Data and formulae for <u>aircraft</u> preliminary weight estimation and sizing

Typical fuel fractions for non-fuel intensive mission segments

aircraft type	engine start and warm-up	taxi	take- off	Climb and acceleration to cruise	descent	landing, taxi and shut- down
homebuilts	0.998	0.998	0.998	0.995	0.995	0.995
single engine piston props	0.995	0.997	0.998	0.992	0.993	0.993
twin engine props	0.992	0.996	0.996	0.990	0.992	0.992
agricultural	0.996	0.995	0.996	0.998	0.999	0.998
business jets	0.990	0.995	0.995	0.980	0.990	0.992
regional turboprops	0.990	0.995	0.995	0.985	0.985	0.995
transport jets	0.990	0.990	0.995	0.980	0.990	0.992
military trainers	0.990	0.990	0.990	0.980	0.990	0.995
fighters	0.990	0.990	0.990	0.96 - 0.9	0.990	0.995
military patrol, bombers and transport	0.990	0.990	0.995	0.980	0.990	0.992
flying boats, amphibians and float planes	0.992	0.990	0.996	0.985	0.990	0.990
supersonic aircraft	0.990	0.995	0.995	0.92 - 0.87	0.985	0.992

Breguet formulas for range (R) and endurance (E):

$$\begin{split} R_{prop} = & \left(\frac{\eta_p}{g.c_p} \right)_{cruise} \cdot \left(\frac{L}{D} \right)_{cruise} In \left(\frac{W_{start}}{W_{end}} \right) \\ R_{jet} = & \left(\frac{1}{g.c_j} \right)_{loiter} \cdot \left(\frac{L}{D} \right)_{loiter} In \left(\frac{W_{start}}{W_{finish}} \right) \\ R_{jet} = & \left(\frac{V}{g.c_j} \right)_{cruise} \cdot \left(\frac{L}{D} \right)_{cruise} In \left(\frac{W_{start}}{W_{end}} \right) \\ \end{split} \qquad \qquad E_{prop} = & \left(\frac{\eta_p}{Vg.c_j} \right)_{loiter} \cdot \left(\frac{L}{D} \right)_{loiter} In \left(\frac{W_{start}}{W_{finish}} \right) \end{split}$$

Reference data for Breguet formulas:

Cruise data

		c _i	Cp	
aircraft type	L/D	[lbs/hr/lbs]	•	η _p
homebuilt	8-10	-	0.6 - 0.8	0.7
single engine piston props	8-10	-	0.5 - 0.7	0.8
twin engine props	8-10	-	0.5 - 0.7	0.82
Agricultural	5-7	-	0.5 - 0.7	0.82
business jets	10-12	0.5 - 0.9	-	-
regional turboprops	11-13	-	0.4 - 0.6	0.85
transport jets	13-15	0.5 - 0.9	-	-
military trainers	8-10	0.5 - 0.9	0.4 - 0.6	0.82
fighters	4-7	0.6 - 1.4	0.5 - 0.7	0.82
military patrol, bombers and transport	13-15	0.5 - 0.9	0.4 - 0.7	0.82
flying boats, amphibians and floatplanes	10-12	0.5 - 0.9	0.5 - 0.7	0.82
supersonic aircraft	4-6	0.7 - 1.5	-	-

Loiter data

Lonci data				
		Сj	Cp	
aircraft type	L/D	[lbs/hr/lbs]	[lbs/hr/hp]	η _p
homebuilt	10-12	-	0.5 - 0.7	0.6
single engine piston props	10-12	-	0.5 - 0.7	0.7
twin engine props	9-11	-	0.5 - 0.7	0.72
Agricultural	8-10	-	0.5 - 0.7	0.72
business jets	12-14	0.4 - 0.6	-	-
regional turboprops	14-16	-	0.5 - 0.7	0.77
transport jets	14-18	0.4 - 0.6	-	-
military trainers	10-14	0.4 - 0.6	0.5 - 0.7	0.77
fighters	6-9	0.6 - 0.8	0.5 - 0.7	0.77
military patrol, bombers and transport	14-18	0.4 - 0.6	0.5 - 0.7	0.77
flying boats, amphibians and floatplanes	13-15	0.4 - 0.6	0.5 - 0.7	0.77
supersonic aircraft	7-9	0.6 - 0.8	-	-

