
Performance Summary

1 Thermodynamics

1.1 An Ideal Gas

For a perfect gas, the gas law holds:

p = ρRT ⇔ pv = RT (1.1)

where p [Pa] is the pressure of the air, ρ [kg/m3] is the density, R [J/(kgK)] is the specific gas
constant, T [K] is the temperature and v [m3/kg] is the specific volume. Per definition ρv = 1.
For an ideal gas, the internal energy only depends on its temperature: u = cv T , where u [J/kg] is the
specific internal energy and cv is a constant (depending on the type of gas) about which more will be
explained in paragraph ??.

1.2 First Law of Thermodynamics

Let us consider 1 kg of gas. The change in energy, represented by the heat δq [J/kg] added, is equal to
the increase in internal energy du [J/kg] plus the external work done δw [J/kg]:

δq = du+ δw (1.2)

This is the first law of thermodynamics. The work can be expressed as δw = p dv such that the first
law of thermodynamics becomes δq = du+ p dv.

1.3 Specific Heat

If the 1 kg of gas is heated, and if the volume is kept constant (such that the pressure increases), then
the specific heat at constant volume, cv [J/(kg K)], is defined such that:

δq = cv dT (1.3)

where dT [K] is the rise in temperature. In the case of constant volume, no work can be done, so δq = du
and thus also du = cv dT . Integrating gives the equation for the internal energy:

u = cv T (1.4)

However, if the 1 kg is heated such that the pressure stays constant (such that the volume increases),
then the specific heat at constant pressure, cp [J/(kg K)], is defined such that:

δq = cp dT (1.5)

Using the gas law, it can be found that δq = cv dT +RdT . So we get the important relation:

R = cp − cv (1.6)

1.4 Enthalpy

Let’s not consider a system at which gas is locked an at rest, but let’s consider a system at which gas
enters with a velocity V1 [m/s] and exits (with different pressure, temperature, etcetera) with a velocity
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V2 [m/s]. The kinetic energy of the gas (when it enters) is 1
2V

2
1 (since we consider only 1 kg of the gas).

The work done can be shown to be w1 = p1v1 (note the difference between the specific volume v and the
velocity V ). If we also keep the internal energy in mind, we can show that the total energy in state 1 is:

e1 = u1 + p1v1 +
1

2
V 2
1 (1.7)

Since the combination u+ pv often occurs, it is given a name. The enthalpy h [J/kg] is defined as:

h = u+ pv (1.8)

In case of a perfect gas, the enthalpy can also be written as h = cp T (since pv = RT and cv+R = cp). So
for a perfect gas, the enthalpy is only a function of the temperature. So the energy entering the system
can be found by measuring the temperature and the velocity. To simplify this, the total enthalpy is
introduced and defined as:

ht = h+
1

2
V 2 = u+ pv +

1

2
V 2 (1.9)

In the same way the total temperature is defined:

Tt = T +
V 2

2cp
⇒ ht = cp Tt (1.10)

This makes the balance of energy the following:

qin + win = ht2 − ht1 = cp(Tt2 − Tt1) = cp(T2 − T1) +
1

2
(V 2

2 − V 2
1 ) (1.11)

where qin is the added heat and win is the added work. The balance of energy is always valid, whether
there is friction or not.

1.5 Entropy

The entropy s [J/(kgK)] can be calculated using the following equations:

s = cv ln

(
T

Tref

)
+R ln

(
v

vref

)
= cp ln

(
T

Tref

)
−R ln

(
p

pref

)
= cv ln

(
p

pref

)
− cp ln

(
ρ

ρref

)
(1.12)

where the first part is the definition of the entropy. All parts in equation ?? are equivalent due to the
gas law. Using the entropy, the first law of thermodynamics can be written as:

δq = T ds (1.13)

For diabatic processes (heat is supplied from the environment) or for processes with friction (heat is
supplied by friction) δq > 0 and so ds > 0. Only for an adiabatic and frictionless process (no heat is
supplied to the gas) ds = 0. Such a process is called an isentropic process (or sometimes an adiabatic
reversible process). It means entropy is reserved, which gets expressed in the following important equation:

s2 − s1 = 0 (1.14)

1.6 Mollier Diagram

The enthalpy and the entropy are state variables. If (h, s) is known, the entire state of the gas is known.
Using the definitions of h and s all variables concerning the gas can be determined. It is also possible to
make a diagram with on the horizontal axis the entropy s and on the vertical axis the enthalpy h. Such
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a diagram is called a Mollier diagram. The state of a gas can be represented by a point in a Mollier
diagram.

