost) et(cost — sint) ‘
6.
2
W(00829,1+00829>:‘ cos 0 1+COS20‘:0'

7. Write the equation as y” + (3/t)y’ = 1. p(t) = 3/t is continuous for all ¢ > 0.
Since t, > 0, the IVP has a unique solution for all ¢ > 0.

9. Write the equation as y"” + %y’ + 75y = 757 - The coefficients are not

continuous at ¢ = 0 and ¢ = 4. Since t, € (0,4), the largest interval is 0 < t < 4.

10. The coefficient 3in|t| is discontinuous att = 0. Since ¢, > 0, the largest interval
of existence is 0 <t < 00.

11. Write the equation as y” + 5y + %y = 0. The coefficients are discontinuous

at  =0and z = 3. Since z, € (0, 3), the largest interval is 0 < z < 3.

13. y/' = 2. Wesee that t>(2) — 2(#?) = 0. y) = 2t 73, with t*(yJ) — 2(y,) = 0.
Let ys = ;% + ot 71, then y)' = 2¢; + 2¢,t73. It is evident that ys is also a solution.

16. No. Substituting y = sin(¢?) into the differential equation,
— 4t*sin(t*) + 2cos(t*) + 2t cos(t*) p(t) + sin(t*)q(t) = 0.

For the equation to be valid, we must have p(t) = — 1/t¢, which is not continuous, or
even defined, att = 0.
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17. W(e?,g(t)) = e¥g'(t) — 2e*g(t) = 3e*. Dividing both sides by e, we find
that g must satisfy the ODE ¢’ — 2g = 3e?. Hence g(t) = 3t e? + ce?.

19. W(f,9)=fg' — f'g. Also, W(u,v) =W (2f —g,f+2g). Upon evaluation,
W(u,v)=5fg"—5f'g =5W(f,g).

20. W(f,9)=fg' — f'g =tcost—sint,and W(u,v) = —4fg" +4f'g.
Hence W(u,v) = —4tcost + 4sint.

22. The general solution is y = c;e 3 + c,e™!. W(e 3, e ) = 2e*, and hence

the exponentials form a fundamental set of solutions. On the other hand, the fundamental
solutions must also satisfy the conditions 3,(1) = 1,y/(1) =0;3,(1) =0,y,(1) = 1.
For y, , the initial conditions require ¢, + ¢, = e, — 3¢; — ¢, = 0. The coefficients are
c, = —e*/2,c, =3e/2. For the solution, y, , the initial conditions require ¢, + ¢, = 0
, —3c, — ¢, = e. The coefficients are ¢, = — €*/2, ¢, = ¢/2. Hence the fundamental
solutions are {y, = — e 37D 4 37D 1y, = — L7301 4 Le=(=1}

23. Yes. y/' = —4cos2t; y' = —4sin2t. W(cos2t,sin2t) =2.

24. Clearly, y, = €' is a solution. y, = (1 +t)e’, y;/ = (2 + t)e’. Substitution into the
ODE results in (2 +t)e! — 2(1 +t)e’ +te! = 0. Furthermore, W (e, te!) = e?.
Hence the solutions form a fundamental set of solutions.

26. Clearly, y, = x is a solution. y, = cosz,y, = — sinz. Substitution into the
ODE results in (1 — z cotx)( — sinx) — z(cosz) + sinxz = 0. W (y,,y.) = x cos
T — sinx,

which is nonzero for 0 < x < w. Hence {z, sin xz} is a fundamental set of solutions.

28. P=1,Q=x,R=1. Wehave P" — Q'+ R = 0. The equation is exact. Note
that (y')" + (zy)’ = 0. Hence y’ + 2y = c¢,. This equation is linear, with integrating
factor p = e?’/2, Therefore the general solution is

y(z) = clexp( — IE2/2> /xexp(u2/2)du + cgexp( — x2/2).

0

29. P=1,0Q =32%, R =x. Note that P — Q' + R = — 5z, and therefore the
differential equation is not exact.

31. P=2?,Q=x2,R= —1. Wehave P" — Q'+ R = 0. The equation is exact.
Write the equation as (z2y’)’ — (zy)' = 0. Integrating, we find that 2%y’ — zy = c.
Divide both sides of the ODE by x?. The resulting equation is /inear, with integrating
factor u = 1/z. Hence (y/x)' = cx~>. The solution is y(t) = c,z~" + ¢,
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33. P=2%,Q =z, R = x> — v°. Hence the coefficients are 2P’ — () = 3z and
P" — Q'+ R = 22+1 — v%. The adjoint of the original differential equation is given
by 2°u" + 3z p'+(2*+1 — ) = 0.

35. P=1,Q =0, R = — x. Hence the coefficients are given by 2P’ — ) = 0 and
P" — Q'+ R = — x. Therefore the adjoint of the original equationis u” —xpu = 0.
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Section 3.3

1. Suppose that « f(t) + Bg(t) = 0, that is, a(t? + 5t) + 3(t* — 5t) = 0 on some
interval /. Then (o + 8)t* + 5(a — 8)t = 0,Vt € I. Since a quadratic .has at most
wo

roots, we must have o« + 3 =0 and o — 3 = 0. The only solutionis o = = 0.
Hence the two functions are linearly independent.

3. Suppose that eMcos ut = A e*sin ut, for some A # 0, on an interval . Since the
function sin ut # 0 on some subinterval 1, C I, we conclude that tan ut = A on I,.
This is clearly a contradiction, hence the functions are linearly independent.

4. Obviously, f(z) = e g(x) for all real numbers = . Hence the functions are linearly
dependent.

5. Here f(x) = 3¢(x) for all real numbers. Hence the functions are linearly dependent.

8. Note that f(x) = g(x) forxz € [0,00), and f(z) = — g(x) forz € (—0c0,0]. It
follows that the functions are linearly dependent on R* and R~ . Nevertheless, they are
linearly independent on any open interval containing zero.

9. Since W (t) = t sint has only isolated zeros, W (t) cannot identically vanish on any
open interval. Hence the functions are linearly independent.

10. Same argument as in Prob. 9.

11. By linearity of the differential operator, ¢y, and c,y, are also solutions.
Calculating

the WI‘OIlSkiaIl, W(clyl y ngg) — (Clyl)(CZyQ)/ - (Clyl)/(CQyQ) = C1Co W(yl ,y2> .
Since W (y, ,y,) is not identically zero, neither is W (c,y, , ¢yys) .

13. Direct calculation results in

W(a1y1 + asys, biyr + bng) = aleW(yl ,yQ) - b1G2W(y1 73/2)
= (a1b2 — agbl)W(yl 7y2) .

Hence the combinations are also linearly independent as long as a,b, — a,b, # 0.

14. Leta(i+j)+ S(i—j)=0i+0j. Thena+ =0 and o — =0. The only
solution is @ = 3 = 0. Hence the given vectors are linearly independent. Furthermore,
any vector ai+ a.j = (4 +%)([i+j)+ (% —%)0i—1j).

16. Writing the equation in standard form, we find that P(t) = sint/cost. Hence the
Wronskian is W (t) = bexp(— [22Ldt) = bexp(In|cost|) = bcost, in which b is

cost

some constant.
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17. After writing the equation in standard form, we have P(z) = 1/x. The Wronskian
is W(t) = cexp( — [1dz) = cexp( — In|z|) = ¢/|z|, in which ¢ is some constant.

18. Writing the equation in standard form, we find that P(z) = — 2z/(1 — x?). The
Wronskian is W (t) = cexp( — [2dz) = cexp( —In|l — 2?|) = c|l —2?| ",
in which ¢ is some constant.

19. Rewrite the equation as p(t)y” + p'(t)y’ + q(t)y = 0. After writing the equation
in standard form, we have P(t) = p’(t)/p(t) . Hence the Wronskian is

W(t) = cexp(—/p (t)dt> — cexp(— Inp(t)) = ¢/p(t).

p(t)

21. The Wronskian associated with the solutions of the differential equation is given by
W (t) = cexp( — [Z2dt) = cexp(—2/t). Since W (2) = 3, it follows that for the
hypothesized set of solutions, ¢ = 3e. Hence W (4) = 3,/e .

22. For the given differential equation, the Wronskian satisfies the first order differential
equation W' + p(t)W = 0. Given that W is constant, it is necessary that p(t) = 0.

23. Direct calculation shows that

W(fg,fh) =(fg —(f9)'(fh)
=(f

W)= (f'g+ fa")(fh)

=)
S—
=
3‘\/
+
K.'1/'\«

25. Since y; and y, are solutions, they are differentiable. The hypothesis can thus be
restated as y, (ty) = y, (ty) = 0 at some point ¢, in the interval of definition. This
implies that W (1, v2)(t,) = 0. But W (y,,v,)(t)) = cexp( — [p(t)dt) , which
cannot be equal to zero, unless ¢ = 0. Hence W (y, ,4,) = 0, which is ruled out for
a fundamental set of solutions.

page 93



CHAPTER 3. ——

Section 3.4

2. exp(2 — 3i) = e’e 3 = e*(cos 3 — isin3).
3. " =cosT+isinTt= —1.

4. e:cp(2 — %z) = GQ(COS% — 1 8in %) = —e’1.

6. m 1 = exp[( — 14 2i)Inw] = exp( — Inm)exp(2inmi) = L exp(2inTi) =
= %[cos (2Inm) +isin(2Iinn)].

8. The characteristic equation is 7> — 2r + 6 = 0, with roots r = 1 + z\/g . Hence the
general solution is y = ciefcos /5t + ¢y el sin /5.

9. The characteristic equation is 72 + 2r — 8 = 0, with roots »r = — 4,2. The roots
are real and different, hence the general solution is y = ce 4 + ¢, €.

10. The characteristic equation is 72 + 2r + 2 = 0, with roots r = — 1+ i. Hence the
general solution is y = cie ‘cost + c,e " tsint.

12. The characteristic equation is 472 4+ 9 = 0, with roots r = :I:% i. Hence the
general solution is y = ¢,cos %t + ¢y 811 %t .

13. The characteristic equation is 72 + 2r + 1.25 = 0, with roots r = — 14 %z Hence
the general solution is y = c,e cos %t + e tsin %t.

15. The characteristic equation is 7 4 r 4+ 1.25 = 0, with roots r = — % + 7. Hence
the general solution is y = cie”*cost + c,e /?sint.
16. The characteristic equation is 7% + 4r + 6.25 = 0, with roots 7 = — 2 i% i. Hence

the general solution is y = c;e % cos %t + e ?sin %t.

17. The characteristic equation is 7> 4+ 4 = 0, with roots r = 4= 2i. Hence the general
solution is y = c;cos 2t + ¢, sin 2t . Its derivative is y' = — 2¢,sin 2t + 2¢,cos 2t .
Based on the first condition, y(0) = 0, we require that ¢; = 0. In order to satisfy the
condition y’(0) = 1, we find that 2¢, = 1. The constants are ¢; = 0 and ¢, = 1/2.
Hence the specific solution is y(t) = §sin 2t.

19. The characteristic equation is 7> — 2r + 5 = 0, with roots r = 14-2i. Hence the
general solution is y = c,e'cos 2t + ¢, e'sin 2t . Based on the condition, y(7/2) =0,
we require that ¢, = 0. It follows that y = ¢, e!sin 2t, and so the first derivative is
y' = cyelsin 2t + 2cye’cos 2t . In order to satisfy the condition y'(7/2) = 2, we find
that — 2e™?c, = 2. Hence we have ¢, = — e ™% . Therefore the specific solution is
y(t) = —el"™?sin2t.
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207

20. The characteristic equation is 72 + 1 = 0, with roots r = #14. Hence the general
solution is y = c;cost + ¢y sint. Its derivative is y' = — ¢;sint + ¢, cost. Based
on the first condition, y(7/3) = 2, we require that ¢; + /3¢, = 4. In order to satisfy
the condition y/(7/3) = — 4, we find that — /3¢, + ¢, = — 8. Solving these for
the constants, ¢, = 1+2/3 and ¢, = /3 — 2. Hence the specific solution is a steady
oscillation, given by y(t) = (1 + 2\/§> cost + (\/3 - 2) sint.

21. From Prob. 15, the general solution is y = cie ?cost + c,e /?sint. Invoking

the first initial condition, y(0) = 3, which implies that ¢; = 3. Substituting, it follows
that y = 3e "?cost + c,e”"?sint, and so the first derivative is

3 , _ Co 4y .
y' = — Qe_tﬁcost—Se_t/2smt+cge ecost — 526 sint.

Invoking the initial condition, y’(0) = 1, we find that — % +c,=1,andso ¢, = % )

Hence the specific solution is y(t) = 3¢ "?cost + 3 e/ sint.

0 SN B R
0.5

24(a). The characteristic equation is 5r% + 27 + 7 = 0, with roots r = — %ﬂ: i@.
The solution is u = ¢,e ¥ cos @t + e Psin @t. Invoking the given initial
conditions, we obtain the equations for the coefficients: ¢; =2, — 2 + \/3_4 c,=095.
Thatis,c; =2, ¢ =7/ \/374 . Hence the specific solution is
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V34, 7 V34

u(t) = 2e Pcos Y—t + ——e Psin ~—t.

5 T 5

0.5 /\

0 o dTe N A
057

-14

(b). Based on the graph of w(t), 7" is in the interval 14 < t < 16. A numerical solution
on that interval yields 7" ~ 14.5115 .

26(a). The characteristic equation is 7> + 2a 7 + (a>+1) = 0, withroots r = —a+i.
Hence the general solution is y(t) = c;e”“cost + c,e “sint. Based on the initial
conditions, we find that ¢, = 1 and ¢, = a. Therefore the specific solution is given by

y(t) = e “cost +ae "sint
=V 1+a?e "cos(t—¢),

in which ¢ = tan™"'(a).

(b). For estimation, note that |y(¢)] < v/1+ a? e *. Now consider the inequality
V1+a? e <1/10. The inequality holds for ¢ > %ln [10 1+ aQ] Therefore

T < %ln[lO\/ 1+ aQ}. Setting @ = 1, numerical analysis gives 7'~ 1.8763 .

(¢). Similarly, T}/, ~ 7.4284, T}/, ~ 4.3003, T, ~ 1.5116, T; ~ 1.1496.

(d).

Twvals

2249
204
189
16
144
129
104

3

[RS=
Lua

3

D 02040608 1 12141618 2 22242628 3
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Note that the estimates T}, approach the graph of %ln [10 v1+ aQ] as a gets large.

27. Direct calculation gives the result. On the other hand, it was shown in Prob. 3.3.23
that W(fg,fh)= f°W(g,h). Hence

W(e”cos ut , eMsin pt) = MW (cos it , sin ut)
= 2 [cos pt(sin ut)" — (cos put)'sin put]

— pe,

28(a). Clearly, y; and y, are solutions. Also, W (cost, sint) = cos*t + sin’*t = 1.
P it o 2 it it . . : _
(b). y' =ie",y" =i*e" = — e". Evidently, y is a solution and so y = ¢,y; + ¢,».

(c). Settingt =0, 1 =c,cos0+ c,sin0, and ¢, = 0. Differentiating, i e’ = ¢, cost.
Settingt = 0, i = ¢, cos0 and hence ¢, = i. Therefore e = cost +isint.

29. Euler's formulais ¢" = cost + isint. It follows that e™" = cost — i sint.
Adding these equation, e + e~ = 2 cost. Subtracting the two equations results in

e —e ™ =i sint.

30. Letr, = A\ +ipy,and ry = Ay + 25 . Then

exp(ry + 1)t = exp[(A + Aot +i(py + po)t]

= eM N eos (1 + po)t + i sin(p + po)i]

6()\1+)\2)t[(005 pit + isin pit)(cos pyt + isin pot)]

= M (cos put + isin pt) - e (cos put + isin pt)

Hence ettt — ent grt

32. If ¢(t) = u(t) + i v(t) is a solution, then
(u + )" + p(t)(u +iv) + q(t)(u+iv) =0,

and (u” +iv") 4+ p(t)(u' + ") + q(t)(u + iv) = 0. After expanding the equation and
separating the real and imaginary parts,

u" + p(t)u” + q(t)u =0
U+ pt)v" +q(t)v =0

Hence both wu(t) and v(t) are solutions.

1 dz dz dx

34(a). By the chain rule, y(z) = % 2'. In genera , 5= 9. Setting z = 3,

E_
d’y _ dz dr _ d [dy dz1 da d*y dx dy d [dx
we have W_Eﬁ_d:r[ﬁ E]T_ o w2549 However,
&Ly _ Ay [d_:c] 4+ by &z

dt dx dt*"

d [de]de _ [dx]|dt dz _

i L3t @ = [dﬁ} % = G Hence i = 7%
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(b). Substituting the results in Part(a) into the general ODE, y" + p(t)y’ + ¢(t)y = 0,
“we find that

Ay [dz]?  dy d*x dy dz
2 22 )2 == +q(t)y =0.
dac?{dt} T ae TP g Ay =0

Collecting the terms,

dz]*d%y d*z dx | dy
g =2 =0.
[dt] i " [dﬁ () dt}da: +alt)y

(¢). Assuming [%]* = kg(t), and ¢(t) > 0, we find that % = | /k ¢(¢), which can
be integrated. Thatis, x = £(t) = [/kq(t) dt.

(d). Letk = 1. It follows that ‘57? +p(t) L = 9 4 p(t)et) = % +p./q . Hence

d*x dz] [dz]®  q'(t) + 2p(t)q(t)
[W + p(t)E:| / [a} = 2[q(t)]3/2 .

As long as dx/dt # 0, the differential equation can be expressed as

d’y  [q'()+2p()q(t) ]| dy
da? [ 2[q(6)]" ] ERR
*For the case ¢(t) < 0, write ¢(t) = — [ — ¢q(t)], and set [%]2 = —q(t).

36. p(t) = 3tand q(t) =t*. Wehave z = [tdt =t*/2. Furthermore,

q'(t) + 2p(t)q(t)
2[q(t))"?

The ratio is not constant, and therefore the equation cannot be transformed.

= (14 3t%) /¢*.

37. p(t) =t —1/t and q(t) = t*. We have x = [tdt = t*/2. Furthermore,
q'(t) +2p(t)q(t) _
2[q (1))

The ratio is constant, and therefore the equation can be transformed. From Prob. 35,
the transformed equation is

d*y  dy
SISy =o.
dxz? + dx Tty

Based on the methods in this section, the characteristic equation is 72 + r + 1 = 0, with

/3
roots r = — 1iz‘/7—

5 . The general solution is
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y(x) = cre?cos \/3x/2 + e Psin\/31/2.

Since z = t?/2, the solution in the original variable ¢ is

y(t) = et/ [clcos <\/§t2/4> + ¢ sin <\/§t2/4>} :

40. p(t) =4/t and ¢(t) = 2/t*. Wehave z = /2 [t"'dt = \/2 Int. Furthermore,

q'(t) +2p(t)g(t) _ 3
2[q(t))"" V2

The ratio is constant, and therefore the equation can be transformed. In fact, we obtain

d?y 3 dy

-— + —F= =0

dz? + V2 dx ty
Based on the methods in this section, the characteristic equation is \/2 r2 +3r++/2 =0,
with roots r = — \/5 , — 1/ \/5 . The general solution is

y(zr) = cle_ﬁx + ¢ e UV,
Since =z = \/5 Int, the solution in the original variable ¢ is

y(t) — Cle—2lnt + e e—lnt
=ct 2+t h

41. p(t) = 3/t and ¢(t) = 1.25/t*. We have = = /1.25 [t'dt = \/1.25 Int.
Checking the feasibility of the transformation,
q'(t) +2p(t)g(t) _ 4
2[q()]"" V5

The ratio is constant, and therefore the equation can be transformed. In fact, we obtain

&y

4 dy
dac2+\/3%

+y=0.

Based on the methods in this section, the characteristic equation is
2 _ ; 2 41 L
V572 +4r 4+ /5 =0, with roots r = 75 +ie The general solution is

y(z) = e Vocos /5 + cre W Vosin /5.

Since 2x/ f = [nt, the solution in the original variable ¢ is
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y(t) = cie™lcos (ln\/t_) + e Msin (lnﬁ)
=t! [clcos (ln\/l?) + ¢y 810 (lnﬁ)] .

42. p(t) = —4/t andq(t) = —6/t>. Set = /6 [t 'dt = /6 Int.
Checking the feasibility of the transformation (*see Prob. 34 d, with q < 0),
—q'() = 2p()g(t) _ =5

2—q)” V6

The ratio is constant, and therefore the equation can be transformed. In fact, we obtain

Based on the methods in this section, the characteristic equation is \/6 r?—5

r—\/€=0,

with roots r = \/g , — 1/ \/E . The general solution is
y(z) = c1eV" + e V0,
Since = = /6 Int, the solution in the original variable ¢ is

y(t) _ cleGInt + e e—lnt
= C1t6 + Cgt_l.
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Section 3.5

2. The characteristic equation is 97% + 6r + 1 = 0, with the double root r = — 1/3.
Based on the discussion in this section, the general solution is y(t) = c;e ? + ¢yt e /3.

3. The characteristic equation is 472 — 4r — 3 = 0, with roots 7 = — 1/2,3/2. The
general solution is y(t) = c,e "? + c,e™/2,

4. The characteristic equation is 472 4+ 12r + 9 = 0, with the double root r = — 3/2.
Based on the discussion in this section, the general solution is y(t) = (¢, + ¢, t)e V2.

5. The characteristic equation is *> — 2r + 10 = 0, with complex roots r = 1 = 3i.
The general solution is y(t) = c,e’cos 3t + c,elsin 3t.

6. The characteristic equation is 7> — 67 + 9 = 0, with the double root » = 3. The
general solution is y(t) = c,e* + c,t €.

7. The characteristic equation is 472 + 17r +4 = 0, with roots r = — 1 /4, —4.
The general solution is y(t) = c,e™¥/* + c,e™.

8. The characteristic equation is 16r% + 247 + 9 = 0, with the double root r = — 3/4.
The general solution is y(t) = c,e /4 4 ¢yt e /4,

10. The characteristic equation is 2r® + 2r + 1 = 0, with complex roots r = — % £ % 4.

The general solution is y(t) = c,e ¥/2cost/2 + c,e /?sint/2.

D=

L
2

11. The characteristic equation is 9r* — 12r + 4 = 0, with the double root r = 2/3..
The general solution is y(t) = c,e*/® + ¢yt €*/3. Invoking the first initial condition, it
follows that ¢, = 2. Now y'(t) = (4/3 + ¢,)e*’® + 2¢,t €*/% /3. Invoking the second
initial condition, 4/3 4+ ¢, = —1,0r ¢, = — 7/3. Hence y(t) = 2¢*/* — It e/,
Since the second term dominates for large t, y(t)—» — c©.

13. The characteristic equation is 972 + 67 + 82 = 0, with complex roots r = — % +31.
The general solution is y(t) = c,e */3cos 3t + c,e~*/3sin 3t . Based on the first initial
condition, ¢, = — 1. Invoking the second initial condition, 1/3 + 3¢, =2, 0r ¢, = 5.

9
Hence y(t) = —e/3cos3t + e /3sin3t.
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0.8
0.6

E:/\zAﬂf\ﬁ g
\/

0.29
-0.44
-0.64
-0.84

15(a). The characteristic equation is 47? + 12r 4+ 9 = 0, with the double root r = —
The general solution is y(t) = c;e /% + ¢,t e731/%, Invoking the first initial condition,
it follows that ¢; = 1. Now y'(t) = ( — 3/2 + ¢,)e*/* — 3¢yt €?/5. The second
initial condition requires that — 3/2+ ¢, = — 4, 0or ¢, = — 5/2. Hence the specific
solution is y(t) = e */? — 3¢e 5/,

[\SJ[eV]

1

0.8

0.6

0.4

0.2

u 1 2
021

(b). The solution crosses the x-axis at t = 0.4.
(¢). The solution has a minimum at the point (16/15, — 5e*/%/3).

(d). Given thaty’(0) = b, wehave —3/2+ ¢, =b,0r ¢, = b+ 3/2. Hence the
solution is y(t) = e+ (b + 2)t e~/ Since the second term dominates, the long-
term solution depends on the sign of the coefficient b + % The critical value is b = —

NSJ[e]

16. The characteristic roots are r; = r, = 1/2. Hence the general solution is given by
y(t) = cie? + ¢yt €2, Invoking the initial conditions, we require that ¢, = 2, and that
1+ ¢, = b. The specific solution is y(t) = 2¢"/? + (b — 1)t e/?. Since the second term
dominates, the long-term solution depends on the sign of the coefficient b — 1. The
critical value is b = 1.
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18(a). The characteristic roots are v, = r, = — 2/3. Therefore the general solution is
given by y(t) = c,e /3 + ¢yt e */*. Invoking the initial conditions, we require that
¢, = a,and that — 2a/3 + ¢, = — 1. After solving for the coefficients, the specific

solution is y(t) = ae 2/ + (%a _ 1)te*2t/3,

(b). Since the second term dominates, the long-term solution depends on the sign of the

coefficient % — 1. The critical value is a = 3/2.

20(a). The characteristic equation is 72 + 2ar + a? = 0, with double root r = — a.
Hence one solution is y, (t) = c;e .

(b). Recall that the Wronskian satisfies the differential equation W' + 2aW = 0. The
solution of this equation is W (t) = ¢ e,

(¢). By definition, W = y, v, — y!y,. Hence cie "y, + acie "y, = ce 2,
Thatis, y, + ay, = c,e” . This equation is first order /inear, with general solution
Yo (t) = cote " + cye . Setting ¢, = 1 and ¢; = 0, we obtain y,(t) = te™ .

22(a). Write ar? +br +c = a(r’ + Lr + £). It follows that 2 = — 2r, and £ = r?.
Hence ar? + br + ¢ = ar? — 2ar;r + ar? = a(r? — 2rr +12) = a(r —r)*. We

find that Le™] = (ar? + br + ¢)e™ = a(r — r,)%e™. Setting 7 = r,, L[e"] = 0.

(b). Differentiating Eq.(¢) with respect to r,

%L [e"] = ate™ (r — ) + 2ae” (r — ).

Now observe that

0 o[ o

L) = o ag e 4o ()]

L) o (o) ()]

— ol (te”) b2 (te™)+c(te™).

ot? ot
Hence L[te’'] = ate’ (r — r,)* + 2ae™ (r — r,). Setting r = r,, L[te"!] = 0.
23. Set y,(t) = t?>v(t) . Substitution into the ODE results in
(0" + 4tv’ + 20) — 4t (20" + 2tv) + 6t°v = 0.

After collecting terms, we end up with t'v” = 0. Hence v(t) = ¢, + ¢yt , and thus
y5(t) = 1t + c,t?. Setting ¢, = 0 and ¢, = 1, we obtain y,(t) = 3.

24. Set y,(t) = tv(t). Substitution into the ODE results in
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t2(tv” +20") + 2t(tv’ +v) —2tv = 0.

After collecting terms, we end up with t3v"” + 4t?v’ = 0. This equation is /inear in
the variable w = v’. It follows that v’ (t) = c¢t™*, and v(t) = ¢t + ¢, . Thus
y2(t) = c1t ™2 + ¢yt . Setting ¢, = 1 and ¢, = 0, we obtain y,(t) = ¢t 2.

26. Set y,(t) = tv(t). Substitution into the ODE results in v” — v’ = 0. This ODE
is linear in the variable w = v’. It follows that v'(¢) = c,e’, and v(t) = c,e! + ¢, .
Thus y,(t) = cite! + c,t. Setting ¢, = 1 and ¢, = 0, we obtain y,(t) = te'.
28. Set y,(x) = e"v(x). Substitution into the ODE results in
v”+—$_2v'20
rz—1 )

This ODE is linear in the variable w = v’. An integrating factor is

= e:z:p(/i_idm)

Rewrite the equation as [;”1']/ = 0, from which it follows that v'(z) = c(z — 1)e 2.
Hence v(x) = cixze ™ + ¢, and y,(x) = ¢;x + cye”. Setting ¢, = 1 and ¢, =0, we

obtain y,(z) = .

29. Set yo(x) = yi(x) v(z), in which y,(z) = z'*exp(2,/x). It can be verified that
y, is a solution of the ODE, that is, x*y,” — (z — 0.1875)y, = 0. Substitution of the
given form of y, results in the differential equation

20" + (42" + ")’ = 0.
This ODE is linear in the variable w = v’. An integrating factor is
-1/2 1
U = exp 2077 4+ —|dx
2z
=/ exp(4\/5).
Rewrite the equation as [\/z exp(4,/z) v']" = 0, from which it follows that

v'(z) = cexp(—4y/7)/\/x .

Integrating, v(z) = c,exp( — 4,/) + ¢, and as a resul,

Y (x) = clwmewp( — 2\/5) + chmexp(Q\/E).
Setting ¢, = 1 and ¢, = 0, we obtain y,(z) = z"*exp( — 2/x).
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32. Direct substitution verifies that y,(t) = exp( — 6x%/2) is a solution of the ODE.
Now set y»(z) = y;(x) v(x). Substitution of y, into the ODE results in

v’ —bxv' =0.

This ODE is linear in the variable w = v’. An integrating factor is ;. = exp( — 62%/2).
Rewrite the equation as [ exp( — 622/2)v’]" = 0, from which it follows that

v'(z) = ¢, exp(62?/2) .

Integrating, we obtain

X

v(x) = 01/';exp(6u2/2)du + v(xy).

Hence
yo(z) = crexp(— (5x2/2)/ exp(du®/2)du + crexp( — 62%/2).

Setting ¢, = 0, we obtain a second independent solution.

34. After writing the ODE in standard form, we have p(¢) = 3/t. Based on Abel's
identity, W (y., 1) = clexp( — f%dt) = ¢,t73. As shown in Prob. 33, two solutions
of a second order linear equation satisfy

(y2/y1), = W (y, y2)/?/f .

In the given problem, y,(t) = ¢~'. Hence (tv,)’ = c,t~'. Integrating both sides of the
equation, 1, (t) = c;tlnt + eyt L.

36. After writing the ODE in standard form, we have p(z) = — z/(x — 1). Based on
Abel’s identity, W (y,y,) = c exp([-*;dx) = ¢ €”(x — 1). Two solutions of a
second order linear equation satisfy

(/1) = Wy, 2) /v

In the given problem, y,(x) = e”. Hence (e *y,)" = ce™(x — 1). Integrating both
sides of the equation, y,(z) = ¢,z + c,e”. Setting ¢, = 1 and ¢, = 0, we obtain
ys(z) = .

37. Write the ODE in standard form to find p(x) = 1/z. Based on Abel's identity,
W (y1,y2) = cexp(— [Ldx) = cz™. Two solutions of a second order linear ODE
satisfy (v,/y1) = W (y1,.)/y?. In the given problem, y,(z) = z~"*sinz . Hence

/
VT 1
. Ya = C —; IR
sinx sin°x
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Integrating both sides of the equation, y,(z) = c;x *cosx + ¢,z /*sin x. Setting
¢, = land ¢, =0, we obtain y,(z) = 27 cosx.

39(a). The characteristic equation is ar? + ¢ = 0. If a,c > 0, then the roots are
r, = +iy/c/a . The general solution is

[c [c
y(t) = cicosy [ —t + cpsing [ — ¢,
a a

(b). The characteristic equation is ar? + br = 0. The roots are 1, =0, — b/a,
and hence the general solution is y(t) = ¢, + cexp( — bt/a). Clearly, y(t)—=c; .

which is bounded.

40. Note that cost sint = %sin 2t. Sothatl — kcostsint =1 — %sm 2t. If
0 <k <2,then £sin2t < |sin2t|and — £sin2t > — |sin2t|. Hence

k
1—kcostsint =1 — §sin2t

> 1 — |sin 2t|
>0.

41. p(t) = — 3/t and q(t) = 4/t>. Wehave z = 2 [t 'dt = 2Int,and t = e"/%.
Furthermore,
q'(t) +2p(t)g(t) _
2[q(t)]"”

The ratio is constant, and therefore the equation can be transformed. In fact, we obtain

The general solution of this ODE is y(x) = ¢,e” + c;ze”. In terms of the original
independent variable, y(t) = c,t? + c,t?Int.
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Section 3.6

2. The characteristic equation for the homogeneous problem is r* + 2r +5 = 0, with
complex roots 7 = — 14+2i. Hence y.(t) = cie 'cos 2t + c,e 'sin 2t . Since the
function g(t) = 3 sin 2t is not proportional to the solutions of the homogeneous equation,
set Y = Acos2t+ Bsin2t. Substitution into the given ODE, and comparing the
coefficients, results in the system of equations B —4A =3 and A+ 4B = 0. Hence
Y = — cos2t + £sin2t. The general solution is y(t) = y.(t) + Y.

