
Nonlinear dynamic inversion

Aircraft don’t always behave like linear systems. In some flight regimes, or in some (failure) scenarios,
they behave in a nonlinear way. To control them, you therefore also need a nonlinear controller. And
this controller should be as robust as possible, for the model never exactly matches reality.

In this file, we’ll examine the technique called nonlinear dynamic inversion. It has proven to be an easy
way of controlling nonlinear systems. Next to this, it offers possibilities for very robust control through
an expansion called incremental nonlinear dynamic inversion.

1 Basics of nonlinear dynamic inversion

1.1 Rewriting a system for NDI

Let’s examine the model of an aircraft. For simplicity, we will assume that it is a single input single
output (SISO) model. This model has the form

ẋ = f(x) + g(x)u, (1.1)

with x the state vector. (Note that f(x) can be a nonlinear function.) The above model can be
rewritten to companion form

ẋ1
...

ẋn−1

ẋn

 =

x2
...

xn

b(x)

0
...

0

a(x)

u. (1.2)

In other words, all the nonlinear terms now only affect xn. Also, the input only affects xn. As a second
step, we define the virtual control input v as

v = b(x) + a(x)u ⇔ u = a−1(x) (v − b(x)) . (1.3)

The virtual control input v can now be used to control the entire system in a simple linear way. This
method of controlling a nonlinear system as if it is linear is called (nonlinear) dynamic inversion
((N)DI).

1.2 Which input to use?

The question remains on how to set v. For this, state feedback is often used. So,

v = −k0x− k1
dx

dt
− k2

d2x

dt2
− . . .− kn−1

dn−1x

dtn−1
. (1.4)

Since we also have dnx
dtn = v, this turns the whole system into a linear closed loop system of the form

dnx

dtn
+ kn−1

dn−1x

dtn−1
+ . . .+ k1

dx

dt
+ k0 = 0. (1.5)

By choosing the right ki, the closed-loop system properties can be set. And, by then using equation (1.3),
the required input u is found. The process of finding v is called the outer loop of NDI. Finding the
corresponding value of u, and inserting it into the real system, is the inner loop.

1

In case of a tracking task (where x1 has to follow some reference signal xr), we can define e = x− xd.
The evident control law now is

v = −k0e− k1
de

dt
− k2

d2e

dt2
− . . .− kn−1

dn−1e

dtn−1
. (1.6)

This turns the system into
dne

dtn
+ kn−1

dn−1e

dtn−1
+ . . .+ k1

de

dt
+ k0 = 0. (1.7)

So this is basically the same problem as before.

2 Input-output linearization

2.1 The working principle of input-output linearization

It can occasionally be difficult to put a nonlinear system in companion form. An alternative to this is to
apply input-output linearization. When applying this, we take the derivative of the output y until
the input u appears in it. From this expression, you then derive a and b. As an example, consider the
system

ẋ1 = x22 + sin(x3), (2.1)

ẋ2 = cos(x1), (2.2)

ẋ3 = x1 + u, (2.3)

y = sin(x1). (2.4)

Taking the derivative of y gives

ẏ = ẋ1 cos(x1) =
(
x22 + sin(x3)

)
cos(x1). (2.5)

There is no input u in this expression. So we take the derivative again. This gives

ÿ = (2x2ẋ2 + ẋ3 cos(x3)) cos(x1)−
(
x22 + sin(x3)

)
ẋ1 sin(x1) (2.6)

= (2x2 cos(x1) + (x1 + u) cos(x3)) cos(x1)−
(
x22 + sin(x3)

)2
sin(x1) (2.7)

= 2 cos(x1)2x2 + x1 cos(x1) cos(x3)−
(
x22 + sin(x3)

)2
sin(x1) + cos(x1) cos(x3)u. (2.8)

As input, we can now again use u = a−1(v − b), where

a = cos(x1) cos(x3), (2.9)

b = 2 cos(x1)2x2 + x1 cos(x1) cos(x3)−
(
x22 + sin(x3)

)2
sin(x1). (2.10)

In this way, the system can be seen as a linear system again. And, in our example case, this linear system
is simply ÿ = v.

