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Chapter 1

Fundamentals

1.1 Newton’s laws of motion

The three laws of motion, which were formulated by I. Newton (1643-1727) in his masterpiece Philosophiae
Naturalis Principia Mathematica, usually abbreviated to Principia, in 1687, read in modern terminology:

• First law: Every particle continues in its state of rest or uniform motion in a straight line relative to
an inertial reference frame, unless it is compelled to change that state by forces acting upon it.

• Second law: The time rate of change of linear momentum of a particle relative to an inertial reference
frame is proportional to the resultant of all forces acting upon that particle and is collinear with and
in the direction of the resultant force.

• Third law: If two particles exert forces on each other, these forces are equal in magnitude and opposite
in direction (action = reaction).

1.2 Inertial reference frames

The formal definition of an inertial reference frame can be derived from Newton’s first law: “An inertial
reference frame is a reference frame with respect to which a particle remains at rest or in uniform rectilinear
motion if no resultant force acts upon that particle.”

1.3 Newton’s law of gravitation

Partially based on the observed motions of the planets around the Sun, Newton formulated his law of
gravitation and published it also in his Principia:

• Two particles attract each other with a force directly proportional to their masses and inversely pro-
portional to the square of the distance between them.

Mathematically, this law can be expressed as follows:

F = G
m1m2

r2
; F 2 = G

m1m2

r32
r2 (1.1)

The gravitational acceleration generated by m1 is given below. Introducing the gravitational potential U ,
the gravitational acceleration can be rewritten as the derivative (or gradient) of the graviational potential.
With U20 = 0, the potential is defined to be negative and equal to zero at an infinite distance of the attractor.

g2 = −Gm1

r32
r2 ; U2 = −Gm1

r2
+ U20 ; g2 = −52U2 with U20 = 0 (1.2)
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1.4 Maneuvers with rocket thrust

If the maneuver is assumed to be an impulsive shot, thus an instant increase in velocity, the change in
velocity can be written as:

V 1 = V 0 + ∆V (1.3)

The change in angular momentum and change in orbital energy (per unit of mass) can be written as:

∆H = r0 × V 1 − r0 × V 0 = r0 ×∆V (1.4)

∆E =
1

2

(
V 2
1 − V 2

0

)
=

1

2
(∆V )

2
+ V 0 •∆V (1.5)

From the above equations some interesting conclusions can be drawn:

• For a given magnitude of ∆V , the maximum change in orbital angular momentum is achieved if the
impulsive shot is executed when the spacecraft is farthest away from Earth and if is perpendicular to
r0.

• If the direction of the orbital angular momentum vector should not be changed, ∆V should be directed
in the initial orbital plane. If the direction of the angular momentum vector should be changed, a
component of ∆V should be directed perpendicular to the initial orbital plane.

• For a given magnitude of ∆V , the maximum change in (total) orbital energy is achieved if the impulsive
shot is executed at the point in the orbit where the velocity reaches a maximum value, and if ∆V is
directed along the velocity vector V 0, i.e. tangentially to the (initial) orbit.

A finite burn time can be taken into account by adding a gravity loss and a drag loss, resulting in:

∆V = ∆Vid −∆VG −∆VD with ∆VG =

∫ te

t0

g sin γdt (1.6)

1.5 Kepler’s Laws

Kepler’s Laws of planetary motion are:

1. The orbit of a planet is an ellipse with the Sun at one of the two foci.

2. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.

3. The square of the orbital period of a planet is proportional to the cube of the semi-major axis of its
orbit.
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Chapter 2

The Many-Body Problem

Let us consider a system composed of n bodies, which may be considered as point masses. When it is
assumed that outside the system of n bodies no other bodies exist, that no external forces act on the system,
and that within the system of n bodies only gravitational forces occur, then, applying Newton’s second law
of motion and Newton’s law of gravitation, the motion of body i with respect to the inertial reference frame
can be written as:

mi
d2ri
dt2

=
∑
j 6=i

G
mimj

r3ij
rij (2.1)

The equation of motion of body i may be written as three scalar second-order differential equations.
Similarly, for the motion of n bodies 3n second-order differential equations can be written. Generally, this
set cannot be solved analytically and one has to rely on numerical integration techniques to determine the
motion of the bodies. However, some general characteristics of the many-body problem can be derived. These
characteristics are known as the ten integrals of motion, which will be derived in the following Section.

