
Automatic Flight Control Summary

1. Introduction and theory recapitulation

When flying an aircraft, you need to control it. This controlling can be done by humans. But often,
it is much easier, safer, faster, more efficient and more reliable to do so by computer. But, how do we
automatically control a flight? That is what this summary is all about.

1.1 Basic flight control concepts

1.1.1 Introduction automatic flight control

The system that is used to control the flight is called the flight control system (FCS). In the early days
of flying, the FCS was mechanical. By means of cables and pulleys, the control surfaces of the aircraft
were given the necessary deflections to control the aircraft. However, new technologies brought with it
the fly-by-wire FCS. In this system electrical signals are sent to the control surfaces. The signals are sent
by the flight (control) computer (FC/FCC). In this way, the aircraft is controlled.

But what is the advantage of automatic flight control? Why would we use an FC instead of a pilot?
There are several reasons for this. First of all, a computer has a much higher reaction velocity than a
pilot. Also, it isn’t subject to concentration losses and fatigue. Finally, a computer can more accurately
know the state the aircraft is in. (Computers can handle huge amounts of data better and also don’t
need to read a small indicator to know, for example, the velocity or the height of the aircraft.) However,
there also is a downside to FCs. They are only designed for a certain flight envelope. When the aircraft is
outside of the flight envelope, the system can’t really operate the aircraft anymore. For these situations,
we still need pilots.

1.1.2 Set-up of the flight control system

The FCS of an aircraft generally consists of three important parts.

• The stability augmentation system (SAS) augments to the stability of the aircraft. It mostly
does this by using the control surfaces to make the aircraft more stable. A good example of a part
of the SAS is the phugoid damper (or similarly, the yaw damper). A phugoid damper uses the
elevator to reduce the effects of the phugoid: it damps it. The SAS is always on when the aircraft
is flying. Without it, the aircraft is less stable or possibly even unstable.

• The control augmentation system (CAS) is a helpful tool for the pilot to control the aircraft.
For example, the pilot can tell the CAS to ‘keep the current heading’. The CAS then follows this
command. In this way, the pilot doesn’t continuously have to compensate for heading changes
himself.

• Finally, the automatic control system takes things one step further. It automatically controls the
aircraft. It does this by calculating (for example) the roll angles of the aircraft that are required to
stay on a given flight path. It then makes sure that these roll angles are achieved. In this way, the
airplane is controlled automatically.

There are important differences between the above three systems. First of all, the SAS is always on,
while the other two systems are only on when the pilot needs them. Second, there is the matter of
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reversibility. In the CAS and automatic control, the pilot feels the actions that are performed by the
computer. In other words, when the computer decides to move a control panel, also the stick/pedals of
the pilot move along. This makes these systems reversible. The SAS, on the other hand, is not reversible:
the pilot doesn’t receive feedback. The reason for this is simple. If the pilot would receive feedback, the
only things he would feel are annoying vibrations. This is of course undesirable.

1.2 Flight dynamics recap

1.2.1 Reference frames

To be able to express the state of the aircraft, we need a reference frame. Several reference frames are
around. We’ll discuss the four most important ones here. (You’ve probably seen them before quite some
times, but for completeness, we do mention them.)

• The Earth-fixed frame of reference FE is a right-handed orthogonal system. The ZE axis
points to the Earth’s center, the XE axis points North and the YE axis points East. The origin of
the system is initially positioned at the aircraft center of gravity (cog). However, the FE reference
frame is fixed to Earth. So, when the aircraft cog moves, the origin of the FE system stays fixed
with respect to the Earth.

• The body-fixed frame of reference FB also is a right-handed orthogonal system. Its origin lies
at the aircraft cog and is fixed to it. (So, if the aircraft moves, the frame of reference moves along.)
The XB axis is parallel to the aircraft longitudinal axis and points forward. The YB axis is parallel
to the lateral axis and points to the right. Finally, the ZB axis points downward.

• The stability frame of reference FS also is a right-handed orthogonal system. Its origin is fixed
to the aircraft cog, just like with FB . Also, the YS axis coincides with the YB axis. However, this
time the XS axis is rotated downward by the angle of attack α. To be more precise, the XS axis is
parallel to the projection of the velocity vector on the plane of symmetry of the aircraft. The ZS
axis still points downward, but it is of course also rotated by an angle α.

• Finally, there is the aircraft frame of reference Fr. Contrary to the other systems, this is a
left-handed orthogonal system. Its origin is a certain fixed point on the aircraft (though not the
cog). The Xr axis points to the rear of the aircraft, the Yr axis points to the left and the Zr axis
points upward.

1.2.2 The equations of motion

By using the reference frames, we can derive the equations of motion. (There are force equations, moment
equations and kinematic relations.) These equations are, however, nonlinear. So to be able to work with
them more easily, they are linearized about an equilibrium position of the aircraft. (The derivations
for this are not given here, since this summary is not about that subject. For the derivations, see the
summary of the third-year Flight Dynamics course.) After we have linearized the equations of motion,
we can put them in a matrix form. For the symmetric equations of motion, we get
CXu − 2µcDc CXα CZ0

CXq
CZu CZα + (CZα̇ − 2µc)Dc −CX0

2µc + CZq
0 0 −Dc 1

Cmu Cmα + Cmα̇Dc 0 Cmq − 2µcK
2
YDc



û

α

θ
qc̄
V

 =


−CXδe −CXδt
−CZδe −CZδt

0 0

−Cmδe −Cmδt


[
δe

δt

]
.

(1.2.1)
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Similarly, for the asymmetric equations of motion, we get
CYβ + (CYβ̇ − 2µb)Db CL CYp CYr − 4µb

0 − 1
2Db 1 0

Clβ 0 Clp − 4µbK
2
XDb Clr + 4µbKXZDb

Cnβ + Cnβ̇Db 0 Cnp + 4µbKXZDb Cnr − 4µbK
2
ZDb



β

ϕ
pb
2V
rb
2V

 =


−CYδa −CYδr

0 0

−Clδa −Clδr
−Cnδa −Cnδr


[
δa

δr

]
.

(1.2.2)
To use these equations for computations, we often have to transform them into state space form. To put
an equation in state space form, we first have to isolate all terms with one of the differential operators
Dc and Db on one side of the equation. After this, we apply the definition of these operators, being

Dc =
c̄

V

d

dt
and Db =

b

V

d

dt
. (1.2.3)

If we then also move the term c̄
V (for the symmetric equations) or the term b

V (for the asymmetric
equations) to the other side of the equation, we have put the equation in its state space form.

1.3 Control theory recap: frequency domain and diagrams

1.3.1 The frequency domain

Let’s suppose we have the state space representation of a system, but we want to examine the system
in the frequency domain. To do this, we have to put the system in the frequency domain first. To
accomplish this, we need to follow several steps. First, we have to rewrite the state space form in the
Laplace domain. (Take the Laplace transform of the equation.) We can assume zero initial conditions
here. (This simplifies matters a bit.) Second, we eliminate the state vector X(s) and rewrite the system
of equations as Y (s) = F (s)U(s). (Here, Y (s) is the output vector and U(s) is the input vector.)
Thirdly, we substitute the Laplace variable s by jω, with j =

√
−1 the complex variable. If everything

has gone well, then we should have found

F (jω) = C (jωI −A)
−1
B +D. (1.3.1)

We can now examine the frequency domain of the system. Let’s suppose that we give our system a
sinusoidal input U(s). This input has unit magnitude and frequency ω. The result is that the output
Y (s) will start to oscillate as well. However, it doesn’t do that in exactly the same way. Instead, the
amplitude is multiplied by the amplitude gain K. Next to this, there is also a phase angle φ. Both
parameters follow from the transfer function F (jω) and can be found using

K = |F (jω)| and φ = arg (F (jω)) . (1.3.2)

So, if K > 1, the oscillation is amplified. Otherwise, it is reduced in strength. Similarly, if φ > 0, the
system has phase lead. Otherwise, it has phase lag.

1.3.2 Different kinds of diagram

We would like to know how the gain K and the phase angle φ vary with the frequency ω. This is displayed
in a Bode diagram. In fact, a Bode diagram consists of two plots. Both plots have on the horizontal
axis the frequency ω, on a logarithmic scale. The first plot shows the gain K in decibel (linearly). To
put the gain K in decibel, you can use the equation

KdB = 20 · log10K ⇔ K = 10

(
KdB
20

)
. (1.3.3)
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The second plot shows the phase angle φ (also linearly).

