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Preface
So this is a summary of the core concepts covered in the Calculus 1 module in First year. Up
to 2018 you could easily pass the course just by practicing past questions and learning the
patterns of how to solve them, but from 2019 on wards you needed to have a more intuitive
understanding of the stuff you learned in class. In these notes I go over the basics of what you
do in class and try to explain things simply. Obviously I’m not going to every bit of information
from the lectures and the book in here, so if you want further clarification I recommend looking
back at the slides. These notes go in the same order as the lectures so you should have no
problem finding further information. The latest version of these notes is always available on
my website (alanrh.com), along with other resources that I find useful. If you find any mistakes
and you need anything corrected shoot me an email, but please don’t email me if you want
further explanation because I can’t promise individual help to everyone.

Alan Hanrahan
Delft, February 4, 2021
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1
Vectors

1.1. The Basics
I’m sure by now you have a very clear understanding of what a vector is. It’s something that
has both a scalar magnitude as well as a direction. A vector can point in any direction in
space (in any number of dimensions, but in this course we stick to 3 dimensions because
we’re engineers and why would we ever need to use the 4th dimension), it can be defined by
angles or by separating it into its component vectors.

In much the same way that a graph has X, Y, & Z dimensions, a vector has 𝚤, 𝚥, & 𝑘⃗ direc-
tions. These components can be used to define any vector. Imagine a right-angled triangle.
The hypotenuse can be described by using the perpendicular sides, and Pythagoras’ theorem.

𝐻 = √𝑎ኼ + 𝑏ኼ. Similarly, the magnitude of a vector is found using 𝑀 = √𝑎𝚤ኼ + 𝑏𝚥ኼ + 𝑐𝑘⃗ኼ.

𝚤
𝚥

𝑘⃗

(a, 0, 0)
(0, b, 0)

(0, 0, c)

1.1.1. Reference Systems
When doing calculations with vectors, you can imagine a coordinate system in any way you
want as long as it’s consistent, because in all honesty, all of this is just convention, there’s no
reason for us to use 𝚤, 𝚥, 𝑘⃗. It’s just handy if everyone has the same understanding of how to
describe a vector, but if you’re only doing some calculations by yourself, it doesn’t matter.

Imagine 2 vectors in 2D space. They can be in any orientation you like. To make your
calculations easier, you can draw on an auxiliary coordinate system with respect to one of the
vectors. That way one of the vectors will only have components in one

𝚤

𝚥

a

b

𝚤ᖣ

𝚥ᖣ

a
b

1



2 1. Vectors

1.1.2. Unit Vectors
A Unit Vector is really very simple, it’s a vector (in some direction) with a magnitude of 1 unit.
Wow, how difficult was that? Okay so what’s the big deal? Well, unit vectors are actually really
useful especially in the Statics and Dynamics courses that you’re doing alongside Calculus.
You can define a vector (for instance a force vector) as being a scalar, multiplied by the unit
vector going in that direction.

For instance, consider the vector 𝑎⃗ = ⟨3, 4⟩. Using Pythagoras you can find the magnitude
of this vector is 5. To find the unit vector of 𝑎⃗, just divide the 𝚤 and 𝚥 components by the
magnitude of the vector. in this case; ኽ኿ ,

ኾ
኿ .We can call this unit vector whatever we like, but

it’s common to just call it something like; unit vector 𝑢̂.With this, we can now define 𝑎⃗ = 5𝑢̂.

1.2. The Dot Product
It’s very easy to understand basic operations with scalars, or at least I hope it is, you’re studying
Aerospace Engineering. With vectors understanding addition is very simple. either, graphi-
cally or with the components. With components; 𝑎⃗ + 𝑏⃗ = ⟨𝑎1𝚤+𝑏1𝚤, 𝑎2𝚥+𝑏2𝚥⟩. Or on a plane,
just translate one vector from the point of origin to the tip of the other vector, then connect this
back to the origin. Subtraction is done in much the same way, except translate the tip of one
vector to the tip of the other, and connect the base of the vector back to the origin instead.