2.2 Notes on NDI

When applying NDI, it is important to note the singularities. These occur when u → ∞. For our
example problem, they thus occur when x1 = π/2 + kπ or x3 = π/2 + kπ, with k an integer. At such
points, the system can’t be sufficiently controlled.

Another important thing to note is that, to apply NDI, it is required to know the full state of the system.
If the state is not known, it needs to be approximated in some away. For deterministic systems, a
nonlinear observer can be used, whereas for stochastic systems a nonlinear state estimator is required.

Next to this, it is of course also required that the system model is known completely. If it is only partially
known, some system identification might be required first.

2

2.3 Internal dynamics

The amount of times we need to differentiate the output is called the relative degree r of the system.
In our example problem, this relative degree is thus r = 2. The order of the system (the amount of state
variables) is denoted by n. We always have r ≤ n.

If r < n, then part of the input-output linearization is unobservable. This unobservable part is called
the internal dynamics. They have to be stable (bounded) for the controller to work properly. (In case
of internal instability, the part b can become very big. Although mathematically u can become very big
as well to compensate, this is physically often impossible.) However, the unobservable part is often also
nonlinear. So finding out whether it’s actually stable can be very difficult.

For simplicity let’s examine the internal dynamics for linear systems. In linear systems, n corresponds
to the amount of poles of the system, while n− r is the amount of zeroes. (So r is the amount of excess
poles.) It can also be shown that the internal dynamics are stable if all the zeroes are in the left half of
the complex plane. In other words, the internal dynamics are stable if the system is minimum-phase.

3 State transformation

3.1 The Lie derivative

Let’s examine a system of the form

ẋ = f(x) + g(x)u, (3.1)

y = h(x). (3.2)

Note that f and g are both vector functions (i.e. they return a vector) while h is a scalar function. The
Lie derivative Lfh(x) is now defined as the gradient of a certain (scalar) function h(x) projected along
a certain vector function f(x). So,

Lfh(x) = ∇h(x)f(x) =

n∑
i=1

∂h(x)

∂xi
fi(x). (3.3)

It is also possible to apply the Lie derivative multiple times. You then get the kth Lie derivative, defined
as

Lkfh(x) = Lf

(
Lk−1f h(x)

)
= ∇

(
Lk−1f h(x)

)
f(x) with L0

fh(x) = h(x). (3.4)

3.2 The state transformation

We will use the Lie derivative to apply a state transformation. This transformation goes from the old
state x to a new state z (called the linearizing state and puts the system in a canonical form.

First, using the Lie derivative, we define the functions φi(x) as

zi = φi(x) = Li−1f h(x), with 1 ≤ i ≤ r. (3.5)

We have Lgφi(x) = 0 for all i, except for i = r. In fact, the definition of relative degree implies that
Lgφr(x) 6= 0. (This property is often convenient to use when finding the relative degree.)

Analogously, we can also define the functions zi = φi(x) with r + 1 ≤ i ≤ n. They also must have the
property that

Lgφi(x) = 0. (3.6)

A number n − r of such additional functions always exist. However, we won’t discuss here how to find
them, since it’s not relevant for our discussion.

The whole state transformation is now denoted by z = Φ(x). The inverse is given by x = Φ−1(z).

3

3.3 Properties of the state transformation

It can be shown that, for 1 ≤ i ≤ r, the new coordinates satisfy

ż1 = z2, ż2 = z3, . . . , żr−1 = zr and żr = a(z) + b(z)u, (3.7)

where the functions a(z) and b(z) (with z = Φ−1(x)) are defined as

a(z) = LgL
r−1
f h(x) = Lgzr and b(z) = Lrfh(x). (3.8)

(These functions are exactly the same as the functions a and b found in the section on input-output
linearization. This method is just a somewhat more general way of finding them.)

For r + 1 ≤ i ≤ n, the new coordinates satisfy

żi = Lfφi(x) + Lgφ(x)u = Lfφi(x) = Lfzi. (3.9)

(Remember that Lgφi(x) = 0 for r + 1 ≤ i ≤ n.)

The result? We have a system where z1 = h(x) = y and

a(z) + b(z)u =
dzr
dt

=
d2zr−1
dt2

= . . . =
drz1
dtr

=
dry

dtr
. (3.10)

We have put the system in canonical form! And the functions a and b are the same as what we’ve seen
in the section on input-output linearization. So we can again control the system as if it’s linear. Next to
this, the states zr+1 to zn don’t directly affect the output y. So we have effectively split up the observable
from the unobservable part.

