
Aerodynamics C - Exam June 2008
Problems and Solutions

1 A Supersonic Airfoil

1. Consider a thin airfoil, immersed in a uniform supersonic stream at M∞ = 3.0 at an angle of attack
of α = 2.5 deg. The airfoil has a thickness of 2h and has a parabolic upper profile given by:

y

h
= 4

x

c

(
1− x

c

)
. (1.1)

The bottom profile is made out of two straight parts. The half-thickness to cord ratio is h/c = 0.087.

(a) Draw on two diagrams the pressure coefficient distribution along the airfoil on the upper and
lower side.

(b) Compute the lift and drag coefficient of the airfoil using linearized theory.

(c) Evaluate the pressure coefficient on the lower side by shock-expansion theory and compare the
results with those obtained by linearized theory.

2. Demonstrate that the total temperature remains constant across a stationary normal shock wave.
Also demonstrate that the total pressure decreases across the normal shock wave.

1 Solution

1. Let’s define θu as the angle of incidence at the upper side. We also have θl,1 and θl,2 for the two
parts of the lower side.

We know that
θu =

dy

dx
− α = 4

h

c
− 8

hx

c2
− α, (1.2)

θl,1 = α− dy

dx
= α + 2

h

c
, (1.3)

θl,2 = α− dy

dx
= α− 2

h

c
. (1.4)

If we use linearized theory, we will have to use

Cp =
2θ√

M2
∞ − 1

. (1.5)

Now it’s time to look at the first question.

(a) For the upper side we know that

Cp,u = 2
4h

c − 8hx
c2 − α√

M2
∞ − 1

. (1.6)

We see that this is a linearly decreasing function. It crosses the x-axis if

x

c
=

4 (h/c)− α

8 (h/c)
= 0.437. (1.7)
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I’m sure you can plot it now.
But what about the lower side? Well, this time the pressure coefficient is just constant. We
have

Cp,l,1 =
2
(
α + 2h

c

)√
M2
∞ − 1

, (1.8)

Cp,l,2 =
2
(
α− 2h

c

)√
M2
∞ − 1

. (1.9)

Plot the two parts and you’re done.

(b) To find cl and cd we need to find cn and ca. So let’s do that. First, we know that

cn =
1
c

∫ c

0

(Cp,l − Cp,u) dx. (1.10)

This is equal to
2

c
√

M2
∞ − 1

(∫ c

0

α dx−
∫ c

0

(
4
h

c
− 8

xh

c2
− α

)
dx

)
. (1.11)

The result will be
4α√

M2
∞ − 1

. (1.12)

Finding ca is a bit more difficult. This time we use

ca =
1
c

∫ c

0

(Cp,u − Cp,l) dy =
1
c

∫ c

0

(
Cp,u

(
dy

dx

)
− Cp,l

(
dy

dx

))
dx. (1.13)

Working this out will initially give

ca =
2

c
√

M2
∞ − 1

(∫ c

0
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)
− . . . (1.14)

. . .− 2
c
√

M2
∞ − 1

(∫ 1
2 c

0
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c
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c

)
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1
2 c
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c

)(
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c
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)
. (1.15)

Working things out even further will get you

ca =
2

c
√

M2
∞ − 1

(∫ c

0

16h2

c2
dx−

∫ c

0

64xh2

c3
dx +

∫ c

0

64x2h2

c4
dx−

∫ c

0

4h

c
α dx +

∫ c

0

8xh

c2
α dx +

∫ c

0

4h2

c2
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)
.

(1.16)
Finally this should give you

ca =
56
3

h2

c2

1√
M2
∞ − 1

. (1.17)

Now let’s move on to find the lift and drag coefficients. The lift coefficient can be found using

cl = cn − αca =
4α− 56

3
h2

c2 α√
M2
∞ − 1

= 0.0595. (1.18)

You may note that the part containing h2

c2 α is very small. Indeed, this part may be neglected.
This means that we could have calculated cl in a much easier way. We just could have used

cl = cn =
4α√

M2
∞ − 1

. (1.19)
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Calculating cl in this way would give you cl = 0.0617, which would have been close enough.
The drag coefficient can be found using

cd = ca + αcn =
56
3

h2

c2 + 4α2√
M2
∞ − 1

= 0.0526. (1.20)

