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Equations of motion simplifications in general

From equations of motion to eigenvalues

During most exercises you will be asked to simplify the equations of motion, get to the character-
istic equation, then find the eigenvalues, and finaly to find the period, damping ratio, etc., from
this motion. The sections on the following pages explain how to simplify the equations of motion
for some standard eigenmotions.

After that is done, the characteristic equation needs to be found. For this you insert the un-
known λc in the resulting equation in place of the differential operator Dc, and then use your
linear algebra skills to get to the characteristic equation (usually a linear or quadratic equation).
Solve the equation for λc to get the eigenvalues.

Why should you replace Dc with λc? Because it is assumed that the final equation for a vari-
able (airspeed for example) has the form f(t) = Aeλc

V
c̄ t. Furthermore Dc = c̄

V
d
dt , and so:

Dcf(t) = c̄
V
d
dt

(
Aeλc

V
c̄ t
)

= λcf(t). See section 4.1, page 101 in the reader for more details.

Once you have gotten solutions for the eigenvalues λc, you can use the equations below here to
get to calculate all properties of the motion you need.

Period, damping factor, frequency

The following equations are used for the calculation of the eigenmotion responses such as period
and damping factor. These equations use the dimensional value c̄/V . This is the value used for
the symmetric equations of motion. For the assymetric equations, replace this with b/V (so using
the wing span instead of the MAC).

Refer to page 109 till 113 and page 130 in the Flight Dynamics reader for more details.

Eigenvalue: λc = ξc ± ηci

Eigenvalue absolute value: |λc| =
√
ξ2
c + η2

c

Period: P =
2π

ηc

c̄

V

Time to half amplitude: T1/2 =
ln
(

1/2
)

ξc

c̄

V

Damping factor: ζ =
−ξc
|λc|

Undamped natural frequency: ω0 = |λc|
V

c̄

Damped natural frequency: ωn = ω0

√
1− ζ2

Logarithmic decrement: δ = ξc
V

c̄
P = 2π

ξc
ηc
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Short period motion (a)

Reference to section 4.4 (page 123) in the Flight dynamics reader for more info.

Description of the motion

The lateral periodic motion in pitch after a step input on the elevator. The aircraft quickly pitches
up and down, however airspeed hardly varies during this motion. If stable, the motion damps out
very quickly.

Assumptions

� The airspeed remains constant: V = constant (which means: û = 0)
� The initial flight condition is level, so γ0 = 0 and CX0

= 0.

Symmetric equations of motion


CXu − 2µcDc/////////// CXα/// CZ0/// 0/

CZu/// CZα + (CZα̇ − 2µc)Dc CX0/// CZq + 2µc

0/ 0/ −Dc//// 1/

Cmu/// Cmα + Cmα̇Dc 0/ Cmq − 2µcK
2
YDc




û/

α
θ
qc̄
V

 = ~0

Simplification steps

1. û = 0, so all terms in the first column are zero (as these are multiplied by û).
2. V = constant so the forces in XB-direction must remain constant. The equation for the

force in XB-direction (the first row) can be omitted.
3. It was assumed that CX0 = 0 (The initial flight condition was steady).
4. As CX0 = 0, no term with the angle of pitch (θ) appears in the Z-equation (2nd row) or

M-equation (4th row) anymore. This means the angle of pitch, and with it the kinematic
relation (3rd row), can be omitted. (This does not mean θ is equal to zero.)

Resulting simplified equations of motion

[
CZα + (CZα̇ − 2µc)Dc CZq + 2µc

Cmα + Cmα̇Dc Cmq − 2µcK
2
YDc

] [
α
qc̄
V

]
= ~0
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Short period motion (b)

Reference to section 4.4 (page 124) in the Flight dynamics reader for more info.
This is an even further simplification of the short period equations of motion.