4 MIMO systems and time scale separation

4.1 The MIMO system form

Previously, we have considered SISO systems. Now let’s expand our ideas to multiple input multiple
output (MIMO) systems. These systems have the form

ẋ = f(x) +G(x)u, (4.1)

y = h(x). (4.2)

Note that G(x) is a matrix depending (possibly nonlinearly) on x. Also note that we do assume that the
state derivative ẋ affinely depends on the input u. Also, the input vector u has size m, while the output
vector y has size p.

4.2 The state transformation for MIMO systems

In a MIMO system, there are individual relative degrees r1, . . . , rp. Together, they form the total
relative degree r = r1 + . . .+ rp, which still satisfies r ≤ n. There are also the φ functions. These are
defined as

φij(x) = Lj−1f hi(x). (4.3)

These functions then satisfy

φ̇i1(x) = φi2(x), . . . , φ̇iri−1(x) = φiri(x) and φ̇iri(x) = Lrif hi(x) +

m∑
j=1

LgjL
ri−1
f hi(x)uj . (4.4)

4

This holds for every i (with 1 ≤ i ≤ p). We can use the above relations to find an expression for the
virtual control input v. (Note that v now also is a vector, having size p.) We then get

v = b(x) +A(x)u =

Lr1f h1(x)

Lr2f h2(x)
...

L
rp
f hp(x)

+

Lg1L

r1−1
f h1(x) Lg2L

r1−1
f h1(x) · · · LgmL

r1−1
f h1(x)

Lg1L
r2−1
f h2(x) Lg2L

r2−1
f h2(x) · · · LgmL

r2−1
f h2(x)

...
...

. . .
...

Lg1L
rp−1
f hp(x) Lg2L

rp−1
f hp(x) · · · LgmL

rp−1
f hp(x)

u1

u2
...

um

 .
(4.5)

Solving for the input vector u then gives

u = A−1(x)(v − b(x)). (4.6)

4.3 Using time-scale separation

When controlling two different parameters, a technique called time-scale separation may be applied. To
know when this is the case, we first have to discuss control effectiveness.

The control effectiveness can be seen as the effect on a controlled parameter, due to a unity change
in the controlling parameter. (Think of ∂q/∂δe for aircraft pitch rate control.) Based on the control
effectiveness, we can make a distinction between slow dynamics and fast dynamics. Slow dynamics
means that the control effectiveness of a certain parameter is low. Fast dynamics means that the
control effectiveness is high.

When there are two parameters to be controlled, one with slow dynamics and one with fast dynamics,
time-scale separation (TSS) can be applied. This means that we split up the slow and the fast
dynamics. The fast dynamics can then be seen as the inner loop, while the slow dynamics make up the
outer loop. For every part, dynamic inversion is applied separately.

An example of time-scale separation occurs in an aircraft. Pitch rate control generally works a lot faster
than pitch angle control. So pitch rate control forms the inner loop of the controller, while pitch angle
control forms the outer loop.

When applying TSS, an assumption is made. As input, the inner loop receives a reference value. (In our
example the desired pitch rate.) The outer loop assumes that this desired value is actually achieved by
the inner loop. This is often a valid assumption to make, because the inner loop is much faster than the
outer loop. The outer loop (the pitch angle control) then operates by simply supplying the right reference
input (the desired pitch rate) to the inner loop.

5 Incremental NDI

5.1 The basic idea of INDI

There is a big downside to NDI. To apply it, the model of the system has to be known quite accurately.
An aircraft model can, however, be very complicated, especially when nonlinearities start being present.

A possible solution is offered by Incremental NDI (INDI). This technique doesn’t give the required
input to control the system. It gives the required change in the input. (For example, it does not tell the
elevator to deflect to 6 degrees, but to deflect (e.g.) 1 degree more or 2 degrees less.)

A big advantage of INDI is that only a small part of the model is required. Also, INDI is better able to
cope with model inaccuracies like, for example, wrong coefficients. As such, INDI is more robust than
NDI.