Next to the Bode diagram, there is also the Nyquist diagram (also known as the polar plot). To
make it, we make a complex plot of F (jω) with respect to ω. In other words, we plot the real part of
F (jω) on the x-axis and its imaginary part on the y-axis for varying ω. The distance from the origin
now indicates the gain, while the (CCW) angle with respect to the x-axis indicates the phase angle.

Finally, there is the Nichols diagram. In this diagram, we plot the decibal gain KdB (vertically) against
the phase angle φ (horizontally).

1.3.3 The Nyquist stability criterion

Let’s suppose we have a basic feedback system, with transfer function F (s) = G(s)/ (1 +G(s)H(s)). F (s)
now is the closed loop transfer function (CL). Also, G(s) is the feed forward transfer function
(FF) and G(s)H(s) is the open loop transfer function (OL). We can make a Nyquist diagram of the
open loop transfer function G(s)H(s). The Nyquist stability criterion now tells us something about
the stability of the entire closed-loop transfer function F (s).

First, we need to count the number of poles k of the transfer function G(s)H(s) with real part bigger
than zero. (So, the number of poles in the right half plane.) Second, we need to count the number of net
counterclockwise encirclements of the point −1 of the Nyquist diagram of G(s)H(s). If this number is
equal to the number k, then the closed loop system is stable. Otherwise, it is unstable.

1.4 Control theory recap: system properties

1.4.1 Controllability, observability, stabilizability and detectability

Let’s examine a system in state space form. In other words, the system can be described by ẋ = Ax+Bu
and y = Cx +Du. We can now make several definitions concerning this system.

The system, or equivalently the pair (A,B), is said to be state controllable if, for any initial state x(0) =
x0, any time t1 > 0 and any final state x1, there exists an input u(t) such that x(t1) = x1. Otherwise
the system is said to be state uncontrollable. To find out whether a system is state controllable, we
can examine the controllability matrix R, defined as

R =
[
B AB A2B . . . An−1B

]
. (1.4.1)

The system is controllable if, and only if, the matrix R is of full rank. In other words, all its rows are
linearly independent.

The system, or equivalently the pair (A,C), is said to be state observable if, for any initial time t1 > 0,
the initial state x(0) = x0 can be determined from the time history of the input u(t) and the output y(t)
in the interval [0, t1]. Otherwise the system is said to be state unobservable. To find out whether a
system is state observable, we can examine the observability matrix W , defined as

W =



C

CA

CA2

...

CAn−1

 . (1.4.2)

The system is observable if, and only if, the matrix W is of full rank. In other words, all its columns are
linearly independent.
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The system, or equivalently the pair (A,B), is said to be state stabilizable if all unstable modes are
state controllable. This is the case if there exists a feedback matrix F which stabilizes the system
(thus causing A+BF to be stable). To test for stabilizability, we can use the Hautus test. It says that
(A,B) is stabilizable if and only if the matrix[

A− λI B
]

(1.4.3)

has full rank for all unstable eigenvalues λ. (In other words, for all λ with positive real parts, the above
matrix has linearly independent rows.)

The system, or equivalently the pair (A,C), is said to be state detectable if all unstable modes are
state observable. This is the case if there exists a matrix L such that A+ LC is stable (and thus has all
its eigenvalues in the left half part of the complex plane). To test for detectability, we can again use the
Hautus test. This time, it says that (A,C) is detectable if and only if the matrix[

A− λI
C

]
(1.4.4)

has full rank for all unstable eigenvalues λ. (In other words, for all λ with positive real parts, the above
matrix has linearly independent columns.)

1.4.2 Varying the poles and zeroes of the open loop transfer function

Let’s examine a basic closed loop system with transfer function F (s). We can add a constant gain K
into this system. This turns the transfer function from

F (s) =
G(s)

1 +G(s)H(s)
into F (s) =

KG(s)

1 +KG(s)H(s)
. (1.4.5)

By varying this gain K, we will vary the properties of the system. This is displayed by a root locus
plot. (As you remember from Control Theory, a root locus plot shows how the poles of the closed loop
transfer function vary with K.)

Sometimes, however, we can also wind up in a situation, where we are allowed to choose one pole pvar of
the open loop transfer function G(s)H(s). This situation is very similar to the case where we can choose
the gain K. To show this, we define

G(s)H(s) =

(
1

s− pvar

)
Q(s). (1.4.6)

This will turn the closed loop transfer function into

F (s) =
G(s)

1 +G(s)H(s)
=

G(s)
s+Q(s) (s− pvar)

1− pvar
s+Q(s)

=
G1(s)

1 +G1(s)H1(s)
. (1.4.7)

In this equation, we have defined the modified transfer functions G1(s) and H1(s) as

G1(s) =
G(s)

s+Q(s)
(s− pvar) and H1(s) = − pvar

G(s) (s− pvar)
. (1.4.8)

We can now see something interesting. Previously, the denominator of the closed loop transfer function
was 1 + KG(s)H(s). By varying K, we varied the poles. However, this time the denominator is 1 −
pvar (s+Q(s))

−1
. It is of the same form! So, varying pvar is just like varying a gain K. And we can

again make a root locus plot.
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We can do the same with varying zeroes. If we can choose a zero zvar of the open loop transfer function,
then we write G(s)H(s) = (s− zvar)P (s). The closed loop transfer function now turns into

F (s) =

G(s)
1+sP (s)

1− zvarP (s)
1+sP (s)

=
G2(s)

1 +G2(s)H2(s)
. (1.4.9)

Again, we see that varying zvar is like varying the gain K. We can therefore again use it to influence the
properties of the closed loop system.
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2. Adjusting system properties

Making an aircraft stable is one thing. But giving it a satisfactory behaviour and being able to control it
is another story. In this chapter, we’re going to look at some parameters which a system can have. After
that, we’ll examine how we can influence these parameters.

2.1 Important system parameters

For every system, we can find several parameters that mention something about the system. Some
parameters give us hints about the stability of the system. And other parameters are nice to know for
other reasons. We will now examine quite some parameters.

2.1.1 Phase and gain margins

Let’s again examine the system with transfer function F (s) = G(s)/ (1 +G(s)H(s)). We’ll examine this
function in the frequency domain, and thus substitute s by jω. If the term G(jω)H(jω) ever becomes
−1, then the system becomes unstable. We are thus interested in the points where |G(jω)H(jω)| = 1
and arg(G(jω)H(jω)) = −180◦. The frequency at which φ = arg(G(jω)H(jω)) = −180◦ is called the
phase crossover frequency ωφ=−180◦ . Similarly, the frequency at which K = |G(jω)H(jω)| = 1 (or
KdB = 0) is called the gain crossover frequency ωK=1.

We would like to know how close we are to instability. So, let’s suppose that we already have a phase
angle of φ = −180◦. (We thus have a frequency equal to the phase crossover frequency ωφ=−180◦ .) The
gain margin GM is now defined as

GM =
1

|G(jωφ=−180◦)|
=

1

Kφ=−180◦
. (2.1.1)

A gain margin of GM < 1 (or similarly, GMdB < 0) indicates instability. As a rule of thumb, we would
like to have GMdB > 6 dB.

Similarly, we can suppose we already have a gain of K = 1. (We thus have a frequency equal to the gain
crossover frequency ωK=1.) The phase margin PM is now defined as

PM = 180◦ + arg (G(jωK=1)) = 180◦ + φK=1. (2.1.2)

A phase margin of PM < 0◦ indicates instability. As a rule of thumb, we would like to have 30◦ < PM <
60◦.

The phase and gain margins can also be found in the various plots that were discussed. To find them,
you first have to find the point where φ = −180◦ (for the gain margin) or K = 1 (for the phase margin).
You then have to find the gain/phase angle, and by using the definition for the gain margin/phase margin
you can find the corresponding value. In this way, you can also find the ultimate gain Kult, which is
defined as the gain K at the phase crossover frequency. It can be found from the gain margin, using

Kult = GM = 10

(
GMdB

20

)
. (2.1.3)

The phase and gain margins can, however, be misleading. It may happen that the phase and gain margins
appear safe, but there still is a value of ω for which G(jω)H(jω) comes close to −1. Therefore, instead
of looking at phase and gain margins, it is often wise to simply look at the Nyquist plot of G(jω)H(jω)
and see if it comes close to −1. If not, then the system appears to be quite alright.
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2.1.2 Other frequency domain parameters

There are more parameters that are related to the frequency domain. Most of these parameters can easily
be derived from the Bode plot. We’ll discuss a couple of them now.

