
Aerodynamics B Summary

1. Basic Concepts

1.1 Flow types

If there is friction, thermal conduction or diffusion in a flow, it is termed viscous. If none of these things
is present, the flow is inviscid. Inviscid flows do not appear in nature, but some flows are almost inviscid.

A flow in which the density ρ is constant, is termed incompressible. If the density is variable, the flow
is compressible.

The Mach number M is defined as V/a, where V is the airflow velocity and a is the speed of sound. If
M < 1, the flow is called subsonic. If M = 1, the flow is called sonic. If M > 1 the flow is called
supersonic.

The flow field variables p, ρ, T and V = ui + vj +wk represent the flow field. All these variables are
functions of x, y, z and t (they differ per position and time). However, for a steady flow, the flow field
variables are constant in time. The flow is steady if

dp

dt
= 0,

dρ

dt
= 0,

dT

dt
= 0,

du

dt
= 0,

dv

dt
= 0 and

dw

dt
= 0. (1.1.1)

Otherwise the flow is unsteady.

1.2 Gradient, divergence and curl

Consider the vector
∇ =

∂

∂x
i +

∂

∂y
j +

∂

∂z
k. (1.2.1)

The gradient of a scalar field p(x, y, z) is defined as

∇p =
∂p

∂x
i +

∂p

∂y
j +

∂p

∂z
k. (1.2.2)

The divergence of a vector field A(x, y, z) = Axi +Ayj +Azk is defined as

∇ ·A =
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z
. (1.2.3)

The curl of a vector field A(x, y, z) = Axi +Ayj +Azk is defined as

∇×A =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣∣∣∣∣∣∣ =
(
∂Az

∂y
− ∂Ay

∂z

)
i +
(
∂Ax

∂z
− ∂Az

∂x

)
j +
(
∂Ay

∂x
− ∂Ax

∂y

)
k. (1.2.4)

Note that ∇p gives a vector field, ∇ ·A gives a scalar field and ∇×A gives a vector field.

These functions can also be derived for cylindrical coordinates (where p = p(r, θ, z) and A = A(r, θ, z))
and for spherical coordinates (where p = p(r, θ, φ) and A = A(r, θ, φ)), but those equations do not have
to be known by heart.
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1.3 Integrals

Given a closed curve C, the line integral is given by∮
C

A · ds. (1.3.1)

where the counterclockwise direction around C is considered positive.

Now consider a closed surface S, or a surface S bounded by a closed curve C. The possible surface
integrals that can be taken are∫∫

S

pdS,
∫∫

S

A · dS and
∫∫

S

A× dS. (1.3.2)

where dS = n dS with n being the unit normal vector. For closed surface S, n points outward.

Consider a volume ν. Possible volume integrals are∫∫∫
ν

p dν and
∫∫∫

ν

A dν. (1.3.3)

1.4 Integral Theorems

There are several theorems using the integral described in the previous paragraph. If S is the surface
bounded by the closed curve C, Stokes’ theorem states that∮

C

A · ds =
∫∫

S

(∇×A) · dS. (1.4.1)

If ν is the volume closed by the closed surface S, Gauss’ divergence theorem states that∫∫
S

A · dS =
∫∫∫

ν

(∇ ·A)dν. (1.4.2)

Analogous to this equation is the gradient theorem, which states that∫∫
S

pdS =
∫∫∫

ν

∇p dν. (1.4.3)
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2. Navier-Stokes Equations

2.1 Continuity equation

The continuity equation is based on conservation of mass. Let’s look at a volume ν with surface S,
which is fixed in space. The mass flow out of this volume B is equal to the decrease of mass inside the
volume C.

The mass flow through a certain area dS is ρV ·dS. Since dS points outward, we’re looking at the mass
flowing outward. To find the total mass flowing outward, we just integrate over the surface S, to find
that

B =
∫∫

S

ρV · dS. (2.1.1)

Now let’s find C. The mass in a small volume dν is ρ dν. The total mass in the volume ν can be found
by a triple integral. But we’re not looking for the total mass, but for the rate of mass decrease. So we
simply take a time derivative of the mass. This gives

C = − ∂

∂t

∫∫∫
ν

ρ dν. (2.1.2)

Note that the minus is there, because we’re looking for the rate of mass decrease. (Not increase!) Using
B = C we can find the continuity equation

∂

∂t

∫∫∫
ν

ρ dν +
∫∫

S

ρV · dS = 0. (2.1.3)

Since the control volume is fixed, we can pull ∂
∂t within the integral. And by using Gauss’ divergence

theorem, we can rewrite this to∫∫∫
ν

∂ρ

∂t
dν +

∫∫∫
ν

∇ · (ρV) dν =
∫∫∫

ν

(
∂ρ

∂t
+∇ · (ρV)

)
dν = 0. (2.1.4)

Now it may be assumed that, for every small volume dν in the volume ν, the integrand is zero:

∂ρ

∂t
+∇ · (ρV) = 0. (2.1.5)

Note that in the case of a steady flow ∂ρ
∂t = 0, so also ∇· (ρV) = 0. And if the flow is also incompressible,

then ∇ ·V = 0. The value ∇ ·V occurs relatively often in equations and will be discussed later.

2.2 Momentum equation

The momentum equation is based on the principle ”Sum of forces = Time rate of change of momen-
tum”. Let’s look once more at a fixed volume in space ν with boundary surface S. First we’ll examine
the forces acting on it. Then we’ll examine the change in momentum.

Two types of forces can act on our volume ν. Body forces, such as gravity, and surface forces, such as
pressure and shear stress. First let’s look at the body forces. Suppose f represents the net body force
per unit mass exerted on the fluid inside ν. On a small volume dν, the body force is ρf dν. So the total
body force is ∫∫∫

ν

ρf dν. (2.2.1)
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Now let’s examine the surface forces. On a small surface dS acts a pressure p, directed inward. But dS
is directed outward, so the actual force vector caused by the pressure is −pdS. The total pressure force
therefore is

−
∫∫

S

pdS. (2.2.2)

The shear stresses on the volume, caused by viscous forces, may be complicated. So let’s just define
Fviscous as the sum of all the viscous stresses. This makes the total force acting on our volume ν

F =
∫∫∫

ν

ρf dν −
∫∫

S

pdS + Fviscous (2.2.3)

Now let’s look at the rate of change of momentum in ν. This consists of two parts. First, particles leave
ν, taking momentum with them. From the previous paragraph, we know that the mass flow leaving ν
through dS is ρV · dS. So the flow of momentum that leaves ν through dS is (ρV · dS)V. The total
momentum leaving ν therefore is ∫∫

S

(ρV · dS)V (2.2.4)

