
Automatic Flight Control - Exam April
2008 - Problems and Solutions

1 Automatic control (2 points)

Root locus plots are used to analyse graphically the influence of the open loop gain on the position of
the closed loop poles. Alternatively, root contours can be used to analyse the influence of open loop zero
positions on the closed loop poles.

Derive the expression for the modified open loop transfer function which can be used for this purpose.
The open loop transfer function can be expressed as follows:

G(s)H(s) = (s− zvar)P (s) (1.1)

where the variable zero is situated in s = zvar and P (s) groups all the other non-varying terms.

Hint: include eq. (1.1) in the closed loop transfer function and rewrite the latter one such that zvar

appears as a common factor in the numerator for the modified open loop transfer function: GHOLmod
(s) =

zvar
NUM(s)
DEN(s) . DEN(s) .

1 Solution

This is just a matter of working out equations. We want something of the form

FCL(s) =
[something]

1 + zvar[something]
. (1.2)

So, we write down the closed loop transfer function, and try to work towards this form. We start with

FCL =
G

1 + (s− zvar)P
=

G

1 + sP − zvarP
. (1.3)

Note that, for writing simplicity, we don’t write the (s) behind the transfer functions. Now it can be seen
that, if we divide both the numerator and the denominator by 1 + sP , we reach the desired form. So,

FCL =
G

1+sP
1+sP−zvarP

1+sP

=
G

1+sP

1 + zvar
−P

1+sP

. (1.4)

It follows that
Gmod =

G

1 + sP
and GHmod = zvar

−P
1 + sP

. (1.5)

Working things out a bit further thus gives us that

Hmod = −zvar
P

G
. (1.6)

2 Reduced short period equations of motion (2 points)

Consider the longitudinal dynamics of the McDonnell Douglas F-4 Phantom II military aircraft. For the
purpose of the determination and analysis of the handling qualities it is sufficient to study the part of the
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linearized equations of motion for constant trim speed V = U0, the short period dynamics of the aircraft
given by the following equations:

ẇ = Zww + U0q + Zδeδe

q̇ = Mww +Mqq +Mδeδe (2.1)

Here w[m/s] and q[rad/s] represent the perturbations of the vertical body rate and pitch rate respectively,
while δe[rad] is the elevator deflection.

Determine from the set of equations (2.1) the so-called characteristic polynomial (commonly defined as
∆(s)), expressed in terms of the short period damping ζs and short period frequency ωs. Show how the
system dynamics vary with the dimensional stability derivatives.

Determine, given the expression of the so-called characteristic polynomial (commonly defined as ∆(s)),
determined from the set of equations (2.1), the eigenvalues λi for i = 1, 2. Express the real part and
imaginary part of the eigenvalues in terms of the previously calculated terms ζs and ωs. It is assumed
that the system is stable and underdamped.

Determine from the set of equations (2.1) the following transfer functions expressed in Tθ2 , kq, kα and
∆(s)(ζs, ωs), when further the trim airspeed V = U0 and the acceleration of gravity g[m/s2] are given,
and the following assumptions can be made for use of simplifications:

MwZδe << MδeZw

MqZδe << U0Mδe , α ≈ w

V
(2.2)∣∣∣∣−Zδe

U0

∣∣∣∣ << |−MδeZw| (2.3)

• Show that the transfer function from elevator to pitch rate:

q(s)
δe(s)

= kq
1 + Tθ2s

∆(s)
(2.4)

when is given that kq = −Mδe
Zw and Tθ2 = − 1

Zw
.

• Show that the transfer function from elevator to angle of attack:

α(s)
δe(s)

= kα
1 + Tαs

∆(s)
(2.5)

when is given that kα = Mδe
and Tα = Zδe

U0Mδe
.

• Show that the transfer function from attitude to flight-path is given by:

γ(s)
θ(s)

=
1

1 + Tθ2s
(2.6)

when is given that Tθ2 = − 1
Zw

.

