
The aerodynamic center

In this chapter, we’re going to focus on the aerodynamic center, and its effect on the moment coefficient
Cm.

1 Force and moment coefficients

1.1 Aerodynamic forces

Let’s investigate a wing. This wing is subject to a pressure distribution. We can sum up this entire
pressure distribution. This gives us a resultant aerodynamic force vector CR.

Figure 1: The forces and moments acting on a wing.

Let’s split up the aerodynamic force vector CR. We can do this in multiple ways. We can split the force
up into a (dimensionless) normal force coefficient CN and a tangential force coefficient CT . We
can also split it up into a lift force coefficient CL and a drag force coefficient CD. Both methods
are displayed in figure 1. The relation between the four force coefficients is given by

CN = CL cos α + CD sinα, (1.1)
CT = CD cos α− CL sinα. (1.2)

The coefficients CL, CN , CT and CD all vary with the angle of attack α. So if the angle of attack changes,
so do those coefficients.

1.2 The aerodynamic moment

Next to the aerodynamic forces, we also have an aerodynamic moment coefficient Cm. This moment
depends on the reference position. Let’s suppose we know the moment coefficient Cm(x1,z1) about some
point (x1, z1). The moment coefficient Cm(x2,z2) about some other point (x2, z2) can now be found using

Cm(x2,z2) = Cm(x1,z1) + CN
x2 − x1

c̄
− CT

z2 − z1

c̄
. (1.3)

Here, c̄ is the mean aerodynamic chord length. (The mean aerodynamic chord (MAC) can be
seen as the ‘average’ chord of the entire 3D wing.) Also, x and z denote the position of the reference
point in the vehicle reference frame Fr. We define (x0, z0) to be the position of the leading edge of the
MAC.
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2 Important points of the wing

2.1 The center of pressure

Let’s put our reference point (x, z) (for calculating Cm) on the chord. (We thus set z = z0.) There now
is a certain value of x, for which Cm = 0. This point is called the center of pressure (CP). We denote
its coordinates by (xd, z0). (The CP is the point where the line of action of CR crosses the chord.)

Let’s suppose that we know the moment coefficient Cm(x0,z0) about the leading edge. We can then find
xd using

Cm(xd,z0) = 0 = Cm(x0,z0) + CN
xd − x0

c̄
. (2.1)

Let’s define e = xd − x0. We can then find that

e

c̄
= −

Cm(x0,z0)

CN
. (2.2)

2.2 Lines and metacenters

Let’s examine a wing at a certain angle of attack α. This wing is subjected to a resultant force CR. For
all points on the line of action of CR, we have Cm = 0.

Now let’s examine all points for which dCm/dα = 0. These points also lie on one line. This line is called
the neutral line. The point where this line crosses the MAC (and thus z = z0) is called the neutral
point. The crossing point of the neutral line and the line of action of CR is called the first metacenter
M1. This point has both Cm = 0 and dCm/dα = 0.

Let’s take another look at the neutral line. On this line is a point for which d2Cm/dα2 = 0. This point
is called the second metacenter.

It is important to remember that all the lines and points discussed above change as α changes. However,
the second metacenter changes only very little. We therefore assume that its position is constant for
different angles of attack α.

2.3 The aerodynamic center

Previously, we have defined the second metacenter. However, in aerodynamics, we usually refer to this
point as the aerodynamic center (AC). Its coordinates are denoted by (xac, zac). The corresponding
moment coefficient is written as Cmac

. We know that we have dCmac
/dα = 0 and d2Cmac

/dα2 = 0. We
can use this to find xac and zac.

To find xac and zac, we have to differentiate equation (1.3) with respect to α. Differentiating it once gives

dCmac

dα
= 0 =

dCm(x0,z0)

dα
+

dCN

dα

xac − x0

c̄
− dCT

dα

zac − z0

c̄
. (2.3)

(Note that we have used the fact that the position of the AC doesn’t vary with α.) Differentiating it
twice gives

d2Cmac

dα2
= 0 =

d2Cm(x0,z0)

dα2
+

d2CN

dα2

xac − x0

c̄
− d2CT

dα2

zac − z0

c̄
. (2.4)

We now have two equations and two unknowns. We can thus solve for xac and zac. After this, it is easy
to find the corresponding moment coefficient Cmac . And since dCmac/dα = 0, we know that this moment
coefficient stays the same, even if α varies.

We have just described an analytical method to find the AC. There are also graphical methods to find
the AC. We won’t go into detail on those methods though.
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2.4 Simplifications

We can make a couple of simplifications. Usually, dCT /dα is rather small compared to dCN/dα. We
therefore often neglect the effects of the tangential force coefficient CT . If we do this, we find that the
AC lies on the MAC (zac = z0). In fact, the AC coincides with the neutral point.

Finding the position of the AC has now become a lot easier. We know that zac = z0. We can use this to
show that xac satisfies

xac − x0

c̄
= −

dCm(x0,z0)

dCN
. (2.5)

Once xac has been determined, we can find the moment coefficient about any other point on the wing.
Based on our simplifications, we have

Cm(x) = Cmac
+ CN

x− xac

c̄
. (2.6)

We can also see another interesting fact from this equation. If CN = 0, the moment coefficient is constant
along the wing. And the value of this moment coefficient is equal to Cmac . In other words, the value of
Cmac

is the value of Cm when CN = 0. (This rule holds for every reference point.)