Second, unsteady fluctuations of flow properties inside ν can also cause a change in momentum. The
momentum of a small volume dν is the mass times the velocity, being (ρ dν)V. The total momentum of
ν can be obtained by integrating. But we don’t want the total momentum, but the time rate of change
of momentum. So just like in the last paragraph, we put ∂

∂t in front of it to get

∂

∂t

∫∫∫
ν

ρV dν (2.2.5)

We now have calculated both the sum of the forces, and the change in momentum. It’s time to put it all
together in one equation∫∫∫

ν

ρf dν −
∫∫

S

pdS + Fviscous =
∫∫

S

(ρV · dS)V +
∂

∂t

∫∫∫
ν

ρV dν (2.2.6)

Just like we did in the previous paragraph, we can use the gradient theorem to bring the entire equation
under one integral. Let’s define =viscous as the part of Fviscous acting on a small volume dν. If we
simplify the equation and split it up in components, we find

ρfx −
∂p

∂x
+ =xviscous =

∂(ρu)
∂t

+∇ · (ρuV), (2.2.7)

ρfy −
∂p

∂y
+ =yviscous

=
∂(ρv)
∂t

+∇ · (ρvV), (2.2.8)

ρfz −
∂p

∂z
+ =zviscous

=
∂(ρw)
∂t

+∇ · (ρwV). (2.2.9)

If the flow is steady ( ∂
∂t = 0), inviscid (Fviscous = 0) and if there are no body forces (f = 0), these

equations reduce to

−∂p
∂x

= ∇ · (ρuV) (2.2.10)

−∂p
∂y

= ∇ · (ρvV) (2.2.11)

−∂p
∂z

= ∇ · (ρwV) (2.2.12)

If the flow is incompressible (ρ is constant), we have four equations (the momentum equation has three
components) and four unknowns, being p, u, v and w. It can be solved. But if ρ is not constant, we need
an additional equation.
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2.3 Energy equation

The energy equation is based on the principle that energy can be neither created nor destroyed. Let’s
once more take a fixed volume ν with boundary surface S. We will be looking at the time rate of change
of energy. But first we make a few definitions. B1 is the rate of heat added to ν. B2 is the rate of work
done on ν. B3 is the rate of change of energy in ν. So all values are rates of changes and therefore have
unit J/s. Putting it all together gives something similar to the first law of thermodynamics. The relation
between B1, B2 and B3 is

B1 +B2 = B3. (2.3.1)

First let’s look at B1. The heat can increase by volumetric heating (for example due to radiation). Let’s
denote the volumetric rate of heat addition per unit mass be denoted by q̇[J/kg s]. The heating of a
small volume dν is q̇ρ dν.

In addition, if the flow is viscous, heat can be transferred across the surface, for example by thermal
conduction. This is a complicated thing, so let’s just denote the rate of heat addition due to viscous
effects by Q̇viscous. Now we know that B1 is

B1 =
∫∫∫

ν

q̇ρ dν + Q̇viscous. (2.3.2)

Now let’s look at B2. The rate of work done on a body is F ·V. Just like in the previous paragraph,
three forces are acting on a small volume dν. Body forces (ρF dν), pressure forces (−pdS) and viscous
forces. Let’s denote the contribution of the friction forces to the work done by Ẇviscous. Putting it all
together gives

B2 =
∫∫∫

ν

ρ(f ·V) dν −
∫∫

S

pV · dS + Ẇviscous (2.3.3)

To find B3, we look at the energy in ν. The internal energy in ν is denoted by e, while the kinetic energy
per unit mass if V 2

2 . The total energy per unit mass is simply E = e+ V 2

2 .

The particles leaving ν through the surface S take energy with them. The mass flow leaving through a
surface dS is still ρV ·dS. Multiply this by the energy per unit mass gives ρE(V ·dS), being the rate of
energy leaving ν through dS. To find the total rate of energy leaving, simply integrate over the surface
S.

In addition, if the flow is unsteady, the energy inside ν can also change due to transient fluctuations. The
energy of a small volume dν is ρE dν. The total energy can be obtained by integrating over the volume
ν. But we don’t want the total energy, we want the time rate of change of energy. So, just like in the
last two paragraphs, we use ∂

∂t . Now we have enough data to find B3, which is

B3 =
∫∫

S

ρ

(
e+

V 2

2

)
V · dS +

∂

∂t

∫∫∫
ν

ρ

(
e+

V 2

2

)
dν. (2.3.4)

Putting everything together gives us the energy equation∫∫∫
ν

ρq̇ dν+Q̇viscous+
∫∫∫

ν

ρ(f ·V) dν−
∫∫

S

pV·dS+Ẇviscous =
∫∫

S

ρ

(
e+

V 2

2

)
V·dS+

∂

∂t

∫∫∫
ν

ρ

(
e+

V 2

2

)
dν.

(2.3.5)
Just like in the previous paragraphs, we can follow steps to remove the triple integral. Doing this results
in

ρq̇ + ρ(f ·V)−∇ · (pV) + Q̇′viscous + Ẇ ′
viscous = ∇ ·

(
ρ

(
e+

V 2

2

)
V
)

+
∂

∂t

(
ρ

(
e+

V 2

2

))
, (2.3.6)

where Q̇′viscous and Ẇ ′
viscous represent the proper forms of the viscous terms after being put inside the

triple integral.
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If the flow is steady ( ∂
∂t = 0), inviscid (Q̇viscous = 0 and Ẇviscous = 0), adiabatic (no heat addition,

q̇ = 0) and without body forces (f = 0), the energy equation reduces to

∇ ·
(
ρ

(
e+

V 2

2

)
V
)

= −∇ · (pV). (2.3.7)

2.4 Equation of state

Now we have five equations, but six unknowns, being p, ρ, u, v, w and e. To solve it, we need more
equations. If the gas is perfect, then

e = cvT, (2.4.1)

where cv is the specific gas constant for constant volume and T is the temperature. But this gives us
yet another unknown variable, being the temperature. To complete the system, we can make use of the
equation of state

p = ρRT. (2.4.2)

We now have seven unknowns and seven equations, which means the system can be solved.

2.5 Substantial derivative

Suppose we look at a very small point in space (from a stationary reference frame). The density changes
according to ∂ρ

∂t . But now let’s look at a very small volume in space (from a co-moving reference frame).
The time rate of change of this volume is defined as the substantial derivative Dρ

Dt . It can be shown
that this derivative is given by

D

Dt
=

∂

∂t
+ (∇ ·V) ⇔ Dρ

Dt
=
∂ρ

∂t
+ (∇ ·V) ρ. (2.5.1)

Of course the ρ can be replaced by other variables. The first ∂
∂t is called the local derivative and the

second part (V · ∇) is called the convective derivative.

