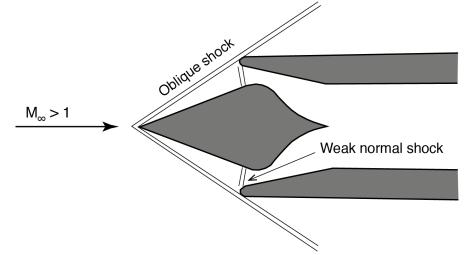

Delft University of Technology		
DEPARTMENT OF AEROSPACE ENGINEERING		
Course: Aerodynamics 2;	Code: AE2130-III	Course year: 2
Date: Wednesday 9 April 2014		Time: 14:00 – 17:00
On the tap of each answer sheet write: initials, name, student number, sheet number/total number of sheets		

On the top of <u>each</u> answer sheet write: initials, name, student number, sheet number/total number of sheets This exam consists of 5 questions.

Problem 1 [25 points]


Air flows over a wall with a small triangular bump at $M_{\infty} = 2.6$. The height to length ratio of the bump is h/l = 0.05 and the length is l = 0.2 m. The free-stream static pressure and density are $0.2 \times 10^5 Pa$ and $0.8 kg/m^3$ respectively.

- i. Draw the flow field over the bump, include (if present): streamlines, shock waves, expansion waves and slip-lines.
- ii. Compute the drag force caused by the bump using shock expansion theory.
- iii. Repeat question ii) using linear theory, compare the values and comment on the difference.

Problem 2 [20 points]

Consider an oblique shock inlet (also called spike inlet) as it is shown below:

- i. Explain the purpose for which oblique shock inlets are used on supersonic aircraft.
- ii. Assume a free stream Mach number of $M_{\infty} = 1.6$. What is the smallest deflection angle imposed by the spike inlet such that the flow is already subsonic downstream of the oblique shock, justify your answer.

Problem 3 [25 points]

Consider a supersonic wind tunnel that is designed to have *Mach 3* in the test section. The test section has an area cross-section of 625 cm^2 . Upstream, the tunnel is connected to a pressurized reservoir where air is stored at a temperature of 300 K. Downstream of the test section the air exits directly into the ambient ($p_{amb} = 100 \text{ kPa}$).

- i. Determine the minimum total pressure at which the wind tunnel can be operated and the corresponding mass flow.
- ii. In order to make the operation of the tunnel more efficient, a diffusor is added to the exit. What shoud be the minimum area of the diffusor such that the tunnel can still be started.
- iii. The diffusor is removed and a pitot tube is installed in the test section. The pressure in the reservoir is decreased to 200 kPa. What is the pressure that is measured by the pitot tube?

Problem 4 [10 points]

Starting from the 2nd law of thermodynamics, demonstrate that the airflow across a normal shock wave experiences a decrease in total pressure.

Problem 5 [20 points]

Consider an aircraft flying at $M_{\infty} = 0.7$ at an altitude of h = 10 km, at this height the pressure is 26 kPa and the temperature is 223 K. The wing of the aircraft has a critical Mach number of 0.8.

- i. What is the pressure on the airfoil at the minimum pressure point?
- ii. What is the velocity of the flow at this location?