5

5.2 INDI applied to an aircraft – from moments to control surface deflections

Let’s demonstrate the INDI idea by looking at an aircraft. When controlling the attitude of an air-
craft, moments need to be applied. And, when working with moments, we usually simply use moment
coefficients. The moment coefficient of L is defined as

Cl =
Ldes

1
2ρV

2Sb
. (5.1)

There is a similar definition for Cm and Cn. To control the aircraft, there are also desired moment
coefficients Cl,des, Cm,des and Cn,des. Next to this, there are the coefficient derivatives. An example is

Clδe =
∂Cl
∂δe

. (5.2)

Similar definitions hold for combinations with the other moments (M and N) and the other control inputs
(δa and δr).

Based on the above definitions, we can find the required control surface deflections δ to provide the right
moments. We have

δ =

δeδa
δr

 =

 Clδe Clδa Clδr
Cmδe Cmδa Cmδr
Cnδe Cnδa Cnδr

−1 Cl,desCm,des

Cn,des

 = M−1c Clmn,des. (5.3)

(Note the definitions of δ, Mc and Clmn,des in the above equation.) This technique works well in case
the moments L, M and N vary linearly with the control surface deflections δe, δa and δr, and if all the
coefficient derivatives are accurately known. If either is not the case, we have to do something else: INDI.

When applying INDI, we look at the required change in moment. That is, we compare the current
moment coefficients acting on the aircraft (Cl, Cm and Cn) to the desired moment coefficients. From
this, we derive the changes in the control surface deflections. This goes according to

∆δ =

∆δe

∆δa

∆δr

 =

 Clδe Clδa Clδr
Cmδe Cmδa Cmδr
Cnδe Cnδa Cnδr

−1 Cl,des − Cl

Cm,des − Cm
Cn,des − Cn

 = M−1c (Clmn,des −Clmn). (5.4)

This time, when the coefficient derivatives aren’t accurate, the required moments will eventually still be
reached. In this way, INDI is much more robust than NDI.

5.3 INDI applied to an aircraft – from motion to control surface deflections

When controlling an aircraft, we don’t just start out with moments. Instead, we want to control the
motion of the aircraft. To find out how this works, we examine the equation of motion

Iω̇ + ω × Iω = M = Ma + Mc. (5.5)

Here, Ma denotes the moments due to aerodynamics, while Mc denotes the moments due to the controls.
(If required, we can transform the above equation, such that it uses the coefficients C instead of the
moments M.)

Now examine what happens when we change the control moment Mc by a small amount ∆Mc. In an
infinitesimal timestep, the angular rates ω don’t change yet, nor do the aerodynamic moments Ma. Only
the angular acceleration ω̇ changes. (Note that we are applying the principle of time-scale separation
here.) So we can write

∆Mc = I(∆ω̇) = I(ω̇new − ω̇old). (5.6)

6

Using an on-board Inertial Measurement Unit (IMU), we can derive ω̇old. Now assume that the
controlled quantity of our system (the output y) is the angular rate ω. We can then write the system as

ẏ = ω̇new = ω̇old + I−1(∆Mc). (5.7)

We want to find the required change in control input ∆δ, such that the desired ẏ is obtained. To do that,
we first substitute ∆Mc by Mc(∆δ). (We apply linearization.) The required control surface deflection is
then given by

∆δ = M−1c I(ẏ − ω̇cur). (5.8)

Let’s examine the above equation. When we apply normal NDI, the value of δ strongly depends on a lot
of aircraft properties. Now, ∆δ only depends on Mc and I. Because we use measurements of ω̇new, any
other model uncertainties are cancelled. This is especially so if the measurements are very accurate and
the sampling time is small. In this way, INDI is much more robust than NDI.

6 Controlling an aircraft with NDI

6.1 Aircraft attitude control

Now that we know how NDI works, we should apply it to control an aircraft. We’ll discuss here how that
works. Although we don’t show the derivation of this technique, we will explain how to find the control
surface deflections required to control the aircraft. This is done in six steps.

1. We start off with the reference flight angles φ, θ and β. From them, we derive the reference flight
angle derivatives φ̇, θ̇ and β̇. This is done using a PID controller, likeφ̇θ̇
β̇

ref

= KP1

φθ
β

ref

−

φθ
β

act

+KI1

∫
φθ
β

ref

−

φθ
β

act

+KD1

d

dt

φθ
β

ref

−

φθ
β

act

 .

