Nomer	<u>nclature</u>	
Symbo	l Quantity	Symbol
а	Acceleration	m/s ²
a	Specific Helmholtz function, $u-Ts$,	kJ/kg
A	Area	m ²
A	Helmholtz function, $U-TS$,	kJ
AF	Air-fuel ratio	
с с	Speed of sound Specific heat	m∕s kJ/kg∙K
	Constant pressure specific heat	kJ/kg·K
C _p		
C_{v}	Constant volume specific heat	kJ/kg∙K
COP	Coefficient of performance	
	Coefficient of performance of a heat p	-
COP_R d, D	Coefficient of performance of a refrige Diameter	
		m ku/ka
e E	Specific total energy	kJ/kg
L EER	Total energy Energy efficiency rating	kJ
F	Force	N
FA	Fuel-air ratio	
g	Gravitational acceleration,	m/s²
g g	Specific Gibbs function, $h-Ts$	kJ/kg
$\frac{\delta}{G}$	Total Gibbs function, $H-TS$	kJ
h	Convection heat transfer coefficient	₩/m²·°C
h	Specific enthalpy, $u + Pv$	kJ/kg
H	Total enthalpy, $U + PV$	kJ
h_c	Enthalpy of combustion	kJ/kmol fuel
h_c h_f	Enthalpy of formation	kJ/kmol
h_{R}	Enthalpy of reaction	kJ/kmol
HHV		
пп v i	Higher heating value Specific irreversibility	kJ/kg fuel kJ/kg
Ι	Total reversibility	kJ kg
I	Electric current	A
k	Specific heat ratio, c_p/c_y	
k,	Spring constant	
k_{t}	Thermal conductivity	
K_{p}	Equilibrium constant	
ke	Specific kinetic energy, $V^2/2$	kJ/kg
KE	Total energy, $mV^2/2$	kJ
LHV	Lower heating value	kJ/kg fuel
m	Mass	kg
'n	Mass flow	kg/s
М	Molar mass	kg/kmol
Ma	Mach number	-
MEP	Mean effective pressure	kPa
mf	Mass fraction	
п	Polytropic exponent	
Ν	Number of moles	kmol
Р	Pressure	kPa
P_{cr}	Critical pressure	kPa
P_i	Partial pressure	kPa

P_m	Mixture pressure	kPa	
P_r	Relative pressure		
P_{R}	Reduced pressure		
P_{ν}	Vapor pressure	kPa	
P_0	Surroundings pressure	kPa	
pe	Specific potential energy, gz	kJ/kg	
PE	Total potential energy, mgz	kJ	
q	Heat transfer per unit mass	kJ/kg	
$egin{array}{c} Q \ \dot{Q} \end{array}$	Total heat transfer	kJ	
	Heat transfer rate	kW	
$Q_{\scriptscriptstyle H}$	Heat transfer with high-temperature be	ody	kJ
$Q_{\scriptscriptstyle L}$	Heat transfer with low-temperature bo	ody	kJ
r	Compression ratio		
R	Gas constant	kJ/kg∙K	
r_c	Cutoff ratio		
r_p	Pressure ratio		
R_{u}	Universal gas constant	kJ/kmo	ŀК
S C	Specific entropy	kJ/kg∙K	
S s	Total entropy Specific entropy generation	kJ/K kJ/kg·K	
S _{gen}	Total entropy generation	kJ/K	
S _{gen} SG	Specific weight or relative density	KJ/ K	
t	time	S	
Т	Temperature	°C or K	
Т	Torque	N∙m	
T_{cr}	Critical temperature	К	
T_{db}	Dry-bulb temperature	К	
T_{f}	Bulk fluid temperature	К	
T_{H}	Temperature of high-temperature body	У	К
T_L	Temperature of low-temperature body	ΥK	
T_R	Reduced temperature		
T_{wb}	Wet-bulb temperature	°C	
T_0	Surroundings temperature	°C or K	
U U	Specific internal energy	kJ/kg	
$U \\ v$	Total energy Specific volume	kJ m³/kg	
V _{cr}	Critical specific volume	m ³ /kg	
V_R	Pseudoreduced specific volume	_	
V	Total volume	m ³	
\dot{V}	Volume flow rate	m³/s	
V	Voltage	V ,	
V V _{avg}	Velocity Average velocity	m/s	
v avg W	Work per unit mass	kJ/kg	
W	Total work	kJ	
Ŵ	Power	kW	
W_{in}	Work input	kJ	

W_{out}	Work output	kJ
W_{rev}	Reversible work	kJ
x	Quality	
x	Specific exergy	kJ/kg
x_{dest}	Specific exergy destruction	kJ/kg
X_{dest}	Total exergy destruction	kJ
\dot{X}_{dest}	Rate of Total exergy destruction	kW
у	Mole fraction	
Z.	Elevation	m
Ζ	Compressibility factor	
Z_h	Enthalphy departure factor	
Z_s	Entropy departure factor	
	letters Absorbtivity	
$\alpha \\ \alpha$	Isothermal compressibility	1/kPa
β	Volume expansivity	1/K
Δ	Finite change in quantity	
Е	Emissivity; effectiveness	
$\eta_{_{th}}$	Thermal efficiency	
θ	Total energy of a flowing fluid	kJ/kg
$\mu_{_{JT}}$	Joule-Tomson coefficient	K/kPA
μ	Chemical potential	kJ/kg
V	Stoichiometric coefficient	
ρ	Density	kg/m ³
σ	Stefan-Boltzmann constant	
$\sigma_{_n}$	Normal stress	N/m ²
$\sigma_{_s}$	Surface tension	N/m
ϕ	Relative humidity	
ϕ	Specific closed system exergy	kJ/kg
Φ	Total closed system exergy	kJ
ω	Specific or absolute humidity	kg H_2O / kg dry air

Subscripts

- Air a Absolute abs
- Actual act
- Atmospheric
- atm
- avg Average
- Combustion; cross section С
- Critical point cr
- CV Control volume
- е Exit conditions
- fSaturated liquid
- Difference in property between saturated liquid and saturated vapor fg
- Saturated vapor g
- gen Generation
- High temperature (as in $T_{\!_H}$ and $Q_{\!_H}$) Η
- i inlet conditions
- i ith component
- Low temperature (as in $T_{\scriptscriptstyle L}$ and $Q_{\scriptscriptstyle L}$) L
- т Mixture
- Relative r
- R Reduced
- rev Reversible
- S Isentropic
- Saturated sat
- Surroundings surr
- System sys
- v Water vapor
- 0 Dead state
- 1 Initital or inlet state
- 2 Final or exit state

Superscripts

· (over dot)	Quantity per unit time
-(over bar)	Quantity per unit mole
°(circle)	Standard reference state
*(asterisk)	Quantity at 1 atm pressure

Some Physical Constants

Universal gas constant	$R_u = 8.81447 \text{ kJ/kmol·K}$
Standard acceleration of gravity	g = 9.80665
Standard atmospheric pressure	1 atm = 101.325 kPa
Stefan-Boltzmann constant	$\sigma = 5.6704 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4$
Boltzmann's constant	k = 1.380650 J/K
Speed of light in vacuum	$c_0 = 2.9979 \times 10^8 \text{ m/s}$
Speed of sound in dry air at 0°C and 1 atm	$c = 2.9979 \times 10^8$
Heat of fusion of water at 1 atm	$h_{\scriptscriptstyle i\!f}=337.7~{\rm kJ/kg}$
Enthalpy of vaporization of water at 1 atm	$h_{\scriptscriptstyle fg}=2265.5{ m kJ/kg}$