Delft University of Technology								
DEPARTMENT OF AEROSPACE ENGINEERING								
Course: Aerodynamics 2;	Code: AE2210	Course year: 2						
Date: Wednesday 14 August 2013		Time: 14:00 – 17:00						
On the top of each answer sheet write: initials, name, student number, sheet number/total number of sheets								

On the top of <u>each</u> answer sheet write: initials, name, student number, sheet number/total number of shee This exam consists of 5 questions.

Problem 1

An airfoil is immersed in a supersonic flow at a free stream Mach number $M_{\infty} = 2.5$. The airfoil geometry is given by the equation $y = \frac{h}{c} \left[\cos \left(\frac{\pi x}{c} \right) - 1 \right]$ with $\frac{h}{c} = 0.1$ and the angle of attack is $\alpha = 2^{\circ}$. You may use linear theory to answer this question.

- i. What are the assumptions for which linear theory may be applied?
- ii. Compute the pressure coefficient for the lower and upper side as function of x and plot them in a figure.
- iii. Determine the lift and drag coefficient for this airfoil. Hint: $sin^2(x) = \frac{1}{2}(1 + cos(2x))$

Problem 2

- i. Consider a stationary oblique shock wave in a supersonic flow. Indicate what happens to the following variables when crossing the shock (stay constant, increase or decrease), justify you answer:
 - a. Tangential Mach number
 - b. Static enthalpy
 - c. Critical Mach number (M*)
- ii. Sketch the graph expressing the M- β - θ relationship for an oblique shockwave and discuss it. In your discussion include the following concepts: maximum deflection angle, normal shock wave solution, strong solution, weak solution and Mach angle.

Problem 3

The SR71 aircraft is flying at an altitude of 22 km, here the pressure is 4 kPa and the temperature is $-55 \,^{\circ}C$. A pitot tube positioned on the nose of the aircraft measures a pressure of $51.4 \, kPa$. What is the temperature in the stagnation point of the aircraft?

Problem 4

The Space Shuttle Main Engine is tested in a test stand at sea level ($p_{amb} = 1 \times 10^5 Pa$). In the combustion chamber of the engine the total pressure is $p_o = 205 \times 10^5 Pa$ and the total temperature is $T_o = 3315 \ ^oC$. The exhaust diameter of the nozzle is 2.3 *m* and the throat has a diameter of 0.26 *m*. Since the engine burns LOX with LH2, the gas constant of the combustion gasses is R = 594 J/(Kg K) and $\gamma = 1.2$.

- i. The thrust produced by a rocket engine is given as $F = \dot{m}V_{exit} + (p_{exit} p_{amb})A_{exit}$. What is the thrust that is produced by the engine?
- ii. Suddenly a turbopump fails and the pressure in the combustion chamber drops to $p_o = 30 \times 10^5 Pa$ but the temperature stays the same. What is the thrust produced in this case?

A/A*	M	A/A*	M	A/A*	M	A/A*	M
2	0.3122	40	0.0148	2	2.0551	40	4.2394
4	0.1498	50	0.0118	4	2.6194	50	4.3958
6	0.0992	60	0.0099	6	2.9173	60	4.5245
8	0.0742	70	0.0085	8	3.1219	70	4.6340
10	0.0593	80	0.0074	10	3.2783	80	4.7294
20	0.0296	90	0.0066	20	3.7585	90	4.8140
30	0.0197	10	0.0059	30	4.0391	100	4.8900

Mach – Area relation for $\gamma = 1.2$, please interpolate for intermediate values of M or A/A*

Problem 5

Consider a slip line delimiting a supersonic flow on the bottom (M > 1) with a stagnant region on the top (u = 0, M = 0). On the lower side there is an oblique shock wave that will interact with the slip line in point *s* (see figure below). Will the shock reflect from the slip line as a shock wave or as an expansion wave, justify your answer?

Values of gas properties

Universal gas constant: $R_0 = 8314$ J/Kmol K; Air gas constant: $R_{air} = 287$ J/Kg K; Specific heat of air: $C_p = 1004$ J/Kg K