The substantial derivative can be used to write the Navier-Stokes equations in a simpler form. To do
that, we make use of a vector relation, which is rather similar to the chain rule, being

∇ · (ρV) = ρ(∇ ·V) + (∇ρ) ·V = ρ∇ ·V + V · ∇ρ. (2.5.2)

Applying this relation and the substantial derivative to the continuity equation (equation 2.1.5) gives

Dρ

Dt
+ ρ∇ ·V = 0. (2.5.3)

Using the same tricks, the momentum equation (equation 2.2.7 to 2.2.9) can be rewritten as

ρfx −
∂p

∂x
+ =xviscous = ρ

Du

Dt
(2.5.4)

ρfy −
∂p

∂y
+ =yviscous = ρ

Dv

Dt
(2.5.5)

ρfz −
∂p

∂z
+ =zviscous

= ρ
Dw

Dt
(2.5.6)

If the flow is steady ( ∂
∂t = 0) and inviscid (Fviscous = 0), these equations can be simplified even more.

6



Now let’s look at the energy equation (equation 2.3.6). In the same way as the above equations, it can
be rewritten. The outcome is

q̇ρ+ ρ(f ·V)−∇ · (pV) + Q̇′viscous + Ẇ ′
viscous = ρ

D
(
e+ V 2

2

)
Dt

. (2.5.7)

It is conventional to call the earlier forms of the equations (equations 2.1.5, 2.2.7 to 2.2.9 and 2.3.6) the
conservation form (or sometimes the divergence form), while the equations of this paragraph are
called the non-conservation form. In most cases, there is no particular reason to choose one form over
the other.

2.6 Divergence of velocity

The quantity ∇ ·V occurs frequently in equations. Let’s consider an amount of air ν from a co-moving
reference frame. As the air moves, the volume of ν can change. We will take a look at that change now.

Let’s consider a small bit of surface dS of ν. This surface moves. The change in volume that this piece
of surface causes is V · dS. So the total change in volume per unit time can be found, using an integral
over the surface, giving

Dν

Dt
=
∫∫

S

V · dS =
∫∫∫

ν

(∇ ·V)dν. (2.6.1)

The latter part is known due to the divergence theorem. Note that we have used the substantial derivative
Dν
dt instead of dν

dt since we are considering a moving volume of air, instead of air passing through a fixed
volume in space.

If the volume ν is small enough, such that ∇ ·V is the same everywhere in ν, then we can find that

∇ ·V =
1
ν

Dν

Dt
. (2.6.2)

This equation states that ∇ ·V is the time rate of change of the volume of a moving fluid element per
unit volume. This sounds complicated, but an example will illustrate this fact. If ∇ ·V = −0.8s−1, then
the volume ν will decrease by 80% every second (the minus sign indicates a decrease). If ∇ ·V = 1s−1,
then the volume ν will double in size every second (that is, as long ∇ ·V remains 1s−1).
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3. Aerodynamics Lines and Equations

3.1 Pathlines, streamlines and streaklines

A pathline is a curve in space traced out by a certain particle in time. A streamline is a line where the
flow is tangential. A streakline is the line formed by all the particles that previously passed through a
certain point. However, for steady flows, pathlines, streamlines and streaklines simply coincide.

Of these three lines, streamlines are the lines most used in aerodynamics. But how can we find the
equation for a streamline? Since the velocity vector is tangential to the streamline at that point, we know
that

V × ds = 0. (3.1.1)

Looking at the components of the vectors also shows that

dx

u
=
dy

v
=
dz

w
. (3.1.2)

Note that for 2-dimensional situations this equation reduces to

v dx = u dy. (3.1.3)

3.2 Vorticity

If ω is the angular velocity of a small volume in space, then the vorticity ξ is defined as

ξ = 2ω =
(
∂w

∂y
− ∂v

∂z

)
i +
(
∂u

∂z
− ∂w

∂x

)
j +
(
∂v

∂x
− ∂u

∂y

)
k = ∇×V. (3.2.1)

So in a velocity field, the curl of the velocity is equal to the vorticity. If ξ = 0 at every point in a flow,
the flow is called irrotational. The motion of fluid elements is then without rotation - there is only pure
translation. If ξ 6= 0 for some point, then the flow is called rotational.

Note that for 2-dimensional flows the vorticity is given by ξ = ∂v
∂x −

∂u
∂y . So if the flow is irrotational, then

∂v

∂x
=
∂u

∂y
. (3.2.2)

This equation is the condition of irrotationality for two-dimensional flow and will be used quite
frequently.

3.3 Circulation

Consider a closed curve C in a flow field. The circulation Γ is defined as

Γ = −
∮

C

V · ds. (3.3.1)

By definition the integral along C has counter-clockwise as positive direction, but by definition the
circulation has clockwise as positive direction. Therefore the minus sign is present in the equation.

If the flow is irrotational everywhere in the surface bounded by C, then Γ = 0.
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3.4 Stream functions

Let’s consider a 2-dimensional flow for now. If the velocity distribution of the flow is known, equation
3.1.3 can be integrated to find the equation for a streamline ψ̄(x, y) = c. The function ψ̄ is called the
stream function. Different values of c result in different streamlines.

If a stream function ψ is known, then the product ρV at a certain point in the flow can be found, using

ρu =
∂ψ̄

∂y
, ρv = −∂ψ̄

∂x
. (3.4.1)

Now suppose we’re dealing with incompressible flows, and thus ρ = constant. Let’s define a new stream
function ψ = ψ̄/ρ. (Note that ψ has unit [m3/(sm) = m2/s].) Then equation 3.4.1 becomes

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (3.4.2)

In polar coordinates this becomes

Vr =
1
r

dψ

dθ
, Vθ = −dψ

dr
. (3.4.3)

3.5 Velocity potential

For an irrotational flow, it is known that ξ = ∇ ×V = 0. There is also a vector identity, stating that
∇× (∇φ) = 0. Combining these equations, we see that there is a scalar function φ such that.

V = ∇φ. (3.5.1)

The function φ is called the velocity potential. If the velocity potential is known, then the velocity at
every point can be determined, using

u =
∂φ

∂x
, v =

∂φ

∂y
, w =

∂φ

∂z
. (3.5.2)

In polar coordinates, this is

Vr =
dφ

dr
, Vθ =

1
r

dφ

dθ
. (3.5.3)

Since irrotational flows can be described by a velocity potential φ, such flows are also called potential
flows.

3.6 Stream function versus velocity potential

The stream function and the velocity potential have important similarities and differences. Keep in
mind that the velocity potential is defined for irrotational flow only, while the stream function can be
used for both rotational and irrotational flows. On the contrary, the velocity potential applies for three-
dimensional flows, while the stream function is defined for two-dimensional flows only.

