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Programs Used : Check for these

• AN SYS - CFX and ICEM
and practice if
possible

History :

1st Man Richardson in 1922 - a Initial conditions are most  important .

Prandtl in 1925 → Turbulence model

Why using CFD ?

Experiments

Experiments can be achieved with similar condition , but sometimes is too expensive or too

dangerous .

Same conditions only mater if The ad Ma  are the same

CFD Colors For Directors

. All qualities ca be extracted without error
,

but there is uncertainty

a NO measurement errors ,
cheap ,

hazard free
LES GOOD ONE

° Sometimes XFOIL Is better or analytical .
Choose wisely . XX

a RAMS can not predict all He flows ¥#
RAMS
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BASIC EQUATIONS AND NUMBERS

PROPERTIES OF  FLUIDS

o Fluids deform  under He influence  of shear forces

The deformation with respect to the initial state is unbounded and the deformation velocity is  afunctionalof He shear forces
↳ function of He derivative ! SOLID NEWTONIAN FLUID

° Solids : deformation  itself is a function of He sheer force :

I s a I a
It

In He fluids ,

there is a very large number of molecules
. -

-
-a too costly to use direct integration of eauatron  of motion

a the fluid instead is modelled as Contini um
, with feud elements /

molecules

→ fluid element
a Macroscopic properties :  obtained averaging over many fluid molecules

Knudsen Number :
T

, P
, P ,

VV
, M

kn = I X  = mean free path • ten cc I Centrum  mechanics
J Ratio between  a  molecule

L L = length of transport so ten > so Molecular dynamics hitting another and he length

of the transport .

TWO OPTIONS TO EVALUATE THE FLOW

Lagrangian approach :
Eulerian approach

s Reference frame moves with fluid element
a Observer remains at a fixed position

° Material description as function of fluid element  and time
,

a Field description as function of space  and time

RE WOLDS TRANS Tort THEOREM : Eulerian

Used to express temporal change of a material volume integral as He temporal Change of he

integral of a Suarhty over a fixed domain V and He flux  over He boundary Su  of this domain

of Sff old V = # If out 0 win ios

J ( t ) CONSERVATION LAWS Lagrangian
- - -

temporal change flux  over he Usually formulated as He temporaltemporal change
og the integral

of material volume boundary Sv of He domain
. derivative of material volume integrals

integral
of a gratify
over a fixed with a dynamic boundary

domain V
.

Fe = o Ze fgpcx.tl DV = O



CONSERVATION LAWS

SIMPLIFIED

Inviscid flows : µ=o → Euler equations

Viscous effects can be  often  neglected at high reach and Re .

Dimensional Analysis

INCOMPRESSIBLE FLUID : pressure  independent  of density .

Mass  conservation  implies  volume conservation D. U = O

Energy conservation follows directly from  momentum conservation

BARO TROPIC fluids : pressure depends only on Ochs Hy

Energy equation  is not needed
.

DOTEN -

IAC flows :  inviscid and rotation free

Velocity field can be expressed as He gradient  of scalar potential field .

U = DOI

Incompressible potential flows I = O

Dimensionless numbers

When He flow  mores faster than
wares .

f.
sina.ee:::c:: .ae .

Turbulent  water bubles
.

REYNOLDS NUMBER :

Navier-Stokes in dimensionless form

7¥t D. C Kk ) t If Op - ¥0 . Oy = O ) incompressible fluid with constant density

and constant  viscus Hd .

D. I = O

Re cc I : creeping flow The > > s : turbulent flow
> Viscous forces are dominant Inertial forces dominant

Nonlinearity leads to production of small scales
.> The linear Stoles equation  is valid

for flows  in Porous media .

The
i O C 2 ) : Laminar flow



CONSERVATION LAWS Derivations fully in 02 - BASIC - EQUATIONS
.

.
.

Continuity Cauchon Conservation of mass Conservation  of Momentum

In differential form

Conservation of energy
work flux heat flux I  integral form

In divergence form heat  conduction

Gi  
= - he I

2 Xi

GRID GENERATION

DISCRETIZATION
!

Numerical methods are based on a discrete representation of solution and operators . Discrete megh of cells
.

Various CFD methods to
represent He solution :

Cell averages
.

- finite volume discretization robust and fast ICT
Point values : finite difference discretization at  center of vertex difficult for complex geometry

Coefficients : finite element dis roti ration of basis functions high order
.

but  slow
.

FINITE VOLUME
finite  volume

,
Hey do  not  overlap .

get  average on  each finite  volume

conservation laws  at  each FV evaluated with fluxes .

determine he evolution

Volver  integrals →  surface  integrals
of ke cell average .

Gauss theorem

-

crease !

Conservation law

Gauss theorem  applied

Momentum  conservation  example



FINITE VOLUME

information transferred
Several approximation methods to calculate numerically . boundary boundary

→ →  →  → →

Evaluate flux at cell faces : reconstruction or interpolation
anti hors conditions

Surface integral of fluxes : quadrature rules
.

