StuDocu.com

AE4202 example exam questions

CFD for Aerospace Engineers (Technische Universiteit Delft)

If you can answer about 60% of these, you're probably in decent shape.

- 1. What is the oldest turbulence model still in use today, and when was it developed?
- 2. Who developed the first LES with an eddy viscosity model and when?
- 3. What did jones & Launder develop in 1972?
- 4. What did Rhie & Chow develop in 1983?
- 5. Who developed the k-omega model and when?
- 6. Who developed the dynamic eddy viscosity LES model and when?
- 7. Who developed the SST model?
- 8. Why do we use CFD, list 3 reasons?
- 9. What does CFD stand for?
- 10. What are the 3 steps of Pre-processing?
- 11. What are the 3 steps of Post-processing?
- 12. What is the equation for the Knudsen number?
- 13. What is an approximate value for the Knudsen number in continuum mechanics?
- 14. What does the Knudsen number represent?
- 15. What is the difference between a Lagrangian and an Eulerian frame of reference?
- 16. What is the equation for Reynold's Transport Theorem?
- 17. What is the continuity equation in differential form?
- 18. When do we use the Euler Equations?
- 19. When can viscous effects be ignored?
- 20. Potential flows are?
- 21. Barotropic Fluids are?
- 22. What is the difference between finite volume, finite difference, and finite element methods?
- 23. What finite method is CFX based on?
- 24. What is the incompressible navier stokes equation?
- 25. What is the number that represents inertial forces to viscous forces?
- 26. What is the equation for the Reynolds number?
- 27. What is the number that represents advection velocity to speed of sound?
- 28. What is the equation for Mach number?
- 29. What is the number that represents unsteady forces to steady forces?
- 30. What is the equation for the Strouhal Number?
- 31. What is the number that represents inertial forces to gravity?
- 32. What is the equation for Froude's number?
- 33. What is the number that represents inertial forces to surface forces?
- 34. What is the equation for the Weber number?
- 35. What is the equation that represents viscosity to conductivity?
- 36. What is the equation for Prandtls number?
- 37. What situations describe a large and small Weber number?
- 38. Which situations use a Strouhal number?
- 39. Which number describes hydraulic jumps

- 40. What is the Reynold's number for creeping flow?
- 41. What does that represent?
- 42. When is flow laminar?
- 43. When is flow turbulent?
- 44. Which forces dominate creeping and turbulent flow respectively?
- 45. What is the difference between topology and geometry?
- 46. Draw a structured grid and an unstructured grid.
- 47. Draw a hybrid grid.
- 48. What is an advantage and disadvantage of a structured gride?
- 49. What is an advantage and a disadvantage of an unstructured grid?
- 50. What are the 3 different structured grid topologies?
- 51. Use Delauney triangulation to create a new grid to accommodate this point.
- 52. Use advancing front triangulation to form a grid for this piece.
- 53. What is numerical diffusion?
- 54. What is the increase in computing time for an unstructured grid?
- 55. How does one determine grid resolution at wall boundaries?
- 56. Show an example of how the octree grid method works.
- 57. What is the Kelvin-Helmholtz instability?
- 58. What can turbulence be used for?
- 59. Describe the turbulence energy cascade?
- 60. When is scale separation most pronounced?
- 61. Name 4 characteristics of turbulent flows.
- 62. How does one find the characteristics of the smallest vortices in turbulent flow?
- 63. Give the equations for Komogorov length, time, and velocity.
- 64. What does DNS stand for?
- 65. How many grid points are required for a DNS?
- 66. What about in 3D?
- 67. How many timesteps are needed?
- 68. What is the total computational cost of a DNS?
- 69. What do we use DNS for?
- 70. What does RANS stand for?
- 71. What is Reynolds Averaging?
- 72. What is the NS equation in dimensionless form?
- 73. What is the Reynolds Stress Tensor?
- 74. What are the terms for the Reynolds Stress Transport Equation?
- 75. What does EVM mean?
- 76. What does RSM mean?
- 77. Name 2 EVMs
- 78. Name 2 RSMs
- 79. Name an EVM + RSM
- 80. What is the eddy viscosity ansatz?
- 81. What is the transport equation for turbulence kinetic energy?
- 82. What is the Prandtl one-equation model good and bad for?

