
AE 2106 - Vibrations
A brief summary: How to solve the equations of motion

The purpose of this document is to summarize the method of solving (in-)homogeneous second
order linear differential equations with constant coefficients in the context of vibrations. A
sound understanding of differential equations is assumed.

1 Definitions

A discretized system has the following general equation of motion, where the scalar factors
are the equivalent mass m, moment of inertia J , damping c and stiffness k. Depending on
the choice of the degree of freedom, we get a linear form (1) or a polar form (2).

mẍ+ cẋ+ kx = F (t) (1)

Jθ̈ + cθ̇ + kθ = M(t) (2)

The natural frequency of a system is given by:

ωn =

√
k

m
(3)

The damping ratio of a system is given by:

ζ =
c

ccr
=

c

2mωn
=

c

2
√
mk

(4)

The damping frequency of a system is given by:

ωd = ωn
√

1− ζ2 (5)

2 Free Undamped Vibrations

In this case — F (t) = 0 (free of excitations) and c = 0 (undamped) — the general form is

mẍ+ kx = 0. (6)

Assume a periodic solution
x(t) = A sin (ωnt+ ϕ) (7)

with time derivative
ẋ(t) = Aωn cos (ωnt+ ϕ). (8)
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Use the initial conditions

x(0) = x0 (9)

ẋ(0) = ẋ0 (10)

and simple algebra to determine A and ϕ.

3 Free Damped Vibrations

In this case — F (t) = 0 (free of excitations) and c 6= 0 (damped) — the general form is

mẍ+ cẋ+ kx = 0. (11)

Depending on the damping ratio ζ defined in (4), three possible solutions can be found:

x(t) =


Ae−ζωnt sin (ωdt+ ϕ) for c < ccr

e−ωnt(A+Bt) for c = ccr

e−ζωnt(Ae−ωnt
√
ζ2−1 +Beωnt

√
ζ2−1) for c > ccr

(12)

Using their time derivatives ẋ and the initial conditions, (A,ϕ) or (A,B) are found.

4 Harmonically Forced Vibrations

In this case — F (t) 6= 0 (excitation) and c may or may not be = 0 — the general form is

mẍ+ cẋ+ kx = F (t). (13)

The solution for this equation consists of the transient response (homogeneous solution xh)
and the steady-state response (particular solution xp).

The homogeneous solution is found as described in Section 3. However, the initial condi-
tions should not be applied to the homogeneous solution, but only to the general solution
x(t). Therefore, we have to find the particular solution first:

For the particular solution, the solution depends on how the system is excited:

F (t) =

{
F̂ sinωet : case (i)

F̂ cosωet : case (ii)
(14)

Here, F̂ can be any amplitude (dependent on whether it is a force or a base excitation).
What is important here is the difference between sine and cosine. The particular solution
will be of the same form.

The complex exponential basis function can be used to describe trigonometric functions:

eim = cos (m) + i sin (m) (15)
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For m = ωet, the following particular solution is used:

xp =

{
Im{ Xpeiωet } for case (i)

Re{ Xpeiωet } for case (ii)
(16)

After obtaining the first and second time derivative of the particular solution, they can be
substituted into the original equation of motion (13).

In the case of an undamped system, the solution is simple and straight-forward. Xp can
be found in terms of the system parameters and F̂ .

For a damped system, the same approach is chosen. However, the ẋ-term results in Xp having
a complex number v ± iw in the denominator. By multiplying with its complex conjugate
v∓ iw, the complex number appears in the numerator (and v2−w2 in the denominator). By
considering the complex plane, the rules below are derived.

v ± iw =
√
v2 + w2e±iφ (17)

where
φ = tan−1 (

w

v
) (18)

Using (17), Xp can easily be converted into a complex exponential basis function. After both
the homogeneous and the particular solution have been found, the initial conditions can
be applied to the general solution

x(t) = xh(t) + xp(t). (19)

5 Arbitrary Forced Vibrations

Arbitrary forced vibrations have the general form

mẍ+ cẋ+ kx = F (t). (20)

To solve it, the equation of motion is generally transfered into the Laplace domain with the
aid of the Laplace transform:

L[ẍ+ 2ζωnẋ+ ω2
nx] = L[f(t)] (21)

Since f(t) usually only takes values on a certain inverval (e.g. a wing experiencing gusts of
wind), the standard Laplace transform does not apply. Therefore, the general transform rule
is used:

F (s) =

∫ ∞
0

f(t)e−stdt (22)

Combining with the left hand side, the following is found:

(s2X(s)− sẋ0 − x0) + 2ζωn(sX(s)− x0) + ω2
nX(s) = F (s) (23)

By rearranging the transformed equation for X(s) and then performing the inverse Laplace
transform, a solution for x(t) is found. Here, the standard Laplace transform table is used.
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6 Multiple Degrees of Freedom Systems

By discretizing the system and analyzing the free body diagram, a linear system of the form

Mẍ+ Kx = F (24)

with vectors ẍ = (ẍ1 ẍ2)
T , x = (x1 x2)

T and F = (F1 F2)
T is found. Further, M and K

are the mass and stiffness matrices, respectively. To solve this system, the transient (homo-
geneous) and the steady-state (particular) solution must be determined.

For the homogeneous equation
Mẍ+ Kx = 0 (25)

we try

xh = x̂eiωnt (26)

ẍh = −x̂ω2
ne
iωnt (27)

and — by substituting into the linear system — we get

[−ω2
nM + K]x̂ = Ax̂ = 0. (28)

This has the trivial solution x̂ = 0, in which we are not interested. A non-trivial solution is
found only if det(A) = 0.

The values of ωn for which this is true are the eigenfrequencies of the system. Negative
eigenfrequencies are discarded and ω

(m)
n (for m=1,2,...) is then used to find the corresponding

eigenmodes x̂(m) (or eigenvectors) of the system.

Then, the solution of the system is

xh =
∑
m

Am sin (ω(m)
n t+ ϕ1)x̂

(m) (29)

To determine the particular solution for

F (t) =

{
F̂1

F̂2

}
cos (ωxt) (30)

we use

xp(t) = x̂p cos (ωxt) (31)

ẍp(t) = −ω2
xx̂

p cos (ωxt), (32)

which gives
[−ω2

xM + K]x̂p = F̂ . (33)

Because M and K are always symmetric, x̂p can be found:

x̂p = [−ω2
xM + K]−1F̂ . (34)
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