(c) It’s time to look at shock waves. First let’s take a look at what exactly happens. At the free
stream we have a flow at Mach number M∞ = 3. This flow will be deflected by the wing. This
is done by an oblique shock wave.
After a little while the flow reaches the middle of the airfoil. Now it needs to bend around the
small angle in the airfoil. This is done using expansion waves.
So, first let’s calculate the shock wave properties. Let’s call the situation after the shock wave
situation 1. First of all, the deflection angle is given by θ = α+dy/dx = α+2h/c = 12.47 deg.
The corresponding wave angle is β = 30 deg. (It can be found using the θ − β −M diagram.)
This implies that the Mach number normal to the shock wave is given by

Mn,∞ = M∞ sinβ = 3.0 sin 30 = 1.5. (1.21)

It follows that p1/p∞ = 2.458 and also that Mn,1 = 0.7011. This implies that M1 =
Mn,1/ sin (β − θ) = 2.328.
Using p1 and M1 we can find the pressure coefficient Cp,l,1 at the first part of the lower surface
of the airfoil. We know that the pressure coefficient is given by

Cp =
p− p∞

q∞
=

2 (p− p∞)
γp∞M2

∞
=

2 (p1/p∞ − 1)
γM2

∞
. (1.22)

It follows that

Cp,l,1 =
2 (2.458− 1)

1.4 · 3.02
= 0.23. (1.23)

The linearized theory predicted 0.154, so it’s off by about 33%.
Now let’s look at the second part of the airfoil. To arrive at this point, the flow has to bend
over an angle of θ = 4h/c. We can insert this θ in

θ = ν(M2)− ν(M1). (1.24)

Strangely enough, θ has to be inserted in degrees. So we have θ = 4h/c = 4 · 0.087 · 180/π =
19.94 deg. From appendix C we find that ν(M1) = 34.98. This gives

ν(M2) = θ + ν(M1) = 19.94 + 34.98 = 54.92. (1.25)

The corresponding Mach number M2 is given by M2 = 3.283.
We know that expansion waves are isentropic. So to find p2 we can simply use isentropic flow
relations, stating that

p2

p1
=
(

2 + (γ − 1) M2
1

2 + (γ − 1) M2
2

) γ
γ−1

. (1.26)

It follows that p2/p1 = 0.234. This, in turn, implies that

p2

p∞
=

p2

p1

p1

p∞
= 0.234 · 2.458 = 0.575. (1.27)

This results in

Cp,l,2 =
2 (0.575− 1)

1.4 · 3.02
= −0.0674. (1.28)

During the previous question, we found a Cp,l,2 of −0.092. So the deviation is only about 27%.
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2. First we’ll show that the total temperature stays constant along a shock wave. Using conservation
of energy, it can be shown that the quantity u + h2/2 stays constant along a shock wave. This
implies that the total enthalpy ht stays constant. So also cpTt stays constant. And thus also Tt

stays constant.

Now let’s show that the total pressure decreases. We know that

pt,2

pt,1
= e

s1−s2
R , (1.29)

with pt,1 and s1 the total pressure and the entropy before the shock wave. (Situation 2 indicates
the properties after the shock wave.) The entropy always increases, so s1 − s2 is negative. Thus
e

s1−s2
R < 1, meaning that pt,1 > pt,2. This implies that the total pressure has decreased across the

shock wave.

2 Designing a Supersonic Wind Tunnel

1. Consider the flow of air through a convergent-divergent nozzle with a throat cross-section At =
0.4m2 and an exit-to-throat area ratio of 1.616. Assuming that the reservoir conditions are p0 =
5.5 · 105Pa and T0 = 550◦C, determine the exit Mach number Me and the mass flow ṁ through
the nozzle when the pressure outside the reservoir pa attains the following values:

(a) pa = 5.0 · 105Pa.

(b) pa = 2.2 · 105Pa.

(c) pa = 0.4 · 105Pa.

(d) Draw the pattern of shocks and expansion waves at the nozzle exit for the last case.

2. In low-speed incompressible flow, the peak pressure coefficient (at the minimum pressure point) is
Cp = −0.48. Estimate the critical Mach number for the given airfoil, using the Prandtl-Glauet rule.