2 Solution

Let’s start by putting the equations in state space form. This gives us[
ẇ
q̇

]
=

[
Zw U0

Mw Mq

] [
w
q

]
+

[
Zδe

Mδe

] [
δe

]
. (2.7)
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Now let’s take the system matrix, and find the characteristic equation. This gives us

∆(s) = (Zw − s)(Mq − s)− U0Mw = s2 − (Zw +Mq)s+ (ZwMq − U0Mw) = s2 − 2ζsωss+ ω2
s . (2.8)

Solving for ζs and ωs gives

ωs =
√
ZwMq − U0Mw and ζs = −Zw +Mq

2ωs
. (2.9)

We can also solve for the eigenvalues λ1,2 of the characteristic equations. This gives us

λ1,2 =
(Zw +Mq)±

√
(Zw +Mq)2 − 4(ZwMq − U0Mw)

2
= −ζsωs ±

√
ζ2
sω

2
s − ω2

s . (2.10)

Since the system is stable and underdamped, we have 0 < ζs < 1. The part in the root is thus negative.
This gives us

λ1,2 = −ζsωs ± iωs

√
1− ζ2

s . (2.11)

The damped frequency is thus equal to ωd = ωs

√
1− ζ2

s , which is also what we would expect it to be.

Now let’s start to examine transfer functions. Turning the equations of motion to transfer function form
gives

sw = Zww + U0q + Zδe
δe, (2.12)

sq = Mww +Mqq +Mδe
δe. (2.13)

Solving for w and q gives

w =
U0q + Zδeδe
s− Zw

, (2.14)

q =
Mww +Mδe

δe
s−Mq

. (2.15)

Inserting these two equations into the two equations before them and solving them gives

w =
U0Mδe

s−Mq
+ Zδe

s− Zw − U0Mw

s−Mq

δe =
U0Mδe

− Zδe
Mq + Zδe

s

s2 − (Mq + Zw)s+MqZw − U0Mw
δe, (2.16)

q =
MwZδe

s−Zw
+Mδe

s−Mq − U0Mw

s−Zw

δe =
MwZδe

−Mδe
Zw + Zδe

s

s2 − (Mq + Zw)s+MqZw − U0Mw
δe. (2.17)

Note that in the first of the above two equations, the part Zδe
Mq is negligible. In the second equation,

MwZδe is negligible. These terms can thus be removed.

Now it can be seen that the transfer function q(s)/δe(s) is given by

q(s)
δe(s)

=
q(s)
δe(s)

= kq
1 + Tθ2s

∆(s)
. (2.18)

In this equation, kq = −Mδe
Zw and Tθ2 = − 1

Zw
. Now let’s turn our attention to w. We know that

w = αU0. This teaches us that
α(s)
δe(s)

= kα
1 + Tαs

∆(s)
, (2.19)

where kα = Mδe and Tα = Zδe

U0Mδe
.
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Finally, we have to find an expression for γ(s)/θ(s). For this, we can use the fact that θ(s) = q(s)/s and
that θ = γ + α. So, we have

γ(s)
θ(s)

= 1− α(s)
θ(s)

= 1− α(s)/δe(s)
θ(s)/δe(s)

= 1− s
α(s)/δe(s)
q(s)/δe(s)

. (2.20)

Filling in the values for this will give us

γ(s)
θ(s)

= 1− s
kα

1+Tαs
∆(s)

kq
1+Tθ2s

∆(s)

= 1− s
Mδe

−Mδe
Zw

1 + Zδe

U0Mδe
s

1− 1
Zw
s

= 1 + s
1 + Zδe

U0Mδe
s

Zw − s
=
Zw + Zδe

U0Mδe
s2

Zw − s
. (2.21)

Note that the right term of the numerator is negligible. So, we can simplify the above to

γ(s)
θ(s)

=
1

1− 1
Zw
s

=
1

1 + Tθ2s
. (2.22)

And this is exactly what we needed to show.

3 Stability Augmentation System (1.5 point)

Give the three different kinds of dampers and explain in detail their purpose and in which channels they
act. Give block diagrams of the closed loop structures and explain all blocks in the diagram. Give also
transfer functions where possible and explain them.

3 Solution

The first damper we’ll examine is the yaw damper, which controls the yaw rate. Its purpose is mainly to
increase the damping ratio of the Dutch roll. The yaw damper uses the measured yaw rate as feedback
and sends a signal to the rudder servo. The feedforward path G of the system consists of three blocks,
being the yaw damper itself, the rudder servo and the aircraft. The feedback block H consists of the yaw
rate gyro.