(6.1)

2. From these derivatives, the rotational rates of the aircraft should be derived. This is done using
the matrix equationpq

r

ref

=

 1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ
w√

u2+w2
0 −u√

u2+w2

−1

φ̇θ̇
β̇

ref

−

0

0
1√

u2+w2

(
−uv
V 2 ax +

(
1− v2

V 2

)
ay − vw

V 2 az

)

 .

(6.2)
The coefficients ax, ay and az are, respectively, given by

ax =
X

m
− g sin θ, ay =

Y

m
+ g sinφ cos θ and az =

Z

m
+ g cosφ cos θ, (6.3)

with X, Y and Z the forces in the corresponding directions. They can be measured by an IMU.

3. We now have the desired rotational rates of the aircraft. Again, using a PID controller, we can find
the desired rotational accelerations of the aircraft. So,ṗq̇
ṙ

ref

= KP2

pq
r

ref

−

pq
r

act

+KI2

∫
pq
r

ref

−

pq
r

act

+KD2

d

dt

pq
r

ref

−

pq
r

act

 .

(6.4)

7

4. To find the required moments, we can useLM
N

req

= I

ṗq̇
ṙ

ref

+

pq
r

act

× I

pq
r

act

. (6.5)

Note that we don’t use incremental NDI here, but just the normal version of NDI. If required, also
the INDI version can be implemented.

5. The required moments should be normalized before we can use them. For that, we use

Clreq =
Lreq

1
2ρV

2Sb
, Cmreq =

Mreq
1
2ρV

2Sc̄
and Cnreq =

Nreq
1
2ρV

2Sb
. (6.6)

6. Now that the required moment coefficients are known, the required elevator deflections can be
calculated. This time we can useδeδa

δr

req

=

 Clδe Clδa Clδr
Cmδe Cmδa Cmδr
Cnδe Cnδa Cnδr

−1

 ClCm
Cn

req

−

 ClCm
Cn

computed

 . (6.7)

6.2 Aircraft position control – deriving equations

With the controller of the previous paragraph, we could only control the orientation of the aircraft. But
how do we travel around the world then? For that, we need several equations, which we’ll discuss in this
paragraph. (We then use them in the next paragraph.) We will start with the equations of motion. They
are given by

Fext = maC = m
dṙC
dt

= m

(
dṙE
dt

+ ΩEC × ṙE

)
. (6.8)

Here, the subscript C denotes the Earth-centered Earth-fixed reference frame. (We assume that this
reference frame is inertial.) However, we will be using the equation reference frame FE . This
reference frame has its Z axis pointing up (away from Earth’s center), the X axis pointing East and the
Y axis pointing North. The origin is at the center of the Earth. The position of the aircraft is now simply
given by

rE =

0

0

r

 . (6.9)

The derivative depends on the flight path angle γ and the heading angle χ, according to

ṙE = V

cos γ sinχ

cos γ cosχ

sin γ

 , (6.10)

The term ΩEC is the rotation rate of the FC reference frame with respect to the FE reference frame. As
seen from the FE reference frame, it is given by

ΩEC =

 −δ̇τ̇ cos δ

τ̇ sin δ

 , (6.11)

8

where τ is the longitude and δ the latitude. Their time-derivatives depend on V , γ and χ, according
to

ṙ = V sin γ, (6.12)

τ̇ =
V sinχ cos γ

r cos δ
, (6.13)

δ̇ =
V cosχ cos γ

r
. (6.14)

Based on the above relations, we can eventually derive that V̇

V γ̇

V χ̇ cos γ

 =

cos γ sinχ − sin γ sinχ cosχ

cos γ cosχ − sin γ cosχ − sinχ

sin γ cos γ 0

−1

FE

m
+

 0

−V
2 cos γ
r

V 2 cos2 γ sinχ tan δ
r

 . (6.15)

The above equation will look a bit prettier if we transform it to the velocity reference frame FV . This
reference frame has the X axis pointing in the direction of the aircraft velocity vector. Now examine the
plane spanned by this X axis and the local gravity vector. The Y axis is perpendicular to this plane and
points to the right of the aircraft. Finally, the Z axis is perpendicular to both the X and Y axes and
points roughly downward. If we use this reference frame, then we will get V̇

