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Chapter 12: Vectors and the geometry of space

§12.1: Three-dimensional coordinate systems (p. 765)
Distances between two points (Distance formula in three dimensions):

|PyP;| = \/(xz —x1)%+ (2 —y1)? + (22 — z1)?

Equation of sphere:
x—h?+@-k?+@Ez-D*=r2
with center C(h, k, 1) and radius r.

§12.2: Vectors (p- 770)

Notation:
Vectors are denoted by bold print or an arrow or bar above the sign. Vectors have both a
magnitude and a direction.
Scalars are denoted with (normal print) letters. Scalars only have a magnitude.

Vector / scalar properties:
See: page 774.

Vector addition / substraction:
By using Triangle or Parallelogram Law (kop-aan-staart / paralellogramregel).
a+b=(ay,a, as)+ (by, by, b3) =(a; + by,a, + by, as + b3)
a—b =(ay,a;,a3) — (by, by, b3) = (a; — by, a; — by, a3 — b3)

Scalar multiplication:
Vector is multiplied by a scalar (which only has magnitude), resulting in a new vector with a
different magnitude but equal direction.
ca = c{aq,a,az) ={c-a;,c-a,c-as)={cay,ca,, cas)

Vector between given points:
a={x;—X1,Y2 = Y1,22 — Z1)
Note the similarity between Distance formula in three dimensions, this formula and the
formula to calculate the magnitude of a 3D-vector (below).

Length of vector:
Via Pythagoras: |a| = \/a? + a3 + a2

Unit vectors / standard basic vectors:
Unit vectors have unit length, so |u| = 1.
Three standards basic vectors:
i = (1,0,0), on x-axis
j =(0,1,0), on y-axis
k = (0,0,1), on z-axis
Find unit vector of a given vector a with the same direction: divide all terms (i, j, k) by |a].
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§12.3: The Dot Product (p. 779)
Dot product:
Properties, see: page 779
a-b = a;b; +a,b, + azbsz (= value/number)

Angle between (non-zero) vectors:
ab

Thus, if a - b = 0, the vectors are orthogonal, since then cosf = which gives cosf = 0,

0
lallbl’

which gives 6 = %n =90°.

Direction angles and direction cosines:
Direction angles «, B, y are the angles of a vector between the positive x-, y- and z-axis.
Direction cosines are the cosines of those angles.

a_ ap as

1
L cosp ==, cosy = ar or —a = {(cos a, cosB, cosy)

cosa =
la| la| al la|

Projections:

Definition / graphical representation, see: page 782/783bpb

I ‘b
Scalar projection of b onto a: comp,b = (I%I

— ; b b
Vector projection of b onto a: proj,b = (‘I%I) % = ;?a

Note: vector projection is scalar projection multiplied by unit vector in the direction of a.

§12.4: The Cross Product (p. 786)
Cross product:
Properties, see: page 790

i j k a, a a a a a
N2 3 N 3 = |1 2
axb=la a; as|=1 b, b3|_]|b1 b3|+k|b1 b2|=
by by bs

(a2b3 - a3b2)i - (a1b3 - a3b1)j + (albz - azbl)/k (= Vector)

Angle between a and b (with 0 < 0 < 7):
|a x b| = |al|b| sinb
Thus, if @ X b = 0, a and b are parallel, as then sinf = 0, which gives 8 = 0or 8 = m.

|a X b| gives the area of the parallelogram between a and b. |a-b X c| (a scalar triple product)
gives the volume of the parallelepiped between b and ¢ that has height a.
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Chapter 1: Functions and models

§1.6: Inverse trigonometric functions (p. 67)
Inverse sine:
fTlx) =y e f(y) =xgivessin"lx = y © siny = x and —g <x< %

Inverse cosine:
fTlx)=y o f(y) =xgivescos 'x =y & cosy =xand 0 < x < 7.

Inverse tangent:

fTlx)=y o f(y) =xgivestan™lx = y © tany = x and —gs x Sg.