- 83. What is the k-epsilon model good and bad for?
- 84. What is the k-omega model good and bad for?
- 85. What is the Spalart-Allmaras model good and bad for?
- 86. What do RSMs directly solve for?
- 87. What does the slow term of the pressure strain correlation represent?
- 88. What does the rapid term of the pressure strain correlation represent?
- 89. What does LES stand for?
- 90. What is the life cycle of turbulence?
- 91. Name 3 characteristics of large turbulence scales
- 92. Name 3 characteristics of small turbulence scales
- 93. Which scale is computed directly?
- 94. Which scale must be modeled?
- 95. Where does most dissipation occur?
- 96. Which is cheaper, a RANS or LES?
- 97. What is the Convolution Theorem?
- 98. What does the filter kernel look like?
- 99. Draw a top hat filter kernel in real and spectral space.
- 100. Draw a gauss filter kernel in real and spectral space.
- 101. Draw a spectral cutoff filter in real and spectral space.
- 102. What is the equation for the subgrid scale stress tensor/
- 103. What is the intended consequence of subgrid-scale modeling?
- 104. How does dissipation (too much or too little) affect the turbulence energy cascade?
- 105. What is the equation for the eddy viscosity model subgrid scale stress tensor as proposed by Smagorinsky?
- 106. What is the approximate value for the Smagorinsky constant if a flow is isotropic turbulent?
- 107. What must be done to correct a Smagorinsky model near walls?
- 108. What's the difference between the dynamic and regular Smagorinsky models?
- 109. Name two methods which combine RANS and LES.
- 110. In the Finite Volume Method, what does the solution represent?
- 111. What is a finite volume?
- 112. What is quadrature?
- 113. What is interpolation?
- 114. Draw standard compass notation.
- 115. What is the approximation of the midpoint rule?
- 116. Write the Taylor Series Expansion of the midpoint rule.
- 117. Draw a graph with the log(error) versus cell size for 1st, 2nd, and 4th order approximation.
- 118. What does the order of a method affect?
- 119. What is the trapezoidal rule?
- 120. What is simpsons rule?
- 121. What does UDS stand for?

- 122. What are the equations for Upwind Interpolation?
- 123. What does CDS stand for?
- 124. What are the equations for linear interpolation?
- 125. How does one find the error of a numerical scheme using taylor series?
- 126. What is the discrete equation for truncation error?
- 127. What is the numerical effect of truncation error?
- 128. How does one calculate the CFL number?
- 129. What order method should be used on an unstructured grid?
- 130. What is an advantage to a higher order method?
- 131. When should one not use a higher order method?
- 132. Name 3 types of interpolation schemes available in ANSYS CFX..
- 133. What does the solution of an unsteady problem rely on?
- 134. What is the simplest solution for an unsteady problem?
- 135. What are the two types of time-marching methods?
- 136. What is the equation for the euler-forward (explicit)?
- 137. What is the equation for the euler-backward (implicit)?
- 138. Name 3 implicit time marching methods?
- 139. What are the equations for the midpoint rule and trapezoidal rule in time marching?
- 140. How do we determine a sufficiently small timestep?
- 141. What are 3 benefits to the explicit time marching method?
- 142. What are 2 detriments?
- 143. What are 3 benefits to the implicit time marching method?
- 144. What are 2 detriments?
- 145. When should you not use an implicit method?
- 146. Why would one choose a local time step?
- 147. What is the physical time step limited by?
- 148. Name the four types of boundary condition and what they impose.
- 149. In a no-slip wall, what values are null?
- 150. For a supersonic inflow, how many boundary conditions must be defined?
- 151. For incompressible inflow, how many boundary conditions must be defined?
- 152. For supersonic outflow, can one assign Dirichlet boundary conditions?
- 153. How many boundary conditions in subsonic outflow must be Dirichlet?
- 154. What is the equation of state for a perfect gas?
- 155. What is the Poisson equation?
- 156. In a direct solution with N grid points, how many entries are there?
- 157. Why do programs generally not use direct solution methods/
- 158. Name 2 direct solution methods.
- 159. For Gauss-elimination, how many operations are required for dense matrices?
- 160. What are the steps for LU factorization?
- 161. Why does it not matter to solve matrices exactly?
- 162. What is the definition of error??
- 163. What is the definition of residuum?

- 164. What is the relationship between error and residuum?
- 165. Which converges earlier, residuum or error?
- 166. What is the condition for convergence?
- 167. What is the general equation for an iterative solution method?
- 168. What is the spectral radius equation for an NxM grid?
- 169. What is ILU matrix factorization?
- 170. What solver does Ansys-CFX employ?
- 171. Name 2 multigrid methods.
- 172. What is the geometric multigrid method?
- 173. What is the algebraic multigrid method?
- 174. What is the difference between verification and validation?
- 175. Name 3 sources of numerical errors.
- 176. What is the difference between bias error and precision error?
- 177. How does one check for a discretization error?
- 178. How small of a residual is acceptable?
- 179. How does one check for turbulence modelling error in RANS?