2.1 Integrals of motion

To determine the first 6 integrals of motion, a summation over all bodies i of equation 2.1 is taken. Because
all bodies exert graviational forces on each other, the net graviational force is zero. Substituting the defintion
of the center of mass in the equation results in:∑

i

mi
d2ri
dt2

=
∑
i

∑
j 6=i

G
mimj

r3ij
rij = 0 → d2rcm

dt2
= 0 (2.2)

This shows that the center of mass is in constant motion. Integrating the differential equation results in the
first 6 integrals of motion, written in cartesian coordinates.

drcm
dt

= a ; rcm = at+ b (2.3)

Three more integrals of motion can be found by taking the vector product of 2.1 and subsequently applying
a summation for all i. ∑

i

miri ×
d2ri
dt2

=
∑
i

∑
j 6=i

G
mimj

r3ij
ri × rj = 0 (2.4)

Resulting three integrals of motion, where H denotes the total angular momentum of the many-body system.

d

dt

(∑
i

miri ×
dri
dt

)
= 0 ; H =

∑
i

miri ×
dri
dt

= c (2.5)
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The vector H defines an invariable plane that passes through the center of mass of the n bodies and that is
perpendicular to the angular momentum vector. This plane is called the invariable plane of Laplace and
can be used as a reference plane for describing the motion of the n bodies.

The force field is non-central because the potential is dependent on the relative positions rij and not
the position with respect to an inertial reference frame ri. Secondly, the value of the potential at a fixed
position relative to the inertial reference frame will vary with time, because the bodies j are moving. For
such a time-varying potential the sum of kinetic and potential energy of body mi is not constant. Therefore,
we are dealing with a non-central, non-conservative force field.

The last integral of motion can be found by taking the scalar product of dri/dt and 2.1 and subsequently
applying a summation for all i. With Ek representing the total kinetic energy and Ep representing the total
potential energy. ∑

i

1

2
miV

2
i −

1

2
G
∑
i

∑
j 6=i

mimj

rij
= C → εk + εp = C (2.6)

2.2 Moment of inertia

The polar moment of inertia is given by:

I =
∑
i

mir
2
i (2.7)

The derivatives of the moment of inertia are found to be:

dI

dt
= 2

∑
i

miri
dri
dt

;
d2I

dt2
= 4εk + 2εp = 4C − 2εp = 2C + 2εk (2.8)

A stable system is a system for which d2I/dt2 < 0, because even if the derivative is positive, eventually
the moment of inertia starts decreasing. So, a necessary, but not sufficient, condition for a stable system is:
C < 0. That this is a non-sufficient condition follows directly from the fact that, according to the above
equation, for given values of εk and εp, negative values of C can exist that still yield: d2I/dt2 > 0.

2.3 Stable systems

To investigate stable systems, the average of the second derivative of the polar moment of inertia is taken.

1

te

∫ te

0

d2I

dt2
=

4

te

∫ te

0

εk +
2

te

∫ te

0

εp → 1

te

(
dI

dt

)te
0

= 4εk + 2εp (2.9)

In a stable systems no collisions and no escapes occur. In other words: all bodies stay within a finite distance
from the origin and the velocities of all bodies remain finite. In that case, the value of the expression between
brackets in will remain finite. Therefore, if the time interval is chosen large enough, the left-hand side of will
approach zero. So, for a sufficiently long averaging period, we find for a stable system:

4εk + 2εp = 0 → εk = −1

2
εp = −C (2.10)
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Chapter 3

The Three Body Problem

3.1 Equations of motion

The general equation of motion for a body i in a Three body problem is given by:

d2ri
dt2

= G
mj

r3ij
rij +G

mk

r3ik
rik {i, j, k} = {1, 2, 3} where rij = rj − ri ; rij = |rij | (3.1)

These equations represent the classical or Euler formulation of the three body problem. When the position
of the bodies is written in the rectangular coordinates x, y, z, we arrive at a set of first-order differential
equations of the order eighteen.