After substituting Suitable boundary conditions
,

we obtain  a system  of equations .

DEFINE FINITE VOLUME CELLS

Topology .

.

Relations between neighboring elements keels

Geometry : Shape and size of cells and entire domain .

TOPOLOGY :

a Subdomains ca be projected o Generally not possible to project
onto Cartesian domains

> Manly rectanglesXDland a Many triangles and tetrahedrons

hexahedrons C 3 - D )

° Simple data structure  and o Complex data structure and access

direct  access through connectivity matrix
° Allows for

"

by - hand "

grid a Straightforward application to
Generation , good quality complex geometries .

control
.

> Local grid refinement by dividing
a Simple topology and implementation elements

.

a Efficient  solution algorithms a Higher  computing t  me per element

s Local grid refinement  requires STRUCTURED GRIDS
multi bloch cords

The napping from physical space to
TYPES OF

STRUCTURED GRIDS Computational space is done by
coordinate transformation



GRID REQUIREMENTS

Grid Enes must  not overlap or  intersect between  nodes .
All cells must have positive volume

.

Should be  easy to refine coarsening He grid in selected regions .

The distribution  and spacing of He boundary elements should be fine  enough to represent geometry.

The grid should be smooth no  more than I. s than before . mesh a pipe flow

The grid shoved be as orthogonal as possible .

NOT good goodAlgebraic distribution function :
in He center avoid singularities

Defined o , bloch boundaries

Popolo used :

CONFORMAL MAPPING
° geometric stretching
a exponential stretching Defined for  an entire block

,  or  a 2b plane
>

hyperbolic stretching The complex transformation Es = Elt )

maps He complex 2 - domain C 2-  =  Xtiy )
onto He complex E - domain ( 5=5 + INELLIPTIC GRID GENERATION

Formulate grid generation as a boundary value problem .

Lines of equal potential ( to = const ) and streamers ( Y -

. const )

form an  orthogonal grid

Either solve Laplace or Red space Grid

Poisson equations .

-

This method searches for each pair ( 5 , y ) a corresponding ( x. y )
, inverse laplace .

Used to improve  manually generated grids .

Refinement aliens point  or Are :  using control functions Paro Q
.

AUTOMATIC BLOG GENERATOR

I CEM CFD

Does  not  work for  complex  cases
.

Define blocking topology . Specify resolution  requirements  and

Works well for  simple geometry
}

block boundaries
.

Ioem generates  automatically He mesh .



UNSTRUCTURED GRIDS

o They offer much better flexibility .
Tetaheorons as be easier fitted to a geometry than

hexahedrons
.

ADVANCING FRONT METHOD DELAUNAY TRIANGULAR ON

8BggggoG

Sometimes requires final smoothing step : elliptic grid
Also

,
He cell site  can be controlled with background mesh .

STRUCTURED GRIDS ARE BETTER

NUMERICAL DIFFUSION :

• Reduce the effect by :

> Mahi 's cell faces orthogonal to glow direction
. ) Afon'T!'

,

On structured grids wont  align  with flow
leg will be less precise .

° Align grid lines with flow direction
.

More numerical error .

Prism Layers :

Combine He advantages of unstructured and

structured grids . Improves accuracy at boundaries
.

RESOLUTION Of BOUNDARY LAYERS
- Recommended resolutions

.

There are Case bloats gradients at  walls

Turbulence production happens mostly at y t a 20
.

The wall shear can be computed accurately and reliably only
if He first  cell is within Yt e 2



Resolution Wall Models

- Wall functions improve boundary conditions

for simple equilibrium boundary layers .
Allows

for much coarser y ' resolution

a CFX includes one
,

Cee based RANS

> Not working for strongly curved walls

at large pressure gradients and for
non .  equilibrium turbulence

The octree method

Data can be stored efficiently in a tree data structure

Every leave of the tree corresponds to a structured

grid block
.

At block boundaries
,

unstructured - grid interpolation
rules are necessary .

TURBULENCE

Osborne Reynolds first investigated It
.

Laminar flow recovers from Oishi voices at low

velocities and becomes unstable at high speeds
.

The
.

-

a

Ludwig Prandtl : discovered stream wise instability
waves  in  a boundary layer .

Toll men : found that Peat depends on  wavelength
T - S waves :  unstable  and evolve To X  and hairpin
vortices  and eventually to turbulence .



ORIGIN OF TURBULENCE

° Very small perturbation grow in shear layers if he Re exceeds a critical value

° The Reet depends on wavelength of he perturbation

° the Kelvin - Helmholtz instability appears if Here is a velocity difference across

He boundary between two fluid layers

EFFECTS OF TURBULENCE

Enhances mixing Delays flow separation

Increases Wale friction increases lift at low speeds
reduce pressure drag of buff bodies golf ball

TURBULENCE ENERGY CASCADE

Turbulence energy is generated on He largest C integral ) scales
, transferred to medium - small

Scale vortices C inertial subrange ) and dissipated in ( sub . I micro scale vortices C dissipative
scales )

) More pronounced differences at

high Rc
.

