
Backstepping

In complicated systems, like aircraft, there are often parameters which are not fully known, or which might
even occasionally change. To cope with this, you need a controller that adapts to these parameters: an
adaptive controller. In this summary we’ll be investigating how such controllers work. In particular, we’ll
be investigating the backstepping controller.

1 Basic definitions and theories

1.1 Function definitions

Before we’re discussing systems, we start with some formal function definitions. Let’s examine a function
V (x). We say that V (x) is. . .

• positive definite if V (0) = 0 and V (x) > 0 with x 6= 0.

• positive semidefinite if V (0) = 0 and V (x) ≥ 0 with x 6= 0.

• negative (semi)definite if −V (x) is positive (semi)definite.

• radially unbounded if V (x)→∞ as |x| → ∞.

1.2 System definitions

Let’s examine a system with state x and dynamics ẋ = f(x). A function x(t) with initial state x(0) = x0

that satisfies the system dynamics is called a solution of the system. A system is called. . .

• stable if, for given ε > 0, there exists a δ(ε) > 0 such that all solutions with initial conditions
|x(0)| < δ satisfy |x(t)| < ε for all t ≥ 0. More intuitively speaking, all solutions starting near
x = 0 remain bounded.

• asymptotically stable (AS) if it is stable and a δ can be found such that all solutions with
|x(0)| < δ satisfy |x(t)| → 0 as t→∞. More intuitively speaking, all solutions starting near x = 0
are bounded and converge to zero.

• globally asymptotically stable (GAS) if it is asymptotically stable for any initial state x(0).

1.3 The Lyapunov theory

Let’s say we have a time-invariant system with state x and dynamics ẋ = f(x). How do we prove that
the system is stable? For that, we can use the Lyapunov theory. The first thing which we need is a
Lyapunov function V (x). This function has to be positive definite in a region Γ near x = 0. (It often
helps to think of V as some kind of energy. It is never negative, and can only be zero in the zero state.)

Second, we will examine V̇ . We can rewrite this as

V̇ (x) =
∂V (x)

∂t
=
∂V (x)

∂x

∂x

∂t
=
∂V (x)

∂x
f(x). (1.1)

The Lyapunov theory now states that. . .

• if V̇ (x) is negative semidefinite in the region Γ, then the solution is stable.
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• if V̇ (x) is negative definite in the region Γ, then the solution is asymptotically stable.

• if V (x) positive definite and radially unbounded for all x, and if V̇ (x) is negative definite for all x,
then the solution is globally asymptotically stable.

The Lyapunov theory is actually quite logical. If you have some function that is always decreasing, then
it must reach zero eventually. So there is no way that the system diverges: it has to be stable.

2 Applying adaptive control

2.1 The problem statement

Let’s examine a time-invariant system with an unknown parameter. For example, consider

ẋ = θx+ u, (2.1)

where θ is unknown. We could use as a controller u = −kx. If θ < k, this will ensure stability. However,
if θ > k, we have an instable system. A possible solution would be to use a nonlinear controller, like
u = −k1x − k2x

3. Although this ensures that the system state is bounded, it does not ensure an
asymptotically stable system. Instead, it will be better to make our system adapt to θ.

2.2 Estimation-based adaptive control

Let’s suppose that we can measure the state x of the system, but not the state derivative ẋ. Just deriving
ẋ from x is in practice unwise, due to measurement noise. Instead, we filter the state x and the input u
first. The filtered signals are denoted as

xf =
x

s+ 1
and uf =

u

s+ 1
. (2.2)

Using ẋ = sx, we can now rewrite the system to

x = (θ + 1)xf + uf . (2.3)

We will also have an estimated value of θ, denoted as θ̂. (Initially, we can assume that θ̂ = 0.) We can

use θ̂ to predict the state x of the system. We will find

x̂ = (θ̂ + 1)xf + uf . (2.4)

If our estimate θ̂ is inaccurate, we will of course get an error in our prediction x̂. This error is

e = x− x̂ = (θ − θ̂)xf . (2.5)

To reduce this prediction error e, we should adjust our estimate θ̂. One way to do this is by using