3. The characteristic equation for the homogeneous problem is r?> — 2r — 3 = 0, with
roots r = — 1,3. Hence y.(t) = cie™’ + c,e® . Note that the assignment Y = Ate™!
is not sufficient to match the coefficients. Try Y = Ate ™! + Bt?e~!. Substitution into
the differential equation, and comparing the coefficients, results in the system of
equations —4A +2B =0 and —8B = —3. Hence Y = te ' + 3t’e~". The
general

solution is y(t) = y.(t) + Y.

5. The characteristic equation for the homogeneous problem is 72 + 9 = 0, with
complex roots r = £3i. Hence y.(t) = ¢,cos3t + cysin 3t. To simplify the analysis,
set g;(t) = 6 and g,(t) = t?e*. By inspection, we have Y; = 2/3. Based on the form
of g, set Y, = Ae3 + Bte3 + Ct?e3. Substitution into the differential equation, and
comparing the coefficients, results in the system of equations 184 + 6B + 2C =0,
18 B+ 12C' =0, and 18C = 1. Hence

1 1

1
2= 1626 T 97¢ Tigte

The general solution is y(t) = y.(t) + Y, + V5.

7. The characteristic equation for the homogeneous problem is 272 + 3r + 1 = 0, with
roots r = — 1, —1/2. Hence y.(t) = cie™ + ¢, e */?. To simplify the analysis,

set g;(t) = t* and g,(t) = 3sint. Based on the form of g, , set Y, = A + Bt + Ct>.
Substitution into the differential equation, and comparing the coefficients, results in the
system of equations A +3B+4C =0,B+6C =0,and C' = 1. Hence we obtain
Y, = 14 — 6t + t2. On the other hand, set Y, = D cost + E sint. After substitution
into the ODE, we find that D = — 9/10 and £ = — 3/10. The general solution is
y(t) = y.(t) + Y1 + V2.

9. The characteristic equation for the homogeneous problem is 72 4+ w? = 0, with
complex roots r = + wyi. Hence y,.(t) = cicoswyt + ¢ysinwyt. Since w # wy,
setY = Acoswt + B sinwt. Substitution into the ODE and comparing the coefficients

results in the system of equations (w? — w?)A =1 and (w? — w?)B = 0. Hence

The general solution is y(t) = y.(¢t) + Y.
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10. From Prob. 9, y.(t) = c¢. Since coswyt is a solution of the homogeneous problem,
setY = Atcosw,t + Bt sinw,t. Substitution into the given ODE and comparing the
1

coefficients results in A = 0 and B = 5., - Hence the general solution is

y(t) = cicoswyt + cysinwyt + 2%032'71 wyt.

12. The characteristic equation for the homogeneous problem is > — r — 2 = 0, with
roots r = — 1,2. Hence y.(t) = cie”! + ¢, e*. Based on the form of the right hand
side, that is, cosh(2t) = (2 + e 2)/2,set Y = At e* + Be 2!, Substitution into the
given ODE and comparing the coefficients results in A = 1/6 and B = 1/8. Hence the
general solution is y(t) = cie ™t + ¢, e +te* /6 + e /8.

14. The characteristic equation for the homogeneous problem is 2 4+ 4 = 0, with roots
r = 4 2i. Hence 3.(t) = c,cos2t + c,sin2t. SetY; = A + Bt + Ct?. Comparing
the coefficients of the respective terms, we findthat A= —1/8, B=0,C =1/4.
Now set Y, = De’, and obtain D = 3/5. Hence the general solution is

y(t) = cico82t + cysin2t — 1/8 +t2/4 + 3¢€! /5.

Invoking the initial conditions, we require that 19/40 + ¢, = 0 and 3/5 + 2¢, = 2.
Hence ¢, = — 19/40 and ¢, = 7/10.

15. The characteristic equation for the homogeneous problem is 72 — 2r + 1 = 0, with
a double root 7 = 1. Hence y,.(t) = c,e! + eyt e'. Consider g,(t) = te'. Note that

g1 is a solution of the homogeneous problem. Set Y, = At?e’ + Bt3e! (the first term is
not sufficient for a match). Upon substitution, we obtain Y; = t3¢! /6. By inspection,
Y, = 4. Hence the general solution is y(t) = c,e! + c,t ' + t3e! /6 + 4. Invoking the
initial conditions, we require that ¢, + 4 =1 and ¢; + ¢, = 1. Hencec;, = — 3 and
c,=4.

17. The characteristic equation for the homogeneous problem is % 4+ 4 = 0, with roots
r = +2i. Hence y.(t) = c,cos 2t + c,sin 2t . Since the function sin 2t is a solution of
the homogeneous problem, set Y = At cos 2t + Bt sin 2t. Upon substitution, we obtain

Y = — 3tcos2t. Hence the general solution is y(t) = ¢,c0s 2t + c,sin 2t — tcos2t .
Invoking the initial conditions, we require that ¢, = 2 and 2¢, — % = — 1. Hence
C, = QandCQ = — 1/8

18. The characteristic equation for the homogeneous problem is 72 + 2r + 5 = 0, with
complex roots 7 = — 14 24. Hence .(t) = cie tcos 2t + c,e!sin 2t . Based on the
form of g(t), setY = Ate'cos2t + Bte 'sin2t. After comparing coefficients, we
obtain Y = t e~'sin 2t . Hence the general solution is

y(t) = ce'cos 2t + ce 'sin 2t +tesin2t.

Invoking the initial conditions, we require that ¢, = 1 and — ¢; + 2¢, = 0. Hence
co=1landec, =1/2.

page 108



CHAPTER 3. ——

20. The characteristic equation for the homogeneous problem is > 4+ 1 = 0, with
complex roots = + 4. Hence y,.(t) = c;cost + ¢ysint. Let g,(t) =t sint and
g2(t) = t. By inspection, it is easy to see that Y;(¢) = 1. Based on the form of ¢, (¢),
set Y, (t) = At cost + Bt sint + Ct*cost + Dt*sint. Substitution into the equation
and comparing the coefficients resultsin A =0,B=1/4,C = —1/4,and D = 0.
Hence Y (t) = 1+ jtsint — jt*cost.

21. The characteristic equation for the homogeneous problem is 72 — 5r + 6 = 0, with
roots r = 2,3. Hence y.(t) = c,e* + c,e®. Consider g, (t) = e*(3t + 4)sint, and
g2(t) = e'cos 2t. Based on the form of these functions on the right hand side of the
ODE,

set Y5(t) = e'(A1cos 2t + Aysin2t), Yi(t) = (By + Byt )e*sint + (C, + Cot)e*cost.
Substitution into the equation and comparing the coefficients results in

Y(t)= — % (e'cos 2t + 3e'sin 2t) + gte%(cost — sint) + e (%cost — bsin t).
23. The characteristic roots are r = 2,2. Hence y.(t) = c;e* + c,te?. Consider the
functions g,(t) = 2t2, g,(t) = 4te*, and g;(t) = t sin 2t . The corresponding forms of
the respective parts of the particular solution are Y;(t) = A + At + Aqst?, Ys(t) =

= e?(Byt? + Bst?), and Y3(t) = t(Cicos 2t + Cysin 2t) + (Dycos2t + Dosin2t).
Substitution into the equation and comparing the coefficients results in

1 2 1 1
Y(t) = 1 (3 + 4t + 2t2) + §t362t + §t cos 2t + 1—6(005 2t — sin2t).

24. The homogeneous solution is y.(t) = ¢;cos 2t + cysin 2t. Since cos 2t and sin 2t
are both solutions of the homogeneous equation, set

Y (t) = t(Ag + Ait + Ast®)cos 2t + t(By + Byt + Bat?)sin 2t .

Substitution into the equation and comparing the coefficients results in

131, 1 .
Y(t) = (3—215— ﬁt >0032t—|— E(?&H— 13t )stt.

25. The homogeneous solution is y.(t) = c,e ! + cyte 2. None of the functions on the
right hand side are solutions of the homogenous equation. In order to include all possible
combinations of the derivatives, consider Y (t) = e!(Ag + A1t + Ast?)cos 2t +

+ €e'(By + Bit + Bot?)sin 2t + e 1(Cicost + Casint) + De'. Substitution into the
differential equation and comparing the coefficients results in

Y(t) = et(AO + At + A2t2)cos 2t + + € (Bo + Bit + BQtQ)sin 2t +
+eft< — %cost#— gsint> +2¢'/3,
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in which 4y = — 4105/35152, A, = 73/676, Ay = —5/52, By = — 1233/35152,
By =10/169, By = 1/52.

26. The homogeneous solution is y,.(t) = c,e 'cos 2t + c,e 'sin 2t. None of the terms
on the right hand side are solutions of the homogenous equation. In order to include the
appropriate combinations of derivatives, consider Y (¢) = e *(At + Ast?)cos 2t +

+ e (Bt 4+ Bat?)sin 2t + e *(Cy + Cit)cos 2t + e *(Dy + Dit)sin 2t.
Substitution into the differential equation and comparing the coefficients results in

Y(t) = %teftcos 2t + theftsin 2t — %567%(7 + 10t)cos 2t +

+ %6_%(1 + 5t)sin 2t .

27. The homogeneous solution is y.(t) = c,cos At + c,sin At. Since the differential
operator does not contain a first derivative (and X\ # mm), we can set

N
Y(t) = ZC'msin mt.

m=1

Substitution into the ODE yields
N N N
— ZmQWQCmsin mmnt + )\QZCmsin mmnt = Zamsm mat .
m=1 m=1 m=1

Equating coefficients of the individual terms, we obtain

aTﬂ

ONL = A2 _ m2ﬂ'2 b

m=1,2---N.

29. The homogeneous solution is y,(t) = c,e 'cos 2t + c,e 'sin 2t. The input function
is independent of the homogeneous solutions, on any interval. Since the right hand side
is

piecewise constant, it follows by inspection that

C[1/5, 0<t<w/2
Y(t)_{() , t>m/2 '

For 0 < t < /2, the general solution is y(t) = c,e ‘cos 2t + c,e 'sin 2t +1/5.
Invoking the initial conditions y(0) = y’(0) = 0, we require that ¢, = — 1/5, and that
¢, = —1/10. Hence

1 1
y(t) = T (2e 'cos 2t + e 'sin 2t)

on the interval 0 < ¢ < 7/2. We now have the values y(7/2) = (1 + e ™?)/5, and
y'(w/2) = 0. For t > /2, the general solution is y(t) = d,e "cos 2t + dye 'sin 2t .
It follows that y(7/2) = — e ™2d, and y'(7/2) = e ™/?d, — 2¢~"/?d, . Since the
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solution is continuously differentiable, we require that

— e 24, = (1+ 64/2)/5
eiﬂ-/zdl — 2677r/2d2 =0.

Solving for the coefficients, d; = 2d, = — (e™? +1)/5.

0.244
0229

0.24
0184
0165
0.144
0124

0.14
0.084
0.064
0.044
0.024

0y 020406085 1 12141618 2 22242628 3
002 )
004

31. Since a,b,c > 0, the roots of the characteristic equation has negative real parts.
That is, r = a3+, where a < 0. Hence the homogeneous solution is

Y.(t) = cie™cos Bt + c,esin [t
If g(t) = d, then the general solution is
y(t) = d/c + ce*cos Bt + c,e sin Bt

Since a < 0, y(t)=»d/c ast—o0. If ¢ = 0, then that characteristic roots are = 0 and
r = —b/a. The ODE becomes ay” + by’ = d . Integrating both sides, we find that
ay’ + by = dt + ¢,. The general solution can be expressed as

y(t) = dt/b+ ¢, + ce

In this case, the solution grows without bound. If b = 0, also, then the differential
equation

can be written as y” = d/a, which has general solution y(t) = dt*/2a + ¢, + ¢, .
Hence the assertion is true only if the coefficients are positive.

32(a). Since D is a linear operator,

D?*y +bDy + cy = D*y — (ry + 1) Dy + riry
= DQZ/ — 13Dy — 1 Dy + riryy
= D(Dy — ryy) — ri(Dy — r5y)
=(D—-r)(D-—mr)y.

(b). Letu = (D — 7;)y. Then the ODE (i) can be written as (D — r,)u = ¢(t), that is,
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u’ — ryu = g(t). The latter is a linear first order equation in u . Its general solution is
t
u(t) = 67'1t/ e "Tg(T)dT + cret.
to

From above, we have y’ — r,y = u(t). This equation is also a first order ODE. Hence
the general solution of the original second order equation is

t
y(t) = e”t/ e "Tu(T)dT + ce™ .
to

Note that the solution y(¢) contains two arbitrary constants.

34. Note that (2D? + 3D + 1)y = (2D + 1)(D + 1)y. Letu = (D + 1)y, and solve
the ODE 2u’ + u = t*> + 3sint. This equation is a linear first order ODE, with solution

t
u(t) = et/2/ em? [72/2-1— %sinT dr +ce ?

to

=1? — 4t +8 — gcost+ gsimH— ce /2,
Now consider the ODE y’ + y = u(¢). The general solution of this first order ODE is
y(t) = e_t/teTu(T)dT + et
to
in which u(t) is given above. Substituting for u(t) and performing the integration,

9 3
y(t) = 2 _6t+14 — 1—Ocost — Esint + cleft/2 + e

35. Wehave (D* +2D + 1)y = (D +1)(D+1)y. Letu = (D + 1)y, and consider
the ODE u’ + u = 2e'. The general solution is u(t) = 2te~! 4+ ce!. We therefore
have the first order equation u’ + u = 2te~' + c,e~*. The general solution of the latter
differential equation is

t
y(t) = e_t/ [27 4+ ¢, )dT + cre”"

to
=e ! (t2 +cit + cg).

36. We have (D* +2D)y = D(D +2)y. Letu = (D + 2)y, and consider the equation
u’ = 3+ 4sin 2t . Direct integration results in u(t) = 3t — 2cos 2t + c¢. The problem
is reduced to solving the ODE 3’ + 2y = 3t — 2cos 2t + ¢. The general solution of this
first order differential equation is
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t
y(t) = e_Qt/ e’ [37 — 2c0s 2T + ¢ |dT + cre*
to

3 1
= §t - 5(608 2t + sin 2t) + ¢, + cre %,
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Section 3.7

1. The solution of the homogeneous equation is y,(t) = c,e? + ¢,e’. The functions
y,(t) = e and y,(t) = €3 form a fundamental set of solutions. The Wronskian of

these functions is W (y;,4,) = €. Using the method of variation of parameters, the
particular solution is given by Y () = u,(¢) y,(¢) + us(t) y»(¢), in which

_ et (2el)
w (t) = — W dt
=2¢ !
B 62t(26t)
uy(t) = 40 dt
2

Hence the particular solution is Y (t) = 2¢' — ¢! = €.

3. The solution of the homogeneous equation is y.(t) = c,e™* + c,te t. The functions
y1(t) = e ' and y,(t) = te”! form a fundamental set of solutions. The Wronskian of
these functions is W (y;,4,) = e !, Using the method of variation of parameters, the
particular solution is given by Y (¢) = u,(¢) y,(¢) + us(t) y»(¢), in which

te t(3e7t)
) = — [ =2 Ly
) W)
= —3t%/2

e '(3e7")

t) = | ————=dt
=0 = "
=3t
Hence the particular solution is Y'(t) = — 3t%e~!/2 + 3t?e™ = 3t?e /2.

4. The functions y;(t) = e/ and y,(t) = te'/?> form a fundamental set of solutions.
The Wronskian of these functions is W (y,, y,) = €. First write the equation in standard
form, so that g(t) = 4e'/?. Using the method of variation of parameters, the particular
solution is given by Y (¢) = u, (t) v1(t) + ux() y2(t), in which
tet/? (4et/2)
w (t) = 70 dt
= — 2t
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el/2 (4et/2)
t) = | ————=dt
SR 0
=4t
Hence the particular solution is Y (t) = — 2t%e!/? 4 4t%e!/? = 2t2%e!/? .

6. The solution of the homogeneous equation is y.(t) = ¢,cos 3t + ¢,sin 3t. The two

functions y, (t) = cos 3t and y,(t) = sin 3t form a fundamental set of solutions, with

W (y1,y,) = 3. The particular solution is given by Y (t) = u, () y, (t) + us(t) y»(t), in
which

sin 3t(9 sec?3t)
= —cscdt

[ cos3t(9sec?3t)
uy(t) = / W dt

= In|sec 3t + tan 3t|

Hence the particular solution is Y (t) = — 1 + (sin 3t)In|sec 3t + tan 3t|. The general
solution is given by y(t) = c¢,cos 3t + c,sin 3t + (sin 3t)in|sec 3t + tan 3t| — 1.

7. The functions ¥, (t) = e 2" and y,(t) = te ' form a fundamental set of solutions.
The Wronskian of these functions is W (y;,1,) = e~ *. The particular solution is given
by Y () = wi(t) y:(£) + us(t) y2(¢), in which

u1<t) = —/Mdt

W (t)
= —Int
o2 (1262
t) = | —————=dt
w) = [ i
— 1yt
Hence the particular solution is Y (t) = — e ?Int — ¢!, Since the second term is a

solution of the homogeneous equation, the general solution is given by y(t) = c;e % +
+ cote ™ — e nt.

8. The solution of the homogeneous equation is y.(t) = ¢,cos 2t + ¢,sin 2t. The two

functions y, (t) = cos 2t and y,(t) = sin 2t form a fundamental set of solutions, with

W (y1,y,) = 2. The particular solution is given by Y (t) = u,(¢) y, (t) + us(t) y»(t), in
which
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sin 2t(3 csc 2t)
= —3t/2
cos 2t(3 csc 2t)
t) = dt
wt) = [5G
3 .
= Zln|8m 2t|
Hence the particular solution is Y (t) = — 3tcos 2t + 3(sin 3t)in|sin 2t|. The general

solution is given by y(t) = ¢,cos 2t + ¢ysin 2t — 3tcos 2t + 3(sin 3t)in|sin 2t|.

9. The functions y, (t) = cos (t/2) and y,(t) = sin(t/2) form a fundamental set of
solutions. The Wronskian of these functions is W (y,,y,) = 1/2. First write the ODE
in standard form, so that g(¢) = sec(t/2)/2. The particular solution is given by

Y (t) = ui(t) y1(t) 4+ uy(t) y2(t), in which

B cos (t/2)[sec(t/2)]
w(t) = — / e
= 2In[cos (t/2)]

t

[ sin(t/2)[sec(t/2)]
ua(t) = / oW ¢
=t

The particular solution is Y (t) = 2cos(t/2)In[cos (t/2)] + t sin(t/2). The general
solution is given by

y(t) = cicos (t/2) + cysin(t/2) + 2 cos(t/2) Infcos (t/2)] + t sin(t/2).

10. The solution of the homogeneous equation is y.(t) = c,e! + c,te’. The functions
y,(t) = e’ and y,(t) = te’ form a fundamental set of solutions, with W (y,,,) = e*.
The particular solution is given by Y (¢) = w,(¢) y1(t) + us(t) y»(t), in which

B te'(el)
“ =~ [
= — %ln(l +t%)
_ e'(el)
0 = [ e
= arctant

The particular solution is Y (¢) = — L€’ In(1 +2) + te’ arctan(t). Hence the general
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solution is given by y(t) = ce’ + cote’ — e’ In(1 + ) + te' arctan(t).

12. The functions y,(t) = cos 2t and y,(t) = sin 2t form a fundamental set of
solutions, with W (y,, y,) = 2. The particular solution is given by Y (t) = u,(t)

Y1 (t) + us(t) ya(1),
in which

1 t
uy(t) = 5/ g(s)cos2sds
Hence the particular solution is
1 ! 1 !
Y(t)= — 5608 2t/ g(s) sin2sds + 537)71 2t/ g(s)cos2sds.

Note that sin 2t cos 2s — cos 2t sin 2s = sin(2t — 2s). It follows that

Y(t) = %/lg(s)sin(% —2s)ds.

The general solution of the differential equation is given by

1 t
y(t) = c1co8 2t + cysin 2t + 5/ g(s)sin(2t — 2s)ds.

13. Note first that p(t) = 0,q(t) = — 2/t* and g(t) = (3t> — 1)/t>. The functions
y:1(t) and y,(t) are solutions of the homogeneous equation, verified by substitution. The
Wronskian of these two functions is W (y,,y,) = — 3. Using the method of variation of
parameters, the particular solution is Y (t) = u,(¢) y1(t) + ua(t) y»(¢), in which

B 132 - 1)

=t2/6+Int

[ 2B -1)
uy(t) —/Wdt

= —t3/34+1/3
Therefore Y (t) = 1/6 + t%Int —t?/3 + 1/3. Hence the general solution is
y(t) = cit’ + et FPInt +1/2.
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15. Observe that g(t) = te*. The functions y,(t) and y,(t) are a fundamental set of
solutions. The Wronskian of these two functions is W (y,,1,) = t e’. Using the method
of variation of parameters, the particular solution is Y (t) = u, () y,(t) + us(t) yo(t),

in which
Gt(t th)
w (t) = —/ W@ dt
- _ 62t/2
[+t (te™)
=teé'
Therefore Y (t) = — (1 +t)e* /2 +te* = —e*/2+te? /2.

16. Observe that g(t) = 2(1 — t) e~ '. Direct substitution of ;(¢) = e’ and y,(t) =t
verifies that they are solutions of the homogeneous equation. The Wronskian of the two
solutions is W (y,,y,) = (1 — t) e'. Using the method of variation of parameters, the
particular solution is Y'(t) = u,(t) y;(¢) + ua(t) y»(t), in which

wn(t) = — / 7%(1”; (26 dt

=te 2 +e7%)/2

o [201-1)
uy(t) —/ 720 dt

= —2¢7!

Therefore Y (t) =te ' +e /2 —2tet = —te !+ e7/2.

17. Note that g(x) = Inx . The functions y,(x) = z? and y,(z) = z%In z are solutions
of the homogeneous equation, as verified by substitution. The Wronskian of the solutions
is W (y1,y,) = 2®. Using the method of variation of parameters, the particular solution is

Y(z) = ui(z) yi(z) + ua(x) yo(),
in which

2Inx(l
w(z) = — x nx(nx)dx

W (z)
= —(Inz)*/3
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xQ(lnx
W) ¢
= (Inx)?/2

Therefore Y (z) = — 22(lnz)*/3 4 22(Inx)’ /2 = 22(In )’ /6.

19. First write the equation in standard form. Note that the forcing function becomes
g(x)/(1 —z). The functions y,(z) = e” and y,(x) = z are a fundamental set of
solutions,

as verified by substitution. The Wronskian of the solutions is W (y,y,) = (1 — z)e”.
Using the method of variation of parameters, the particular solution is

Y(z) = ui(w) yi(z) + us(z) ya(2),

in which
B G )
w@) = - [ T o
_ 7 €e(g(n)
“2(”3)_/ A=
Therefore
Y L Cco) NN e 1 N
v = - [ et g
:/”3 (re™ — € T)g(T)dT‘
(1—7)%"

20. First write the equation in standard form. The forcing function becomes g(z)/z>.
The functions 3, (z) = 7 "*sin x and y,(x) = z~"*cos z are a fundamental set of
solutions. The Wronskian of the solutions is W (y;,42) = — 1/z. Using the method
of variation of parameters, the particular solution is

Y(z) = ui(w) yi(z) + us(z) va(2),

in which
wie) = [ ' "’Of—ﬁf”m
uy(z) = — /x Ln:\(/i—(ﬂ)ch
Therefore
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sinx [* COST(g(T))dt_ cosx [* sinT(g(T))d

Tz /T NG /T
1 T st —
_ / sin(x — 1) g(T) dr
\/E T\/;
21. Lety,(t) and y,(t) be a fundamental set of solutions, and W (t) = W (y,, y,) be the

corresponding Wronskian. Any solution, u(t), of the homogeneous equation is a linear
combination u(t) = a,y,(t) + a,y»(t). Invoking the initial conditions, we require that

T

Yo = alyl(to) + ay y?(to)
/ / /
Yo = 1 ¥y, (to) + gy (to)

Note that this system of equations has a unique solution, since W (¢,) # 0. Now consider
the nonhomogeneous problem, L[v] = g(t) ,with homogeneous initial conditions. Using
the method of variation of parameters, the particular solution is given by

i) = _yl(t>/t %dswxw[ %ds.

The general solution of the IVP (i) is

v(t) = B (t) + Boya(t) + Y (1)
= By (t) + By (t) + yu (D) ua(t) + ya(t)ua(t)

in which u, and w, are defined above. Invoking the initial conditions, we require that

0= @yl(to) + 6292(t0) + Y(to)
0= ﬁlyll(t()) + ﬂQ?J;(tO) + Y/(to)

Based on the definition of u; and wus, Y(¢,) = 0. Furthermore, since y,u; + you, =0,
it follows that Y"'(¢,) = 0. Hence the only solution of the above system of equations is
the trivial solution. Therefore v(t) = Y (t). Now consider the function y = u+v. Then
L[yl = L[u+ v] = L[u] 4+ L]v] = g(t). Thatis, y(t) is a solution of the
nonhomogeneous

problem. Further, y(to) = u(ty) + v(to) = yo , and similarly, y'(¢y) = y,. By the
uniqueness theorems, y(t) is the unique solution of the initial value problem.

23. A fundamental set of solutions is y,(t) = cost and y,(t) = sint. The Wronskian
W(t) = y1yy — y/y, = 1. By the result in Prob. 22,

_ ["cos(s) sin(t) — cos(t) sin(s)
Y (t) _/t[, W) g(s)ds

= /t [cos(s) sin(t) — cos(t) sin(s)]g(s)ds .

0

Finally, we have cos(s) sin(t) — cos(t) sin(s) = sin(t — s).

page 120



CHAPTER 3. ——

24. A fundamental set of solutions is ¥, (t) = e and y,(t) = € . The Wronskian
W(t) = y1ys — yya = (b — a)exp[(a + b)t]. By the result in Prob. 22,

t jas bt _ _at bs
Y1) = / e’ —eTel s)ds
tO

W (s)
1 teasebt _ eatebs
= ds.
b— a/tu expl(a + b)s] 9(s)ds
Hence the particular solution is
1

t
Y (t) / [eb(tfs) - e“(tfs)]g(s)ds.
ty

:b—a

26. A fundamental set of solutions is y,(t) = e and y,(t) = te® . The Wronskian
W (t) = yiys — y/y, = €**. By the result in Prob. 22,

teasebt . 6atebs
vi) = [ =2 —5 % (s)d
(1 / s

1 te(l,sebt _ eatebs
= ds.
b— a/tn expl(a + b)s] 9(s)ds

Hence the particular solution is

1 ' —S alt—Ss
Y(t) = -~ G/t [eb(t ) — ol )}g(s)ds.

26. A fundamental set of solutions is y,(¢) = e and y,(t) = te® . The Wronskian
W (t) = yys — y/y, = €2*. By the result in Prob. 22,

tteaerat — 3 eat+as
Y(t) = / g(s)ds
(t) A W) (s)

t (t _ 8)6a3+at
= / ————9g(s)ds.
to €

Hence the particular solution is

27. Depending on the values of a, b and c, the operator aD? 4+ bD + ¢ can have three
types of fundamental solutions.

(i) The characteristic roots 7, = a, 3; a # . vy (t) = e* and y,(t) = €.
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(#4) The characteristic roots 7, = a, 8; a = 3. y(t) = e and y,(t) = te™.
K(t) =te™,

A A

(i71) The characteristic roots 71, = A+ i . y,(t) = eMcos ut and y,(t) = eMsin ut.

1
K(t) = —eMsinput .
w

28. Let y(t) = v(t)y:(t), in which y, (¢) is a solution of the homogeneous equation.
Substitution into the given ODE results in

vy 20"y oy 4+ p()['y + vy + a()oy = g(t) -
By assumption, y/” + p(t)y, + q(t)y, = 0, hence v(¢) must be a solution of the ODE
vy + 2y + p(Oylo” = g(t).
Setting w = v’, we also have w’y, + [2y, + p(t)y,Jw = g(t).
30. First write the equation as y” + 7t 'y + 5t~2y = ¢t~'. As shown in Prob. 28, the
function y(t) = ¢t 'v(t) is a solution of the given ODE as long as v is a solution of
"+ [ =274+ =t

that is, v” + 5¢' v’ = 1. This ODE is linear and first order in v’. The integrating
factor is p = °. The solution is v’ = /6 + ct~°. Direct integration now results in
v(t) =t2/12+ it~ + ¢,. Hence y(t) = t/12 + it + ¢t ™.

31. Write the equation as y” —t'(1 +t)y +t 'y = te*. Asshown in Prob. 28, the
function y(t) = (1 + ¢)v(t) is a solution of the given ODE as long as v is a solution of

(L+t)v" +[2—t A+ )]0 =te*,

O S - AR A ) ; SR : o oith .
that is, v o V= e This equation is first order linear in v', with integrating

factor o = t~'(1 4 t)%e". The solution is v’ = (t2e2 + ¢,te')/(1+t)®. Integrating,
we obtain v(t) = e*/2 — e* /(t + 1) + cie’/(t + 1) + ¢, . Hence the solution of the
original ODE is y(t) = (t — 1)e? /2 + cie! + co(t +1).

32. Write the equation as y” +¢(1 —t) 'y — (1 —t)" 'y = 2(1 — t) e~*. The function
y(t) = e'v(t) is a solution to the given ODE as long as v is a solution of
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e’ + [2e" +t(1—t) e v =2(1 —t) e,

thatis, v” + [(2 — t)/(1 — t)]v’ = 2(1 — t) e~ *. This equation is first order linear in
v’, with integrating factor yn = €' /(¢ — 1). The solution is

o' =(t—1)(2e " + ).
Integrating, we obtain v(t) = (1/2 — t)e 2 — ¢;te~! + ¢, . Hence the solution of the
original ODE is y(t) = (1/2 — t)e™ ! — ¢t + cye’.

Section 3.8

1. Rcosé =3and Rsind =4 = R = /25 =5andé = arctan(4/3). Hence
u = 5cos(2t — 0.9273).

3. Rcosé =4and Rsiné = —2 = R=+/20 =2v/5 and 6 = — arctan(1/2).
Hence

u=2v/5 cos(3t + 0.4636).

4. Rcosé = —2and Rsind = —3 = R = /13 and 6 = 7+ arctan(3/2).
Hence

u = /13 cos(mt — 4.1244).

5. The spring constant is k = 2/(1/2) = 4 Ib/ft. Mass m = 2/32 = 1/16 Ib-s*/ft.
Since there is no damping, the equation of motion is

1
Eu'/+4u:0,

that is, u” 4+ 64w = 0. The initial conditions are w(0) = 1/4 f¢, u/(0) = Ofps . The
general solution is u(t) = A cos 8t + B sin 8t. Invoking the initial conditions, we have
u(t) = icos 8t. R =3 inches, 6 =0rad, wy=8rad/s,and T = 7/4 sec.

7. The spring constant is k = 3/(1/4) = 12 Ib/ft. Mass m = 3/32 Ib-s*/ft. Since
there is no damping, the equation of motion is

3
ﬁu” +12u =0,
that is, u” 4+ 128u = 0. The initial conditions are u(0) = — 1/12ft, v/(0) = 2 fps .

The general solution is u(t) = A cos8v/2t + B sin8+/2t. Invoking the initial
conditions, we have

page 123



CHAPTER 3. ——

1 1
u(t) = —ECOS8\/515+ sin8v/2t.

1,/2

R = \/ﬁ/12ft,5: 7r—atan<3/\/§) rad, wy = 8+/2 rad/s, andT:W/<4\/5) sec.