Let’s examine a Bode diagram. In this Bode diagram is a frequency region in which the system performs
satisfactory. This region is usually a region with a more or less constant gain K0. The point(s) where the
gain drops below 3 dB less than this constant gain K0 is called the cutoff frequency. The slope of the
Bode plot at this point is called the cutoff rate. Also, the frequency range in which the system performs
satisfactory (being the frequency range between the cutoff frequencies) is called the bandwidth ωb.

In a Bode diagram, you can often find a peak at which the gain K is at a maximum. This phenomenon
is called resonance. The corresponding maximum value of the gain K is denoted by the resonance
peak Mp. The frequency at which this resonance occurs is called the resonance frequency ωp.

The last important parameter for the frequency domain is the delay time. The delay time td(ω) for a
given frequency ω is given by

td(ω) = −dφ
dω

= −d arg (G(jω))

dω
. (2.1.4)

2.1.3 Time domain parameters

In the time domain, there are also several parameters that are important. Let’s suppose that we have a
system in which the output y(t) needs to follow the input u(t). Also, suppose that we put a step function
of size k on the input. (Though usually k = 1 is selected.) So, for t < 0 we have u(t) = 0 and for t > 0
we have u(t) = k.

Of course, in the time domain, time matters. So, let’s examine some characteristic times. First, the delay
time td is defined such that y(td) = 0.5yss. In other words, at the delay time the system is halfway with
adjusting itself to the new input value. We also have the rise time tr. But before we can define it,
we first need to define trinitial and trfinal . These parameters are defined such that y(trinitial) = 0.1 and
y(trfinal) = 0.9. The rise time is now given by tr = trfinal − trinitial . Thirdly, the settling time ts is the
time it takes for the system to come and stay close to the steady state output. So, for all t > ts we must
have |y(t) − yss| < 0.02yss. (Of course, the parameter 0.02 can be varied. A value of 0.05 is often used
as well.)

Next to these important time parameters, there are also parameters not related to time. For example,
there is the (maximum) overshoot Mp. This is the difference between the maximum value of y(t)
and its steady state value yss. (So, Mp = max(y(t)) − yss.) And finally, there is the apparent time
constant τ . To grasp its meaning, we have to suppose that the output is given by a function of the form
y(t) = yss − Ae−αt cos (ωt+ φ). The parameter τ is now defined as τ = 1/α. In other words, it is the
time it takes until the amplitude of the oscillation has reduced to 37% of its value.

2.1.4 Error specifications

When designing a system, there usually are requirements. These requirements can also concern the error
which the system has. To examine the error, we first simply assume that H(s) = 1. Thus F (s) =
G(s)/ (1 +G(s)). We then rewrite the open loop transfer function G(s) of the system as

G(s) = K
sa
∏i=m−a
i=1 (s+ zi)

sb
∏j=n−b
j=1 (s+ pj)

= Kmod

∏i=m−a
i=1 (τz,is+ 1)

sl
∏j=n−b
j=1 (τp,js+ 1)

. (2.1.5)

In other words, the open loop transfer function has m zeroes and n poles. A number a of these zeroes is
equal to zero. Similarly, a number b of the poles is zero as well. We also have l = b − a. We will soon
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see that this parameter l is very important. In fact, it denotes the type of the system. If l = 0 then we
have a type 0 system, if l = 1 then we have a type 1 system, and so on.

The system output Y (s) should follow the system input U(s). So, we define the error E(s) as the
difference. It is thus equal to

E(s) = U(s)− Y (s) = U(s)− U(s)F (s) = U(s)− U(s)
G(s)

1 +G(s)
=

U(s)

1 +G(s)
. (2.1.6)

To find the eventual error e(∞) of the system, we can use the final value theorem. It implies that

e(∞) = lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

sU(s)

1 +G(s)
=

sU(s)

1 + Kmod
sl

. (2.1.7)

Now we can put various inputs into this system and find the error. This gives us the following results.

• First, we insert a step input. Thus, u(t) = 1 (for t > 0) and U(s) = 1/s. We now find that for
type 0 systems, there is a steady state error of e(∞) = 1/(1 + Kmod). However, for type 1 and
beyond, the error is zero. (By the way, this error is called a position error.)

• Second, we insert a ramp input. So, u(t) = t (for t > 0) and U(s) = 1/s2. This time type 0
systems give an infinite error: it diverges. Type 1 systems give a steady state error of e(∞) = 1

Kmod
.

Type 2 systems and beyond give a zero error. (This error is called a velocity error.)

• Third, we insert a parabolic input. So, u(t) = 1
2 t

2 (for t > 0) and U(s) = 1/s3. This time type 0
and type 1 systems give an infinite error. Type 2 systems give a steady state error of e(∞) = 1

Kmod
.

Type 3 systems and beyond give a zero error. (This error is called a acceleration error.)

I think you can understand the general trend of the above experiments now. So remember, the type of
the system determines which kind of position, velocity and acceleration errors the system has.

2.2 Controllers - time domain

By varying the (proportional) open-loop gain K of the system, we can already vary its properties by
quite a bit. But, sometimes varying this gain is not enough. In that case, we need a compensator or a
controller. First, we’ll examine controllers.

2.2.1 PID Control

Let’s examine a basic feedback loop with H(s) = 1. In this feedback loop, the output signal Y (s) is fed
back to the system. Usually, the signal that is fed back is proportional to the output. We thus have a
proportional controller: K(s) = Kp. (Here, Kp is the proportional gain. K(s) is the controller
function.) A proportional controller generally reduces the rise time tr, increases the overshoot Mp and
reduces the steady state error ess.

Sometimes, however, it may be convenient to get the derivative of the output as feedback signal. In
this case, we use a derivative controller: K(s) = KDs. (KD is the derivative gain.) A derivative
controller reduces the overshoot Mp and the settling time ts.

Finally, we can also use an integral controller: K(s) = 1
sKI . (KI is the integral gain.) An integral

controller reduces the rise time tr and sets the steady state error ess to zero. However, it increases the
overshoot Mp and the settling time ts.
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Of course, we can also combine all these controllers. This gives us the PID controller:

K(s) = Kp +
KI

s
+KDs =

KDs
2 +Kps+KI

s
. (2.2.1)

By using the PID controller, we can influence the parameters tr, ts, Mp and ess in many ways. Just vary
the gains Kp, KD and KI . But which gains do we choose? For that, we can use tuning rules.

2.2.2 The Ziegler-Nichols tuning rules

We will now examine the Ziegler-Nichols tuning rules. There are two variants: the quarter decay
ratio method and the ultimate sensitivity method. For both methods, we first write K(s) as

K(s) = Kp

(
1 +

1

TIs
+ TDs

)
. (2.2.2)

Now let’s examine the quarter decay ratio method. These tuning rules should give a decay ratio of 0.25.
(The decay ratio is the ratio of the magnitudes of two consecutive peaks of an oscillation.) First, we
examine the response of the original system to a unit step input. From this we determine the lag L,
which is the time until the system really starts moving. (We have L ≈ td.) We also find the slope R,
which is the average slope of the system response during its rise time. (We have R ≈ yss/tr.)
Based on the values of L and R, we can choose our gains. If we only use proportional gain, then Kp = 1

RL .

If we use a PI controller, then Kp = 0.9
RL and TI = L

0.3 . Finally, if we use a PID controller, then Kp = 1.2
RL ,

TI = 2L and TD = 0.5L. These rules should then roughly give a decay ratio of 0.25. Although some
additional tuning is often necessary/recommended.

Now let’s examine the ultimate sensitivity method. First, we examine the original system with a gain
equal to the ultimate gain Kp = Kult. In other words, we choose Kp such that the system has continuous
oscillations without any damping. The corresponding ultimate period of these oscillations is now
denoted by Pu. (This does mean that the ultimate sensitivity method can only be used when continuous
oscillations can be achieved. In other words, the root locus plot has to cross the imaginary axis at a point
other than zero.)