In the Lagrange formulation of the three body problem, the variables are r12 , r23 and r31. Resulting in
the following equations of motion.

d2r12
dt2

= G

(
m3

(
r23
r323

+
r31
r331

)
− (m1 +m2)

r12
r312

)
(3.2)

d2r23
dt2

= G

(
m1

(
r31
r331

+
r12
r312

)
− (m2 +m3)

r23
r323

)
(3.3)

d2r31
dt2

= G

(
m2

(
r12
r312

+
r23
r323

)
− (m3 +m1)

r31
r331

)
(3.4)

The Jacobi method uses the vector r12 and the vector R from the center of mass of P1 and P2 to P3. This
vector , of course, passes through the center of mass of the entire system. In the figure below these centers
of mass are indicated by O12 and O, respectively.

Figure 3.1: Jacobi method.
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The following equations are used to derive the equations of motion for this representation.

α =
m1

m1 +m2
; r13 = R+ (1− α)r12 ; r23 = R− αr12 ; R = αr13 + (1− α)r23 (3.5)

The following equations can be derived:

d2R

dt2
= −GM

[
α
r13
r313

+ (1− α)
r23
r323

]
(3.6)

d2r12
dt2

= −G
[
(m1 +m2)

r12
r312

+m3

(
r13
r313
− r23
r323

)]
(3.7)

form the Jacobi set of equations for the three-body problem. It is emphasized that these equations consti-
tute a twelfth-order system; the reduction from eighteenth order to twelfth order was essentially achieved by
the explicit use of the center-of-mass integrals. A further reduction is, of course, possible using the remaining
integrals of motion, the invariable plane of Laplace as reference plane and an angular coordinate to replace
time.

As an application of the Jacobi set of equations, we consider the so-called lunar case and planetary case.
In the lunar case, where P1 is the Earth, P2 the Moon and P3 the Sun, we know that:

d2R

dt2
= −GM

(
α
R

R3

)
d2r12
dt2

= −G(m1 +m2)
r12
r312

with α ≈ 1 ; r13 ≈ r23 ≈ R (3.8)

For the planetary case, with P1 the Sun, P2 the Earth and P3 a planet we arrive at the same approximative
equations of motion, using the following assumptions:

α ≈ 1 ;
m3

m1 +m2
<< 1 ; r13 ≈ R (3.9)

3.2 Central configuration solutions

Lagrange has found a particular case of three-body motion in which the mutual distances between the bodies
remain constant, and Euler has extended this class of motion and has found solutions in which the ratios of
the mutual distances remain constant. These classes of solutions refer to cases where the geometrical shape
of the three-body configuration does not change, although the scale may change and the configuration may
rotate. Lagrange and Euler showed that for three bodies of arbitrary mass such solutions are possible if:

• The resultant force on each body passes through the center of mass of the system.

• The resultant force is proportional to the distance of a body from the center of mass of the system.

• The magnitudes of the initial velocity vectors are proportional to the respective distances of the bodies
from the center of mass of the system, and these velocity vectors make equal angles with the radius
vectors to the bodies from the center of mass of the system.

Because of these requirements, the solutions are generally referred to as central configurations.

An extinsive derivation beginning with the equations of motion leads to the following equations:

m2r1 × r2
(

1

r312
− 1

r313

)
= 0 ; m3r2 × r3

(
1

r323
− 1

r312

)
= 0 ; m1r3 × r1

(
1

r313
− 1

r323

)
= 0 (3.10)

This set of equations can be satisfied by the equilateral triangle solution:

r12 = r23 = r13 = r (3.11)

And This set of equations can also be satisfied by a solution which puts the bodies on a straight line:

r1 × r2 = r2 × r3 = r3 × r1 = 0 (3.12)
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3.3 Circular restricted three-body problem

A partial solution of a special curcular restricted three-body problem is obtained by Lagrange. For this special
three-body problem, the following assumptions are made:

• The mass of two bodies is much larger than the mass of the third body. Then, the third body moves in
the gravity field of the two massive bodies, and the effect of the gravitational attraction by the third
body on the motion of these massive bodies can be neglected.

• The two massive bodies move in circular orbits about the center of mass of the system.

Figure 3.2: Inertial and rotating reference frames in the circular restricted three-body problem

The orbits of the two massive bodies (P1, P2) being known, the problem is to determine the motion of the
third body P . The general three-body problem is thus reduced from nine second-order differential equations
to three second-order ones. This means a reduction from order eighteen to order six. Since the mass of the
third body is assumed to be negligible, the two main bodies move as if they form a two-body system.

