
Aerodynamics C Summary

1. Basic Concepts

In this summary we will examine compressible flows. But before we venture into the depths of the
aerodynamics, we will examine some basic concepts.

1.1 Basic Concepts of Gases

Usually the atoms in a gas exert forces on each other. If these intermolecular forces are negligible, we
are dealing with a perfect gas. For perfect gases the following equation of state is applicable:

p = ρRT, (1.1.1)

where p is the pressure, ρ is the density and T is the temperature. R is the specific gas constant.
Its value is R = 287J/kg K at standard sea-level conditions.

Every molecule in a gas has a certain amount of energy. The sum of all these energies is called the
internal energy of the gas. The internal energy per unit mass is called the specific internal energy
e. There also is the specific enthalpy h, defined as

h = e + pv, (1.1.2)

where v = 1/ρ is the specific volume. For a perfect gas, both e and h are functions of only the
temperature T . In fact, we have

de = cv dT and dh = cp dT, (1.1.3)

where cv and cp are the specific heat at constant volume and specific heat at constant pressure,
respectively. Often cv and cp also depend on the temperature T . If they can be assumed constant, then
the gas is called a calorically perfect gas. We then have

e = cvT and h = cpT. (1.1.4)

Let’s take a closer look at the variables cv, cp and R. There are relations between them. If we also define
γ = cp/cv, then it can be shown that

γ =
cp

cv
, R = cp − cv, (1.1.5)

cp =
γR

γ − 1
, cv =

R

γ − 1
. (1.1.6)

1.2 The First Law of Thermodynamics

Let’s consider a fixed mass of gas, called the system. The region outside the system is called the
surroundings. In between the surroundings and the system is the boundary. We can now state the
first law of thermodynamics, being

de = δq + δw. (1.2.1)

Here δq is the amount of heat added and δw is the amount of work done on the system.

Heat can be added and work can be done in many ways. In adiabatic processes no heat is added or
taken away from the system. In reversible processes things like mass diffusion, viscosity and thermal
conductivity are absent. Finally isentropic processes are both adiabatic and reversible.
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1.3 The Second Law of Thermodynamics

It is time to define the entropy s of a system. The second law of thermodynamics states that

ds ≥ δq

T
, (1.3.1)

where there is only equality for reversible processes. Furthermore, if the process is adiabatic, then δq = 0
and thus also

ds ≥ 0. (1.3.2)

If the process is both reversible and adiabatic, then ds = 0. The entropy is thus constant for isentropic
processes. (This also explains why these processes were named isentropic.)

Now let’s try to derive an equation for the entropy. We do this using the first law of thermodynamics.
For a reversible process it can be shown that δw = −p dv. Also we have δq = T ds. From this we can
find that

T ds = de + p dv = dh− v dp. (1.3.3)

We can combine the above relations with the equation of state and the relations for de and dh. Doing
this will eventually result in

s2 − s1 = cp ln
T2

T1
−R ln

p2

p1
= cv ln

T2

T1
+ R ln

v2

v1
. (1.3.4)

For isentropic processes we have ds = 0 and thus s2 − s1 = 0. Using this fact, we can find that

p2

p1
=
(

ρ2

ρ1

)γ

=
(

T2

T1

) γ
γ−1

. (1.3.5)

1.4 Compressibility

Let’s consider some substance. If we increase the pressure on it, its volume will decrease. We can now
define the compressibility τ as

τ = −1
v

dv

dp
. (1.4.1)

However, when the pressure is increased often also the temperature and the entropy increase. To erase
these effects, we define the isothermal compressibility τT and the isentropic compressibility τs as
the compressibility at isothermal and isentropic processes, respectively. In an equation, this becomes

τT = −1
v

(
∂v

∂p

)
T

and τs = −1
v

(
∂v

∂p

)
s

. (1.4.2)

But how can we use this? Using v = 1/ρ we can derive that

dρ = ρτdp. (1.4.3)

This equation helps us to judge whether a flow is compressible. A flow is incompressible when the
density stays (more or less) constant throughout the process. If the density varies, then the flow is
compressible. For low-speed flows dp is small, so also dρ is small. The flow is thus incompressible. For
high-speed flows the pressure will change a lot more. Therefore dρ is not small anymore, and the flow is
thus compressible.
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1.5 Stagnation Conditions

Let’s consider a flow with velocity V . If we move along with the flow, we can measure a certain static
pressure p. We can also measure the density ρ, the temperature T , the Mach number M , and so on. All
these quantities are static quantities.

Now let’s suppose we slow down the flow adiabatically to V = 0. The temperature, pressure and density
of the flow now change. The new value of the temperature is defined as the total temperature Tt. The
corresponding total enthalpy is ht = cpTt.

Using a rather lengthy derivation, it can be shown that the quantity h + V 2/2 stays constant along a
streamline, in a steady adiabatic inviscid flow. We therefore have

ht = h +
V 2

2
= constant. (1.5.1)

For a calorically perfect gas (with constant cp) we also have Tt = ht/cp = constant. Keep in mind that
this only holds for adiabatic flows.

We can expand this idea even further, if the flow is also reversible, and thus isentropic. In this case, it
turns out that the total pressure pt and the total density ρt also stay constant along a streamline.
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2. Normal Shock Waves

Where there are supersonic flows, there are usually also shock waves. A fundamental type of shock wave
is the normal shock wave – the shock wave normal to the flow direction. We will examine that type
of shock wave in this chapter.