2 Solution

1. For such questions, it’s usually convenient to calculate the boundaries first. You may wonder, ”what
boundaries?” Well, there are specific exit pressures at which special things occur. These pressures
are pe,3, pe,5 and pe,6.

If pe > pe,3, then the flow is entirely subsonic. Since there are no shock waves, normal isentropic
relations apply.

If pe,3 > pe > pe,5, then there must be a normal shock wave between the throat and the exit. Such
situations are very hard to calculate with. So you’d better pray that you don’t get a question about
this on your exam. (Luckily, they usually don’t ask questions about it, because it’s so difficult.)

If pe,5 > pe > pe,6, then the flow is overexpanded. When exiting the wind tunnel, the flow will
contract. Oblique shock waves will appear.

If pe,6 > pe, then the flow is underexpanded. When exiting the wind tunnel, the flow will expand.
This is caused by the so-called expansion waves.

To calculate pe,3 we assume that there are sonic conditions in the throat, but that the rest of the
flow is subsonic. Looking up the fully subsonic line of A/A∗ = 1.616 in appendix A, we find that
p0/pe,3 = 1.112. So pe,3 = 4.946 · 105Pa.

To calculate pe,6 we assume that the entire flow is supersonic. Looking up the fully supersonic line of
A/A∗ = 1.616 in appendix A, we find that p0/pe,6 = 7.211. So pe,6 = 7.627 ·104Pa. (Corresponding
is the Mach number M = 1.9474.)
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To find pe,5, we assume that there is a normal shock wave at the exit. This shock wave has an initial
Mach number M = 1.9474. Its initial pressure (before the shock wave) is pe,6. Its final pressure
(after the shock wave) must be pe,5. So we can look up the pressure ratio pe,5/pe,6 = 4.258. It
finally follows that p0/pe,5 = (p0/pe,6) (pe,6/pe,5) = 7.211/4.258 = 1.694. So pe,5 = 3.247 · 105Pa.

(a) Finally, we can start with the first case! We know that pa > pe,3, so the flow remains subsonic.
In this case no shock waves appear, so we can use the isentropic flow relations. We can find
the Mach number at the throat Ma using

p0

pa
=
(

2 + (γ − 1) M2
a

2 + (γ − 1) M2
0

) γ
γ−1

, (2.1)

where M0 is the Mach number in the reservoir. Since the flow in the reservoir moves very
slowly, we have M0 = 0. Since p0/pa = 1.1 we have Ma = 0.372.
To find the mass flow, we use the equation

ṁ = ρAV =
P

RT
A
√

γRTM = PAM

√
γ

RT
. (2.2)

So we need to find the temperature at the exit. We can once more use isentropic flow relations.
So we use

T0

Ta
=
(

p0

pa

) γ−1
γ

. (2.3)

It follows that Ta = 800.9K. So the mass flow becomes

ṁ = 5.0 · 105 · 0.4 · 1.616 · 0.372 ·
√

1.4
287 · 800.9

= 296.7kg/s. (2.4)

(b) Time to look at the second case. We see that pe,5 > pa > pe,6. So we will have a completely
supersonic flow, which is overexpanded.
Since the flow is completely supersonic, the Mach number at the exit can be found quite simply.
Just look next to A/A∗ in appendix A. You’ll find M = 1.9474.
To find the mass flow, we use the equation

ṁ = PAM

√
γ

RT
. (2.5)

This time, however, we’ll apply it at the throat. At this point we know that M = 1 and
A = 0.40m2. We can also find P and T using isentropic flow relations. We find that P =
2.9055 · 105Pa and T = 685.96K. So the mass flow becomes

ṁ = PAM

√
γ

RT
= 2.9055 · 105 · 0.4 · 1 ·

√
1.4

287 · 685.96
= 309.9kg/s. (2.6)

(c) Time for the third case. In this case we find that pe,6 > pa. This means that the flow is
underexpanded. As soon as the flow exits the wind tunnel, it will expand.
However, the flow in the wind tunnel is still entirely supersonic. This means that the exit
Mach number and the mass flow are the same as in the previous case.