A reference frame is chosen with its origin at the center of mass of the system of three bodies of which
the X-axis coincides with P1P2. This reference frame rotates with a constant angular velocity ω. Since both
massive bodies move in circular orbits about the center of mass O, we may conclude that the distances OP1

and OP2 are constant.
An extensive analysis can be performed resulting in the following equations:

ẍ− 2ẏ =
∂U

∂x
(3.13)

ÿ + 2ẋ =
∂U

∂y
(3.14)

z̈ =
∂U

∂z
(3.15)

With:

U =
1

2

(
x2 + y2

)
+

1− µ
r1

+
µ

r2
(3.16)

From these equations we conclude that U is a potential function that accounts both for the gravitational
forces and for the centrifugal force. The potential function can, of course, not account for the Coriolis force,
because this force is a function of velocity components. The force field described by the potential U is clearly
non-central. Because the bodies P1 and P2 have fixed positions with respect to the rotating reference frame,
U is not explicitly a function of time, which means that the force field is conservative.
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3.4 Jacobi’s integral

Using the potential function as described in the circular restricted problem an integral can be derived with
integration constant C. Where the value of C is determined by the position and velocity of body P .

V 2 = 2U − C (3.17)

3.5 Surfaces of Hill

A special case occurs when the velocity of the small body P is zero.

2U = C (3.18)

This equation describes the surfaces of Hill. These are surfaces in XYZ-space on which the velocity of the
third body is zero.

Since for any real body V 2 > 0, the region in space where the third body can move is given by:

2U ≥ C (3.19)

So, although we cannot determine the orbit of the third body, we can determine which part of the XYZ-
space is accessible to the third body for a given value of C → initial conditions. In the figure below, this
unaccesible area is hatch for several values of C.

Figure 3.3: Schematic picture of the surfaces of HIll for creasing values of C

3.6 Lagrange libration points

The figure above shows the accesible area for a body in the co-rotating reference frame for several values
of C (representing the energy). The figure shows that for decreasing values of C (increasing velocity), the
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surfaces open up at certain points. These points are the Lagrange libration points. A minimum amount of
energy is needed to go from P1 to P2 through the Lagrange point L1.

Another way to describe the Lagrange libration points is to look at the potential function U which is
described in paragraph 3.3. The Lagrange libration points are the points where there is a local minimum in
the potential function U . ∣∣∣∣∂U∂x

∣∣∣∣
L

=

∣∣∣∣∂U∂y
∣∣∣∣
L

=

∣∣∣∣∂U∂z
∣∣∣∣
L

= 0 (3.20)
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Chapter 4

Relative Motion in the Many Body
Problem

An Equation of motion can be derived for the motion of body i under the influence of the gravitational
attraction of bodies j and a body k:

d2rki
dt2

= −Gm1 +m2

r3ki
rki +

∑
j 6=i,k

mj

(
rkj − rki

r3ij
− rkj
r3kj

)
(4.1)

When the origin of the reference frame is body k, the equation becomes:

d2ri
dt2

= −Gm1 +m2

r3i
ri +

∑
j 6=i,k

mj

(
rj − ri
r3ij

− rj
r3j

)
(4.2)

4.1 Influence of perturbing accelerations

Figure 4.1 shows the geometry of the problem. It is assumed that body i moves in a circular orbit about
body k. Neglecting the mass of body i with respect to the mass of body k, gives the magnitude of the main
acceleration of body i:

am = G
mk

r2i
(4.3)

Figure 4.1: Jacobi method.
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For the magnitude of the perturbing acceleration follows from 4.1:

ad = Gmd

√(
rid
r3id
− rd
r3d

)
·
(
rid
r3id
− rd
r3d

)
(4.4)

which gives:

ad = Gmd

√(
1

r4id
+

1

r4d
− 2ridrd cosβ

r3dr
3
id

)
using A ·B = |A| |B| cos θ (4.5)

Using to the figure the following equations can be derived:

cosβ =
rd − ri cosα

rid
; r2id = r2i + r2d − 2rird cosα (4.6)

Using the following equation: (
1− (1− γ)

−2
)2

= 1− (1− γ)
−2

+ (1− γ)
−4

(4.7)

The magnitude of the perturbing acceleration can be derived:

ad = G
md

r2d

√
1 +

1

(1− 2γ cosα+ γ2)
2 −

2 (1− γ cosα)

(1− 2γ cosα+ γ2)
3/2

(4.8)