- 1. Pronotte model in 1925, oldest and still used today.
- 2. Smajorinshy 1963: LES and eddy UISCOSITS
- 3. First two-egation bibelence nodel for Reynolds overaged Navier Stokes (RANS) smulation $\rightarrow L$ -E model
- 4. Methods for solving the pressure poisson equation.
- 5. Willox in 1988
- 6. Germano 1990
- 7. Menter 1994
- 8. Experiments can become complicated, expensive, dangerous. There is uncertain flow bounding conditions on the experiment. There is measurement errors on experiments, Experiments give a view of a similar problem but rarely the same.

 All qualities can be extracted everywhere without error, is cheap and harvod free.
 - 9. Computational fluid dynamics, Colors for directors
 - 10. Generate compulational gnd, define bounders conditions, obline models for fluids and burblence.
 - 11. Visualize the results, quotify uncertainties and arrors, analyze and interpret results.
 - 32. $Kn = \frac{\lambda}{L}$ $\lambda = mean free path L = Censth of transport$
 - 03. Un << 1 for contrum mechanics
 - 14. Ratio between a molecule hirtus another and he leasth of the transport.
 - 15. One is static and sees the particles enter the reference frame and the other is dynamic and follows the fluid element

16.
$$\frac{\partial}{\partial t} \iiint\limits_{V(t)} \phi \ \partial V = \iiint\limits_{V} \frac{\partial \phi}{\partial t} \ \partial V + \iint\limits_{S_V} \phi \ \omega \ n_i \ \partial S$$

- 17. 3+ Vp w = 0
- 18. When $\mu = 0$, viscous effects can be respected at high Mach and Reynolds 19.
- 20. Truiscid and notation free Plans
- 29. Flows where pressure depends only on density.
- 22. Finite volume, average at each linke volume. Finite difference: discribiation at center of vertex.

 Finite element: discretization of basis functions.
- 23. Finite volume disortization
- 24. $\frac{\partial u}{\partial \xi} + \nabla \cdot (uu) + \frac{1}{\beta} \frac{1}{2} \nabla \cdot \nabla u = 0$ $\nabla u = 0$
- 25. Reynolds Number 26. Re = $\frac{PVL}{n}$
- 27. Nach number 28. $M = \frac{U_0}{Co} = \frac{U_0}{\sqrt{\gamma RT}}$
- 20. Stroubal number 30. St = gto = g. Lin
- 31. Froze number 32. $F_r = \frac{U_0}{V_{dS}}$

- 33. Webber number 34. We = $\frac{P_0 L U_0^2}{\sigma_0}$
- 35. Presottl number 36. Pr = Cp./o

- 27. Small, andle drop of water on couldness medium. Migh, Turbulent water bubles.
- In swimming or flying annals, sound agrenous on the wind.
- The fourse number 39.
- Re cc 1: crepling flow.
- 42. Flow there He viscous forces are dominant, flows in porous media.
- 42. When Re < Recrit
- 43. When Re > Recoit
- hy. Creepling viscous forces. Turbulent du namic forces
- 45. Topolosy: relations between neighboring elements. Geometry, shape and size of cells.

46.

- 48. Simple data structure and access, also efficient. Disadvantages: less complex as automated
- LG. Straight forward application to complex excess Disadvaleges: complex to access data.
- 50. C-grd, O-grid, N-grid

52.

51.

- The truncation error of discrete approximations of the continuous appearances affects the numerical solution.
- He morease in thre it takes to conveye to a solution. 54.
- The wall shear can be computed accurately and reliably only if the first cell is within $y+ \approx 1$

56.

- 5). Appears if the is a velocity difference between two fluid elements or across the bomdery.
- 58. To enhance mixing or to inverse wall friction
- 59. Turbulence is generated on the Bisest scales, transferred to medium-small Scale workers and dissipated in micro-scale workers.
- 60. More pronounced differences at nigh Re.
- Unsteady, rotational, Viscous, Charotic, breaking of symmetries
- WITH He holmosomorou equations
- Kolmogorov length

Kolmogorov velocity $u_K = (v\varepsilon)^{\frac{1}{2}}$

Kolmogorov time

64. Direct Numerical Simulation.

65. No ~
$$\frac{L}{\eta_u} \sim Re^{3/u}$$
 66. $\longrightarrow 3 D_{\text{imensions}} No 2 \sim Re^{9/u}$

- 69. Useful for fundamental turbulence research but not for every-day engineering flow simulations.
- 70. Regnolds-Averaged rawler stok egrations.
- 71. Is an awasing procedure applied to windle growth thes such as speed wirit . time.