2.1 Basic Relations

Let’s consider a rectangular piece of air (the system) around a normal shock wave, as is shown in figure
2.1. To the left of this shock wave are the initial properties of the flow (denoted by the subscript 1). To
the right are the conditions behind the wave.

Figure 2.1: A normal shock wave.

We can already note a few things about the flow. It is a steady flow (the properties stay constant in
time). It is also adiabatic, since no heat is added. No viscous effects are present between the system and
its boundaries. Finally, there are no body forces.

Now what can we derive? Using the continuity equation, we can find that the mass flow that enters the
system on the left is ρ1u1A1, with u the velocity of the flow in x-direction. The mass flow that leaves the
system on the right is ρ2u2A2. However, since the system is rectangular, we have A1 = A2. So we find
that

ρ1u1 = ρ2u2. (2.1.1)

We can also use the momentum equation. The momentum entering the system every second is given by
(ρ1u1A1)u1. The momentum flow leaving the system is identically (ρ2u2A2)u2. The net force acting on
the system is given by p1A1 − p2A2. Combining everything, we can find that

p1 + ρ1u
2
1 = p2 + ρ2u

2
2. (2.1.2)

Finally let’s look at the energy. The energy entering the system every second is (ρ1u1A1)
(
e1 + u2

1/2
)
.

Identically, the energy leaving the system is (ρ2u2A2)
(
e2 + u2

2/2
)
. No heat is added to the system (the

flow is adiabatic). There is work done on the system though. The amount of work done every second is
p1A1u1 − p2A2u2. Once more, we can combine everything to get

h1 +
u2

1

2
= h2 +

u2
2

2
. (2.1.3)

This equation states that the total enthalpy is the same on both sides of the shock wave. Since the shock
wave was adiabatic, we actually already knew that. So this was no surprising result.

The three equations we have just derived hold for all one-dimensional, steady, adiabatic, inviscid flows.
But let’s take a closer look at them. Let’s suppose that all upstream conditions ρ1, u1, p1, h1 and T1 are
known. We can’t solve for all the downstream conditions just yet. We have only three equations, while
we have four unknowns. We need a few more equations. These equations are

h = cpT, (2.1.4)
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p = ρRT. (2.1.5)

That wasn’t much new, was it? We now have 5 unknowns and 5 equations. So we can solve everything.

2.2 The Speed of Sound

A special kind of normal shock wave is a sound wave. In fact, it is an infinitesimally weak normal shock
wave. Because of this, dissipative phenomena (like viscosity and thermal conduction) can be neglected,
making it an isentropic flow.

At what velocity does this shock wave travel? Let’s call this velocity the speed of sound a. Note that
a = u1. Because the shock wave is very weak, we can also state that p2 = p1 + dp, ρ2 = ρ1 + dρ and
a2 = a1 + da. If we combine these facts with the three equations we derived in the previous paragraph,
we eventually find that

a2 =
dp

dρ
=
(

∂p

∂ρ

)
s

. (2.2.1)

The last part in the above equation is to indicate that the changes in p and ρ occur isentropically. For
isentropic processes we have

p = cργ ⇒
(

∂p

∂ρ

)
s

=
γp

ρ
. (2.2.2)

This results in

a =
√

γp

ρ
=
√

γRT , (2.2.3)

where we used the equation of state in the last part. So apparently, for a given medium, the speed of
sound only depends on the temperature.

Do you still remember the compressibility we introduced in the previous chapter? From the equation
dρ = ρτdp, we can also derive that

a =
√

1
ρτs

. (2.2.4)

Note that we have used the isentropic compressibility because the process is isentropic. So we see that
the lower the compressibility of a substance, the faster sound travels in it.

2.3 The Mach Number

The Mach number M is defined as
M =

u

a
. (2.3.1)

A lot of properties can be derived from the Mach number. Let’s recall the total temperature T0. This
can be found using

cpT0 = cpT +
u2

2
. (2.3.2)

From this we can derive that
T0

T
= 1 +

γ − 1
2

M2. (2.3.3)

Using the isentropic flow relations, we can also find that

p0

p
=
(

1 +
γ − 1

2
M2

) γ
γ−1

, (2.3.4)
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ρ0

ρ
=
(

1 +
γ − 1

2
M2

) 1
γ−1

. (2.3.5)

From equation (2.3.2) we can also derive that

a2

γ − 1
+

u2

2
=

a2
0

γ − 1
= constant. (2.3.6)

2.4 Sonic Conditions

When you slow an airflow down adiabatically to u = 0 (and thus M = 0) you find the total temperature Tt,
total pressure pt, total density ρt, and so on. Similarly, we can change the velocity of a flow adiabatically
such that M = 1. The corresponding temperature at sonic conditions is denoted by T ∗. The
characteristic speed of sound a∗ can now be found using a∗ =

√
γRT ∗. However, we can also

determine that
a2

γ − 1
+

u2

2
=

a∗2

γ − 1
+

a∗2

2
=

γ + 1
2 (γ − 1)

a∗2 = constant. (2.4.1)

Just like we can examine the speed of sound at sonic conditions, we can also look at the temperature T ∗,
pressure p∗ and density ρ∗ at such conditions. By inserting M = 1 in equations (2.3.3) to (2.3.5) we find
that

T0

T ∗
=

γ + 1
2

,
p0

p∗
=
(

γ + 1
2

) γ
γ−1

and
ρ0

ρ∗
=
(

γ + 1
2

) 1
γ−1

. (2.4.2)

Finally we can define the characteristic Mach number M∗ as

M∗ =
u

a∗
. (2.4.3)

We can find that M and M∗ are related, according to

M2 =
2M∗2

(γ + 1)− (γ − 1) M∗2 ⇔ M∗2 =
(γ + 1) M2

2 + (γ − 1) M2
. (2.4.4)

The parameters M and M∗ are quite similar. If one is bigger than 1, so is the other, and vice verse.