The second damper is the pitch damper, which controls the pitch rate. Its purpose is to increase the
damping ratio of the short period motion. It uses the measured pitch rate as feedback and sends a signal
to the elevator servo. The feedforward path G of the system consists of the pitch damper, the elevator
servo and the aircraft. The feedback block H consists of the pitch rate gyro.

The third damper is the phugoid damper, which controls the velocity. Its purpose is to increase the
damping ratio of the phugoid. It uses the measured velocity as feedback and sends a signal to the
elevator. The feedforward path G consists of the phugoid damper and the aircraft. The elevator servo
can also be part of the system, if it has not already been modelled in the pitch damper system. (If it
has been incorporated in the pitch damper system, then the phugoid damper sends its signal to the pitch
damper system instead, which then controls the elevator deflection. This pitch damper system is usually
put inside of the already existing ‘aircraft’ block.)

Several transfer functions can be given. For the gyroscopes, we usually have

Hgyro(s) =
1

s+ ωbr
≈ 1, (3.1)

where ωbr is the break frequency. For the velocity sensor, we also usually have Hsensor ≈ 1. For servos,
we use a lag transfer function, being

Hservo(s) =
Kservo

1 + Tservos
. (3.2)
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(The value of Tservo depends on the type of servo.) Additionally, the aircraft block also has a transfer
function. This usually follows from the aircraft model. Finally, there’s the transfer function of the damper
block. This needs to be determined by the designer. But usually, it has the form

Hdamper(s) =
KI +Kps+KDs

2

s
. (3.3)

Additionally, a washout filter of the form

Hwashout(s) =
τs

τs+ 1
(3.4)

can be added to it.

4 Control Augmentation System (2.5 points)

Part A (1.5 point)

Explain in depth how a heading angle hold mode works in an aircraft. Your description should include
at least the following topics enumerated below.

• Explain the purpose of a heading angle hold mode and describe which type of control device (surface)
and type of feedback loop structure (sensor) are needed.

• Illustrate the working principle by drawing:

1. a simple block diagram with the outer loop only.

2. a comprehensive block diagram with all possible inner loops (the system can be considered as
decoupled, i.e. you only have to consider the lateral situation).

• Explain the blocks of the outer loop in detail. Provide transfer functions and give drawings where
applicable.

4A Solution

The purpose of the heading angle hold mode is mainly to reduce the pilot workload. Also, the airplane
will most likely fly in a more accurate manner. To use this hold mode, the pilot needs to enter a desired
heading angle in the mode control panel. The system then tries to hold this heading angle. As input, it
uses the measured heading angle, which is usually obtained from a directional gyro. (We can model this
gyro again as Hgyro(s) ≈ 1.) The signal that is generated by the heading angle hold mode is sent to the
(coordinated) roll angle hold mode system. This system then uses the ailerons to achieve a desired roll
angle, which in turn causes the heading angle to change.

The heading angle hold mode basically consists of only three blocks. The feedback path H consists of just
the directional gyro. The feedforward path G consists of two blocks. The first is the heading controller
block, having a transfer function of the form

Hcontroller(s) =
KI +Kps+KDs

2

s
. (4.1)

The second block is the (coordinated) roll angle hold mode system. We can examine it in more detail.
The normal roll angle hold mode block consists of another feedback loop. It gets its input from the roll
angle gyro. The roll angle hold mode block uses the feedback signal from this gyro to determine the
required aileron deflection to achieve this roll angle. This desired aileron deflection is then sent to the
aileron servo, which in turn effects the aircraft.
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If we are dealing with a coordinated roll angle hold mode, then the roll angle hold mode is also extended
by another feedback loop. This feedback loop uses the sideslip angle as feedback signal. This signal is
measured by the sideslip sensor, and also passes through the sideslip filter. This filter then determines
the yaw rate that is necessary to reduce the sideslip angle. This desired yaw rate is then sent to the
yaw damper (of the SAS of the aircraft). The yaw damper then again has a yaw rate gyro block, a yaw
damper block and a rudder servo block.