The state of a gas usually changes along certain lines in a Mollier diagram. For an isentropic process, the
line in a Mollier Diagram is vertical (as the entropy - the horizontal axis - stays constant). Sometimes
lines are drawn in Mollier diagrams for a gas at a constant pressure. Such a line is called a isobar. In a
jet engine certain processes occur at constant pressure. The state of a gas then changes along one of the
isobars of the Mollier diagram. When calculating gas states for piston engines, it is often handy to use
isochors - lines at which the gas has constant density.

1.7 Equation of Poisson

Let’s define γ as γ = cp/cv. This variable can come in handy in many equations. For isentropic processes
(s2−s1 = 0), the equations of Poisson can be derived. These equations state that the following quantities
remain constant during isentropic processes:

p

ργ
= constant

T

ργ−1
= constant

T

p(
γ
γ−1 )

= constant (1.15)

1.8 Speed of Sound

The crossing of a sound wave may assumed to be isentropic. From that assumption can be derived that
the speed of sound a [m/s] is:

a =
√
γRT =

√
γpv =

√
γ
p

ρ
(1.16)

The Mach number M is now defined as:

M =
V

a
(1.17)

Using this Mach number, it can be derived that for an isentropic process the total pressure can be
calculated using:

pt = p

(
1 +

γ − 1

2
M2

) γ
γ−1

(1.18)
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2 Propulsion

2.1 Engine Thrust and Heat

Let’s look at an engine flying at a velocity V0 [m/s] (with respect to the air). The air enters the engine
with a velocity V0. Suppose it exits the engine with a velocity Vj [m/s]. Also suppose that the mass of
the air that goes through the engine every second (the mass flow) is m [kg/s]. The thrust can now be
found using the change in momentum:

T = Iout − Iin = m(Vj − V0) (2.1)

Now suppose the engine uses mf [kg/s] kilograms of fuel per second. The fuel flow F [N/s] is now
defined as:

F = mf · g (2.2)

If we know the heating value H [J/kg] (the amount of joules in one kilogram of fuel), we can also find
the added energy Q [J/s] every second:

Q = mf ·H =
F ·H
g

(2.3)

And if we want to find the heat qin [J/kg] added to one kilogram of air, we can calculate it using:

qin =
Q

m
= H

mf

m
(2.4)

2.2 Engine Power and Efficiency

When we know the velocity of the air prior to and after the engine, and if we now the mass flow of the
air, we can calculate the energy put into the air every second - the jet power Pj [J/s]:

Pj =
1

2
mV 2

j −
1

2
mV 2

0 =
1

2
m(V 2

j − V 2
0 ) =

1

2
m(Vj − V0)(Vj + V0) =

1

2
T (Vj + V0) (2.5)

The power available Pa [J/s], which is the work added every second, can be calculated using:

Pa = T · V0 = mf · V0(Vj − V0) (2.6)

Using these equations for the power, we can calculate various efficiencies. The propulsive efficiency ηj
is defined as:

ηj =
Pa
Pj

=
T · V0

1
2T (Vj + V0)

=
2V0

Vj + V0
=

2

1 +
Vj
V0

(2.7)

The thermal efficiency ηth is defined as:

ηth =
Pj
Q

=
1
2m(V 2

j − V 2
0 )

mf ·H
=
V 2
j − V 2

0

2qin
(2.8)

The total efficiency ηtot is defined as:

ηtot =
Pa
Q

=
T · V0
Q

= ηj · ηth (2.9)

There are multiple ways to increase efficiency. To increase propulsive efficiency, it is necessary to keep
Vj close to V0 (instead of giving a little bit of air a lot of acceleration, give a lot of air a little bit of
acceleration). To increase thermal efficiency, the pressure ratio ε (the ratio of the pressure before and
after the compressor) should be high. So the air should be compressed as much as possible.
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Using the equation Q = mqin, the thrust can also be rewritten as:

T = Q
ηtot
V0

= mqin
2

V0 + Vj
ηth (2.10)

This equation also shows that if the thrust increases (thus the engine gets a higher RPM and thus a
higher compression ratio) also the thermal efficiency increases.

2.3 The Perfect Jet Engine

The perfect jet engine is a jet engine at which most steps are isentropic. Only when the air goes
through the combustion chamber, the entropy rises. At that step, the temperature rises isobaric. From
this fact the entropy after the combustion chamber can be found (by following the isobar lines in a Mollier
diagram, for example). It is also assumed that all the energy taken out by the turbine is put back in the
system by the compressor.