2.5 Normal Shock Wave Relations

There are several other relations that hold for normal shock waves. We will discuss some of them. We
start with the Prandtl relation, stating that

a∗2 = u1u2 ⇔ 1 = M∗
1 M∗

2 . (2.5.1)

From this follows that

M2
2 =

2 + (γ − 1) M2
1

2γM2
1 − (γ − 1)

. (2.5.2)

This is an important relation. If M1 > 1 we have M2 < 1. If M1 = 1, then also M2 = 1. (If this is the
case we are dealing with an infinitely weak shock wave, called a Mach wave.) However, if M1 < 1 it
would seem that M2 > 1. But this seems rather odd. Suddenly a subsonic flow becomes supersonic! A
more detailed look would show that in this case also the entropy s would decrease. But the second law of
thermodynamics states that the entropy can only increase. What can we conclude from this? It means
that in subsonic flows no shock waves can appear. Shock waves are thus only present in supersonic flows.

Now we know how to find M2. But can we also find the other properties behind the shock wave? It turns
out that we can, using
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ρ2

ρ1
=

u1

u2
=

(γ + 1) M2
1

2 + (γ − 1) M2
1

, (2.5.3)

p2

p1
= 1 +

2γ

γ + 1
(
M2

1 − 1
)
, (2.5.4)

T2

T1
=

h2

h1
=

p2

p1

ρ1

ρ2
=
(

1 +
2γ

γ + 1
(
M2

1 − 1
))(2 + (γ − 1) M2

1

(γ + 1) M2
1

)
. (2.5.5)

It would also be interesting to know how the total temperature Tt and the total pressure pt change across
the shock wave. Since a shockwave is an adiabatic process we know that h1 = h2 and thus also Tt,1 = Tt,2.
Finally, using the relation for entropy we can find that

pt,2

pt,1
= e−

s2−s1
R . (2.5.6)

So what can we derive from all the above equations? When passing through a shock wave, the properties
of the flow change drastically. The pressure, temperature and density increase, while the total pressure
and the Mach number decrease. The total temperature and the enthalpy stay constant.

2.6 Measuring the Velocity

When an aircraft is flying, it would be nice to know how fast it is going. To find this out, a Pitot tube
is used, measuring the total pressure pt. We also assume that the static pressure p is known.

To find the velocity during a subsonic flight, we can simply use the relation

pt

p
=
(

1 +
γ − 1

2
M2

) γ
γ−1

. (2.6.1)

Solving for M2 and using u2 = M2a2 we find that

u2 =
2a2

γ − 1

((
pt

p

) γ−1
γ

− 1

)
. (2.6.2)

So to find the velocity, we also need to know the speed of sound. But if we know that, it’s easy to find
the velocity.

To find the velocity during a supersonic flight is a bit more difficult, since there is a shock wave. This
time the Pitot tube measures the total pressure behind the shock wave pt,2. The static pressure that was
known is now called p1. This time we need to use the relation

pt,2

p1
=

pt,2

p2

p2

p1
=

(
(γ + 1)2 M2

1

4γM2
1 − 2 (γ − 1)

) γ
γ−1 (1− γ) + 2γM2

1

γ + 1
. (2.6.3)

This equation is called the Rayleigh Pitot tube formula. In its derivation we used the normal shock
wave relations for the ratio p2/p1. We used the relation for total pressure in an isentropic flow for the
ratio pt,2/p2. From this equation the Mach number can be solved. Then only the speed of sound is still
needed to find the flight velocity u.
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3. Oblique Shock Waves

In reality normal shock waves don’t often occur. Oblique shock waves are more common. We would like
to know what causes them, and how we can calculate flow properties around them.

3.1 Shock Wave Angles

When an aircraft is flying, it creates disturbances in the flow. These disturbance spread around with the
speed of sound a. Figure 3.1 visualizes these disturbances for an airplane traveling from point A to point
B.

Figure 3.1: Visualization of the disturbances in a flow.

When the airplane flies at a subsonic velocity (V < a), the disturbances can move upstream. If the
airplane, however, flies at a supersonic speed (V > a), the disturbances can not. In fact, they all stay
within a cone and stack up at the edge, forming a so-called Mach wave. This cone has an angle µ,
where µ is called the Mach angle. From figure 3.1 it can be derived that

sinµ =
at

V t
=

a

V
=

1
M

. (3.1.1)

The above relation is, however, only theoretical. In practice the shock wave doesn’t have an angle µ but
an angle β, called the wave angle. For shock waves we always have β > µ. Finally there is the special
case with β = 90◦, at which we once more have a normal shock wave. So a normal shock wave is just a
special case of the oblique shock wave.

3.2 Oblique Shock Wave Relations

We will try to derive some relations for oblique shock waves. But before we can do that, we need to make
some definitions.