There is another interesting relation between the stream function and the velocity potential. Suppose we
plot lines for constant values of the stream function ψ = constant. The streamlines do not intersect other
stream lines. Now we also plot lines for constant values of the velocity potential φ = constant, being
so-called equipotential lines. The equipotential lines do not intersect other equipotential lines either.
However, the streamlines and the equipotential lines do intersect. The peculiar thing is that they always
intersect perpendicular. This, in fact, can be mathematically proven. So streamlines and equipotential
lines are orthogonal.
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4. Basics of Inviscid Incompressible Flows

4.1 Bernoulli’s equation

An incompressible flow is a flow where the density ρ is constant. Let’s assume we’re dealing with an
incompressible flow. From the momentum equation and the streamline condition, we can derive that

dp = −ρV dV. (4.1.1)

This equation is called Euler’s equation. Since the streamline condition was used in the derivation, it
is only valid along a streamline. Integrating the Euler equation between point 1 and point 2 gives

p1 +
1
2
ρV 2

1 = p2 +
1
2
ρV 2

2 . (4.1.2)

In other words, p+ 1
2ρV

2 is constant along a streamline.

An inviscid flow is a flow without friction, thermal conduction or diffusion. It can be shown that inviscid
flows are irrotational flows. For irrotational flows p+ 1

2ρV
2 is constant, even for different streamlines.

4.2 Continuity equation

In a low-speed wind tunnel the flow field variables can be assumed to be a function of x only, so A = A(x),
V = V (x), p = p(x), etcetera. Such a flow is called a quasi-one-dimensional flow. From the continuity
equation can be derived that

ρ1A1V1 = ρ2A2V2, (4.2.1)

for two points in the tunnel. This applies to both compressible and incompressible flows. If the flow
becomes incompressible, then ρ1 = ρ2. The equation then reduces to A1V1 = A2V2. If we combine this
with Bernoulli’s equation, we find

V1 =

√√√√ 2(p1 − p2)

ρ
(

A1
A2
− 1
) . (4.2.2)

4.3 Dynamic pressure

The dynamic pressure is defined as

q =
1
2
ρV 2. (4.3.1)

Let’s suppose that the velocity at some point 0 is zero (V0 = 0). If the flow is incompressible, it follows
that

p1 +
1
2
ρV 2

1 = p0 ⇒ q1 = p0 − p1. (4.3.2)

Note that this follows from Bernoulli’s equation. If the flow is compressible, Bernoulli’s equation is not
valid and thus p0 − p1 6= q1.

4.4 Pressure coefficient

The pressure coefficient Cp is defined as

Cp =
p− p∞
q∞

, (4.4.1)
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where q∞ = 1
2ρ∞V

2
∞. The ∞ subscript denotes that the values are measured in the free stream, as if

being infinitely far away from the examined object. For incompressible flows, Cp can also be written as

Cp = 1−
(
V

V∞

)2

. (4.4.2)

4.5 Laplace’s equation

If the flow is incompressible, it follows from the continuity equation that

∇ ·V = 0. (4.5.1)

If the flow is also inviscid, and thus irrotational, it follows that ∇×V = 0. It also implicates that there
is a velocity potential φ such that V = ∇φ. Combining this with equation 4.5.1 gives

∇ · (∇φ) = ∇2φ = 0. (4.5.2)

This simple but important relation is called Laplace’s equation. It seems that the velocity potential
satisfies Laplace’s equation. But what about the stream function? We can recall from the previous
chapter that

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (4.5.3)

We can also remember the irrotationality condition, stating that ∂v
∂x −

∂u
∂y = 0. Inserting 4.5.3 in this

condition gives
∂2ψ

∂x2
+
∂2ψ

∂y2
= 0 ⇒ ∇2ψ = 0. (4.5.4)

So the stream function ψ also satisfies Laplace’s equation, just like the velocity potential function φ.

4.6 Applying Laplace’s equation

Note that the Laplace equation is a linear partial differential equation. So if we find multiple solutions
φ1, . . ., φn for it, then any linear combination φ = c1φ1 + . . . + cnφn is also a solution. So if we find
a couple of basic solutions to Laplace’s equation, and if we add them up in just the right way, we can
display any inviscid incompressible flow.

But how do we know how to put the independent solutions together? We have to make use of boundary
conditions. First, there are the boundary conditions on velocity at infinity, stating that, at
infinity,

u =
∂φ

∂x
=
∂ψ

∂y
= V∞, v =

∂φ

∂y
= −∂ψ

∂x
= 0. (4.6.1)

There are also the wall boundary conditions. The flow can not penetrate an airfoil. So the velocity
at the airfoil edge is directed tangentially. This can be expressed in many ways. If n is the normal vector
at the airfoil surface, then V ·n = (∇φ) ·n = 0. This is called the flow tangency condition. But since
the airfoil edge is a streamline itself, also ψsurface = constant.

If we are dealing with neither φ or ψ, but rather with u and v themselves, things are different. If the
shape of the airfoil is given by yb(x), then

dyb

dx
=
( v
u

)
surface

. (4.6.2)

With those boundary conditions, we can put the elementary solutions to Laplace’s equation together to
represent, for example, the flow over a cylinder or over an airfoil. All that is left now, is to find those
elementary solutions. That is the subject of the next chapter.
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5. Elementary Flows

5.1 Uniform flows

A uniform flow (oriented in the positive x-direction) is a flow with velocity components u = V∞ and
v = 0 everywhere. Such a flow is irrotational. It therefore has a velocity potential φ, which can be shown
to be

φ = V∞x. (5.1.1)

Also the stream function can be determined to be

ψ = V∞y. (5.1.2)

Note that these two functions both satisfy Laplace’s equation.

In a 3-dimensional world, the velocity potential is the same, and therefore w = 0.

5.2 Source flows

A source flow is a flow where all the streamlines are straight lines emanating from a central point O,
and where the velocity varies inversely with the distance from O. In formula this is

Vr =
Λ

2πr
, Vθ = 0, (5.2.1)

where Λ is the source stength. Such a flow is incompressible (except at point O itself) and irrotational.
If Λ > 0, we are dealing with a source flow. If Λ < 0, we are looking at a so-called sink flow, where the
velocity vectors point inward.