Based on the values of Kult and Pu, we can choose our gains. For proportional control, we use Kp =
0.5Kult. For PI control, we use Kp = 0.45Kult and TI = Pu

1.2 . For PID control, we use Kp = 0.6Kult,
TI = 1

2Pu and TD = 1
8Pu. Again, additional tuning is often necessary/recommended.

2.3 Compensators - frequency domain

2.3.1 Three kinds of compensators

There are three important kinds of compensators. These are the lead compensator, the lag compensator
and the lead-lag compensator, respectively given by the transfer functions

D1(s) = K(s+ z), D2(s) =
K

s+ p
and D3(s) = K

s+ z

s+ p
. (2.3.1)

Let’s look at these compensators individually.

The lead compensator offers PD control. This causes it to speed up the response of a system. In other
words, the rise time tr goes down. Also, the overshoot Mp becomes less. The lead compensator does
have a problem though. It increases the gain of the system at high frequencies. In other words, with a
lead compensator high frequencies are amplified. This is generally not very positive.
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The lag compensator offers PI control. This means that it improves the steady state accuracy. (If you
need to have ess ≈ 0, then a lag compensator comes in handy.) The PI controller reduces high-frequency
noise. As such, it can be used as a low-pass filter. (This is a filter that only lets low frequencies pass.)

The lead-lag compensator combines the lead and the lag compensator. In this way, the negative effects
of the lead compensator can be compensated for. First, a lead compensator can be used to speed up
the response of the system. Then a lag compensator is also added, such that the high frequency effects
are limited. This lag compensator is made such that its effects on the biggest part of the system are
negligible.

In the lead-lag compensator, the lead compensator is the most important part. However, we can also
put it together such that the lag compensator is the most important part. In this case, we often call the
compensator a lag-lead compensator.

2.3.2 Tuning the compensators

Using lead and lag compensators is like adding zeros and poles to the system. But when doing this, an
important question arises: where do we put the zeros and poles? For this, we can use the root locus plot.
We now have a nice rule of thumb: poles push the locus away, whereas zeros attract the locus. But we
also have more precise rules to place the zeros and poles.

Let’s suppose we’re setting up a lead compensator. We thus need to choose its zero. It is often wise to put
this zero in the neighbourhood of the natural frequency ωN which you want the system to have. This
natural frequency can roughly be determined from the parameters tr and/or ts using the approximate
equations

tr ≈
1.8

ωN
and ts ≈

4.6

ζωN
. (2.3.2)

In this equation, the value of ζ can often be determined from the required value of the overshoot peak
Mp, according to

ζ ≈ 0.7 when Mp ≈ 5%, ζ ≈ 0.5 when Mp ≈ 15% and ζ ≈ 0.3 when Mp ≈ 35%. (2.3.3)

To compensate for high frequency effects, we also add a pole (as a lag compensator). This pole, however,
should be relatively far away from the zero. A rule of thumb is to place the pole 5 to 20 times further
from the origin as the zero. Thus, p ≈ (5 to 20) · z.
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3. System performance specifications

Previously, we have considered how to influence the parameters of a system. We can use it to give aircraft
the correct parameters. Now we will take a look at the requirements which an aircraft should have. First,
we examine how the requirements are built up. Later on, we’ll examine which parameters are subject to
these requirements.

3.1 Requirements on flying and handling qualities

3.1.1 Flying quality requirements

Most countries have regulating agencies (like the JAR for Europe and the FAR for the US). These
agencies specify flying quality requirements. These requirements are the minimum acceptable stan-
dard of the flying and handling qualities of an aircraft. They define rules subject to which the stability,
control and handling of the aircraft must be designed.

The flying quality requirements differ per aircraft class. Small light airplanes are class I, medium weight
airplanes are class II, big heavy airplanes are class III and high manoeuvrability airplanes are class
IV. Next to this, there are also separate criteria per flight phase. Category A concerns non-terminal
flight phases that require rapid manoeuvring, precision tracking or precise flight path control. (Think
of air combat/terrain following.) Category B is about non-terminal flight phases that require gradual
manoeuvring, less precise tracking and less accurate flight path control. (Think about climb, descent
and cruise.) Finally, category C relates to terminal flight phases that require gradual manoeuvring and
precision flight path control. (This includes take-off and landing.)

Aircraft manufacturers must demonstrate a compliance with the specifications. This is done by using
flight tests. In these tests, the flying quality of the aircraft is rated. This is often done based on the
Cooper-Harper scale. In this scale, a 1 means the aircraft has excellent handling qualities, and the
pilot workload is low. On the other hand, a 10 means that there are major deficiencies in the handling
quality of the aircraft. A test is never performed for just an aircraft or just a control system. It is always
performed for the combination of the aircraft and the control system.

Flight requirements are generally specified for three levels of flying quality. Level 1 means that the
flying qualities are clearly adequate for the respective flight phase. Level 2 means that the flying qualities
are still adequate, but there is an increase in pilot workload and/or degradation in mission effectiveness.
In level 3, the flying qualities are degraded. However, the airplane can still be controlled, albeit with
an inadequate mission effectiveness and a high or limiting pilot workload. Airplanes must be designed to
satisfy level 1 flying quality requirements with all systems in their normal operating state.

3.1.2 Flying and handling qualities

Flying quality requirements are present to make sure aircraft have flying and handling qualities. But
what do these qualities mean? Flying qualities concern how well a (long-term) task can be fulfilled.
Handling qualities, however, concern how the aircraft responds (short-term) to inputs. Important
parameters that influence these qualities include the stability of the aircraft and the flight control
system (FCS) characteristics. Let’s take a closer look at these two parameters.

With stability, we mean how easy it is to establish an equilibrium flight condition, without the aircraft
having a tendency to diverge. There are two kinds of stabilities. With static stability, we mean that
every deviation causes an opposing force/moment. However, the deviation does not have to be eliminated.
It could simply be the case that a new equilibrium position is created. With dynamic stability we also
mean that every deviation from the equilibrium position is eliminated. In other words, the system returns
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to the original equilibrium position. It is usually nice if an aircraft is stable. However, if an aircraft is
too stable, then it’s not manoeuvrable anymore: it’s too hard to get it out of its equilibrium position.
So, this isn’t a positive thing either.

There are three ways in which the FCS can have a bad effect on the flying qualities. First, something can
occur between the cockpit and the actuators. (For example, there may be a lag in the signal that is sent
to an actuator.) Second, there can also be a lag in an actuator itself. (For example, when the ailerons
takes a long time to deflect.) And finally, the displays in the cockpit can lag. Because this is undesirable,
requirements are made concerning these lags. Next to this, also control system break-out forces are
important. These are the forces which the pilot must apply before his actions have any effect at all.

Giving an airplane the right flying and handling qualities usually isn’t easy. It often has a bad effect
on the performance and weight of the aircraft. Therefore, trade-offs often need to be made between
the flying/handling quality and the performance of the aircraft. That is, if trade-offs can be made.
Requirements on the flying and handling qualities are simply present and they have to be followed.

3.2 Parameters subject to requirements

3.2.1 Longitudinal flight requirements

Now let’s look at some actual requirements for aircraft. First, we’ll examine requirements on the longi-
tudinal flight. After that, we’ll also consider the lateral flight.

In longitudinal flight, there are requirements on the control forces which the pilot needs to exert.
These forces are often indicated by the stick force Fs. In a manoeuvring flight, the gradient ∂Fs/∂n
with respect to the load factor n is important. It should fall within limits. (We’re not going to mention
any numbers here. There are just too many to mention, and you’re not going to remember them anyway.)
Also, there should be no significant nonlinearities in it. Next to this, when the airplane configuration
changes a bit (e.g. the flaps are deployed), the control forces shouldn’t change significantly either.

When the aircraft changes its speed, no strange things may happen either. The stick-force-speed-
gradient ∂Fs/∂V must be stable and must meet other specs. Also, the return-to-trim-speed-
behaviour must meet certain requirements. During take-off and landing (with fixed trim controls)
the control force must be within certain limits. Also, during a dive, the control force may not exceed
certain values. These values also depend on whether the aircraft is equipped with a stick or a wheel.
Also, the allowable values depend on whether it concerns pushing or pulling the wheel/stick.

