
Atmospheric Flight Dynamics
Example Exam 2 – Solutions

1 Question

Given the autocovariance function,

Cx̄x̄(τ) =
1
2

cos(2πτ) (1.1)

of stochastic variable x̄. Calculate the autospectrum Sx̄x̄(ω).

NOTE

Assume that,

cos(2πτ) =
e−j2πτ + ej2πτ

2
(1.2)

and, ∫ +∞

−∞
e−jωτ dτ = 2πδ(ω) (1.3)

1 Solution

To find the autospectrum Sx̄x̄(ω), we simply take the Fourier transform of the autocovariance function
Cx̄x̄(τ). So,

Sx̄x̄(ω) = F {Cx̄x̄(τ)} = F
{

1
2

cos(2πτ)
}

=
π

2
(δ(ω − 2π) + δ(ω + 2π)) . (1.4)

You can do the last step if you know the Fourier transform of the cosine function by heart. If not, then
you can also derive it. We then have

F {cos(2πτ)} = F
{

e−j2πτ + ej2πτ

2

}
=
∫ +∞

−∞

e−j2πτ + ej2πτ

2
e−jωτ dτ. (1.5)

Rewriting the above equation gives

F {cos(2πτ)} =
1
2

(∫ +∞

−∞
e−j(ω+2π)τ dτ +

∫ +∞

−∞
e−j(ω−2π)τ dτ

)
. (1.6)

We can use the relation for δ(ω) to simplify the above equation. We then get

F {cos(2πτ)} =
1
2

(2πδ(ω − 2π) + 2πδ(ω + 2π)) . (1.7)

2 Question

Prove that,

(a) the variance of the ”stochastic” variable ȳ = c equals σ2
ȳ = 0

(b) µ2
x̄ = E

{
x̄2
}
− σ2

x̄

(c) if ȳ = bx̄ + c then σ2
ȳ = b2σ2

x̄
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In the above mentioned questions b and c are constants.

2 Solution

(a) There are multiple ways to show this. One way is by using the expectation operator. We have

σ2
ȳ = E

{
(ȳ − µȳ)2

}
= E

{
(c− c)2

}
= E {0} = 0. (2.1)

Note that we have used µȳ = c. Another way to show it is to use the probability density function.
For a stochastic variable ȳ = c, the probability density function equals fȳ(y) = δ(y− c). The mean
of ȳ is now given by

µȳ =
∫ +∞

−∞
yfȳ(y) dy =

∫ +∞

−∞
yδ(y − c) dy = c. (2.2)

The variance of ȳ can now be found using

σ2
ȳ =

∫ +∞

−∞
(y − µȳ)2fȳ(y) dy =

∫ +∞

−∞
(y − c)2δ(y − c) dy = (c− c)2 = 0. (2.3)

(b) The variance of x̄ can be found according to

σ2
x̄ = E

{
(x̄− µx̄)2

}
= E

{
x̄2 − 2x̄µx̄ + µ2

x̄

}
= E

{
x̄2
}
− 2µx̄E {x̄}+ µ2

x̄. (2.4)

If we use the fact that µx̄ = E {x}, we can rewrite the above to

σ2
x̄ = E

{
x̄2
}
− µ2

x̄. (2.5)

This is equivalent to the relation which we wanted to prove.

(c) First let’s find the mean value of ȳ. It is equal to

µȳ = E {ȳ} = E {bx̄ + c} = bµx̄ + c. (2.6)

The variance of ȳ = bx̄ + c can be found using

σ2
ȳ = E

{
(ȳ − µȳ)2

}
= E

{
(bx̄ + c− bµx̄ − c)2

}
= b2E

{
(x̄− µx̄)2

}
= b2σ2

x̄. (2.7)

3 Question

In figure 1 the product function Rūū(τ) of the stationary stochastic process ū is given. What can be said
about the properties of the stochastic variable ū?

(a) It is white noise.

(b) It is noise with a small bandwidth.

(c) It is white noise plus a sinus.

(d) It is a sinus.

3 Solution

It can be noted that Rūū(τ) is a sinc function. If you transform a sinc function, you will get a block
function. The PSD function Sūū(ω) is thus a block function. If this block function would be infinitely
wide, then the PSD function would be constant. The result would thus be white noise. However, the
block function is not infinitely wide. The bandwidth is thus limited. We therefore deal with white noise
with a small bandwidth. The correct answer is (b).
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Figure 1: Product function Rūū(τ)

4 Question

Given the probability density function of the stochastic variable x̄ with parameter λ (λ > 0),

fx̄(x) =

{
λe−λx if x ≥ 0,

0 if x < 0.
(4.1)

Calculate the probability distribution function Fx̄(x), and prove that the mean value µx̄ and the variance
σ2

x̄ are equal to,

µx̄ =
1
λ

and σ2
x̄ =

1
λ2

. (4.2)