Assumptions

� The airspeed remains constant: V = constant (which means: û = 0)
� The initial flight condition is level, so γ0 = 0 and CX0

= 0.
� The c.g. of the aircraft travels in a straight line during the motion. (This means that we

only have rotations in pitch left and that the flight path angle is constant)

Symmetric equations of motion


CXu − 2µcDc/////////// CXα/// CZ0/// 0/

CZu/// CZα + (CZα̇ − 2µc)Dc/////////////////// CX0/// CZq + 2µc////////

0/ 0/ −Dc//// 1/

Cmu/// Cmα + Cmα̇Dc 0/ Cmq − 2µcK
2
YDc




û/

α
θ
qc̄
V

 = ~0

Simplification steps

1. û = 0, so all terms in the first column are zero (as these are multiplied by û).
2. V = constant so the forces in XB-direction must remain constant. The equation for the

force in XB-direction (1st row) can be omitted.
3. It was assumed that CX0 = 0 (The initial flight condition was steady).
4. As CX0 = 0, no term with the angle of pitch (θ) appears in the Z-equation (2nd row) or

M-equation (4th row) anymore. This means the angle of pitch, and with it the kinematic
relation (3rd row), can be omitted.

5. The c.g. travels in a straight line, so the forces in ZB-direction are zero. The Z-equation
(2nd row) can be dropped. α can be replaced by θ as γ = θ − α = 0 (straight initial flight).

Resulting simplified equations of motion

[
Cmα + Cmα̇Dc Cmq − 2µcK

2
YDc

] [ α
qc̄
V

]
= ~0

Dc
qc̄
V = D2

cθ and θ = α, thus:(
Cmα + Cmα̇Dc + CmqDc − 2µcK

2
YD

2
c

)
θ = 0
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Phugoid (long period motion) (a)

Reference to section 4.4 (page 125) in the Flight dynamics reader for more info.

Description of the motion

The phugoid motion is a lateral, periodical osscilation resulting from a step input on the elevator.
First the airplane pitches up. It starts to climb, losing speed and thus lift. Because of that it
pitches down again, builds up speed, lift increases and it pitches up again, starting all over.

The most important parameters that vary are airspeed and pitch. The phugoid, if stable,
damps out only after quite a long time (T1/2 ≈ 81s for the Cessna). The period is also rather long
(P ≈ 32s for the Cessna).

Assumptions

� Angle of attack remains constant. So α = 0 and α̇ = 0.
� There is no acceleration around the y-axis, i.e. no change in pitch, so q̇ = 0. (This does not

mean q = 0.)
� We started out from steady flight conditions, so CX0

= 0.
� 2µc >> CZq , so CZq can be neglected.

Symmetric equations of motion


CXu − 2µcDc CXα/// CZ0

0

CZu CZα + (CZα̇ − 2µc)Dc/////////////////// CX0/// CZq+//// 2µc

0 0/ −Dc 1

Cmu/// Cmα + Cmα̇Dc//////////// 0/ Cmq − 2µcK
2
YDc//////////////




û
α/

θ
qc̄
V

 = ~0

Simplification steps

1. As α = 0 and α̇ = 0 all values in column 2 will be zero (as they would be multiplied by α).
2. It was assumed that there is no acceleration around the y-axis, so there is no moment. The

moment equation has thus become irrelevant and can be dropped.
3. It was assumed that CX0

= 0.
4. It was assumed that CZq can be neglected w.r.t. 2µc.

Resulting simplified equations of motion

 CXu − 2µcDc CZ0
0

CZu 0 2µc
0 −Dc 1

 û
θ
qc̄
V

 = ~0
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Phugoid (long period motion) (b)

Reference to section 4.4 (page 126) in the Flight dynamics reader for more info. This is a more
refined approximation for the Phugoid motion than presented on the previous page.

Assumptions

� Angle of attack changes, but not very fast. This means α̇ = 0 but α 6= 0.
� There is no acceleration around the y-axis, i.e. no change in pitch, so q̇ = 0. (This does not

mean q = 0.)
� We started out from steady flight conditions, so CX0 = 0.