˙̂
θ = −γ

2

∂(e2)

∂θ̂
= γe

∂e

∂θ̂
= −γexf . (2.6)

By doing this, the prediction error e will decrease. If we then also use the controller u = −(k+ θ̂)x, then
our problem is solved. The error will decrease.
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2.3 Lyapunov-based adaptive control

Another way in which to stabilize the system is by using the Lyapunov theory. To do this, we first need
a Lyapunov function. We could try the function

V (x, θ̂) =
1

2
x2 +

1

2

(
θ − θ̂

)2
. (2.7)

V̇ can be found according to

V̇ = xẋ−
(
θ − θ̂

)
˙̂
θ = x (u+ θx)−

(
θ − θ̂

)
˙̂
θ = xu+ θ̂

˙̂
θ + θ

(
x2 − ˙̂

θ
)
. (2.8)

We want to choose our input u and our update law
˙̂
θ such that V̇ is negative definite. However, neither

u nor
˙̂
θ can depend on the unknown θ. To solve this problem, we can first set

˙̂
θ = x2. This eliminates

the term on the right. For the input, we then set u = −(k + θ̂)x. This results in V̇ = −kx2. If k > 0,
this is evidently negative definite. The system has thus been stabilized.

2.4 A more complicated problem

We have seen two techniques now: estimation-based and Lyapunov-based adaptive control. But do these
techniques always work? We could consider the nonlinear system

ẋ = θx2 + u. (2.9)

Both techniques will use the control law

u = −kx− θ̂x2. (2.10)

But what about the parameter update law? For estimation-based adaptive control it is hard to choose
a good parameter update law. If we choose the same law as before, we will get an unstable system.
Lyapunov-based adaptive control works better here. Using the same Lyapunov function as before, we
find the update law

˙̂
θ = x3 (2.11)

which results in a stable system. This shows the advantage of Lyapunov-based adaptive control. So from
now on, we will not consider estimation-based adaptive control anymore. Instead, we focus on Lyapunov-
based adaptive control. But plenty of challenges await us still. How do we find a Lyapunov function from
which we can derive a control law? (Such a function is called a control Laypunov function (CLF).)
And how do we choose the best control law u = α(x)?

2.5 Sontag’s formula

Let’s suppose that we have a control problem of the form

ẋ = f(x) + g(x)u, (2.12)

where f(0) = 0. Also, we’ve already found a suitable CLF. One way to choose a good control law is by
using Sontag’s formula

u = αs(x) =

−
∂V
∂x f+

√
( ∂V

∂x f)
2
+( ∂V

∂x )
4

( ∂V
∂x g)

for ∂V
∂x g 6= 0,

0 for ∂V
∂x g = 0.

(2.13)

The resulting control law often uses parts of the system to help stabilize it. This reduces the magnitude
of the control input u. So, the control law is relatively efficient.
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3 The backstepping algorithm

3.1 A backstepping example

The control problem becomes more complicated if the input u doesn’t directly influence x. As an example,
we can consider a system with an integrator, like

ẋ = x− x3 + ξ, (3.1)

ξ̇ = u. (3.2)

Let’s only examine the first equation, and act as if ξ was our control input. A CLF would be V = 1
2x

2.
It follows that ξ = −(k + 1)x. This would stabilize the system. However, we can’t control ξ directly.
Instead, we specify the desired value

ξd = α(x) = −(k + 1)x. (3.3)

In this case, we call ξ the virtual control. The function α(x) which it should follow is the stabilizing
function. The deviation of ξ from α(x) is called the error state z. It is defined as

z = ξ − ξd = ξ − α(x) = ξ + (k + 1)x. (3.4)

We can use the error state to rewrite our system to

ẋ = x− x3 + z + α(x) = −kx− x3 + z, (3.5)

ż = ξ̇ − α̇ = u+ (k + 1)ẋ = u+ (k + 1)(−kx− x3 + z). (3.6)

We now also need to incorporate z in our Lyapunov function. A possible function is

V (x, z) =
1

2
x2 +

1

2
z2 =

1

2
x2 +

1

2
(ξ + (k + 1)x)

2
. (3.7)

Taking the derivative gives

V̇ (x, z) = xẋ+ zż = x(−kx− x3 + z) + z
(
u+ (k + 1)(−kx− x3 + z)

)
(3.8)

= −kx2 − x4 + z
(
x+ u+ (k + 1)(−kx− x3 + z)

)
. (3.9)

As a control law, we can now use

u = −cz − x− (k + 1)(−kx− x3 + z), (3.10)

which turns the Lyapunov derivative into

V̇ (x, z) = −kx2 − x4 − cz2. (3.11)

This is evidently negative definite, so the system has been stabilized.