Figure 3.2: Properties of the oblique shock wave.
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We know that the velocity V1 before the shock wave is directed horizontally. We examine two components
of this velocity: The component normal to the shock wave u1 and the component tangential to the shock
wave w1. Corresponding are the Mach number normal to the shock wave Mn,1 and the Mach number
tangential to the shock wave Mt,1. We can do the same for the velocities after the shock wave (but now
with subscript 2). All the properties have been visualized in figure 3.2. Also note the deflection angle
θ.

Using the variables described above, we can derive some relations. It turns out that these relations are
virtually the same as for a normal shock wave. There’s only one fundamental difference. Instead of using
the total velocity, we only need to consider the component of the velocity normal to the shock wave
(being u). We then get

ρ1u1 = ρ2u2, (3.2.1)

p1 + ρ1u
2
1 = p2 + ρ2u

2
2, (3.2.2)

h1 +
u2

1

2
= h2 +

u2
2

2
. (3.2.3)

But what about the tangential component of the velocity w? Well, using the momentum equation, we
can derive the simple relation

w1 = w2. (3.2.4)

So now we have used the continuity equation, the momentum equation and the energy equation. In the
previous chapter we now continued to express ratios like p2/p1 as a function of the Mach number. We
can do the same again. However, this time we express everything in the component of the Mach number
normal to the flow, being

Mn,1 = M1 sinβ. (3.2.5)

Going through a lot of derivations, we can find that

M2
n,2 =

2 + (γ − 1) M2
n,1

2γM2
n,1 − (γ − 1)

with M2 =
Mn,2

sin (β − θ)
, (3.2.6)

ρ2

ρ1
=

u1

u2
=

(γ + 1) M2
n,1

2 + (γ − 1) M2
n,1

, (3.2.7)

p2

p1
= 1 +

2γ

γ + 1
(
M2

n,1 − 1
)
, (3.2.8)

T2

T1
=

p2

p1

ρ1

ρ2
=
(

1 +
2γ

γ + 1
(
M2

n,1 − 1
))(2 + (γ − 1) M2

n,1

(γ + 1) M2
n,1

)
. (3.2.9)

We can once more see that these equations are virtually the same as for a normal shock wave. The only
difference is that we now need to take the component of the Mach number normal to the flow.

3.3 The Deflection Angle

There is one last variable for which we can derive an equation. That variable is the deflection angle θ.
This angle is usually determined by the shape of the object causing the shock waves. We can find that

tan θ =
2

tanβ

M2
1 sin2 β − 1

M2
1 (γ + cos (2β)) + 2

. (3.3.1)

This equation is called the θ-β-M relation. Many important things can be derived from it.

Let’s suppose we know θ and M1. We can then find the corresponding values of the wave angle β. For
relatively low values of θ you will find two solutions for β. There are thus two possible shock waves. The
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shock wave with the higher angle of β is called the strong shock wave, while the one with the lower angle
is called the weak shock wave. In nature, the weak shock wave is almost always present. So usually the
smallest of the two solutions can simply be used.

But what happens if θ gets bigger? Soon θ will reach a maximum value θmax. At this point there is only
one solution for β. If θ gets even bigger, no solutions exist anymore. So an oblique shock wave is not
possible then. Instead, the shock wave will detach and get a curved shape. We will briefly examine the
detached shock wave later in this chapter.

3.4 Multiple Shock Waves

There are many cases in which multiple shock waves occur. We will examine a few. First let’s consider
a single shock wave with wave angle β1, colliding with a wall parallel to the free stream. What happens
to this shock wave?

To answer this question, we look at the flow after the shock wave. This flow has been deflected towards
the wall by an angle θ. Since the flow can’t go through the wall, it needs to be deflected the other way,
by the same angle θ. To accomplish this, there will be a new shock wave.

You may initially think that this new shock wave has the same wave angle β1. This is, however, not true.
To see why, we need to look at the Mach numbers. Before the first shock wave, the flow had a Mach
number M1. After the first shock wave (and before the second), the flow has a lower Mach number M2.
By combining this new Mach number with the deflection angle θ, the new wave angle β2 can be found.
So the second shock wave will have a wave angle β2.

Now let’s look at another situation: the case where two shock waves A and B intersect each other. At
the point of intersection, two new shock waves C and D will appear, each with different wave angles βC

and βD. What information can we use to determine these wave angles?

Experiments have shown that, after the two new waves, the flows from both waves travel in the same
direction. In between these two flows is the so-called slip line. This line is called the slip line, because
the two flows ”slip” with respect to each other – they usually have a different velocity.

So the final directions of both flows are the same. However, because there is a straight line between the
two flows, their pressures must be equal as well. So pC,2 = pD,2. Using these two boundary conditions
the wave angles βC and βD can be determined.

3.5 The Detached Shock Wave

If we put a rather blunt body in a supersonic flow, we won’t get an (attached) oblique shock wave.
Instead, we will get a detached shock wave. The properties of this shock wave vary along the shock
wave. At the front of the shock wave, the wave angle β is 90◦. So we have a normal shock wave there.
Behind this shock wave, the flow is subsonic.

As we go further from the shock wave, the wave angle β decreases. As β decreases, the deflection angle
θ initially increases. It soon reaches its maximum, after which it once more starts to decrease.

Not much after we reached θmax, we find the sonic line. At this line the Mach number of the flow
behind the shock wave is M2 = 1. As we continue our travel along the shock wave, the shock wave loses
strength. It’s not longer able to slow down the flow to subsonic velocities. So the Mach number behind
the shock wave M2 will be above 1.