(d) The pattern of shock waves and expansion waves of the previous case can be seen in Anderson,
figure 10.16.f.
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2. Since Cp is the peak pressure coefficient, we know, according to the Prandtl-Glauert rule, that

Cp,cr =
Cp√

1−M2
∞

. (2.7)

We can also derive that

Cp,cr =
2

γM2
∞

((
2 + (γ − 1) M2

∞
2 + (γ − 1)

) γ
γ−1

− 1

)
. (2.8)

(See page 676 of Anderson.) We can now insert a couple of values for M∞. It turns out that for
M∞ = 0.72 the two equations above give rather similar values. So this must (approximately) be
the critical Mach number.

3 Analyzing a Power Plant

Consider the power plant below. The working fluid is air.

Figure 1: An overview of the power plant.

The following assumptions are made.

1. The transformations hosted by the compressor and the turbines are adiabatic and the isentropic
efficiency is 0.82 for the compressor and 0.87 for both turbines.

2. The power delivered by the first turbine (operating between point 4 and point 5) directly equals
that used by the compressor.

3. The regenerator is an open system with two inlets and two outlets hosting an isobaric (p3 = p2 and
p7 = p6) heat exchange process.

4. The gas expands in the second turbine (operating between points 5 and 6) delivering a power output
of 150kW .

5. The transformation in the burner takes place at constant pressure.

6. p1 = 100kPa, T1 = 300K, p2/p1 = 6, p7 = 100kPa, T4 = 1600K.

Answer the following questions:

1. Draw the evolution of the cycle in the T − s plane and later verify the correspondence between the
graphical representation and the obtained numerical values of the state variables.
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2. Determine the temperature of the air T2 at the exit of the compressor.

3. Determine the temperature of the air T5 at the first turbine. (Hint: apply the first principle to both
the compressor and the first turbine and then make use of the assumption that the power delivered
by the fist turbine is equal to the power used by the compressor.)

4. Determine the value of the pressure p5 after the first turbine.

5. Determine the temperature of the air T6 at the exit of the power turbine.

6. Determine the net work per unit mass produced by the power plant.

7. Explain the effect of the regenerator on the thermal efficiency of the power plant.

3 Solution

1. Let’s draw a T − s diagram. (You can already see the final diagram below.) First of all we should
draw two lines of constant pressure (one for p = 100kPa and one for p = 600kPa).

Figure 2: The T − s graph of the process.

Let’s start at point 1. Point 1 represents the incoming flow. The pressure is p = 100kPa, so the
point lies on the line p = 100kPa. Also, the temperature is still rather low, so we draw the point
on the bottom left.

Now let’s continue with point 2. The pressure has increased to p = 600kPa, so we know we have
to move to the other line. But where on the other line? If the process would be isentropic, then
s would have been constant. In this case point 2 should be directly above point 1. However, the
isentropic efficiency is not 1, so the process is not isentropic. Point two therefore has a slightly
higher entropy than point 1.

Point 3 has the same pressure as point 2. However, the temperature has increased by a bit, due to
the regenerator. So we just follow the line of p = 600kPa for a little while.

Point 4 has still the same pressure as the previous two points. However, the burner has increased
the temperature by quite a bit. So we follow the line of p = 600kPa for quite a distance, until we
say we’ve arrived at point 4.

Now let’s evaluate the turbines. At point 6 we have a pressure of p = 100kPa again. So point 6
should be on the line of p = 100kPa. However, how do we go from point 4 to point 6? We don’t go
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straight down, because the isentropic efficiency is not 1. Instead, we go a bit to the right as well.
(Because the entropy always increases.) This is how we find point 6. Point 5 is simply somewhere
between the points 4 and 6.

Finally we need to find point 7. We know that p7 = 100kPa, so we stay on the isobaric line (line
of constant pressure). In this part of the generator the temperature decreases. (Heat is taken from
the flow between points 6 and 7, and added to the flow between points 2 and 3.) So we move to
the bottom left, along the line, for a little while.

You may wonder, how can it be that the entropy decreases between points 6 and 7? That is
because a cold sink is present. The entropy can only decrease if heat is discarded to a cold sink.
This doesn’t violate the second law of thermodynamics, because the entropy of the entire system
still increases. The increase in entropy between points 2 and 3 is simply bigger than the decrease
in entropy between points 6 and 7.