10. The spring constant is k = 16/(1/4) = 64 Ib/ft. Mass m = 1/2 Ib-s*/ft. The
damping coefficient is v = 2 [b-sec/ft. Hence the equation of motion is

1
§u”—|—2u’—|—64u =0,

thatis, u” + 4u’ 4+ 128u = 0. The initial conditions are «(0) = 0%, v’ (0) = 1/4 fps.
The general solution is u(t) = Acos2+/31t + B sin24/31t. Invoking the initial
conditions, we have

u(t) = 531 e sin24/31t.

0.0161
0.0147
0.0124
0.014
0.0087
(0.006 5
0.0044
0.002 3

oomd 02\04 P 0.8\1‘/1.2 1416 18 2
-0.004
-0.008
-0.008

-0.014

Solving u(t) = 0, on the interval [0.2, 0.4], we obtain ¢ = 7/2+/31 = 0.2821 sec.
Based on the graph, and the solution of u(¢) = 0.01, we have |u(t)| < 0.01 for
t>71=0.2145.

11. The spring constant is k = 3/(.1) = 30 N/m . The damping coefficient is given as
~v = 3/5 N-sec/m . Hence the equation of motion is

2u” + %u/+30u =0,

thatis, u” 4+ 0.3u’ 4+ 15u = 0. The initial conditions are «(0) = 0.05 m and
u'(0) = 0.01m/s. The general solution is u(t) = A cos ut + B sin ut , in which
= 3.87008 rad/s . Invoking the initial conditions, we have

u(t) = e *151(0.05¢c0s pt 4 0.00452sin pt) .

Also, 1/w, = 3.87008/+/15 ~ 0.99925 .
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13. The frequency of the undamped motion is w, = 1. The quasi frequency of the
damped

motion is p = §1/4 —~2 . Setting p1 = 3w, , we obtain v = %\/g

14. The spring constant is k = mg/L . The equation of motion for an undamped system
is
mg

Lu:().

mu 1 +
Hence the natural frequency of the system is wy = /4 . The period is 7' = 27 /wj .

15. The general solution of the system is u(t) = Acos~y(t — t,) + Bsiny(t — t,) .
Invoking the initial conditions, we have u(t) = ugcosy(t — t,) + (u./7)siny(t — t,).
Clearly, the functions v = uycosy(t — t,) and w = (u,/7y)siny(t — t,) satisfy the given
criteria.

16. Note that r sin( wyt — 0) = r sinw,t cos 8 — r coswyt sinf . Comparing the given

expressions, we have A = —rsinf and B =rcosf. Thatis,r = R = /A% + B2,
and tanf = — A/B = — 1/tan 6. The latter relation is also tan + cot 6 = 1.

18. The system is critically damped, when R = 2./L/C . Here R = 1000 ohms .

21(a). Letu = Re ""/?"cos(ut — ). Then attains a maximum when ut, — § = 2k.
Hence T; =t — t, = 27/ 1.

(). u(te)/u(tes) = exp(—yti/2m)/exp( —typ1/2m) = exp|(Vtrer — i)/ 2m].
Hence u(t;)/u(tr 1) = exp[y(2n/pn)/2m] = exp(yTy/2m).

(©). A= Infuty)/utn)] = ~y(2r/p)/2m = 7/ pm .

22. The spring constant is k = 16/(1/4) = 64 Ib/ft. Mass m = 1/2 [b-s*/ft. The
damping coefficient is v = 2 [b-sec/ft . The quasi frequency is u = 21/31 rad/s.

_ 2
Hence A = o ™ 1.1285.

25(a). The solution of the IVP is u(t) = e~ */* (2 cos %\/?t + 0.252sin gﬁt).
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: va WA
t
-0.57

Using the plot, and numerical analysis, 7 ~ 41.715.

(b). Fory=0.5,7~20.402; fory=1.0,7~9.168; fory= 15,7~ 7.184.

().

404
351
304
281

201

(d). Fory=1.6,7~7.218; fory= 17,7~ 6.767; fory= 1.8, 7 ~ 5.473;
fory=1.9, 7~ 6.460. 7 steadily decreases to about 7,,;,, ~ 4.873, corresponding to
the critical value v, ~ 1.73.

(¢). We have u(t) = 2 cos(ut — §) ,in which 1 = }1/2 =77 , and

_ e~ t/2
6 = tan 1\/417 . Hence |u(t)| < jm .

26(a). The characteristic equation is mr* + yr 4+ k = 0. Since 4> < 4km , the roots
are 7y, = — 5-+i 7W . The general solution is

\Amk — 2 Vamk — 2
u(t) = e M?m Acos#t—i—Bsin%t :
m m

Invoking the initial conditions, A = u, and

(2muvy, — yuy)

Amk —~2
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(b). We can write u(t) = Re "/*"cos(ut — 6), in which

(2mu, — *)/uo)Z
R=/ul
\/uo + dmk — 2

and
0 = arctan @2muvy — yu)
g/ 4mk — 2
. 2 (2muv,— 'yu(, m(ku? +’yu(,vu+muo) . a+by
(C)' R = \/’LLO + T dmk—? 2\/ dmk—~? - dmk—~*

It is evident that R increases (monotonically) without bound as v — (2\/ mk:) )

28(a). The general solutlon is u(t) = Acos /2t + Bsin\/2t. Invoking the initial
conditions, we have u(t) = \/2 sin /2 t.

(b).

-
L

02040608 1 121)4

The condition v’(0) = 2 implies that u(t) initially increases. Hence the phase point
travels clockwise.
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29. u(t) = %e*t/gsin @t.

31. Based on Newton's second law, with the positive direction to the right,
ZF = mu”
where

ZF: — ku —~yu'.

Hence the equation of motion is mu"” 4+ yu’ + ku = 0. The only difference in this
problem is that the equilibrium position is located at the unstretched configuration of
the spring.

32(a). The restoring force exerted by the spring is F, = — (ku + cu®). The opposing
viscous force is F; = — yu’'. Based on Newton's second law, with the positive direction
to the right,

F,+ F;=mu”.

Hence the equation of motion is mu” + yu’ + ku + eu® = 0.

(b). With the specified parameter values, the equation of motion is u” +u = 0. The
general solution of this ODE is u(t) = A cost + B sint. Invoking the initial
conditions,

the specific solution is u(t) = sint. Clearly, the amplitude is R = 1, and the period of
the motion is 7" = 2.

(¢). Givene = 0.1, the equation of motion is u” +u + 0.1u? = 0. A solution of the
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IVP can be generated numerically:

eps=.1
1 H
0.87
0.6
0.44
0.24
b 4 E 10 1,
-0.24
-0.44
-0.67
-0.54
-14
eps=0.2
eps=0.3
087 08
067 063
0.41

0.4

0.9 0.2

2 s 8 | fz I R R R B NN N I
0.2 0.2
0.4 044
-0.61 05
0.5 -0.84

(e). The amplitude and period both seem to decrease.

(f)-
14
0.5
0.6
0.4
0.21
2

-0.24
-0.4
-0.61
-0.81

eps=-.1

/)
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0.8
0.6
0.4
0.2

eps=-0.2

-0.2
0.4
0B
0.8

eps=-0.3

0.2
0.4
0.6
-0.84

[N
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Section 3.9

2. We have sin(a+3) = sinacos 3+ cos a sin (3. Subtracting the two identities, we
obtain sin(a + () — sin(a — ) = 2cosasin 3. Setting a + § = Tt and o — 3 = 6t,
o = 6.5t and 3 = 0.5¢. Hence sin Tt — sin 6t = 2 sin £ cos 13 .

3. Consider the trigonometric identity cos(a+f3) = cosacos B F sina sin 3. Adding

the two identities, we obtain cos(a — f3) + cos(a + ) = 2cos acos 3. Comparing the
expressions, set « + 3 = 27t and o — 3 = wt. Hence o« = 37t/2 and § = nt/2. Upon

substitution, we have cos(wt) + cos(2nt) = 2 cos(3nt/2) cos(nt/2).

4. Adding the two identities sin(a=%/3) = sin a cos 3+ cos a sin [3, it follows that
sin(a — ) + sin(a + ) = 2sinacos 3. Setting a + § = 4t and a — § = 3t, we
have a = 7t/2 and 5 = t/2. Hence sin 3t + sin4dt = 2 sin(7t/2) cos(t/2).

6. Using mks units, the spring constant is k£ = 5(9.8)/0.1 = 490 N/m , and the damping
coefficient is 7 = 2/0.04 = 50 N-sec/m . The equation of motion is

5u’ + 50u’ + 490u = 10 sin(t/2).

The initial conditions are u(0) = 0 m and u'(0) = 0.03 m/s .

8(a). The homogeneous solution is u,(t) = Ae 'cos/ 73t + Be 'sin\/73t. Based
on the method of undetermined coefficients, the particular solution is

Ut) = —

153281
Hence the general solution of the ODE is u(t) = u.(t) + U (¢). Invoking the initial
conditions, we find that A = 160/153281 and B = 383443+/73 /1118951300 . Hence
the response is

1 3834434/ 73
t) = 160 e 'cos /T3t + ——— e sin\/T3t| + U(t).
u(t) 153981 60e "cos /T3t + 300 ¢ Sin 3t +U(t)

[ — 160 cos(t/2) + 3128 sin(t/2)].

(b). wu.(t) is the transient part and U (¢) is the steady state part of the response.
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0.024

0.014

-0.011

-0.024

(d). Based on Egs. (9) and (10), the amplitude of the forced response is given by
R =2/A, in which

A= \/25(98 — w?)® + 25002

The maximum amplitude is attained when A is a minimum. Hence the amplitude is

maximum at w = 44/ 3 rad/s .
9. The spring constant is £ = 12 [b/ft and hence the equation of motion is

6
3—2u” +12u =4cosTt,

thatis, u” + 64u = S cos 7t. The initial conditions are u(0) = 0 f, w'(0) = 0 fps.

The general solution is u(t) = Acos 8t + Bsin 8t + $tcos 7t. Invoking the initial

conditions, we have u(t) = — $cos8t + Sicos Tt = Bsin(t/2)sin(15¢/2).

12. The equation of motion is

2u” +u' + 3u = 3cos 3t — 2sin 3t.

Since the system is damped, the steady state response is equal to the particular solution.

Using the method of undetermined coefficients, we obtain
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1
U (t) = é(szn 3t — cos 3t).

Further, we find that R = /2 /6 and § = arctan( — 1) = 37 /4. Hence we can write
Uy (t) = gcos(i’)t — 37/4).

13. The amplitude of the steady-state response is given by
Fy

\/mQ(wg — w2)2 + 2 w?

Since Fj is constant, the amplitude is maximum when the denominator of R is minimum .

Let 2 = w?, and consider the function f(z) = m2(w? — z)° + v2z. Note that f(z) is

a quadratic, with minimum at z = w? — v*/2m?. Hence the amplitude R attains a

R =

maximum at w? = w? —v*/2m?. Furthermore, since w? = k/m , and therefore
2
2 _ 2 2
Winaz = W |:1 - 2km:| :

2

maxr

into the expression for the amplitude,
E
R = 4 2 | A2 0 2 _ 2 2
VA2 + 92 (W] — 72/2m?)
V3 = am?
Fy

Ywor/1 —~2/dmk

Substituting w? = w

14(a). The forced response is u,,(t) = Acoswt + Bsinwt. The constants are obtain by
the method of undetermined coefficients. That is, comparing the coefficients of cos wt
and sin wt, we find that

—mw?A+ywB+ kA =F,,and — mw’B —ywA+ kB =0.
Solving this system results in

A=m(w) —w?)/A and B=w/A,

in which A = \/ m?(w? — w?)” + 42w? . It follows that

yw

tanb = B/A = ————.
o= B R =)

(b). Herem =1, = 0.125,w, = 1. Hence tan § = 0.125w/(1 — w?).
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phase

01" 02 04 06 08

17(a). Herem = 1,7 =0.25,w} = 2, F, = 2. Hence u,,(t) = %cos(wt — ),
where A = \/(2 — W)+ w?/16 = i\/64 — 63w? 4+ 16w , and tan é = o

(b). The amplitude is

8
R = .
V64 — 63w? + 16 w*
(c).
Armplitude
5_
4
3_
2_
1_
o 08 1 18 2 25 3
Wy

(d). See Prob. 13. The amplitude is maximum when the denominator of R is minimum.
That is, when w = w,,,, = 3v/14 /8 ~ 1.4031. Hence R(w = wy..) = 64/+/127 .

18(a). The homogeneous solution is u.(t) = Acost + Bsint. Based on the method of
undetermined coefficients, the particular solution is

Hence the general solution of the ODE is u(t) = w.(t) + U (¢). Invoking the initial
conditions, we find that A = 3/(w? — 1) and B = 0. Hence the response is
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104

T

u(t) = - sl coswt — cost].

-10+
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304

20

\/ 10 20 30 40 50 \/ﬁ'ﬂ
t

-204

-30

Note that

19(a). The homogeneous solution is u,(t) = Acost + Bsint. Based on the method of
undetermined coefficients, the particular solution is

U(t)

= ﬁcoswt.
—w

Hence the general solution is u(t) = u,.(t) + U (t). Invoking the initial conditions, we
find that A = (w? +2)/(w? - 1) and B = 1. Hence the response is

u(t) [3coswt — (w* +2)cost] + sint.

12

(b.)
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304

204

101 /\
i

\/ 10 20 3ﬂ 40 50 \fh

-104

-2 0

_3 l]_

Note that
6 1—-w)t
u(t) = . 2$zn{( w) ]sin{(w_+ ]—Fcost%—smzt.
20.
w =07
104
5_
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21. The general solution is u(t) = u.(t) + U (¢), in which

__—t/16 171358 \/255t 257758 _ \/255?5

(’t - -
u(t) =e 132721 7716 | 132791255 16

and

U(t) [436800 cos(.3t) + 18000 sin(.3t)] .

~ 132721
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o 10 20 Va0 J4n ls0 [ED 0
t

_1—

_2—

-34

e

23. The general solution is u(t) = u.(t) + U(t), in which

9746 V2 12 v 2
u.(t) = e~/ o0 LN 5,

t
4105 €os 16 + 821+/255 s 16
and
1
t) = ——| — ' .
U(t) 4105[ 1536 cos(3t) + 72 sin(3t)]
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Aldmin
U ool || [ ][9] 1 o) |]] 4 b
iR

249 @
2.29

1,69
1.44 o
1.23

0.6
0.41 +

(c). The amplitude for a similar system with a /inear spring is given by

5
R = :
V25 — 4902 + 25w!
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Armplitude

06

08

page 145



CHAPTER 4. ——

Chapter Four
Section 4.1

1. The differential equation is in standard form. Its coefficients, as well as the function
g(t) = t, are continuous everywhere. Hence solutions are valid on the entire real line.

3. Writing the equation in standard form, the coefficients are rational functions with
singularities at ¢t = 0 and ¢ = 1. Hence the solutions are valid on the intervals ( — 00,0),
(0,1),and (1,00).

4. The coefficients are continuous everywhere, but the function g(¢) = Int is defined
and
continuous only on the interval (0, cc0). Hence solutions are defined for positive reals.

5. Writing the equation in standard form, the coefficients are rational functions with a
singularity at z, = 1. Furthermore, p,(x) = tanx/(x — 1) is undefined, and hence not
continuous, at x, = £(2k + 1)7/2, k =0,1,2,---. Hence solutions are defined on any
interval that does not contain x, or x, .

6. Writing the equation in standard form, the coefficients are rational functions with
singularities at x = £+ 2. Hence the solutions are valid on the intervals ( — oo, — 2),
(—2,2),and (2,00).

7. Evaluating the Wronskian of the three functions, W ( f, f», fs) = — 14. Hence the
functions are linearly independent.

9. Evaluating the Wronskian of the four functions, W (f,, f», f3, f1) = 0. Hence the
functions are linearly dependent. To find a linear relation among the functions, we need
to find constants c¢,, ¢, c3, ¢y , not all zero, such that

e fi(t) + eafa(t) + csfs(t) +cufi(t) = 0.
Collecting the common terms, we obtain
(CQ +2C3 +C4)t2 + (261 — C3 +C4)t+ ( - 361 +CQ +C4) == 09

which results in three equations in four unknowns. Arbitrarily setting ¢, = — 1, we can
solve the equations ¢, +2¢; =1,2¢;, —¢c; =1, — 3¢, + ¢, = 1, to find that ¢, = 2/7,
¢, =13/7,¢; = —3/7. Hence

2f1(t) +13/2(t) = 3f5(1) — 7fu(t) = 0.

10. Evaluating the Wronskian of the three functions, W (f,, f,, fs) = 156 . Hence the
functions are linearly independent.
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11. Substitution verifies that the functions are solutions of the ODE. Furthermore, we

have
W(1,cost,sint) =1.

12. Substitution verifies that the functions are solutions of the ODE. Furthermore, we
have W (1,t,cost,sint) = 1.

14. Substitution verifies that the functions are solutions of the ODE. Furthermore, we
have W (1,t,e7t,te™?) = e 2.

15. Substitution verifies that the functions are solutions of the ODE. Furthermore, we
have W (1, z,2%) = 6x.

16. Substitution verifies that the functions are solutions of the ODE. Furthermore, we
have W (z,2?,1/z) = 6/x.
18. The operation of taking a derivative is linear, and hence

)(k’) (k) (k)

(Y1 + Yo =yt ey, .

It follows that
I . m (n) (n-1) -7,
[y + cayp] = iy + ey, + [0191 + Y, ] + o 4 pufeiy + eyl

Rearranging the terms, we obtain L[c,y, + ¢y,] = ¢, L{y1] + ¢, L[y,]. Since y, and y,
are solutions, L[c,y, + ¢,y,] = 0. The rest follows by induction.

19(a). Note that d*(t")/dt* = n(n —1)---(n —k+ 1)t" % fork =1,2,---,n.
Hence

L[t"] = agn! + ay[n(n — 1)--2)t + - a,_ nt" ' 4 a,t".

(b). We have d*(e")/dtk = r¥e™, for k = 0,1,2,---. Hence

L|:€7't] = q, Tnert + alrn—lert 4o a, T ert + a, e’rt

= [ao a4 a4+ an]e”.

(¢). Sety = e™, and substitute into the ODE. It follows that r* — 572 +4 = 0, with
r = 41,4 2. Furthermore, W (e!, e, %, e72) = 72.

20(a). Let f(t) and g(t) be arbitrary functions. Then W (f,g) = fg' — f'g. Hence
W’(f,g) _ f/g/+fg//_f//g_f/g/ _ fg"—f"g. That is,
W’(f,g) = ‘ff// gg// .

Now expand the 3-by-3 determinant as
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/ / / / / /
Yo Y3 Y Y Y Y
W ) yYs) — - + : .
(yl Y2 ys) U yQ// yg// Yo yll/ y‘s” Ys yl// yQ//
Differentiating, we obtain
/ / / / / /
W) =ui| g =l g bl
/ / / / / /
+ U y/Z// y/g// — Y2 y/lll y/3// + Y3 y}// y/2// .
2 Ys 1 Ys 1 2

The second line follows from the observation above. Now we find that

/

) Y, ?JQ/ yyf Y1 Ys Y3
Wiy, yesys) = |9 ¥ ¥ |+ W ¥ Ui

" i " "

y!' oy oyl "y oy

Hence the assertion is true, since the first determinant is equal to zero.

(b). Based on the properties of determinants,

Psyr P3Y2 PsYs
pZ(t)pS(t)W/ =Dy Py DY
yll// yz/// y3///
Adding the first two rows to the third row does not change the value of the determinant.
Since the functions are assumed to be solutions of the given ODE, addition of the rows
results in

/ YZ D3 Y2 D3Ys
y%) (t)p‘s (t)W = Do y{ Do ygl Do yg/
— D y{’ — D yQN — D 3/3//

It follows that p,(t)ps(H)W' = — pi(t)p.(t)ps(t)W . As long as the coefficients are not
zero, we obtain W' = — p,(t)W.

(c). The first order equation W' = — p,(¢t)W is linear, with integrating factor u(t) =
= exp([pi(t)dt). Hence W (t) = cexp(— [pi(t)dt) . Furthermore, W (t) is zero
onlyifc =0.

(d). Tt can be shown, by mathematical induction, that

Y1 Yo e Yn— Yn
/ / !/ /
yl y? T yn—l yn
W,(ylay%"'ayn) = (: 2 (n-2) (n-2) :
n— n— n— n—
u' Y Yoo Yo
w ey
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Based on the reasoning in Part(b), it follows that
P(t)ps() P ()W = — pi()pa(t)ps(8) - pu ()W,
and hence W' = — p,(t)W.

22. Inspection of the coefficients reveals that p,(¢) = 0. Based on Prob. 20, we find
that W/’ =0, and hence W = c.

23. After writing the equation in standard form, observe that p,(¢) = 2/¢t. Based on the
results in Prob. 20, we find that W' = ( — 2/t)W, and hence W = ¢/t2.

24. Writing the equation in standard form, we find that p, (¢) = 1/t. Using Abel's
formula, the Wronskian has the form W (t) = cexp( — [1dt) = c/t.

25(a). Assuming that ¢,y (t) + coys(t) + -+ + ¢y, (t) = 0, then taking the first n — 1
derivatives of this equation results in

k k :
ey’ () + e (1) + -+ ey () = 0
for k=0,1,---,n — 1. Setting t = t,, we obtain a system of n algebraic equations with
unknowns ¢, ¢y, -+, ¢, . The Wronskian, W (yy, ys, -+, ¥ )(t0), is the determinant of the
coefficient matrix. Since system of equations is homogeneous, W (yy, 42, -+, ¥, ) (o) 7# O
implies that the only solution is the #rivial solution, ¢, = ¢, = --- =¢, = 0.

(b). Suppose that W (y,, ys, -+, y,)(ty) = 0 for some ¢,. Consider the system of
algebraic
equations

ey () + ey () + - + ey (1) = 0,

k=0,1,---,n — 1, with unknowns ¢, ¢,, - - -, ¢, . Vanishing of the Wronskian, which is
the determinant of the coefficient matrix, implies that there is a nontrivial solution of the
system of homogeneous equations. That is, there exist constants ¢y, ¢, - -+, ¢, , not all
zero, which satisfy the above equations. Now let

y(t) = e (t) + caa(t) + -+ + cay(t).

Since the ODE is linear, y(t) is also a nonzero solution. Based on the system of algebraic
equations above, y(t,) = y'(t,) = --- = y" Y(t,) = 0. This contradicts the uniqueness
of the identically zero solution.

26. Let y(t) = yi(t)v(t). Theny' =y/v+yv', y” =y/'v+2y/v' + y,v”, and
y" =y/"v+ 3y"v" + 3y/v"” + y,v"”. Substitution into the ODE results in

"

y"v + 3y + 3yiv” +yv” + oyl v+ 2yiv 4+ yiv”] + poyiv + yiv'] + payiv = 0.

Since y, is assumed to be a solution, all terms containing the factor v(¢) vanish. Hence
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yiv"” + oy + 3y " + By, + 2piy) + pyi|v’ =0,

which is a second order ODE in the variable u = v’.

28. First write the equation in standard form:

" t+2 1 t+1 / 6
— 6 —
t(t+3)y * t2(t+3)y t2(t+3

=0

Let y(t) = t?v(t). Substitution into the given ODE results in

H+q)

t2 " 3
S

=0.

Set w = v”. Then w is a solution of the first order differential equation

t+4

/
3
R Tra

w =

This equation is /inear, with integrating factor ;(t) = t*/(t + 3). The general solution
is w = c(t + 3)/t*. Integrating twice, it follows that v(t) = c;t ™ + ¢;t 72 + ¢yt + cs.
Hence y(t) = cit + ¢; + ct3 + c5t%. Finally, since y,(t) = t? and 1, (¢) = t3are given
solutions, the third independent solution is y;(t) = ¢t + ¢; .
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Section 4.2

1. The magnitude of 1 +1iis R = \/5 and the polar angle is /4 . Hence the polar
form is given by 14 i = /2 e/™/4.

3. The magnitude of — 3 is R = 3 and the polar angle is 7. Hence — 3 = 3¢,

4. The magnitude of — i is R = 1 and the polar angle is 37/2. Hence — i = €’™/2,
5. The magnitude of \/3 — i is R = 2 and the polar angle is — 7/6 = 117/6. Hence
the polar form is given by /3 — i = 2 e!1m/6,

6. The magnitude of — 1 —11s R = \/5 and the polar angle is 57 /4 . Hence the polar
form is given by — 1 — i = /2 "™/4,

7. Writing the complex number in polar form, 1 = e?™™_ where m may be any integer.
Thus 1/ = ¢?"7/3_ Setting m = 0, 1, 2 successively, we obtain the three roots as
113 =1,1Y% = /3 113 = ¢*i/3_ Equivalently, the roots can also be written as

1, cos(2n/3) + i sin(2n/3) = %( —1+ \/§>, cos(4n/3) + isin(4n/3) = %( —1+ \/§>

9. Writing the complex number in polar form, 1 = e?™™, where m may be any integer.
Thus 1V* = ¢?"7i/4 Setting m = 0, 1, 2, 3 successively, we obtain the three roots as
1V =1,1Y = e™/2 1/ = ¢™ 1Y* = ¢37/2, Equivalently, the roots can also be
written as 1, cos(w/2) + i sin(w/2) =i, cos(w) +isin(w) = — 1, cos(37/2) +

+isin(37/2) = —i.

10. In polar form, 2(cos /3 + i sinm/3) = 2e™/3+¥"7 in which m is any integer.
Thus [2(cos 7/3 + i sin/3)]"* = 2'/2 &!™/0+m7  With m = 0, one square root is

given by 21/2¢™/6 = <\/§ + z> /+/2 . With m = 1, the other root is given by

21/26i77r/6: (_ \/§_1>/\/§
3 2

11. The characteristic equationis 7° —r* —r 4+ 1 =10. Therootsarer = — 1,1,1.
One root is repeated, hence the general solution is y = c,e™! + c,e! + cstel.

13. The characteristic equation is r* — 2r2 —r +2 = 0, withroots» = — 1,1,2. The
roots are real and distinct, hence the general solution is y = c,e ™" 4 c,e! + cze?.

14. The characteristic equation can be written as r?(r? — 4r + 4) = 0. The roots are
r =0,0,2,2. There are two repeated roots, and hence the general solution is given by
Y=c +ct+ 03€2t + C4t62t.

15. The characteristic equation is 7% + 1 = 0. The roots are given by 7 = ( — 1)"/°,
that is, the six sixth roots of — 1. They are e ™/6+m7/3 1y = 0,1, ---,5. Explicitly,
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r= (\/5—@')/2, (\/§+z'>/2,z', _s, (— \/§+z‘)/2, (— \/§—@)/2. Hence
the general solution is given by y = ¢V3t/2 [cicos (1/2) 4 cysin (t/2)] 4 czcost +
cisint + e V312 [escos (t/2) + cgsin (t/2)].

16. The characteristic equation can be written as (r*> — 1)(r*> —4) = 0. The roots

are given by r = + 1, =2. The roots are real and distinct, hence the general solution is
y = cre !+ cel + cie? 4 e

17. The characteristic equation can be written as (72 — 1)3 = 0. The roots are given by
r = £ 1, each with multiplicity three. Hence the general solution is

Yy = ce t 4 ete ™t + c3t26_t +ciel + c5tet + c6t2€t.

18. The characteristic equation can be written as 72 (r4 — 1) = 0. The roots are given
by r =0,0,41,47. The general solution is y = ¢, + ¢t + cse™ ! + cie! + cscost +
+ cgsint.

19. The characteristic equation can be written as 7(r* — 3r® + 3r? — 3r + 2) = 0.
Examining the coefficients, it follows that 74 — 3r® + 3r? —3r +2 = (r — 1)(r — 2) x
(r? 4+ 1). Hence the roots are 7 = 0, 1,2, &4 . The general solution of the ODE is given
by y = ¢ + cel + ;e + cicost + cssint.

20. The characteristic equation can be written as 7(r3 — 8) = 0, with roots r = 0 ,
2e2mmi/3 ' =0,1,2. Thatis, 7 = 0,2, — 1 +i1/3 . Hence the general solution is

y=c +ce¥ +et [03003\/§t + c4sin\/§t} )

21. The characteristic equation can be written as (7“4 + 4) ? = 0. The roots of the
equation r* +4 = Oarer = 1 +i, — 14+14. Each of these roots has multiplicity two.
The general solution is y = e'[c,cost + cysint | + tel[cscost + cysint] +

+ e escost + cgsint ] + te te;cost + cgsint].

22. The characteristic equation can be written as (7> + 1)2 = 0. The roots are given
by r = £ 14, each with multiplicity two. The general solution is y = c,cost + cysin
t+

+ tlescost + eysint .

24. The characteristic equation is 7> + 57 + 6r + 2 = 0. Examining the coefficients,
we find that 7% + 572 4+ 67 + 2 = (r + 1)(r? + 47 + 2). Hence the roots are deduced as

r=—1, —2 j:ﬁ. The general solution is y = c;e ™ + c2e(_2+‘/§)t + cge(_Q_\/E)t.

25. The characteristic equation is 1873 4 2172 + 14r + 4 = 0. By examining the first
and last coefficients, we find that 187 + 2172 + 147 + 4 = (2r + 1)(972 + 67 + 4).
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Hence the roots are r = — 1/2, ( — 1j:\/§ ) /3. The general solution of the ODE is
given by y = ¢,e /2 4 ¢71/3 [czcos (t/\/g) + c38in (t/\/g) } )

26. The characteristic equation is 7! — 773 + 672 4 307 — 36 = 0. By examining the
first and last coefficients, we find that

rt —7r® 4+ 6r° +30r — 36 = (r — 3)(r +2)(r* — 6r +6).
The rootsare r = —2,3,3 :I:\/§ . The general solution is

Y = 0167% + c2e3t + 036(37\/§)t + c4e(g+\/§)t.

28. The characteristic equation is 74 4 673 4 1772 4 22r + 14 = 0. It can be shown
that % + 673 + 17r? + 22r + 14 = (r? + 2r + 2)(r? + 4r + 7). Hence the roots are
r= —1+i, —2+i\/3. The general solution is

Yy = eft[clcost + cysint] + e 2 |:CgCOS\/§t + c4sin\/§t] .

30. y(t) = %e‘t/ﬁsin(t/ﬁ> - %et/ﬁsin(t/ﬁ).

32. The characteristic equation is ™ —r24+r—1=0,withroots =1, +i. Hence
the general solution is y(t) = c,e’ + c,cost + c3sint. Invoking the initial conditions,
we obtain the system of equations

¢+ =2
C1 + C3 = — ]_
CiL — C = — 2
with solution ¢, = 0, ¢, = 2, ¢ = — 1. Therefore the solution of the initial value

problem is y(t) = 2cost — sint.
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33. The characteristic equation is 2r* — 73 — 97> + 4r + 4 =0, withroots 7 = — 1/2,
1, +2. Hence the general solution is y(t) = c;e /2 + c,e + c;e72 + c,e?' . Applying
the initial conditions, we obtain the system of equations

a+ce+cegte=—2

1
—501+Cg_203+204:0

1

ZCl+Cg+4Cg+4C4: -2

1
_§CI+02_803+8C4:0

with solution ¢, = — 16/15,¢, = —2/3,¢3 = —1/6,¢, = — 1/10. Therefore the
solution of the initial value problem is y(t) = — 8e~1/2 — 2¢f — Le=20 _ L2t

2
-2.21
-2.44
-2.61

-2.81

31

-3.21
1] 0.2 o4 4 06 0.8 1

The solution decreases without bound.

34. y(t) = Ze '+ €'?[Zcost + Lsint].
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304

204

The solution is an oscillation with increasing amplitude.

35. The characteristic equation is 6 % + 572 + 7 = 0, withroots 7 = 0, — 1/3, — 1/2.
The general solution is y(t) = ¢; + c,e*/® 4+ c;e /2. Invoking the initial conditions,
we require that

Cq + Co + Cy = — 2
1 1
— gCQ — 503 =2
1 1
502 + 103 =0
with solution ¢; = 8, ¢, = — 18, ¢; = 8 . Therefore the solution of the initial value

problem is y(t) = 8 — 18e7/3 + 8e~/2.

a4

36. The general solution is derived in Prob.(28) as
y(t) = e '[eicost + cysint] + e [cgcosﬁt + c43in\/37t} :

Invoking the initial conditions, we obtain the system of equations
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citec=1
—C1+CQ—263—|—\/_C4= 2

—2¢cy + ¢35 — 4[04—0

201+2CQ+1003+9fc4:3

with solution ¢; = 21/13,¢, = —38/13,¢3 = —8/13,¢, = 17\/5/39.