As we go even further away from our blunt body, the shock wave will continue to lose strength. Eventually,
when θ = 0 again, its strength will have disappeared entirely.

Performing calculations on a blunt shock wave is very difficult. It is therefore not part of this course.
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3.6 Expansion Waves

Suppose we have an airflow moving along a wall, which suddenly makes an angle θ away from the flow.
We then get an expansion wave. In this expansion wave, the airflow ”bends” around the wall edge.
While the airflow changes direction, its velocity also changes. This happens according to

dθ =
√

M2 − 1
dV

V
. (3.6.1)

Now how can we find the Mach number after the expansion wave? For that, we first have to rewrite
dV/V to

dV

V
=

2
2 + (γ − 1) M2

dM

M
. (3.6.2)

Using this, we can find that θ is equal to

θ =
∫ M2

M1

2
√

M2 − 1
2 + (γ − 1) M2

dM

M
. (3.6.3)

The integral is kind of complex, but it can be solved. Because of its importance, it has gotten its own
symbol and name. This integral is named the Prandtl-Meyer function ν(M), defined as

ν(M) =
∫

2
√

M2 − 1
2 + (γ − 1) M2

dM

M
=
√

γ + 1
γ − 1

arctan
(√

γ − 1
γ + 1

(M2 − 1)
)
− arctan

(√
M2 − 1

)
. (3.6.4)

Using this function, we can derive an expression for θ, being

θ = ν(M2)− ν(M1). (3.6.5)

However, we usually don’t need to calculate θ. Usually we know θ and M1 and we need to know M2.
How do we find M2 then? Well, we first use M1 to find ν(M1). We then add this result up to θ to find
ν(M2). From this we can derive M2 (often using tables). In general we can say that M2 > M1.

How do the various flow properties behave during expansion waves? It can be shown that the flow is
isentropic, so the entropy s stays constant. Therefore also Tt and pt stay constant. From this we can
derive that

T2

T1
=

2 + (γ − 1) M2
1

2 + (γ − 1) M2
2

, (3.6.6)

ρ2

ρ1
=
(

T2

T1

) 1
γ−1

=
(

2 + (γ − 1) M2
1

2 + (γ − 1) M2
2

) 1
γ−1

, (3.6.7)

p2

p1
=
(

T2

T1

) γ
γ−1

=
(

2 + (γ − 1) M2
1

2 + (γ − 1) M2
2

) γ
γ−1

. (3.6.8)

In a shock wave the pressure, density and temperature increase. In an expansion wave it is exactly
opposite: they all decrease.
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4. Flow Through Wind Tunnels

To be able to test with supersonic flows, wind tunnels are used. To reach a supersonic flow, they must
have a characteristic shape. Why is this? And how does this shape effect the flow? We will try to find
that out.

4.1 Basic Equations

Let’s consider a wind tunnel. The flow in it is not entirely one-dimensional. As the cross-section changes,
the flow also goes in the y and z-direction. However, if we assume that the cross-section changes only very
gradually, then these components are small with respect to the x-direction. We would then approximately
have a one-dimensional flow: a so-called quasi-one-dimensional flow. In this flow all parameters p, ρ,
u and also A only depend on x.

What equations hold for such a flow? From the general continuity, momentum and energy equation we
can derive that

ρ1u1A1 = ρ2u2A2, (4.1.1)

p1A1 + ρ1u
2
1A1 +

∫ A2

A1

p dA = p2A2 + ρ2u
2
2A2, (4.1.2)

h1 +
u2

1

2
= h2 +

u2
2

2
. (4.1.3)

There aren’t many surprises in the first and third of these equations. But in the middle one is an integral!
This is because the walls of the wind tunnel aren’t horizontal. They can thus also exert a pressure force
in x-direction on the flow.

Of course having an integral in an equation isn’t convenient. To prevent that, we simply consider
two points, with an infinitely small distance dx between them. So we would then have p2 = p1 + dp,
ρ2 = ρ1 + dρ, and so on. Filling this in, and working it all out, we would get

dρ

ρ
+

du

u
+

dA

A
= 0, (4.1.4)

dp = −ρu du, (4.1.5)

dh + u du = 0. (4.1.6)

The middle one of these three equations (the one derived from the momentum equation) is called Euler’s
equation. Using the above equations, we can derive new equations for the flow through wind tunnels,
as we will see in the coming paragraph.

4.2 Area, Velocity and Mach Number

We can extensively rewrite and combine the equations we just found. By doing so, we can derive another
important relation, called the area-velocity relation. It states that

dA

A
=
(
M2 − 1

) du

u
. (4.2.1)

Now what does this equation tell us? First let’s suppose that M < 1. If the cross-sectional area gets
bigger (dA > 0), then the velocity decreases (du < 0). Also, if the area gets smaller, the velocity increases.
This is rather intuitive. However, the counterintuitive part comes when M > 1. Now things are exactly
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opposite. If the area gets bigger, then the velocity also increases. Similarly, if the wind tunnel decreases
in size, then the flow also reduces its velocity.

A special case occurs if M = 1. If this is true, then we must have dA = 0. So a sonic flow can only occur
when the cross-section is at a minimum (at a so-called throat). Note that the flow properties at this
point are the flow properties at sonic conditions, which we denoted with a star (∗). So we would have a
pressure p∗, a density ρ∗ and a flow velocity u∗ = a∗.