LARGE
SCALES : Vorhees  are  inducedby and strongly depend on geometry and boundary conditions of He

flow .

SMALL SCALES : Obtain their energy from the large scales through energy cascade .

Indirectly affected by geometry and b.  c
.

Easier to model than loser scales
.

CHARACTERISTICS OF TURBULENT FLOW :

Unsteady , Rotational
,

Viscous
, Breaking of symmetries ,

Chaotic
,

Wide range of last h

and time scales
.

" Coherent structures , , Potential flows are no rotational
,

therefore

potential will be laminar flows .

SMALLEST VORTICES

The smallest uonex structures characteristics can be obtained with :



LARGEST VORTICES :

Integral length scale Be of the largestvortex structures can be estimated Osias flow geometry .

two point correlation function

The turbulence of two neighbouring points are correlated this function measures he time

average correlation between fluctuating Quantities , at a distance
"

n
"

.

If this correlation  is computed for different  r
.

the integral of Rover r will be He Integral

Length scale
.

DIRECT NUMERICAL SIMULATION ( DNS )

Captures all length ad time scales of a turbulent flow . Yu ad The directly without

assumptions
. Using Nanostock equations .

These hold for laminar  and turbulent flows .

COMPUTATIONAL COST

Number of grid points Nc  ~ than Re
"

"
→ 3 Dimensions NP ~ Re

"
"

Number of time steps Nt v Nc we can compute small things at low

Total cost  - s Nt . Nc  = Re
3 Reynolds number

.

USES :

Useful for fundamental turbulence research but not for every - day engineering flow
Simulations

.



( FD FOR AEROSPACE ENGINEERS

Requirements : high Re
,

moderate M
, Complex geometry ,

Transition
,

turbulence and separation .

Derive simpler equations from conservation laws that capture He most  important flow
Qualities

METHODS : RAUS steady mean Solution

URANS include unsteady effect
LES large and energetic scales

DES hybrid methods
.

REYNOLDS AVERAGED NAVIER STOKES

REYNOLDS AVERAGING

Ensemble averaged solution
9

↳ integral ,  average .

For statically stationary processes :

The solution is decomposed in He mean value and He

fluctuation .

Reynolds averaging is an orthogonal projection :

Average the
average ,

same value
.Remind Wavier Stokes dimensionless



RULES ON REXNOCDS AVERAGING DANS DERIVATION

Substitute he sum of mean value and fluctuation into he

N - S equation .

Apply averages operator
, simplify as much as possible .

mass incompressible momentum conservation

F.  u  = O

Ju
O

accuseu 't >to > C Je
>

= I 284£
P . ( Kud tcu 'S ) = O

~
2L

pressure  and density t t at
Cu >

O

LFop > = tfTaps > t tf OLAP 's  =

Ip peps Tcu >  =  0

test
Reynolds

s QCan ) . fkn > tulku >  +  a 'D > u -

-

cu >  tu '

( Ee
00 w > → ¥00 - u >

=p . ⇐  u >  sus >  + pcw.su > >  a pea >  u
'

s  to .LU'  . u
'

>

=p .  cu >  cu >  t  To  Cu > Lu ' >
-

t  00  * .cuc ↳  
adhonal

,  used  as  independent

⑧ -

COMBINATION OF ALL DANS

Icu >

-+ Ocana> +08k'  
. u'D + f- OSPD -¥00548 = oat

RAIS
D . L a > .

- o

More unknowns than equations

Turbulence models provide approx of stress tensor

TRANSPORTATION EQUATION FOR RE STRESS RST Reynolds Stress Transport .

momentum caution multiply : The arithmetic mean of both equations is the RST with th
i - component with Uj

'

foreal form

j - component with Ui
'

ther apply K averaging operator



The order of new unknowns increases during every

step . Thus we can not solve it this way .
We have to use empirical approximations TURBULENCE

MODELS

TURBULENCE MODELS

EDDY Viscosity Hi ponies is - EDDY VISCOSITY MODEL ( EVM )

Turbulence leads to momentum exchange between fluid elements

The deviator of RS
,  

. cu
'

i uj > is proportional to he mean

IGggG••
shear rate

. Proportionality factor is Cody viscosity Vt
.

The turbulence kinetic energy adds turbulence to flow .

Turbulence

Viscosity to add mix ins .

A or dog

Substituting EVM on TANS yields :
NEW pans

turbulence

intensity .

•

Problem reduced to one scalar field : eddy " scoots
d , ghncfgeow direction

Strong assumption but  confirmed by DNS for flows  with boundary lays .

Furthermore Vt  can be einaudi
.

next
page



EDDY VISCOSITY MODELS I CONTINUED )

Dimensional arguments lead to a variety of expressions of eddy viscosity .

Models are characterized by

| Young:b:
.

Teamed transport

ZERO - EQUATION MODELS - BOUNDARY LAYER METHOD

Mixing Length - em : typical length scale of turbulence chose properly .