Maximum lift coefficient values for different a/c categories (clean configuration, take off and landing with deployed high-lift devices)

	CLmax clean		CLmax take-off		CLmax land	
aircraft type	min	max	min	max	min	max
homebuilts	1.2	1.8	1.2	1.8	1.2	2.0
single engine piston props	1.3	1.9	1.3	1.9	1.6	2.3
twin engine props	1.2	1.8	1.4	2.0	1.6	2.5
agricultural	1.3	1.9	1.3	1.9	1.3	1.9
business jets	1.4	1.8	1.6	2.2	1.6	2.6
regional turboprops	1.5	1.9	1.7	2.1	1.9	3.3
transport jets	1.2	1.8	1.6	2.2	1.8	2.8
military trainers	1.2	1.8	1.4	2.0	1.6	2.2
fighters	1.2	1.8	1.4	2.0	1.6	2.6
military patrol, bombers and transport	1.2	1.8	1.6	2.2	1.8	3.0
flying boats, amphibians and float planes	1.2	1.8	1.6	2.2	1.8	3.4
supersonic aircraft	1.2	1.8	1.6	2.0	1.8	2.2

Takeoff parameter definition for jet and propeller a/c

$$\mathsf{TOP}_{\mathsf{jet}} = \left(\frac{\mathsf{W}}{\mathsf{S}}\right)_{\mathsf{TO}} \cdot \left(\frac{\mathsf{W}}{\mathsf{T}}\right)_{\mathsf{TO}} \cdot \frac{1}{\mathsf{C}_{\mathsf{L}_{\mathsf{max}}}} \cdot \frac{1}{\sigma} \\ \qquad \qquad \mathsf{TOP}_{\mathsf{prop}} = \left(\frac{\mathsf{W}}{\mathsf{S}}\right)_{\mathsf{TO}} \cdot \left(\frac{\mathsf{W}}{\mathsf{P}}\right)_{\mathsf{TO}} \cdot \frac{1}{\mathsf{C}_{\mathsf{L}_{\mathsf{max}}}} \cdot \frac{1}{\sigma} \\ \\ \mathsf{TOP}_{\mathsf{prop}} = \left(\frac{\mathsf{W}}{\mathsf{S}}\right)_{\mathsf{TO}} \cdot \left(\frac{\mathsf{W}}{\mathsf{P}}\right)_{\mathsf{TO}} \cdot \frac{1}{\mathsf{C}_{\mathsf{L}_{\mathsf{max}}}} \cdot \frac{1}{\sigma} \\ \\ \mathsf{TOP}_{\mathsf{prop}} = \left(\frac{\mathsf{W}}{\mathsf{S}}\right)_{\mathsf{TO}} \cdot \left(\frac{\mathsf{W}}{\mathsf{P}}\right)_{\mathsf{TO}} \cdot \frac{1}{\mathsf{C}_{\mathsf{L}_{\mathsf{max}}}} \cdot \frac{1}{\sigma} \\ \\ \mathsf{TOP}_{\mathsf{prop}} = \left(\frac{\mathsf{W}}{\mathsf{S}}\right)_{\mathsf{TO}} \cdot \left(\frac{\mathsf{W}}{\mathsf{P}}\right)_{\mathsf{TO}} \cdot \frac{1}{\mathsf{C}_{\mathsf{L}_{\mathsf{max}}}} \cdot \frac{1}{\sigma} \\ \\ \mathsf{TOP}_{\mathsf{prop}} = \left(\frac{\mathsf{W}}{\mathsf{S}}\right)_{\mathsf{TO}} \cdot \left(\frac{\mathsf{W}}{\mathsf{P}}\right)_{\mathsf{TO}} \cdot \frac{1}{\mathsf{C}_{\mathsf{L}_{\mathsf{max}}}} \cdot \frac{1}{\sigma} \\ \\ \mathsf{TOP}_{\mathsf{prop}} = \left(\frac{\mathsf{W}}{\mathsf{S}}\right)_{\mathsf{TO}} \cdot \left(\frac{\mathsf{W}}{\mathsf{P}}\right)_{\mathsf{TO}} \cdot \frac{1}{\mathsf{C}_{\mathsf{L}_{\mathsf{max}}}} \cdot \frac{1}{\sigma} \\ \\ \mathsf{TOP}_{\mathsf{prop}} = \left(\frac{\mathsf{W}}{\mathsf{S}}\right)_{\mathsf{TO}} \cdot \left(\frac{\mathsf{W}}{\mathsf{P}}\right)_{\mathsf{TO}} \cdot \frac{1}{\mathsf{C}_{\mathsf{L}_{\mathsf{max}}}} \cdot \frac{1}{\sigma} \\ \\ \mathsf{TOP}_{\mathsf{prop}} = \left(\frac{\mathsf{W}}{\mathsf{S}}\right)_{\mathsf{TO}} \cdot \left(\frac{\mathsf{W}}{\mathsf{P}}\right)_{\mathsf{TO}} \cdot \frac{1}{\mathsf{C}_{\mathsf{L}_{\mathsf{max}}}} \cdot \frac{1}{\sigma} \\ \\ \mathsf{TOP}_{\mathsf{prop}} = \left(\frac{\mathsf{W}}{\mathsf{S}}\right)_{\mathsf{TO}} \cdot \frac{1}{\mathsf{C}_{\mathsf{L}_{\mathsf{max}}}} \cdot \frac{1}{\sigma} \\ \\ \mathsf{TOP}_{\mathsf{Prop}} = \left(\frac{\mathsf{W}}{\mathsf{S}}\right)_{\mathsf{TO}} \cdot \frac{1}{\mathsf{C}_{\mathsf{L}_{\mathsf{max}}}} \cdot \frac{1}{\sigma} \\ \\ \mathsf{TOP}_{\mathsf{Prop}} = \left(\frac{\mathsf{W}}{\mathsf{S}}\right)_{\mathsf{TO}} \cdot \frac{1}{\mathsf{C}_{\mathsf{L}_{\mathsf{max}}}} \cdot \frac{1}{\sigma} \\ \\ \mathsf{TOP}_{\mathsf{Prop}} = \left(\frac{\mathsf{W}}{\mathsf{S}}\right)_{\mathsf{TO}} \cdot \frac{1}{\mathsf{C}_{\mathsf{L}_{\mathsf{max}}}} \cdot \frac{1}{\sigma} \\ \\ \mathsf{TOP}_{\mathsf{Prop}} = \left(\frac{\mathsf{W}}{\mathsf{S}}\right)_{\mathsf{TO}} \cdot \frac{1}{\mathsf{C}_{\mathsf{L}_{\mathsf{max}}}} \cdot \frac{1}{\sigma} \\ \\ \mathsf{TOP}_{\mathsf{Prop}} = \left(\frac{\mathsf{W}}{\mathsf{S}}\right)_{\mathsf{TO}} \cdot \frac{1}{\mathsf{C}_{\mathsf{L}_{\mathsf{M}}} \cdot \frac{1}{\mathsf{C}_{\mathsf{M}}} \cdot \frac{1}{\mathsf{C}_{\mathsf{M}}} \\ \\ \mathsf{TOP}_{\mathsf{M}} = \left(\frac{\mathsf{W}}{\mathsf{M}}\right)_{\mathsf{TO}} \cdot \frac{1}{\mathsf{C}_{\mathsf{M}}} \cdot \frac{1}{\mathsf{C}_{\mathsf{M}}} \cdot \frac{1}{\mathsf{C}_{\mathsf{M}}} \cdot \frac{1}{\mathsf{C}_{\mathsf{M}}} \\ \\ \mathsf{TOP}_{\mathsf{M}} = \left(\frac{\mathsf{W}}{\mathsf{M}}\right)_{\mathsf{M}} \cdot \frac{1}{\mathsf{C}_{\mathsf{M}}} \cdot \frac{1}{\mathsf{C}_{\mathsf{M}}} \cdot \frac{1}{\mathsf{C}_{\mathsf{M}}} \cdot \frac{1}{\mathsf{C}_{\mathsf{M}}} \cdot \frac{1}{\mathsf{C}_{\mathsf{M}}} \cdot \frac{1}{\mathsf{C}_{\mathsf{M}}}$$