The velocity potential of the flow can be found using the above velocity relations. The result will be

φ =
Λ
2π

ln r. (5.2.2)

Note that this function is not defined for r = 0, since the flow is not incompressible there. Identically,
the stream function can be shown to be

ψ =
Λ
2π
θ. (5.2.3)

Now let’s look at 3-dimensional sources. 3-Dimensional source flows are similar to 2-dimensional ones.
Let’s define λ as the volume flow originating from the source. The velocity is now, in spherical coordinates,

Vr =
λ

4πr2
, Vθ = 0, Vφ = 0. (5.2.4)

The stream function is not defined for 3-dimensional situations. The velocity potential is

φ = − λ

4πr
. (5.2.5)

5.3 Doublets

Suppose we have a source of strength Λ at coordinates (− 1
2 l, 0) and a source of strength −Λ (thus being

a sink) at coordinates ( 1
2 l, 0). If l→ 0, we obtain a flow pattern called a doublet. The strength of the

doublet is defined as κ = lΛ. So as l→ 0 also Λ →∞. The velocity potential now is

φ =
κ

2π
cos θ
r

. (5.3.1)
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Also, the stream function is

ψ = − κ

2π
sin θ
r

. (5.3.2)

The streamlines of a doublet are therefore given by

ψ = c ⇒ r = − κ

2πc
sin θ. (5.3.3)

It can mathematically be shown that these are circles with diameter d = κ
2πc and with their centers

positioned at coordinates (0,± 1
2d).

Now let’s look at 3-dimensional doublets. Just like in a 2-dimensional doublet, a 3-dimensional doublet
has a 3-dimensional source and sink at a very small distance from each other. The 3-dimensional doublet
strength is defined as µ = Λl. The velocity potential then is

φ = − µ

4π
cos θ
r2

. (5.3.4)

5.4 Vortex flows

A vortex flow is a flow in which the stream lines form concentric circles about a given point. Such a
flow is described by

Vr = 0, Vθ = − Γ
2πr

, (5.4.1)

where Γ is the circulation. In this case Γ is also called the strength of the vortex. A positive strength
corresponds to a clockwise vortex, while a counterclockwise vortex indicates a negative strength.

Vortex flow is irrotational everywhere except at r = 0, where the vorticity is infinite. The velocity
potential is given by

φ = − Γ
2π
θ. (5.4.2)

Also, the stream function is

ψ =
Γ
2π

ln r. (5.4.3)

There are no 3-dimensional vortex flows. The only way in which three-dimensional vortex flows can occur
is if multiple 2-dimensional vortex flows are stacked on top of each other. This is then, in fact, still a
2-dimensional problem and can be solved with the above equations.

5.5 Elementary flow overview

Flow type Velocity Velocity potential Stream function

Uniform flow in x-direction
u = V∞

v = 0
φ = V∞x ψ = V∞y

Source/Sink
Vr = Λ

2πr

Vθ = 0
φ = Λ

2π ln r ψ = Λ
2π θ

Doublet
Vr = − κ

2π
cos θ
r2

Vθ = − κ
2π

sin θ
r2

φ = κ
2π

cos θ
r ψ = − κ

2π
sin θ

r

Vortex
Vr = 0

Vθ = − Γ
2πr

− Γ
2π θ ψ = Γ

2π ln r

13



6. Basic Applications of Elementary Flows

6.1 Nonlifting flow over a cylinder

If we combine a uniform flow with a doublet, we get the stream function

ψ = V∞r sin θ − κ

2π
sin θ
r

= V∞r sin θ
(

1− κ

2πV∞r2

)
= V∞r sin θ

(
1− R2

r2

)
, (6.1.1)

where R2 = κ
2πV∞

. This is also the stream function for a flow over a cylinder/circle with radius

R =
√

κ

2πV∞
. (6.1.2)

The velocity field can be found by using the stream function, and is given by

Vr = V∞ cos θ
(

1− R2

r2

)
, Vθ = −V∞ sin θ

(
1 +

R2

r2

)
. (6.1.3)

Note that if r = R, then Vr = 0, satisfying the wall boundary condition. At the wall also Vθ = −2V∞ sin θ.
This means that the pressure coefficient over the cylinder is given by

Cp = 1−
(
V

V∞

)2

= 1− 4 sin2 θ. (6.1.4)

6.2 Nonlifting flow over a sphere

Let’s combine a uniform 3-dimensional flow with a 3-dimensional doublet. Let’s define R as

R = 3

√
µ

2πV∞
. (6.2.1)

Using the combined stream function, it can be shown that the velocity field is given by

Vr = −V∞ cos θ
(

1− R3

r3

)
, Vθ = V∞ sin θ

(
1 +

R3

r3

)
, Vφ = 0. (6.2.2)

At the wall, the velocity is Vθ = 3
2V∞ sin θ. This means that the pressure coefficient over the sphere is

given by

Cp = 1−
(
V

V∞

)2

= 1− 9
4

sin2 θ. (6.2.3)

6.3 Lifting flow over a cylinder

Let’s combine a nonlifting flow over a cylinder with a vortex of strength Γ. This results in a lifting flow
over a cylinder. The resulting stream function is

ψ = (V∞r sin θ)
(

1− R2

r2

)
+

Γ
2π

ln
r

R
. (6.3.1)

From the stream function we can derive the velocity field, which is given by

Vr = V∞ cos θ
(

1− R2

r2

)
, Vθ = −V∞ sin θ

(
1 +

R2

r2

)
− Γ

2πr
. (6.3.2)
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To find the stagnation points, we simply have to set Vr and Vθ to 0. If Γ
4πV∞R ≤ 1, then the solution is

given by

r = R, θ = arcsin
(
− Γ

4πV∞R

)
. (6.3.3)

However, if Γ
4πV∞R ≥ 1, then the solution is given by

r =
Γ

4πV∞
±

√(
Γ

4πV∞

)2

−R2, θ = −1
2
π. (6.3.4)

At the surface of the cylinder (where r = R) is the velocity V = Vθ. Using this, the pressure coefficient
can be calculated. The result is

Cp = 1−
(

2 sin θ +
Γ

2πRV∞

)2

. (6.3.5)

Using this pressure coefficient, the drag coefficient can be found to be cd = 0. So there is no drag. Also,
the lift coefficient is

cl =
Γ

RV∞
, (6.3.6)

where R = 1
2c. Now the lift per unit span L′ can be obtained from

L′ = clq∞c =
Γ

RV∞

1
2
ρ∞V

2
∞2R = ρ∞V∞γ. (6.3.7)

This equation is called the Kutta-Joukowski Theorem. It states that the lift per unit span is directly
proportional to the circulation. It also works for shapes other than cylinders. However, for other shapes a
complex distribution of sources and vortices may be necessary, as is the subject of the following paragraph.

6.4 Source Panel Method

The source panel technique is a numerical method to use elementary flows. Let’s put a lot of sources
along a curve with source strength per unit length λ = λ(s). Such a source distribution is called a source
sheet. Note that λ can be positive at some points and negative in other points.