Chapter 3: Differentiation rules

§3.4: The Chain Rule (p. 197)

Chain rule:
F'(x)=f"(9() g'(x)
dy _ dydu
dx ~ dudx

Proving the chain rule, see: page (202 and) 203.

§3.5: Implicit differentiation (p. 207)

Definition:

Implicit differentiation consists of differentiation both sides of the equation with respect to x

and then solving the resulting equation for y'.

Derivatives of inverse trigonometric functions:
d . _1 1
—(sin""x) =
dx ( ) V1-x2
1
1-x2
1
1+x2

4 -1,) = _
= (cos™tx) =

d
= (tan™1x) =

§3.10: Linear approximation and differentials (p. 247)
Linear approximation / Tangent line approximation:

f@) = f(a) + f'(@(x - a)

Linearization
Linear function whose graph is the tangent line

L) =f(@)+ f'(@)(x—a)
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Chapter 4: Applications of differentiation

§4.2: The Mean Value Theorem (p. 280)

Mean value theorem:
If f is continuous on [a,b] and differentiable on (a,b), then f'(c) =

fb) = f(a) = f(c)(b - a).

fF)-f(a) (or
b-a

Chapter 5: Integrals

§5.2: The definite integral (p. 366)

Comparison properties of the integral:
If f(x) >0fora <x <b,then f:f(x)dx > 0.
If f(x) = g(x) fora < x < b, then f: fx)dx = f:g(x)dx.
fm<f(x) <Mfora<x<b,thenm(b—a)< f:f(x)dx <M(b - a).

§5.3: The Fundamental Theorem of Calculus (p. 379)

Part | (FTC1):
If f is continuous on [a, b], then g(x) = f:f(t)dt for a < x < b is continuous on [a, b] and
differentiable on {a, b), and holds g’ (x) = f(x).

Part Il (FTC2):
If f continuous on [a, b], then f:f(x)dx = F(b) — F(a), where F' = f.

§5.5: The substitution rule (p. 400)
The substitution rule:
If u = g(x) is a differentiable function whose range is an interval I and f is continuous on I,

then ff(g(x))g’(x)dx = [ f(w)du.

The substitution rule for definite integrals:
If g’ is continuous on [a,b] and f is continuous on the range of u = g(x), then

12 f(9@)g' @dx = [°D f(w) du.

9(a)
Integrals of symmetric functions:
If £ is even [f(—x) = f(x)], then f_aaf(x)dx =2 foaf(x)dx (symmetric in x = 0).
If fisodd [f(—x) = —f(x)], the nf_aaf(x)dx = 0 (symmetricin y = 0).
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Chapter 7: Techniques of integration

§7.1: Integration by parts (p. 453)
Integration by parts:

[} f)g' (dx = [Fx)g)]L - [ g)f ' ()dx or [udv = uv — [ v du

§7.5: Strategy for integration (p. 483)
1. Manipulate/simplify integrand
2. Substitution
3. Integration by parts

§7.6: Integration using tables and CAS (p. 489)

Tables:
See: reference pages 7-10.

§7.8: Improper integrals (p. 508)

I: Infinite intervals:
If fatf(x) exists for every number t > a, then faoo f)dx = limy_e fatf(x)dx.

b . b . b
If [, f(x) exists for every numbert < b, then [~ f(x)dx = lim,_, [, f(x)dx.
The above integrals are convergent if their limit exists and divergent if it does not.

flooxipdx is convergent if p > 1 and divergentif p < 1.

If both faoof(x)dx and f_aoof(x)dx are convergent (see: above), then
Jo, fGdx = [ f)dx + [, f(x)dx.
Il: Discontinuous integrands

The “vertical version” of Type | Improper integrals. Rather than having an infinite interval
(and thus a horizontal asymptote), Type Il Improper integrals feature a vertical asymptote.

If f is continuous on [a, b) and discontinuous at b, then f:f(x)dx = lim,_,,- fatf(x)dx.

If f is continuous on (a, b] and discontinuous at a, then fab f(x)dx = lim,_ ,+ ftbf(x)dx.

This integral is convergent if the limit exists and divergent if it does not.