⑦ Turbulent mixing IS only

important  if you have veto at Eddy viscosity is approx constant in he outer part of

gradients . the b - l
.

-

#characteristic Turbulence length scales smaller hoards He walls
.

→ mixing length
is he dstace

from wall fm

Not use in complex flows around

he walls
.

ONE EQUATION MODEL

Includes turbulence iiersity in eddy viscosity
Transport equation for he turbulence

kinetic energy
"

h
.

"

one half of the trac of ke Re

Thess tensor

- -



ONE EQUATION : MODEL TRANSPORTATION EQUATION

REVIEW :

JONES I LAUNDER Two EQUATION MODEL h - E model
.

Equilibrium between turbulence production and dis , patron . Isotropic turbulence
.

em
 = CD h Vc  = Cy

Partial differential equation

E E adit , oral transport equation
because of complexity of E .

) Postulate E

Same unknowns  as in one equation model : But dis , patron is solved on E
.

Obtained in flows for  with h and E cancel out
.

REVIEW

•

•

@



Wilcox Two . EQUATIOU MODEL h . w model
,

one of most used

Solve the transport equation of turbulence kinetic energy u and a postulated

transport equator for He dis patron W .

Similar Toh - E but ues different
results

.

Transport equation for turbulence heretic energy
CD = 0.09 x = 51g
Pru - 2

p -

- Huo
Pro = 2

Transport equation for specific dissipation rate .

Review

S - A EDDY VISCOSITY TRANSPORT MODELS Spal art . All maras model

Based on postulated transport equation for a functional of he eddy viscosity .

With NOT Important probably but  anyways



Review

REYNOLDS STRESS MODELS

Directly solve model transport equations for all components of He unknown The tensor
.

Approximations of
higher  order correlations

and 0181 patron rate tensor
.

REYNOLDS STRESS MODELS ( RSM )

Pressure diffusion is rather small
, neglected Dgp

Triple correlations in He turbulent transport term are approximated by : hanja lie I Launder
.

Triple correlation  is a combination

of double correlation
.

Turbulence dis patron :  acts on small scales
. we assume scale separation and decoupling

through He tub dace energy cascade .

The dismal on  rate tensor Eij is modelled as an isotropic tensor
, represented by a scalar

wants .

Eiji } Site



Pressure - Strain correlation cannot produce or disrate turbulence energy .

{ : KatieYeonto  isotropic

rapid :  immediate effects of mean flow
gradients  and  external forces .

This ten redistributes turbulence between He components of He Re stress tensor
.

The pressure - strain correlation only affects the anisotropy aij of He Re stress lessor
.

LRR ad 56M differences In

pg .
41 I42 Of

.
RANS

RECOMMENDATIONS & EXPERIENCE

O s

D

0

0

s

LES : LARGE EDDY SIMULATION

The main question is
,

where Oo we male He

separation between large and small ?

Using a grid or  a filter . Big solved by simulation  ad

Small by modelling .



SMALL SCALES
LARGE SCALES

SIMULATION CLASSIFICATION
FILTERS or GRIDS TO Separate scales :

Spatial filter :

.

.

captures large energetic scales

removes small scales
.

D : filter width = grid width

FILTES : SCALE SEPARATION

Convolution integral " hence filter "

average basically . Spectral Dutfall

Convolution theorem
,

convolution in real Space I physical )

corresponds to. multiplication in fourier (spectral ) space

-

COMMON FILTER KERNELS

Aggregators Fleeing produces ke lose - scale part C the resolved )

Ii  = Go Ui

From He identity hi -

-
Tri t hi

"

trivially follow
He subgrid scales

hi
"  

= Ui - Ii

Filtering is no orthogonal projection

Ei t Tic Ui to



LES EQUATIONS

Wc assume a homogeneous filter 6. due  = dx 6. h Substitute hi  
=

'

hi , ni "

in Tij

Applying this filter to He momentum equation goes .

And He N . S ess for day scales

Sub grid Scale Modeling

Receive mats : exact  is impossible
.

> we want to model ke effect of he sub grid . scale turbulence on He large resolved scales
.

> Observations
.

• Sub grid scales receive energy through energy cascade

• Backscatter  is  much smaller than forward arrow Site !
• Dis , patron happens  on  unresolved scales

.

° Sobs rid scale  models have to provide He correct energy drain from He presented scales
. If not

,

this can happen :

SMAGORWSUY MODEL
Turbulence causes momentum

exchange analogously to

He molecular diffusion
( gas line tics )

Cs 20.2 from energy spectrum of

homogeneous . 30 tropic turbulence

Using Praotls
mixing ( o . equation ) or LES we obtain

Close to the walls Cs has to be corrected

by van - Driest damping .



SMAGORINSUY MODEL REVIEW
DSM : DYNAMIC SMAGORINSKY MODEL

The problem  with this model is with he

Cs
.

The dynamic Smagorinsuy ( DSM ) proposes
a Cs  = Cs Cx , t )

hypothesis :

Most of the effect of He SGS stress tensor

'S doe to tee interaction btw th Small and

large scales
.