Symmetric equations of motion


CXu − 2µcDc CXα CZ0

0
CZu CZα+ (CZα̇ − 2µc)Dc/////////////// CX0/// CZq + 2µc

0 0 −Dc 1
Cmu Cmα+Cmα̇Dc/////// 0 Cmq−2µcK

2
YDc//////////




û
α
θ
qc̄
V

 = ~0

Simplification steps

1. As α̇ = 0 all differential terms in column 2 will be zero (Dcα = c̄
V
d
dtα = 0).

2. As q̇ = 0 all differential terms in column 4 will be zero (Dcq = c̄
V
d
dtq = 0).

3. It was assumed that CX0 = 0.

Resulting simplified equations of motion


CXu − 2µcDc CXα CZ0

0
CZu CZα 0 CZq + 2µc

0 0 −Dc 1
Cmu Cmα 0 Cmq




û
α
θ
qc̄
V

 = ~0



Flight Dynamics: Approximate solutions for the equations of motion. 6

Aperiodic roll motion

Reference to section 5.5 (page 145) in the Flight dynamics reader for more info.

Description of the motion

The aperiodic roll motion is a very heavily damped roll motion. The aircraft rolls onto its side
because of an aileron deflection. The aircraft rolls but this motion stops almost immediatly as the
wings provide an enormous resistance against this motion.

The only parameter really of importance is the roll motion. All other effects can usually be
neglected as the aperiodic roll has damped out before any other effects really start (T1/2 ≈ 0.2s
for the Cessna).

Assumptions

� The only motion is a rolling motion, which means no sideslip (β = 0) and no yaw (r = 0)

Symmetric equations of motion



CYB +
(
CYḂ − 2µb

)
Db/////////////////// CL// CYp/// CYr − 4µb////////

0/ − 1
2Db///// 1/ 0/

Clβ// 0/ Clp − 4µbK
2
XDb Clr + 4µbKXZDb///////////////

Cnβ + Cnβ̇Db/////////// 0/ Cnp + 4µbKXZDb/////////////// Cnr − 4µbK
2
ZDb//////////////




β/

φ/

pb
2V
rb
2V//

 = ~0

Simplification steps

1. There is no sideslip: β = 0, so all terms in the first column are zero.
2. There is no movement in the Y -direction (there is only roll), so the lateral force equation

(1st row) can be omitted.
3. The yaw rate is zero: r = 0, so all terms in the last column are zero.
4. There is no yaw movement (only roll), so the yawing moment equation (4th row) can be

omitted.
5. The rolling moment equation (3th row) does not contain a term with the roll angle φ. So

we don’t need the kinetic equation (2nd row) to calculate the roll. We can scrape column 2
and row 2.

Resulting simplified equations of motion

(
Clp − 4µbK

2
XDb

) pb
2V

= 0
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Dutch roll motion (a)

Reference to section 5.5 (page 145) in the Flight dynamics reader for more info.

Description of the motion

The Dutch roll motion is a periodic motion in which the aircraft sideslips, yaws and rolls. Usually
the motion is stable and will damp out after some time. The period is approximately 2s for the
Cessna with a time to half amplitude of approximately 2.3s.

The motion is initiated with an input on the rudder. Say that this causes the aircraft to first
swing to the right. This causes a roll moment as the left wing gets more speed in the turn than
the right wing. The result of the yaw is an angle of sideslip. Because of this angle the vertical
tailplane (and the increased drag on the left wing w.r.t. the right wing) push the craft back to
the left. The aircraft start yawing to the left and thus also rolling to the left. The nose overshoots
the flight direction, giving rise to a sideslip angle to the left. The process repeats put mirrored to
push the aircraft to the right again, etcetera, etcerta.

As the roll is approximately 90◦ behind on the yaw in phase, the nose of the aircraft is describing
a circular motion.

Assumptions

� The rolling motion is neglectable, so φ = 0 and p = 0
� CYβ̇ and Cnβ̇ are neglectable.
� 4µb >> CYr so CYr can be neglected.