The perfect jet engine consists of 5 parts. So when air goes through the jet engine, it has 6 consecutive
states. These states change as follows:
• The inlet (1-2): win = qin = 0 V2 ≈ 0 ⇒ ∆h = 1

2V
2
1

• The compressor (2-3): qin = 0 V3 ≈ V2 ≈ 0 ⇒ ∆h = win
• The combustion chamber (3-4): win = 0 V4 ≈ V3 ≈ 0 ⇒ ∆h = qin
• The turbine (4-5): wout = −win qin = 0 V5 ≈ V4 ≈ 0 ⇒ ∆h = −win
• The exhaust (5-6): win = qin = 0 V5 ≈ 0 ⇒ ∆h = − 1

2V
2
6

Note that the free stream velocity is V0 = V1 and the exhaust velocity is Vj = V6.

2.4 The Turbo-Prop Engine

The turbo-prop engine is very similar to the jet engine. The turbo-prop is in fact a jet engine with a
propeller in front of it. This propeller accelerates air just slightly, giving the engine a higher propulsive
efficiency. An indication for this is the by-pass ratio, defined as:

λ =
Mcold

Mhot
(2.11)

where Mcold is the cold airflow (passing through the propeller) and Mhot is the hot airflow (passing
through the compressor). In a turbo-prop engine, there is one additional step. Between the (first)
turbine and the exhaust, there is a second turbine. This second turbine is connected to the propeller.
However, since the turbo-prop engine isn’t a jet engine, there also isn’t a jet power. Instead, there is the
shaft power (brake power) Pbr [J/s]. The propulsive efficiency ηp and the thermal efficiency ηth are now
defined as:

ηp =
Pa
Pbr

ηth =
Pbr
Q

(2.12)

The propeller in a turbo-prop engine doesn’t give the air a lot of acceleration. So let’s assume that
V = Vj . The thermal efficiency now is:

ηth =
Pbr
Q

=
m(h5 − h6)

Q
=
m(h5 − hexhaust)− 1

2mV
2

Q
(2.13)

For a jet engine, the thermal efficiency can be expressed as:

ηth =
Pj
Q

=
1
2mV

2
j − 1

2mV
2
0

Q
=
m(h5 − hexhaust)− 1

2mV
2

Q
(2.14)

These equations are equal! (Note that for a jet engine hexhaust = h6 but for a turbo-prop engine
hexhaust = h7, due to the extra step in a turbo-prop engine.)

There is another similarity between the turbo-prop engine and the jet engine. For both engines the
efficiency decreases if the temperature increases, or if the aircraft flies higher (lower density).
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2.5 Nozzles

When engines fly at (nearly) supersonic speeds, their engines often have a nozzle with a throat. For the
sonic regions V ↑ as A ↓, where A is the cross-section of the engine. However, for supersonic speed V ↑
as A ↑. The throat (where A is smallest) is the point at which the transition from sonic to supersonic
velocity occurs. Thus Mt = 1⇔ Vt = a at the throat.

The nozzle should be made in such a way that at the exhaust the pressure in the engine pe is equal to
the outside pressure p0. If pe > p0 (the airplane is flying at a height higher than it was designed for) the
exhausted air continues to expend and accelerate after it has exited the nozzle, but this acceleration does
not contribute to the aircraft thrust. So there is a waste of energy. If pe < p0 (the airplane is flying at a
height lower than it was designed for) the exhausted air causes shock waves, which also mean a waste of
energy.
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3 Flight Mechanics

3.1 Two-Dimensional Airfoils

The Reynolds number is defined as:

Re =
ρV c

µ
(3.1)

where c [m] is the chord length and µ [Pa s] is the viscosity of the air. The lift L [N ] and drag D [N ]
can be calculated using:

L = cl
1

2
ρV 2S D = cd

1

2
ρV 2S (3.2)

where the lift coefficient cl and the drag coefficient cd depend on the angle of attack α [rad] (being
the angle between the longitudinal axis of the aircraft and the direction of flight), the shape of the wing,
the Mach number and the Reynolds number. Also S [m2] is the wing surface. It is possible to plot the
lift and drag coefficients with respect to the angle of attack. However, it is also possible to plot the lift
coefficient with respect to the drag coefficient. The diagram that results is called a lift-drag polar.