72.
$$\frac{\partial \underline{u}}{\partial t} + \nabla \cdot (\underline{u}\underline{u}) + \frac{1}{\rho} \nabla p - \frac{1}{\text{Re}} \nabla \cdot \nabla \underline{u} = 0$$
$$\nabla \cdot \underline{u} = 0$$

$$\frac{\partial \underline{u}}{\partial t} + \nabla \cdot (\underline{u}\underline{u}) + \frac{1}{\rho} \nabla p - \frac{1}{\text{Re}} \nabla \cdot \nabla \underline{u} = 0$$

$$\nabla \cdot \underline{u} = 0$$

$$\text{Tij} = -\langle ui' uj' \rangle \quad \text{Matix containing all the obess forces on }$$

$$\text{Tensor} \quad \text{We fluid element.}$$

$$\frac{\partial \left\langle u_{i}'u_{j}'\right\rangle}{\partial t} + \underbrace{K_{ij}}_{\text{Advection}} = \underbrace{P_{ij}}_{\text{Production}} + \underbrace{T_{ij} + D_{ij}^{v} + D_{ij}^{p}}_{\text{Diffusion}} + \underbrace{\Phi_{ij}}_{\text{Pressure strain}} - \underbrace{\mathcal{E}_{ij}}_{\text{Dissipation}}$$

76. Reynolds stress models.

Janes & Lander } top of willox h-w, h-E, prondte

38. wallen and Johansson 200 ad 586

79. EARSM

8D.

81.
$$k = \frac{1}{2} < ui'ui' > = \frac{1}{2} \sum_{i=1}^{2} < ui'ui' >$$

- 82. Good for external flows and attacked b.C. Bad for internal flows and flow separatur
- 83. Good for external flows and not strong pressure gradients, or separation. But for predicting anisotropic influences.
- 84. Good for boundary layer flows and with high pressure gradients and separation. But, sensitive on inflow at free steam handy conditions. Over estructes turbulence production at organition point.
- 85. Good for: simple attacked scows and for slow separation location. Bad, slow reatachment and free shows Cases.
- 86. RSM directly solve transport equations for all components of the unknown Re tensor.
- 87. Is the relation to isotropic equilibrium state
- 88. Immediate effects of mean flow gradients and external flow.
- 89. Large cody simulation
- Go. Turbulence sets produced in the hyper scales and is transmitted to the medium-small scales ad findly it gets dissipated in the microscolles. Backscather poodice turbolince again.

- 91. Produced by extend energy input, depend on seconding and boundary conditions, inhomogeneous and only softened darge and long living. Uph energy content. Modelling is difficult
- 2. Receive energy through coscade from laye scales. Similar in all turbilist flows. Honogeneous and isotropic usually. Easy to model.
- 93. Luye scales 94. Small scales 45. Small scales 96. TRANS 15 cheaper
- 9). Convolution in the real space (physical) corresponds to multiplication in fourier (spectral) space

98. Was different looks

on the large resolved scales.

Qaoy: Too much dispation: energy ours before
Too little dispation: emegs grows

Q405: Cij = 2 Tun Sij -2085 Sij

6 206: Cs = 0.14 -0.25

6307: Correct the Cs by len-donest damping.

Q108: Dynamic males Cs very depending on the location and time.

Q109: Fonal coupling, detached edgy smulation (ILES)

6000: The cell center average value of all the cells.

0111: Control volume (CV) for which we compute the evolution of the mean values.

Q112: Surface integral of fluxes is a sum of discrete values at one or several pants at the cell suface

Q113: Values of φ at the cell sufaces are reconstructed from the values φ at the cell center.

0114:

Νω	עק	NE
W	9	E
Su	5	SE

QA15: The awage value is simply ble carter pointed the function.

Q116:
$$\frac{1}{h} = Y_0 + \frac{h^2}{2n} \cdot \frac{3\ell^2}{3x^2} \Big|_0$$

6113:

Q118: The conveyence speed of the model.

points when this two composes a trapposed with the x exist

Q120: The integration is done with peraboles instead of trapezands.

