Atmospheric Flight Dynamics
Example Exam 2 — Solutions

1 Question

Given the autocovariance function,
1
CJEQ(T) = 5 COS(27TT) (11)
of stochastic variable z. Calculate the autospectrum Szz(w).

NOTE

Assume that,
€7j27r7' +6j27r7'

cos(2nT) = 5 (1.2)
and,
+o0 )
/ e 7T dr = 276 (w) (1.3)

1 Solution

To find the autospectrum Szz(w), we simply take the Fourier transform of the autocovariance function

Czz(7). So, )
Ssz(w) = F {Cas(r)} = 7{2 cos(27r7‘)} - g (8(w — 27) + 6(w + 27)). (1.4)

You can do the last step if you know the Fourier transform of the cosine function by heart. If not, then
you can also derive it. We then have

eI dr. (1.5)

—j27T J27TT +oo —j2nT J2mT
f{cos(27r7’)}:.7:{e;e} :/ %

—00

Rewriting the above equation gives

1 +oo ) +oo )
f{COS(QT(T)} = 5 (/ e*](erQTr)T dr +/ e*](!d*?ﬂ’)f dT) ) (16)

— 00 — 00

We can use the relation for 6(w) to simplify the above equation. We then get

F{cos(2rT)} = % (27 (w — 27) + 270 (w + 2m)) . (1.7)

2 Question

Prove that,

(a) the variance of the ”stochastic” variable § = ¢ equals 02 = 0

(b) j2 =E {2} - o2

(c) if § = b + ¢ then o2 = b%02



In the above mentioned questions b and ¢ are constants.

2 Solution

(a) There are multiple ways to show this. One way is by using the expectation operator. We have

o =EB{(—ny)*} =E{(c -0} =E{0} =0. (2.1)

Note that we have used pz = c¢. Another way to show it is to use the probability density function.
For a stochastic variable § = ¢, the probability density function equals f7(y) = d(y — ¢). The mean
of § is now given by

+oo +oo
fig = / yfa(y) dy = / Yoy —c)dy =c. (2.2)
The variance of §j can now be found using
2 oo 2 oo 2 2
Uy:/ (v — ny) fg(y)dy=/ (y—c)*(y —c)dy = (c—¢)” =0. (2.3)

(b) The variance of Z can be found according to

o =B {(@— e} = B — 2 442} =B} - 2B T} 2 (24)
If we use the fact that puz = E {z}, we can rewrite the above to
o2 =E{2*} — 1. (2.5)

This is equivalent to the relation which we wanted to prove.
(¢) First let’s find the mean value of . It is equal to
pyg =E{7} =E{bZ + c} = buz + ¢ (2.6)
The variance of § = bZ + ¢ can be found using

ag =E{(—py)*} =E{(0x+c—buz — )’} =b’E{(z — pz)*} = b°02. (2.7)

3 Question

In figure 1 the product function Ry (7) of the stationary stochastic process @ is given. What can be said
about the properties of the stochastic variable u?

It is white noise.

b

It is noise with a small bandwidth.

(a
(

)
)

(c) Tt is white noise plus a sinus.
)

(d) Tt is a sinus.

3 Solution

It can be noted that R;z(7) is a sinc function. If you transform a sinc function, you will get a block
function. The PSD function Szz(w) is thus a block function. If this block function would be infinitely
wide, then the PSD function would be constant. The result would thus be white noise. However, the
block function is not infinitely wide. The bandwidth is thus limited. We therefore deal with white noise
with a small bandwidth. The correct answer is (b).
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Figure 1: Product function Rggz(7)

4 Question

Given the probability density function of the stochastic variable & with parameter A (A > 0),

Ae ™ if x>0
(1) = =Y 4.1
f(x) {0 if 2 < 0. (4.1)

Calculate the probability distribution function F3(z), and prove that the mean value uz and the variance
o2 are equal to,