For the maximum perturbing acceleration (α = 0) we find:

ad = G
md

r2d

∣∣∣∣∣
((

1

1− γ

)2

− 1

)∣∣∣∣∣ (4.9)
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Chapter 5

Two body problem

The Two body problem can be mathemally described by:

d2r

dt2
= − µ

r3
r where µ = G(mk +mi) (5.1)

5.1 Conservation laws

To derive the first conservation law we take the scalar product of the equation of motion with dr/dt:

dr

dt
· d

2r

dt2
+
µ

r3
dr

dt
· r =

1

2

d

dt

(
dr

dt
· dr
dt

)
− d

dt

(µ
r

)
= 0 → 1

2
V 2 − µ

r
= ε (5.2)

The second conservation law is derived by taking the vector product:

r × V = H ; r2ϕ̇ = H = constant (5.3)

The area for a small surface element defined by the vectors r and r + ∆r is given in the equation below.
From this equation Kepler’s second law can be derived, which says that equal areas are swept out in equal
intervals of time.

∆A =
1

2
r2∆ϕ+O(r∆r∆ϕ) → dA

dt
=

1

2
r2
dϕ

dt
→ dA

dt
=

1

2
H ;

dϕ

dt
=
H

r2
(5.4)

5.2 The orbital equation

The orbital equation is derived by taking the scalar product of equation 5.1 with r.

r · d
2r

dt2
+
µ

r3
r · r =

d

dt

(
r · dr

dt

)
− dr

dt
· dr
dt

+
µ

r
= 0 (5.5)

Substituting the following definitions:

r · dr
dt

= r · dr
dt

;
dr

dt
· dr
dt

= V 2 ; V 2 = (ṙ)2 + (rϕ̇)2 (5.6)

Gives the equation below. This equation is a non-linear differential equation coupled with equation 5.4.(
dr

dt

)2

+ r
d2r

dt2
− (ṙ)2 − (rϕ̇)2 = −µ

r
→ r̈ − rϕ̇2 = − µ

r2
(5.7)
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The following derivatives are used:

ṙ =
∂r

∂ϕ

∂ϕ

∂t
=
H

r2
∂r

∂ϕ
; r̈ =

∂ṙ

∂ϕ

∂ϕ

∂t
=
H

r2
∂ṙ

∂ϕ
(5.8)

The parameter u is introduced for simplicity, giving:

u =
1

r
;

∂r

∂u
= − 1

u2
;

∂r

∂ϕ
=
∂r

∂u

∂u

∂ϕ
= − 1

u2
∂u

∂ϕ
→ ṙ = Hu2

(
− 1

u2

)
∂u

∂ϕ
= −H ∂u

∂ϕ
(5.9)

The second derivative of r is found by:

r̈ = Hu2
∂ṙ

∂ϕ
= Hu2

∂Hu2 ∂r∂ϕ
∂ϕ

= Hu2
∂Hu2

(
− 1
u2

)
∂u
∂ϕ

∂ϕ
= −H2u2

∂2u

∂ϕ2
(5.10)

Substituting equations 5.10 and 5.9 into equation 5.6, results in the following differential equation:

∂2u

∂ϕ2
+ u =

µ

H2
(5.11)

The solution to this differential equation is:

u =
µ

H2
+ c1 cosϕ+ c2 sinϕ =

µ

H2
(1 + c3 cos (ϕ+ ω)) (5.12)

Rewriting the solution gives the orbital equation:

r =
H2/µ

1 + c3 cos (ϕ+ ω)
(5.13)

Equation 5.13 is the general equation for a Conic section, which can be rewritten in the form given
below. With e as the eccentricity of the conic section and p as the semi-latus rectum. An example of a conic
section is an ellipse, therefore it can be concluded that this is the proof for Kepler’s first law.

r =
p

1 + e cos (ϕ+ ω)
=

p

1 + e cos θ
(5.14)

The type of conic section that is described by this equation depends on the eccentricity e, the following cases
can be distinguised:

e = 0 : circle
0 < e < 1 : ellipse
e = 1 : parabola
e > 1 : hyperbola

Finally returning to the equation of motion. From this relation it can be concluded that the radial
acceleration of body i is equal to the difference between the centrifugal acceleration and the gravitational
acceleration.

r̈ = rϕ̇2 − µ

r2
(5.15)
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5.3 Velocity components

When The flight path angle γ is introduced the velocity components can be rewritten. With ṙ as the radial
velocity and rθ̇ as the normal velocity.