Q121: Upwind differencing scheme

QA22:
$$\Psi_{e} = \begin{cases} \Psi_{p}, & \text{if } (\underline{u} \cdot \underline{n})_{e} > 0 \\ \Psi_{E}, & \text{if } (\underline{u} \cdot \underline{n})_{e} < 0 \end{cases}$$

Q127: Central differencing scheme

Q129:
$$\Psi_e = \Psi_E \lambda_e + \Psi_P (1 - \lambda_e)$$

$$\lambda_e = \frac{x_e - x_P}{x_E - x_P}$$

Q125: By analyzing it will the toylor expension. Why company it will the initial equation thee is an extra tem of higher order. This is the eros.

@126:

Q127:

Q128: With equation CFL =
$$\Delta t \frac{U}{\Delta x}$$
 $\Rightarrow \frac{U^2 \Delta t}{2} = \frac{U \Delta x}{2} = 0$ $U \Delta t = \Delta x$ $C = \frac{U \Delta t}{\Delta x}$

1st order method should be used. Q129:

6030: Conveyence with second order, Pasler conveyence.

Q131: When he cells are by.

αΔ32: 1st order UDS 2 2nd order CDS

2nd oved UDS2

6033: Solution depends on initial conditions and boundary conditions.

6134: Euler forward, because 1+ 15 explicit.

Mid point rule (implicit) and tile buchword (implicit)

Q136; Q137, Q138, Q139

Mid-point rule (implicit) $\varphi^{n+1} = \varphi^n + f(t_{n+1/2}, \varphi^{n+1/2}) \Delta t$ (2nd order)

Euler backward (implicit) $\varphi^{n+1} = \varphi^n + f(t_{n+1}, \varphi^{n+1}) \Delta t$

Trapezoidal rule (implicit) $\varphi^{n+1} = \varphi^n + \frac{f(t_n, \varphi^n) + f(t_{n+1}, \varphi^{n+1})}{2} \Delta t$ $\uparrow \qquad \qquad \downarrow \qquad$

Qano: Using CFC = $\Delta \in \frac{U}{\Delta x}$ Co.S good enough.

@141: Efficient , low memory regriements, robust, smple.

Q142: Unstable for large time sleps, not so exact

6243: Stable for love time steps, none exact,

0744: Lage momon recurrents, complex implementation

QUYS: With LES

GS46: Because a some points you would need different time steps, man efficient and finally the steady state as all is the same.

Qsy: By the smallest cell in the domain.

0148: Dirichet: value of exciple 4

Meumann: gradient of usuable $(\frac{d\Psi}{2n})$

Robbin: Combination of both

Periodic: some value at two valls.

Osas: $\frac{\partial v}{\partial y}\Big|_{wall} = v$ pressure gradient

The Viscous stess = 0

QUSO: 5 independent variables (4152: No. only neumann

GOSA: U independent ucriables Q253: 2 vaioble as Dirichet

OASY: $P(\rho,e) = \rho RT = \rho R \frac{e}{cv} = \rho e^{(v-1)}$

CASS: $\nabla^2 P = f(u)$, equation used to determine pressure since it is not independent anymore.

6186: N2

OAS 7: Because modelling and discretization errors are much larger than computer round-of error.

GOSS: Gauss elimination, Lower-upper Sectionization

Q159: O(N3)

OSGO: decempose matrix in two triangular matrices Land U. Solve each system

Q161: Because modelling and discretization errors are much larger than computer round-of error.

6162: Deviction from exact solution

G.163: Deviation of equation that is solved.

0164: <u>R</u>" = A E"

Q163 Residum conveges before

Q166: For convergence $\rho(\underline{6}) < 1$ spectral radius of Iteration matrix $\underline{6} = \underline{N}^{-2}\underline{P}$

Q169: Incomplète lower upper fectoritation.

QATO: Coupled I'M solver for u, u, w and P.

QA71: Algebraic multistid, secometric multigrid

0.472: cocreening is based on user input

017): Garsening based on coefficient mattrix

(3.27): Run smulton for different mesh resolutions

Q178: Less the 10-3

Q174: Verfication, composion with known solutions
Validation, composion with experimental data.

0179: houry a close look at he transition point

and using LES for it.

6175. Insufficient spatial discretization conveyence
Lisufficient temporal discretization conveyence
Computer round off

1916: Blas is a systematic error and can be calibrated Piecesson is andon and an anel with averyon.