4 Solution

The probability distribution function Fx̄(x) can be found by integrating the probability density function
fx̄(x). This then gives

Fx̄(x) =
∫ x

−∞
fτ̄ (τ) dτ. (4.3)

For x < 0, we thus simply have Fx̄(x) = 0. If, however, x ≥ 0, then

Fx̄(x) =
∫ x

0

λe−λτ dτ =
[
−e−λτ

]x
0

= 1− e−λx. (4.4)

Now we need to find the mean value µx̄. It is given by

µx̄ =
∫ +∞

−∞
xfx̄(x) dx =

∫ +∞

0

λxe−λx dx. (4.5)

Applying integration by parts now gives

µx̄ =
[
−xe−λx

]+∞
0

+
∫ +∞

0

e−λx dx = 0 +
[
− 1

λ
e−λx

]+∞
0

=
1
λ

. (4.6)
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The variance σ2
x̄ can be found using

σ2
x̄ =

∫ +∞

−∞
(x− µx̄)2fx̄(x) dx =

∫ +∞

0

λ(x2 − 2x/λ + 1/λ2)e−λx dx. (4.7)

Let’s split the integral above up into three parts. Applying integration by parts on the part with x2 gives∫ +∞

0

λx2e−λx dx =
[
−x2e−λx

]+∞
0

+
∫ +∞

0

2xe−λx dx = 0 +
∫ +∞

0

2xe−λx dx. (4.8)

The part with x2 thus cancels out with the part with −2x/λ. That saves some work. The variance now
equals

σ2
x̄ =

∫ +∞

0

1/λe−λx dx =
[
− 1

λ2
e−λx

]+∞
0

=
1
λ2

. (4.9)

That finishes the proof.

5 Question

Figure 2: Probability density function fx̄(x)

The random variable x̄ has a probability density function fx̄(x) as depicted in figure 2.

What is the probability of P (x̄ ≥ −1)?

(a) 0.125

(b) 0.275

(c) 0.725

(d) 0.750

(e) 0.875

(f) Not enough data available
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5 Solution

We can note that the probability density function is symmetric about x = 0. Thus,

P (x̄ ≤ 0) = P (x̄ ≥ 0) = 0.5. (5.1)

To find P (−1 ≤ x̄ ≤ 0), we simply find the area under the function fx̄(x) in this interval. This gives us

P (−1 ≤ x̄ ≤ 0) = 1 · 0.15 + 0.3
2

= 0.225. (5.2)

We thus have
P (x̄ ≥ −1) = P (−1 ≤ x̄ ≤ 0) + P (x̄ ≥ 0) = 0.725. (5.3)

The correct answer is therefore (c).

6 Question

Prove that the Fourier transform of the signal x(t− t0) equals,

F {x(t− t0)} =
(
e−jωt0

)
X(ω) (6.1)

6 Solution

We first apply the definition of the Fourier transform. This gives

F {x(t− t0)} =
∫ +∞

−∞
x(t− t0)e−jωt dt. (6.2)

Let’s define τ = t− t0. We then have t = τ + t0 and dt = dτ . So,

F {x(t− t0)} =
∫ +∞

−∞
x(τ)e−jω(τ+t0) dτ = e−jωt0

∫ +∞

−∞
x(τ)e−jωτ dτ = e−jωt0X(ω). (6.3)

This concludes the proof.

7 Question

Which of the following statements are true?

(a) Rx̄ȳ(τ) = Rȳx̄(τ)

(b) Cx̄ȳ(τ) = Cȳx̄(τ)

(c) Kx̄x̄(τ) = Kx̄x̄(−τ)

(d) Kx̄x̄(0) = 1

(e) Sx̄ȳ(ω) = Sȳx̄(ω)

(f) Sx̄x̄(ω) = Sx̄x̄(−ω)

7 Solution
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(a) Let’s examine Rx̄ȳ(τ). We have

Rx̄ȳ(τ) = E {x(t)y(t + τ)} = E {y(t + τ)x(t)} = E {y(t)x(t− τ)} = Rȳx̄(−τ). (7.1)

However, we don’t generally have Rx̄ȳ(τ) = Rȳx̄(τ). So, the first statement is false.

(b) We know that
Cx̄ȳ(τ) = Rx̄ȳ(τ)− µx̄µȳ. (7.2)

So if the previous statement did not hold, then this one will not hold either. So, the second
statement is false.

(c) For the function Kx̄x̄(τ), we have

Kx̄x̄(τ) =
E {x(t)x(t + τ)}

σ2
x̄

=
E {x(t + τ)x(t)}

σ2
x̄

=
E {x(t)x(t− τ)}

σ2
x̄

= Kx̄x̄(−τ). (7.3)

So this statement holds. The third statement is thus true.