Now what have we done? We wanted to stabilize x. To do this, we provided a desired value for ξ which
would accomplish this. We continued by defining an error signal z, which required to be stabilized as
well. To do this, we set the value for u. If the system would have more equations, we could continue
stepping back through equations like this. This procedure is thus called backstepping.

3.2 The backstepping algorithm

The procedure from the previous paragraph can be generalized. Consider a system of the form

ẋ1 = f1(x1) + g1(x1)x2, (3.12)

ẋ2 = f2(x1, x2) + g1(x1, x2)x3, (3.13)

... (3.14)

ẋn = fn(x1, x2, . . . , xn) + gn(x1, x2, . . . , xn)u. (3.15)
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We want the output y = x1 to follow a certain reference signal yr(t). When applying backstepping, we
continuously need to perform the following steps, starting at i = 1 and continuing until i = n.

1. At equation i, define the error signal zi = xi − xi,d. (Note that x1,d = yr.)

2. Rewrite the equation using the error signal zi. (So use żi = ẋi− ẋi,d and substitute xi by zi+xi,d.)

3. Treat xi+1 as if it’s the control input. (It is in fact the virtual control.)

4. Find a CLF for the system so far. (That is, for equations 1 to i.) A suggestion would be

Vi =
1

2
z21 + . . .+

1

2
z2i . (3.16)

5. Use the CLF to derive an expression xi+1,d (the stabilizing function) for the virtual control xi+1.
(Note that, at equation n, you use the input u instead of xn+1.)

Applying the above steps for i = 1 to i = n will stabilize the system.

3.3 The idea of adaptive backstepping – step 1

In the problem of the previous paragraph, we assumed that the model was completely known. This is of
course not always the case. This time, we will examine a model of the form

ẋ1 = θT f1(x1) + g1(x1)x2, (3.17)

ẋ2 = θT f2(x1, x2) + g1(x1, x2)x3, (3.18)

... (3.19)

ẋn = θT fn(x1, x2, . . . , xn) + gn(x1, x2, . . . , xn)u. (3.20)

Note that this time the known functions fi return vectors. Also, the unknown parameter vector θ is a
vector. The output y = x1 of this system should follow some reference output yr. To accomplish this,
we will need adaptive backstepping.

Before we are going to set up an algorithm for adaptive backstepping, we’ll first try to apply the normal
backstepping algorithm. So we define the error signal z1

z1 = x1 − yr. (3.21)

We then rewrite the first of the system equations to

ż1 = ẋ1 − ẏr = θT f1(z1 + yr) + g1(z1 + yr)x2 − ẏr. (3.22)

But this is where we expand the backstepping algorithm, by introducing an estimate θ̂ of θ. We also

denote the estimate error as θ̃ = θ − θ̂. (So we have ˙̃θ = − ˙̂θ.) We now use, as Lyapunov function for
the first equation,

V1(z1, θ̃) =
1

2
z21 +

1

2
θ̃TΓ−1θ̃. (3.23)

Here, Γ = ΓT > 0 is the adaptation gain matrix. It determines how fast we adapt the various
parameters of θ̂. The Lyapunov derivative then equals

V̇1 = z1ż1 + θ̃TΓ−1 ˙̃
θ (3.24)

= z1
(
θT f1(z1 + yr) + g1(z1 + yr)x2 − ẏr

)
−
(
θ − θ̂

)T
Γ−1 ˙̂θ (3.25)

= z1 (g1(z1 + yr)x2 − ẏr) + θT
(
z1f1(z1 + yr)− Γ−1 ˙̂

θ
)