$$\mathsf{TOP}_{\mathsf{prop}} = \left(\frac{\mathsf{W}}{\mathsf{S}}\right)_{\mathsf{TO}} \cdot \left(\frac{\mathsf{W}}{\mathsf{P}}\right)_{\mathsf{TO}} \cdot \frac{1}{\mathsf{C}_{\mathsf{L}_{\mathsf{max}}}} \cdot \frac{1}{\sigma}$$

3

Statistical relationship between landing distance and stall speed

$$s_{\scriptscriptstyle L} \! = \! 0.5915 \! *V_{s_{\scriptscriptstyle land}}^2 \rightarrow CS23$$

$$\mathrm{S_L=0.5847*V_{s_{land}}^2 \rightarrow CS25}$$

Data and formula for preliminary polar drag estimation

Parasite drag definition as function of the equivalent skin friction coefficient and the wetted area/reference lifting surface area ratio:

$$C_{D0} = C_{fe} \frac{S_{wet}}{S}$$

Version 1

Equivalent skin friction coefficient values for different aircraft categories

C _{D0} =C _{fe} S _{wet} /S	C _{fe} - subsonic
Civil transport	0.0030
Bomber	0.0030
Airforce fighter	0.0035
Navy fighter	0.0040
Clean supersonic cruise aircraft	0.0025
Light aircraft – single engine	0.0055
Light aircraft – twin engine	0.0045
Propeller seaplane	0.0065
Jet seaplane	0.0040

Correction factors for ΔC_{D0} and Oswald factor at take off and landing

	ΔC_{D0}	Δе
Clean configuration	0	0
Take-off flaps	0.010 - 0.020	0.05
Landing flaps	0.055 - 0.075	0.10
Undercarriage*	0.015 - 0.025	0

Climb rate formulas

 $: c = V(T-D)/W = P_a-P_r/W$ Climb rate

For propeller aircraft: For jet aircraft:

$$c = \frac{\eta_p \cdot P_{br}}{W} - \frac{\sqrt{\frac{W}{S}} \cdot \sqrt{2}}{\frac{C_L^{3/2}}{C_D} \cdot \sqrt{\rho}}$$

$$c = \left(\frac{T}{W} - \frac{C_D}{C_L}\right) \cdot \sqrt{\frac{W}{S}} \frac{2}{\rho} \frac{1}{C_L}$$

$$\frac{C_L^{3/2}}{C_D} \quad \text{maximum for} \quad C_L = \sqrt{3C_{D_0} \pi Ae} \quad \text{and} \qquad C_D = 4C_{D_0}$$

Climb gradient formulas

Climb gradient : G = (T-D)/W

For propeller aircraft:

$$G = \frac{c}{V} = \eta_p \cdot \frac{P_{br}}{W} \cdot \frac{1}{\sqrt{\frac{W}{S} \cdot \frac{2}{\rho} \cdot \frac{1}{C_l}}} - \frac{C_D}{C_L}$$

Optimizing this expression (for best climb gradient) leads to a value for C_L which is very close to the maximum lift coefficient. This would result in a dangerous flight condition; thereby a safety margin of 0.2 on the maximum lift coefficient should be used to construct the curves for W/P versus W/S.