There are a few things we should have incorporated in our diagram as well. Let’s take a look at
the generator. An amount of energy is taken from process 67. This energy is added to process 23.
Conservation of energy now implies that the temperature difference in these two processes is the
same. So in our graph we should have T6 − T7 = T3 − T3.

Also, heat can only be moving from process 67 to process 23, if the temperature in process 67 is
higher. So we should definitely have T6 ≥ T3, and of course also T7 ≥ T2.

2. We know that p1 = 100kPa, p2 = 600kPa and T1 = 300K. To find T2, we have to use the isentropic
efficiency.

Suppose that the compression was performed isentropically. Then a temperature T2,is would have
been reached at the end of compression. This value T2,is can be found using the isentropic relations,
being

p2

p1
=
(

T2

T1

) γ
γ−1

. (3.1)

It follows that T2,is = 500.6K. The isentropic efficiency ηis for compression now is defined as

ηis =
T2,is − T1

T2 − T1
. (3.2)

In words, the isentropic efficiency for compression is the temperature difference in the isentropic
case, divided by the actual temperature difference. Using ηis = 0.82 we can find that T2 = 544.6K.
(Let me tell you a good thing to remember when using isentropic efficiency. The actual temperature
is always bigger than the temperature in the isentropic case. So in this case this rule states that
T2 > T2,is, which is, indeed, correct.)

3. We know that the work produced by the first turbine is equal to the work used by the compressor.
So let’s look at the amount of work used by the compressor.

The amount of energy entering the compressor is equal to ein = h1 + Wcomp = cpT1 + Wcomp. The
amount of energy leaving the compressor is equal to eout = h2 = cpT2. Since the compressor is
working adiabatically, no other energy can enter/leave the system. This means that ein = eout and
thus that Wcomp = cp (T2 − T1).

The work done by the first turbine Wturb is equal to the work done by the compressor Wcomp.
However, we can also find that Wturb = cp (T4 − T5). So, using Wcomp = Wturb, we find that

T5 = T4 + T1 − T2 = 1600 + 300− 544.6 = 1355.4K. (3.3)

4. We know that p4 = p3 = p2 = 600kPa. To find p5, we would like to use the isentropic relations.
But we can’t, since the turbine doesn’t work isentropically. However, if it would work isentropically,
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then we would have a temperature T5,is after the turbine. In this case we would have

p5

p4
=
(

T5,is

T4

) γ
γ−1

. (3.4)

So we need to find T5,is. We use the isentropic efficiency for that. The definition of isentropic
efficiency for expansion is

ηis =
T5 − T4

T5,is − T4
. (3.5)

Using ηis = 0.87 we find that T5,is = 1318.9K. Using the isentropic relations, we then find that
p5 = 305.1kPa.

5. We know that p5 = 305.1kPa, p6 = 100kPa and T5 = 1355.4K. Using the isentropic relations,
we can find that T6,is = 985.5K. If we insert this into the definition of isentropic efficiency for
expansion, we find T6. The result is T6 = 1033.6K.

6. The work done by the power plant ”leaves” the power plant at the second turbine (between points
5 and 6). So if we want to know how much work leaves the power plant, we should evaluate energy
for the second turbine. The energy per unit mass entering this turbine is ein = cpT5. The energy
per unit mass leaving this turbine through channel 6 is eout = cpT6. So the work that leaves this
turbine per unit mass must be equal to

Wout = ein − eout = cp (T5 − T6) = 323kJ/kg. (3.6)

7. Why would the regenerator be useful in this power plant? To find that out, we have to look at the
definition of efficiency.

Efficiency is ”useful energy out” divided by ”energy in”. The place where energy enters the power
plant is the burner. Now what is the effect of the regenerator on this?

The regenerator transfers heat from the hot exhaust gases to the cold gases leaving the compressor.
So the generator increases the temperature of the gas entering the heater. The gas entering the
heater now has a higher temperature. So the heater needs less energy to increase the gas temperature
to the right level. Thus the energy going into the system at the heater decreases.

We have found that ”energy in” decreases. Since ”energy in” is in the denominator of the efficiency,
it must mean that the efficiency itself increases. The regenerator thus causes the efficiency of the
power plant to increase.
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