𝚤

𝚥

a

b

𝚤

𝚥

a

b

a+
b

But when it comes to multiplying vectors its a different story, it’s not so simple. There are
actually 2 ways of multiplying vectors, and they give different answers, because of course
they do. With scalars there’s a bunch of ways of symbolising multiplication, so for vector
multiplication we steal two of these symbols; ⋅ and ×. The dot product (unsurprisingly) is the
product you get when you multiply two vectors with the dot symbol(⋅).

You can imagine the dot product is a way of saying ”multiply 𝑎⃗ in the direction of 𝑏⃗” or vise
versa, because the dot product is commutative. Imagine one of the vectors is on an axis,
either 𝚤 or 𝚥.

𝚤ᖣ

𝚥ᖣ

a
b (b)(a)

As you can see, it’s 𝑏⃗ is extended out in the direction of 𝑎⃗, by the magnitude of 𝑎⃗. Remem-
ber how you can use a reference system and just make one of the vectors be on an auxiliary
axis? Yeah, well this applies here too. You can find the dot product of any two vectors, re-
gardless of if one is on an axis. The dot product, is not actually a vector though, it’s a scalar.
Why? Because some mathematicians thought it would be fun. So the actual value of 𝑎⃗ ⋅ 𝑏⃗ is
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the magnitude of this new funky vector. That’s the idea behind the dot product, but you’re not
able to use this for any equations yet, so what are some mathematical ways of calculating it?

𝑎⃗ ⋅ 𝑏⃗ = |𝑎⃗||𝑏⃗| cos𝜃 (1.1)

𝑎⃗ ⋅ 𝑏⃗ = (𝑎1)(𝑏1) + (𝑎2)(𝑏2) + (𝑎3)(𝑏3) (1.2)

To be clear, 𝜃 is the angle between the two vectors, and a1, a2, a3 are the components of
vector 𝑎⃗.

1.2.1. Geometric Interpretation of the Dot Product
It’s useful to relate the dot product to the cosine law. And it’s very important to have an under-
standing of this relation.

a

b

a−
b

𝜃

If we imagine this as a triangle we can use the cosine law:

|𝑎 − 𝑏|ኼ = |𝑎|ኼ + |𝑏|ኼ − 2|𝑎||𝑏|𝑐𝑜𝑠𝜃

If you remember, the magnitude of a vector squared is the same as the dot product of the
vector multiplied by itself.

|𝑎 − 𝑏|ኼ = (𝑎 − 𝑏) ⋅ (𝑎 − 𝑏)
|𝑎 − 𝑏|ኼ = (𝑎 ⋅ 𝑎) − 2𝑎 ⋅ 𝑏 + (𝑏 ⋅ 𝑏)
|𝑎 − 𝑏|ኼ = |𝑎|ኼ + |𝑏|ኼ − 2𝑎 ⋅ 𝑏

Combining these equations, for the magnitude of a vector due to a dot product, and the side
of a triangle due to the cosine law, we find that

2𝑎 ⋅ 𝑏 = 2|𝑎||𝑏|𝑐𝑜𝑠𝜃

𝑎 ⋅ 𝑏 = |𝑎||𝑏|𝑐𝑜𝑠𝜃



4 1. Vectors

1.2.2. Uses for the Dot Product
One thing I never really understood when doing all of this, is that it’s not really explained as
to what the Dot Product is exactly, or why it’s useful. As it turns out, it’s just another one of
those intermediary things that mathematicians made up so that they can get to a useful end
point. For us engineers though, it’s mainly useful for calculating the angle between vectors,
calculating something like work done, or finding out if two vectors are perpendicular to one
another. If the dot product of two vectors is zero, that means they are perpendicular to one
another. Just imagine, trying to multiply 𝑏⃗ in the direction of 𝑎⃗. It’s not gonna work.