For jet aircraft:

$$G = \frac{c}{V} = \frac{T}{W} - \frac{C_{_D}}{C_{_L}}$$

For maximum aerodynamic efficiency:

$$C_{D} = 2.C_{D_{0}}$$
 $C_{L} = \sqrt{C_{D_{0}} \cdot \pi.A.e}$

Formulae for **Space** Vehicle Design and Sizing

General

Mean

Sample Standard Deviation (SSD)

SSD of sum (Indep. Var.)

$$\mu = \sum_{i=1}^{i=n} \frac{X_i}{n}$$

$$SSD = \sqrt{\sigma^2} = \sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{i=n} (x_i - \mu)^2}$$

$$SSD = \sqrt{\sum SSD_i^2}$$

Standard Error of Estimate (SEE)

$$SEE = \sqrt{\frac{1}{n-m} \cdot \sum_{i=1}^{i=n} \left(\frac{y_i}{f\left(x_i\right)} - 1\right)^2}$$

Space Vehicle/Launcher Sizing

Rocket Equation

Initial Mass

Empty Mass

$$\Delta V = V_e \cdot ln \left(\frac{M_o}{M_e}\right) \; \; ; \; \; V_e = w \qquad \qquad M_o = M_e + M_F \label{eq:deltaV}$$

$$M_{o} = M_{e} + M_{H}$$

$$M_e = M_P + M_S$$

Vehicle Mass Ratio

Spacecraft Launch Mass

$$R = \Lambda = \frac{M_o}{M_e} = 1 + \frac{M_F}{M_e} = \frac{1 + \sigma}{\lambda + \sigma}$$

$$M_{L} = M_{SC} + M_{KM} + M_{LVA}$$

Body Volume

Reliability Spacecraft

Reliability

$$V = \frac{M}{\rho}$$

$$\boldsymbol{R}_{\scriptscriptstyle SC} = \boldsymbol{R}_{\scriptscriptstyle Payload} \cdot \boldsymbol{R}_{\scriptscriptstyle Bus}$$

$$\mathbf{R} = e^{(-\lambda \cdot \mathbf{t})}$$

Risk

Failure probability

Design Margin

 $Risk = F \cdot Severity$

$$F = 1 - R$$

$$DM = TC - CBE * 1$$

Launcher Mass ratios/fractions

Payload Ratio

Propellant Mass Fraction

Structural Mass Fraction

$$\lambda = \frac{M_{P}}{M_{o}}$$

$$\mu = \frac{M_F}{M_o}$$

$$s = \frac{M_S}{M_o}$$

(Stage) Structural Coefficient / Efficiency

Stage Propellant Mass Fraction

$$\sigma = \frac{M_{S}}{M_{F}} = \frac{1 - \mu'}{\mu'}$$

$$\mu' = \frac{M_F}{M_F + M_S} = \frac{1}{1 + \sigma}$$

DM = Design Margin, TC = Total Capability, CBE = Current Best Estimate Version 1

Disturbance Forces & torques

Solar Radiation Pressure Force

Solar Pressure

$$F_{a} = \frac{1}{2} \cdot C_{D} \cdot \rho \cdot V^{2} \cdot S$$

$$F_{s} = (1 + \rho) \cdot P_{s} \cdot S$$

$$P_s = \frac{J_s}{c}$$

Gravity Gradient Torque

$$T \cong 3 \cdot n^2 \begin{bmatrix} \left(I_{zz} - I_{yy} \right) \cdot \phi \\ \left(I_{zz} - I_{xx} \right) \cdot \theta \\ 0 \end{bmatrix} \qquad n = \frac{2 \cdot \pi}{\tau} = \sqrt{\frac{\mu}{a^3}}$$

$$n = \frac{2 \cdot \pi}{\tau} = \sqrt{\frac{\mu}{a^3}}$$

$$\underline{T} = \underline{r} \times \underline{F}_a$$

Solar Radiation Torque

$$\underline{\mathbf{T}} = \underline{\mathbf{r}} \times \underline{\mathbf{F}}_{s}$$

$$T = M \times B$$

$$\underline{\mathbf{T}} = \underline{\mathbf{r}} \times \underline{\mathbf{F}}$$

Structures – Beam Approximation (one end fixed)

Natural Frequency

Stiffness (Long. and Lat. Direction)