Turbulence on those  scales  are  similar

DSM : CONTINUED

.
The filtered velocity feed is filtered usain using a lest

filler SI 2B

Tig  ad Iij can be modeled

~ with he same  value for He
dii

neooooe.e.agssigt.no?iiomshs
)

The germano  identity :  Icj  =Iij t Tej connects He models  on filler  and test filter
level

. LT. = Fits - Ei . E,
→ Leonard stress

If we  substitute He values :

CD = CCST can  not

REVIEW be extracted drag .

Cos C x
,  t )  is filtered  by

If we  neglect th spatial variation of Cb we obtain :

test - filler .

Solved by least - square optime cation

This particular form  was proposed by Lilly Haas ) and should be proffered

over He original proposal of Germano

SCALE SIMILARITY MODEL

Approach without He edge viscosity approximation

The resolved filtered clouts is used as  unfiltered velocity and substituted into He definition of He Sos tensor
.

Numerically unstable , not  enough dissipation .



APPROXIMATE DECONVOLUTION MODEL ( ADM )

Generalized high - order scale - similarity model

Sets expansion of inverse filter operation : Deconvolution of He filtered velocity returns He

unfiltered velocity with arbitrary accuracy .

More information how  it  works in pg .

33 of 06 - LES

MIXED MODELS ZANG : combined method with a dynamic eddy viscosity model

one of He best

CURRENT TRENDS

Combining DANS and LES

• tonal coupling : some a ones use RANS and others LES problems at  coupling conditions
.

• Detached eddy simulation : based on 80 resolution and wall distance .

Implicit large - eddy simulation ( ILES )

SUMMARY



FINITE VOLUME METHOD

a The computational Space is decomposed into non . overlapping control volumes :  = finite volumes C i v )

s Every FV is considered as a control volume C cu ) for  which  we compute ke evolution of
He mean valves .

° The solution represents the cell average value .

The conservation low  is integrated over He FV

Gauss ' theorem is applied to transform volume integrals to surface Integrals .

The fluxes THE over the FV surface Su determine He time evolution of He cell average

The numerical evaluation of He flux balance over He FV resoles

approximation methods
.

The fluxes have to be approximated from he known  cell average

Solutions y

For  each FV !

APPROXIMATIONS :

Quadrature : surface integral af fluxes is a sun of discrete values at one  or Several points
athe cell surface .

Interpolation : Values of 4 at He cell surfaces are reconstructed from He values of 9 at He All

centers



APPROXIMATION OF SURFACE INTEGRALS

MID - point role : ( 2nd order )

Fe = fgehlds = Ie Ae Ae - fgesos Ie = fee fseulds = mean value
.

The integral is approximated as He product  of the integrant Ye with the area of He cell face .

ERROR :

Yen -

- Yo

"

II 2¥
,
lot 3¥ lot .

. . .

F- x - xo

! WINE -

-
h

. Yo -12¥
,

7¥40

If u .EEI.toerror truncation
→ Of )

- -

Midpoint  rule

The order of He method determines he "

rate of grid convergence for a sufficiently smooth solution "
.

we car  observe that the higher  order methods are

actually not so good for low resolution and large cells
.

TRAPEZOIDAL RULE
: ( 2Nd order ) €ogE↳g#②gL€gSfhth order )

APPROXIMATION OF VOLUME INTEGRALS



INTERPOLATION

To evaluate He quadrature rules we need to compute He flux  at  one or several points at he

cell surface .

These points are reconstructed from He volume integrals by spatial interpolation .

He =L ( Yw
,

Qp , HE
. . . )

UPWIND INTERPOLATION ( Upwind differencing scheme . VDS ) Linear INTERPOLATION ( central Offerman
scheme - CDS )

TRUNCATION Error - NUMERICAL DIFFUSION

Analysed with Taylor series expansion :

Truncation error of UDS

Proportional to grid width He - xp )

EXAMPLE : ODS discretization of linear  advection equation :

Effect of numerical approximations on numerically computed solution ?

Upwind approximation :
Taylor series e. isms ,  on of y

numerical method

let  alone
error

what  we  wat to  compute



EXAMPLE ( CONTINUED )

Substitution

We neglect He truncation error

The exact  solution will be including he truncation error .

This error is an  ad tonal

01 fusion term . ( Numerical

diffusion )

-

A numerical method with negate I ND ) 's unstable .

XII expressed as constant .

. If be original
At  E DX IV equation has adiffusion term  already

Max  accuracy at at - SHU
CFL = SEE

, Hn both diffuse ions are summed
.

The = ¥ The
effective

= Y¥w
TRUNCATION Error ON CCDS ) Central differencing scheme

approx proportional to He Square of He cell size

( Xe - Xp ) C XE - Xe ) 2nd order  method

NUMERICAL DIFFUSION AND DISPERSION

DBtggd

DISCRETIZATION OF GRADIENTS

To evaluate diffusion terms we have to approximate gradients of 4 at the FV surface
.