𝚤

𝚥

a

b

Now, to find the angle between two vectors we’re combining equations (1.1) and (1.2) to
make;

𝜃 = arccos
(𝑎1)(𝑏1) + (𝑎2)(𝑏2) + (𝑎3)(𝑏3)

|𝑎⃗||𝑏⃗|
(1.3)

Projection
Another use for the dot product is projection. What’s projection? Well, is basically like looking
perpendicular to vector 𝑎⃗ and seeing what vector 𝑏⃗ looks like from this new viewpoint. Does
that make sense? I don’t know, look at this diagram:

𝚤

𝚥

a

b

Basically, we’re trying to find how far along vector 𝑎⃗, vector 𝑏⃗ is. In the diagram you can
see that there’s a right angle triangle formed by 𝑏⃗, the dashed line perpendicular to 𝑎⃗, and 𝑎⃗
where 𝑏⃗ is the hypotenuse. If you remember anything from secondary school trig, you know
that finding a side of a triangle with the hypotenuse is as easy as multiplying by the cosine of
the angle in between. Or quite simply put: 𝑃𝑟𝑜𝑗ፚ𝑏 = |𝑏|𝑐𝑜𝑠𝜃 Now recall that 𝑎⃗ ⋅ 𝑏⃗ = |𝑎||𝑏|𝑐𝑜𝑠𝜃
and you can substitute this in to the previous equation giving you:

𝑃𝑟𝑜𝑗ፚ𝑏 =
|𝑎||𝑏|𝑐𝑜𝑠𝜃

|𝑎| = 𝑎⃗ ⋅ 𝑏⃗
|𝑎| (1.4)

This tells you the magnitude of 𝑏⃗ that goes in the direction of 𝑎⃗. But what if you want it as
a vector and not just a magnitude?
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𝚤

𝚥

a

b

b on a
In that case you need to multiply the magnitude (which we already calculated in equation

(1.4)), by a unit vector in the direction of 𝑎⃗. Which is just ፚ⃗
|ፚ| . This then gives us the orthogonal

projection of 𝑏⃗ onto 𝑎⃗ or in mathematical terms:

𝑃𝑟𝑜𝑗ፚ𝑏 =
𝑎⃗ ⋅ 𝑏⃗
|𝑎|

𝑎⃗
|𝑎| =

𝑎⃗ ⋅ 𝑏⃗
|𝑎|ኼ 𝑎⃗ (1.5)
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1.3. The Cross Product
The cross product is the other way of multiplying vectors. Unlike the dot product this actually
does result in a vector, but not in a way that is intuitive at all, oh no, it makes a vector that is
perpendicular to both vectors. Why? Because convention. To find the magnitude of the cross
product, think of it the same way you find the area of a parallelogram. Multiply the base, by the
perpendicular height, easy! Well, kinda, the two vectors don’t define the perpendicular height
and base, instead they define two sides of a parallelogram.

But we can deal with this, set one of the vectors to be base (remember, reference sys-
tems, we can manipulate the vectors however we want). Now to find the perpendicular height
of the parallelogram we take the other vector, and find its 𝚥ᖣ component. Which, if you imagine
it as the hypotenuse of a right angle triangle is just the sin of the angle between the vectors (𝜃).

𝚤ᖣ

𝚥ᖣ

a

b

The area of this parallelogram is the just magnitude of the cross product, or if you’d like
just remember this equation:

|𝑎⃗ × 𝑏⃗| = |𝑎⃗||𝑏⃗| sin𝜃 (1.6)

Remember, there’s more to the cross product than just the magnitude, so now we need to
find the direction of the resulting vector. It’s perpendicular to the two vectors 𝑎⃗ and 𝑏⃗ but in
which direction? Once again it comes back to convention. Going by the right hand rule - I
hope for your own sake that you already understand that - imagine the three positive axes,
assume 𝑎⃗ and 𝑏⃗ are on the X,Y plane, then the cross product will be in the Z direction. If the
cross product is positive, it’ll be in the positive direction, if it’s negative, it’ll be in the negative
direction.