Stress at Clamp

$$f_{_n} = \sqrt{\frac{k}{M}}$$

$$k_x = \frac{E \cdot A}{I}$$
 $k_y = \frac{3 \cdot E \cdot I}{I^3}$ $\sigma_{\text{tot}} = \frac{g_y \cdot M \cdot L \cdot c}{I} + \frac{g_x \cdot M}{A}$

$$\sigma_{\text{tot}} = \frac{g_y \cdot M \cdot L \cdot c}{I} + \frac{g_x \cdot M}{A}$$

Critical Buckling Load²

Critical Buckling Stress

Radius of Gyration

$$P_{cr} = C \cdot \frac{\pi^2 \cdot E \cdot I}{L^2}$$

$$\sigma_{\rm cr} = \frac{\mathbf{C} \cdot \boldsymbol{\pi}^2 \cdot \mathbf{E}}{\left(\mathbf{L}/\boldsymbol{\rho}\right)^2} = \frac{\mathbf{P}}{\mathbf{A}}$$

$$\rho^2 = \frac{I}{A}$$

Critical Axial Stress Cylinder

$$\sigma_{\rm c} = E \left(9 \left(\frac{t}{R} \right)^{1.6} + 0.16 \left(\frac{t}{L} \right)^{1.3} \right)$$

Critical Stress with internal pressure

$$\sigma_{\rm c} = \left(K_{\rm o} + K_{\rm p}\right) \cdot \frac{E \cdot t}{R}$$

$$\sigma_{\rm c} = \left(K_{\rm o} + K_{\rm p}\right) \cdot \frac{E \cdot t}{R} \qquad K_{\rm o} = 9 \cdot \left(\frac{t}{R}\right)^{0.6} + 0.16 \cdot \left(\frac{R}{L}\right)^{1.3} \cdot \left(\frac{t}{R}\right)^{0.3} \qquad K_{\rm p} = 0.191 \cdot \left(\frac{p}{E}\right) \cdot \left(\frac{R}{t}\right)^{2}$$

$$K_p = 0.191 \cdot \left(\frac{p}{E}\right) \cdot \left(\frac{R}{t}\right)^2$$

Sizing Tank structures (Pressurized Thin Walled Cylindrical Tank)

Tank Mass

$$M_{\text{tank}} = K \cdot \rho \cdot S \cdot t$$

Cylinder Hoop Stress

Cylinder Axial Stress

Spherical End Cap Stress

$$\sigma_{\text{hoop}} = \frac{p \cdot R}{t}$$

$$\sigma_{\text{axial}} = \frac{\mathbf{p} \cdot \mathbf{R}}{2 \cdot \mathbf{t}}$$

$$\sigma_{\text{hoop}} = \sigma_{\text{axial}} = \frac{\mathbf{p} \cdot \mathbf{R}}{2 \cdot \mathbf{t}}$$

7 Version 1

 $^{^{2}}$ For one end fixed and the other end free to move laterally: C = 0.25

Spacecraft Thermal Control

Heat Flow

Spectral Abs., Transm. and Refl.

$$Q_{in} = Q_{out}$$

$$q = \frac{Q}{A}$$

$$\alpha + \tau + \rho = 1$$

Radiation Heat

Heat Conduction

Heat Convection

$$Q = \varepsilon \cdot \sigma \cdot A \cdot T^4$$

$$Q = \frac{k \cdot A}{1} \cdot (T_2 - T_1)$$

$$Q = h_c \cdot (T_2 - T_1) \cdot A$$

Heat Balance

$$\boldsymbol{\alpha}_{s} \cdot \boldsymbol{A}_{s} \cdot \boldsymbol{J}_{s} + \boldsymbol{\alpha}_{s} \cdot \boldsymbol{a} \cdot \boldsymbol{A}_{a} \cdot \boldsymbol{J}_{s} + \boldsymbol{\alpha}_{IR} \cdot \boldsymbol{A}_{IR} \cdot \boldsymbol{J}_{IR} + \boldsymbol{Q}_{int} = \boldsymbol{\varepsilon} \cdot \boldsymbol{A}_{ext} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{T}^{4}$$