14
0.8
0.6
0.4

0.2

The solution is a rapidly-decaying oscillation.

38.

W(et,e_t,cost, sint) = -8
W(cosht,sinht,cost,sint) =4

40. Suppose that c,e™ 4 c,e™ + --- + ¢,e™! = 0, and each of the r, are real and
different. Multiplying this equation by e "%, ¢, + c,e™ ™)t ... 4 ¢ et = (.,
Differentiation results in

cy(ry —m))e (ra=r)t 4o 4 Co(rn — 11 )e(”*”)t =0.
Now multiplying the latter equation by e~ (">~ and differentiating, we obtain
es(ry — 1) (rs — ) e e (= 1) (1 — 1 )eT T =0
Following the above steps in a similar manner, it follows that
Co(ry — 1) (1 — rl)e(""_r”*l)t =0.
Since these equations hold for all ¢, and all the r;, are different, we have ¢, = 0. Hence
e+ e 4o, €t =0, —co<t<oo.

The same procedure can now be repeated, successively, to show that

co=¢c=-=c¢,=0.

page 156



CHAPTER 4. ——

Section 4.3

2. The general solution of the homogeneous equation is y, = c,e! + c,e ™" + cscost +
+ ¢eysint. Let g,(t) = 3t and g,(t) = cost. By inspection, we find that Y;(t) = — 3t.
Since g¢,(t) is a solution of the homogeneous equation, set Y, (t) = t(Acost + Bsint).
Substitution into the given ODE and comparing the coefficients of similar term results in
A =0and B= —1/4. Hence the general solution of the nonhomogeneous problem is

t
y(t) = y.(t) — 3t — Zsint.

3. The characteristic equation corresponding to the homogeneous problem can be written
as (r+1)(r* + 1) = 0. The solution of the homogeneous equation is y, = c;e ™ +

+ cycost + czsint. Let g(t) = e ' and g,(t) = 4t. Since g,(t) is a solution of the
homogeneous equation, set Y; () = Ate'. Substitution into the ODE results in A = 1/2.
Now let Y;(t) = Bt + C. We find that B = — C' = 4. Hence the general solution of
the nonhomogeneous problem is y(t) = y.(t) +te /2 + 4(t — 1).

4. The characteristic equation corresponding to the homogeneous problem can be written
as r(r+1)(r — 1) = 0. The solution of the homogeneous equation is y. = ¢, + c,e’ +
+ cse". Since g(t) = 2 sint is not a solution of the homogeneous problem, we can set
Y (t) = Acost + B sint. Substitution into the ODE resultsin A = 1 and B =0.

Thus

the general solution is y(t) = ¢; + c,e! + cse ™! + cost.

6. The characteristic equation corresponding to the homogeneous problem can be written
as (r2+1)> = 0. It follows that Yo = 1c08t + cysint + t(czcost + eysint). Since

¢g(t) is not a solution of the homogeneous problem, set Y (¢) = A + Bcos 2t + Csin 2t .
Substitution into the ODE results in A = 3, B = 1/9, C' = 0. Thus the general solution
is y(t) = y.(t) + 3+ scos2t.

7. The characteristic equation corresponding to the homogeneous problem can be written
as 73(r® +1) = 0. Thus the homogeneous solution is

Yo =1+ ot + st + ciet +et/? [c5cos<\/§t/2) +cgsin<\/§t/2)]

Note the g(t) = t is a solution of the homogenous problem. Consider a particular
solution

of the form Y (t) = t3(At + B). Substitution into the ODE results in A = 1/24 and
B = 0. Thus the general solution is y(t) = y.(t) + t*/24.

8. The characteristic equation corresponding to the homogeneous problem can be written
as 73(r + 1) = 0. Hence the homogeneous solution is y, = ¢; + ¢, t + c5t% + e,

Since ¢(t) is not a solution of the homogeneous problem, set Y (t) = Acos 2t + Bsin 2t .
Substitution into the ODE results in A = 1/40 and B = 1/20. Thus the general solution
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is y(t) = y.(t) + (cos 2t + 2sin 2t) /40.

10. From Prob. 22 in Section 4.2, the homogeneous solution is
Yo = 108t + cysint + + t[ezcost + cysint].

Since g(t) is not a solution of the homogeneous problem, substitute Y (¢) = At + B into
the ODE to obtain A = 3 and B = 4. Thus the general solution is y(t) = y.(t) + 3t + 4.
Invoking the initial conditions, we findthatc, = —4,¢, = —4,c3=1,¢, = — 3/2.
Therefore the solution of the initial value problem is

y(t) = (t —4)cost — (3t/2 +4)sint + 3t + 4.

B0
a0
407
30

207

11. The characteristic equation can be written as 7(r?> — 3r + 2) = 0. Hence the
homogeneous solution is y. = ¢; + c,e! + cse?’. Let gy (t) = e’ and g,(t) = t. Note
that g, is a solution of the homogeneous problem. Set Y;(¢) = Ate'. Substitution into
the ODE results in A = — 1. Now let Y,(t) = Bt*> + C't. Substitution into the ODE
results in B = 1/4 and C' = 3/4. Therefore the general solution is

y(t) = c1 + e’ + cie* —te' + (% 4 3t) /4.

Invoking the initial conditions, we find that ¢, = 1, ¢, = ¢; = 0. The solution of the
initial value problem is y(t) = 1 — te’ + (t> + 3t) /4.
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1
02 0Z66- 08 1 12 14 16 18 32

12. The characteristic equation can be written as (r — 1)(r + 3)(r? + 4) = 0. Hence

the homogeneous solution is y, = c;e’ + c,e ' + cycos 2t + c4sin 2t. None of the

terms in g(t) is a solution of the homogeneous problem. Therefore we can assume a form
Y(t) = Ae ' + Bceost + Csint. Substitution into the ODE results in A = 1/20,

B= —2/5,C = —4/5. Hence the general solution is

y(t) = cie’ + e + cyc08 2t + cy5in 2t + 71 /20 — (2cost + 4sint) /5.
Invoking the initial conditions, we find that ¢, = 81/40, ¢, = 73/520, ¢; = 77/65,
¢ = —49/130.

36
36

3.4

3.21

14. From Prob. 4, the homogeneous solution is 3. = ¢, + c,e’ + c;e”!. Consider the
terms g,(t) = te”' and g,(t) = 2cost. Note that since r = — 1 is a simple root of the
characteristic equation, Table 4.3.1 suggests that we set Y, (¢) = t(At + B)e™'. The
function 2cos t is not a solution of the homogeneous equation. We can simply choose
Y,(t) = Ccost + Dsint. Hence the particular solution has the form

Y (t) = t(At + B)e ' + Ccost + Dsint.

15. The characteristic equation can be written as (r* — 1)2 = 0. The roots are given
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as r = =+ 1, each with multiplicity two. Hence the solution of the homogeneous problem
is y. = cie! + cote! + cse + cqte!. Let g, (t) = e! and g,(t) = sint. The function

e’ is a solution of the homogeneous problem. Since r = 1 has multiplicity two, we set
Yi(t) = At?e’. The function sint is not a solution of the homogeneous equation. We
can set Y, (t) = Bcost + Csint. Hence the particular solution has the form

Y (t) = At*e¢' + Bcost + Csint.

16. The characteristic equation can be written as 72(r? 4+ 4) = 0, with roots r = 0, 4-2i.
The root » = 0 has multiplicity two, hence the homogeneous solution is y. = ¢, + cot +
+ c3c08 2t + ¢,sin 2t . The functions g, (t) = sin 2t and ¢,(t) = 4 are solutions of the
homogenous equation. The complex roots have multiplicity one, therefore we need to set
Yi(t) = At cos2t + Bt sin2t. Now g,(t) = 4 is associated with the double root r = 0.
Based on Table 4.3.1, set Y5(t) = C't?. Finally, gs(t) = te! (and its derivatives) is
independent of the homogeneous solution. Therefore set Y;(¢) = (Dt + E)e'. Conclude
that the particular solution has the form

Y (t) = At cos 2t + Bt sin 2t + Ct* + (Dt + E)e'.

18. The characteristic equation can be written as 72(r? 4+ 2r + 2) = 0, with roots 7 = 0,
with multiplicity two, and r = — 1 +¢. The homogeneous solution is y. = ¢; + ¢t +
+ csecost + cietsint. The function g, (t) = 3e! + 2te™?, and all of its derivatives,
is independent of the homogeneous solution. Therefore set Y;(t) = Ae! + (Bt + C)e .
Now ¢,(t) = e 'sint is a solution of the homogeneous equation, associated with the
complex roots. We need to set Y;(t) = t(De ‘cost + Ee 'sint). It follows that the
particular solution has the form

Y(t) = Ae' + (Bt + C)e " + t(D e lcost+ Eetsin t).

19. Differentiating y = u(t)wv(t), successively, we have

y' =u'v+uv’
y// — u//’U—i_ 2u/'U/ —"—U’U”

=3 (”) L9
=0 \J

Setting v(t) = e, vU) = ade®. So foranyp=1,2,---.n,

p
YO =y <1?) )

=0 \J

It follows that
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Lle*] = e Z [a n_,,i (]7 ) o ul? —ﬁ] (%)

=0 =o \J
It is evident that the right hand side of Eq. (x) is of the form
et [k:o u™ ke u™ Y ek, qu + Ky, u} .

Hence operator equation L[e®u] = e (byt™ + by t™ 1 + --- +b,,_1t + b, ) can be
written as

ko U(n) + ]ﬁ U(nil) + -+ kn_lu’ + knu =

= by t" + bt b, by,

The coefficients k;,7 = 0,1, ---,n can be determined by collecting the like terms in

the double summation in Eq. (*). For example, k; is the coefficient of u(™). The only
term that contains (™ is when p=mnand j=0. Hence k, = a,. On the other hand,

k, is the coefficient of w(¢). The inner summation in () contains terms with u, given by
aPu (when j = p), foreach p =0,1,---,n. Hence

n
k, = E appal.
p=0

21(a). Clearly, € is a solution of 3’ — 2y = 0, and te™" is a solution of the differential
equation y” + 2y’ +y = 0. The latter ODE has characteristic equation (r 4+ 1)* = 0.
Hence (D — 2)[3e%] = 3(D — 2)[e*] = 0 and (D + 1)*[te!] = 0. Furthermore,

we have (D — 2)(D + 1)*[te™"] = (D — 2)[0] = 0, and (D — 2)(D + 1)*[3e¥] =

= (D+1)*(D - 2)[3¢%] = (D +1)%[0] = 0.

(b). Based on Part (a),
(D—2)(D+1)°[(D-2*D+1)Y] = (D—2)(D+1)*[3e* — te]
=0,

since the operators are linear. The implied operations are associative and commutative.
Hence

(D-2"(D+1)’Y =0.

The operator equation corresponds to the solution of a linear homogeneous ODE with
characteristic equation (r — 2)*(r 4+ 1) = 0. The roots are » = 2, with multiplicity 4
and r = — 1, with multiplicity 3. It follows that the given homogeneous solution is

Y(t) = cre?t 4 epte® + cyt?e® + et3e? + cse Tt + cte ! + ertle

which is a linear combination of seven independent solutions.
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22(15). Observe that (D — 1)[e!] = 0 and (D? + 1)[sint] = 0. Hence the operator
H(D) = (D — 1)(D? + 1) is an annihilator of e’ + sint. The operator corresponding

to the left hand side of the given ODE is (D? — 1)2. It follows that
(D+1)*(D-1)*(D*+1)Y =0.
The resulting ODE is homogeneous, with solution
Y(t) = e’ + eyte ™ + czel + eyte! + estPe! 4 cocost + crsint.

After examining the homogeneous solution of Prob. 15, and eliminating duplicate terms,
we have

Y (t) = cstde’ + cocost + crsint .

22(16). We find that D[4] = 0, (D — 1)*[te’] = 0, and (D? + 4)[sin2t] = 0.
The operator H (D) = D(D — 1)*(D? + 4)is an annihilator of 2 + te’ 4+ sin 2t. The
operator corresponding to the left hand side of the ODE is D?(D? + 4). It follows that

DD —1)*(D*+4)Y =0.
The resulting ODE is homogeneous, with solution
Y (t) = ¢, + ot + c5t® + cie’ + cste! + cgeos 2t + cr5in 2t + cstcos 2t + cotsin 2t

After examining the homogeneous solution of Prob. 16, and eliminating duplicate terms,
we have

Y(t) = C3t2 + el + estel + cgtcos 2t + cotsin 2t .

22(18). Observe that (D — 1)[e!] = 0, (D + 1)*[te™"] = 0. The function e 'sint is
a solution of a second order ODE with characteristic roots r = — 1+4. It follows that
(D* + 2D + 2)[e 'sint] = 0. Therefore the operator

H(D) = (D —1)(D+1)*(D*+2D +2)

is an annihilator of 3e! + 2te™! + e~!sint. The operator corresponding to the left hand
side of the given ODE is D?(D? 4 2D + 2). It follows that

D*(D —1)(D+1)*(D*+2D +2)°Y = 0.
The resulting ODE is homogeneous, with solution

Y(t) = ¢ + et + e’ +eet +este T +
+ e (cgeost + crsint) + te ' (cscost + cysint ).

After examining the homogeneous solution of Prob. 18, and eliminating duplicate terms,
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we have

Y(t) = cse’ + cie Tt 4 este T + t€7t<CgCOSt + cosint).
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Section 4.4

2. The characteristic equation is r(r> — 1) = 0. Hence the homogeneous solution is
y.(t) = ¢, + cye’ + cse . The Wronskian is evaluated as W (1, e', e ") = 2. Now
compute the three determinants

0 e et
W1<t): 0 t _eit = —2
1 e et
1 0 et
Wot)=10 0 —et|=¢"
0 1 et
1 ¢ 0
Wi(t) =10 e 0|=¢
0 e 1
The solution of the system of equations (10) is
/ th (t)
t) = = —1
! tWQ (t) —t
i) = Gy =t
tWis(t
ug(t) = 10, = te'/2

W (t)

Hence u,(t) = —t?/2,u,(t) = —e '(t +1)/2,us(t) = €' (t — 1)/2. The particular
solution becomes Y (t) = —t?/2 — (t+1)/2+ (t — 1)/2 = —?/2 — 1. The constant
is a solution of the homogeneous equation, therefore the general solution is

y(t) = ¢, + cre’ + et —t2/2.

3. From Prob. 13 in Section 4.2, y.(t) = ce™t + cye! + cse*'. The Wronskian is
evaluated as W (e, €', e*) = 6 €*. Now compute the three determinants

0 et 627,‘
Wit) =10 e 2% |=¢e"
1 e 4e*
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et e 0
Wit)=|—et e 0|=2
et b1
Hence u(t) = €’ /6, ul(t) = — €3/2,ul(t) = €* /3. Therefore the particular solution

can be expressed as
Y(t) =e [ /30] —e'[e¥/6] + e* [e* /6]
= ¢'/30.

6. From Prob. 22 in Section 4.2, y.(t) = c,cost + cysint + t[czcost + cysint]. The
Wronskian is evaluated as W (cost, sint,tcost,t sint) = 4. Now compute the four
auxiliary determinants

0 sint tcost tsint
10 cost cost —tsint sint+tcost | .
Wi(t) = 0 —sint —2sint—tcost 2cost—tsint | 2sint + 2t cost
1 —cost —3cost+tsint —3sint—tcost
cost 0 tcost tsint
| —sint 0 cost —tsint sint+tcost | .
Wa(t) = —cost 0 —2sint—tcost 2cost—tsint = 2tsint + 2cost
sint 1 —3cost+tsint —3sint—tcost
cost sint 0 tsint
| —sint cost 0 sint+tcost |
Wi(t) = —cost —sint 0  2cost—tsint | 2cost
sint —cost 1 —3sint—tcost
cost sint tcost 0
—sint cost cost —tsint 0 )
Wi(t) = —cost —sint —2sint—tcost 0] — 2sint
sint —cost —3cost+tsint 1
It follows that u/(t) = [ — sin’t +tsintcost]/2, ul(t) = [tsin’t + sintcost]/2,
ul(t) = — sintcost/2, ul(t) = — sin*t/2. Hence

u,(t) = [3sintcost — 2t cos’t — t] /8
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uy(t) = [sin’t — 2cos’t — 2t sintcost +t*]/8
us(t) = — sin’t/4

uy(t) = [costsint —t]/4
Therefore the particular solution can be expressed as
Y (t) = costu,(t)] + sint[uy(t)] + t cost [uz(t)] + t sint [uy(t)]
= [sint — 3tcost —t*sint] /8.

Note that only the last term is not a solution of the homogeneous equation. Hence the
general solution is

y(t) = cicost + cysint + tlescost + cysint] — t2sint /8.

8. Based on the results in Prob. 2, y.(t) = ¢, + coe’ + cse . It was also shown that
W(l,e' e ) =2,with W,(t) = —2, W,(t) = e ", Ws(t) = e'. Therefore we have
u/(t) = —csct, u)(t) =e'csct /2, uj(t) = e'csct /2. The particular solution can
be expressed as Y (t) = [u,(t)] + e '[uy(t)] + €' [us(t)]. More specifically,

t

t gt
Y (t) = In|esc(t) + cot(t)| + %/ e *csc(s)ds + %/ e’csc(s)ds
to to

= In|esc(t) + cot(t)| + / cosh(t — s)csc(s)ds.

to

9. Based on Prob. 4, u/(t) = sect, uj(t) = — 1, us(t) = — tant. The particular
solution can be expressed as Y (t) = [u,(t)] + cost [uy(t)] + sint [us(t)]. Thatis,

Y (t) = In|sec(t) + tan(t)| — t cost + sintin|cos(t)|.
Hence the general solution of the initial value problem is
y(t) = ¢ + cecost + czsint + In|sec(t) + tan(t)| — tcost + sintin|cos(t)|.

Invoking the initial conditions, we require that ¢, +¢c, =2,¢c3 =1, — ¢, = — 2.
Therefore

y(t) = 2cost + sint + In|sec(t) + tan(t)| — t cost + sintin|cos(t)|
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224

217

1.97

1.84

1.71

10. From Prob. 6, y(t) = c,cost + c,sint + cst cost + cit sint — t?sint /8. In
order to satisfy the initial conditions, we require that ¢, = 2, ¢, + ¢3 =0,
—¢+2¢=—1, —3/4— ¢, —3c;s = 1. Therefore

y(t) = 2cost + [Tsint — Ttcost + 4t sint — t’sint]/8.

107

12. From Prob. 8 , the general solution of the initial value problem is

t

¢ ot
/efscsc(s)ds—i— — | €e’cse(s)ds.
to

to

et

y(t) = ¢, + cre’ + cse”" + Infesc(t) + cot(t)| + 5

In this case, t, = 7/2. Observe that y(7/2) = y.(7/2), y'(7/2) = y/(7/2), and
y"(m/2) = y!”(7/2). Therefore we obtain the system of equations
e + cre™? + e 2 = 2
cre™? — cpe”™? =1

cr€™? + e = —1

Hence the solution of the initial value problem is
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t
y(t) =3 — A In|ese(t) + cot(t)| + / cosh(t — s)csc(s)ds.
to

0 02040608 1 12141618 2 227242528 3
t

13. First write the equation as "' + x~'y” — 227?y’ + 2273y = 22 . The Wronskian
is evaluated as W (x, 2, 1/x) = 6/x. Now compute the three determinants

0 22 1/z
Wi(x) =10 2z —1/2*|= —3
1 2 2/
x 0 1/z
Wyz)=11 0 —1/2*|=2/x
0o 1 2/
r 22 0
Wy(z)=|1 2z 0|=2"
0 2 1
Hence u](z) = — 2%, uj(x) = 2x/3, ul(x) = x*/3. Therefore the particular solution
can be expressed as
1
Y(z) =] —2°/3] + 2°[2%/3] + E[:C5/15]

= 21/15.

15. The homogeneous solution is y.(t) = c,cost + cysint + cscosht + ¢ysinht. The
Wronskian is evaluated as W (cost, sint, cosht, sinht) = 4. Now the four additional

determinants are given by W,(t) = 2sint, W,y(t) = — 2cost, Wi(t) = — 2sinht,
W, (t) = 2cosht. If follows that u/(t) = g(t) sin(t)/2, uy(t) = — g(t) cos(t)/2,
us(t) = — g(t) sinh(t)/2, uj(t) = g(t) cosh(t)/2. Therefore the particular solution
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can be expressed as

Y(t) = co;(t)/t g(s) sin(s)ds — S”;(t)/t g(s) cos(s)ds —
- %h(t)/tolg(s) sinh(s)ds + Smh(t)/tog(s) cosh(s)ds.

Using the appropriate identities, the integrals can be combined to obtain

1

Y(t) = 5/,‘9(8) sinh(t — s)ds — %/fg(s) sin(t — s)ds.

17. First write the equation as ¥’ — 3z7'y” + 6272y’ — 62y = g(z) /2. Itcan
be shown that y,(z) = ¢,z + ¢, 2* + ¢; 2 is a solution of the homogeneous equation.
The Wronskian of this fundamental set of solutions is W (x, 2%, 23) = 223, The three
additional determinants are given by W,(z) =z, Wy(z) = — 223, W;(x) = 22
Hence u/(z) = g(x)/22%, ul(z) = — g(z) /23, u)(x) = g(x)/22*. Therefore the
particular solution can be expressed as

_ 9 2/‘”@ 3/‘”@
Y(x) —xéo o2 dt — x P dt + = : 2t4dt

1 [*]x 2202 g3
e B LT P
2/% Lﬂ e +t4}g(>
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Chapter Five
Section 5.1
1. Apply the ratio test :
' |($ . 3)n+1 ‘ ‘
lim ———5+— = lim |z —3| = |z — 3|
L AT ¥

Hence the series converges absolutely for [z — 3| < 1. The radius of convergence is
p = 1. The series diverges for x = 2 and x = 4, since the n-th term does not approach
Zero.

3. Applying the ratio test,

‘n| x2n/+2| ) 1.2

1' _ = =
nooo|(n+ 1) a2 nsen + 1

The series converges absolutely for a// values of . Thus the radius of convergence is
p = 00.

4. Apply the ratio test :

|2n+1xn+1 |
lim = lim 2|z| = 2|z|.
n— 0o |2”:17”| n— 0o

Hence the series converges absolutely for 2|x|, or |z| < 1/2. The radius of convergence

is p = 1/2. The series diverges for z = +1/2, since the n-th term does not approach
zZero.

6. Applying the ratio test,

fim @ =)
n—oo|(n+ 1)(z — x,)"| n—oomn 4+ 1

(@ = 2)| = [(z = 2)|.

Hence the series converges absolutely for |(z — x,)| < 1. The radius of convergence is
p=1. Atz =z, + 1, we obtain the harmonic series, which is divergent. At the other
endpoint, z = x, — 1, we obtain

o0 _1Tl
P

n=1

which is conditionally convergent.

7. Apply the ratio test :
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3t 1) (@ 4+ 2)" . (n+1)?
lim lim ——*~

n— oo |3n+1n2(aj+2)n| - n— oo 3n2

(2 +2)] = 31z +2)].

Hence the series converges absolutely for %|:1; +2| < 1,0r|z+2| < 3. The radius of

convergenceis p = 3. Atz = — 5 and x = + 1, the series diverges, since the n-th
term does not approach zero.

8. Applying the ratio test,
_n(n 4 1)t n" 1

’n,—>oc‘<,n+ 1)n+1n|xn‘ B ’IL—)ngo (n_|_ 1>n‘$| = g|x|a

since

nn 1 —n
lim —— = lim (14— el
n— 00 (n—|—1> n— 00 n

Hence the series converges absolutely for |z| < e. The radius of convergence is p = e.
At x = =+ e, the series diverges, since the n-th term does not approach zero. This follows
from the fact that

. nle™
lim ——M =1.

n—00 NN, /27'('71/

10. We have f(x) = e, with f™(x) = e”, for n = 1,2, ---. Therefore £ (0) = 1.
Hence the Taylor expansion about z, = 0 is

00
e.”L' — §
n=>0

| 8

n
| .

3

Applying the ratio test,

, Inlz™ | 1
llm —_— Y — 11
n—>oo’(n—{—1)'x”| n—oomn 4+ 1

|z| = 0.
The radius of convergence is p = .

11. We have f(z) = x, with f'(z) =1 and f™(z) =0, for n = 2,---. Clearly,
f(1) =1and f'(1) = 1, with all other derivatives equal to zero. Hence the Taylor
expansion about x, = 1 is

r=1+(z—-1).

Since the series has only a finite number of terms, the converges absolutely for all z .

14. Wehave f(z) =1/(1+2), f'(z) = —1/Q +2)% f"(z) =2/(1 +z)®,---
with f)(z) = (= 1)"n!/(1 +2)""", for n > 1. It follows that £ (0) = ( —1)"n!
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for n > 0. Hence the Taylor expansion about z, = 0 is

Applying the ratio test,

The series converges absolutely for |x| < 1, but divergesatxz = +1.

15. Wehave f(x) = 1/(1 — ), f'(z) = 1/(1 —x)*, f"(z) = 2/(1 — x)°,---
with £ (z) =n!/(1 —x)""", for n > 1. It follows that £ (0) = n!, forn > 0.
Hence the Taylor expansion about z, = 0 is

n=0
Applying the ratio test,
| 7L+1|
lim = lim |z| = |z|.
n— 00 | xn | n— 00

The series converges absolutely for |x| < 1, but divergesatxz = +1.

2/(1— ),
2)

=(-1 )an' for

16. Wehave f(z) =1/(1—x), f'(z) =1/(1 —:c) , f(x)
with £ (z) =n!/(1 —z)"*", for n > 1. It follows that (")
n > 0. Hence the Taylor expansion about z, = 2 is

L Y (e

L—z n=>0

"

Applying the ratio test,

. n+1
lim ‘(x 2) ‘

B2 1 im |z — 2= |z — 2.
o (@ =2

The series converges absolutely for |z — 2| < 1, but divergesatz =1 and = = 3.

17. Applying the ratio test,
fim (DTt
n— 00 | n:L‘"| n— 00

] = |].

The series converges absolutely for |z| < 1. Term-by-term differentiation results in
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o0
:Zn%”*l =1+4x+ 922+ 162> + ---
—1

Z (n—1) 2" =4 + 18z + 48z% 4+ 100z> + - --

Shifting the indices, we can also write

o0

Z (n+41)*z" and y”:Z(n+2)2(n—|—1)x”

n=>0
20. Shifting the index in the second series, that is, settingn = k + 1,
o0 0
D a@ttt =) "a, 42"
k=0 n=1
Hence
o o0 o o0
k+1 k k
Zakﬂxk + Zakx = Zakﬂx + Zak_la:

o0
k+1
:a1+2 ak+1—|—ak1 .

21. Shifting the index by 2, that is, setting m = n — 2,

o0

Zn(n — Dayx

n=2

(m+2)(m+ 1D)ay0z™

(n+2)(n+1)ay22".

2
>

22. Shift the index down by 2, that is, set m = n + 2. It follows that

n+2 __ m
§ Qp — E Ap—2T
m=2
0
- g ap—2T
n=2

24. Clearly,
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0 o0 0
(1- xQ)Zn(n — Da,z"? = Zn(n — Dayx"™ Z n(n — 1)a,z".
n=2 n=2 =

Shifting the index in the first series, that is, setting k = n — 2,

o0

Zn(n — Dayz" % = Z(k + 2)(k + 1)ajo z*
n=2 k=0
= Z(n +2)(n+ 1)ay 22",
n=0
Hence
(1- xQ)Zn(n Ya,x Z n+2)(n+1)ay2z" — Zn Da, z".
n=2 n= =

Note that when n = 0 and n = 1, the coefficients in the second series are zero. So that

(1= nln — Daga™ = 3 [0+ 2)(n + Danes —nln — Dala”
n=2 n=0

26. Clearly,
o0 0 0 o0
Znan "4 Zan " = Znan 4 Zan "
n=1 n=0 n=1 n=0
Shifting the index in the first series, that is, setting k =n — 1,
o0 o0
Znan " = Z(k + 1)ak+1:ck.
n=1 k=0

Shifting the index in the second series, that is, setting k = n + 1,

00

_ k

ap T - Q1T .
k=1

n=0

Combining the series, and starting the summation atn = 1,

o0 o0 o0
E na, z" '+ x E a, " = E n+ 1ay1 + ap_1]z".

27. We note that
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oo o0

0 o
xZn(n —Da, 2" 2 + Zan ' = Zn(n — Da, 2" ' + Zan z".
=9 n=>0

Shifting the index in the first series, that is, setting k =n — 1,

M]3

Zn(n —Dap,z" ' =Y k(k+ Dagp 2"
n=2

B
Il

1

[
M]3

k(k 4 1)ap 1zt

B
I

0

since the coefficient of the term associated with k£ = 0 is zero. Combining the series,

o0

o0 o0
T Zn(n - 1a, "2 4 Zan " = Z[n(n + Dap1 + aylz”.
n=>0 n=>0

n=2
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Section 5.2

1. Lety = ay + a1z + ax® + --- + a,z" + ---. Then

o0 [e.0]
Z (n—1Dayz"" :Z (n+2)(n+1)ay22".
= n=0

Substitution into the ODE results in
o0 o0
Z (n+2)(n+ Dayoz" — Z apz" =0
n=0 n=0
or

Z n+2)(n+1)ay2 —ay)z” =0.

Equating all the coefficients to zero,
(n+2)(n+1aps2 —a, =0, n=0,1,2,--

We obtain the recurrence relation

Qn
n - , :(Ll,Qf-n
B (e § ) R
The subscripts differ by two, so for £ =1,2,---
P a2k—2 _ a9k —4 _ _ ag
T 2k—1)2k  (2k —3)(2k — 2)(2k — 1)2k (2k)!
and
a e a2k71 e a2k73 — . — L
T ok(2k+1)  (2k — 2)(2k — 1)2k(2k + 1) (2k +1)!°

Hence

0 1@k+1

oo .2k
Yy = ao tar) oo
PR it

The linearly independent solutions are

z?  xt  af
ylzao(l—l—a—kﬁ%—ﬁ—k ):aocoshx

B 2 2 2 B nh
Yo = G x—|—§+5 +F+ =a18tnhx.
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4. Lety = ay + ax + ax> + --- + apx™ + ---. Then
[e.¢] 0
Z (n—1)a,z" :Z (n+2)(n+ 1)a,2z".
n= n=0
Substitution into the ODE results in
o0
Z (n 4 2)(n + Day 22" + k*x QZanx =0.
= n=0
Rewriting the second summation,
o0
Z n+2)(n+ a2 x" +Zk¢ an_o " =0,
n=>0 n=2
that is,
o
2a9 +3-2a3x + Z [(n+2)(n+ 1agss + k*ap_o]z" = 0.
n=2
Setting the coefficients equal to zero, we have ay = 0, a3 =0, and
(n+2)(n+ Daps + k*a,_ o =0, for n=2,34,--
The recurrence relation can be written as

k2an—2
= — , n=23.4,-
Int2 mt2)n+r1)’ "

The indices differ by four, so a4, ag, a,,,--- are defined by

k2a0 k2a4 k2a8
4= — ——,08= — ——,0)p = — —(———
4 4.3 "8 8.7 " 12-11°
Similarly, a5, a9, a,3,--- are defined by
k2a1 k2a5 k2a9
ar = — ——, Qg = — —— , Qi3 = —
’ 5.4° 7 9.8 " 13-12°

The remaining coefficients are zero. Therefore the general solution is

kQ 4 k4 8 kﬁ 12
— 1— 2 _ .
Y “O{ 13" T8 743" "2nsr4a3 T }+
+a’1[x_5_4x T9 854" " 1312.9.84.4" +}

Note that for the even coefficients,
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k2a4m—4
m= - — =1,2,3,---
“ (4m—Dam>
and for the odd coefficients,
k2a4m73
m = - —, :1,2,37"'
(Hm-+1 dm(@m+1)°

X (
- Z: T (4m+3)(4m+4)

B 0 (_1)m+1(k2x4)m+1
p(z) =2 1+Z4.5.8.9---(4m+4)(4m+5)

6. Lety = ay + a,x + axx® + --- + a,z" + ---. Then

[0.9] o
= E na,T E (n+ Day1z"
n=1 n=>0

and

:i (n —1)a,a” :in—i—2 Y(n 4+ Dagyox".

n=

o

Substitution into the ODE results in

o0

o0 o0
(2 + xz)z (n+2)(n+1)ay22" — :L’Z(n + Dapz" + 42 a,z" = 0.
n=0 n=0 n=0

Before proceeding, write

o o
Zn—I—Z Dayox Z (n —1a,z"

and

o0
E n+1 aon = E n T
— n=1

It follows that

o0

dag + 4as + (3a1 + 12a3)x Z (n+2)(n+1)ap2 +n(n — 1a, nan—|—4an]xn =0.
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Equating the coefficients to zero, we find that ay = — ag, a3 = — a1/4, and

n?—2n+4
2(n+2)(n+1)

The indices differ by two, so for £k =0,1,2,---

Apy2 = — ap , 7’L:0,1,2,"'

o (2k)? — 4k + 4 .
HET T o0k+2)(2k+1)
and
(2k +1)* — 4k + 2
agk+3 = —

2(2k + 3)(2k + 2) "

Hence the linearly independent solutions are

4 :L‘6

X
—1— -
()— IL‘_3+7_£L‘5 19:1:7_1_
P =T T 160~ 1920

7. Lety = ay + a1z + axx® + --- + a,z" + ---. Then

o0 o
:Z na,x"" :Zn—l—lanﬂx

=0

3

and
o 0
Z (n—1)a,z" :Zn+2(n+1)an+2x
= n=
Substitution into the ODE results in

i n+2)(n+1)ayoz" —I—xz (n+ 1Day2" +22an:1: =0.