𝚤
𝚥

𝑘⃗

𝑎⃗

𝑏⃗

𝑏⃗ × 𝑎⃗

But now hold on here’s something fun to keep in mind, the cross product is NOT commu-
tative, so while the magnitude won’t change, the direction will. Or in mathematical terms:

𝑎⃗ × 𝑏⃗ = −𝑏⃗ × 𝑎⃗ (1.7)
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The Amsterdam Method
There are a lot of ways of calculating the actual vector result of a cross product, but you only
really need to know one. I use the Amsterdam method because it’s wildly easier than anything
else I’ve seen so far, but it goes like this: write out the components of the vectors, vertically,
twice. Strike out the top and bottom lines. Draw in 3 crosses (these will show you what to
multiply to get the new components).

Start with the first cross. Multiply the numbers, as shown by the cross, then subtract them
as shown. This gives you the 𝚤 component, then do the same for the other crosses to get
the other components, giving you the result below. It looks complicated, but it’s actually very
simple, give it a go with some sample numbers yourself.

𝑎⃗ × 𝑏⃗ = [
(𝑎2𝑏3) − (𝑎3𝑏2)
(𝑎3𝑏1) − (𝑎1𝑏3)
(𝑎1𝑏2) − (𝑎2𝑏1)

]

(1.8)

⟨1, 2, 3⟩ × ⟨3, 2, 1⟩ = [
(2 ∗ 1) − (3 ∗ 2)
(3 ∗ 3) − (1 ∗ 1)
(1 ∗ 2) − (2 ∗ 3)

] = [
2 − 6
9 − 1
2 − 6

] = [
−4
8
−4
]
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1.3.1. Uses For the Cross Product
So, the cross product is also a lot like the dot product, in that it’s completely made up. But

unlike the dot product there are some more useful, and obvious uses for the cross product.
For instance, calculating torque. As you might remember from secondary school, torque on
something depends on the magnitude of force applied, and the distance between the point of
application and the axis of rotation.

If you went to a school similar to mine, you were told that torque is equal to the force ap-
plied times the perpendicular distance to the axis of rotation. This is correct, but oftentimes
you have to do trigonometry to find out what the perpendicular distance is. And no-one wants
to do unnecessary trig. The simple solution is to use the cross product.

𝑋

𝑌

r

F

In this diagram ”r” is the radius of rotation and ”F” is the force applied. This is the convention
used everywhere so get used to it. Imagine you’re pushing a door open by the handle; ”r” is
the distance from the handle to the hinges. The angle 𝜃 is the angle between your arm and
the door, and in this case, is represented by ”F”. Intuitively, you know that it’s easier to open a
door by the handle than near the hinges. This clearly shows that more torque is made when
you’re farther from the axis of rotation, even with the same applied force.

To get a feel for how the angle impacts the torque generated, imagine the extreme cases.
Pushing perpendicular to the door will be easy and will generate the most torque possible, and
pushing in line with the door will have you looking like an idiot, as the door won’t budge. Here
you can see how the cross product plays into this, the magnitude of the cross product is the
parallelogram show in the diagram above, when the vectors are perpendicular, the torque is
maximised, and when they’re aligned the torque is zero.

𝑇 = 𝑟 × 𝐹 (1.9)

This shows us the magnitude of the torque, but isn’t the cross product a vector? It is! As
you remember, the cross product gives us a vector in either the positive or negative direction.
If it’s positive, the torque is anticlockwise, and if it’s negative, then it’s clockwise. Because
of this, it’s very important that you don’t mix up the order of 𝑟 × 𝐹, if you write it the wrong
way around, you’ll have it rotating in the wrong direction. Consequently, torque is frequently
represented by a vector in diagrams, rather than the usual curved arrow you’re probably used
to from secondary school.
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Finding area of a Triangle:
See, sometimes you want to find the area of a triangle when given coordinates in 3D space.