Viscous stress is approximated with a Cbs method because M 's closely

corresponds to He isotropic character of a diffusion :

Joe
(2×-12 kXE - XP



DISCRETIZATION OF GRADIENTS ( CONTINUED )

From the Taylor series expansion follows :

Soooooo
24

( ⇒
e

= 4E-YP_
, g Es

XE  - Xp

Non uniform grids ,
Sst  order method Since He leading order error scales with Sx

For uniform grids ,
2nd order method

.
The order  increases by one

.

p e E
• • a

NON UNIFORM GRID

Conclusions
1. Refire cells by splitting them Into equal intervals :

• Non uniform grids  car give He same

rate of grid convergence as refinement
of uniform grids ,

The first  order tons  appear  where He distance to both sides is  not He sane
. o Grids should be smooth

e global truncation error  will converge  only slightly slower than a 2nd order  method
.

2. Refine cells by splitting hem into Sob intervals with equal stretching
.

The first  error term converges faster than He second error tem
. 20 order convergence.

HIGHER ORDER METHODS

- Can give  more accurate solution  on same grid .

- Can be obtained by includinginformation from  more  neighbor  cells
.

• Simple for  structured grids

• Difficult computationally expensive for  unstructured grids .

AN Sys - CFX  INTERPOLATION

1st  order Upwind Differencing Scheme VDS a 2Nd order Central Differencing Scheme CDS

2nd order Upwind Differencing Scheme UD S2

1st - 2nd order blend factor ( VDS a c . > Ubsz
, O Ep Es )



UNSTEADY PROBLEMS

° For unsteady problems time has to be discretized aswell
, making it a 4th dimension

.

⇒ Unsteady problems ,
He future has no  influence on

the past ,
thus they are parabolic in time .

°

Unsteady problems = Initial boundary value problems I solution depends on initial conditions and boundary
conditions )

a Same method as spatial discretization

EXAMPLE conservationlaw : What  is the solution y at tries th  = to  + St

Integration

ME MARCHING METHODS

For a small It all methods converge to He sane solution

The order of a  method bees how fast  it  converses to too IS At  is sufficiently small .

CFL = Styx cos is good enough for time integration errors .

IMPLICIT Values of 4 at t  > En EXPLICIT 4 at tnonly
ADVANTAGES

ADVANTAGES
No  iteration necessary , efficient

Stable for much large time steps
straight forward implementation

DISADVANTAGES Low memory requirements

Large memory refinements DISADVANTAGES

iterative G
,  complex  implementation Unstable for large time steps .

Careful with implicit time marching and LES CFL gives  max step



LOCAL us PHYSICAL TIME ST ED

The maximum reasonable time step she At  is limited by flow physics and or numerical stability .

The solution must  not physically propagate over a large distance than what is covered by the

influence domain of He computational steal .

Influence domain : h Cz cell width ) Improvements by

Signal speed : S = lol , c compressible St  
= Stix )

S -

- I U I incompressible

Max time step : Its men his → Appropriate time step Is often limited by smallest  cell in domain
.

Conversed steady state results in identical but  are obtained faster with Local time step . But the transl hat  is

not good . Can be  used as  on  accelerator in dualtime stepping methods .

DUAL TIME STEPPING METHOD

Split discrete time oeiuohue into :

• Large physical time step At
,  using an implicit  method

.

• Pseudo
- time part se

Ltda

Discretization with Euler implicit for physical time and Euler explicit  with local time step she for pseudo time
.

-
-

pseudo time physical time

AN SYS - CFX

Dual time stepping method Local or physical time step size

1st  order Euler Cimplicit ) Impose CFL if needed .

2nd order Euler C implicit )



BOUNDARY CONDITIONS

EXAMPLE : ID Diffusion - advection equation Time : 1st  order backward Euler c implicit )
god

Space : 2nd order central Offences c uniform grid )

Discrete equation :

As St TED

The Sumatran of all advection  and diffusion terms leads to  a linear
algebraic systemOrder by index  of i

Set  of algebraic  es . for ever consecration

law  and every cell
.

Index P : post  where we  approx PDE

Index  i : runs  over  all cells

Ap
,

Ai : depend on gnd , geometry
and fluid properties .

Gp :  includes  all hows terms  at previousLINEAR 17A - ION : how to treat nonlinear PDEs time level
.

Navier Stoles we  a system of nonlinear PDEs

Interaction  of vortices  o.O turbulence result from He grad rake

nonlinearity .

Implicit time discretization methods are applied to  a linearized version of N - Sean .

BOUNDARY CONDITIONS

Discrete operators approx He flow  evolution in  a  cell as a Possible choices for linear , try :

function  of He Solution  in  neighbor cells
. But

,  what do  we

do  at He domain boundaries ?

o N . s describe initial boundary value

problems

° A  well posed problem  requires  correct

initial conditions  and correct boundary
conditions

TYPES OF BOUNDARY CONDITIONS :

I . Diriohet boundary condition : 3
.