3.2 Three-Dimensional Airfoils

In reality wings aren’t two-dimensional but three-dimensional. And in three dimensions also wing vortices
occur, causing induced drag. The drag coefficient now consists of two parts. The part being present when
there is zero lift CD0 , which is thus called the zero lift drag coefficient, and the part belonging to the
induced drag CDi . (Note that since we’re talking about three-dimensional airfoils, we use capital letters
to denote the coefficients.) The induced drag coefficient is:

CDi =
C2
L

πAe
(3.3)

where A is the aspect ratio of the wing, defined as b2/S (with b [m] the wing span), and e is Oswald’s
factor, depending on the lift distribution of the wing. The drag coefficient now is:

CD = CD0
+ CDi = CD0

+
C2
L

πAe
(3.4)

3.3 Flight Types

There are multiple ways of flying. Some of them have gotten a specific name. These are their definitions:

• Gliding Flight - Flight in which the thrust is 0: T = 0.

• Steady Flight - Flight in which the forces and moments do not vary in time, neither in magnitude
nor direction.

• Straight Flight - Flight in which the center of gravity of the aircraft travels along a straight line.

• Symmetric Flight - Flight in which both the angle of sideslip (angle between the direction of
motion and the longitudinal axis of the airplane) is zero, and the plane of symmetry of the airplane
is perpendicular to the normal plane of the earth.

Let’s look at a steady horizontal flight. The lift is equal to the weight: L = W . It follows that:

V =

√
W

S

2

ρ

1

CL
(3.5)

with Vmin as CLmax . The factor W/S is called the wing loading. So the minimum velocity is low when
there is a low wing loading, or when the lift coefficient is high. The latter is often achieved by using slats.
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3.4 Straight Symmetric Flight

Now let’s look at a straight symmetric flight in which the aircraft is climbing. The angle between
the direction of flight and the ground plane is the flight path angle γ [rad]. The angle between the
longitudinal axis of the aircraft and the direction of flight is the angle of attack. The angle between the
longitudinal axis of the aircraft and the ground plane is the pitch angle θ [rad]. Note that θ = γ + α.
Figure ?? visualizes the definitions of these angles.

Figure 1: Visualization of angles in symmetric flight.

By drawing a free body diagram of the aircraft, the sum of the forces in multiple directions can be
calculated. If we assume that the thrust vector is in the direction of flight, we get:

T −D −W sin γ =
W

g

dV

dt
L−W cos γ = 0 (3.6)

Now let’s define the power required Pr [J/s] as follows:

Pr = DV = CD
1

2
ρV 3S =

CD
CL

LV =
CD
CL

WV (3.7)

In the last part of this equation the assumption cos γ = 1 was used, which is accurate for normal
climb angles. Multiplying the first part of equation ?? by V , and by using the relation V (dV/dt) =
(1/2) (d(V 2)/dt), it can be rewritten as:

1

2

W

g

dV 2

dt
= TV −DV −WV sin γ = Pa − Pr − Pc (3.8)

where Pc [J/s] is the climb power. (Note that Pc = WV sin γ = W dh/dt, with h [m] as the height.) So
the quantity Pa−Pr can be seen as the power left to climb and accelerate - to increase the potential/kinetic
energy of the aircraft.

3.5 Steady Gliding

When the engines of an airplane aren’t active (or if the airplane doesn’t have any engines), the airplane
is gliding. So T = 0 and Pa = 0 and thus:

−Pr = W
dh

dt
+
W

g

dV 2

dt
(3.9)

If the airplane still follows a horizontal path (dh/dt = 0), the velocity decreases. In most situations this
isn’t favorable, so pilots usually try to keep a constant velocity, at the cost of height. Thus the aircraft
descends. The descend angle γ̄ [rad] is defined as γ̄ = −γ. Now the following applies:

CD
1

2
ρV 2S = W sin γ̄ and CL

1

2
ρV 2S = W cos γ̄ ⇒ tan γ̄ =

CD
CL

(3.10)
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Suppose we want to travel as much distance as possible. To accomplish this, we should minimize sin γ̄.
It can be shown that sin γ̄ = D/W , so sin γ̄ ↓ as D ↓. So we want to chose our V and CL such that the
drag D is minimal. The drag can be calculated with equation ??. However, this equation still has the
velocity V in it, which is a function of the lift coefficient CL . To solve this problem, we use equation
??. From this follows that the drag is D = CD

CL
W . Since the weight W is constant, the drag is minimal

if CD/CL is minimal. This is the case if:

d
(
CD
CL

)
dCL

= 0 ⇒
CL

(
dCD
dCL

)
− CD

C2
L

= 0 ⇒ dCD
dCL

=
CD
CL

(3.11)

This can be solved using equation ??:

CD
CL

=
dCD
dCL

=
d
(
CD0

+
C2
L

πAe

)
dCL

= 0 +
2CL
πAe

⇒ CD0

CL
+

CL
πAe

= 2
CL
πAe

⇒ CL =
√
CD0

πAe (3.12)

Using equation ?? the corresponding velocity can be found. So if we know our zero lift drag coefficient,
we know how to fly to get as far as possible.