ṙ = V sin γ ; rθ̇ = V cos γ (5.16)

Using the definition of the angular momentum H, the velocity components can be rewritten:

ṙ =
µ

H
e sin θ ; rθ̇ =

µ

H
(1 + e cos θ) with H = rV cos γ (5.17)

The flight path angle can be derived from the above equations, yielding:

tan γ =
ṙ

rθ̇
=

e sin θ

1 + e cos θ
(5.18)

The velocity components Vn and Vl can be derived using the following figure:

Figure 5.1: Velocity components

Vl =
ṙ

sin θ
=
µe

H
; Vn = rθ̇ − ṙ

tan θ
=

µ

H
(5.19)

These velocity components have a constant magnitude and the component Vl also has a constant orientation.
The component Vl is always oriented perpendicular to the axis of symmetry of the conic section. The
component Vn is always oriented in the direction of Vθ = rθ̇, which doesn’t have a constant orientation, but
is always perpedicular to the radius vector.

Using the figure and the velocity components Vn and Vl, the following equation can be derived:

ṙ2 +
(
rθ̇ − µ

H

)2
=
(µe
H

)2
(5.20)

This equation can be used to construct Velocity hodographs. These are displayed in the figure below:
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Figure 5.2: Velocity components

The eccentricity vector is:

e2 = 1− rV 2

µ

(
2− rV 2

µ

)
cos2 γ (5.21)

5.4 Roche limit

The Roche limit is defined by the transit from ’stability’ to ’disintegration’ of a moon. In other words it
defines if a bould that is placed on a moon will stay on the moon or accelerate away from the moon, due to
centrifugal accelerations. It can be calculated by:

arel = acen,orb + acen,rot + atide − agrav → arel = G

(
4
m1R2

r32
− m2

R2
2

)
arel < 0 → stable (5.22)

5.5 Relativistic effects

The major effect of Relativity is the rotation of the semi major axis. The difference per revolution in the
argument of perigee ω is given by:

∆ω = 6π
µ2

H2c2
[rad/rev] ; ω = ω0 + 3

µ2

c2H2
(5.23)

5.6 Poynting-Robertson effect

The force per unit of mass by radiation of the sun on a body i can be modelled by:

F

m
=

3

4

CRWSR
2
S

cρR

1

r2
=

α

r2
(5.24)

When applying 5.24 for analyzing the motion of body i, two phenomena should be taken into account. First,
if the body has a radial velocity component relative to the Sun, then the frequency ν of the incoming sunlight
is shifted through the Doppler effect to a new frequency ν′ given by:

ν′ = ν

(
1− ṙ

c

)
(5.25)

The energy and thus momentum of a photon is dependent on the frequency ν. Therefore, the power density
W of the radiation intercepted by body i changes to:

W ′ = W

(
1− ṙ

c

)
; W v ν (5.26)
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A second phenomenon is related to the finite speed of light. This means that the sunlight intercepted by
body i at t0 is actually emitted by the Sun at t0−∆t. During the time interval ∆t light travels the distance
c∆t, while the body has moved over a distance rϕ̇∆t in the direction normal to the direction to the Sun
(Figure 5.12). This leads to the so-called aberration of the incoming sunlight; the aberration angle γ is given
by:

γ ≈ rϕ̇∆t

c∆t
=
rϕ̇

c
(5.27)

These equations show that the action of sunlight effectively reduces the central gravitational attraction force
by the Sun, but also produces two additional terms proportional to the radial and circumferential velocities
of the body. The second additional term corresponds to a drag-type of force. These adjusted equations of
motion were first formulated by H.P. Robertson.
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Chapter 6

Elliptical and circular orbits

In general the elliptical orbit can be drawn as in the following figure:

Figure 6.1: Nomenclature of an ellipse.

The semi-latus rectum is derived in the following way:

2a = ra + rp =
p

1 + e
+

p

1− e
→ p = a(1− e2) (6.1)

With the above equation the semi major axis a can be related to the total energy. This is can be derived
by using the definition of the semi latus rectum p and the eccentricity vector. From this equation it can be
shown that the total energy is smaller than zero. ε < 0

a = − µ

2ε
;

V 2

2
− µ

r
= ε = − µ

2a
(6.2)

The semi-minor axis b can be derived by differentiating vertical distance with respect to θ and setting the
result equal to zero.

b = a
√

1− e2 (6.3)

By using the area equation of an ellipse, the orbital period T can be derived. The mean motion n is defined
by the average angular velocity.