Robbin boundary condition :

Impose value of value ( Y ) on boundary Combination of Dirichlet  and Neumann

Us Periodic boundary condition :
2 .

Neumann boundary condition :

Chose bonding surface such that  values of variable should be

Impose gradient of variable (doin ) on He boundary He same  at two  opposite  walls .



EXAMPLE : NO SLIP WALL

Advection I convection through  wall is NULL

No - slip condition plus incompressible continuity equation yield in relative  wall coordinates
.

Pressure gradient normal to  wall is NULL

Neumann boundary condition for pressure .

Viscous stress :

Viscous  normal : Viscous tangential : one  side differences  approximation .

we can also  use  wall - stress model to  approx

viscous  shear
. Incorporate  modeled steer  stress

as source ten
.

EXAMPLE : SYMMETRY

Assume that a mirrored solution confines on the other side of He bondage :

No flow through He boundary

Tangential viscous shear  stress of U - compftp.T#ffAqgggdlSapccrs
.

Normal viscous is approximated as before

EXAMPLE : INFLOW EXAMPLE : Outflow

SUPERSONIC : SUPERSONIC :

Single - species N - Sea
,

5 independent  variables No  upstream  influence .
No dirichlet b.  c

.

have to be specified as Dvichet boundary
conditions

. Only Neumann be
.

. density ,
3x  momentum

,
and energy

'

pressure .

temperature , velocity vector SUBSONIC I  INCOMPRESSIBLE

SUBSONIC : I variable as Dirichlet b.  c
.

usually static

pressure .U independent variables as Dirichlet boundary

•
Density and 3xmomentum

*
Po

,
To

, flow direction
.



BEST Practice For BOUNDARY CONDITIONS

> Boundary conditions approximate the reality

> To limit  un physical effects , hey should be located as far away as possible from region of interest
.

o Interference flow can lead to un physical oscillations and reflections .

• The choice of boundary conditions can significantly affect He convergence rate
.

° Avoid "

Opening conditions "  and never  over - determine He problem .

PRESSURE VELOCITY COUPLING

COMPRESSIBLE N - S EQ . INCOMPRESSIBLE N - S EQ
.

Tosefta

DISCRITTATLON OF  THE PRESSURE Poisson

Pressure term Momentum equation x - dir

Central differences scheme on uniform grid

Pressure is effectively discretized on  coarser grid

Velocity and pressure of cell P are decoupled .

Pressure Poisson equation  with CDS Neither mass nor  momentum  ceg . couple pressure

and speed at  any point . Oscillations on pressure
can  occur and remain undetected by ice numerical

scheme !



RULE & Chow INTERPOLATION

Pressure
oscillations can occur and are not damped by th numerical scheme if we di soothe pressure

and velocity with CDs on a common grid .

> Coupling is restored by :

• different grids C staggered ) for pressure and velocity .

• Special interpolation techniques for He pressure .  - s Rhee I Chow :

METHOD RHI 't & CHOW :

Tay cored interpolation method for the mass flux through cell surface .

Include th pressure gradient  into interpolation rules for be advection velocity across finite - volume

cell faces . . .
NOT  important probably .

EXAMPLE

K¥1c-

SOLUTION ALGORITHMS FOR LARGE LINEAR SYSTEMS

LINEAR ALGEBRAIC SYSTEM

Discretization leads to a linear algebraic system

two solution methods

4 = A
'

. b direct  or iterative



DIRECT SOLUTION METHOD

Invert the matrix A to  obtain solution

UI= AI?be Problem : memory requirements
She of inverse matrix A

- I
,

A  is tipi  call , sparse : a lot  of zeros in He entries

but A -2 does not have to be
.

GAUSS - ELIMINATION

Multiply tee first row of A  with Says , ,

and Subs tract from second row .

Last line of U has only one nonzero city

Requires OCN 3) operation for Ouse C Non - sparse )

matrices

LU ( lower - upper ) factorization

Matrix A  can be decomposed in product of 2 triangular matrices L and U
.

|%%
!%!

" "

"

" " "  " " " " : " " " "

Advantage : decomposition  is  independent  of right hand side

Disadvantage: d and U are dense also  if A  is  a  sparse matrix

DIRECT METHODS ITERATIVE METHODS



ITERATIVE SOLUTION METHODS

Split A as  a part N that  can be inverted easily ad a part P for which computing he inverse  is difficult

The linear system  is  re -
written accordingly Use symple iteration Scheme

Alternative iteration scheme
,

which is better in terms of round - off errors :

RESIDUUM : Error .

.

They are related : In = ItE
"

can be solved
,

but  it  will be as complex as He problem .

Residuum converses before

ITERATION  matrix 6 : example

Change of error :

Necessary for convergent  is that spectral radius of G

IS smaller than A faster he less radius
.

JACOBI METHOD

Spectral radius of iteration matrix for Poisson  es .
 on

Decomposition  of A
uniform grid

• Diagonal elements  into N

• All the rest goes into P

CHARACTERISTICS :

Simple and robust

Ves slow convergence for large problems .