+ θ̂TΓ−1 ˙̂
θ. (3.26)
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(Note that z1 is a scalar, so we can move it around in the order of multiplication.) We don’t know θ. So
a nice update law for our prediction θ̂ will be

˙̂θ = z1Γf1(z1 + yr). (3.27)

This turns the expression for V̇1 into

V̇1 = z1

(
θ̂T f1(z1 + yr) + g1(z1 + yr)x2 − ẏr

)
. (3.28)

An evident choice for the desired value of x2, denoted as x2,d, now is

x2,d =
ẏr − c1z1 − θ̂T f1(z1 + yr)

g1(z1 + yr)
. (3.29)

3.4 The idea of adaptive backstepping – step 2

Using x2,d, we can step back to the second equation of the system. We can then rewrite it using
z2 = x2 − x2,d. The Lyapunov function is

V2 =
1

2
z21 +

1

2
z22 +

1

2
θ̃TΓ−1θ̃. (3.30)

The Lyapunov derivative V̇2 is a bit harder to work out. (For brevity, we will write f1(z1 + yr) simply as
f1, and similarly for g1, f2 and g2.) We get

V̇2 = z1ż1 + z2ż2 + θ̃TΓ−1 ˙̃θ (3.31)

= z1
(
θT f1 + (z2 + x2,d)g1 − ẏr

)
+ z2

(
θT f2 + g2x3 − ẋ2,d

)
−
(
θ − θ̂

)T
Γ−1 ˙̂

θ. (3.32)

Now we run into a few problems. The first problem comes with the term ẋ2,d. To find it, we have to use
partial derivatives, like

ẋ2,d =
∂x2,d
∂t

=
∂x2,d
∂x1

ẋ1 +
∂x2,d
∂yr

ẏr +
∂x2,d
∂ẏr

ÿr +
∂x2,d

∂θ̂

˙̂
θ, (3.33)

where we can substitute ẋ1 by
(
θT f1 + g1x2

)
. Using the relations for x2,d and ẋ2,d, we can further work

out the expression for V̇2. Doing this, and reordering terms, gives

V̇2 = −c1z21 + g1z1z2 − z1θ̂T f1 + θT
(
z1f1 + z2

(
f2 −

∂x2,d
∂x1

f1

)
− Γ−1 ˙̂θ

)
+z2

(
g2x3 −

∂x2,d
∂x1

g1x2 −
∂x2,d
∂yr

ẏr −
∂x2,d
∂ẏr

ÿr −
∂x2,d

∂θ̂

˙̂θ

)
+
(
θ̂TΓ−1

)
˙̂θ. (3.34)

Yes, that’s one big equation. Now we have to get rid of the term with θ. To do this, we should define ˙̂θ.
But this is again a problem. We have already defined it. As a solution, we just redefine it to be

˙̂
θ = Γ

(
z1f1 + z2

(
f2 −

∂x2,d
∂x1

f1

))
. (3.35)

By now you’re probably wondering, ‘Okay, by redefining it, you know that V̇2 is negative definite. But
you aren’t sure anymore that V̇1 is negative definite!’ To see whether that’s true, we examine V̇1. If we

insert our new value for ˙̂θ and the value for x2,d into equation (3.26), we wind up with

V̇1 = −c1z21 − z2θT
(

f2 −
∂x2,d
∂x1

f1

)
. (3.36)
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Normally, this is not necessarily a negative definite function. However, the whole system with z2 is
asymptotically stable. (Or it will be once we define the x3,d.) So z2 → 0. In other words, in time, the
rightmost term vanishes, which in turn implies that the function will become negative definite. So this
part of the system will be stable as well.

Now that we have a new update law, we can also define the desired value for x3. We will use

x3,d =
1

g2

(
−c2z2 − g1z1 +

∂x2,d
∂x1

g1x2 +
∂x2,d
∂yr

ẏr +
∂x2,d
∂ẏr

ÿr +
∂x2,d

∂θ̂

˙̂θ − θ̂T
(

f2 −
∂x2,d
∂x1

f1

))
. (3.37)

This turns the Lyapunov derivative into V̇2 = −c1z21 − c2z22 , which is evidently negative definite.