If f has a discontinuity at ¢, where a < ¢ < b, and both facf(x)dx and fcbf(x)dx are

convergent (see: above), then f: fx)dx = facf(x)dx + fbcf(x)dx.

Comparing improper integrals
Suppose continuous functions f(x) and g(x) with f(x) = g(x) = 0 forx = a.
If f: f(x)dx is convergent, then f:o g(x)dx is too.

If f:o g(x)dx is divergent, then f:o f(x)dx is too.
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Chapter 9: Differential equations

§9.1: Modeling with differential equations (p. 567)

Definition:
In general, a differential equation is an equation that contains an unknown function and one
or more of its derivatives. The order of a differential function is the order of the highest
derivative that occurs in the equation.

§9.3: Separable equations (p. 580)

Separable equations:

' @ _ : dy _ g _ 1
Can be written as dx—g(x)f(y), which equals to oty where h(x) = and

f(x) # 0. That gives dx g(x) = dy h(y), which gives [ h(y)dy = [ g(x)dx.

§9.5: Linear equations (p. 602)
Solving linear equations:
Tosolve y' + P(x)y = Q(x), multiply both sides with I = e POIax gng integrate both sides.

Appendix H: Complex Numbers (p. A-57)
Axes:
Im(aginary) on y-axis, Re(al) on x-axis.

Conjugates:
Z is the reflection of z in the Re(al) axis, so a + bt = a — bi.
Properties, see: page A-58.

Modulus / Absolute value:
|z| = Va2 + b2, denotes distance to origin.

Polar form:

. . . b
a + bi can be written as z = r(cos8 + i sinf), where r = |z| and tanf = -

De Moivre’s Theorem:
A (r(cos@ +i sin@))n = r"(cos(nf) = isin(nh))

Roots:
Wy = r'/n (cos (0+:2”) + isin (9+:2”)), wherek =0,1,2,...,n — 1.

2m .
Angle between roots ¢p = 7” is constant for a given number of roots.

Complex exponentials / Euler’s formula:
e =cosy +isiny

Chapter 9: Differential equations
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Chapter 17: Second-order differential equations

§17.1: Second-order linear equations (p. 1111)
General solution to homogeneous linear equations:
y(x) = c1y1(x) + c2y2(%)

Auxiliary /characteristic equation:
ar’+br+c=0
If D > 0, roots are real and distinct, general solution given by y = c;e™* + c,e™2*.
If D = 0, roots are real and equal, general solution given by y = c;e™ + c,e™.
If D < 0, roots are complex numbers;, = a + iff and r, = a — if3, general solution given by
y = e (cq cos(Bx) + ¢, sin(Bx)).

Initial value problem:
Solved by y(x,) = y, and y'(x,) = y,. Solution exists and is unique (if P(x) # 0).

Boundary value problem:
Solved by y(x,) = y, and y(x;) = y,. Solution does not necessarily exist.

§17.2: Nonhomogeneous linear equations (p. 1117)
General solution to nonhomogeneous linear equations:
y(x) = yp(x) + y.(x), in which y,,(x) = ay”’ + by’ + cy = G(x) (particular solution) and
y.(x) = ay" + by’ + cy = 0 (complementary solution, see: §17.1).

Method of undermined coefficients:
1. Get complementary solution by solving auxiliary equation.
2. Substitute G(x) by another formula, based on the following standard ‘guesses’:”

G(x) Substitute by

xP (polynominal) apx? + agp_px?~t + -+ a,x? + a;x + a
etx Aet*

sin(ux) or cos(ux)  Asin(ux) + B cos(ux)

x cos(ux) (Ax + B) cos(ux) + (Cx + D) sin(ux)

xe* + cos(ux) (Ax + B)e* + C cos(ux) + D sin(ux)
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Chapter 11: Infinite sequences and series

§11.1: Sequences (p. 675)
Convergence / divergence:
A sequences {a,} converges if the limit lim,,_,,, a, = L exists, and diverges if the limit does
not exist.
A sequence {r"} is convergent —1 < r < 1 and divergent for other .
Every bounded (see: below) and monotonic (either increasing or decreasing) is convergent.