So we have found that the cross-sectional area A and the Mach number M are linked. But how? To find
that out, we can derive that (

A

A∗

)2

=
1

M2

(
2

γ + 1

(
1 +

γ − 1
2

M2

)) γ+1
γ−1

, (4.2.2)

where A∗ is the cross-sectional area at the throat. (Note that if we fill in M = 1 we would get A = A∗.)
This important equation is called the area-Mach number relation. It shows that the Mach number
only depends on the ratio A/A∗.

4.3 Flow in a Nozzle

Let’s examine a nozzle. We can consider three parts in it. To the left is a reservoir of air. At this point
the cross-sectional area A is very big. The velocity is therefore very low. The pressure and temperature
at this point are thus equal to the total pressure pt and the total temperature Tt.

In the middle of the nozzle is the throat. To the right of that, the tunnel gets wider again. Eventually
there is an exit, with exit pressure pe and exit temperature Te.

Flow doesn’t go through the nozzle spontaneously. It flows because pe < pt. This pressure difference
causes the air to move. However, the flow doesn’t always reach supersonic velocities. To check how the
flow behaves, we need to examine the ratio pe/pt. While doing that, we can consider 6 stages.

In the first stage, the ratio pe,1/pt ≈ 1. This causes the flow to move, but only slowly. Not much special
is going on. In the second stage, the ratio pe,2/pt becomes smaller. However, the flow remains subsonic.
In stage three, the ratio pe,3/pt is sufficiently small to cause a sonic flow in the throat. So at the throat
finally M = 1. However, after the throat the flow becomes subsonic again.

Now what happens if we decrease the exit pressure even further? We then reach stage four. In this
stage, the flow becomes supersonic after the throat. However, the pressure difference isn’t big enough
to continue this supersonic flow. So a normal shock wave appears, slowing the flow down to subsonic
velocities. To know where the shock wave appears, you have to look at the pressure. The pressure drop
in the normal shock wave should be such that, at the exit, the exit pressure pe,4 is reached.

If we decrease the exit pressure further, the position of the normal shock wave changes. In fact, it moves
to the right. This continues until we reach stage 5. In stage 5 the normal shock wave is at the exit of the
nozzle.

If we decrease the exit pressure just a little bit further, we reach stage 6. A supersonic flow now exits the
nozzle. In this case the exit pressure is always a fixed value pe,6. However, now the back pressure pB

is also important. This is the pressure behind the nozzle. (Previously the back pressure pB was equal to
the exit pressure pe. Now this is not the case.) We can now consider three cases:

• If pB > pe,6, the flow has expanded too much (it is overexpanded) and will decrease in size once
it exits the nozzle. This causes oblique shock waves.

• If pB < pe,6, the flow hasn’t expanded enough (it is underexpanded) and will increase in size
once it exits the nozzle. Due to this, expansion waves will occur.

• If pB = pe,6, the flow will just exit the nozzle without any waves.

13



During stages 3 to 6, an important phenomenon occurs. In all these stages, we have M = 1 at the throat.
From this follows that the pressure in the throat is always

p∗ =
pt(

1 + γ−1
2

) γ
γ−1

= 0.528pt. (4.3.1)

From this we can derive that the mass flow in the throat is always the same during stages 3 to 6. So
although the exit pressure (or back pressure) decreases, the mass flow through the nozzle stays the same.
This effect is called choked flow.

4.4 Wind Tunnels

Suppose we have a model of an airplane, which we want to test at supersonic velocities. What kind of
wind tunnel do we need? We can simply take a nozzle, having only one throat. If we do this, we can
get supersonic velocities. However, a huge pressure ratio pt/pe will be needed. This means expensive
equipment, which is of course undesirable.

The solution lies in a diffuser. A diffuser slows the flow down, back to subsonic velocities. During this
process, the pressure increases. So in a wind tunnel we would first have a nozzle, then our test model,
and finally a diffuser. To the left of the nozzle is the high pressure pt. At the test model is a low pressure,
but a high velocity. Finally, after the diffuser, there is a low velocity, but a more or less high pressure
pe. Although still pe < pt, the ratio pt/pe is much smaller than normal. This therefore makes supersonic
wind tunnels feasible.

Let’s take a closer look at this diffuser. A diffuser has a similar shape as a nozzle: it has a throat.
However, this time there is a supersonic flow (M > 1) to the left of the throat, and a subsonic flow to
the right. Once more, we have M = 1 at the throat. After the throat will be a subsonic flow (M < 1).
Ideally, this would occur isentropically, without any shock waves. In reality, there are viscous effects near
the edges of the diffuser. These viscous effects eventually cause shock waves.

When designing a wind tunnel, we would like to know how big the cross-sectional area of the diffuser
throat should be. In the wind tunnel we will be having two throats: one in the nozzle (with cross-sectional
area At,1) and one in the diffuser (with area At,2). (Note that the subscript t now stands for throat; not
total.) These areas relate to each other, according to

At,2

At,1
=

pt,1

pt,2
. (4.4.1)

In an ideal (isentropic) situation we have pt,1 = pt,2, so also At,1 = At,2. In reality, however, there are
viscous effects. Due to this we have pt,1 > pt,2 and thus also At,2 > At,1. So the diffuser throat should
always be bigger than the nozzle throat.

Now what happens if At,2 is too small? In this case the diffuser will choke. It can’t handle the mass
flow. This causes shock waves in the test section. This can ultimately lead to an entirely subsonic test
section. In such a case, the wind tunnel is said to be unstarted.
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5. Subsonic Compressible Flow over Airfoils

It is time to turn theory into practice. What can we say about flow over airfoils? In this chapter we
consider compressible subsonic flow over airfoils. The next chapter focusses on supersonic flow.