Solar Flux

Planet Flux

Kirchhoff's Law

$$J_{s} = \frac{P}{4 \cdot \pi \cdot d^{2}}$$

$$q_{IR} = \sigma \cdot T_{IR}^4$$

$$\alpha = \varepsilon$$

Power

Power Solar Cell

Power Solar Array

$$E = P \cdot t$$

$$P_{cell} = J_s \cdot \eta \cdot A_{cell}$$

$$P_{\delta} = J_{s} \cdot \eta \cdot I_{d} \cdot L_{d} \cdot \cos(\theta)$$

Area Solar Array

Mass Solar Array

Mass Fuel Cell

$$A_a = \frac{P}{P_{s}}$$

$$M_a = \frac{P}{P_{sp}}$$

$$M_{fc} = \frac{P}{P_{sp}}$$

Mass Battery

Volume Battery

$$M_{bat} = \frac{E}{E_{sp}}$$

$$V_{\text{bat}} = \frac{E}{E_{\delta}}$$

Propulsion

Thrust

Burn time

Specific Impulse

$$F_{_T} = \dot{m} \cdot w = \dot{m} \cdot V_{_e}$$

$$t_b = \frac{M_F}{\dot{m}}$$

$$I_{sp} = \frac{F_{T} \cdot t_{b}}{M_{F} \cdot g_{o}} = \frac{w}{g_{o}} = \frac{V_{e}}{g_{o}}^{3}$$

Power Required

Power Req. Ext. Power Source

Mass External Power Source

$$P = \eta_{T} \cdot P_{i}$$

$$P_{W} = \frac{P_{j}}{\eta}$$

$$M_{w} = \alpha_{w} \cdot P_{w}$$

Fuel volume

$$V_{\text{fuel}} = \frac{1}{1 + O/F} \cdot \frac{M_F}{\rho_{\text{fuel}}}$$

 $^{^{3}}$ Note that propellant mass is indicated as M_{p} in the text on spacecraft design, whereas M_{F} is used in the text on launcher design.

Attitude Determination and Control

Angular Moment Rigid Body

External Torque

Rotation Angle Spacecraft

$$H = I \cdot \omega$$

$$T=I\cdot\alpha$$

$$\Delta\theta = \omega \cdot \mathbf{t} = \frac{1}{2} \cdot \alpha \cdot \mathbf{t}^2 + \omega_o \cdot \mathbf{t}$$

Torque Magneto-torquer

$$\underline{T}_{\scriptscriptstyle m} = \underline{a} \cdot N \cdot I \cdot A \times \underline{B} = \underline{D} \times \underline{B}$$

$$\underline{T}_{\text{thrust}} = 2 \cdot \underline{F}_{\text{T}} \cdot \underline{L}$$

C&DH

Digitizing Analogue Signal

$$DR_{analogue} = f \cdot SR \cdot n_{bits}$$

Digitizing an image

$$\mathrm{DR}_{\mathrm{image}} = \mathrm{N}_{\mathrm{images}} \cdot \mathrm{S}_{\mathrm{pixel}} \cdot \mathrm{n}_{\mathrm{bits}}$$

TT&C

Wave Speed

$$v = \lambda \cdot f$$

Travel Time (Space)

$$t = \frac{d}{c}$$

Required Bandwidth

$$B = \frac{DR}{Spectrum Utilization}$$

Eff. Isotropic Rad. Power

$$EIRP = P \cdot L_l \cdot G_t$$

Received Power

$$C = W_{_f} \cdot A_{_{ant}} \cdot \eta_{_{ant}}$$

Power Flux Density Antenna

$$W_{f} = \frac{P \cdot G_{t}}{4 \cdot \pi \cdot r^{2}} = \frac{EIRP}{4 \cdot \pi \cdot r^{2}}$$

Received Energy per Bit

$$E_b = \frac{C}{R}$$

Received Noise Power

$$N = k \cdot T_s \cdot B = No \cdot B$$

Navigation

Measured Frequency

$$\boldsymbol{f}_{w} = \boldsymbol{f}_{b} \cdot \sqrt{\frac{\boldsymbol{c} + \boldsymbol{v}}{\boldsymbol{c} - \boldsymbol{v}}}$$