Symmetric equations of motion



CYB +

(
CYḂ/// − 2µb

)
Db CL// CYp/// CYr/// − 4µb

0/ − 1
2Db///// 1/ 0/

Clβ// 0/ Clp − 4µbK
2
XDb////////////// Clr + 4µbKXZDb///////////////

Cnβ+Cnβ̇Db/////// 0/ Cnp + 4µbKXZDb/////////////// Cnr − 4µbK
2
ZDb




β
φ/

pb
2V//

rb
2V

 = ~0

Simplification steps

1. No rolling motion: φ = 0, so all elements in column 2 becom zero.
2. No rolling motion: p = 0, so all elements in column 3 become zero.
3. All terms in the kinetic equation (2nd row) are zero, so it can be removed.
4. The rolling motion equation (3th row) has become irrelevant as we have assumed that no

rolling motion will occure.
5. CYβ̇ , Cnβ̇ and CYr can all be neglected.

Resulting simplified equations of motion

[
CYB − 2µbDb −4µb

Cnβ Cnr − 4µbK
2
ZDb

] [
β
rb
2V

]
= ~0
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Dutch roll motion (b)

Reference to section 5.5 (page 146) in the Flight dynamics reader for more info. This is an even
more rough approximation of the equations of motion for the Dutch roll.

Assumptions

� The rolling motion is neglectable, so φ = 0 and p = 0
� CYβ̇ and Cnβ̇ are neglectable.
� 4µb >> CYr so CYr can be neglected.
� There is only rotation in yaw, this means the airplane’s c.g. moves along a straight trajectory

and the course angle (χ) is constant.

Symmetric equations of motion



CYB +
(
CYḂ − 2µb

)
Db/////////////////// CL// CYp/// CYr − 4µb////////

0/ − 1
2Db///// 1/ 0/

Clβ// 0/ Clp − 4µbK
2
XDb////////////// Clr + 4µbKXZDb///////////////

Cnβ+Cnβ̇Db/////// 0/ Cnp + 4µbKXZDb/////////////// Cnr − 4µbK
2
ZDb




β
φ/

pb
2V//

rb
2V

 = ~0

Simplification steps

1. No rolling motion: φ = 0, so all elements in column 2 become zero.
2. No rolling motion: p = 0, so all elements in column 3 become zero.
3. All terms in the kinetic equation (2nd row) are zero, so it can be removed.
4. The rolling motion equation (3th row) has become unrelevant as we have assumed that no

rolling motion will occure.
5. CYβ̇ , Cnβ̇ and CYr can all be neglected.

6. The lateral force equation (1st row) has become superfluous as it is assumed the aircraft’s
c.g. travels along a straight line.

Resulting simplified equations of motion

Cnββ +
(
Cnr − 4µbK

2
ZDb

) rb
2V

= 0

And further: β = −ψ (as the flight path angle is zero: χ = β + φ = 0) and rb
2V = 1

2Dbψ. This all
makes: (

−Cnβ +
1

2
CnrDb − 2µbK

2
ZD

2
b

)
ψ = 0
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Aperiodic spiral motion

Reference to section 5.5 (page 146) in the Flight dynamics reader for more info.

Description of the motion

The aperiodic roll motion is usually a very slow motion that is often also the only unstable
eigenmotion of an aircraft. The aircraft enters into a slow downwards spiral motion in which the
aircraft sideslips, yaws and rolls.

Assumptions

� Due to the slow nature of this motion, all linear and angular accelerations can be negected,
i.e. all terms with a differental operator (Db) in the force and moment equations become
zero.

� CYr and CYp are neglectable.

Symmetric equations of motion


CYB+

(
CYḂ − 2µb

)
Db/////////////// CL CYp/// CYr/// − 4µb

0 − 1
2Db 1 0

Clβ 0 Clp−4µbK
2
XDb////////// Clr+4µbKXZDb///////////

Cnβ+Cnβ̇Db/////// 0 Cnp+4µbKXZDb/////////// Cnr−4µbK
2
ZDb//////////




β
φ
pb
2V
rb
2V

 = ~0

Simplification steps

1. All terms with the differential operator Db in the force and moment equations (rows 1, 3
and 4, so not in the kinetic equation (2nd row)) become zero.

2. CYr and CYp are neglectable.

Resulting simplified equations of motion


CYB CL 0 −4µb

0 − 1
2Db 1 0

Clβ 0 Clp Clr
Cnβ 0 Cnp Cnr




β
φ
pb
2V
rb
2V

 = ~0