Next to control forces, also the dynamic behaviour of the aircraft is important. Let’s consider the phugoid
requirements first. The phugoid must have a certain prescribed damping ζ. And if the eigenmotion
is allowed to be unstable (for example, during a level 3 flying quality situation), then there will be a
requirement on the time to double amplitude T2ph . This time can be found, by using

Aphe
−ζphωnph(t1+T2ph) = 2Aphe

−ζphωnph t1 ⇒ T2ph =
ln 2

−ζphωnph
. (3.2.1)

In the above equation, Aph is the amplitude of the phugoid motion, ζph the damping ratio and ωnph the
natural frequency.

Similar to the phugoid, there are also short period motion requirements. These requirements of
course concern the damping ratio ζsp. But for the short period motion also the natural frequency ωnsp is
quite important. However, for (highly) augmented airplanes, these requirements are not used. Instead,
the control anticipation parameter (CAP) is used, which is defined as

CAP =
q̇(t = 0)

nz(t =∞)
=
ω2
nsp

nα
. (3.2.2)
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In this equation, nα = ∂n/∂α is the gust- or load-factor-sensitivity. By using flight dynamics equations,
expressions/approximations can be calculated for ωnsp and nα, after which the CAP can be found.

Finally, the aircraft must have flight path stability. This means that there are requirements on the
derivative ∂γ/∂VP . The term ∂VP here denotes the changes in velocity that are caused by pitch control
only. (So, things like engine throttle effects are not taken into account.)

3.2.2 Lateral flight requirements

There are several requirements for lateral flight as well. First, we’ll look at the lateral control forces.
These control forces concern both the (sideways) forces on the stick and the forces on the rudder ped-
als. The force requirements depend on the situation. (For example, there are separate requirements
for the situation where one engine isn’t functioning anymore.) It also matters whether it concerns a
short/temporary force or a prolonged force.

Now let’s examine the Dutch roll. For this eigenmotion, of course the damping ratio ζd is very important,
as well as the natural frequency ωnd . Therefore, there are certain minimum values for these parameters.
There are also requirements on the product ζdωnd . And, depending on the roll angle φ and the sideslip
angle β, more complicated requirements can be put on the damping and frequency.

For the spiral eigenmotion, divergence is usually allowed. Now the time T2s until a double amplitude is
reached (with cockpit controls free) is an important parameter. For the roll mode, the roll mode time
constant TR is important. A maximum value is usually specified.

Stability and manoeuvrability also matter. How quickly can an airplane reach a certain roll angle? Or
alternatively, in a given time, what maximum roll angle can be achieved? And is the aircraft direction-
ally stable? In other words, it is required that Cnβ > 0. Next to this, it is also desired/required that
CYβ < 0 and Clβ < 0.

3.2.3 The Gibson criterion

The Gibson criterion is a special criterion to prevent certain aircraft behaviour. It is mainly relevant
when a pilot is trying to change the pitch rate of the aircraft. The Gibson criterion can be split up into
the dropback criterion and the phase rate criterion. We’ll examine the dropback criterion first.

Let’s suppose that we have a certain pitch angle and we want to reach another pitch angle. We deflect
the elevator, until we have reached the desired pitch angle. Then, we let go of the control surfaces. What
happens next? If we go back to a situation with a smaller pitch angle, then dropback (DB) occurs.
However, if the pitch angle continues to increase, then overshoot (OS) occurs. (Dropback can thus be
seen as negative overshoot and vice versa.)

The dropback criterion concerns dropback. Important parameters are the maximum pitch rate qm,
the steady state value of the pitch rate qs and the pitch rate overshoot ratio qm/qs. The dropback
criterion now describes a region in which the values of DB/qs and qm/qs should be. Basically, zero
dropback is optimal. However, some dropback is preferred to overshoot. Acceptable pitch rate overshoot
values are 1 ≤ qm/qs ≤ 3.

The phase rate criterion is present to prevent/reduce pilot induced oscillations (PIOs). A PIO can
occur when the pilot continuously tries to compensate for something, but by doing so only contributes to
oscillations. Important parameters now are the frequency at 180◦ phase lag ωφ=−180◦ and the phase
rate at 180◦ phase lag (∂φ/∂ω)φ=−180◦ . The phase rate criterion now demands that

ωφ=−180◦ ≈ 1 Hz and

(
∂φ

∂ω

)
φ=−180◦

≤ 100 deg/Hz. (3.2.3)

The optimum for the parameters is for ωφ=−180◦ to be somewhere between 1 and 1.4 and for (∂φ/∂ω)φ=−180◦

to be somewhere between 60 Hz and 90 Hz. In this case, then the chance that a PIO occurs is really low.
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4. Stability augmentation systems

Stability augmentation systems make the aircraft more stable. There are SASs for both the dynamic sta-
bility (whether the eigenmotions don’t diverge) and the static stability (whether the equilibrium position
itself is stable). First, we’ll look at the dynamic stability: how can we effect the eigenmotion properties?
Second, we’ll examine the static stability: how do we make sure an aircraft stays in a steady flight?

4.1 Dampers – Acquiring dynamic stability

An airplane has several eigenmotions. When the properties of these eigenmotions don’t comply with the
requirements, we need an SAS. The SAS is mostly used to damp the eigenmotions. Therefore, we will
now examine how various eigenmotions are damped.

4.1.1 The yaw damper: modelling important systems

When an aircraft has a low speed at a high altitude, the Dutch roll properties of the aircraft deteriorate.
To prevent this, a yaw damper is used. An overview of this system can be seen in figure 4.1. The
yaw damper gets its input (feedback) from the yaw rate gyro. It then sends a signal to the rudder
servo. The rudder is then moved in such a way that the Dutch roll is damped much more quickly than
usual. As a designer, we can only influence the yaw damper. However, we do need to know how the other
systems work as well. For this reason, we model those systems. We usually do assume that the model of
the aircraft is known. (Or we use the one that is derived in the Flight Dynamics course.) So, we only
examine the other systems.

Figure 4.1: An overview of the yaw damper system.

First, let’s look at the gyro. Gyros are generally very accurate in low frequency measurements, but not
so good in high frequency regions. So, we can model our gyro as a low pass filter, being

Hgyro(s) =
1

s+ ωbr
. (4.1.1)

The gyro break frequency ωbr (above which the performance starts to decrease) is quite high. In fact,
it usually is higher than any of the important frequencies of the aircraft. Therefore, the gyro can often
also be simply modelled as H(s) = 1. In other words, it can be assumed that the gyro is sufficiently
accurate.

Now let’s examine the rudder servo actuator. Actuators are always a bit slow too respond: they lag
behind the input. So, we model the rudder as a lag transfer function, like

Hservo(s) =
Kservo

1 + Tservos
. (4.1.2)
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The time constant Tservo depends on the type of actuator. For slow electric actuators, Tservo ≈ 0.25.
However, for fast hydraulic actuators, Tservo ≈ 0.05 to 0.1. This time constant (or equivalently, the servo
break frequency ωbrservo) can be very important. If it turns out to be different than expected, the results
can also be very different. So, it is often worth while to investigate what happens if Tservo varies a bit.

4.1.2 The yaw damper: determining the transfer function

Now we’ll turn our focus to the yaw damper. We know that the yaw damper has to reduce the yaw rate.
But it shouldn’t always try to keep the yaw rate at zero. In this case, the pilot will have a hard time to
change the heading of the aircraft. Thus, a reference yaw rate r is also supplied to the system. This
yaw rate can be calculated from the desired heading rate ψ̇ by using

r = ψ̇ cos θ cosφ. (4.1.3)

In this equation, θ is the pitch angle and φ is the roll angle. Both of them thus need to be known.
Alternatively, we can also assume that the aircraft is in a horizontal steady turn. In this case, we have

L sinφ =
mg

cosφ
sinφ = mUψ̇ ⇒ ψ =

g

Us
φ. (4.1.4)

In this equation, U is the forward velocity of the aircraft. Also, note that we have assumed that φ is small
(by using tanφ ≈ φ) and that we have transformed the equation to the frequency domain (by replacing
ψ̇ by sψ).

But even if we don’t know r, we can still get the system working. In this case, we can use a washout
circuit, which is much less expensive. We then simply incorporate a washout term in the controller,
being

Hwashout(s) =
τs

τs+ 1
. (4.1.5)

This will cause the yaw damper to fight less when a yaw rate is continuously present. In other words,
the system ‘adjusts’ itself to a new desired yaw rate. The time constant τ is quite important. For too
high values, the pilot will still have to fight the yaw damper. But for too low values, the yaw damper
itself doesn’t work, because the washout circuit simply adjusts too quickly. A good compromise is often
at τ = 4s.