3.5 The adaptive backstepping algorithm

By now we see how adaptive backstepping works. In this paragraph we’ll present the general algorithm.
To solve the general adaptive backstepping problem, we should follow the following steps.

• At equation i, define the error signal zi = xi − xi,d. (Note that x1,d = yr.)

• Rewrite the equation using the error signal zi. (So use żi = ẋi− ẋi,d and substitute xi by zi+xi,d.)

• Treat xi+1 as if it’s the control input. (It is in fact the virtual control.)

• Define the CLF

Vi =
1

2
z21 + . . .+

1

2
z2i +

1

2
θ̃TΓ−1θ̃. (3.38)

• Define the parameter ωi as

ωi = fi −
i−1∑
k=1

xi,d
xk

fk. (3.39)

• Define the tuning function τi recursively as

τi = τi−1 + ziωi, (3.40)

where τ0 = 0 and thus τ1 = z1ω1 = z1f1.

• Define the preliminary parameter update law

˙̂θi = Γτi. (3.41)

(By the way, the final parameter update law for the system will be ˙̂θ = ˙̂θn = Γτn.)

• Define the desired value xi+1,d (or, when i = n, define the input u) according to

xi+1,d =
1

gi

(
−cizi − gi−1zi−1 − θ̂Tωi +

i−1∑
k=1

(
∂xi,d
∂xk

gkxk+1

)
+

i∑
k=1

(
∂xi,d

∂y
(k−1)
r

y(k)r

)
(3.42)

+
∂xi,d

∂θ̂

˙̂θ +

i−1∑
k=2

(
zk
∂xk,d

∂θ̂
Γωi

))
. (3.43)

The last term (with zk) might surprise you, as it hasn’t appeared in all our equations so far. That
is because it first appears in the relation for x4,d. (That is, when i = 3.) However, we won’t derive
this relation, so as to still somewhat limit the number of oversized equations in this summary.

In the end, as was already mentioned, the parameter update law will be
˙̂
θ = Γτn. The input to the

system will be given by the relation u = xn+1,d. And, if these are the only two relations you would want,
then you don’t even have to go through the entire algorithm above. Just find ωi and τi for all i from 1

to n. When you have done that, it is easy to find ˙̂θ and u.
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4 Robust backstepping

The backstepping algorithm that was just discussed only works for systems with constant coefficients.
But what do we do if there are time-varying parameters?

If these parameters vary slowly, then we can still use adaptive backstepping. The algorithm will adapt
in time. However, if the parameters vary too fast, achieving asymptotic stability can be very hard, if not
impossible. The best we may do in this case is make sure that the parameters are bounded. This makes
the controller robust.

To illustrate how this can be done, we examine a simple system, like

ẋ = k(t)ϕ(x) + u. (4.1)

Here, k(t) is an unknown time-varying constant and ϕ(x) is a known nonlinear function. To stabilize the
system, we will try using the Lyapunov function V = 1

2x
2. This gives the derivative

V̇ = xẋ = k(t)xϕ(x) + xu. (4.2)

We want this to become negative definite. But if k(t) becomes big enough, then V̇ will be positive.
This is impossible to prevent. So ensuring asymptotic stability will not be possible. As some sort of
intermediate solution, we can set

u = −cx− κxϕ(x)2. (4.3)

This turns the Lyapunov derivative into

V̇ = −cx2 − κx2ϕ(x)2 + k(t)xϕ(x) = −cx2 − κ
(
xϕ(x)− k(t)

2κ

)2

+
k(t)2

4κ
. (4.4)

Now examine the three terms in the right-hand part of the above relation. The two left terms are negative

definite. However, the term k(t)2

4κ is not. But (when ignoring the middle term) we do know that V̇ can
only be positive if

k(t)2

4κ
> cx2, or |x| ≤ |k(t)|

2
√
κc
. (4.5)

In any other case, V̇ is negative. So the above relation effectively is the bound on x imposed by our
control law. In other words, although the system isn’t asymptotically stable, at least the state is bounded.
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