First write

o0

0¢]
QJ'Z(TL + Day12" = Zn apx".

n=>0 n=1

We then obtain

o0
2a9 + 2a¢ + Z[(n +2)(n+ 1)ay2 + na, + 2a,]z" =0.

n=1
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It follows that as = — ap and a2 = —a,/(n+1),n=0,1,2,---. Note that the
indices differ by two, so for k =1,2,---
a = — a2k—2 = A2k—4 — ces — ( _ 1)ka0
2 2k —1  (2k—3)(2k — 1) 1-3-5---(2k —1)
and
o oamer ays (= Dfa
A2k+1 = — = == :
2k (2k —2)2k 2.4-6--(2k)
Hence the linearly independent solutions are
2 4 6 0 n, on
x x x (- 1"z
n(@) 1713 135 +nzll 3-5--(2n—1)
3 5 7 % n_on+1
x x x (- 1"z
(@) =z -5+ 5 - 2-4-6+"'_x+;2-4-6---(2n)'
9. Lety = ay + a1z + axx® + --- + a,z" + ---. Then
:Znan Z n—|—1 an+1£C
n=1 n=>0
and
Z Dayz (n+2)(n+1)ay2z"
n= n=0
Substitution into the ODE results in
(1 —|—;1;2)Z (n+2)(n+1)a,22" —43:2 n+ 1)a, 12" +62 axz” =0.
n=>0 n= n=>0

Before proceeding, write

o0

in—l—Z Dayox Z (n —1azz"

and

It follows that
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o0
6ag + 2as + (2a1 + 6az)x + Z [(n +2)(n+ Dapgo + n(n — Da, — 4na, + 6a”]$n =0.
n=2
Setting the coefficients equal to zero, we obtain as = — 3ag, a3 = — a1/3, and
(n—2)(n - 3)

Qpy2 = — Ay, n:0,1727""

(n+1)(n+2)

Observe that for n = 2 and n = 3, we obtain a4 = a5 = 0. Since the indices differ by
two, we also have a,, = 0 for n > 4. Therefore the general solution is a polynomial

y = ag + a1 — 3agxr® — a12°/3.
Hence the linearly independent solutions are

yi(r) =1—32> and y(z) =z —2°/3.

10. Lety = ay + a1z + ax® + --- + a,z" + ---. Then
o
Z (n—1Dayz"" :Z (n+2)(n+1)ay22".
= n=0
Substitution into the ODE results in
o
( — 22 Z (n+2)(n+ a2 x" —I—QZanx =0.
n=0 n=0

First write
a:QZ (n+2)(n+ Day22" = Z n(n —1)a,z"
n=0
It follows that

2a0 + 8as + (2a1 + 24a3)x + Z [4(n+2)(n + Va2 — n(n — 1)a, + 2a,]z" = 0.

We obtain as = — ag/4,a3 = —ay/12 and
4(n+2)apto =(n—2)a,, n=0,1,2,---.

Note that for n = 2, a4, = 0. Since the indices differ by two, we also have as;, = 0 for
k =2,3,---. On the other hand, for k = 1,2, ---,

(2k — 3)a2k_1 . (2k' — 5)(2k — 3)a2k_3 o — a

42k +1) 422k -1)(2k+1) 4Rk —1)(2k+1)°

a2k+1 =

Therefore the general solution is
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$2 00 x2n+l
Yy =ay+ ax —ay—

4 alnzlzw(m —1)(2n+1)"

Hence the linearly independent solutions are y,(z) = 1 — z?/4 and

2n+1

T o0
B =T =5 -9 T T Z Cn—-1D)@n+1)

11. Lety = ay + a;z + aa® + --- + a,z" + ---. Then

o0 o0
y' = E na,x"” E (n+ Da,qz"
n=1 n=0
and

= Z n(n —1)a,z"? = Z(n +2)(n+ 1)ay192".
n=2

n=

o

Substitution into the ODE results in

oo o
Zn+2 (n+ 1Day2z" — Zn—klanﬂx —Zanm =0.
= = n=>0

Before proceeding, write

o0
QZ (n+2)(n+ a2z Z (n—1)a,z"
n=0 n=
and
o0 o0
QJ'Z(TL + Day12" = Zn apx".
n=20 n=1
It follows that
o0
6as — ap + ( — 4ay + 18as)x + Z [B(n +2)(n + 1)ay2 — n(n — 1a, — 3na, —a,)z" = 0.
n=2

We obtain ay = a¢/6, 2a3 = a1/9, and
3(n+2)apio =(n+1)a,, n=0,1,2,---
The indices differ by two, so for £k =1,2,---

. <2k— 1)a2k_2 . (2k—3)(2k— l)agk_4 o 3'5"'(2]6— 1)&0
T30k 322k 2)(2k) 3F-2-4---(2k)

and
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(2k)agk—1 (2k — 2)(2k)agk—3 2:4-6---(2k) ay
a = = — .
P32k + 1) 322k — 1)(2k + 1) 35.3-5---(2k + 1)

Hence the linearly independent solutions are
x?  at 5af X 3-5---(2n — 1)z
nw) =1+t o T +nzl 37-2-4--(2n)
223 8x° 1627 X.2-4-6---(2n) x>t
velr) =2+ 5=+ 13+ ot +"'_x+z3 35-(2n+1)

n=1

12. Lety = ay + a1z + ax® + --- + a,z" + ---. Then

0 0
y/ = Z nanm”_l = Z(’I’L + 1)an+1:c”

n=1 n=0

and

[e.¢] 0

Z n(n —1)a,z" * = (n+2)(n+1)a,2z".

n= n=0

Substitution into the ODE results in
o0 [e.0] o0
(1-— :I?)Z (n+2)(n+ Dagox" + :I:Z(n + Dap1z" — Z apz” =0.
n=0 n=0 n=0
Before proceeding, write
o o

x Z (n+2)(n+ ag22" = Z(n + Dnayz”

n=>0 n=1

and

o0 o0
x E (n+ 1a,12" = E na,x"
n=0 n=1

It follows that

2a9 — ap + Z [(n+2)(n+ Dapi2 — (n+ Dnayer + na, —ay)z" = 0.
n=1
We obtain as = ay/2 and
(n+2)(n+1aps — (n+1)napm + (n—1)a, =0

for n =0,1,2,---. Writing out the individual equations,
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3-2a3——2-1a2::0
4-3a4—3'2a3+a2:0
5-4da5—4-3as+2a3=0
6-5a6—5~4a5+3a4=0

The coefficients can be calculated successively as a3 = a¢/(2-3), ay = a3/2 — ay/12
= ap/24, a5 = 3a4/5 — a3/10 = ao/120, ---. We can now see that forn > 2, a,, is
proportional to ag. In fact, forn > 2, a, = ag/(n!). Therefore the general solution is

a ZE2 a 1133 a 334

or T T

y=ay+ax+

Hence the linearly independent solutions are y,(z) = x and

x)zl%—ii—?.
n=2"""

13. Lety = ay + a1,z + a2’ + --- + a,z" + ---. Then

o0 o0
y' = Z na,z" ' = Z(n + Dap1z"
n=1 n=0
and
o0 o
Z (n — Dayz"™ =Zn+2(n+1)an+2x

o

n=

Substitution into the ODE results in

2 Z (n+2)(n+ 1apo 2" + $Z(TL + Day, 2" + BZ ap,z" =0.
n=0

n=>0 n=>0

First write

o0 o0
x E (n+ 1a,12" = E na,x"
n=0 n=1

We then obtain

4das + 3ag + Z[Q(n +2)(n+ 1)ayi2 +na, + 3a,]z" =0.
n=1

It follows that as = — 3ay/4 and
2(n+2)(n+ Dayo+ (n+3)a, =0
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forn =0,1,2,---. The indices differ by two, so for k =1,2,---
(21{? —+ 1)@2]@,2 . (2]{3 — 1)(2]{3 —+ 1)@2]@,4

G T T 90k — 1)(2k) | 22(2k — 3)(2k — 2)(2k — 1)(2k)
(=135 (26 + 1)
- 9k (2k)! o
and
a _ (2]{3 + 2)&2]@,1 _ (2k)(2]€ + 2)a2]€,3 _
bt 2(2k)(2k +1)  22(2k—2)(2k— 1)(2k)(2k + 1)
(DM 6ER)RE )
2k (2k +1)! b
Hence the linearly independent solutions are
3 5 7 — ~(2n+1)
—q1_2232 4 O 2n
n(@) = 1= gat o+ goat = g+ nzo on ( 2n) ’
_ s, 15 7 _ ~(—1)"-6--2n+2) 5,4
A R TR 2 9" (2n + 1)
15(a). From Prob. 2, we have
x 113'2” x 2nn!$2n+l
= — and yo(x) =
;]2 n = 2n+1)

Since ayp = y(0) and a; = y'(0), we have y(z) = 2y,(x) + yo(z). That s,

1 1 1 1
y(z) :2—|—:z:—|—x2—|—§a:3—|— Zx4+1—5x5+ ﬁxﬁ—i—m.
The four- and five-term polynomial approximations are
pr=2+z+z°+2°/3
ps=2+z+2*+2%/3+2"/4.
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Partial Sums - p4 is solid

408 06 04 02 02 04,06 08 1

(c). The four-term approximation p, appears to be reasonably accurate (within 10%)
on the interval |z| < 0.7.
17(a). From Prob. 7, the linearly independent solutions are

-1 nx2n

00 ( )
() :1+;1.3.5...(2n—1)

Since ayp = y(0) and a; = y'(0), we have y(z) =4y, (x) — yo(z). That s,
1 4

1 4
:4_ _42 =3 -4 -5 76
y(z) r —4x” + 5% + 3% g% T % +

The four- and five-term polynomial approximations are
1
p4:4—33—4x2+§x3

1 4
p5:4—x—4x2+§x3+§:134.
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Partial Sums - pd is solid

A 05 05 04 02 02 04,06 08 1

(c). The four-term approximation p, appears to be reasonably accurate (within 10%)
on the interval |z| < 0.5.

18(a). From Prob. 12, we have

oo xn
p(e)=1+3 0 and (o) ==,
n=2""

Since ap = y(0) and a; = y'(0), we have y(x) = — 3y, (z) + 2y,(x). Thatis,
3 1 1 1 1
- _ 2 22 -3 -4 5 6
ylo) = =3+ 20— ga” = 5w — g = 5%~ 5pp”

The four- and five-term polynomial approximations are

3 1
P4 = —3+2$—§$2—§$3

3 1 1
ps = —3+2x—§x2—§x3—§x4.
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Partial Sums - pd is solid

A4 708 04 D02040608 11214
H

(c). The four-term approximation p, appears to be reasonably accurate (within 10%)
on the interval |z| < 0.9.

20. Two linearly independent solutions of Airy's equation (about x, = 0) are

o 3n

yi(z) = 1+22~3---(3n— 1)(3n)

371+1

T Z 3.4---(3n)@Bn+1)
Applying the ratio test to the terms of y, (),
2-3--3n — 1)(3n) 2*" 3| 1

lz> = 0.

li =1
n5o]2-3--(3n + 2)(3n + 3) 23] noo (3n + 1)(3n + 2)(3n + 3)

Similarly, applying the ratio test to the terms of y,(x),

|3-4---(3n)(3n + 1) z*" ™| , 1
lim =

— 1 5=0.
o POy e gy e R v oy e

Hence both series converge absolutely for all x .

21. Lety:a0+a1x+a2x2+---+anx”+---. Then

00 00
y/ = Z nanx Z n + 1 (17,+1.717

n=1 n=>0

and
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o0 o
Z (n — Dayz"™ =Zn+2(n+1)an+2x

n=0
Substitution into the ODE results in
(0.0
Z (n+2)(n+ a2 2" —2932 (n+1ay 12" +)\Zanaz =0.
= n=>0 n=0

First write

[e.¢] o0
x E (n+ 1a,12" = E na,x"
n=>0 n=1

We then obtain

2a, +)\a0+2[(n+2)(n+ Va2 —2na, + Aa,)z" =0.

n=1
Setting the coefficients equal to zero, it follows that

(2n — \)
(nt+ Dn+2) "

Ap4+2 =

for n =0,1,2,---. Note that the indices differ by two, so for k =1,2,---
(4k —4 — )\)CLQ}C,Q . (4]€ —8— )\)(4]6 —4 — )\)agk74 .

as = (2k —1)2k  (2k —3)(2k — 2)(2k — 1)2k
B 1k)\...(/\_4k;+8)()\—4k+4)
= (-1 (2k)! -

and

@k —2-XNag1  (4k—6—-N)(4k —2— Nag-—3

GRS TRk 1 1) (k—2)@k—12k@k+ 1)
A2 (A -k 4 6)(A — 4k £ 2)
=(=1 2k + 1) o

Hence the linearly independent solutions of the Hermite equation (about x, = 0) are

A(A—4 AA—=4)(A—8
2 A0 MO0

Yo(r) =2 — )\?)_!251:3+ ()\_2;(!)\_6)335 _ =2 ;!6)()‘_ 10)$7+

(b). Based on the recurrence relation
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(2n — )
(n+D(n+2) ™

Qpy2 =

the series solution will terminate as long as \ is a nonnegative even integer. If A = 2m,
then one or the other of the solutions in Part (b) will contain at most m/2 + 1 terms. In
particular, we obtain the polynomial solutions corresponding to A = 0,2,4,6, 8,10 :

A=0 |wyl(z )—1

A=2 | (@)=

A=4 yl(:v)—l—Qx

A=6 |y(x)=x—22%/3

A=8 |y(x)=1-42>+ 42/3
A=10 | yo(x) = ¢ — 423 /3 + 425 /15

(c). Observe that if A = 2n, and ag = a; = 1, then

p2n---(2n — 4k 4+ 8)(2n — 4k + 4)

aze = (= 1) (2h)!

and

r(2n—2)---2n —4k+6)(2n — 4k + 2)
(2k + 1)! ’

fork =1,2,---[n/2]. 1t follows that the coefficient of 2", in y, and y,, is

agprr = (—1)

(—1)]“2““)' for n = 2k

(—l)k(ifl') for n =2k + 1

Ay =

Then by definition,

Hn(x) = { (- ) 2 Ejkk)' yl('%.) =(- 1)k %yl(ﬂf) for n = 2k

(— 0 2 S () = (- ) 26 () for n =2k + 1

Therefore the first six Hermite polynomials are

= 162* — 482% + 12
= 322° — 1602° + 120z

23. The series solution is given by
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1 1 1 1
y(ill')=1—|-—£lj2—|— 4 6 8_‘_.__

2 92917 T osgt Tt iy
Partial Sums

?_

6_

54

24. The series solution is given by

4 :IZ'G .%'8

X
1?4 24
y() Tt T30 120"

Partial Sums
2_

N R

25. The series solution is given by

3 5 7 9

(@) =c— %+ 5 +
y\aw == 2.4-6-8

x
2 2-4 2-4-6
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Parttial Sums
2_

26. The series solution is given by

3 5 $7 x9

12 240 2240 16128

Partial Sums
1.4

1.2

0.5
0.6+
0.44
0.24

2
0.4
06
087

| RE
é=_// -1.24

-1.44

27. The series solution is given by

(x)—l_x_4_|_x_8_ le +
YW =27 19 T 672~ 88704
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Partial Sums
1.2

+
0.8
0.6
0.4

0.2

-0.21

‘—h_‘_____r\i\_
5]

0.4

28. Lety = ay + a;x + aa® +--- + a,z" + ---. Then

o0 o0
y' = E na,x"” E (n+ Da,qz"
n=1 n=>0
and

= Z n(n —1)a,z"? = Z(n +2)(n+ 1)ay192".
n=2

n

o

Substitution into the ODE results in

o0

o
1—xz (n+2)(n+ 1ag2x" +xz n+ 1)a, 12" 2Zanx”:().

= n=0
After appropriately shifting the indices, it follows that

205 — 2a0+ Y _ [(n+2)(n + D)ansa — (n+ D)nanss + na, — 2a,)2" = 0.

n=1
We find that as = ag and
(n+2)(n+1)ap2 — (n+1)nays + (n—2)a, =0
for n =1,2,.--. Writing out the individual equations,

3'2@3—2'10,2—0,1:0
4-3a4—3-2a3:O
5-4a—4-3a4+a3=0
6-5a¢—5-4a5+2a4=0

Since ag = 0 and a; = 1, the remaining coefficients satisfy the equations
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3:-2a3—1=0
4-3a4—3-2a3=0
5-4da5—4-3a4+a3=0
6-5a¢—5-4a5+2a4=0

Thatis, a3 = 1/6,a4 = 1/12,a5 = 1/24,a¢ = 1/45,---. Hence the series solution
of the initial value problem is

1 1 1 1 13
yr)=z+ —2* + —a'+ =2 + —2f +

[ 7 .« oo
6 12 24" T 15 008" T

Partial Surns
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Section 5.3

2. Let y = ¢(x) be a solution of the initial value problem. First note that

y" = — (sinx)y’ — (cosx)y.

Differentiating twice,
n

— (sinx)y" —2(cosx)y’ + (sinx)y

iv "o

y" — (sinx)y

Given that ¢(0) = 0 and ¢’(0) = 1, the first equation gives ¢”(0) = 0 and the last
two equations give ¢”’(0) = —2and ¢*(0) = 0.

3(cosx)y” + 3(sinz)y’ + (cosx)y.

3. Let y = ¢(x) be a solution of the initial value problem. First write

w_ 14z, 3inz
y" = y' - —v.
x? x
Differentiating twice,
—1
y" = — [(z+2*)y" + Bzlnz —z —2)y’ + (3—6Inz)y].

1
y = — [(1’2 +2¥)y" + (32°Inz — 22 — da)y" +
x
+ (6 +8x — 12zilnz)y’ + (18Inx — 15)y].

Given that ¢(1) = 2 and ¢'(1) = 0, the first equation gives ¢" (1) = 0 and the last
two equations give ¢"’(0) = — 6and ¢"(0) = 42.

4. Let y = ¢(x) be a solution of the initial value problem. First note that

y" = —x*y’ — (sinz)y.
Differentiating twice,
y" = —2%y" — 2z + sinz)y’ — (cosx)y
y" = —2ty"” — (4o + sinz)y” — (2 + 2cos )y’ + (sinx)y.

Given that ¢(0) = ag and ¢'(0) = a4, the first equation gives ¢"”(0) = 0 and the last
two equations give ¢"'(0) = — ag and ¢™(0) = — 4aj.

5. Clearly, p(x) = 4 and q(z) = 6x are analytic for all . Hence the series solutions
converge everywhere.

7. The zeroes of P(x) = 1 + 3 are the three cube roots of — 1. They all lie on the
unit circle in the complex plane. So for xy = 0, ppin = 1. For xy, = 2, the nearest
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root is €'™/3 = (1 + Z\/§> /2, hence poin = \/3 .

8. The only root of P(z) = x is zero. Hence pm = 1.

9(b). p(x) = —x and g(x) = — 1 are analytic for all x .
(¢). p(x) = —x and g(x) = — 1 are analytic for all z.

(d). p(z) =0 and g(z) = ka?* are analytic for all z .

(e). The only root of P(x) =1 —xis 1. Hence ppi, = 1.
(9). p(z) =z and gq(x) = 2 are analytic for all z .

(). The zeroes of P(x) =1+ % are 4. Hence ppi, = 1.
(7). The zeroes of P(z) =4 — x? are 2. Hence ppin = 2.
(k). The zeroes of P(z) = 3 — 2% are £1/3 . Hence poin = /3 .
(I). The only root of P(z) =1 —xis1. Hence py;, = 1.
(m). p(x) =x/2 and q(x) = 3/2 are analytic for all x .

(n). p(x) = (1+x)/2 and g(x) = 3/2 are analytic for all z .

12. The Taylor series expansion of e, about z, = 0, is
o0 ,'En
=D
n=0
Lety = ay + a;x + a,2® + -+ + a,x™ + ---. Substituting into the ODE,

poei

o0 0
Z(n+2)(n+1)an+2x" —l—xZanq:":O.
n=0

First note that

o0 [e.e]
x E a,x" = E Ap 12" = ayx + a18° + ayx® + -+ ap_ 2"+ -
n=0 n=1

The coefficient of " in the product of the two series is

1 1
12
(n—l)!Jr CL4(n—2)!

Expanding the individual series, it follows that

1
C, = 2agm + 6as +-+m+1nap + (n+2)(n+ 1apss .

2a5 + (2ay + 6a3)x + (ag + 6as + 12a4)2* 4 (as + 6as + 12a4 + 20a5)z> + -+ +
+apx +az? +Faxd+---=0.
Setting the coefficients equal to zero, we obtain the system 2a, = 0, 2a, + 6as + a, = 0,

as + 6as + 12a4 + a1 = 0, ay + 6as + 12a4 + 20a5 + a3 = 0,---. Hence the
general solution is
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3 4 o 6
y(x) = ap+ a1z — ao% + (ag — al):f2 + (2a1 — ao) 0 <4a0 - al) 120

We find that two linearly independent solutions are

563 I4 Is
_1__ -
v(2) 6 "12 10 "
.%'4 .%'5 .%'6
yg(m)zx—ﬁ—}—%—@—}—

Since p(x) = 0 and g(x) = ze™ " converge everywhere, p = co

13. The Taylor series expansion of cos x, about x, = 0, is

o0
COST = E

Lety = ay + a;x + ayx® + -+ + a,z" + ---. Substituting into the ODE,

[i(_(;ii:!ﬁ] [i(n +2)(n+ Dapoz™| + f:nana:” — Qi apx =0.

n=0 n=0 n=1 n=0

n2n

The coefficient of x" in the product of the two series is
C, = 2a9b, + 6azb,—1 + 12a4b, 2+ -+ (n+ Dnap1br + (n+ 2)(n + Dayi9bo ,
in which cosx = by + byx + byx? + -+ + b,x" + ---. It follows that
o o0
2a9 — 2ag + Z cpx” + Z(n —2)ayz" =0.
n=1 n=1
Expanding the product of the series, it follows that

2ay — 2ag + 6azz + (— as + 12a4)x* + ( — 3az + 20as)z® +

—a1x+a3w3+2a4x4+---=0.
Setting the coefficients equal to zero, as — ag =0, 6a3 —a; =0, —ay + 12a4 =0,
— 3as + 20a; + a3 = 0, --- . Hence the general solution is
(ac)—a+am+ax2+ax—3+a$—4+ax5+ax—6+ax—7+
YE) = Go 7 1% 7 o 6 T2 T %60 T 120 T 560

We find that two linearly independent solutions are

4 xG

=1 -
Y (z) + 22 +12+120+
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:L’3 1175 $7
y( )—x+€+@+%+

The nearest zero of P(x) = coszisatx = /2. Hence pim = 7/2.

14. The Taylor series expansion of In(1 + x), about x, = 0, is

n(l+ x) i

n=1

n+1

Lety = ay + a,x + ayx® + --- + a,x" + ---. Substituting into the ODE,

n=00<J ( "+1 nz N
+ Z ]Zn-l— Jani1x" —J:Zanx =0.
n=1 n=0

The first product is the series
2ay + ( — 2ay + 6az)x + (ag — 6az + 12a4)2” + ( — ay + 6az — 12a4 + 20a;3)x> 4 - - - .
The second product is the series
a1z + (2a9 — (JL1/2)x2 + (3ag —as + a1/3)x3 + (4aq4 — 3a3/2 + 2a2/3 — a1/4)x3 +
Combining the series and equating the coefficients to zero, we obtain
2a9 =0
— 2a9 4+ 6as +a; —ag =0

120,4 - 6&3 —|—3CL2 - 3&1/2 =0
20a5 — 12a4 + 9a3 — 3a- +6L1/3 =0

Hence the general solution is

6

3 x? 75 5 T
y(z) _ao+a1x+(ag—a1)€+(2ao+a1)24 +aigs + ( 1—ao) TR

We find that two linearly independent solutions are

xr
T
m@)=1+e+5 -5t
() x3+x4+7x"+
)= — —+ — .
& 6 24 120

The coefficient p(x) = e”In(1 + z) is analytic at x, = 0, but its power series has a
radius of convergence p = 1.
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15. If y; = z and y, = x? are solutions, then substituting v, into the ODE results in
2 P(z) + 22 Q(x) + 2*R(z) = 0.

Setting = 0, we find that P(0) = 0. Similarly, substituting y; into the ODE results
in Q(0) = 0. Therefore P(z)/Q(x) and R(x)/P(z) may not be analytic. If they were,
Theorem 3.2.1 would guarantee that y, and y, were the only two solutions. But note
that an arbitrary value of y(0) cannot be a linear combination of 3, (0) and y,(0). Hence
xy = 0 must be a singular point.

16. Lety = ay + a;x + a,x® + --- + a,x" + ---. Substituting into the ODE,

00 00
Z(n + Dayp " — Z apz” =0.
n=0 n=0

That is,
S [(n+ Dt — agla” =0,
n=0

Setting the coefficients equal to zero, we obtain

Qn
Qpy1 =
T T
for n=0,1,2,---. Itis easy to see that a,, = ag/(n!). Therefore the general solution

1S
1 (EQ xS
y(w)—ao +l’+§+§+

= ape”.

The coefficient ay = y(0), which can be arbitrary.

17. Lety = ay + a,x + ayx® + -+ + a,z" + ---. Substituting into the ODE,

[e.0]
(n+ 1ap4 2" — :UZ a,z" =0.
0 n=0

1

3

That is,

in-i—l Yani1 2" —Zan " =0.

n=1

Combining the series, we have
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ay + Z[(n + Dayi1 —ap—1]z" =0.

n=1

Setting the coefficient equal to zero, a; = 0 and a1 = ap—1/(n+1) forn =1,2,---
Note that the indices differ by two, so for £k =1,2,---

Qs = e A2k 4 .
T2k T (2k — 2)(2k) 2. 4--(2k)
and
asgp4+1 = 0.

Hence the general solution is

B . 2 564 32‘6 x2n
e e T S TR F TR Tr B
= apexp(z*/2).

The coefficient ap = y(0), which can be arbitrary.

19. Lety = ay + ;= + axx® + --- + a,x" + ---. Substituting into the ODE,

1—J:Zn+ Apiq T —Zan =0.
= n=0

That is,

Combining the series, we have

[e.e]
a1 —ag + Z[(n + Dap1 —na, —ay]z" =0.
n=1

Setting the coefficients equal to zero, a; = ag and a,1 = a, for n =0,1,2,---
Hence the general solution is

y(z) =a[l+a+2>+2°+ - +2" + -]
1
1—=z

= aO
The coefficient ag = y(0), which can be arbitrary.

21. Lety = ay + a1z + axx® + --- + a,x" + ---. Substituting into the ODE,
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o0
(n+1)an+1x"+x2ana¢”:1+x.
0 n=0

I M8

<

3

That is,

o0

Z (n+ a1 2" + Zan ' =1+z.

- n=1
Combining the series, and the nonhomogeneous terms, we have
o0
(e — 1)+ (2a2 +ag — 1)z + Z[(n + Day1 +ap1] 2" =0.
n=2

Setting the coefficients equal to zero, we obtaina; = 1, 2as + a9 — 1 =0, and

Ap—2

ap = — , n=34,--
n
The indices differ by two, so for £ = 2,3, ---
R = S (—1)]971@2: (= 1)(ap—1)
2 (2k) — (2k — 2)(2k) 4.6---(2k)  2-4-6---(2k)
and for k =1,2,---
" I B a2k—3 _ (— 1)
2h (2k+1)  (2k—1)(2k+1) 3.5--(2k+1)
Hence the general solution is
() n +1—a02 x3+ x4+935 0
r)=a+T+—F]—2" — —a —
Y 0 2 3 9291 T35 W93
Collecting the terms containing ay,
z? x? x0
y<x):“°[1_?+ﬁ_23—m+"' *
x2 $3 I4 $5 $6 $7
+[x+§_§_222!+3-5+233!_3-5-7+"']'

Upon inspection, we find that

$2 x3 $4 $5 $6 $7
— —2%/9 - _ .
y(x) = agexp( x/)+{x+2 5 2221 '3.5 "3 3.5.7 " }

Note that the given ODE is first order linear, with integrating factor u(t) = ¢’ /2. The
general solution is given by
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y(z) = ex2/2/ e“du + (y(0) — e ™ /2 4+1.
0

23. Ifa =0, then y,(x) = 1. If @ = 2n, then ay,, =0 form > n+ 1. Asaresult,

=1

a=0]|1
a=2]1-23z2
a=4 1—103:2—}—%:134

If a« =2n+ 1, then a9y, 1 =0 form >n+ 1. Asaresult,

=1

|4
a=3|x— 3w

a=5|x— 4 Uy

3 5

24(a). Based on Prob. 23,
a=2|1-32> ()= —2
a=4 1—10:132-1—?})—51'4 yl(l)zg

Normalizing the polynomials, we obtain

P()(JJ) =1
1 3
Pz(l’): —§+§I2
3 15 39

Pi(x) = 3 Z:/r:2 3 z?
a=1|=z y(l) =1
a=3|x %x‘g (1) = — %
a=5|z- Y+ 255 | p(l)=2

Similarly,
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P(z)=1=z
3 )
Pg(.’]f) = — §.T+ 5[133
15 35 63 -
Py(z) = e ng + gl‘o
(b).
Legendre Palynomials
1
0.5
0B

(¢). Py(z) has no roots. P,(z) has one root at x = 0. The zeros of P,(x) are at
r=4 1/\/§ The zeros of Py(x) are z = 0,4+/3/5 . The roots of P,(x) are given

by 2? = (15 + 2\/%) /35, (15 — 2\/%) /35 . The roots of P;(x) are given by

2 =0 and 22 = (35+2\/%)/63, <35 - 2\/%)/63.

25. Observe that

(—1)" &2 (= 1D)f@n -2k
20 £~k I(n— k)l(n — 2k)!
= (= 1)"Py(1).

Pn(_l) =

But P,(1) = 1 for all nonnegative integers n.

27. We have

" n _ 1)71,—kn!
(CCQ . 1) — ( ka"
= kl(n—k)!

which is a polynomial of degree 2n. Differentiating n times,

! t(—1)""n!
ddxn (:I?2 - 1)” = Zﬂ%(?k)@k — 1)- --(2]{ —n+ 1);52/67”,

in which the lower index is ;1 = [n/2] + 1. Note thatif n = 2m + 1, then py = m + 1.
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Now shift the index, by setting

Hence

dTL

—1
dx™ x

Based on Prob. 25,

k=n-—j.