Finally, we look at the yaw damper transfer function. In this transfer function, we have proportional,
integral and derivative action. If the rise time should be reduced, we use proportional action. If the
steady state error needs to be reduced, we add an integral action. And if the transient response needs to
be reduced (e.g. to reduce overshoot) we apply a derivative action. In this way, the right values of Kp,
KI and KD can be chosen.

Sometimes, the optimal values of the gains Kp, KI and KD differ per flight phase. In this case gain
scheduling can be applied. The gains then depend on certain relevant parameters, like the velocity V
and the altitude h. In this way, every flight phase will have the right gains.

4.1.3 The pitch damper

When an aircraft flies at a low speed and a high altitude, the short period eigenmotion has a low damping.
To compensate for this, a pitch damper is used. The pitch damper is in many ways similar to the yaw
damper. Also the set-up is similar. Only this time, the elevators and a pitch rate gyro are used, instead
of the rudder and a yaw rate gyro. These two parts are modelled by

Hgyro(s) ≈ 1 and Hservo(s) ≈
Kservo

1 + Tservos
≈ 1

0.25s+ 1
. (4.1.6)
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Just like with the yaw damper, the reference pitch rate q needs to be calculated. This time, this can
be done by using

L = nW = nmg = mg +mUq ⇒ q =
g

U
(n− 1). (4.1.7)

Alternatively, a washout circuit can again be used. This washout circuit again has the function given in
equation (4.1.5). Also, a value of τ ≈ 4 is again a good compromise. Just like a yaw damper, also the
pitch damper has proportional, integral and derivative actions.

4.1.4 The phugoid damper

To adjust the properties of the phugoid, we can use a phugoid damper. It is very similar to the previous
two dampers we have seen. However, this damper uses the measured velocity U as input. Its output is
sent to the elevator. The speed sensor and the elevator servo are modelled as

HV−sensor(s) ≈ 1 and Hservo(s) ≈
Kservo

1 + Tservos
≈ 1

0.05s+ 1
. (4.1.8)

Note that for the servo now a break frequency of ωbr = 20 Hz is assumed.

A reference velocity U is also needed by the system. This reference velocity is simply set by the
pilot/autopilot. Alternatively, a washout circuit can be used. This washout circuit is the same as those
of the yaw and pitch damper. And, just like the previous two dampers, again proportional, integral and
derivative actions can be used.

When using a phugoid damper, one should also keep in mind the short period motion properties. Im-
proving the phugoid often means that the short period properties become worse.

4.2 Feedback – Acquiring static stability

Before an aircraft can be dynamically stable, it should first be statically stable. In other words, we should
have Cmα < 0 and Cnβ > 0. Normal aircraft already have this. But very manoeuvrable aircraft, like
fighter aircraft, do not. (Remember: less stability generally means more manoeuvrability.) Then how do
we make these aircraft statically stable?

4.2.1 Angle of attack feedback

To make an aircraft statically stable, feedback is applied. The most important part is the kind of feedback
that is used. First, we’ll examine angle of attack feedback for longitudinal control. In other words,
the angle of attack α is used as a feedback parameter. First, we have to model the angle of attack sensor
and the (canard) servo actuator. This is often done using

Hα−sensor(s) ≈ 1 and Hservo(s) ≈
1

0.025s+ 1
. (4.2.1)

So, now a break frequency ωbr = 40 is used for the servo.

For angle of attack feedback, usually only a proportional gain Kα is used. By using the models of the
sensor and actuator (and of course also the aircraft), a root locus plot can be made. With this root locus
plot, a nice value of the gain Kα can be chosen. This gain is then used to determine the necessary canard
deflection δcanard. This is done using

∆δcanard = Kα ·∆α. (4.2.2)

However, a check does need to be performed on whether the canard deflections can be achieved. If gust
loads can cause a change in angle of attack of ∆α = 1◦ and the maximum canard deflection is 25◦, then
Kα should certainly not be bigger than 25, or even be close to it for that matter.
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4.2.2 Load factor feedback

There is a downside with angle of attack feedback. It is often hard to measure α accurately. So instead,
load factor feedback can be applied. Now the value of n is used as feedback. As models for the sensor
and actuator, we again use

Hn−sensor(s) ≈ 1 and Hservo(s) ≈
1

0.025s+ 1
. (4.2.3)

We also need a model for the aircraft. Normally, we assume that such a model is known. However, the
transfer function between the load factor n and the canard deflection δc is usually not part of the aircraft
model. So, we simply derive it. For that, we first can use

∆n =
ẇ

g
=
U tan γ̇

g
≈ Uγ̇

g
=
Uγs

g
. (4.2.4)

We now divide the equation by δc. If we also use γ = θ − α, then we find that

n(s)

δc(s)
≈ Us

g

(
θ(s)

δc(s)
− α(s)

δc(s)

)
. (4.2.5)

The transfer functions from δc to both θ and α usually are part of the aircraft model. So we assume that
they are known. The transfer function between n and δc is thus now also known. All that is left for us
to do is choose an appropriate gain Kn. And of course, again it needs to be checked whether this gain
Kn doesn’t result into too big canard deflections.

The load factor sensor also has a downside. It is often hard to distinguish important accelerations (like
the ones caused by turbulence) from unimportant accelerations (like vibrations due to, for example, a
firing gun). Good filters need to be used to make sure a useful signal is obtained.

4.2.3 Sideslip feedback

Previously we have considered longitudinal stability. For lateral stability, sideslip feedback can be used.
(However, sideslip feedback is not yet applied in practice.) With sideslip feedback, the sideslip angle β is
used as feedback parameter for the rudder. The β-sensor and the rudder are usually modelled as

Hβ−sensor(s) ≈ 1 and Hservo(s) ≈
1

0.05s+ 1
. (4.2.6)

The transfer function between the sideslip angle β and the rudder deflection δr usually follows from the
airplane model. Now that the model is in place, a nice gain Kβ can be chosen for the system. This should
then give it the right properties.

There is a small problem with sideslip feedback. It can generate a lateral phugoid mode of vibration. To
compensate for this, another feedback loop is often used, where the roll rate is used as feedback for the
ailerons. This then reduces the effects of the lateral phugoid motion.
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5. Basic autopilot systems

Previously, we have looked at the stability augmentation system. This system can be seen as the inner
loop of the aircraft control system. In this chapter, we focus on the outer loop: the control augmentation
system. When we want to keep a certain pitch angle, velocity, roll angle, heading, or something similar,
then we use the CAS. In this way, the pilot workload can be reduced significantly. First, we’ll examine
holding longitudinal parameters. Second, we’ll examine the lateral parameters as well.

5.1 Basic longitudinal autopilot systems

We will now examine how we can hold the pitch attitude, the altitude, the airspeed and the climb/descent
rate constant.

5.1.1 Holding the pitch attitude

The pitch attitude hold mode prevents pilots from constantly having to control the pitch attitude.
Especially in turbulent air, this can get tiring for the pilot. This system uses the data from the vertical
gyroscope as input (feedback). It then controls the aircraft through the elevators. To be more precise,
it sends a signal to the SAS, which then again uses this as a reference signal to control the servo. An
overview of the system can be seen in figure 5.1.

Figure 5.1: An overview of the pitch attitude holding system.

We assume that te model of the aircraft, together with the SAS, is known. But, just like in the previous
chapter, we do need to model the gyro and the elevator servo. The relations used for this are

Hgyro(s) ≈ 1 and Hservo(s) ≈
1

τservos+ 1
. (5.1.1)

(Although possibly we don’t have to take into account the elevator servo. This is the case if the servo is
already modelled in the SAS of the aircraft.)

There is also the reference pitch angle θ that needs to be set. This is done when the pitch attitude hold
mode is activated. In fact, the hold mode usually tries to keep the current pitch angle. The reference
pitch angle θ is thus the pitch angle that was present at the moment that the hold mode was activated.