Limits:
A sequence {a,} has a limit if for every € > 0, there is an integer N such that if n > N, then
la, — L| <e.
Limit laws, see: page 678.

. 1\"
Keep in mind: e is defined as e = lim,,_, o, (1 + ;) .

Squeeze Theorem:
If a sequence is ‘squeezed’ by two other sequences that have a limit lim,,_,,, = L, then the
mentioned sequence also has that limit. (If a, < b, < ¢, for n 2ny and lim,_,, a, =
lim,,, ¢, = L, then lim,_,, b, = L.)

Bounds:
A sequence is bounded above when it has an ‘upper asymptote’, i.e. there is an M such that
a, < M for all n > 1. A sequence is bounded below when it has a ‘lower asymptote’, i.e.
there is an m such that m < a,, for all n = 1. A sequence is bounded if it is bounded both

below and above.

§11.2: Series (p. 687)

Series:
A series is denoted by Y. a,,.

Convergence / divergence:
A series is convergent if there exists a limit Yp—; a, = s (limit of the sequence of partial
sums), where s is a real number and denotes the sum of the series. If the limit does not exist,

the series is divergent.
If the series Yoo, @y, is convergent, then lim,,_,., a,, = 0. (NOT reversible!)
If lim ;o) a5, does not exist or is unequal to 0, then the series }.;7_; ayis divergent.

Divergence test:
If lim,,_,, a, does not exist or exists and is not equal to zero, Yo a, diverges. If

lim,_ o a, = 0, Yo, a, might converge.

Geometric series:
at+ar+ar?+--+ar®™l+.. =% ar™ ! wherea # 0.

Convergent if [r| < 1, with X5, ar™ ! = ﬁ(and |r| < 1).
Harmonic series:
w 1 _ T .t
Yomiy =142+ +0+
Always divergent.

Chapter 11: Infinite sequences and series
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Telescopic series:

o 1 _ ¥ 1_ 1
n=1p(n+1) n=l, 41
. . 1 1
Forn — oo, the series converges to 1 (lim,,_, Z;’{’zlz ——= 1).
P-series:

Similar to p-test for integrals.

1
Z;'E’:ln—p converges forp > 1.

§11.6: Absolute convergence and the Ratio and Root Tests (p. 714)

Absolute convergence:
A series is absolutely convergent if 7" ;|a, | converges.

Ratio test:

An+1

Consider lim,,_, = L.

If L < 1, the series is absolutely convergent.
If L > 1orL = oo, the series is divergent.
If L = 1, the ratio test is inconclusive. (So, use another test!)

§11.8: Power series (p. 723)
Power series:
With a power series, it’s possible to approximate a function by a (finite) series and has the
following form:
Yoo Cn(x —a)™ = ¢y + ¢1x + ¢,x? + -+, which is a power series centered around a

(also known as: a power series about a.)

The power series is quite similar to the geometric series. Note, however, that where a (the
coefficient) in the geometric series is a constant, ¢, (also the coefficients) in the power series
are variables.

Convergence / divergence:
It is impossible to state whether a general power series is convergent or divergent, as there
are two dependencies.

In general, there are three possibilities for a certain power series Yoo ¢ (x — a)™.

1. The series only converges for x = a.

2. The series converges for all x.

3. The series converges for some x such that |x — a| < R, in which R is the radius
of convergence. The interval of convergence is then a —R < x <a+ R (so,
depending on bounds, (@ —R,a+R), [a—R,a+R), (a—R,a+R] or
[a — R, a + R]). (Graphical representation on page 725).

Chapter 11: Infinite sequences and series
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§11.9: Representations of functions as power series (p. 728)
As said, power series (or geometric series) can be used to represent functions.

Differentation / integration:
Power series with R > 0 can be differentiated and integrated, but one has to do that term-
by-term.
When a series is integrated, the integration constant C follows from x = 0 in the original
function.

Radius of convergence:
The radius of convergence of a series is equal to the radius of convergence of the derivative
or integral of that series.