Now look at an infinitely small part of the source sheet. The source strength of this part is λ ds. So for
any point P , the contribution of this small source sheet part to the velocity potential is

dφ =
λ ds

2π
ln r, (6.4.1)

where r is the distance between the source sheet part and point P . The entire velocity potential can be
obtained by integrating, which simply gives

φ =
∫ b

a

λ ds

2π
ln r. (6.4.2)

In the source panel method, usually an airfoil (or an other shape) is split up in a number of small straight
lines for which the velocity potential is separately calculated and the boundary conditions are separately
applied.

15



7. Two-Dimensional Airfoils

7.1 Definitions

There are various ways to describe an airfoil. The NACA-terminology is a well-known standard, which
defines the following airfoil properties. The mean camber line is the line formed by the points halfway
between the upper and lower surfaces of the airfoil. The most forward and rearward points of the airfoil
are the leading edge and the trailing edge, respectively. The straight line connecting the leading and
trailing edges is the chord line.

The length of the chord line is defined as the chord c. The maximum distance between the chord line
and the camber line is called the camber. If the camber is 0, then the airfoil is called symmetric. And
finally, the thickness is the distance between the upper and lower surfaces of the airfoil.

In this chapter we will be looking at 2-dimensional airfoils. We’re interested in finding cl, the lift
coefficient per unit length. At low angles of attack α, the value of cl varies linearly with α. The
lift slope a0 is the ratio of them, so a0 = dcl

dα .

If α gets too high, this relation doesn’t hold, since stall will occur. The maximum value of cl is denoted
by cl,max. This value determines the minimum velocity of an aircraft. The value of α when cl = 0 is
called the zero-lift angle of attack and is denoted by αL=0.

7.2 Vortex sheets

In the last chapter we treated the source panel method. We put a lot of sources on a sheet. We can also
put a lot of vortices on a curve s. Let’s define γ = γ(s) as the strength of the vortex sheet per unit length
along s. The velocity potential at some point P can then be determined, using

dφ = −γ ds
2π

θ ⇒ φ = − 1
2π

∫ b

a

θγ ds. (7.2.1)

Here θ is the angle between point P and the point on the vortex sheet we’re at that moment looking at.
Also a and b are the begin and the end of the vortex sheet.

The circulation of the vortex sheet can be determined to be

Γ =
∫ b

a

γ ds. (7.2.2)

If the circulation is known, the resulting lift can be calculated using the Kutta-Joukowski theorem

L′ = ρ∞V∞Γ. (7.2.3)

7.3 Kutta condition

We can put a vortex sheet on the camber line of an airfoil. We can then use boundary conditions and
numerical computation to find the vortex strength γ at every point. But it turns out that there are
multiple solutions. To get one solution, we can use the Kutta condition, which states that the flows
leaves the trailing edge smoothly.

What can we derive from this? For now, let’s call ϕ the angle of the trailing edge. Also let’s call V1 the
velocity on top of the airfoil at the trailing edge and V2 the velocity at the bottom of the airfoil at the
same point. If ϕ is finite, then it can be shown that V1 = V2 = 0. However, if ϕ → 0 (the trailing edge
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is cusped), then only V1 = V2. Nevertheless, we can derive the same rule from both situations. Namely,
that the vortex strength at the trailing edge is

γ(TE) = 0. (7.3.1)

7.4 Thin airfoil theory

Suppose we want to calculate the flow over a very thin airfoil by using a vortex sheet in a free stream
flow. We can put vortices on the camber. But the camber line doesn’t differ much from the chord line,
so to keep things simple we place vortices on the chord line.

Since the airfoil is thin, it is by itself a streamline of the flow. So the velocity perpendicular to the camber
line is 0. Let’s define z(x) to be the distance between the mean camber line and the chord line, where x
is the distance from the leading edge. The velocity perpendicular to the camber line, caused by the free
stream flow, at position x, can be shown to be

V∞,n = V∞

(
α− dz

dx

)
, (7.4.1)

where α is in radians. The velocity perpendicular to the mean camber line, due to the vortices, is
approximately equal to the velocity perpendicular to the chord. It can be shown that this velocity
component on a small part dε, with distance x from the airfoil leading edge, is

dw = − γ(ε) dε
2π(x− ε)

. (7.4.2)

Integrating along the chord gives the total velocity perpendicular to the chord at position x due to the
vortex sheet, being

w(x) = − 1
2π

∫ c

0

γ(ε) dε
x− ε

. (7.4.3)

We have already derived that the velocity perpendicular to the airfoil is zero. So V∞,n + w = 0, which
results in

1
2π

∫ c

0

γ(ε) dε
x− ε

= V∞

(
α− dz

dx

)
. (7.4.4)

This is the fundamental equation of thin airfoil theory.

7.5 Vortex distributions of symmetric airfoils

If we have a symmetric airfoil, then there is no camber, so dz/dx = 0 everywhere on the airfoil. This
simplifies equation 7.4.4 and we might actually try to solve it now. If we make the change of variable
ε = 1

2c(1− cos θ) and also define x = 1
2c(1− cos θ0), we get

1
2π

∫ π

0

γ(θ) sin θ dθ
cos θ − cos θ0

= V∞α. (7.5.1)

This is a complicated integral, but it can be solved. The solution will be

γ(θ) = 2αV∞
1 + cos θ

sin θ
. (7.5.2)

We might want to take a closer look on the change of variable we have made. How can we visualize this
change of variable? Imagine the airfoil being the diameter of a circle. Now imagine we are moving over
the top half of the circle, from the leading edge to the trailing edge. The angle θ we make with respect to
the center of the airfoil corresponds to the point on the airfoil directly below it, as is shown in figure 1.
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Figure 1: Clarification of the change of variable.

7.6 Lift coefficients of symmetric airfoils

In the last paragraph, we found the vortex strength of a thin symmetric airfoil. Using the vortex strength,
we can find the circulation, which will turn out to be

Γ = παcV∞. (7.6.1)

Using the Kutta-Joukowski theorem, we can calculate the lift per unit span on the airfoil, which is

L′ = ρ∞V∞Γ = παcρ∞V
2
∞. (7.6.2)

The lift coefficient now is

cl =
L′

1
2ρ∞V

2
∞c

=
παcρ∞V

2
∞

1
2ρ∞V

2
∞c

= 2πα. (7.6.3)

So we know have the important conclusion that for thin symmetric airfoils, the lift slope is a0 = 2π.