But now suppose we do not want to go as far as possible, but just want to stay in the air as long as
possible. For that, we first introduce the rate of descent RD [m/s], which is defined as:

RD = −dh
dt

= −V sin γ = V sin γ̄ (3.13)

The aircraft stays as long as possible in the air if RD is minimal. We know that:

RD = −dh
dt

= V sin γ̄ = V
CD
CL

cos γ̄ =

√
W

S

2

ρ

C2
D

C3
L

cos3 γ̄ (3.14)

Since W , S and ρ are constants, the rate of descend is minimal if C2
D/C

3
L is minimal. Using a method

analogue to what we just did, we find that:

0 =
d
(
C2
D

C3
L

)
dCL

=
C3
L · 2CD · 2

CL
πAe − 3C2

L · C2
D

C6
L

⇒ 4
C2
L

πAe
= 3CD ⇒ CL =

√
3CD0

πAe (3.15)

The time until we reach the ground (the endurance) t [s] and the traveled distance (the range) s [m]
can then be calculated using:

t =
h

RD
s =

h

tan γ̄
(3.16)

3.6 Propeller Aircraft Range and Endurance

The jet engine and the propeller are very different. So their thrust develops differently. In a propeller
aircraft the thrust T decreases as the velocity increases. This happens in such a way that the power
available Pa is (approximately) constant. In a jet aircraft the thrust T simply stays constant for any
velocity.

Suppose we have a propeller aircraft that wants to fly as far as possible with the fuel it has. Let’s assume
that the velocity and height stay constant, and thus Pa = Pr. The distance per amount of fuel should
be maximized. If Wf is the weight of the fuel that is left, the following quantity should be maximized:

s

Wf
=

ds

dWf
=

ds/dt

dWf/dt
=
V

F
(3.17)
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So the quantity V/F should be maximized. If we define the power coefficient CP [N/J ] (which can
assumed to be constant for propeller aircrafts) such that F = CPPbr, we can find that:

V

F
=

V

CPPbr
=

V ηj
CPPa

=
V ηj
CPPr

=
V ηj

CPDV
=

ηj
CP

1

D
(3.18)

Since ηj and CP are constants for the aircraft, the quantity V/F is at a maximum if the drag is at a
minimum. In the last paragraph we already found out when this was the case. So the aircraft has a
maximum range if CL =

√
CD0πAe.

But what if we want to stay in the air as long as possible with the amount of fuel we have? Then we
ought to minimize the fuel flow F . We can find that:

F = V D
CP
ηj

=
CP
ηj
W

√
W

S

2

ρ

C2
D

C3
L

(3.19)

Since CP , ηj , W , S and ρ are all constants, this is minimal if C2
D/C

3
L is minimal. So the aircraft has

maximum endurance if CL =
√

3CD0πAe.

3.7 Jet Aircraft Range and Endurance

Suppose we have a jet aircraft that wants to fly as far as possible with the fuel it has. Once more
we assume Pa = Pr and thus T = D. We should once more maximize V/F . If we define the thrust
coefficient CT (which can assumed to be constant for jet aircrafts) such that F = CTT , we can find
that:

V

F
=

V

CTT
=

V

CTD
=

1

CTW

√
W

S

2

ρ

CL
C2
D

(3.20)

So the aircraft has maximum range if CL/C
2
D is minimal. It can be derived that this is the case if

CD = 4CDi and thus CL =
√

1
3CD0πAe.

If the jet aircraft wants to stay in the air as long as possible, the quantity F should be minimized.
This is the case if CD/CL is minimal. Now it’s easy to see that the aircraft has maximum endurance if
CL =

√
CD0

πAe.
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4 Aircraft Limits

4.1 Velocities at Different Altitudes

The flight envelope is more or less defined as the combinations of velocity and height at which the
airplane can fly in a normal way. For a certain height, an aircraft has a minimum and a maximum
velocity. However, this minimum and maximum velocity differs for different heights. First let’s look at
the minimum flight velocity. This minimum velocity is:

Vmin =

√
W

S

2

ρ

1

CL
(4.1)

So if h ↑ then ρ ↓ and thus Vmin ↑. For higher altitudes the minimum velocity increases due to a decrease
in air density.

The maximum velocity depends on the power that is available. It is the velocity at which Pamax = Pr.
However, at different altitudes the aircraft usually has a different Pamax , so it’s kind of hard to calculate
the maximum velocity. But this maximum velocity can be exceeded in a dive. When doing this, the
airplane exits its flight envelope, which is usually considered to be a rather dangerous thing.