§11.10: Taylor & Maclaurin series (p. 734)

As said, power series can be used to represent functions. In §11.9, geometric series (constant
coefficient) were used: the difficulty with power series are the variable coefficients. They can be
found by putting x = a (f(a) = ¢,) for the first coefficient, and differentiation for the succeeding
coefficients (f'(a) = ¢;). In general:

m) m
Cp = ! n!(a), which gives Yoy cp(x — a)™ = fo:of n!(a) (x — )™

Thus, if a function can be represented by a power series, that series is of the form given above. It is

called a Taylor series centered around a. If a = 0, the series is a Maclaurin series.

Taylor series:

(n) ! " 3)
TPt = f@+ R G-+ B2 G-+ R - )+

n!

Maclaurin series:

) ’ " ©)]
o LJO (o)xnzf(0)+f1(.0)x+f(°)x2+f ©pz ..

n=0 g 2! 3!

Finite n:
)
T,(x) = Q:of k!(a) (x — a)¥ is the n™-order Taylor polynomial, with lim,,_,,, T, (x) = f(x).

The remainder is defined as R, (x) = f(x) — T, (x), with lim,,_,,, R, (x) = 0.

Taylor’s inequality:
If |f(”+1)(x)| < M (i.e. bounded) for |x — a| < d, then it is possible to bound R,,(x) of the
Taylor Series:

_M . _yn+l _
IR, (x)] < D) (x —a)™*!for|x —a| <d.

Binomial coefficient and series:

The binomial coefficient is ——— and is (also) denoted by (k)
n! ! n

!
(k—n)

Binomial series:

w [k 0 k!
Y=o (n) X" =Yoo n!(k_n)!x” =1 +x)fforkoRand|x| <1

e
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Important Maclaurin series and their R:

[oe]

1
=an=1+x+x2+x3+---,R=1
1—x
n=0
T x% x3
x _ X A2 A _
e _Zn!_1+1'+2!+3'+ ,R =00
n=0
® 2n+1 X3 x5 x7
: n —_— —_— — see —3
Sm(x>-z< e e TR TR L
(n=0)
® x2n x2 x4 6
— — n —_— PR — es =
coS(x)—Z( )(2), ot a e T JR =00
(n=0)
tan_l(x)= i(_l)n o =x_x_3+x_5_x_7+.. R=1
2n+1 3 5 7 ’
(n 0)
k! k(k — 1) k(k -1k -2)
k _ — = s~ 7 o~ AN 773
1+x) Z Zn'(k— )' =1+kx+ T 3 x
+-,R=1
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Chapter 13: Vector functions

§13.1: Vector functions and space curves (p. 817)
Vector(-valued) functions:

Domain: set of real numbers.

Range: set of vectors.

Component functions:
The component functions are the (three, in this chapter) functions from which the vector is

built up:
r(©) =(f(©),g®),h@®) = fF®)i+ g(O)j + h(Dk

Limits / continuity:
By evaluating the limits of the component functions, the limit of the vector function can be
found. If lim;_,, r(t) = r(a), the vector function is continuous at a.

Space curves:
The set of all points described by the parametric equations of that set (i.e., the set of points
described by x = f(t), y = g(t) and z = h(t)) through a certain interval is a space curve.

The vector function of the parametric equations (i.e. r(t) = f(t)i + g(t)j + h(t)k) gives
the position along the space curve at a certain t. (Remember (2D) Lissajous-curves from high
school.)

§13.2: Derivatives and integrals of vector functions (p. 824)
Derivative:
The derivative of a vector function is given by the vector function of the derivatives of the
component functions of the original vector function:
@) =f'®i+g'@)j+h Ok
Dividing this tangent vector r'(t) by its length gives the unit tangent vector:

'(®

T(t) = —

© [r' (O]

The angle between two space curves at a certain point is equal to the angle between the two

tangents of these space curves at that point.