V γ̇

V χ̇ cos γ

 =

1 0 0

0 0 −1

0 1 0

TV BFB

m
+

 0

−V
2 cos γ
r

V 2 cos2 γ sinχ tan δ
r

 . (6.16)

In the above equation, the rightmost term is often small enough to be neglected. But, for accuracy (and
just because we can), we will keep it. Do note that the force vector F is now expressed in the body
reference frame FB . The transformation vector TV B between the velocity and the body reference frame
is given by

TV B =

 cosα cosβ sinβ sinα cosβ

− cosα sinβ cosµ+ sinα sinµ cosβ cosµ − sinα sinβ cosµ− cosα sinµ

− cosα sinβ sinµ− sinα cosµ cosβ sinµ − sinα sinβ sinµ+ cosα cosµ

 . (6.17)

6.3 Aircraft position control – the actual plan

We now have a lot of equations concerning an aircraft flying around planet Earth. But how do we control
it? First, we examine the velocity. We want to keep a certain reference velocity Vref . Using PID control,

we find the corresponding value of V̇ref . We have

V̇ref = KP (Vref − Vact) +KI

∫
(Vref − Vact) +KD

d (Vref − Vact)
dt

. (6.18)

We then use this reference value to find the required thrust. We also use the top row of equation (6.16).
This gives us the equation

V̇ =
1

m

[
cosα cosβ sinβ sinα cosβ

]X + T

Y

Z

 =
1

m
((X + T) cosα cosβ + Y sinβ + Z sinα cosβ) .

(6.19)

9

Solving for the required thrust gives

Treq =
mV̇ref − (X cosα cosβ + Y sinβ + Z sinα cosβ)

cosα cosβ
. (6.20)

From this, the corresponding thrust setting δT should be derived.

Now let’s examine the flight path. This is specified by the climb angle γ and the heading χ. For both
these parameters, we have certain desired values γref and χref that need to be followed. We use these
desired values to find

γ̇ref = KD (γref − γact) +KI

∫
(γref − γact) +KD

d (γref − γact)
dt

, (6.21)

χ̇ref = KD (χref − χact) +KI

∫
(χref − χact) +KD

d (χref − χact)
dt

. (6.22)

Using these values, we can derive required values for the angle of attack α and the bank angle µ. But we
do have to make some assumptions for that. We assume that the reference angle for the sideslip angle
β is always zero, so βref = 0. In fact, for simplicity, we assume that the sideslip angle is always kept at
zero by the autopilot, so β = 0. We also assume that, because the sideslip angle is zero, there are no side
forces, so Y = 0. Finally, we assume that the angle of attack is small, so sinα = α and cosα = 1. If we
now solve the bottom two rows of equation (6.16), we get

µref = arcsin

((
m

Xα− Z

)(
V χ̇ cos γ − V 2 cos2 γ sinχ tan δ

r

))
, (6.23)

αref =
m

X cosµ

(
V γ̇ +

Z

m
cosµ+

V 2 cos γ

r

)
. (6.24)

Using the reference angles αref , µref and βref (which is zero), we can find

µ̇ref = KD (µref − µact) +KI

∫
(µref − µact) +KD

d (µref − µact)
dt

, (6.25)

α̇ref = KD (αref − αact) +KI

∫
(αref − αact) +KD

d (αref − αact)
dt

, (6.26)

β̇ref = KD (βref − βact) +KI

∫
(βref − βact) +KD

d (βref − βact)
dt

. (6.27)

From the desired angle derivatives, we can find the required aircraft rotational rates p, q and r. For this,
we do need to derive some more complicated kinematic equations. We won’t discuss the derivation here.
We’ll only mention the result, which ispq

r

ref

=

cosα cosβ 0 sinα

sinβ 1 0

sinα cosβ 0 − cosα

µrefαref

βref

+ TBV

−χ̇ sin γ

γ̇

χ̇ cos γ

 . (6.28)

Once these reference values are known, we can continue with step 3 of the original orientation control
plan to find the required control surface deflections. In this way, we only have to specify a desired aircraft
velocity Vref , flight path angle γref and heading angle χref , and the airplane will follow it. Who still
needs a pilot?

10