J

2])(27’L — 27— 1)(7’L —2j+ 1)xn—2j

2n— 27)!
(n — 2j)!

n—2j

(/2]
Z

dn

dxm

(z* — l)n =nl2"P, (z).

29. Since the n + 1 polynomials F,, P, ---, P, are linearly independent, and the degree
of P, is k, any polynomial, f, of degree n can be expressed as a linear combination

x) = iakPk.(x)
k=0

Multiplying both sides by P, and integrating,

Based on Prob. 28,

Hence

/_1f(:v)Pm(x)d:z: = ;}ak/_lpk(flf)Pm(:v)dx.
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Section 5.4

2. We see that P(z) = 0 whenx = 0 and 1. Since the three coefficients have no
factors
in common, both of these points are singular points. Near x = 0,

2

limz p(z) = lim :/zr:—:l;2 =2.

x—0 z—0 3;2(1 — .T)

. 2 . 2 4

limr“g(z) = lim2° ———— = 4.

x—0 x—0 $2(1 — x)

The singular point « = 0 is regular. Considering x = 1,
2x

lim(z — 1)p(z) =lim(z — 1) ——— .
lim(e = Dp(e) = lim (7 = 1) =

The latter limit does not exist. Hence x = 1 is an irregular singular point.

3. P(x) =0whenz =0 and 1. Since the three coefficients have no common factors,
both of these points are singular points. Near x = 0,

) . T —2
lime p(z) =M@ g0y -

The limit does not exist, and so x = 0 is an irregular singular point. Considering z = 1,

. . T —2

};IE}(CC — 1)p(x) :alrlg} (x — l)m =1.
lim(z — 1)%(z) = lim (z — 1)’ % _ =g
;,ILI}'T q(x —xlir%x 562(1_33)_ .

Hence = = 1 is a regular singular point.

4. P(x) =0whenz = 0and £ 1. Since the three coefficients have no common factors,
both of these points are singular points. Near z = 0,

2
li =limer——.
Ilil’(l)xp(:l]) xlir(l)xl‘g(l — 332)
The limit does not exist, and so = 0 is an irregular singular point. Nearz = — 1,
2
li 1 =1 1) ————-= —1.
xin;ll(x + Dp(z) P (z+ )x3(1 —2?)
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2
. 2 . 2
Jim, (@ +1)"g(e) = lim, (@ + 15—y = 0.

Hence x = — 1 is a regular singular point. Atz =1,

lim (2 — 1)p(z) = lim (z — 1)m 1.

. ) _ s 2
lim(z = 1)q(w) = lim (z = 1)" 57 —5y = 0-

Hence z = 1 is a regular singular point.

6. The only singular point is at x = 0. We find that

X
Ii =1 —=1.
limz p(x) = lim 2

2 _ 2
. . x*—v
limz?q(x) = lim z* = — V2,
z—0 z—0 T

Hence = = 0 is a regular singular point.
7. The only singular point is at z = — 3. We find that

lim (2 + 3)p(z) = lim (2 + 3)——

=6.
r——3 x——3 z+3

1 — 2

li 3)%q(z) = li 3)? =
Ig{lg(:z:%— ) a(z) xirzl3(x+ ) r+3

Hence x = — 3 is a regular singular point.

8. Dividing the ODE by z(1 — z?)°, we find that

1 2
Pr) = gy and al) = 2(1+ 221 —2)

The singular points are at xt = 0 and £1. For x = 0,

1
limzple) = limz 5
. 2 . 2 2
limz*g(x) = limx 5 5 =0.
z—0 =0 z(l14+2)°(1—2x)
Hence x = 0 is a regular singular point. Forx = — 1,
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: . 1 1
Jim, (o p() =lim, (@ + Doz = ~ 5
lim (z + 1)%¢(z) = lim (z + 1)° 2 !
im (x x)=Ilim (x = —
el ! r—-1 z(1+ :1:)2(1 — x)3 4
Hence x = — 1 is a regular singular point. For x = 1,
lim(z — 1)p(z) = lim (2~ 1)~ = —
lim(z — 1)%q(z) = lim (z — 1) 2
r—1 r—1 x(l + x)Z(l . x)?)

The latter limit does not exist. Hence x = 1 is an irregular singular point.

9. Dividing the ODE by (z + 2)*(z — 1), we find that
-2
(x+2)(x—1)

3
p(x) = m and q(z) =

The singular points areatx = —2and 1. Forz = — 2,

3
Iim (z +2)p(z) =lim (z +2)— .
Jim, 2)pla) = fim, (+2)

The limit does not exist. Hence x = — 2 is an irregular singular point. For x =1,

3
lim(z — Dp(z) =lim(x —1)—= = 0.
fim(z — Dp(e) = lim (7 = 1)

. 2 T 12 —2 B
ilg}(x_l) q(x)_ilg}@ 1 (r+2)(x—1) =0

Hence x = 1 is a regular singular point.

10. P(z) =0whenz =0 and 3. Since the three coefficients have no common factors,
both of these points are singular points. Near x = 0,

lima p(z) = limz— " = .
rzp(z) =limer——— = -.
z—0 P z—0 :L‘(3 — ZL‘) 3
limz?q(x) = lim 3:2_—2 =0.
z—0 z—0 x(?) — LE)

Hence x = 0 is a regular singular point. For z = 3,

page 206



CHAPTER 5. ——

. . r+1
lim (2 — 3)p(x) = lim (z — 3)m = -

Lol W~

-2
lin(z = 3e) =lim (0 = 3)" ;=5 =0-

Hence x = 3 is a regular singular point.

11. Dividing the ODE by (2? 4+ x — 2), we find that

r+1 2
P = oo ™ = oee o

The singular points areatz = —2and 1. Forz = — 2,

r+1 1
li 2 =1l =-.
A, (@ +2)p(r) = lim, 777 = 3

. 2 o 2(z+2)

=0.

Hence x = — 2 is a regular singular point. For xz = 1,

rz+1 2
li -1 =1 = — .

. 2 T _
li(a — 1'ae) =l

Hence x = 1 is a regular singular point.

13. Note that p(x) = In|z| and ¢(x) = 3z . Evidently, p(z) is not analytic at z, = 0.
Furthermore, the function x p(z) = x In|z| does not have a Taylor series about x, = 0.
Hence x = 0 is an irregular singular point.

14. P(x) = 0 whenz = 0. Since the three coefficients have no common factors, z = 0
is a singular point. The Taylor series of e* — 1, about x = 0, is

" —1=x+2%/2+2%/6+---.

Hence the function = p(z) = 2(e* — 1)/x is analytic at x = 0. Similarly, the Taylor
series of e “cosx, about x = 0, is

e “cosr=1—ax+23/3—2"/6+ .

The function z2¢(z) = e “cos z is also analytic at x = 0. Hence z = 0 is a regular
singular point.
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15. P(z) = 0 when z = 0. Since the three coefficients have no common factors, z = 0
is a singular point. The Taylor series of sin x, about x = 0, is

sinw =x—2° /3! +2° /5 — .-,

Hence the function x p(x) = — 3sinx/x is analytic at z = 0. On the other hand, ¢(z)
is a rational function, with

51+ 22
2

,l.in%qu(x) =limx =1.

z—0 T
Hence x = 0 is a regular singular point.

16. P(xz) = 0whenz = 0. Since the three coefficients have no common factors, z = 0
is a singular point. We find that

li =li —=1.

Although the function R(z) = cot = does not have a Taylor series about = 0, note that
2?q(z) =z cotw =1—2%/3 — 2 /45 — 22°/945 — ---. Hence x = 0 is a regular
singular point. Furthermore, ¢(z) = cot z/x? is undefined at * = &= nn. Therefore the
points z = &+ n7 are also singular points. First note that

lim (zFnm)p(x) = lim (x:FmT)l =0.
T

r—Enm r—+nmT
Furthermore, since cot x has period 7,

q(x) = cotx/x = cot(x Fnm)/z

1
— cot .
cot(x F nm) EFnn) Lo
Therefore
(z Fnm)’q(z) = (x F nw)cot(x F nr) [%] '
From above,

(z Fnm)cot(z For) =1 — (xFnr)?/3 — (x Fomw)' /45 — ..

Note that the function in brackets is analytic near x = £ nm. It follows that the function
(z F nm)?q(z) is also analytic near = + nar. Hence all the singular points are regular.

18. The singular points are located at x = £=nm, n =0, 1,---. Dividing the ODE by
x sinz, we find that 2 p(z) = 3cscz and 2°q(x) = x’cscx . Bvidently, x p(x) is
not even defined at x = 0. Hence z = 0 is an irregular singular point. On the other
hand, the Taylor series of = cscx, about x = 0, is
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rescx =14 2%/6 + T2*360 + - -
Noting that csc(x Fnw) = (—1)"cscx,
(x Fnm)p(x) =3(—1)"(x Fnr)cse(x Fnr)/x

— 3(= 1)"(a T nm)ese(z T ) {m} .

It is apparent that (z F n7)p(x) is analytic at x = £ nr. Similarly,

(z Fnn)’q(z) = (@ Fnr)lesca
= (= 1)"(z Fnr)esc(z Fow),

which is also analytic at z = 4+ nm. Hence all other singular points are regular.

20. z = 0 is the only singular point. Dividing the ODE by 222, we have p(z) = 3/(2z)
and ¢(z) = — 27 2(1 4 x)/2. It follows that

3 3
limz p(z) = limzr— = 3

x—0 z—0 2T
o, —(+x) 1
fimea(o) = Mo 5 = 3

Hence = = 0 is a regular singular point. Lety = ag + a7 + a,x® + -+ + a,z" + -+ .
Substitution into the ODE results in

2x22 (n+2)(n+ 1ap42 " +3mz n+ 1Da,z" — (1 + ) Z =

n=0 n=0
That is,
o0
Z (n—1)a,z" —I—SZnanx — Zanx —Zan 1"
It follows that

[e.0]
—ag+ (2a1 — ap)x + Z 2n(n — 1)a, + 3na, —a, — a,—1|z" =
n=2

Equating the coefficients to zero, we find that ag = 0, 2a; — ap = 0, and
(2n—1)(n+1)a, = ap-1, n=2,3, -

We conclude that a/l the a,, are equal to zero. Hence y(x) = 0 is the only solution that
can be obtained.

22. Based on Prob. 21, the change of variable, x = 1/¢, transforms the ODE into the
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form

2
§4d£‘7§+2§3—€+y—0

Evidently, ¢ = 0 is a singular point. Now p(§) = 2/¢ and ¢(£) = 1/£%. Since the value
of flin%SQq(f) does not exist, £ = 0, that is, z = 0o, is an irregular singular point.

24. Under the transformation x = 1/¢, the ODE becomes

o, 1\ d% sy L1 o 1| dy
&1 52 7 + [2¢8°( 1 & +2£§ d£+oz(a+1)y 0,

that is,
d?
(& —¢ )dé/ +2530l—5 tafa+1)y=0.
Therefore £ = 0 is a singular point. Note that
28 ala+1)
p(§) £-1 and ¢(¢§) = 2@ 1)
It follows that
lime p(6) = limé 7 = 0.
: a+1
limé?g(€) = lim ¢ &2 = —ata-+1).

Hence £ = 0 (x = 00) is a regular singular point.

26. Under the transformation x = 1/¢, the ODE becomes

g d§2 {2§3+2§2€]2—§+)\ =0,
that is,
5 de 2(£3+£)3—Z +Ay=0.
Therefore & = 0 is a singular point. Note that
) = 2 ana g = 3

It immediately follows that the limit %inéﬁ p(§) does not exist. Hence { =0 (z = 00)
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is an irregular singular point.

27. Under the transformation = = 1/¢, the ODE becomes

d?y dy 1
4 3
— + 20— —-y=0.
Therefore £ = 0 is a singular point. Note that
2 -1
p(§) = zand ¢(§) = —.
(€) ¢ (€) &
We find that
2
lim =Ilimé- =2,
limg p(¢) fim&e
but

(=1
&

The latter limit does not exist. Hence £ = 0 (x = o0) is an irregular singular point.

li 2 — li 2
51335 q(¢) 513[1)5
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Section 5.5

1. Substitution of y = " results in the quadratic equation F'(r) = 0, where

Fir)y =r(r—1)+4r+2
=r’+3r+2.
The roots are r = — 2, — 1. Hence the general solution, for z # 0, is

Y= clx_2 + ¢ x L.

3. Substitution of y = 2" results in the quadratic equation F'(r) = 0, where

F(r)y=r(r—1)—3r+4
=72 —dr+4.

The root is » = 2, with multiplicity two . Hence the general solution, for x # 0, is

y = (c1 + ¢ In|z|) 2*.

5. Substitution of y = 2" results in the quadratic equation F'(r) = 0, where

F(r)y=r(r—1)—r+1
=72 —2r+1.

The root is » = 1, with multiplicity two . Hence the general solution, for = # 0, is

y= (a1 +elinlz|)x.

6. Substitution of y = (x — 1)" results in the quadratic equation F'(r) = 0, where
F(ry=r*+1Tr+12.
The roots are r = — 3, — 4. Hence the general solution, for z # 1, is

y=c(z—1 " +e@@-1)""

7. Substitution of y = z" results in the quadratic equation F'(r) = 0, where

F(ry=r*+5r—1.
The roots are r = — (5 + 29> /2. Hence the general solution, for x # 0, is

(5+\/@)/2 (5—\/5)/2.

y=cilz| + elz|

8. Substitution of y = z" results in the quadratic equation F'(r) = 0, where
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F(r)y=r*=3r+3.

The roots are complex, with r = (3 £ Z\/g ) /2. Hence the general solution, for x # 0,

1S

y = ¢ |z[**cos (@ ln|x|) + |z ?sin (@ ln|x|)

10. Substitution of y = (x — 2)" results in the quadratic equation F'(r) = 0, where
F(r)=r?+4r+8.
The roots are complex, with » = — 2+ 2¢. Hence the general solution, for x # 2, is

y=c (z—2)cos(2In|z — 2|) + co(x — 2) sin(2In|z — 2|).

11. Substitution of y = " results in the quadratic equation F'(r) = 0, where
Fry=r*4r+4.

The roots are complex, with r = — (1 +14/15 ) /2. Hence the general solution, for
x #0,1s

y = c |z| V2cos (@ ln|x|) + cg|:c|_1/23in(@ ln|x|)

12. Substitution of y = z" results in the quadratic equation F'(r) = 0, where
F(r)y=7r*—5r+4.
The roots are » = 1, 4. Hence the general solution, for x # 0, is

y:clx+02x4.

14. Substitution of y = z" results in the quadratic equation F'(r) = 0, where
F(r)=4r* 4+ 4r +17.

The roots are complex, with » = — 1/2 4 2i. Hence the general solution, for
x> 0,is

y=cz Ycos(2inz) + e, a2 sin(2In ).

Invoking the initial conditions, we obtain the system of equations

page 213



CHAPTER 5. ——

C = 2
1
- — 2c,= —3
201 + 2¢y
Hence the solution of the initial value problem is

y(z) =227 2cos(2Inz) — 2 2sin(2ln x).

40608 1 1214 TH18 2 22242628 3

As £ — 07", the solution decreases without bound.

15. Substitution of y = " results in the quadratic equation F'(r) = 0, where
F(r)y=7r*—4r +4.
The root is » = 2, with multiplicity two. Hence the general solution, for z < 0, is
y = (c, + ¢ In|z|) 2
Invoking the initial conditions, we obtain the system of equations

01:2
—201—02:3

Hence the solution of the initial value problem is

y(x) = (2 — Tin|z|) 2*.
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2.2

1.8
F1.6
1.4
1.2

.8
H.6
0.4
F0.2

A 0.8 06 0.4 02 0
We find that y(z) >0 asz—0".

18. Substitution of y = z" results in the quadratic equation 7> — r + 3 = 0. The roots
are

1+/1-48
5 .

If 3> 1/4, the roots are complex, with 7, = (1£14y/43 — 1) /2. Hence the general
solution, for x # 0, is

1 1
y=c \x|l/2003<§\/4ﬂ -1 ln|x|) + 02|x|1/28in<§\/46 -1 ln\x|)

Since the trigonometric factors are bounded, y(x)—0as x—0. If 3 = 1/4, the roots
are equal, and

r =

Y2 In|z|.

y=clz|'? + ||
Since limox/\x|ln|a:| =0, y(x)=>0as x—=0. If § < 1/4, the roots are real, with
r2 = (1£+/1—43)/2. Hence the general solution, for z # 0, is

y=c |$|1/2+V1_4ﬁ/2 + 02|m|1/2—\/1—4[3/2'

Evidently, solutions approach zero as long as 1/2 — /1 —4(3/2 > 0. That s,
0<p<1/4.

Hence all solutions approach zero, for g > 0.

19. Substitution of 3 = " results in the quadratic equation 7> — r — 2 = 0. The roots
are 7 = — 1, 2. Hence the general solution, for x # 0, is

Y= clx_l +c z2.

Invoking the initial conditions, we obtain the system of equations
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G +e=1
—c+2c =y

Hence the solution of the initial value problem is

2= 4 147
y(x) = 3 ¢ + 5 &

The solution is bounded, as x—0,1if v = 2.

20. Substitution of y = 2" results in the quadratic equation 72 + (o — 1)r +5/2 = 0.
Formally, the roots are given by

_l-a+ a? —2a—9
2

1—ai\/(a—1—\/ﬁ>(a—1+\/ﬁ)

5 .

(7) The roots 7, will be complex, if |1 — a| < /10 For solutions to approach zero,
as x—o00,weneed — \/ﬁ< 1-a<0.

(i7) The roots will be equal, if |1 — | = \/10 . In this case, all solutions approach
zeroaslongas 1 —a = — \/ﬁ

(iii) The roots will be real and distinct, if |1 — | > 1/10. It follows that

l—a+ Va2—2a-9
5 .

Tmaf, -

For solutions to approach zero, weneed 1 — a + vV a? —2a — 9 < 0. That s,
l-a< —+/10.

Hence all solutions approach zero, as z =00, aslongas a > 1.

23(a). Giventhat z = e, y(x) = y(e®) = w(z). By the chain rule,

dy d () dw dz 1 dw
= —wE))=—— = - —.
dx dx dz dx T dz
Similarly,
By _drde] L 1dwa
dz?2  dz |z dz 2 dz 1z dz2? dx
1d_w 1 d*w

(b). Direct substitution results in
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22 dz?2 2?2 dz x dz o
that is,
d*w dw
—1)== =
7.2 + (« )dz+ﬁw

The associated characteristic equation is r? + (o — 1)r + 3 = 0. Since z = Inz,
it follows that y(x) = w(in x).

(c). Ifthe roots r, are real and distinct, then

y — 0167‘12 + 0267‘22
=2’ + ",

(d). If the roots r, , are real and equal, then

y =c e+ cze'?
=cz"' +czlng.

(e). If the roots are complex conjugates, then r = X\ +ip, and

y = eM(cicos pz + ¢, sin pz)
= 2Me,cos(pinz) + ¢ sin(pln x)].

24. Based on Prob. 23, the change of variable x = e transforms the ODE into

d*w  dw
— — — —2w=0.
dz?2 dz
The associated characteristic equation is r> —r —2 = 0, withroots r = — 1, 2.

Hence w(z) = cie* + ,e?*, and y(z) = c;z ! + ¢, 2%

26. The change of variable x = e* transforms the ODE into

d*w dw .
The associated characteristic equation is > +6r +5 =0, withroots r = — 5, — 1.
Hence w,(2) = c;e™* + c,e %, Since the right hand side is not a solution of the
homogeneous equation, we can use the method of undetermined coefficients to show
that a particular solution is W = e*/12. Therefore the general solution is given by
w(z) = cie™* + e 7 + 7 /12, thatis, y(z) =z '+ 270 + /12,

27. The change of variable x = e* transforms the given ODE into
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d*w dw 9z

The associated characteristic equation is r> — 37 +2 = 0, withroots r =1, 2.
Hence w,(z) = c,e* + c,e?*. Using the method of undetermined coefficients, let
W = Ae?* + Bze?* + Cz + D. It follows that the general solution is given by
w(z) = c;€* + c,e* + 3ze* + z + 3/2, that is,

y(z) = clx+cza:2+3x2ln:r+lnx+3/2.

28. The change of variable x = e* transforms the given ODE into

d*w 4 )
— W= sinz.
dz?

The solution of the homogeneous equation is w,(z) = ¢,cos 2z + c¢,sin 2z . The right

hand side is not a solution of the homogeneous equation. We can use the method of

undetermined coefficients to show that a particular solution is W = %sin z. Hence

the general solution is given by w(z) = ¢,cos 2z + c;sin 2z + 3sin z, that is,
y(z) = cicos(2Inx) + cysin(2inz) + 3sin(in).

29. After dividing the equation by 3, the change of variable x = e* transforms the ODE
into

The associated characteristic equation is v* + 37 + 3 = 0, with complex roots
r= — (3 +iy/3 ) /2. Hence the general solution is

w(z) = e 32 [c1c03<\/§z/2) + cgsin(\/gz/Zﬂ ,

and therefore

y(z) = x73? [clcos (@ In x) + c23m<§ In :1:)]

30. Letx < 0. Settingy = (— )", successive differentiation gives y’ = —r( — )
and y” = r(r — 1)( — x)"*. It follows that

Li(=2)]=r( -1z - x)T_Q —arz(— x)7'_1 +6(—2)".

Since 2? = ( — x)°, we find that
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Li(=2)] =r(r=1)(-=2) +ar(-z) +B(—z)
=(—2)[r(r—1)+ar+0.
Given that r; and 7, are roots of F'(r) = r(r — 1) + ar + 3, we have L[( — 2)"] = 0.

Therefore y, = (— x)"™ and y, = ( — x)" are linearly independent solutions of the
differential equation, L[y] = 0, forx < 0, as long as 7, # r,.
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Section 5.6

1. P(xz) =0whenx = 0. Since the three coefficients have no common factors, z = 0
is a singular point. Near x = 0,

1 1
| =1 — = =
lima p(w) = lim 25> = 3
lima?q(x) = hm :1:21 =0.
x—0 —0 2

Hence = = 0 is a regular singular point. Let
o0
Yy = :I:T(ao + a4 ayx® + -+ apx” + ) = Zanx””

Then

o0
E 7"+7’L anl,rJrnfl
n=>0

and

o0

Z r+n)(r+n—1)a,z" "2

Substitution into the ODE results in

2 Z (r+n)(r+n—1a, 2™ + Z(r +n)a,x "+
n=0 —

o0
_|_ E anxT+’n+1 — O .
n=>0

That is,
o0
22(r+n)(r+n—1)an ”"-I—Z T+nanxr+”+2an 22"t =0.
n=0 n=0 =
It follows that

agl2r(r— 1) +rla" + a1 2(r + D)r +r + 1]x7'+1 +

_|_

Nk

2(r +n)(r+n—1a, + (r+n)a, +a, o]z =0.

n=2

Assuming that ay # 0, we obtain the indicial equation 2r* — r = 0, with roots r, = 1/2
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and r, = 0. It immediately follows that a; = 0. Setting the remaining coefficients
equal
to zero, we have

— ap-2

“E Rt 1 "

For r = 1/2, the recurrence relation becomes

— Ap—2

2 =23,
n(1+ 2n) "

Ay =

Since a; = 0, the odd coefficients are zero. Furthermore, fork =1,2,---,

— k2 agk—4 _ (—1)*aq

YT ORI+ 4k)  (2k—2)(2k)(4k —3)(4k + 1)  2FKI5-9-13---(4k + 1)

For r = 0, the recurrence relation becomes

— Qp—2

2 —92.3 ...
n(2n—1)° e

an =

Since a; = 0, the odd coefficients are zero, and for k = 1,2, ---,

— Qgp—2 A2k —4 B (—1)fag

2k(4k —1)  (2k —2)(2k)(4k —5)(4k — 1)  2+E!3-7-11---(4k — 1)~

Qg =

The two linearly independent solutions are

(_1>k 2k
yi(z) =z 1+22kkl5 9.13---(4k + 1)

1 (= 1)F g2
Yo(w) = +22kk'3 7-11---(4k — 1)

3. Note that z p(z) = 0 and x°q(x) = =, which are both analytic at z = 0. Set
y=12"(ay+ ayx + a4+ - 4 apa” + --+). Substitution into the ODE results in

NgE

(r+n)(r+n—1a, 2™ + i a,x’ =0,
n=0

q
Il
o

and after multiplying both sides of the equation by =,

Zr-l—n (r+mn-—1a, T+"+Zan 1" =0.

n=1

It follows that
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ap[r(r —1)]z" + i [(r+n)(r+n—1a,+a, 1]z"" =0.

n=1

Setting the coefficients equal to zero, the indicial equation is r(r — 1) = 0. The roots
are r;, =1 and r, = 0. Herer;, — r, = 1. The recurrence relation is

— Qp—1 1.9
an = > M= 1,4,
(r+n)(r+n-1)
Forr=1,
— Qp—1
n — 5 _1727
¢ n(n+1)
Hence forn > 1,
S Qn—2 _ .- (=D
" nn+1) (n—1)n%(n+1) nl(n+ 1)

Therefore one solution is

5. Here x p(z) = 2/3 and z%q(x) = 2?/3, which are both analytic at x = 0. Set
y = 2" (ay + a1z + a,x® + -+ + a,x"™ + --+). Substitution into the ODE results in

32 (r+n)(r+n-—1a,2""" + 22 (r+n)a, ™" + Z apx™t? =0.
n=0 n=0 n=0
It follows that
ag[3r(r — 1) + 2r)z" 4 a[3(r + 1)r + 2(r + 1))z +
+ 2[3(7“ +n)(r+mn—1)a, +2(r +n)a, +a, 2]z’ =0.
n=2

Assuming ag # 0, the indicial equation is 3r> — r = 0, with roots r, = 1/3,r,=0.
Setting the remaining coefficients equal to zero, we have a; = 0, and

(r+n)[3(r;n) —1]°

an = n=223,--.
It immediately follows that the odd coefficients are equal to zero. Forr =1/3,

— Ap—2

=%, =23,
n(1+ 3n) "

Qn

Sofork=1,2,---,
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Qo = ——2h=2 G2k—4 _ (= 1)"aq
T 2k(6k+ 1) (2k — 2)(2k)(6k — 5)(6k+1)  2FkIT-13---(6k+ 1)

Forr =0,
— Gp-2
n= e =23,
¢ n(3n —1) "
Sofork=1,2,---,
I — Gok—2 A2k—4 _ (_1)ka0
2k 2k(6k — 1)  (2k —2)(2k)(6k —7)(6k —1)  2FK!5-11---(6k —1)°

The two linearly independent solutions are

_ 1 N (-1 2\
yi(z) = '/ 1+;k!7.13---(6k+1)(5)]

s (2D ey
yz(x)—1+;k!5.11...(6k_1)(?) '

6. Note that z p(x) = 1 and z%q(x) = x — 2, which are both analytic at z = 0. Set
y=12"(ay+ ayx + a4+ - 4 apa” + --+). Substitution into the ODE results in

o0

o
Z (r+n)(r+mn-1a,z"" + Z (r+mn)a, ™" +
n=0 n=0

o0 o0
+ Z apx T — 22 a7 =0.
n=0 n=0
After adjusting the indices in the second-to-last series, we obtain

aglr(r—1)+r —2]z" + Z[(r—i— n)(r+n—Da, + (r +n)a, — 2a, + a,_i]z" " = 0.
n=1

Assuming ag # 0, the indicial equation is r* — 2 = 0, with roots 7 = £ \/5 . Setting
the remaining coefficients equal to zero, the recurrence relation is

TS
(r+mn)”—2
First note that (7’+n)2—2: (r+n+ \/5)(7’+n—\/§>. Soforr:ﬁ,
P e A

n<n+2\/§>
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It follows that

Qp =

and therefore

— 1"
(—1)%a n=1,2,-

n!(1+2\/§) <2+2\/§)---(n+2\/§) ’

— Ap—1
ap=——""1  n=1,2-,

n(n—2\/§>

—1)"
(= 1)a —1.2

a, =
n!

(e (o)

The two linearly independent solutions are

yi(z) ==

ys(x) = V2|1 +

7. Here zp(x) =1

NG N (—1)"a"
H; n!(1+2\/§) (2+2\/§)---<n+2\/§>_

S (-1

T (RPN | EEWC R CEw

—x and z%q(z) = — z, which are both analytic at x = 0. Set

y = 2"(ay + a1z + ayx® + -+ + a,x" + --+). Substitution into the ODE results in

o0
Z r+n)( r+n—1)anazr+"71+

After multiplying bo

r+n—1 _

[M]¢

(r+mn)a, x
0

00 00
— E (7‘ + n)a” xr—i—n . § : anxr+n =0
n=0 n=0

3
Il

th sides by =,

o
Z r+n)(r+mn—1)a, ”"%—Z r+n)a, " —

n=0
00

0
} : et } : +nt
T—|—7’L an Pl I anx7+” 1 _ 0.
n=0

After adjusting the indices in the last two series, we obtain
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ao[r(r —1) +rjz" + Z[(r +n)(r+n—1a, + (r+n)a, — (r+n)a, e " = 0.

n=1

Assuming ay # 0, the indicial equation is r*> = 0, with roots r, = r, = 0. Setting
the remaining coefficients equal to zero, the recurrence relation is

ap—1

a, = s 7@::1,27”.
" r+n
Withr =0,
an::an_l’ n::l,Z
n
Hence one solution is
2 n
_ T ¥ LT e
yl(x)—1+1!+2!+ +n!+ =e".

8. Note that x p(z) = 3/2 and 2?q(z) = 2% — 1/2, which are both analytic at z = 0.
Set y = 2"(ay + ayx + ax* + -+ + a,x™ + ---). Substitution into the ODE results in

22 (r+n)(r+mn-1a,z"" + 32 (r+mn)a, ™™ +
n=0 n=0

) )
+ 2§ anxT+n+2 _ E anxT+n =0.
n=0 n=>0

After adjusting the indices in the second-to-last series, we obtain

apl2r(r—1)+3r—1]z" + a12(r+ D)r+3(r+1) — 1] +

o0

+ 3 2(r +0)(r + 1 — Day + 3(r + n)ay — ay + 2a,_oJa™" = 0.

n=2

Assuming ag # 0, the indicial equation is 2r* +r — 1 = 0, with roots r, = 1/2 and
ry = — 1. Setting the remaining coefficients equal to zero, the recurrence relation is

_2an—2 n_23
(r+n+D[20r+n) -1~ 77

ap =
Setting the remaining coefficients equal to zero, we have a; = 0, which implies that all
of the odd coefficients are zero. Withr =1/2,

- 2an—2

L= 2 93
¢ n(2n + 3) "

Sofork=1,2,---,
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- — Q2k—2 _ Aok —4 _ ( — 1)ka0
T k(4k+3) (k- Dk(dk —5)(4k+3)  Kkl7-11---(4dk+3)

Withr = —1,
_2an72
W= o =2,3,
¢ n(2n — 3) "
Sofork=1,2,---,
T Q2 a2} —4 _ (—1)ka0
A2k =

k(4k —3)  (k—1)k(4k —11)(4k —3)  k!5-9---(4k —3) °

The two linearly independent solutions are

_ l)n 2n
1
y(z) +Zn'7 11---(4n +3)
n _.2n
- )"z
1
ve(2) +Zn'5 9. 4n—3)]
9. Note that z p(r) = — 2 — 3 and z°q(x) = x + 3, which are both analytic atz = 0.

Sety = z"(ay + a1 + a,x® + -+ + a,z" + ---). Substitution into the ODE results in

o0 o0
Zr%—n(r—i—n—lan Zr—l—nan rintl _ Zr—i—nan
n=>0

i nxr+n+1 + 32 anl,rJrn —0.