πab =
1

2
HT ; T = 2π

√
a3

µ
; n =

2π

T
=

√
µ

a3
(6.4)

These equations give the proof of the third law of Kepler.
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6.1 Circular velocity

The circular velocity is derived by using the definition of a circular orbit. Where the eccentricity e is equal to
zero and the semi major axis a is equal to the radius r. It can also be derived using the eccentricity vector.
The circular velocity is given by:

Vc =

√
µ

r
(6.5)

6.2 Kepler’s equation

A relation between the position in the orbit and time is derived with the use of the Eccentric anomaly E.
The eccentric anomaly can be derived from the figure below:

Figure 6.2: Eccentric anomaly.

Using the figure, the following equation can be derived:

r cos θ = a cosE − ae (6.6)

With the use of the definitions of an ellipse the following equation can be derived:

PG

P ′G
=
b

a
=
√

1− e2 ; r sin θ = a
√

1− e2 sinE (6.7)

Using the equations above, the following equation can be derived by substituting:

r = a(1− e cosE) (6.8)

Combining all the equations and using a trigonometric expression, the relationship between E and θ can be
derived:

tan
θ

2
=

√
1 + e

1− e
tan

E

2
; tan2 θ

2
=

1− cos θ

1 + cos θ
(6.9)

Differentiating Equation 6.8 and substituting the earlier found equations result in:

E − e sinE = n(t− τ) = M with n =

√
µ

a3
(6.10)
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Chapter 7

Parabolic orbits

The parabolic orbit is characterized as follows:

e = 1 ; a =∞ (7.1)

With these relations the general equation for a parabola can be derived:

r =
p

1 + cos θ
(7.2)

A parabolic orbit escapes the gravitation of the attracting body. The escape velocity can thus be derived by
using e = 1 and the eccentricity vector. Or by using the energy equation and substituting the earlier given
conditions:

Vesc =

√
2µ

r
=
√

2Vc (7.3)

In other words the escape velocity can be computed by multiplying the local circular velocity with
√

2. It
can be derived that the total energy of a body in a parabolic orbit is always equal to zero.

ε = 0 (7.4)

7.1 Barker’s equation

For a hyperbolic orbit is not needed to introduce a new variable to obtain an equation that relates position
and time.

dθ

dt
=
H

r2
=

√
µp

r2
; dt =

√
p3

µ

dθ

(1 + cos θ)2
(7.5)

Integrating this equation gives Barker’s equation:

tan
θ

2
+

1

3
tan3 θ

2
= 2

√
µ

p3
(t− τ) (7.6)

Introducing the angular velocity n and a kind of mean anomaly M , gives:

n =

√
µ

p3
; M = n(t− τ) (7.7)
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Chapter 8

Hyperbolic orbits

The same equations as for the elliptical orbit hold for the hyperbolic orbit. The following definitions hold
for the hyperbolic orbit:

e > 1 ; a < 0 (8.1)

With the orbit equation, the limit value of θ can be derived by setting the radius r to ∞.

r =
a(1− e2)

1 + e cos θ
; θlim = arccos(−1/e) (8.2)

Because for the hyperbolic orbit the eccentricity is negative, we find that the total energy is positive. This
can be seen as that the kinetic energy of the body is larger than the potential(graviational) energy at any
point in the orbit.

ε > 0 (8.3)

The velocity reaches a minimum for r =∞, giving the excess velocity.

V∞ =

√
−µ
a

(8.4)

Using the definition of the escape velocity and the excess velocity the following equation can be derived:

V 2 = V 2
esc + V 2

∞ (8.5)

8.1 Relation between position and time

A relation between position and time can be derived by using the Hyperbolic anaomaly F , which is defined
as:

r = a(1− e coshF ) ; F =
2× area

a2
(8.6)

The hyperbolic anomaly is related with the angle θ through the following equation:

tan
θ

2
=

√
e+ 1

e− 1
tanh

F

2
(8.7)

Giving the following equation:

e sinhF − F = n(t− τ) = M ; n =

√
µ

−a3
(8.8)
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Chapter 9

Relative motion

The motion of a satellite 2 w.r.t satellite 1 can be determined by adjusting the equations of motion. The
reference frame that is used is given in the figure below. Where the X,Y and Z specify the radial, along-track
and cross-track directions of the motion of satellite 2 with respect to satellite 1.
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Chapter 10

Reference frames, Cooordinates and
Time

A reference system then is the complete specification of how a celestial coordinate system is to be formed.
Both the origin and the orientation of the fundamental (reference) planes (or axes) are defined. A reference
system also incorporates a specification of the fundamental models needed to construct the system; that
is, the basis for the algorithms used to transform between observable quantities and reference data in the
system.