4.2 Equivalent Airspeed

The airspeed indicator of an aircraft doesn’t indicate the true airspeed (the velocity of the aircraft with
respect to the surrounding air). Instead, it indicates the equivalent airspeed, which is the airspeed that
gives the same dynamic pressure q = 1

2ρV
2 at sea level, as the true airspeed in the current atmosphere.

So at sea level the true airspeed and the equivalent airspeed are equal. But if the altitude increases, and
thus the density decreases, a higher velocity is needed to reach the same dynamic pressure. Therefore the
equivalent airspeed is generally lower than the true airspeed (and the difference increases with increasing
altitudes). The relation between the true airspeed V and the equivalent airspeed Ve can be found as
follows:

1

2
ρ0V

2
e =

1

2
ρV 2 ⇒ Ve = V

√
ρ

ρ0
(4.2)

where ρ0 = 1.225 kg/m3 is the air density at sea-level. An interesting to note is that the minimum
equivalent airspeed is:

Vemin = Vmin

√
ρ

ρ0
=

√
W

S

2

ρ0

1

CL
(4.3)

So the minimum equivalent airspeed is constant at different altitudes. This saves the pilot a lot of
calculations, since the airspeed indicator of an airplane also indicates the equivalent airspeed.

4.3 Maximum Height

The aircraft can not fly at infinite heights. The higher you go, the less air you find, and air is something
airplanes need for thrust and lift. So there must be a ceiling. This ceiling is the place at which the
airplane can not go any higher. Let’s define the rate of climb RC as −RD. So the maximum rate of
climb is 0 at the ceiling. The rate of climb can be calculated using:

RC =
Pa − Pr
W

(4.4)

So at the theoretical ceiling, when RCmax = 0 also (Pa − Pr)max = 0. Thus Pa ≤ Pr and the airplane
can only fly in the ceiling if Pa = Pr.
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However, this ceiling is only a theoretical ceiling. Since if the rate of climb is 0 m/s in the theoretical
ceiling, how could you get there? There is also a service ceiling, which is in practice about the highest
point at which aircrafts can fly. The service ceiling is the height at which the maximum rate of climb of
the airplane is 0.5 m/s.

4.4 Supersonic Limits

When an aircraft is flying at supersonic velocities, shock waves occur. The shape of the shock wave can
be either oblique or blunt. Oblique shock waves are caused by sharp edges and are relatively weak, while
blunt shock waves are caused by rounded edges and are relatively strong. Oblique shock waves have an
angle, called the Mach angle, which can be calculated using:

µ = arcsin
a

V
= arcsin

1

M
(4.5)

When the air passes through a shock wave, a lot of things happen. To make a list: V ↓, p ↑, T ↑, M ↓,
s ↑. The entropy s increases due to a loss in energy, which is caused by additional drag called wave
drag. This wave drag is also caused by shock waves.

When flying at high Mach numbers, buffeting can occur. This can be dangerous, and to prevent this,
the airworthiness regulations define a maximum Mach number MD for an airplane after several tests.
This results in a maximum velocity of:

VD = MD

√
γRT (4.6)

Since the temperature deceases as the height increases, also the maximum velocity due to the maximum
Mach number decreases as the height increases (until the stratosphere is reached where T is constant).
To increase safety even more, an extra margin gets taken into account, which results in the maximum
operating Mach number MM0. This is the highest Mach number at which the aircraft is allowed to
fly.

4.5 Gusts

If an aircraft encounters a sudden upward gust, the angle of attack (with respect to the airflow) will
increase. If the air gusts travels upward with a velocity u, the change in angle of attack is:

∆α = tan
u

V
≈ u

V
(4.7)

The change in lift coefficient now is:

∆CL =
dCL
dα

∆α =
dCL
dα

u

V
(4.8)

This makes the change in lift the following:

∆L = (∆CL)
1

2
ρ
(
V 2 + u2

)
S =

dCL
dα

1

2
ρ

(
uV + 2u2 +

u3

V

)
S ≈ dCL

dα

1

2
ρuV S (4.9)

In the last step the assumption was made that u << V . Since a sudden huge increase in lift can be
dangerous (high G-forces and breaking wings may occur), the airworthiness regulations have set another
limit, being the maximum equivalent airspeed due to gust loading Ved [m/s]. This makes the
maximum airspeed due to gust loading:

VD = Ved
√
ρρ0 (4.10)

However, to increase safety, there is an additional margin to this maximum allowed airspeed, being the
maximum operational velocity VM0. This is the highest velocity at which an aircraft is allowed to
fly.
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4.6 Limit Overview

Next to the limits we just saw, there is one additional limit to the flight envelope of an airplane. This
is the maximum pressure difference. The pressure cabin can only take a maximum pressure difference,
which may not be exceeded. This is the last limit that will be discussed.