T

1 1
pa =5 and o2 = . (4.2)

4 Solution

The probability distribution function F3(z) can be found by integrating the probability density function
fz(x). This then gives

Fi(x) = / f=(m)dr. (4.3)
For x < 0, we thus simply have Fz(x) = 0. If, however, z > 0, then
Fi(z) = /0 e A dr = [—e_”]g =1—e ", (4.4)
Now we need to find the mean value pz. It is given by
+oo +oo
g = / xfz(x)de = / Aze M dg. (4.5)
—o0 0
Applying integration by parts now gives
oo [T 1 teo g
Hz = [—xe_)‘x]; —l—/o e Mdr =0+ {—)\6_)‘1}0 =5 (4.6)



The variance 2 can be found using

g

SN

+oo “+o0
= / (x — pz)* fe(x) doe = / Mz? = 22/X+1/X2)e  d. (4.7)
0

— 00

Let’s split the integral above up into three parts. Applying integration by parts on the part with 22 gives

+oo Too +oo +oo
/ \e2e M dr = [71‘267/\I]0 + / 2xe M dr =0+ / 2ze” M di. (4.8)
0 0 0

The part with 22 thus cancels out with the part with —2z/\. That saves some work. The variance now
equals

2 oo A L\ M|
- 1/ e Mde = |——e™ ™ = —. 4.9
o /0 /e x { 3¢ ]0 e (4.9)
That finishes the proof.
5 Question
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Figure 2: Probability density function fz(z)

The random variable Z has a probability density function fz(x) as depicted in figure 2.
What is the probability of P(z > —1)?
(a) 0.125
(b) 0.275
(c) 0.725
(d) 0.750
(e) 0.875
(f) Not enough data available



5 Solution

We can note that the probability density function is symmetric about x = 0. Thus,
P(z <0)=P(z>0)=0.5. (5.1)

To find P(—1 <z <0), we simply find the area under the function fz(x) in this interval. This gives us

1 .
P(-1<z<0)=1. % — 0.225. (5.2)
We thus have
P(z>—1)=P(-1 <z <0)+ P(x > 0) = 0.725. (5.3)
The correct answer is therefore (c).
6 Question
Prove that the Fourier transform of the signal x(t — tg) equals,
Fla(t—to)} = (e774") X (w) (6.1)

6 Solution

We first apply the definition of the Fourier transform. This gives

+oo
Fla(t—ty)} = [ x(t —to)e ¥t dt. (6.2)

Let’s define 7 =t — ty. We then have t = 7 + tg and dt = d7. So,

“+ o0 400

Flz(t—to)} = / x(r)e I (TH) gr = giwto / z(1)e T dr = eI X (W), (6.3)

— 00 — 00

This concludes the proof.

7 Question

Which of the following statements are true?

(a) Ray(T) = Ryz(7)
(b) Cay(T) = Cya(r)
(¢) Kza(7) = Kza(-7)
(d) Kzz(0)=1

(e) Szg(w) = Spz(w)
(f) Szz(w) = Szz(—w)

7 Solution



(a) Let’s examine Rz5(7). We have
Ray(1) = E{z()y(t + 1)} = E{y(t + 7)a(t)} = E{y(t)z(t — 1)} = Rya(=7). (7.1)
However, we don’t generally have Rz5(7) = Ryz(7). So, the first statement is false.

(b) We know that
Cay(7) = Ray(T) — papy. (7.2)
So if the previous statement did not hold, then this one will not hold either. So, the second
statement is false.

(c¢) For the function Kzz(7), we have

_ E{z(t)z(t+ 1)} _ E{z(t+7)x(t)} _ E{z(®)z(t—7)}

Kzz(T) = Kzz(—7). (7.3)

o3 o3 o3
So this statement holds. The third statement is thus true.
(d) We have
Kt = B0} _ 2, iz

This fourth statement is therefore true.