7.7 Moment coefficients of symmetric airfoils

We can use this theory as well to calculate the moment per unit span exerted on the airfoil around, for
example, the leading edge. Let’s call M ′ the moment per unit span around the leading edge. Moment is
force times distance, so dM ′ = −εdL′. The minus sign is there due to sign convention. We know that
the lift per unit span is L′ = ρ∞V∞Γ, so we find that dL′ = ρ∞V∞dΓ. We also know that dΓ = γ(ε)dε.
Combining this all gives

M ′
LE = −

∫ c

0

ε dL′ = −ρ∞V∞
∫ c

0

εγ(ε) dε. (7.7.1)

Using the familiar change of variable and integrating gives

M ′
LE = −q∞

( c
2

)2

2πα = −clq∞
( c

2

)2

. (7.7.2)

The moment coefficient about the leading edge now is

cm,le =
M ′

LE

q∞c2
= −

clq∞
(

c
2

)2
q∞c2

= −1
4
cl. (7.7.3)

The quarter-chord point is the point at distance 1
4c from the leading edge. Taking sum of the moments

about the quarter-chord point gives the moment coefficient about the quarter-chord point

cm,c/4 = cm,le +
1
4
cl = 0. (7.7.4)
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The center of pressure is the point around which there is no moment. So the center of pressure is
equal to the quarter-chord position. The aerodynamic center is the point around which the moment
coefficient is independent of α. Since cm,c/4 = 0 for every α, the quarter point position is also the
aerodynamic center. So the center of pressure and the aerodynamic center are both located at the
quarter-chord point.

7.8 Vortex distributions of cambered airfoils

For cambered airfoils, it is a lot more difficult to solve equation 7.4.4, since dz
dx 6= 0. Mathematicians have

found the solution to be

γ(θ) = 2V∞

(
A0

1 + cos θ
sin θ

+
∞∑

n=1

An sinnθ

)
. (7.8.1)

We will not show the derivation, since that will be too complicated. You will just have to accept the
equations.

The values An depend on dz
dx and A0 depends on both dz

dx and α. In fact, using even more complicated
mathematics, it can be shown that

A0 = α− 1
π

∫ π

0

dz

dx
dθ0, An =

2
π

∫ π

0

dz

dx
cosnθ0 dθ0. (7.8.2)

Note that dz
dx is the derivative of z(x), taken at point x. So the value of dz

dx depends on x. And x also
depends on θ0, since x = 1

2c(1− cos θ).

7.9 Lift coefficients of cambered airfoils

Let’s take a loot at the lift coefficient of the airfoil. The circulation can be found using

Γ = cV∞

(
πA0 +

π

2
A1

)
. (7.9.1)

The lift per unit span now is

L′ = ρ∞V∞Γ = ρ∞V
2
∞cπ

(
A0 +

1
2
A1

)
. (7.9.2)

The lift coefficient can be shown to be

cl =
L′

1
2ρ∞V

2
∞c

= π(2A0 +A1) = 2π
(
α+

1
π

∫ π

0

dz

dx
(cos θ0 − 1)dθ0

)
. (7.9.3)

We now see that the lift slope is once more a0 = dcl

dα = 2π. So camber does not change the lift slope.
However, it does change the zero-lift angle of attack, which will be

αL=0 = 2πα− cl = − 1
π

∫ π

0

dz

dx
(cos θ0 − 1)dθ0. (7.9.4)

7.10 Moment coefficients of cambered airfoils

Just like we did for symmetric airfoils, we can calculate the moment coefficient. The result will be

cm,le = −π
2

(
A0 +A1 −

A2

2

)
= −cl

4
+
π

4
(A2 −A1) . (7.10.1)
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We can once more derive the moment coefficient with respect to the quarter-chord point. It will not be
0 this time, but

cm,c/4 =
π

4
(A2 −A1) . (7.10.2)

The value of cm,c/4 is independent of α, so the quarter-chord point is the aerodynamic center. However,
the moment coefficient is not zero, so this point is not the center of pressure. The position of the center
of pressure can be calculated to be

xcp = −M
′
LE

L′
= −cm,lec

cl
=
c

4

(
1 +

π

cl
(A1 −A2)

)
(7.10.3)

7.11 Designing a camber line

We used the camber line (described by dz
dx ) to find the coefficients A0, A1, . . .. We can also use the

coefficients to find the camber line. We then have several boundary conditions. Of course z(0) = 0 and
z(c) = 0.

First we need to think of suitable coefficients for our design. What these coefficients will be depends on
what properties we want to give our airfoil. For example, if we want to have cm,c/4 = 0, then we should
take A1 = A2. If we have determined our coefficients, we can find our camber line by using

dz

dx
= α−A0 +

∞∑
n=1

An cosnθ0. (7.11.1)

7.12 Design lift coefficient

Thin airfoils do have a disadvantage. For most angles of attack, the airflow separates at the leading edge
(and reattaches afterward for low velocities). This reduces lift. For one angle of attack, the flow smoothly
attaches to the leading edge. This is the so-called ideal or optimal angle of attack αopt.

Theoretical calculations can show that this only occurs if the vortex at the leading edge is zero, so
γLE = 0. Combining this fact with equation 7.8.1 gives A0 = 0. Inserting this in equation 7.8.2 results in

αopt =
1
π

∫ π

0

dz

dx
θ0. (7.12.1)

The lift coefficient at the optimal angle of attack is called the design lift coefficient. Thanks to equation
7.9.3, we can calculate it, using

(cl)design = πA1 = 2
∫ π

0

dz

dx
cos θ0 dθ0. (7.12.2)
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8. Three-Dimensional Wings

8.1 Induced drag

So far we have looked at two-dimensional (infinite) wings. Now let’s look at three-dimensional wings.
Lift is created by a high pressure on the bottom of the wing and a low pressure on top of the wing. At
the wing edges, air tries to go from the bottom to the top of the wing. This causes vortices.

These vortices cause a small velocity component in the downward direction at the wing, called downwash.
So the airfoil ”sees” a different flow direction than the free stream flow. Even though α is the geometric
angle of attack (with respect to the free stream flow), the effective angle of attack αeff , which
actually contributes to the lift, is different. This is such that

αeff = α− αi, (8.1.1)

where αi is the change of the direction of the air flow close to the airfoil. αi is called the induced angle
of attack.

But the decrease in lift is only small. The real disadvantage is that the lift factor is tilted backward by
an angle αi. So part of the ”lift” is pointing in the direction of the free stream flow, so it is actually drag.
This drag is called induced drag.

8.2 Coefficients, lift and drag

In the last chapter we have dealt with the lift coefficient per unit span cl. Now we will deal with the
actual lift coefficient CL of the entire wing. Identically, the lift per unit span L′ becomes the total lift L.
Also cd becomes CD and D′ becomes D. The same goes for moment coefficients.