GAUSS - SE DEL METHOD

Decomposition of A :

• Diagonal elements into N

• Elements  in lower triangle go formally into N
, however , not inverted but multiplied with Ints

• Elements In upper triangle are in Pao will be multiplied with Y
"

.

Implementation same as Jacobi
,

but need to remember yn

Spectral radius same  as Jacob '

Accelerate it faster  with successive over - relaxation

INCOMPLETE LU FACTORIZATION

a A  is  approximated by product of L and

U .

> Iw only computes elements that are non - too

in A .

a dad U are sparse  if A  is sparse .

Compared with complete factorization : L and U are  sparse  as  well
. Memory is  manageable .

CFX

Coupled Iw solver for u ,
V , w and p

Requires more memory and operations than uncoupled

methods

More robust  and Faster convergence .

Less iterations
.

MULTI GRID METHODS

OBSERVATION : Adapt he grid to match He error begin ad decrease computational time
.

Iterative solvers quickly reduce  errors wth a small wave length ,
which  is on the order of the cell size

.

Errors with Cage wave length converse veg slowly .

IDEA
.

Converge acceleration by adapting snd to error wavelength :

•

.

Sylvefor part  with lose wave length On  a  coarse grid . Solve for pot  with  short  wave length  on fire Sid .

Interpolate  solution back to fire grid .



I

MULTI GRID METHOD ( CONTINUED )

By
projet ing He error  on a coarser grid , Case ware lengths appear smaller ke be Soho .

° Algebraic system in coarse grid is much bigger thus computational time is decreased
.

a Direct solvers are used on coarsest grid level
.

• Information exchange : . Method :

It

• Fine → coarse :  = Restriction

• Coarse  → fine :-. Prolongation

Many ways for walking through the grid hierarchy .

Most popular are the Vad w cycles .

MULTI  GRID METHODS :

• Geometric Multi grid Coarsening is based on a  user defined or  automatically serrated grid

• Algebraic Multi grid Coarser in , is based on coefficient  matrix .

ALGEBRAIC MULTI 6 RID

Thediscretization is done only once on He original ( fine ) grid

° The discrete equations ( coefficient  matrix ) for He coarser grids are obtained by summation from He fine grid.

• Absolute  value of coefficients determines  which lines and columns C cells ) are nosed

Irregular shapes



VERIFICATION & VALIDATION

VERIFICATION comparison  with known solutions VALIDATION
: comparisons with experimental data

° Is th code doing what is supposed to do ?
° Simulation good representation of reality ?

O

° Influence of numerical approximations Inference of model assumptions

° Physical issue .> Mathematical issues

Modelling error C validation )

Numerical error C verification)

Types OF Errors METHODOLOGY FOR VENFICATON

Sources Numerical errors :
2 Requires  comparison with :

. analytical solutions

. semi  analytical solutions

. benchmark Solutions

2. Code comparisons =  verification  activity !

3
. Accuracy recs .

 is after  more  stishtent that  in

validation  activities
.

TUERM . NOLO  67 4
. Document  verification

5 . Evidence gathered from He users
.

6
. Must be repealed for  ay change in He code

Consistent schemes It U exact  . Uh
,  ell = ① ( HD

,
JP )

DISCRETIZATION ERROR numerical diffusion .

Depends on grid quality ,  cell size  and time step .

If possible select  a high order  method depends  cell resolution

Grid convergence study enables He separation btw numerical

CONVERGENCE ERROR truncation  and error of physical model .

Residual 20-3 are  not enough



COMPUTATIONAL GRID

The resolution of He boundary layers is important for :

. Friction coefficient

. Flow separation

• Transition and turbulence

The gradient of all relevant qualities should be resolved

The geometry should be resolved .
When this is not possible , simplify He geometry before meshing .

The quality of He grid is critical for : Ctx .

.

• Accuracy of discreet ta ton Wall functions switched on if :

- Convergence behaviour Laminar sub - lager is  unresolved

An epsilon - based turbulence model IS selected
.

° Time step SIZE

Critically analyse vale of yt , use yet  CI at  wall -

Error ESTIMATION

Asymptotic  convergence should be verified using at least 3 solutions D
, Diz

, $ , u

Singularities  and discontinuities Omphale He analysis .

METHODOLOGY FOR VALIDATION
MODELLING ERROR :  check consistency with model assumptions

Beguines experimental data .

> Can be performed on subsystems and unit tests
.

MODELLING ERROR TURBULENCE :

Choice of model ca  affect He results
.

LES is good

MODELLING ERROR - THERMODYNAMICS

- The standard parameters  are cello under dry and

lukewarm  conditions .

The transition point btw Camino  and turbulent flow
' In  reality ,

humid air  and temperature charges .

should be well captured .

o Empirical Cows have  a  workin  range on temp

SUMMARY a Ideal Gas also has a raise

DOMAIN SIZE AND BOUNDARY CONDITIONS

CFD b.  c .  are not realistic

Experiments have  errors

Inflow  and far freed critical

Echota of b.  c  influences convergence