Differentiation rules:

1. i [u(t) +v@)]=u' )+ (@) (addition)

2. d— [cu(t)] = cu'(t) (scalar multiplication)

3. SIFOu®] = £/ + FOu'e) (product rule)

4. %[ ®) -v®)] =u'() -v(t) +ult) -v'(t) (product rule, dot product)
5. di[ () x ()] = w () x v(t) + u(t) x v'(t)  (product rule, cross product)
6. u(r®) =7 Ou(F) (chain rule)

Chapter 13: Vector functions
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Integrals:
The integral of a vector function is given by the vector function of the integrals of the
component functions of the original vector function:

b b , b , b
fa r(t)dt = (fa f(t)dt) i+ (fa g(t)dt)] + (fa h(t)dt) k
which gives:
b b
fa r(t)dt = R(t)]a = R(b) — R(a)
§13.3: Arc length (p. 830)
Arc length:
The arc length of a plane or space curve is defined as the summation of the lengths of the
inscribed polygons (see: graphic §13.3, figure 1):

L= @] dt= LI OF + g OF + WO dt

Parametrizations:
Different formulas that represent the same curve are called parametrizations (of the curve
they represent).

When (re)parametrizating a curve with respect to arc length (i.e., instead of having a time-
variable, there is a length-variable), the arc length function s comes into play:

s=s(t) = f:lr’(u)l du

d
Furthermore, d—“z = [r'(®)].

Normal and binormal vectors:
Principal unit normal / unit normal:

e, . _
N(t) = IT’(t)I(WIth T() =

r'(t)
[ @

§13.1)

Binormal vector, which is perpendicular to both T and N and is a unit vector:
B(t) = N(t) X T(t)

Normal and osculating plane:
The plane determined by B and N at a point P on a curve C is called the normal plane of C at
P.The plane determined by T and N is the osculating plane of C at P.

Y
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Chapter 14: Partial derivatives

§14.1: Functions of several variables (p. 855)

Functions of two variables:
A function f of two variables assigns a unique number (f(x,y)) to each ordered pair of real
numbers (x,y) in aset D. D is the domain of f, and {f (x, y)|(x,y) € D}.

Graphs:
If f is a function of two variables with domain D, then the graph of f is the set of all points
(x,v,2) in R3 such that z = f(x,y) and (x,y) € D.

Level curves:
The level curves:
- are contours of the function z = f(x,y);
- are the lines where z is held constant (k = f(x,y));
- shows the domain D of the graph, when the height is k.

dz .
The closer to each other the level curves are, the larger prl

Surface Equation Surface Equation
Ellipsoid x y 2 22 x* ¥y
atpta-] a2ty

All traces are ellipses. Horizontal traces are ellipses.

If a = b = c, the ellipsoid is Vertical traces in the planes
a sphere. x=kandy=kare
hyperbolas if k # 0 but are
pairs of lines if k = 0.
Elliptic Paraboloid 2yl Hyperboloid of One Sheet 2 .y 2
z cTaEty z atE !

Horizontal traces are ellipses.

Horizontal traces are ellipses.

Vertical traces are parabolas. Vertical traces are hyperbolas.
The variable raised to the The axis of symmetry
first power indicates the axis corresponds to the variable
of the paraboloid. whose coefficient is negative.
Y
Hyperbolic Paraboloid Y Hyperboloid of Two Sheets _x 3y = 2 _ .

c a* b? z a? b

: Horizontal traces are Horizontal traces in z = k are
hyperbolas. ellipses if k > cork < —c.

Vertical traces are parabolas.

The case where ¢ < 0 is
illustrated.

-

-

Vertical traces are hyperbolas.

The two minus signs indicate
two sheets.

(Calculus 6e, §12.6, page 808.)

Functions of three variables:
When a function has three variables, some things change:
- D € R3 (instead of D € R? for two-variable-functions);
- There are level surfaces rather than level curves.