Finally, we need to design the pitch controller block. It consists of a proportional, an integral and a
derivative action. All that we need to do as designers is choose the right gains Kp, KI and KD. However,
once we have done this, we do need to check whether the aircraft meets all the requirements. It can
happen that, with the new gains, the damping ratio of (for example) the short period motion has shifted
a bit. If it falls outside of the requirements, the SAS of the aircraft needs to be adjusted.
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5.1.2 Holding the altitude

The altitude hold mode prevents pilots from constantly having to maintain their altitude. The input
(feedback) comes from the altimeter. The system then uses the elevator to control the altitude. The way
in which the altimeter is modelled depends on the type of altimeter. For a radar or GPS altimeter, we
use Haltimeter ≈ 1. However, for a barometric altimeter, we include a lag. Thus,

Haltimeter(s) ≈
1

τaltimeters+ 1
. (5.1.2)

The reference value of the height h is set in the mode control panel.

To control h, we must have some expression for h in our aircraft model. But h isn’t one of the parameters
in the basic state space model of the aircraft. So, we need to derive an expression for it. This is done,
using

ḣ = V sin γ ≈ V γ ⇒ h(s) =
V

s
γ(s) =

V

s
(θ(s)− α(s)) . (5.1.3)

When a constant gain is used for the altitude controller, the phugoid may become unstable. (This can
especially happen if a low gain is used, and if the original phugoid was already lightly damped.) To
prevent this problem from occurring, several options are possible. We could for example use vertical
acceleration feedback, or we could use lead-lag compensation.

The altitude hold mode also consists of a proportional, an integral and a derivative action. However,
often it turns out that an integral action is not necessary. And since we generally need to keep controllers
as simple as possible, we therefore simply use a PD controller.

5.1.3 Holding the airspeed

The airspeed hold mode holds a certain airspeed. It uses the airspeed sensor as input and it controls
the throttle. Of course, we need to model the airspeed sensor. For GPS airspeed calculations, we can use
HV−sensor(s) ≈ 1. However, if we use a pitot-static tube, then we use

HV−sensor(s) ≈
1

τV−sensors+ 1
. (5.1.4)

Next to the sensor, there is also the engine servo and the engine itself. Both have a bit of lag. We thus
model them as

Hservo(s) =
1

τservos+ 1
and Hengine(s) =

∆T (s)

δT (s)
= KT

1

τengines+ 1
. (5.1.5)

Taking the engine model into account might seem complicated. Luckily, there is an alternative. We can
also include the engine effects in the state space model. If we do that, then we add a term KthδT to the
equation for u̇. This term then represents the thrust, due to the throttle setting. If we do that, then we
only have to use the model of the engine servo.

The reference value of the velocity V is often set at the mode control panel. Alternatively, it can be
derived from the actions of the pilot. For example, if the pilot manually pushes the throttle forward, the
computer increases the desired (reference) velocity V .

5.1.4 Holding the climb or descent rate

The flight path angle hold mode is similar to the pitch attitude hold mode. However, this time
the flight path angle/climb rate is kept constant. As input (feedback), the flight path angle γ is used.
However, γ can’t be measured directly. So, we use γ = θ − α. θ can be measured using a gyro, while α

20



follows from an angle of attack sensor. The flight path angle hold mode eventually uses the elevators to
control the flight path angle.

Of course, the sensors need to be modelled. But we can simply model both the gyro and the α-sensor
with Hsensor ≈ 1. We don’t need to take into account the elevator servo, since that is already modelled
in the SAS of the aircraft.

The flight path angle hold mode controller again consists of proportional, integral and derivative actions.
But this time, the derivative action is often not required. Transient behaviour is mostly acceptable when
adjusting the flight path angle. A steady state error, however, is more troubling. So integral actions are
often used.

5.2 Basic lateral autopilot systems

It is time to turn our attention to lateral motion. How do we hold the roll angle, the coordinated roll
angle and the heading angle constant?

5.2.1 The roll angle hold mode

The roll angle hold mode prevents the pilot from constantly having to adjust/control the roll angle
during a turn. It uses the roll angle gyro as sensor and it effects the ailerons. The roll angle gyro and
the aileron servo are again modelled as

Hgyro(s) ≈ 1 and Hservo(s) ≈
1

τservos+ 1
. (5.2.1)

The roll angle that is used as reference angle is defined on the mode control panel.

When modelling the aircraft, it is often assumed that rolling is the only degree of freedom. This reduced
model significantly simplifies matters. In fact, the transfer function between φ(s) and δa(s) becomes

φ(s)

δa(s)
=

−Lδa
s(s− Lp)

. (5.2.2)

Nevertheless, it is often worth while to check whether the behaviour of the full model (without the
simplifications) is much different from that of the reduced model. It can, for instance, occur that the
Dutch roll becomes unstable in the full model, whereas the reduced model doesn’t indicate this.

5.2.2 The coordinated roll angle hold mode

The coordinated roll angle hold mode is an extension of the roll angle hold mode. It also tries to
make sure that the sideslip angle β is equal to zero. This should result in a coordinated turn, thus giving
the aircraft less drag and the passengers more comfort. The coordinated roll angle hold mode uses the
sideslip sensor as input (feedback). (That is, in addition to the roll angle gyro that was already used in
the roll angle hold mode.) It then sends a signal to the rudder. (In addition to the signal to the aileron
that was already present.)

The sideslip sensor is modelled as Hβ−sensor(s) ≈ 1. We don’t have to model the rudder servo anymore,
as this was already incorporated in the inner-loop SAS. (To be more precise, in the yaw damper.) The
sideslip angle β that is used as reference input is always simply zero: we do not want any sideslip in a
coordinated turn.

Let’s ask ourselves, how do we measure β? We can use a vane-type sideslip sensor (like for the angle
of attack). However, the signal from such a sensor is easily distorted, due to for example aerodynamic
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effects. Instead, we can also use the lateral acceleration AY . This then gives us

mAY = Y = CY
1

2
ρV 2S ≈ CYββ

1

2
ρV 2S ⇒ β =

2mAY
CY βρV 2S

. (5.2.3)

We can then use this expression to find the sideslip angle β. Do note that we have approximated CY as
CYββ. In other words, we’re neglecting the effects of p, r, δa and δr on CY .

5.2.3 The heading angle control mode

The heading angle control mode controls the heading. It does this by giving the aircraft a roll angle.
In fact, it sends a signal to the (coordinated) roll angle hold mode, telling it which roll angle the aircraft
should have. This roll angle is maintained until the desired heading is achieved. As sensor, this system
uses the directional gyro, modelled as Hgyro(s) ≈ 1. Its output effects the ailerons. (The latter is evident,
since the system controls the roll angle hold mode.)

The reference angle ψ is defined by the pilot, through the mode control panel. There is, however, a
problem. In our aircraft model, we don’t have ψ as one of the state parameters. To find it, we can use
the equation

ψ̇ = q
sinφ

cos θ
+ r

cosφ

cos θ
. (5.2.4)

Let’s simplify this a bit. First, we assume that q = 0. (That is, we’re not pitching during the turn.)
Second, we assume that θ is constant. Third, we assume that φ is small, implying that cosφ ≈ 1. This
then gives

ψ̇ =
r

cos θ
or ψ =

r

s cos θ
. (5.2.5)

Alternatively, we can also use the relation ψ = g
Usφ that was derived in the previous chapter. Since the

latter relation is based on a lot less assumptions, it is mostly preferred.
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6. Navigational autopilot systems

In this chapter, we’ll consider more advanced autopilot systems. So, the airplane is not only going to hold
a certain parameter. Instead, it’s going to fly on its own. Examples of such manoeuvres are following a
glide slope, automatically flaring during landing, following a localizer or following a VOR beacon. We’ll
examine all these actions in this chapter. First, we start with the longitudinal actions. Later on, we’ll
consider the lateral actions.

6.1 Longitudinal navigational autopilot systems

6.1.1 The glide slope hold mode

The glide slope hold mode is a system that automatically follows a glide slope. This reduces the pilot
workload, and moreover it is more accurate than when the pilot follows the glide slope.

Before we’re going to discuss the glide slope hold mode, we first make some assumptions. We assume that
the glide slope antenna is positioned at the aircraft CG. This antenna measures the glide slope error
angle Γ. (We model this sensor as Hglideslope receiver ≈ 1.) The CG of the aircraft is then driven along
the glide slope. To accomplish this, the airplane is kept on the glide slope using pitch attitude control.
The airspeed is controlled using the autothrottle. (So we also assume that pitch attitude control and
airspeed control are already present. This makes sense, as we’ve already discussed them in the previous
chapter.)