5.1 The Velocity Potential Equation

In a previous aerodynamics course we have seen the velocity potential φ. It was defined such that

V = ∇φ. (5.1.1)

From the velocity potential we can find the velocity components

u =
∂φ

∂x
and v =

∂φ

∂y
. (5.1.2)

For incompressible flows (ρ is constant) we would get Laplace’s equation

∂2φ

∂x2
+

∂2φ

∂y2
= 0. (5.1.3)

This equation is a linear differential equation. There exist solutions for it. If ρ is not constant, things
are a lot more difficult. Using (among others) the continuity equation and Euler’s equation, we can
eventually derive that(

1− 1
a2

(
∂φ

∂x

)2
)

∂2φ

∂x2
+

(
1− 1

a2

(
∂φ

∂y

)2
)

∂2φ

∂y2
− 2

a2

∂φ

∂x

∂φ

∂y

∂2φ

∂x ∂y
= 0. (5.1.4)

This important equation is called the velocity potential equation. Note that for incompressible flows
we would have ρ constant and thus a =∞. The above equation then reduces back to Laplace’s equation.
However, a is not infinite. It also depends on the velocity potential. This is according to

a2 = a2
0 −

γ − 1
2

((
∂φ

∂x

)2

+
(

∂φ

∂y

)2
)

, (5.1.5)

where a0 is constant for the entire flow.

5.2 The Linearized Velocity Potential Equation

The velocity potential is a nonlinear equation. It is therefore very hard to solve. To solve it, we have to
use assumptions, through which we can turn the above equation into a linear equation.

But before we do that, we have to introduce the perturbation velocities û and v̂. Let’s suppose we
are flying with a free stream velocity V∞ in x-direction. The velocity perturbations are now defined
as the change in velocity, with respect to the free stream velocity. So

û = u− V∞ and v̂ = v. (5.2.1)

Identically, we can define the perturbation velocity potential φ̂ such that

û =
∂φ̂

∂x
and v̂ =

∂φ̂

∂y
. (5.2.2)
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Using this perturbation velocity, we can derive a very complicated equation, similar to the velocity
potential equation. However, for certain free stream Mach numbers M∞, this equation can be
simplified. If 0 ≤ M∞ ≤ 0.8 or M∞ ≥ 1.2, certain parts can be neglected. If also M∞ < 5 even more
parts can be neglected. We also have to make the assumption that the velocity perturbations û and v̂ are
small. This is usually the case for thin bodies at small angles of attack. Based on all these assumptions,
the complicated equation reduces to (

1−M2
∞
) ∂2φ̂

∂x2
+

∂2φ̂

∂y2
= 0. (5.2.3)

This is the linearized perturbation velocity potential equation. It is a linear partial differential
equation. With it, the perturbation velocity potential can be found. However, when doing that, we also
need boundary conditions. There are two boundary conditions that can be used. First of all, at x =∞,
we have û = v̂ = 0 and thus φ̂ = constant. Second, we know that if the airfoil is at an angle θ with
respect to the free stream flow, then also

∂φ̂

∂y
= v̂ = (V∞ + û) tan θ ≈ V∞ tan θ. (5.2.4)

So now we know how to find φ̂. What can we do with it? Well, with it we can find the pressure coefficient.
The pressure coefficient could normally be found using

Cp =
p− p∞

q∞
=

2
γM2

∞

(
p

p∞
− 1
)

. (5.2.5)

For small velocity perturbations the ratio p/p∞ can be approximated by

p

p∞
= 1− γ

2
M2
∞

(
2û

V∞
+

û2 + v̂2

V 2
∞

)
. (5.2.6)

Using this, the relation for the pressure coefficient can be simplified to

Cp = − 2û

V∞
. (5.2.7)

5.3 Compressibility Corrections

Instead of deriving entirely new equations for compressible flows, we can also slightly change existing
equations for incompressible flows, such that they approximate compressible flows. Such adjustments are
called compressibility corrections.

The first compressibility correction is the Prandtl-Glauert correction. It stated that the pressure
coefficient Cp in a compressible flow can be derived from the pressure coefficient Cp,0 in an incompressible
flow, according to

Cp =
Cp,0√

1−M2
∞

. (5.3.1)

The lift coefficient and moment coefficient for compressible flow can be derived similarly, using

cl =
cl,0√

1−M2
∞

and cm =
cm,0√

1−M2
∞

. (5.3.2)

The Prandtl-Glauert rule is based on the linearized velocity potential equation. Other compressibility
corrections do take the nonlinear terms into account. Examples are the Karman-Tsien rule, which
states that

Cp =
Cp,0√

1−M2
∞ + M2

∞

1+
√

1−M2
∞

Cp,0
2

, (5.3.3)
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and Laitone’s rule, stating that

Cp =
Cp,0√

1−M2
∞ + M2

∞
(
1 + γ−1

2 M2
∞
)√

1−M2
∞

Cp,0
2

. (5.3.4)

5.4 The Critical Mach Number

The flow velocity is different on different positions on the wing. Let’s say we know the Mach number MA

of the flow over our wing at a given point A. The corresponding pressure coefficient can then be found
using

Cp,A =
2

γM2
∞

(1 + γ−1
2 M2

∞

1 + γ−1
2 M2

A

) γ
γ−1

− 1

 . (5.4.1)