Part B (1.0 point)

How can the heading angle ψ be calculated from the roll angle φ? For this purpose, consider an aircraft in
a flat turn with constant turn radius Rt and determine the equations of motion. Rewrite these expressions
so that you obtain the result ψ = ψ(φ).

4B Solution

Let’s examine an aircraft which is in a steady horizontal turn. It has a roll angle φ. The vertical forces
must be in equilibrium. So, we find that

W = mg = L cosφ ⇒ L =
mg

cosφ
. (4.2)

The horizontal forces must cause the centrifugal acceleration. Let’s denote the rotation rate of the aircraft
by ω = ψ̇. If we also use that V = ωRt, then we find that

m
V 2

Rt
= mω2Rt = mωV = L sinφ =

mg sinφ
cosφ

= mg tanφ. (4.3)

We can now turn this equation to the Laplace domain, using ω = ψ̇ = sψ. Solving for ψ then gives

ψ =
g tanφ
sV

≈ gφ

sV
. (4.4)

Alternatively, if this equation shouldn’t contain V , but Rt instead, the result would be

ψ =
1
s

√
g

Rt
tanφ. (4.5)

5 Autopilot navigational mode (2 points)

Describe the glideslope hold mode of a general autopilot in detail. Your description should include at
least the following topics enumerated below.

• A clear picture of the situation in which the to-be-controlled parameter can be found.

• Assumptions which are made in this figure.

• A procedure which shows clearly how the control law is determined.

• A block diagram which represents the control law determined earlier.

• An explanation of the nature of each block in the diagram, and definitions of models or transfer
functions of all these blocks.

After you described the glideslope hold mode in detail, explain the influence of the slant range R on the
closed loop performance. Give three ways how this can be compensated.
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5 Solution

In the glide slope hold mode, the autopilot tries to control the deviation d from the glide slope. It should
be kept at zero. To accomplish this, the airplane makes use of a glide slope antenna. We assume that
this antenna is positioned at the aircraft CG. We also assume that the aircraft attempts to let the CG
follow the glide slope path. Finally, we assume that velocity control and pitch attitude control is present
in the aircraft.

We also need a control law. We assume that the glide slope is at 3◦ with respect to the horizon. Based
on this, we find that

ḋ = V sin (γ + 3◦) ≈ V (γ + 3◦)
π

180
⇒ d(s) =

V

s

π

180
L (γ + 3◦) . (5.1)

This is the control law that we’re looking for. Next to this, we also require feedback. The glide slope
antenna on board of the aircraft measures the glide slope error angle Γ. This angle is related to the
deviation d, according to

Γ ≈ sin Γ =
d

R

180
π
. (5.2)

Now let’s examine the block diagram. The feedback comes from the glide slope receiver (Hreceiver(s) ≈ 1).
This block measures Γ. It is compared to a reference value of Γ (which is actually always zero). Their
difference is sent to the glide slope coupler. This coupler calculates the desired pitch angle θ to fix the
deviation. Its transfer function is

Hcoupler(s) = Kc

(
1 +

W1

s

)
, (5.3)

where we usually have W1 ≈ 0.1. The desired pitch angle is then sent to the aircraft, having pitch attitude
control. From this aircraft model, we can extract the resulting value of the actual pitch angle θ. But
we don’t want to know θ. Instead, we want to know γ. So, we add another block, having the transfer
function γ(s)/θ(s). This block gives us the flight path angle γ. We then start to apply the control law.
First, we add 3◦ to γ. We then multiply it by V

s
π

180 to find d. And in the next block, we divide by R to
find the resulting Γ. That concludes the block diagram.

It must be noted that the open loop transfer function has the term 1/R in it. This means that decreasing
R is like increasing the gain of the open loop transfer function. If R decreases enough, we might get into
an unstable situation. To compensate for this, we can use a DME beacon to measure R and adjust the
open loop gain accordingly. (This is actually some form of gain scheduling.) Alternatively, if we don’t
have a DME beacon, we can also use the time to adjust the gain of the open loop transfer function. Or,
if we want things even simpler, we can simply add a compensator. This compensator should be built
such that instability will only occur for unimportantly small values of R.
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