After adjusting the indices in the second-to-last series, we obtain
aglr(r—1) —3r + 3|z" +
+ Z[(r +n)(r+n—1)a, - (r+n—2)a,_1—3(r+n-1)a,)z"" =0.
n=1

Assuming ay # 0, the indicial equation is r*> — 4r + 3 = 0, with roots r, = 3 and

ry, = 1. Setting the remaining coefficients equal to zero, the recurrence relation is
(r+n—2)a,1

(r+n—1)(r+n-—23)

an = , n=1,2--

With r =3,
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a, = M’ n=1,2,-
n(n + 2)
It follows that forn > 1,
(n + 1)a'n—1 an—2 2 ag
a’TL = = == —
n(n+ 2) (n—1)(n+2) n!(n+ 2)

Therefore one solution is

—I

1+Zn' n+2]

10. Here x p(z) = 0 and 2?q(x) = x* + 1/4, which are both analytic at x = 0.
Sety = z2"(ay + a,x + ayx® + -+ + a,z" + ---). Substitution into the ODE results in

o0

Z r+n)(r+n-—1)a, 7+”+Zanx7+“+2+ Zan Hno— ),
n=0

After adjusting the indices in the second series, we obtain

1:| xr+1 +

“0[7"(7“—1)4'%]%" +a1[(r+1)r+ 1

> 1
+ Z |:(T—|—7’L)<T’ +n— 1)an + Zan + an2:| errn =0.

Assuming ay # 0, the indicial equation is > — r + i = 0, with roots r, =7, = 1/2.
Setting the remaining coefficients equal to zero, we find that a; = 0. The recurrence
relation is

Gp= M2 93
To@r+2m -1 o
Withr = 1/2,

Since a1 = 0, the odd coefficients are zero. So for k > 1,

k
a?k‘ = _ a2k72 frnd a2k74 — .. = 7( _ 1) aO
4k? A2(k — 1)%k2 4k (kN?

Therefore one solution is
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T 2Y T2l
Forxz =1,
T 1
po = lim(z — Dp(x) = lim —— = 5
o = lim(r —1'g(a) = tim LT g,
Forz = —1,
. T 1
po = Jim (o + 1p(x) =lim 777 =5
qo = Ili@l(x +1)%q(z) ::Elir{ll % =0.
Hence both x = — 1 and x = 1 are regular singular points. As shown in Example 1,

the indicial equation is given by
r(r—1)+ por+qo=0.

In this case, both sets of roots are 7, = 1/2 and 7, = 0.

(b). Lett =2 — 1, and u(t) = y(t + 1). Under this change of variable, the differential
equation becomes

(+2t)u” + (t+1u’ —?u=0.

oo
Based on Part (a), t = 0 is a regular singular point. Set u =Y a, t"*". Substitution
n=0
into the ODE results in

0
Z (r+n)( r+n—1)ant’"+n+22 (r+n)(r+n—1a, ™"+
n=0

o0
Z r+n)a, ™" + Z r+n)a,t™"" b QZ a,t’t" =

Upon inspection, we can also write

page 228



CHAPTER 5. ——

o0

[0.9]
(7“ + TL) (r +n— %)an frn=1 _ QQZ antwrn = 0.

00
Z (r+n)’a, t™" + 2
n=>0 n=>0 n=>0

After adjusting the indices in the second series, it follows that

o0
IN] = 1
ao[Zr(r—§>}t 1y E [(r+n)2an+2(r+n+1)<r+n+ 5>an+1—a2an

n=>0

t7‘+71, — 0

Assuming that ay # 0, the indicial equation is 2r* —r = 0, with roots r = 0, 1/2.
The recurrence relation is

1
(T—i—n)2a7,/—|—2(r+n—|—1)(7’—l—n—l—§>an+1_a2an:0, 7’1,:0,1,2,..‘_

With r, = 1/2, we find that forn > 1,
40 — (2n —1)*
Ay = Qp—1
dn(2n + 1)
_(_1p [1—4a?][9 — 4a?]---[(2n — 1)* — 4a?]
B 27(2n + 1)!

ag .

With r, = 0, we find that forn > 1,
o2 —(n—1)>
n(2n —1)
al —a)[l —a?][4 - a2]---[(n — 1)2 — aQ]

ap = An—1

— _ 1 n .
(=1 nl-3-5--(2n — 1) 0
The two linearly independent solutions of the Chebyshev equation are
N P PO e 10 ok 0 0 (G Ve RPN
ple) =le =11+ D (- 20(2n + 1)! (z—-1)

13. Here x p(z) = 1 — x and x?q(z) = X\ =, which are both analytic atz = 0.
In fact,

po = lir%x p(zr) =1and ¢y = lin})xQQ(m) =0.

Hence the indicial equation is r(r — 1) +r = 0, with roots r,, = 0. Set
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y=ay+ax+ ax? + - +ax" + -

Substitution into the ODE results in

I Mé%
3
-
§
]
S
S
|

That is,
i (n+ Dap 2" + i n+ Day 2" —
- Znanm’ -I—)\Z a,x"
n=1
It follows that
a; + Aag + i [(n+ 1 2ap41 — (n — Na,|z" =0.
n=1
Setting the coefficients equal to zero, we find that a; = — Aag, and
L C PP
That is, forn > 2,
0 = (n—1-=2X) 4 == (=N =X)-(n=1-=X) a.

n2

(n!)?

Therefore one solution of the Laguerre equation is

n—1-—MX
— 1—1—2 (7)1')( )x".

Note that if A\ = m, a positive integer, then a,, = 0 for n > m + 1. In that case, the
solution is a polynomial

pe) =14 3NN =120

n=1 (TL')
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Section 5.7

2. P(x) =0 only for z = 0. Furthermore, x p(z) = — 2 —z and z%q(x) = 2 + 2%
It follows that

p =lim(-2-z)= -2
qo =1im (2 + 2%) =2
and therefore x = 0 is a regular singular point. The indicial equation is given by
r(r—1)—2r+2=0,

thatis, 7> —3r +2 =0, withroots 7, =2 and r, = 1.

4. The coefficients P(z), Q(z), and R(x) are analytic for all x € R. Hence there are
no singular points.

5. P(z) =0 only for z = 0. Furthermore, z p(z) = 3*2% and z%q(z) = — 2. It
follows that
po=lim3 2% =3
z—0 T
qo — lim—-2= —2

z—0
and therefore z = 0 is a regular singular point. The indicial equation is given by
r(r—1)+3r—2=0,

thatis, 72 +2r — 2 =0, withroots 7, = —1++/3 and r, = — 1 — /3.

6. P(z)=0 forz =0 and z = — 2. We note that p(z) =z '(z+2)"'/2, and

q(z) = — (x+2)""/2. For the singularity at z = 0,
i 1 1
=lim — = -
Po x—0 2(IE+2) 4
2
-z
O =220z 1 2)

and therefore = = 0 is a regular singular point. The indicial equation is given by

1
r(r—l)—l—ZT:O,

2_3

that is, r :

r = 0, with roots r, = % and r, = 0. For the singularity at x = — 2,
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1 1
=li 2 =lim — = — -
po = lim, (o +2)p(x) =lm, 57 =~
— 2
g = lim (2 +2)%g(z) = lim — =T _g
T——2 T——2 2
and therefore x = — 2 is a regular singular point. The indicial equation is given by

B

thatis, r* — 27 = 0, withroots r, = 2 and r, = 0.

+ 8% and 2%q(x) = 1. It

7. P(z) = 0 only for x = 0. Furthermore, z p(z) = 5

follows that

1
2

po = lim zp(z) =1

q = lim 2%q(z) = 1
z—0

and therefore = = 0 is a regular singular point. The indicial equation is given by
rr—=1)+r+1=0,
thatis, 72> + 1 = 0, with complex conjugate roots r = £ i.
8. Note that P(z) = 0 only forx = — 1. We find that p(z) = 3(x — 1)/(z + 1), and
q(z) = 3/(z +1)°. It follows that
o ::,;l_ilel (x + 1)p(x) ::L.lln_n1 3x—1)= —6
= Jim, (o 1a(o) = lim,3 =3

and therefore z = — 1 is a regular singular point. The indicial equation is given by

r(r—1)—6r+3=0,

that is, 7> — 7r +3 = 0, with roots 7, = (7 + \/37)/2 and r, = (7 . \/37>/2.

10. P(z) =0 forz =2 and = — 2. We note that p(z) = 2z(x — 2) *(z +2)"",
and q(z) = 3(x —2) ' (2 +2)"". For the singularity at z = 2,

i (&~ 2p(e) = iy .

which is undefined. Therefore x = 0 is an irregular singular point. For the singularity
at x = — 2,
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. . 2z
m = fim, (o +2)p(e) = lim, o = T

T 2 o 3@ +2)
o0 = lim, (e +2ale) = lim, =

B | =

=0
and therefore x = — 2 is a regular singular point. The indicial equation is given by

1
r(r—l)—zr:O,

that is, > — %r = 0, with roots r, = g and r, = 0.

I1. P(z) =0 forx =2 and z = — 2. We note that p(x) = 2z/(4 — 2?), and
q(z) = 3/(4 - 2?). For the singularity atx = 2,

and therefore © = 2 is a regular singular point. The indicial equation is given by

r(r—1)—r=0,

thatis, 7> — 2r = 0, with roots 7, = 2 and 7, = 0. For the singularity at x = — 2,
2x
=i 2 =1 = -1
P xEEQ(x—i_ (@) xinfz 22—z
. . 3(x+2)
=1 2)? =1 -
P =11, (z+2)q(x) P’ 2—zx 0
and therefore x* = — 2 is a regular singular point. The indicial equation is given by
r(r—1)—r=20,

thatis, r> — 2r = 0, withroots r, =2 and r, = 0.

12. P(z) =0 forz = 0and z = — 3. We note that p(z) = — 2z (z + 3) ', and

q(z) = —1/(z + 3)°. For the singularity at z = 0,
. . -2 2
m=limepln) =ln 25 = 73
’ lim —2
=lim 2°¢(z) = lm —— =
q0 20 q( ) 20 ($+3)2

and therefore © = 0 is a regular singular point. The indicial equation is given by
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2
r(r—1)—-r=0,

3
that is, > — gr = 0, with roots r, = % and r, = 0. For the singularity at x = — 3,
—lim (z+3)p(z) = li -2 2
Po= A W) = A T T 3
q = lim3 (x4 3)%q(z) = lim3 (-1)= -1
and therefore x = — 3 is a regular singular point. The indicial equation is given by

2
r(r—l)—i-gr—l:O,

thatis, ? — 37 — 1 = 0, with roots r, = (1+ \/37)/6 and r, = (1 - \/37)/6.

13(a). Note the p(x) = 1/x and ¢(z) = — 1/2. Furthermore, z p(z) = 1 and
2?q(r) = — x. It follows that
go = lim(—2) =0

and therefore x = 0 is a regular singular point.

(b). The indicial equation is given by
rr—1)+r=0,

2

thatis, 7 = 0, withroots r, = r, = 0.

(c). Lety = ayg+ ayx + ayx® + -+ + a,x” + ---. Substitution into the ODE results in

Z (n42)(n 4 Da, o z™ + Z(n + Dapz" — Z a,x” =0.
n=0

n=0 n=0
After adjusting the indices in the first series, we obtain
o0
a; — ag + Z[n(n + Dapi1 + (n+ 1)apsr — ay)z" = 0.
n=1

Setting the coefficients equal to zero, it follows that for n > 0,
an

a = .
n+1 (n+ 1)2

Soforn>1,
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With ag = 1, one solution is

1 1
yi(z)=1+z+ -2+ —2°+ -+

1 36 (n!>2:c 4.

For a second solution, set y,(z) = v, (z) Inx + byx + byw® + - + bz + ---.
Substituting into the ODE, we obtain

Liy,(z)] - Inx +2y/(z) + L ibnx" =0.
n=1
Since L[y (z)] = 0, it follows that
L [ibn :1:”] = —2y/(x).
n—=1
More specifically,
b1 + i[n(n + Dbps1 + (n+ 1)bpyy — bylz" =
n=1

:_Q_x_lﬁ_i s_ 1 4_ ...

6" ~ 72" " 1440”
Equating the coefficients, we obtain the system of equations
by = —2
4by — by = —1
9b3 —by = —1/6
16by —bs = —1/72

Solving these equations for the coefficients, by = — 2, by = — 3/4, by = — 11/108,
by = — 25/3456, ---. Therefore a second solution is

3 11 25
Yo(x) =y (x)Inc + | — 22 — ZxQ - mx?’ - %:ﬁl -

14(a). Here zp(z) = 2z and 2?q(x) = 6 ze* . Both of these functions are analytic at
x = 0, therefore x = 0 is a regular singular point. Note that py = gy = 0.

(b). The indicial equation is given by
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r(r—1)=0,

2

thatis, 7 —r =0, withroots r, =1 and r, = 0.

o0
(¢). In order to find the solution correspondingto r; = 1,set y = = Y, a,z™. Upon
n=>0
substitution into the ODE, we have

i(n+2)(n+1)an+l xn+1+2§:(n+1)anlﬂ+l+6€$§: ananrl =0.
n=>0 n=>0 n=0

After adjusting the indices in the first two series, and expanding the exponential function,

Z n(n+ 1)a, " + 2Zn an12" + 6 agz + (6ag + 6ay)z* +
n=1 n=1
+ (6ag + 6a1 + 3a0):c3 + (6ag + 6as + 3a; + ao)x4 +---=0.

Equating the coefficients, we obtain the system of equations

2a1 + 2a9 + 6ag =0

6ay + 4a1 + 6ag + 6a; =0

12a3 + 6a9 + 6as + 6a1 + 3ag =0
20a4 + 8as + 6as + 6as +3a; + a9 =0

Setting ag = 1, solution of the system results in a; = — 4, a9 =17/3, a3 = — 47/12,
as = 191/120, ---. Therefore one solution is
17 47
yl(ﬂ?) =T — 41‘2 + EZES - EIA +

The exponents differ by an integer. So for a second solution, set
y(x) = ay(x)Ine + 14+ cx+ e + -+ cpr™ + -

Substituting into the ODE, we obtain

a L[y, (z)] - Inz + 2ay/(x) + 2ay,(z) — a% + L

1+§:cnx”] =0.

n=1

Since L[y (z)] = 0, it follows that

L

1+§:cnx"] = —2avy,(r) — 2ay () +ay1($) :

n=1

More specifically,
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o0
Zn (n+ Deppz” +2chnac +6 + (6 + 6¢1)x +
n=1 n=1

61 193
+ (6cy + 6¢y +3)z* +--- = —a+ 10az — 3w +§a:1:3+-~-.

Equating the coefficients, we obtain the system of equations

6= —a
202 + 801 + 6 = 10a
61
6c3 + 10cy + 6¢1 + 3 = —-?;a
193
12¢4 + 12¢3 + 6¢c9 + 3c1 + 1 = Ea
Solving these equations for the coefficients, a = — 6. In order to solve the remaining

equations, set c; = 0. Then ¢ = — 33, ¢3 =449/6,¢4 = —1595/24,---.
Therefore a second solution is
449 5 1595 v

= — 1— St Bt
Yo () 6y (z)Inx + 3322 + 5 " 51

15(a). Note the p(z) = 6x/(x — 1) and ¢(z) = 3z~ '(z — 1)~ . Furthermore,
rp(z) = 62°/(xr — 1) and 2?q(z) = 3z/(x — 1) . It follows that

622
=1 =
Po xlir(l).%‘—l 0
3z
=1 =
% 7%:1}—1 0

and therefore z = 0 is a regular singular point.
(b). The indicial equation is given by
r(r—1)=0,

thatis, r> —r = 0, withroots r, =1 and r, = 0.

o0
(¢). In order to find the solution correspondingto r; = 1,set y =z Y, a,z™. Upon
n=>0

substitution into the ODE, we have
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Mg

n(n+ a, z" +

o0
Z n(n+ 1)a, 2"
n=1

3

7 L

o
(n 4 Da,z"? + SZ apz" ™t =0.
0 n=0

+6

3
Il

After adjusting the indices, it follows that

o0 o0

Z (n—1)a,_1 2" —Zn(n+1)anx7”+

= n=

+6i n—1)a,_ 2m”+3Zan 1" =0.
n=1

n=

(V]

That is,
—2a; + 3ap + Z[ —n(n+1)a, + (n* —n+3)ay_1 +6(n — 1)a,_oJz" = 0.
n=2
Setting the coefficients equal to zero, we have a; = 3aq/2, and forn > 2,
n(n+ 1)a, = (n2 —n+ S)a,,,,_l +6(n—1)a, 2.

If we assign ag = 1, then we obtain a; = 3/2, a2 =9/4, a3 = 51/16, ---
Hence one solution is

111

35,95 51,
() =z + o+ -+ —at 4+ —a" + -

2 4 16" 40
The exponents differ by an integer. So for a second solution, set

y(z) = ay(x)Ine + 1+ cz+ e + -+ cpr™ + -

Substituting into the ODE, we obtain

+ L

2ax y, (v) — 2ay, (z) + 6az y,(v) — ay(z) + aylff)

1+ icn x"] =0,
n=1

since L[y, (x)] = 0. It follows that

L1 + ch Qj”] = 2a yll(m) — 2ax yl/(.’]f) —+ ayl(x) — 6azx yl(x) o ayliaf) .

Now

L 1+chx"] =3+ (—2cy+3c1)x + (—6c3 + 5ey + 6cy)x? +
B + (= 12¢4 + 9c3 + 12¢9)7* 4+ ( — 20¢5 + 15¢4 + 18¢3)z* + -+

Substituting for y,(x), the right hand side of the ODE is
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+ + +§ 3 &7 4 44_1 r+
a 2ax 4a,x G 20 ar 10 ar

Equating the coefficients, we obtain the system of equations

3=a
7
— 202 + 361 = 5&
3
— 6c3 + 5cy + 6¢1 = Za
33
—12¢4 +9¢c3 + 12¢9 = —a

We find that a = 3. In order to solve the second equation, set ¢; = 0. Solution of the
remaining equations results in ¢o = —21/4,¢c3 = —19/4,¢4 = — 597/64,---
Hence a second solution is

21 , 19 3 597

= 1 22 22,8 270
yo(z) =3y (x) Inx + T 17 64w+

16(a). After multiplying both sides of the ODE by x, we find that x p(x) = 0 and
2%q(z) = x. Both of these functions are analytic at x = 0, hence z = 0 is a regular
singular point.

(b). Furthermore, py = gy = 0. So the indicial equation is r(r — 1) = 0, with roots
leland TQZO.

o0
(¢). In order to find the solution corresponding to r, = 1,set y = = > . a,x". Upon
n=0

substitution into the ODE, we have

o0

Z (n+1) anx"—i—Zan ntl—,

= n=0

That is,
Z n(n+1)a, +ap,—1]z" =0.
n=1

Setting the coefficients equal to zero, we find that for n > 1,
— Qp—1

in = n(n+1)"

It follows that
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e N Q2 _ .= (=D'a
"Tnn+1) (n—1n%(n+1) (n))*(n+1)"
Hence one solution is
_ 1, 1 4 r 5
y(z) ==z 2:1: + 123: 144:1: +2880$ 4

The exponents differ by an integer. So for a second solution, set
yo(z) = ay(z)ine + 14 x4+ cx® + - F ez + -+

Substituting into the ODE, we obtain

L 1 2 ! . yl(x) L1 " nl _ 0
aLly(2)] - Inz +2ay,(z) —a=—+ +;C x
Since Ly, (z)] = 0, it follows that
L 1+icnx” = —2ay’(ac)+ayl<x) :
n=1 1 x

Now

L

1+ e, x"] =1+ (2¢c2 +c1)x + (6c3 + co)x® 4 (12¢4 + c3)x® +
et + (20c5 + c4)z* + (30cg 4 c5)x° + ---.
Substituting for y,(x), the right hand side of the ODE is

—a+ -ar — —ar” + —ax” — ——ax" +---.
2 12 144 320

Equating the coefficients, we obtain the system of equations

1= —a
3
2co 41 = 5@
5)
6c3 +cp = — 2%
12405 = ——
R VY
Evidently, a = — 1. In order to solve the second equation, set c; = 0. We then find
that co = —3/4,¢3 =7/36,c, = — 35/1728,---. Therefore a second solution is
3 7 35
y(z) = —y(z)ine+ |1 — “2? + o — ——a* +..-].

4 36 1728
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19(a). After dividing by the leading coefficient, we find that
y—(1+a+p)x

po = limz p(z) = lim
z—0

z—0 11—z
_ . —afz
= limz’q(z) = lim =0.
P = 250" a(x) 220 11—z 0

Hence x = 0 is a regular singular point. The indicial equationis r(r — 1) +yr =0,
withroots , =1 —~v and r, = 0.

(b). Forx =1,
—v+(14+a+P)x

=l pe) = lim AT <ty
Qo leiirr%(x— 1)2q(:c) = limM =0.

z—1 x
Hence x = 1 is a regular singular point. The indicial equation is
P —(y—a-B8)r=0,
withroots r, =y —a —f3 and r, = 0.

o0
(c). Given that r; — r, is not a positive integer, we can set y = > a,x". Substitution
n=0

into the ODE results in

o0 o0
z(l—=x Zn Dayx"™ 2 -(+a+ ﬁ)x}Zn apz"t — aﬁZan:c" =0
n=1 n=0

That is,

Zn (n+ Day12" — Zn Da,z" ~|—’yZ n+ Dayz" —

n=1 n=2 n=0

—(14+a+p) Znanm —aﬂZan =

n=1
Combining the series, we obtain
var —afag+ [(24+2v)as — (1+a+ B+ af)al]r + ZA,,,,:C" =0,
n=2

in which

page 241



CHAPTER 5. ——

Ay = (4 1)(n+ a1 — [n(n = 1) + (1 + a+ Bn + afla,

Note that n(n — 1) + (1 + a + B)n + af = (n + «a)(n + B) . Setting the coefficients
equal to zero, we have ya; — afag = 0, and

(n+a)(n+f)
(n+1)(n+7)

ap4+1 = an

for n > 1. Hence one solution is

of aletDBB+]) ,

v - 1! y(iy+1)-2!

oo+ D(e+2)BB+1D(BE+2) 5
Yy + 1) (v +2) -3

Since the nearest other singularity is at x = 1, the radius of convergence of y, () will
be at least p = 1.

yi(z) =1+

o0
(d). Given that r; — 7, is not a positive integer, we can set y = ' > b,z". Then

n=>0
Substitution into the ODE results in
o0
(1 — :L')Z(n +1—9)(n—"7)a,z" 7t +
B o0 o0
+h-(tatfa)d (n+1=7)aa"" —apfd ax™ 7 =0.
n=0 =
That is,
Y1) (n—y)aa"" =Y (n+1—=7)(n—y)aa" +
n=0 n=>0
+ vz (n+1—-7)az"7—(1+a+p) Z (n+1-— "t — aﬂZanx”+1‘7 =0.
n=20 n=>0 n=>0

After adjusting the indices,

[&°]

i(” +1=)(n—Yanz" =Y (n=y)(n—1=7ag 12" +

=0 n=1

<

in—i—l— " 1+a+ﬂi

00
Yap-12"7 — af E an—1z" 7 =0.
n=1 n=1

Combining the series, we obtain

o
n—y __
E B,x"7" =0,

n=1

in which
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B, =n(n+1-7b,—[(n—7)(n—v+a+p8)+ablb,1.

Note that (n —y)(n—y+a+p)+af=n+a—7v)(n+ 6 —7). Setting B, =0,
it follows that for n > 1,

(n+ta—7)n+p-7)
nn+1-—7)

b, = bp_1.

Therefore a second solution is

Ly (Lra—)+8-7)
) = o1 |1 SR

(l+a—-7)C+a-7)A+8-72+8-7) 5,
+ 2-B-2! o ]'

T+

(e). Under the transformation z = 1/¢, the ODE becomes

2
541<1_1)Z_§+{2§33(1—1> —52[7—(1+a+ﬂ)1]}@—045?/:0-

£ £ £ 3 £1) d§

That is,

(53—52)@+ 262 - £2+(—1+a+6)€}@ —afy=0

de 7 dé =
Therefore £ = 0 is a singular point. Note that
2 — -1 —
pe = BT D g g - 27

It follows that

o = limg p(e) = lim = NEHCL¥RD) g

= -1
0 = limg?(¢) = lim 1 = as

Hence £ = 0 (x = o) is a regular singular point. The indicial equation is
rr—1)+(1—-a—-08)r+as8=0,

or 72 — (a + B)r + af = 0. Evidently, the roots are 7 = a and r = (3.

21(a). Note that
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It follows that

limz p(z) = lima z' ",
z—0 z—0

. 2 1 2—s
ygg& q(é)—éhggﬁrc :

Hence if s > 1 or t > 2, one or both of the limits does not exist. Therefore x = 0 is an
irregular singular point.

(c). Let y = apz” + ajz" ™ + -+ + @,z + ---. Write the ODE as
:Egy”—i-oszy’-l—ﬁy:O.

Substitution of the assumed solution results in

0.

o
Z n+r)(n+r—1Daz"" 1+ ozz n 4+ r)a,z" 4 ﬁzan
Adjusting the indices, we obtain
Z n—1+r)(n+7r—2)a, 12" nr —|—O¢Z (n—1+7r)a, 12" nr —I-ﬁZan mr— ).
n= n=1 =
Combining the series,
o0
ﬁaO+ZAnxn+r:
n=1

in which A, = fBa,+(n—1+7r)(n+7r+ a—2)a,_1. Setting the coefficients equal
to zero, we have ayp = 0. Butforn > 1,

—1 -2
0 — (n +7‘)(nﬁ+r+a )Gn—l-

Therefore, regardless of the value of r, it follows that a,, =0, for n =1,2,---
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Section 5.8

3. Here zp(z) = 1 and 2°q(x) = 2z, which are both analytic everywhere. We set
y = 2" (ay + a1z + a,x® + --- + a,x"™ + --+). Substitution into the ODE results in

o
Z r+n)(r+n-1)a, T+"+Z P+ n)a, T 7+n+22a“ rentl _

n=>0 n=>0

After adjusting the indices in the /ast series, we obtain

aplr(r = 1) +7]a7 + Y[+ m)(r 4 1= Do + ¢+ m)as + 20 22" = 0.

n=1

Assuming ag # 0, the indicial equation is v* = 0, with double root r = (. Setting the
remaining coefficients equal to zero, we have forn > 1,

2

m an—1(r) .

an(r) = -

It follows that

an(r) = (-p72 5a0, n>1.
[(n+r)(n+7r—1)-(1+7)]

Since r = 0, one solution is given by

y1(x) = ii( — 2 "

n=>0 (TL')2

For a second linearly independent solution, we follow the discussion in Section 5.7 .
First

note that
/ 1 1 1
a’n<r) - _ 2 .. _|_
an(r) n+r mn4+r—1 1+r
Settingr =0,
— 1)t
a'(0) = —2H,a,(0) = —2Hn( )2
(n!)
Therefore,

(—1)" Q"H
yo(z) = y1(x ln:c—?Z x".

4. Here x p(r) = 4 and x?q(x) = 2 + x, which are both analytic everywhere. We set
y = 2" (ay + a1z + a,x® + - -+ + a,x"™ + --+). Substitution into the ODE results in
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o0 o0
Z (r+n)(r+n-—1a, 2"+ Z (r+mn)a, 2" +
n: :0

o0

o0
+ E CanH_n-H + 2§ a/nxr-i-n =0
n=0

After adjusting the indices in the second-to-last series, we obtain

o0
aolr(r = 1) +4r + 22" + Y _[(r+n)(r+n — Day + 40+ n)ay +2a, + a,_1]a’" = 0.

n=1

Assuming ag # 0, the indicial equation is v* + 3r + 2 = 0, with roots r, = — 1 and
r, = — 2. Setting the remaining coefficients equal to zero, we have forn > 1,

@ 1 )

an(r) = — an—1(7).

: m+r+Dn+r+2) "

It follows that
— 1"
an(r) = ) ap, n>1.

[(n+r+Dn+7r)--C+r)l(n+r+2)(n+r)--@+7r)

Since r; = — 1, one solution is given by
o
— E n

For a second linearly independent solution, we follow the discussion in Section 5.7 .
Since v, — r, = N = 1, we find that

1
B TN

with ap = 1. Hence the leading coefficient in the solution is

a:‘limQ(r+2) ap(r)= —1.

Further,

(="

Let A, (r) = (r+2)ay(r). It follows that

Al (r) 1 1 1
A (r) n+r+2 n+r+1 n+r 3+
Setting r =1r, = — 2,
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A=) L o L b Ly
A (—2) n n—1 n-—2
- - Hn - anl
Hence
Cn( - 2) = - (Hn + Hn—l) An( - 2)
(-n”
- - Hn Hn— .
(Hy + 1)n!(n - 1)!
Therefore,
(-1)"(H,+ H,_
yo(z) = —y(z)Ine + 72 ; n——’i) ) ”] .
6. Let y(x z)/y/z . Then y' = 2720 — 273 v/2 and y" = a2 v" —

z 2 —I—Sx ’/2 v/4. Substitution into the ODE results in
1
[2°7 0" — 20 + 327 /4] + [2"7 0" — a7 u/2] + (51:2 — Z)x_mv =0.

Simplifying, we find that
v +0v=0,
with general solution v(x) = ¢,cosx + ¢, sinx . Hence

y(z) = c.x?cosx + ey ?sinz.

&. The absolute value of the ratio of consecutive terms is

Qoa T |2 [>™2 227 (m 4 1) m) _ Els
Oy T27 2 222 (m 4 ) (m 4+ 1) 4(m+2)(m+1)
Applying the ratio test,
2m+2 2
. a‘?'m,-‘rQ X . |x‘
1 _ | = 1 - O .
mggo Qs T2 mgréo 4m+2)(m+1)

Hence the series for J,(x) converges absolutely for all values of . Furthermore,
since the series for .J;(x) also converges absolutely for all z, term-by-term differentiation
results in
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_ l)mem—l

Jo (@) = Z 227(”—1 m!(m —1)!

1
_ 1)m+ x2m+1

— (
=2 22m+1(m, + 1)1 'm!

—1 mem

T o
522 Im! -

Therefore, J/(z) = — Ji(x).

9(a). Note that z p(z) = 1 and z%q(x) = 2% — 1%, which are both analytic at x=0.
Thus x = 0 is a regular singular point. Furthermore, py = 1 and ¢y = — v?. Hence
the indicial equation is > — v*> = 0, withroots r, = v and r, = — v.

(b). Set y = x"(ag + a;x + a,x® + -+ + a,x™ + ---). Substitution into the ODE
results in

o
Z r+n)(r+n—1)a, ”"%—Z r+n)a, 2"+
= n=0

[0.9] o
+ E apx T — 2 E a,z’" =0

After adjusting the indices in the second-to-last series, we obtain
ag[r(r—1)+r—v*a" +a[(r+ Dr+ (r+1) — %] +

+3 [+ n)(r +n = Day + (r +n)a, — va, + a, o)™ = 0.

n=2

Setting the coefficients equal to zero, we find that a; = 0, and

—1
Anp = — 5 - An-2,
Torn)? =2
for n > 2. It follows that a3 = a5 = -+ = a9,.1 = --- = 0. Furthermore, with
r=v,
-1
= Ay
n (n+21/) n—2
Soform=1,2,---,
-1
Aoy = —————————— A9y
2m 2m(2m + 2v) 2m=2

( _ 1)7TL

22nml(1+v)24v)---(m—14+v)(m+v) ¢
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Hence one solution is

yi(z) = 2"

o (_1)m T\ 2m
: +mz_1 m(1+v)2+v)--(m—1+v)(m+v) (5) ]

(c). Assuming that r, — r, = 2v is not an integer, simply setting » = — v in the above
results in a second linearly independent solution

S (-0 vy
43 e T () ]

m=1

yo(w) = 27"

(d). The absolute value of the ratio of consecutive terms in y,(z) is

2m+2 |'_,1»/.|27n"'_2 22m m‘(l + U)' . (m + ]/)

Qo2 L _
gy T 2> 22m+2(m 4+ D1 4+ 0)---(m + 1 4 v)
_ £
Am+1)(m+1+v)’
Applying the ratio test,
hm Qo2 x2m+2 — llm |x‘2 _
m—oo| Qg L m—oo 4(m+ 1)(m+ 1+ v)

Hence the series for y,(z) converges absolutely for all values of . The same can be
shown for y,(z). Note also, that if v is a positive integer, then the coefficients in the
series for y,(x) are undefined.