A reference frame, on the other hand, consists of a set of identifiable fiducial points on the sky along
with their coordinates, which serves as the practical realization of a reference system.

10.1 Positions on Earth

• Equator: The great circle on the Earth’s surface halfway between the poles.

• Meridian: Great circle passing through the poles, perpendicular to the Equator.

• Geographic longitude: Geocentric angle, measured along the equator, from the prime meridian, to the
meridian of point P.

• Geocentric latitude: Geocentric angle, measured along the meridian of point P, from the equator to
point P.

• Geodetic latitude: Angle between the equatorial plane and a line normal to the tangent plane at the
point P.

10.2 Positions of celestial objects

• Celestial sphere: This is a sphere with an infinitely large radius, centered at an observer on Earth or
at the mass center of the Earth. The remote stars appear to be set on the inner surface of this sphere.

• Ecliptic: The path of the Sun over the celestial sphere, or the intersection of the plane of the Earth’s
orbit about the Sun with the celestial sphere.

• Equinox line: Intersecting line of the equatorial plane and the ecliptic plane

• Vernal / autumnal equinoxes: Intersection points of the equinox line and the celestial sphere. When
the Sun crosses this line, the Earth’s axis of rotation is at right angles to the Sun-Earth line and,
consequently, day and night have equal length, everywhere on Earth. This is the case around March
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20/21 and September 22/23 each year. These crossing points are therefore called the vernal equinox
and the autumnal equinox, respectively.

• Declination: Geocentric angle, measured from the celestial equator, along the object’s hour circle, to
the object.

• Right ascension: Geocentric angle, measured along the celestial equator, from the vernal equinox to
the foot of the object’s hour circle.

10.3 Time

• Solar time: Time defined by the angular distance covered by the Sun on the celestial sphere after its
last crossing of the observer’s celestial meridian.

• Sidereal time: Time defined by the angular distance covered by the vernal equinox on the celestial
sphere after its last crossing of the observer’s celestial meridian.

• Atomic time (TAI): Time based on the analysis of about 200 frequency standards (atomic clocks)
maintained by several countries to keep a unit of time as close to the ideal SI second as possible
(defined in terms of Caesium 133 transitions).

• Universal time (UT / UT1): A standardised mean solar time, based on a fictitious mean Sun that
moves at a uniform rate eastward along the celestial equator.

• Universal time coordinated (UTC): A hybrid standard of time, of which the progression is determined
by atomic time (TAI), but leap seconds are introduced, when needed, to keep up with Universal Time
(UT1).
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Chapter 11

Equations to remember

The orbital equation:

r =
p

1 + e cos θ
; p =

H2

µ
; p = a(1− e2) (11.1)

The energy equation:
V 2

2
− µ

r
= − µ

2a
; V 2 = µ

(
2

r
− 1

a

)
(11.2)

Velocity components:

ṙ = V sin γ =
µ

H
e sin θ ; rθ̇ = V cos γ =

µ

H
(1 + e cos θ) (11.3)

Angular momentum H:
H = r2θ̇ = rV cos γ (11.4)

Orbital period T and mean motion n:

T = 2π

√
a3

µ
; n =

2π

T
=

√
µ

a3
(11.5)

Circular velocity (Circular orbit):

Vc =

√
µ

a
; r = a ; e = 0 (11.6)

Escape velocity (Parabolic orbit):

Vesc =

√
2µ

a
=
√

2Vc ; a =∞ ; e = 1 (11.7)

Excess velocity (Hyperbolic orbit):

V∞ =

√
µ

−a
; V 2 = V 2

∞ + V 2
esc ; r =∞ ; a < 0 ; e > 1 (11.8)

Eccentric anomaly, E:

r cos θ = a cosE − ae E − e sinE = n(t− τ) M = n(t− τ) (11.9)
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