[
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§14.2: Limits and continuity (p 870)

Limits:
Let f(x,y) be a function defined on a domain D that includes points arbitrarily close to a
point (a, b). Then the limit of f(x, y) as a point (x, y) approaches (a, b) is L:
limy y)sap) f(y) =L
The limit L exists if for all € > 0, there exists a § > 0 such that |f(x,y) — L| < € when
J&x—a)2+ (y —b)2 < §for (x,y) € D. (See: pp. 871-872.)
|f(x,y) — L] is the distance between z and L = f(a, b).
J(x — a)?2 + (y — b)Z is the distance between the points (x,y) and (a, b).
The above definition holds for any way (a, b) is approached (see: p. 871, figure 3). If the
limits found for two different paths are not equal, the limit does not exist.
To check all paths, look at the numerator x*y#. When a = 1 and 8 > 1, substitute x = y#
and y = mx (and vice versa) and find the limit. If these are equal, the limit might exist. If not,
it does not exist. If it might exist, let € > 0 and find § > 0 such that |f(x,y) — L| < €. Then
express § in €, and check.
Continuity:

z = f(x,y) is continuous at a point (a, b) if lim(, yy_(ap) f(x,¥) = f(a,b) = L.

z = f(x,y) is continuous on domain D if it is continuous at every point (a, b) € D.

In normal words, this means that if (a, b) changes by a small amount, (x,y) has to change by
the same small amount (i.e. there are no holes/jumps/gaps in the graph).

All polynomials are continuous on R2.

§14.3: Partial derivatives (p. 878)
Partial derivatives:
When the change in one variable of a multi-variable function is calculated, when keeping the
other(s) constant, it is a partial derivative:
f(a,b) = g'(a) where g(x) = f(x, b) with b constant.

fy(a,b) = g'(b) where g(x) = f(a,y) with a constant.
(Other notations, see: page 880.)

Following from the definition above, partial derivatives are calculated by taking the
derivative with respect to the indicated variable, and treating the other variable(s) as a
constant. Mind: when taking a variable as a constant, its derivative is zero.

Geometrically, partial derivatives can be interpreted as the slopes of the tangents to C; and
C,, which are planes through the surface S described by f(x,y) when y =b or x =a,
respectively. (See: page 881, figure 1 and page 882, figures 4 and 5.)

Partial derivatives are defined by limits (as are normal derivatives):
f&x+hy)—f(x.y)

£ G y) = limy o LD
. FGy+h)—fxy)
fyey) = llmh—)O%
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Higher-order partial derivatives and Clairaut’s theorem:
Second partial derivatives are calculated by taking the derivative of a partial derivative:
(Fx.
The second partial derivative of f, with respect to y is equal to the second partial derivative
of f, with respect to x (i.e. f,y,(a,b) = f,x(a, b)) as long as both functions are continuous on
the disk containing the point (a, b). The same goes for higher-order partial derivatives (e.g.
fryz = fyzx = fzxy)- Proven by Clairaut’s theorem.

Partial differential equations:
Laplace’s equation:

92 92 . . . .
ﬁ a_yi = 0, produces harmonic functions (fluid flow, heat conduction, etc.).

Wave equation:
Bzu _ 2 az_u .
52; = 4" 572 describes waveforms.
§14.4: Tangent planes and linear approximations (p. 892)
Linear approximations:
In 1D, the tangent (line) of y = f(x) is given by y = f(a) + f'(a)(x — a), which is known as
the linearization L(x).

In 2D, the tangent (plane) of z = f(x,y) is given by z = f(a,b) + f,(a,b)(x —a) +
fy(a,b)(y — b), which is also known as the linearization L(x, y).

Note that the linearizations comprise the first few terms of the Taylor Series (§11.10).

Increments and differentials:
In 1D, the increment Ay is given by Ay = f(a + Ax) — f (change along the curve). The
differential dy is given by dy = f'(x)dx (change along tangent line of the curve).

In 2D, the increment Az is given by Az = f(a + Ax,b + Ay) — f(a, b) (change along the
surface). The differential dz is given by dz = f,(a, b)dx + f,,(a, b)dy (change along tangent

plane of the surface).

Differentiability:
A function f(x,y) is differentiable at (a, b) if Az can be expressed as Az = f,(a, b)Ax +
fy(a,b)Ay + €,Ax + €;Ay where €;,€; —» 0as (a,b) - (0,0).

If the partial derivatives fy, f,, exist near (a, b) and are continuous at (a, b), then f(x,y) is
differentiable (at (a, b)).
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