10(a). It suffices to calculate L[.Jy(x)In x|. Indeed,

(@) gl = I () i+ 28
X
and
J) ()  Jy(x
[Jo(z)inz]" = J) (z)Inz + 2 Ox( — ;2 ) :
Hence

L[Jy(z)Inz] = 2*J) (2) Inx + 22 J/ (x) — Jo(z) +
+aJ)(z)Inz + Jy(z) + 2Ty () Inz.

Since z2J) (z) + z J/(z) + 2*Jy(z) = 0,
L{Jy(z)Inz] =2z J)(x).
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(b). Given that L[y,(z)] = 0, after adjusting the indices in Part (a), we have

bix + 22b2 z? + Z (n2bn + bn—Q)xn = —2z JO/(:C) :
n=3
Using the series representation of J/(z) in Problem 8,

[ee] TL 277/)
2 _
bz + 22by 2 +Z by + byo)z" = Zl 2%”'

(c). Equating the coefficients on both sides of the equation, we find that
by=b3=-=byp1=--=0.
Also, withn = 1, 22by = 1/(11)?, that is, by = 1/[22(1!)2]. Furthermore, for m > 2,

(—1)"(2m)
22m(ml)?

by = L (]
1T T g2y 2

be — 1+1+1
67 924242 2 '3

It can be shown, in general, that

(2m)%bay + boyy 9 = — 2

More explicitly,

m HTTL
b = (— 1) I
22m (m)!)

11. Bessel's equation of order one is
2y +zy + (2 - 1)y =0.

Based on Problem 9, the roots of the indicial equation are r, =1 and r, = — 1. Set
y=12"(ay+ ayx + a4 - 4 apa” + --+). Substitution into the ODE results in

o0

o0
Z (r+n)(r+n—1a,z""" + Z (r+n)a, ™" +
n=0 n=0

o

o0
+ a xr+n+2__ a 1¢+n __0
E n E n — V.
n=0

After adjusting the indices in the second-to-last series, we obtain
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aglr(r—1)+r—1jz"+ a1 [(r+ Dr+ (r+1) - 1]+

+ Z[(r +n)(r+mn—1)a, + (r+n)a, —a, + a, o)z"™" = 0.
n=2

Setting the coefficients equal to zero, we find that a; = 0, and

-1

ap(r) = ———— a,_9o(r
( ) (7“ +n)2 1 2( )
_ (1)
= an—o(r),
m+r+)n+r—1) "7
for n > 2. It follows that a3 = a5 = --- = ag;,+1 = --- = 0. Solving the recurrence
relation,
— 1)
agm (1) = ( ) a.

@m+r+1)2m+r—1)%(r+3)*(r+1)
With r =r, =1,

(=D"

D) = g 1)1l

For a second linearly independent solution, we follow the discussion in Section 5.7 .
Since r;, — r, = N = 2, we find that
1

N )

with ap = 1. Hence the leading coefficient in the solution is

1
a :,.lim1 (r+1)as(r) = — 5

Further,

( _ 1)’]7),

(r 1) aam(r) = @m+r+1)[2m+r—1)-@+r)]

Let A, (r) = (r+ 1) a,(r). It follows that

Al 1 1 1
M:_i_Q S W )

Aoy (1) 2m +r+1 2m +r —1 3+r
Setting » = r, = — 1, we calculate
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CQm( — 1) = (Hm + Hm 1)A2m( - 1)

( _ 1)7TL
om[(2m — 2)---2]°

(=D"
22m=1ml(m — 1)1

(Hp + Hy1)

(Hm + Hm 1)

[\DI)—k l\DIH[\DI)—‘

Note that ag,,+1(7) = 0 implies that Ay, 1(r) =0, so

d
Com1(—1) = |:%A2m+1<7’):| - =0.
Therefore,
1 S T\ 2m 0 m(H + H,_ 1) 2m
o) = = o3 i (5) i |- 3 e e (27

Based on the definition of .J,(x),

y(z) = — Ji(x )lnm+

-3 S0 ) (27

12. Consider a solution of the form

~ V& f(aa?).
Then

,:ﬂ'aﬁxﬂ_}_f(f)
AN NG

in which ¢ = ax®. Hence

B df e’ [
de x\/g d¢ x\/7 4:1:\/5 ’

and

d2
$2y1/2a262x2ﬁ\/;d£2 62 5\/7___\/7./3
Substitution into the ODE results in

L rarar L Lie+ (e + 1810 =0,

Simplifying, and setting ¢ = ax®, we find that

52 203
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2
et ret i @-nr9=0, v

which is a Bessel equation of order v . Therefore, the general solution of the given ODE
1s

y(z) =z [c1 fi(az?) + ¢, fo(az?)],
in which f,(£) and f£,(¢) are the linearly independent solutions of ().
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Chapter Six
Section 6.1

3.

0.87
0.6
0.47

0.2

The function f(¢) is continuous.

4.

1.8
1.6
1.44
1.24

0.8
064
0.44
0.2

i

u 05 1i'5 2 25
The function f(t) has a jump discontinuity at t = 1.

7. Integration is a linear operation. It follows that

A 1 A
/ coshbt - e *'dt = —/ e e dt + / =0t o=ty
0 2.Jo 2
1 A
:_/ (b— sfdt / b+sfdt
2.Jo

1— e*(b‘FS)A

s+b

Hence

1
2

A b—s)A
1{1—elt)
/coshbt-e_‘gtdt:—lei
0 2 s—b

Taking a limit, as A— o,
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/ cosh bt - e 'dt =
0

Note that the above is valid for s > |b].

8. Proceeding as in Prob. 7,

A b—s)A
1|1—et9 1
/sinhbt-e_Stdt:— S I
0 2 S—b 2

Taking a limit, as A— o,

o 11 1 11 1
mh bt - e *'dt = = - =
/0 s ‘ 2|:S—b:| 2|:S—|—b:|

The limit exists as long as s > |b].

10. Observe that e sinh bt = (el — el@=0)) /2 It follows that

A _ latb—s)A _ —(b—a+s)A
1)1 1
/ e sinh bt - e ' dt = 3 [6— e—] .
0

1
s—a-+b 2 s+b—a

Taking a /imit, as A— oo,

o 1 1 1 1

@ sinhbt-edt = S| ———— | — - | =
/0 oo c 2[s—a+b] 2[s+b—a]
b
(s—a)* — b2

The limit exists as long as s —a > |b].

11. Using the /inearity of the Laplace transform,
1

. 1 ib —ib
L[sinbt] = Zﬁ[e - Zﬁ[e .
Since
/Ooe(a-i-ib)te—stdt — 1 _
0 s—a—1b
we have
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0 ) 1
/ eizbt efstdt — _
0 sF b

Therefore
1 1 1
Llsinbt] = — -
[sin b4 QiL—z’b s + ib
B b
s2 4027

12. Using the linearity of the Laplace transform,
1

L[cosbt] = 5,6[67:“] + %E[e_ibt].

oL 1
/ e:I: bt e—stdt — |
0 sFib

From Prob. 11, we have

Therefore
1 1 1
bt] = =
Lleos bl 2[s—ib+s+ib
B s
o242

14. Using the /inearity of the Laplace transform,
1 - 1 -
L]e"cosbt] = §£ [e(aﬂb)t] + §£ [e(“_“’)t] :

Based on the integration in Prob. 11,

00 ] 1
/ e(aizb)tefstdt: _
0 s—aFib
Therefore
1 1 1
Lle"cosbt] = =
[e cos ] 2[3—@—ib+s—a+ib
B s—a
(s—a)® +b2°

The above is valid for s > a .

15. Integrating by parts,
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A A 1

+ [ e
0 0 S—a
1 — eA(a—s) + A(a _ S>€A(a,—s)

(5 —a)”

A _
/ te e dt = — tet
0

sS—a

Taking a limit, as A— o,

o0 1
/ te® . etdt = —.
0 (s —a)

Note that the limit exists as long as s > a.

17. Observe that t cosh at = (te™ +te ™)/2. For any value of ¢,

A (c—s)t |4 A
t 1
/ et . ety = — 25 +/ G
0 0 0 S—C

s—c
1 —ed9) 4 A(c — 5)ede?)

(s —c)’

Taking a limit, as A— o,

>0 1
/ te et = ——— .
0 (s —c)

Note that the limit exists as long as s > |c|. Therefore,

o0 : 1 1 1
/ tcoshat - e *tdt = = 5 + 5
0 2| (s—a) (s+a)

2+ a?
(s—a)(s+a)®

18. Integrating by parts,

A a—s)t
/ te e dt = — ey
0

A A
+ / B e tplas)t gy
S—a 0

0 sSs—a

n,—(s—a)A A
- _ w _|_/ n tn—le(a—s)tdt '
0

Ss—a Ss—a

Continuing to integrate by parts, it follows that
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A - — —
n_a —5 Ane(a 5)4 nA" 1@(“ 5)A
/te’t~e‘tdt:_ _ I
’ s—4a (s —a)
nlAelo—9)4 nl(ele=94 — 1)
(TL — 2)'(3 — CL)3 (S . a)n-l—l
That is,
. |
tneat . efstdt =, A . e(afs)A + n.: ’
A p ( ) (8 - a>n+1

in which p, (&) is a polynomial of degree n. For any given polynomial,

lim p,(A)-e =94 =0,

A—o0

as long as s > a. Therefore,
> , n!
/ tnea,t . e_“dt — — .
0 (s —a)

20. Observe that t?sinh at = (t?e® — t?e¢~%) /2. Using the result in Prob. 18,

o0 1 21 21
/ t’sinhat - e *tdt = = 5 — 3
0 2|(s—a)” (s+a)

2a(3s% + a?)

(" =)

The above is valid for s > |a|.

A A A
/ te ldt = —tet| + / e tdt
0 0 0

=1—e4— Ae .

/ teldt=1—¢e4.
0

23. Based on a series expansion, note that for ¢ > 0,

22. Integrating by parts,

Taking a limit, as A— o,

Hence the integral converges .

el >1+t+1t2/2>12/2.
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It follows that for ¢ > 0,

t_2 t

Hence for any finite A > 1,

A
A—1
/ t2etdt > .
) 2

It is evident that the limit as A = oo does not exist.

24. Using the fact that |cost| < 1, and the fact that

/ e tdt =1,
0

it follows that the given integral converges.

25(a). Let p > 0. Integrating by parts,

A
/ e xldr = —e "zl
0

Taking a limit, as A— o,
/ e “xPdr = p/ e TP .
0 0
Thatis, I'(p+1) = pI'(p).

(b). Setting p=0,

(¢). Let p=n. Using the result in Part (b),

I'n+1) =nl(n)
= n(n —1)(n—1)

—n(n—1)(n—2)--2-1-T(1).
Since I'(1) =1, I'(n+ 1) =n!.

(d). Using the result in Part (b),
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F(p+n) =(p+n—1)T(p+n-1)
=(p+n—1(p+n-2T(p+n-—2)

=(@+n-1p+n-2)-(p+1)pl(p).
Hence

I'(p+n)
['(p)

Given that T'(1/2) = /7 , it follows that

=plp+Dp+1)---(p+n—-1).

and
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Section 6.2

1. Write the function as

3 3 2
s2+4  2s24+4
Hence £L7'[Y(s)] = 2 sin2t.
3. Using partial fractions,
2 21 1
s2+3s—4 5ls—1 s+4]

Hence LY (s)] = 2(e' — e ™).

5. Note that the denominator s? + 2s + 5 is irreducible over the reals. Completing the

square, s>+ 2545 = (s 4 1)> 4+ 4. Now convert the function to a rational function
of the variable £ = s+ 1. That is,

2s+2  2(s+1)
s24+254+5  (s+1)°4+4

We know that
2¢
-1 .
L [52 +4] = 2cos2t.
Using the fact that L[e® f(¢)] = L[f(#)],1s_y»
-1 ﬂ =2 ‘cos2t.
$2+2s+5
6. Using partial fractions,
2s—3 1| 1 7
2 1 T :
s—4 4|s—2 s+42

Hence £7![Y(s)] = 1(e* + 7e~*"). Note that we can also write

25—3_2 S 3 2
s2—4 Ts2—4 282-—4

8. Using partial fractions,

832—4s+12_31+5 s 5 2
s(s2+4) s s2+4 s2+4
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Hence £1[Y(s)] =3+ 5cos2t — 2 sin2t.

9. The denominator s?> + 4s + 5 is irreducible over the reals. Completing the square,

s?+4s+5 = (s +2)” + 1. Now convert the function to a rational function of the
variable £ = s + 2. That s,

1-2s  5-2(s+2)
s?+45s4+5  (s+2)°%+1°

We find that
£ [£2i1 - 522_5 J =5Hsint —2cost.
Using the fact that L[e™ f(¢)] = L[f(t)] 5y »
-1 [%} = e (5sint — 2cost).

10. Note that the denominator s* + 2s + 10 is irreducible over the reals. Completing

the square, s? + 2s + 10 = (s + 1)2 + 9. Now convert the function to a rational
function of the variable £ = s+ 1. That s,

2s—3  2(s+1)-5
2 +25+10  (s+1)°+9°

We find that

T 2¢ 5
£ [§2+9_§2+9

Using the fact that L[e™ f(t)] = L[f(t)]
£ |:82 +2s+ 10

12. Taking the Laplace transform of the ODE, we obtain
s2Y (s) — sy(0) —y'(0) +3[s Y(s) — y(0)] +2Y(s) = 0.

] = 2cos 3t — gsin?)t.

S$s—a ?

e’ (2 cos 3t — g sin 3t) .

Applying the initial conditions,
s2Y(s)+3sY(s) +2Y(s) —s —3=0.
Solving for Y'(s), the transform of the solution is

Y(s) = 5+ 3

s243s+2°
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Using partial fractions,

s+ 3 2 1
2+35s+2 s+1 s+2°

Hence y(t) = L71[Y(s)] = 2e7t — e 2.

13. Taking the Laplace transform of the ODE, we obtain
s2Y(s) —sy(0) —y'(0) —2[s Y(s) —y(0)] +2Y(s) = 0.
Applying the initial conditions,
s°Y(s) —2sY(s) +2Y(s) —1=0.
Solving for Y'(s), the transform of the solution is

1

Y(s)= .
(5) §2—2s54+2

Since the denominator is irreducible, write the transform as a function of { = s — 1.

That is,

1 B 1
s2—25+2 (s—1)72+1

First note that

E_l[@il] = sint.

Using the fact that L[e® f(t)] = L[f(t)]

Ss—a ?

1
-1 ot
L |:—82—28—|—2:| =e'sint.

Hence y(t) = e'sint.

15. Taking the Laplace transform of the ODE, we obtain
S Y(s) = sy(0) —y'(0) = 2[s Y (s) — y(0)] = 2Y () = 0.
Applying the initial conditions,
s*Y(s) —25Y(s) —2Y(s) =25 +4 =0.
Solving for Y'(s), the transform of the solution is

2s — 4

Y(s)= -0 =
(5) §2 —25—2

Since the denominator is irreducible, write the transform as a function of £ = s — 1.
Completing the square,
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2s -4 2(s—1)-2
2—2s—2 (s—1)°—3

First note that

£—1|:§22_§3 _ 522_3:| :2cosh\/§t— %Sinh\/gt.

the solution of the IVP is

Using the fact that L[e® f(t)] = L[f(¢)]

Ss—a ?

y(t) =1 {%] = ¢l (2008h \/§t— %Sinh \/§t> .

16. Taking the Laplace transform of the ODE, we obtain
s2Y (s) — sy(0) —y'(0) + 2[s Y(s) — y(0)] +5Y(s) = 0.
Applying the initial conditions,
s*Y(s) +25Y(s)+5Y(s) =25 —3=0.
Solving for Y'(s), the transform of the solution is

2s+3
Y = —
(5) s2+2s+5

Since the denominator is irreducible, write the transform as a function of £ = s+ 1.
That is,

2s+3 2(s+1)+1
s24+25+5  (s+1)7+4

We know that

Lt 2¢ + L —20082t+lsin2t
£2+4  £+4) 2 '

Using the fact that L[e® f(t)] = L[f(?)] the solution of the IVP is

ss—a ?

2s+3 1
t) = = = -t —S7 .
y(t)=L [82+2s+5] e (20082254—28271225)

17. Taking the Laplace transform of the ODE, we obtain

'Y (s) = ’y(0) — s”y'(0) — sy"(0) —y"'(0) — 4[s°Y (s) — s”y(0) — s3'(0) —y"(0)] +
+6[s*Y(s) —sy(0) —y'(0)] —4[sY(s) —y(0)] + Y(s) =0

Applying the initial conditions,
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sV (5) —45°Y (s) + 65 Y (s) —4sY(s) + Y(s) — s> +4s —7=0.
Solving for the transform of the solution,

Y()— s2—4s+ 7T _82—48+7
VTS 431652 —4s + 1 (s—1*

Using partial fractions,

Sods+7_ 42 1
s—1"  (s—=D" (s=1)° (s-1)7"
Note that £[#"] = (n!)/s""! and L[e* f(t)] = L[f(t)],., ,- Hence the solution
of the IVP is
2 4s+ T 2
)= £ [T 2 23l 2! gl
y(t) [ 1) 3

18. Taking the Laplace transform of the ODE, we obtain
s'Y (s) = 5°y(0) — s°y"(0) — sy"(0) —y""(0) = Y(s) = 0.
Applying the initial conditions,
sV (s) = Y(s) —s*—s=0.

Solving for the transform of the solution,

s
s2—1"

Y(s) =

By inspection, it follows that y(t) = L[] = cosht.

s2—1
19. Taking the Laplace transform of the ODE, we obtain
s'Y(s) = s°y(0) — s°y"(0) —sy"(0) —y""(0) —4Y (s) = 0.
Applying the initial conditions,
sV (s) — 4Y(s) — s> + 25 = 0.

Solving for the transform of the solution,

S

Y(s)= — |
() s2+2

It follows that y(t) = L[ 2%5] = cos V2t

20. Taking the Laplace transform of both sides of the ODE, we obtain
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S

s2Y (s) —sy(0) —y'(0) + w* Y (s) = R

Applying the initial conditions,

g ="
S Y(s)—l—w Y(s) S 24
Solving for Y(s), the transform of the solution is
S S

Y(s) =

(s2 +w?)(s% +4) T +w?’

Using partial fractions on the first term,

S B 1 S S
(82 +w?)(s24+4) 4—uw?|s2+w?  s244]
First note that

s
s2 44

Lt {L} = coswt and El{

PR }zcos?t.
s w

Hence the solution of the IVP is

1 1
y(t) = 1 coswt — 2 cos 2t + coswt

— W2 — w2

cos 2t .
4 — w2 —w?

21. Taking the Laplace transform of both sides of the ODE, we obtain
s
2417

sY (s) — sy(0) —y'(0) — 2[s Y (s) — y(0)] +2Y(s) =

Applying the initial conditions,

5 s
Y(s)—2sY 2Y(s) — 2=
s°Y(s) —2sY(s)+2Y(s) —s+ T
Solving for Y'(s), the transform of the solution is
s s—2

Y(s) = .
(5) (2 —2s4+2)(s2+1) +32—23+2

Using partial fractions on the first term,

S 1 s—=2 s—4
(s2—25+2)(s2+1) 5|s2+1 s2—2s5+2]°

Thus we can write
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1 s 2 1 +2 25 — 3
5241 58241 H5Hs2—2s+2°

Y{(s)

For the last term, we note that s> — 25+ 2 = (s — 1)> + 1. So that
25—3  2As—1)—1
s2—2s+2 (s—1)°+1

We know that

2¢ 1
-1 . .
L [£2+1—52+1}—2c03t—8mt.

Based on the translation property of the Laplace transform,

25 — 3
-1 ¢ o
L |:—82—28—|—2:| =e'(2cost — sint).

Combining the above, the solution of the IVP is

1 2 2
y(t) = gcost— gsmt+ get(2cost— sint).

23. Taking the Laplace transform of both sides of the ODE, we obtain

4

Y (s) = sy(0) = y'(0) +2[s Y (s) — y(0)] + Y (s) = pan

Applying the initial conditions,
4

2
Y 2sY Y —2s—3= .
s°Y(s)+2sY(s)+ Y(s) S po|

Solving for Y'(s), the transform of the solution is

4 n 2s+3
(s+1)°  (s+1)*

Y(s) =

First write

(s+1)  (s+1)7%  s+1  (s+1)*

2543 _2s+1)+1_ 2 1

We note that

c‘l{é+§+€—12} =282+ 2+¢.

So based on the translation property of the Laplace transform, the solution of the IVP is
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y(t) =2t% " +te ' +2e".

25. Let f(t) be the forcing function on the right-hand-side. Taking the Laplace
transform
of both sides of the ODE, we obtain

SY(s) — sy(0) —y'(0) + Y(s) = LIF(1)].
Applying the initial conditions,
s*Y (s) + Y(s) = L[f(t)].

Based on the definition of the Laplace transform,

Clf(0) = / N

1
= / te Stdt
0

s? s s?
Solving for the transform,
1 s+ 1
Y(s) = o .
(s) s2(s?2+1) s2(s?2+1)
Using partial fractions,
1 1 1

and

We find, by inspection, that
1
LY ———
e
Referring to Line 13, in Table 6.2.1,
Lluc(t)f(t —c)] = e “LIf(?)].

] =t—sint.

Let

s+1 1 1 S 1

Llgt)]|=55—<=—+—5 — — :
L9(®)] s2(s2 4+ 1) s+s2 $24+1 s2+1
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Then g(t) = 1+t — cost — sint. It follows, therefore, that

s+1

L1 [es . m] =u(t)[1+(t—1)—cos(t—1)—sin(t—1)].

Combining the above, the solution of the IVP is
y(t) =t —sint —u (t)[1+ (t = 1) —cos(t — 1) — sin(t — 1)].

26. Let f(t) be the forcing function on the right-hand-side. Taking the Laplace
transform
of both sides of the ODE, we obtain

'Y (s) = sy(0) —y'(0) +4Y (s) = LIf(1)].
Applying the initial conditions,
s2Y(s) + 4Y(s) = L[f(2)].

Based on the definition of the Laplace transform,

CIf(1) = / f) et

1 00
= / te Stdt + / e stdt
0 1

1 e’
2
Solving for the transform,
1 1
Y(s) = —e’ .
() s2(s?2+4) ¢ s2(s?2 +4)

Using partial fractions,

We find that

1 1 1
o S
L [32(32+4)} 4t Ssmt.

Referring to Line 13, in Table 6.2.1,
Lluc(t) f(t —c)] = e LI (1))
It follows that
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c {e—s - m] — i (t) E(t - ésin(t - 1)}.

Combining the above, the solution of the IVP is

1 1

o) =4t gsmt—ul(t)E(t— 1) - ésin(t— 1)}.

28(a). Assuming that the conditions of Theorem 6.2.1 are satisfied,

Fi(s) = 2 / e f (1)t

/ g5 I
= [ 1= tes)ar

(b). Using mathematical induction, suppose that for some k& > 1,
FOs) = [ et rw)]ar
0
Differentiating both sides,
d o0

Fl(s) = - 0 et [(—t)k f(t)}dt

- /OOO% e (= 0 1 (1) at

:/OOO[—te—S’f(—t)’“f(t)}dt

29. We know that

Based on Prob. 28,
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Therefore,
1
Llte"] = 5
s—a)
31. Based on Prob. 28,
n d"
LI~ 0] = S]]
_4a1
S ds" | s |
Therefore,
" o (=1)"n!
o) = (-
n!
= gntl ’

33. Using the translation property of the Laplace transform,

b

L [@(Lt sin bt] = m .

Therefore,

L [t e sin bt] =

d [ b
2b(s — a)
(s2 — 2as + a2 4 b2)*

34. Using the translation property of the Laplace transform,

,C[e“t cos bt] = # )
(s —a)” + b2
Therefore,
d _
E[te”tcosbt] = — — %
ds | (s —a)” + b2
(s —a)*—b?

(s — 2as + a? + b2)*

35(a). Taking the Laplace transform of the given Bessel equation,
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Llty"]+L[y'T+L[ty] =0.

Using the differentiation property of the transform,

~ Ly £ly) - ely) =0,

That 1s,
~ 12V (5) — 59(0) ' (O)] + ¥ (5) — y(0) ~ V() = 0
ds ds
It follows that
(1+s°)Y'(s) +sY(s) =0.
(b). We obtain a first-order linear ODE in Y (s):
Y’ —Y(s)=0
(5) + V() =0,
with integrating factor
_ 5 as) =211
w(s) = exp ayids)=Vs +1.
The first-order ODE can be written as
d
%[ s2+1 -Y(s)} =0,
with solution
c
Y(5) = —/—.
() o
(c). In order to obtain negative powers of s, first write
1 1 1772
S N {1 n _} |
s?+1 s s?
. NV .
Expanding (1 + ?> in a binomial series,
1 1 1-3 1-3-5
]ty 0 -6, ...
V14 (1/s?%) 2 ° +2-4S 2.4-6° T

valid for s72 < 1. Hence, we can formally express Y (s) as

Y() 1 11+1-31 1-3-51+
S)=¢Cc|l—— — — —_—  _
s 28 248 2.4.6s7
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Assuming that term-by-term inversion is valid,
0 . 1t2+1-3t4 1-3-5t6+
= C R — _ [— “oe
y 2921 2441 2-4-6 6
{ 2! ¢2 4! 4 6! 6 }
=c

rat e en 2. oea

It follows that

1, 1 4 1
y(t) :C|:1_2_2t +22,42t _22,42,62

S (_1)ﬂ 2n
= CZ 2”(n!)2 .

The series is evidently the expansion, about z = 0, of J,(¢).

t6_|_...:|

[\

36(b). Taking the Laplace transform of the given Legendre equation,
Lly"—L[Py"] —2L[ty']+ala+1)L[y] =0.

Using the differentiation property of the transform,

Ly =L ety + 29 20yl + ala+ 1)Lly] = 0.

ds? ds
That is,
(2 () — 59(0) ~ y/(0)] — 5 [*¥ (5) — 53(0) ~y'(0)] +
+ 2%[3 Y(s) = y(0)] + a(a+1)Y(s) =0

Invoking the initial conditions, we have

s°Y(s) —1— % [s°Y(s) — 1] + 2%[3 Y(s)|+ala+1)Y(s) =0.

After carrying out the differentiation, the equation simplifies to

d d 2 _
1 [s°Y (s)] — 2£[s Y(s)] = [s°+ala+1)]Y(s)= —1.
That is,
s2d—Y(s) + 2s iY(s) — [ +ala+1)]Y(s)= —1.

ds? ds

37. By definition of the Laplace transform, given the appropriate conditions,
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00 t
L[g(t)] :/ e st {/ f(T)dT:| dt
0 0
oo pt
= / / e S f(r)drdt.
0o Jo
Assuming that the order of integration can be exchanged,
L[g(t)] :/ f(r) [/ eStdt] dr
0 T
o0 6757'
= /0 f(r) [ . :|d7'.

[Note the region of integration is the area between the lines 7(¢) =t and 7(¢) = 0.]
Hence

£lo0) = - / Cfm) e dr
Lerren
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Section 6.3

o
—
kA
IRy
=
[y}
o

104
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0.5

0.6

0.4

0.2

7. Using the Heaviside function, we can write
F(8) = (¢ =2)" us(t).
The Laplace transform has the property that
Llu(t)f(t —c)] = e “LIf(1)].
Hence

2 6728
5 -

L[(t—2)us(t)] =

S

9. The function can be expressed as
f(t) = (t —m)[ug(t) — ugr(t)]-
Before invoking the translation property of the transform, write the function as
f@) = (t —m)ug(t) — (t — 2m) ugr(t) — wuar(t).
It follows that

10. It follows directly from the translation property of the transform that

3s —4s

128 6% .
S S S

e’ e

LLF@)] =

11. Before invoking the translation property of the transform, write the function as

F@) = (t = 2) ug(t) — ua(t) — (¢ = 3) ua(t) — us(t).
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It follows that

12. It follows directly from the translation property of the transform that

1 e ?
RO
13. Using the fact that L[e™ f(t)] = L[f(t)] sy »

SEE
8 JR—

15. First consider the function

2(s—1

Gls) = 52(—284?2'
Completing the square in the denominator,

G(s) = 2(s —21) .

(s—1)"+1

It follows that

LG (s)] =2¢€ cost.
Hence

L7 e #G(s)] =2 e Deos (t — 2) us(t) .

16. The inverse transform of the function 2/(s?> — 4) is f(t) = sinh 2t. Using the
translation property of the transform,

‘|

2 —2s
¢ 4} — sinh 2(t — 2) - us(t).

s2 —

17. First consider the function

Completing the square in the denominator,
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(s =2

G(s) = m

It follows that
L7G(s)] = e* cosht.

Hence

— Ne

18. Write the function as

It follows from the translation property of the transform, that

. e S + 6—28 _ 8—35 _ 6—48

S

L

]zuﬂw+wa%wMU—wﬁf

19(a). By definition of the Laplace transform,
L[ f(ct)] = / e f(ct)dt.
0

Making a change of variable, 7 = ct, we have

clrten) = [ et pmar
L e [
| et

Cc

Hence L] f(ct)] =1 F(2), where s/c > a.

C

(b). Using the result in Part (a),

Hence
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(c). From Part (b),
£V F(as)] = %f(é)

Note that as + b = a(s + b/a). Using the fact that L[e“ f(¢)] = L[f(¢)]

S—s—c ?

LV [F(as+b)] = e Ly (3> |

a a

20. First write

n!
(§)"+1.
2

Let G(s) = n!/s"*1. Based on the results in Prob. 19,

1o [o(3)] -

F(s) =

in which ¢(¢) = ¢". Hence
LF(s)] =2 (2t)" = 2",

23. First write

Now consider

24. By definition of the Laplace transform,
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That is,

25. First write the function as f(t) = uo(t) — w1 (t) + ua2(t) — us(t)

1 3
L[ f(t)] :/0 e dt +/2 e ®ldt.

That is,
1—¢ 5 6—25 _ 6—38
LIf)] =
F(B) = ——+
B 1—e 5+ 6723 _ 6735
N S

. It follows that

26. The transform may be computed directly. On the other hand, using the translation

property of the transform,

2n+1 ks
S

L] =+ Y (-
k=1

e

5 k=0

1 1 _ ( _ e_s)2n+2
s 14+e3

That is,

1 o (6728)71/-&-1

LU0 = 1 7o

29. The given function is periodic, with T' = 2. Using the result of Prob. 28,

1

2 1
LIFW] = 1 / R — / oty

That is,
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1—e
s(1—e %)
1
s(1+e9)"

31. The function is periodic, with T' = 1. Using the result of Prob. 28,

1
LIf#)] = : _168/0 te dt.

It follows that

£ = i o

32. The function is periodic, with T' = 7. Using the result of Prob. 28,

L[f(t)] = ;/ﬂsmt e tdt .
0

- 1 — e~ TS

We first calculate

T 14+e™
/ sint-e Stdt = ——— .
0

1+ s2
Hence
1+e™™
£[f(t)] = (1 _ e,ﬂs)(l + 82) :
33(a).
1 ¥ = fit)
LIf(#)] = L[1] = Llua (2)]
_ 1 e
s s
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(b).
y = oft)
14
0.5
0.6
0.44
024
d 05 1 15 32 25 3

zUO 1 — ul(T)]dT} = F(s) = ! _326
(c).
. ¥ = hi)
Let G(s) = L[g(t)]. Then
LIA()] = G(s) — > G(s)
_ 1—¢e* e 1—¢e*
(1—e)?
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34(a).

0.584
0.6
0.44

0.24

(b). The given function is periodic, with T'= 2. Using the result of Prob. 28,

i) = — /O eI p(t)dt

= 1— 6—25

Based on the piecewise definition of p(t),

2 1 2
/e—“p(t)dt :/te_Stdt—l—/ (2 —t)e 'dt
0 0 1

= éu —e %)%
Hence
(=€)
‘C[p(t)] - 82(1 +€—s) :

(c). Since p(t) satisfies the hypotheses of Theorem 6.2.1,
Lp'(t)] = s L[p(t)] - p(0).
Using the result of Prob. 30,

We note the p(0) = 0, hence
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