(d) We have

Kx̄x̄(0) =
E {x(t)x(t)}

σ2
x̄

=
σ2

x̄

σ2
x̄

= 1. (7.4)

This fourth statement is therefore true.

(e) In case of a zero-mean signal, the PSD function is the Fourier transform of the covariance function.
So,

Sx̄ȳ(ω) =
∫ +∞

−∞
Cx̄ȳ(τ)e−jωτ dτ =

∫ +∞

−∞
Cȳx̄(−τ)e−jωτ dτ. (7.5)

Let’s substitute t = −τ . Note that we have dt = −dτ and thus

Sx̄ȳ(ω) = −
∫ −∞

+∞
Cȳx̄(t)ejωt dt =

∫ +∞

−∞
Cȳx̄(t)ejωt dt = Sȳx̄(ω)∗. (7.6)

Here, Sȳx̄(ω)∗ is the complex conjugate of Sȳx̄(ω). This follows from the fact that ejωt is the
complex conjugate of e−jωt and that Cȳx̄(t) is real. So we have Sx̄ȳ(ω) = Sȳx̄(ω)∗. But we don’t in
general have Sx̄ȳ(ω) = Sȳx̄(ω). The fifth statement is thus false.

(f) Since Cx̄x̄(τ) = Cx̄x̄(−τ), we have

Sx̄x̄(ω) =
∫ +∞

−∞
Cx̄x̄(τ)e−jωτ dτ =

∫ +∞

−∞
Cx̄x̄(−τ)e−jωτ dτ. (7.7)

If we again substitute t = −τ , we get

Sx̄x̄(ω) =
∫ +∞

−∞
Cx̄x̄(t)e−j(−ω)t dτ = Sx̄x̄(−ω). (7.8)

The sixth statement thus holds.

8 Question

(a) The random variable ū has a probability density function fū(u) as depicted in figure 3. Calculate
the probability P (ū = 4).

(b) The random variable ū has a probability density function fū(u) as depicted in figure 4. Calculate
the probability P (ū = 1).
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Figure 3: Probability density function fū(u)

Figure 4: Probability density function fū(u)
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8 Solution

(a) Normally, when a stochastic variable is continuous, then the chance that ū is exactly a given value
is simply equal to 0. However, this time there is a peak at u = 4. So, P (ū = 4) now equals the
magnitude of this peak.

The only problem is, we don’t know the magnitude of the peak. However, we do know that the
area under the graph of fū(u) equals 1. Also, the area under the rectangle equals 0.1 · 8 = 0.8. The
magnitude of the peak thus equals

P (ū = 4) = 1− P (ū 6= 4) = 1− 0.8 = 0.2. (8.1)

(b) When a stochastic variable is continuous, and there is no delta-function-like peak, then the chance
that ū exactly equals a given value is simply 0. We see that this is the case here. So, P (ū = 1) = 0.

9 Question

Proof that the periodogram Iȳȳ[k] of the signal y[n] = ax[n] + b equals,

Iȳȳ[k] = a2Ix̄x̄[k] + (2aRe {X[k]}+ b)bδ[k] (9.1)

with,
Ix̄x̄[k] = X∗[k]X[k] (9.2)

and Re {X[k]} the real part of the Fourier transform of x[n].

Note: the Discrete Fourier Transform (FFT) of a constant b equals,

FFT{b} =

(
1
N

N−1∑
n=0

be−j 2πk
N n

)
= bδ[k] (9.3)

with δ[k] the Kronecker delta function. Use the result FFT{b} = bδ[k] in your proof. Remember that
δ[k] equals 0 for k 6= 0 and δ[k] equals 1 for k = 0.

9 Solution

First, we’ll find an expression for Y [k]. We have

Y [k] = FFT{y[n]} = FFT{ax[n] + b} = aFFT{x[n]}+ FFT{b} = aX[k] + bδ[k]. (9.4)

Since a and b are real constants, we also have

Y ∗[k] = aX∗[k] + bδ[k]. (9.5)

The periodogram of y[n] is now given by

Iȳȳ[k] = Y ∗[k]Y [k] = (aX∗[k] + bδ[k]) (aX[k] + bδ[k]) . (9.6)

Working out brackets gives

Iȳȳ[k] = a2X∗[k]X[k] + ab (X∗[k] + X[k]) δ[k] + b2δ[k]2. (9.7)

In the discrete domain, we have δ[k]2 = δ[k]. Also, adding a complex number to its complex conjugate
gives twice its real part. (That is, X∗[k] + X[k] = 2Re {X[k]}.) And, if we also apply the definition for
Ix̄x̄[k], we will find that

Iȳȳ[k] = a2Ix̄x̄[k] + (2aRe {X[k]}+ b) bδ[k]. (9.8)

And this is exactly what we needed to show.
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