It’s time to make a graph out of all the limits we have just talked about. This graph can be seen in figure
??. It gives an impression on the flight envelope of a normal aircraft.

Figure 2: Visualization of the flight envelope.
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5 Helicopters

5.1 The Tail Rotor

Most (traditional) helicopters have a termmain rotor and a tail rotor. The main rotor provides the
lift. To do that, it is rotating with an angular velocity Ω [rad]. (Most helicopters have blades rotating
counter-clockwise, when seen from the top, so we will assume the blades are rotating counter-clockwise.)
This rotation gives it a velocity, and since the rotor blades have the shape of a wing foil, it causes lift.
However, next to lift, it also causes drag. This drag results in a (clockwise) torque. To prevent the
rotor from slowing down, the helicopter engine causes an equal but opposite (and thus counter-clockwise)
torque. However, Newton’s third law implies that every action has an equal and opposite reaction. So
if the helicopter causes a counter-clockwise torque on the blades, the blades cause a clockwise torque on
the helicopter, which would make it rotate. This is an undesirable effect, and that’s why a tail rotor is
added.

Suppose a torque Q [Nm] is necessary for the main rotor to have a constant angular velocity. If lt [m]
is the distance between the main rotor and the tail rotor, and if Tt [N ] is the thrust from the tail rotor,
then to prevent the helicopter from rotating, the following condition should be true:

Q = lt · Tt (5.1)

However, tail rotors have a lot of disadvantages. They consume a lot of power, are dangerous, noisy,
expensive and under bad wind conditions they give only a marginal control authority. That’s why a lot
of alternatives for a tail rotor have been introduced over the years.

5.2 Helicopter Performance

A helicopter stays in the air by thrusting air downward. Far above the main rotor the air is still standing
still. When the air passes through the main rotor, it has an induced velocity Vi [m/s]. We can now
express the amount of air passing through the rotor blades every second. If the rotor blades have length
R [m], then the mass flow m [kg/s] is:

m = ρπR2Vi (5.2)

But when the air has just passed the disk, it is still accelerating. When the air is relatively far below the
main rotor, it has a velocity of 2Vi. Using the momentum equation, we can calculate the thrust of the
main rotor:

T = Iout − Iin = 2mVi − 0 = 2mVi = 2ρπR2V 2
i (5.3)

For a hovering helicopter, the thrust equals the weight (T = W ). The induced power Pi [J/s] is equal
to the change in kinetic energy of the flow:

Pi =
1

2
m (2Vi)

2
= 2mV 2

i = TVi = WVi = W

√
W

2ρπR2
(5.4)

Next to the induced power, there is also the hover power Phov, which can be calculated using:

Phov = QΩ = ltTtΩ (5.5)

The real power necessary for hovering, the hover power, is usually not the same as the ideal induced
power. The Figure of Merit M is defined as:

M =
Pi
Phov

(5.6)

For the tail rotor there is also a (different) Figure of Merit Mt.

14



5.3 Helicopter Control

Helicopters can do more than simple hovering. They can also fly in multiple directions. First of all,
helicopters can go up and down. To achieve this either the angular velocity Ω or the rotor blade pitch
is increased. The latter can be done by using a swash plate. This is a plate below the rotor blades. A
small bar is connected to the front of every rotor blade. So if the swash plate goes up, the front of the
rotor blades go up as well, increasing the pitch.

The swash plate can not only go up/down. It can also rotate slightly. When this happens, one of the
rotor blades gets an increased pitch, while the other (being on the opposite side) gets a decreased pitch.
This causes a moment, which causes the helicopter to rotate. By rotating the helicopter, the direction
of the thrust changes, which causes the helicopter to go forward/backward or left/right. When using
this trick, it is important not to forget the gyroscopic effect. This is present since the rotor blades are
spinning rather fast.