(e) In case of a zero-mean signal, the PSD function is the Fourier transform of the covariance function.

So,
“+o00 “+ o0

Sj;*((,d) = ng(T)e_ij dr = Cgf(—T)e_ij dr. (75)

—00 — 00
Let’s substitute t = —7. Note that we have dt = —d7 and thus
—00 —+oo

Szg(w) = — Cgi(t)ej“’t dt = ng—c(t)ejm dt = Syz(w)™. (7.6)

+oo —o0

Here, Syz(w)* is the complex conjugate of Syz(w). This follows from the fact that e/“! is the
complex conjugate of e~“% and that Cyz(t) is real. So we have Sz;(w) = Syz(w)*. But we don’t in
general have Sz5(w) = Syz(w). The fifth statement is thus false.

(f) Since Czz(7) = Czz(—7), we have

o0 ) +o0 )
Sj*((.d) = Cfi (7—)67]“”— dr = ij(*’]—)eiﬂkm— dr. (77)
If we again substitute t = —7, we get
+oo )
Sji(w) = C’M(t)e_J(_“’)t dr = Sﬁ(—w) (78)

The sixth statement thus holds.

8 Question

(a) The random variable 4 has a probability density function f;(u) as depicted in figure 3. Calculate
the probability P(u = 4).

(b) The random variable @ has a probability density function f;(u) as depicted in figure 4. Calculate
the probability P(u = 1).



Figure 3: Probability density function fg(u)
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Figure 4: Probability density function fz(u)



8 Solution

(a) Normally, when a stochastic variable is continuous, then the chance that @ is exactly a given value
is simply equal to 0. However, this time there is a peak at u = 4. So, P(@ = 4) now equals the
magnitude of this peak.

The only problem is, we don’t know the magnitude of the peak. However, we do know that the
area under the graph of f;(u) equals 1. Also, the area under the rectangle equals 0.1-8 = 0.8. The
magnitude of the peak thus equals

Plu=4)=1-Plu#4)=1-08=0.2. (8.1)

(b) When a stochastic variable is continuous, and there is no delta-function-like peak, then the chance
that @ exactly equals a given value is simply 0. We see that this is the case here. So, P(u = 1) = 0.

9 Question

Proof that the periodogram Iy;[k] of the signal y[n] = az[n] + b equals,
Iyglk] = a® Lz [k] + (2aRe { X [k]} + b)bJ[K] (9.1)

with,
Lealk] = X* K] X[k] (9.2)

and Re {X[k]} the real part of the Fourier transform of z[n].

Note: the Discrete Fourier Transform (FFT) of a constant b equals,

FFT{b} = (zlv fbe—ﬂz”v’“”> — bo[K] 9.3)

with 6[k] the Kronecker delta function. Use the result FFT{b} = bo[k] in your proof. Remember that
d[k] equals 0 for k # 0 and d[k] equals 1 for k = 0.

9 Solution
First, we’ll find an expression for Y[k]. We have
Y[k] = FFT{y[n|} = FFT{ax[n] + b} = a FFT{z[n|} + FFT{b} = aX[k] + bo[k]. (9.4)
Since a and b are real constants, we also have
Y*[k] = aX*[k] + bo[E]. (9.5)
The periodogram of y[n] is now given by
Ij5(k] = Y [k]Y k] = (aX*[k] + bO[K]) (a X [K] + bS[K]) . (9.6)
Working out brackets gives
Iglk] = a® X*[k] X [k] 4+ ab (X*[k] + X[k]) 0[K] + b%6[k]°. (9.7)

In the discrete domain, we have §[k]? = §[k]. Also, adding a complex number to its complex conjugate
gives twice its real part. (That is, X*[k] + X [k] = 2Re {X[k]}.) And, if we also apply the definition for
I:z[k], we will find that

Iglk] = a® Iz [k] + (2aRe { X [k]} + b) b3 [k]. (9.8)

And this is exactly what we needed to show.