Let’s denote the deviation from the glide slope by d. We can find an expression for it using

ḋ = V sin (γ + 3◦) ≈ V (γ + 3◦)
π

180
⇒ d(s) =

V

s

π

180
L (γ + 3◦) . (6.1.1)

(In the above equation, the L(. . .) denotes the Laplace transform.) Of course, we also need some kind of
feedback. But we can’t measure d. Instead, we measure the error angle Γ. This angle is related to the
deviation d according to

Γ ≈ sin Γ =
d

R

180

π
. (6.1.2)

Here, R is the slant range. Based on the measured error angle Γ (which should of course be kept at
zero), we calculate a desired pitch angle θ. We then pass this angle on to the pitch attitude control
system. The desired pitch angle is calculated using a glide slope coupler. Its transfer function is

Hcoupler(s) = Kc

(
1 +

W1

s

)
. (6.1.3)

In this equation, Kc is the coupler gain. It needs to be chosen such that we have acceptable closed
loop behaviour. In fact, it is the only actual parameter that we as designers can control. Also, W1 is a
weighting constant. It is present to cope with turbulence and such. Usually, a value of W1 = 0.1 is
prescribed.

In our model, we also need to know the relation/transfer function between θ and γ. This relation γ(s)/θ(s)
can’t be obtained from the aircraft model directly. Instead, we use

γ(s)

θ(s)
= 1− α(s)

θ(s)
= 1− α(s)/δe(s)

θ(s)/δe(s)
= 1− Nα(s)

Nθ(s)
. (6.1.4)

The glide slope hold mode does have a problem. When the slant range R changes, also the properties of
the system change. In fact, if the gain Kc remains constant, then the closer the aircraft, the worse the
performance becomes. Luckily, several solutions for this problem are available. We can apply some sort
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of gain scheduling: we let Kc depend on the distance measured by the DME beacon. Or even simpler but
less accurate, we let it depend on time. Finally, we can also add a lead-lag compensator to the system.
If done well, this can reduce the effects of this problem significantly.

When designing an autopilot, it should be made robust. In other words, if certain parameters change, the
autopilot should still work. Parameters that are subject to change in the real world are the airplane CG
location, the airplane weight, the airplane speed and the presence/intensity of turbulence. The autopilot
should be able to cope with these variations.

6.1.2 Automatic flare mode

Getting the right vertical velocity on landing is difficult. The velocity shouldn’t be too high. Such hard
landings (ḣ ≤ −6 ft/s) are challenging for both the landing gear and the passengers. As such, they’re
not really acceptable. Too soft landings (ḣ ≈ 0 ft/s) are however also undesirable, as there will be
floatation of the aircraft. Ideally, we have a firm landing with ḣ = −2 to −3 ft/s.

The relationship between the normal velocity and the vertical velocity during landing is usually ḣ =
−V sin 3◦. So, the faster an aircraft flies, the harder the touchdown. This can be a problem for airplanes
with a low minimum speed, which thus have to fly fast. Therefore, such aircraft usually flare right before
touching down: they pull up their nose. By doing this, the airplane follows the so-called flare path.
This path starts at the height hflare. It ends (by touching down) 1100 ft further than the point where
the glide slope ends. (That is, where the glide slope antenna is positioned.)

The airplane is kept on the flare path by the pitch attitude control system. But this system of course
needs to have some input. For that, we approximate the flare path by

h = hflaree
−t/τ . (6.1.5)

All that we need to find are the constants hflare and τ . They both depend on the time ttd between the
start of the flare and touchdown. To see how, we first examine the horizontal distance which the airplane
travels during the flare manoeuvre. This is

V ttd = 1100 +
hflare
tan 3◦

. (6.1.6)

From this, we can derive the height hflare. To also find the time constant τ , we differentiate the equation
for h. This gives

ḣ = −hflare
τ

e−t/τ = −h
τ

⇒ hflare = −ḣat hflareτ. (6.1.7)

Okay, we do need to know the vertical velocity ḣat hflare at the flare height. But this can simply be found

using ḣ = −V sin 3◦. And once we know τ , we will have the control law for our automatic flare mode
system: ḣ = −h/τ .

But how do we make sure that the aircraft stays at the correct altitude? Well, we know the vertical
speed of the aircraft ḣ. (It can be measured.) We also know the desired vertical airspeed, which follows
from our control law. Based on the difference, we calculate a desired pitch angle θ. This is done using a
coupler. Its transfer function is again given by

Hcoupler(s) = Kc

(
1 +

W1

s

)
. (6.1.8)

Kc is again the coupler gain and W1 = 0.1 is again the weighting constant. The desired pitch angle is
then passed on to the pitch attitude control system.

In our system, we do need a model of the aircraft. How do changes in the pitch angle effect the vertical
velocity? We can find the transfer function between these two parameters using

ḣ ≈ V γ ⇒ ḣ(s)

θ(s)
=
γ(s)

θ(s)
V. (6.1.9)
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Earlier in this chapter we already derived an expression for γ(s)/θ(s). So we can apply that again here.

For the automatic flare mode to work, an accurate altitude measurement system is required. A radar
altimeter is usually sufficiently accurate. In fact, when it is used, the system is often so precise that
aircraft always land on exactly the same spot. This often resulted in runway damage at that point. To
prevent this, a Monte Carlo scheme is used. The automatic flare mode system now chooses a random
point inside a certain acceptable box. It then makes sure that the airplane touches down at that point.
This method effectively solves the problem.

6.2 Lateral navigational autopilot systems

6.2.1 The localizer hold mode

During an instrument landing, pilots need to follow the ILS localizer. But the localizer hold mode
system can perform this much more accurately. Plus, it reduces the pilot workload.

Similar to the glide slope hold mode, we first need to make some assumptions. We assume that the
airplane CG follows the localizer beam centerline. Also, we assume that the localizer error angle λ is
sensed by the on-board localizer receiver. The airplane is then kept on the centerline using the heading
angle controller (which we assume to be present).

We again denote the deviation from the intended path by d. We now have

ḋ(s) = V sin (ψ(s)− ψref (s)) ≈ V (ψ(s)− ψref (s)) ⇒ d(s) =
V

s
(ψ(s)− ψref (s)) . (6.2.1)

In this equation, ψref is the reference heading angle. It is the heading angle which we want to have. In
other words, it is the heading angle of the runway.

We also need to have some feedback. For this, we can use the localizer error angle λ. It is related to the
deviation d according to

λ ≈ sinλ =
d

R

180

π
. (6.2.2)

Based on the measured error angle λ (which should of course be kept at zero), we calculate a desired
heading angle ψ. This desired heading angle is then passed on to the heading angle controller. The
desired heading angle is calculated using a coupler. Its transfer function is again given by

Hcoupler(s) = Kc

(
1 +

W1

s

)
. (6.2.3)

Kc is again the coupler gain and W1 = 0.1 is again the weighting constant.

Just like the glide slope hold mode, also the localizer hold mode has a problem. When the slant range
R becomes too small, dynamic instability may occur. So, again the gain Kc needs to depend on the
slant range R. Or alternatively, a compensating network Hcompensator(s) needs to be added. Luckily, the
localizer doesn’t have to work for slant ranges smaller than R = 1 nm. The reason for this is that the
localizer antenna is at the end of the runway, while the aircraft already touches down near the start of
the runway.

6.2.2 The VOR hold mode

The VOR hold mode tries to follow a certain VOR radial. The working principle of following the VOR
radial is similar to the principle of following the ILS localizer path. This time, the VOR error angle λ is
used as feedback, and should be kept at zero.

25



There are, of course, a few differences. The VOR transmitter has a bandwidth of 360◦, whereas the
ILS localizer only has a bandwidth of 5◦. (The localizer only works when the aircraft is more or less in
line with the runway.) Also, the range of possible slant ranges R is much different for the VOR. The
maximum range of a VOR beacon is roughly 200 nm. Next to that, when an aircraft is flying at 6000
ft, the slant range simply can’t become less than 6000 ft ≈ 1 nm. So, aircraft hardly ever come closer
than 1 nm to a VOR beacon. The final difference between the VOR and the localizer is that, when an
aircraft is above the VOR, it doesn’t receive a signal. (The aircraft is in the so-called cone of silence.)
The VOR hold mode system should be able to cope with that.
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