The rotor blades are generating lift. If they would be entirely fixed to the rotor axis, there would be large
bending moments. This is why they are usually able to rotate in multiple directions. The reason why
they still point outward is because of the centrifugal effect. This method offers various advantages, but
can sometimes be slightly dangerous. One example is that it can cause ground resonance if the helicopter
is hovering close to the ground.
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6 Measurement Devices

6.1 Airspeed Indication

An airspeed indicator doesn’t indicate the true airspeed (TAS), but measures the difference between
the total and the static pressure. For low velocities this is the dynamic pressure q = 1

2ρV
2. So for low

velocities this works well. However, for high velocities (M > 0.3) compressibility effects need to be taken
into account, and this equation can not be applied anymore. Instead, we use thermodynamics to derive
an alternative equation for the velocity. We start by noting the following:

cpT +
1

2
V 2 = cpTt ⇒ Tt

T
= 1 +

V 2

2cpT
= 1 +

V 2ρR

2cpp
= 1 + V 2 ρ

p

cp − cv
2cp

= 1 + V 2 ρ

p

γ − 1

2γ
(6.1)

Now we can use the formula of Poisson to get:

pt
p

=

(
Tt
T

) γ
γ−1

=

(
1 + V 2 ρ

p

γ − 1

2γ

) γ
γ−1

⇒
(
pt
p

) γ−1
γ

− 1 = V 2 ρ

p

γ − 1

2γ
(6.2)

Solving for V gives:

V =

√√√√ 2γ

γ − 1

p

ρ

((
pt
p

) γ−1
γ

− 1

)
=

√√√√ 2γ

γ − 1

p

ρ

((
qc
p

+ 1

) γ−1
γ

− 1

)
(6.3)

where the pressure difference qc is defined as qc = pt − p. So for low speeds qc = q. The last equation
indicates that the velocity is a function of qc, p and T . qc can be measured, but p and T are very difficult
to measure accurately. Therefore the calibrated airspeed (CAS) Vc [m/s] is introduced. The indicator
assumes that the airplane is flying at 0 m altitude in International Standard Atmosphere (ISA),
such that p = p0 and T = T0. Thus:

Vc =

√√√√ 2γ

γ − 1
RT0

((
qc
p0

+ 1

) γ−1
γ

− 1

)
(6.4)

For M << 1 the calibrated airspeed is (approximately) equal to the equivalent airspeed (but not the true
airspeed!). And finally there is one more airspeed, the indicated airspeed (IAS). This airspeed is equal
to the calibrated airspeed, accept for (usually minor) errors caused by the airspeed indicator. However,
if, for example, the dial of the airspeed indicator gets stuck, the indicated airspeed is definitely not equal
to the calibrated airspeed.

6.2 International Standard Atmosphere (ISA)

The hydrostatic equation is:
dp

dh
= −ρg (6.5)

Since g isn’t constant at high altitudes, we define the geopotential height H [m] such that g dh = g0dH
where g0 [m/s2] is the gravitational acceleration at zero altitude. So this gives:

dp

dH
= −ρg0 (6.6)

Combining this with the gas law, we have three unknowns and two equations. Therefore we assume that
for the troposphere T = T0 + λH with T0 = 288.15 K and λ = −0.0065 K/m. If we now combine this
assumption with equation ?? and with the gas law, we get:

dp

p
= − g0 dH

R(T + λH)
(6.7)
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Integrating and working out the result gives:

p

p0
=

(
1 +

γH

T0

)− g0
λR

=

(
T

T0

)− g0
λR

⇔ ρ

ρ0
=

(
T

T0

)− g0
λR−1

(6.8)

Solving for H gives an equation which is used in altimeters to find the pressure altitude:

H =

((
p

p0

)−λR
g0

− 1

)
T0
λ

(6.9)

where p can be found by measuring the pressure difference between the static pressure and the pressure
of a vacuum. In this way a pilot can find out how high he approximately is.

If every pilot would use the same reference values p0 and T0, there is sufficient data to avoid collisions in
the air. However, when an airplane has its reference pressure set at ISA-pressure, and if the real pressure
is different, he will get wrong readings. Since a pilot would like to know whether his plane is 5 meters or
5 kilometers above the ground, there is a system which gets rid of these disadvantages.

When an airplane lifts off, the pilot asks the control tower for the QNH pressure, which is the actual
pressure around the airfield. He sets the reference pressure of his altimeter to that value, so he knows
his actual altitude quite accurately. When he gets above a certain transition altitude (which can differ
per region, but is usually a few thousand feet), he sets the reference pressure of his altimeter to the
ISA-pressure, such that all airplanes flying in that region have the same reference pressure. When the
aircraft gets close to his arrival destination, the pilot asks for the local QNH. When the aircraft passes
the local transition altitude, the pilot adjusts the reference pressure of his altimeter to the local QNH.
He then has the right altitude reading on his altimeter, so he can land his airplane safely.

Next to an airspeed indicator and an altimeter, a pilot usually also has a thermometer, measuring the
temperature outside the airplane.
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