3 Static stability

3.1 Stability types

Let’s suppose that the aircraft is performing a steady flight. The aircraft is then in equilibrium. This
means that the moment coefficient about the center of gravity (CG) must be 0. (Cmcg

= 0.) Now let’s
suppose that the aircraft gets a small deviation from this steady flight. For example, α increases to
α + dα. What happens?

Due to the change in angle of attack, Cmcg is no longer zero. Instead, it will get a value of dCmcg . We
can now distinguish three cases.

• The change in moment dCmcg
is in the same direction as dα. We thus have dCmcg

/dα > 0. In this
case, the moment causes α to diverge away from the equilibrium position. The aircraft is therefore
unstable.

• The change in moment dCmcg is directed oppositely to dα. We now have dCmcg/dα < 0. In this
case, the moment causes α to get back to its equilibrium position. The aircraft is thus stable.

• The change in moment dCmcg
= 0, and thus also dCmcg

/dα = 0. In this case, we are in a new
equilibrium position. This situation is called neutrally stable or indifferent.

3.2 The position of the center of gravity

We just saw that, to have a stable aircraft, we should have dCmcg
/dα < 0. It turns out that the position

of the CG is very important for this. To see why, we differentiate equation (2.6) with respect to α. We
find that

dCmcg

dα
=

dCN

dα

xcg − xac

c̄
. (3.1)

In general, dCN/dα > 0. So, to have a stable aircraft, we must have xcg − xac < 0. The aerodynamic
center should thus be more to the rear of the aircraft than the CG. (This is also why airplanes have a
stabilizing horizontal tailplane: It moves the aerodynamic center to the rear.)

3



4 Three-dimensional wings

4.1 Basic and additional lift distributions

Previously, we have only examined 2D wings. We will now examine a 3D wing. The wing has a wing
span b. Also, at every point y, the 2D airfoil has its own chord c(y) and lift coefficient cl(y, α). It also has
a contribution to the lift. By summing up all these lift contributions, we can find the total lift coefficient
CL of the wing. This goes according to

CL
1
2
ρV 2S = 2

∫ b/2

0

cl(y)
1
2
ρV 2c(y) dy ⇒ CL = 2

∫ b/2

0

cl(y)
c(y)
c̄

dy. (4.1)

Note that we have used that S = bc̄. We also have used the assumption that the wing is symmetric, by
integrating over only one half of the wing.

We can split the lift coefficient distribution cl(y, α) up into two parts. First, there is the basic lift
distribution clb(y). This is the lift distribution corresponding to the zero-lift angle of attack αCL=0.
(So clb(y) = cl(y, αCL=0).) Per definition, we thus have

2
∫ b/2

0

clb(y)
c(y)
c̄

dy = 0. (4.2)

Second, there is the additional lift distribution cla(y, α). This lift distribution takes into account
changes in α. It is defined as cla(y, α) = cl(y, α)−clb(y). So, if we have α = αCL=0, then cla(y, αCL=0) = 0
for all y.

4.2 The aerodynamic center of a 3D wing

You may wonder, what is the use of splitting up the lift distribution? Well, it can be shown that the
position of the aerodynamic center of the entire wing x̄ac only depends on cla . In fact, we have

x̄ac − x̄0

c̄
=

1
CL

2
Sc̄

∫ b/2

0

cla(y, α) c(y) (xac(y)− x̄0) dy. (4.3)

It is important to note the difference between all the x’s. xac is the position of the AC of the 2D airfoil.
x̄ac is the position of the AC of the entire 3D wing. Finally, x̄0 is the position of the leading edge of the
MAC. By the way, the above equation only holds for reasonable taper and wing twist angles. For very
tapered/twisted wings, the above equation loses its accuracy.

Now let’s examine the moment coefficient of the entire wing. This moment coefficient only depends on
the moment coefficients cmac

and the basic lift distribution clb of the individual airfoils. In fact, it can
be shown that

Cmac
=

2
Sc̄

(∫ b/2

0

cmac
(y) c(y)2 dy −

∫ b/2

0

clb(y) c(y) (xac(y)− x̄0) dy

)
. (4.4)

4.3 Effects of the 3D wing shape

Let’s investigate how the wing shape effects x̄ac and Cmac . There are several properties that we can give
to our 3D wing.

• A cambered airfoil. Camber causes the value cmac
of the individual airfoils to become more

negative. So Cmac
also becomes more negative. x̄ac doesn’t really change.
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• A swept wing. When dealing with swept wings, the term (xac(y)− x̄0) becomes important. Wings
with high sweep angles Λ tend to have a shifting AC at high angles of attack. Whether this
improves the stability or not depends on other parameters as well.

• A tapered wing. The taper ratio λ = ct/cr (the ratio of the tip chord and the root chord) slightly
influences stability. For swept back wings, a low taper ratio tends to have a stabilizing influence.

• A slender wing. The aspect ratio A has only little influence on the position of the AC. However,
a slender wing (high A) with a large sweep angle Λ will become unstable at large angles of attack.

• A twisted wing. Applying a wing twist angle ε causes the basic lift distribution clb to change.
This causes Cmac to change as well. In what way Cmac changes, depends on the direction of the
wing twist.

Predicting the exact behaviour of the wing is, however, rather difficult. A lot of parameters influence the
wing behaviour. So don’t be surprised if the above rules don’t always hold.
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