The velocity of the flow on top of our wing is generally bigger than the free stream velocity V∞. So we
may have sonic flow (M = 1) over our wing, while we are still flying at M∞ < 1. The critical Mach
number Mcr is defined as the free stream Mach number M∞ at which sonic flow (M = 1) is first achieved
on the airfoil surface. It is a very important value. To find it, we use the critical pressure coefficient
Cp,cr. The relation between Mcr and Cp,cr can be found from the above equation. This relation is

Cp,cr =
2

γM2
cr

(1 + γ−1
2 M2

cr

1 + γ−1
2

) γ
γ−1

− 1

 . (5.4.2)

However, the above equation has two unknowns. So we need an additional equation. We can use any of
the compressibility corrections for that. But, to do that, we first need to know Cp,0. This can be found
using low-speed wind tunnel tests. Just measure the minimal pressure coefficient over the entire wing.
This is the position of minimum pressure and thus maximum velocity. So once Cp,0 is known, we have
two equations with two unknowns. It can be solved.

5.5 The Increase in Drag

You may wonder, why is the critical Mach number so important? We can see that if we plot the drag
coefficient cd with respect to the free stream Mach number M∞. Initially cd has the constant value of
cd,0. However, when M∞ gets bigger than Mcr, shock waves will appear. This causes additional drag.
So the critical Mach number relates to the velocity at which the drag increases.

At a certain free stream Mach number the drag coefficient suddenly starts to increase enormously. The
Mach number at which this occurs (which is often slightly bigger than Mcr) is called the drag-divergence
Mach number. However, once we have passed M∞ = 1, the drag coefficient cd decreases. We have then
passed the so-called sound barrier.

Normally, the drag coefficient can get as big as ten times cd,0. There are, however, ways to prevent this.
One way is the so-called area rule. It seems that sudden changes in the cross-sectional area of a wing
cause a high drag coefficient at the sonic region. So, the cross-sectional area of an airplane should be as
constant as possible. At the positions of the wings, the cross-section of the aircraft usually increases. To
prevent this, the cross-section of the fuselage at those points should decrease. This can reduce the drag
coefficient at M = 1 by an entire factor 2.

Another way of reducing the drag around M = 1 is by using supercritical airfoils. The idea behind
this is not to increase the critical Mach number Mcr. Instead, it is to increase the drag-divergence Mach
number. This is done by making the top of the airfoil as flat as possible. By doing this, airplanes can fly
at higher velocities, without experiencing the massive increase in drag just yet.
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6. Supersonic Flow over Airfoils

In the previous chapter we treated subsonic flow over airfoils. In this final chapter we will take a look at
supersonic flow. How do airfoils behave at M > 1?

6.1 The Linearized Supersonic Pressure Coefficient Equation

In the previous chapter, we derived the linear perturbation velocity potential equation. If we define
λ =

√
M2
∞ − 1, we can rewrite it to

λ2 ∂2φ̂

∂x2
− ∂2φ̂

∂y2
= 0. (6.1.1)

Any function φ̂ = f(x− λy) satisfies this equation. So it initially may not seem helpful. However, we do
know that if x− λy = constant, also φ̂ stays constant. Also, x− λy is constant, if

dy

dx
=

1
λ

=
1√

M2
∞ − 1

= tan µ, (6.1.2)

where µ is the Mach angle, which was introduced in the chapter on oblique shock waves. So we find
that φ̂ is constant along a Mach line.

From the fact that φ̂ = f(x−λy), we can also derive another important relation. From this follows that,
for a certain position on the wing with angle θ, we have

û = −V∞θ

λ
. (6.1.3)

The pressure coefficient can now be found using

Cp = − 2û

V∞
=

2θ√
M2
∞ − 1

. (6.1.4)

This important equation is called the linearized supersonic pressure coefficient equation. It is a
rather simple way to find Cp. The sign of θ, and thus also of Cp can, however, be rather tricky. Luckily
you only have to remember one important thing. If the surface of the airfoil is inclined into the free
stream, there is a relatively high pressure, and Cp is thus positive. On the other hand, if the surface is
inclined away from the free stream, the pressure is relatively low, and Cp is thus negative.

6.2 Lift and Drag Coefficients of a Flat Plate

Let’s give an example of how to use the relation that was just derived. Let’s calculate the lift and drag
coefficient of a flat plate at an angle of attack α in a supersonic flow. The pressure coefficients at the
lower and upper side of the plate, Cp,l and Cp,u, respectively, are given by

Cp,l =
2α√

M2
∞ − 1

and Cp,u = − 2α√
M2
∞ − 1

. (6.2.1)

The component of the force acting normal to the plate cn can now be found using

cn =
1
c

∫ c

0

(Cp,l − Cp,u) dx =
4α√

M2
∞ − 1

. (6.2.2)
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Since the plate has no thickness, there is no component of the force acting parallel to the plate. So we
have

cl = cn cos α and cd = cn sinα. (6.2.3)

Using cos α ≈ 1 and sinα ≈ α we eventually get

cl =
4α√

M2
∞ − 1

and cn =
4α2√

M2
∞ − 1

. (6.2.4)

These equations are only valid for flat plates at small angles of attack. Supersonic airplanes, however,
usually have relatively flat wings, and also fly at low angles of attack. So the above equations can often
also be applied for the wings of supersonic aircrafts. Isn’t it surprising that such simple equations can
say so much about such complicated aircrafts?
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