In real life, the drag consists of three parts. There is skin friction drag Df , pressure drag Dp and
induced drag Di. The first two are caused by viscous effect, and together form the profile drag. If CD,p

is the profile drag coefficient, then

CD,p =
Df +Dp

q∞S
. (8.2.1)

The induced drag coefficient CD,i is

CD,i =
Di

q∞S
. (8.2.2)

Together they form the total drag coefficient, being

CD =
Df +Dp +Di

q∞S
= CD,p + CD,i. (8.2.3)

8.3 Vortex filaments

In the last chapter, we considered 2-dimensional vortices. We can put a lot of them in a three-dimensional
curve, being a so-called vortex filament. A vortex filament has a strength Γ. If we now look at any
part of the curve dl, then the velocity dV at some point P , caused by this part, is

dV =
Γ
4π

dl× r
|r|3

, (8.3.1)

where r is the vector from the part dl to point P . This important relation is called the Biot-Savart
law.
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There are a few important rules concerning vortex filaments. These are called Helmholtz’s vortex
theorems.
• The strength of a vortex filament is constant along its entire length.
• A vortex filament can not end. It is either a closed curve or it is infinitely long.

8.4 Horseshoe vortices

We can model three-dimensional wings using vortex filaments. Let’s take a wing with wing span b, and
put it in a coordinate system such that the tips are positioned at y = − b

2 and y = b
2 . Now we can let a

vortex filament run from one tip to the other. But a vortex filament may not end. So from the tip, we
let the filaments (both ends) run to infinity in the direction of the free stream flow (which is defined as
the positive x-direction). The part of the vortex filament on the wing is called the bound vortex. The
two infinite parts are the trailing vortices. The entire vortex filament is called a horseshoe vortex,
since it has the shape of a horseshoe (except for the fact that horses don’t have infinite feet).

Using the horseshoe vortex, we can already, more or less, model the wing. But if we go to the wing
tips, the induced velocity will go to infinity, which isn’t what happens in real life. So we need to change
our model. Instead of having one horseshoe vortex, running between − b

2 and b
2 , we put infinitely many,

running between −y and y, where 0 ≤ y ≤ b
2 . We now have a vortex distribution Γ(y) along the wing

and a vortex sheet with strength dΓ(y) behind the wing.

8.5 Induced angle of attack

Now look at a point on the wing with y-coordinate y0. The velocity induced by the semi-infinite trailing
vortex at position y can be found using the Biot-Savart law. The result will be

dw = −

(
dΓ
dy

)
dy

4π(y0 − y)
. (8.5.1)

So if we want to find the entire induced velocity at point y0, we need to integrate along the entire wing,
giving

w(y0) = − 1
4π

∫ b
2

− b
2

(
dΓ
dy

)
dy

(y0 − y)
. (8.5.2)

Using the induced velocity, we can find the induced angle of attack to be

αi(y0) = tan−1

(
−w(y0)
V∞

)
≈ −w(y0)

V∞
=

1
4πV∞

∫ b
2

− b
2

(
dΓ
dy

)
dy

(y0 − y)
. (8.5.3)

Note that w is defined positive upward, but the induced angle of attack was defined to be positive directed
downward. Therefore a minus sign is present. It is also assumed that w is small with respect to V∞, so
the small angle approximation can be used.

8.6 Finding the vortex distribution

Now let’s derive some more expressions. From the previous chapter, we know that the lift coefficient per
unit span at the point y0 is

cl = a0(αeff (y0)− αL=0), (8.6.1)
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where a0 = 2π for thin wings. But the lift coefficient can also be found using

L′ =
1
2
ρ∞V

2
∞c(y0)cl = ρ∞V∞Γ(y0) ⇒ cl =

2Γ(y0)
V∞c(y0)

. (8.6.2)

Combining these equations and solving for αeff gives

αeff =
Γ(y0)

πV∞c(y0)
+ αL=0. (8.6.3)

If we put everything together, the angle of attack can be calculated. The result is

α = αeff + αi =
Γ(y0)

πV∞c(y0)
+ αL=0 +

1
4πV∞

∫ b
2

− b
2

(
dΓ
dy

)
dy

(y0 − y)
. (8.6.4)

This equation is the fundamental equation of Prandtl’s lifting-line theory. For a wing with a
given design, all values are known except Γ. So this is in fact a differential equation with which Γ can be
found.

If Γ is found, we can find the lift distribution using the Kutta-Joukowski theorem (L′(y) = ρ∞V∞Γ).
Also the induced drag distribution can be found by using

D′
i(y) = L′ sinαi ≈ L′αi = ρ∞V∞Γαi. (8.6.5)

From the lift and drag distribution, the total lift and drag can be found, by integrating over the wing
(from − b

2 to b
2 ).

8.7 Elliptical lift distribution

Suppose we have a wing with a circulation distribution given by

Γ(y) = Γ0

√
1−

(
2y
b

)2

, (8.7.1)

where Γ0 is (per definition) the circulation at y = 0. It can now be shown that the induced velocity and
induced angle of attack are

w = −Γ0

2b
⇒ αi = − w

V∞
=

Γ0

2bV∞
. (8.7.2)

Now let’s define the aspect ratio as

A =
b2

S
. (8.7.3)

If we first express Γ as a function of CL, fill it in in equation 8.7.2 and use the definition of the aspect
ratio, then we can derive that

αi =
CL

πA
⇒ CD,i =

C2
L

πA
. (8.7.4)

So the induced drag only depends on the lift coefficient and the aspect ratio. Long slender wings thus
give low induced drag.
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8.8 General lift distribution

Let’s suppose we don’t know Γ. If we make the change-of-variable y = − b
2 cos θ, we can use a lot of

complicated mathematics to transform equation 8.6.4 to

α(θ) =
2b

πc(θ)

N∑
1

An sinnθ + αL=0(θ) +
N∑
1

nAn
sinnθ
sin θ

. (8.8.1)

In this equation, the coefficients A1, . . . , An are the unknown coefficients that need to be determined.
If N is higher (so if there are more coefficients), the result will be more precise. Do not mix up the
coefficients Ai and the aspect ratio A.

To find A1, . . . , AN , you have to apply the equation at N points on the wing. Then you have N equations
and N unknowns, which can be solved. You can take any N points on the wing, except for the tips, since
Γ = 0 at those positions.

We can also derive the lift coefficient to be

CL = A1πA. (8.8.2)

If we work things out a lot more, we get an expression for the drag coefficient, which appears very familiar.
The result is

CD,i =
C2

L

πAe
. (8.8.3)

The number e is called oswald’s factor and is defined as

e = A2
1

(
N∑
1

nA2
n

)−1

=
A2

1

A2
1 + 2A2

2 + . . .+ nA2
n

. (8.8.4)

It is clear that e ≤ 1 (with e = 1 only if Ai = 0 for i ≥ 2). For an elliptical lift distribution e = 1, so this
lift distribution is the distribution with the lowest induced drag. However, to minimize induced drag, it
is often more important to worry about the aspect ratio, then about the lift distribution.
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