Why? well think of how computer models work, they’re all just lots and lots of tiny triangles,
building up a polyhedron. Anyway, if you have the coordinates of the 3 vertices the first step
is to make two position vectors from them.

𝑋

𝑌

|𝐴𝐵|

|𝐴
𝐶|

These vectors go from point 𝐴 to points 𝐵 and 𝐶. Obviously. If you get the magnitude of
the cross product of these vectors you will get the area of a parallelogram spanned by these
vectors. But if you have a basic understanding of geometry, you’ll know that a parallelogram
is just two triangles. So then you can just divide the area of the parallelogram in half to get the
area of the given triangle.

𝑋

𝑌

|𝐴𝐵|

|𝐴
𝐶|
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Scalar Triple Product:
The Scalar Triple Product is a fun one. This describes the volume of a parallelepiped

spanned by 3 vectors. What is a parallelepiped (aside from being hard to spell)? It’s basi-
cally just a cuboid that has been squished a bit. The Cross product gives you the area of a
parallelogram, and then the dot product gives you the area of the parallelogram multiplied up,
in the direction of the other vector.

𝑎⃗ ⋅ (𝑏⃗ × 𝑐) = (𝑎⃗ × 𝑏⃗) ⋅ 𝑐 (1.10)

You can also use the scalar triple product to find if 3 vectors are co-planar. Any 2 vectors
will define a plane, but the question is if all 3 lie on the same plane. If the scalar triple product
is equal to 0, then they are co planar. Imagine the volume of a parallelepiped where all edges
were in the same plane. It would have a volume of 0.

If you want a more mathematical interpretation of it, recall that the cross product of two
vectors is perpendicular to both of them, so (𝑏×𝑐) would be perpendicular to the plane defined
by 𝑏⃗ and 𝑐. And also recall that the dot product of two perpendicular vectors is 0. So if 𝑎⃗ is on
this plane, it must be perpendicular to (𝑏 × 𝑐). And Thus; 𝑎 ⋅ (𝑏 × 𝑐) = 0
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1.4. Useful Things for the Exam
So I’ve gone over the fundamentals of vectors and the dot product, and the cross product, but
there’s a few more things you need to keep in mind before the exam. These are all fairly self
explanatory but you mightn’t think of them on the day of the exam.

𝑎⃗ ⋅ (𝑏⃗ + 𝑐) = 𝑎⃗ ⋅ 𝑏⃗ + 𝑎⃗ ⋅ 𝑏⃗ (1.11)

𝑎⃗ ⋅ (𝜆𝑏⃗) = (𝜆𝑎⃗) ⋅ 𝑏⃗ = 𝜆(𝑎⃗ ⋅ 𝑏⃗) (1.12)

Where 𝜆 is a scalar.

𝑎⃗ ⋅ 𝑎⃗ = |𝑎⃗|ኼ (1.13)

𝜆𝑎⃗ × 𝑏⃗ = 𝜆(𝑎⃗ × 𝑏) = 𝑎⃗ × 𝜆𝑏⃗ (1.14)

𝑎⃗ × (𝑏⃗ + 𝑐) = (𝑎⃗ × 𝑏⃗) + (𝑎⃗ × 𝑐) (1.15)

𝑎⃗ × (𝑏⃗ × 𝑐) = (𝑎⃗ ⋅ 𝑐)𝑏⃗ − (𝑎⃗ ⋅ 𝑏⃗)𝑐 (1.16)



2
Functions

2.1. The Basics
So you may be asking, ”why the hell do we need to go over the basics of functions in Uni?”.
Well it’s because you probably have a grasp and understanding of what a function is, but
it’s not clear and precise enough for what we’ll be doing. A function is something that maps
something onto one other thing. That’s a very basic sentence, but it’s important not to get
locked into thinking that a function is just a mathematical expression with a variable in it.
That’s a function for sure, and it’s what we encounter most often, but that’s not all functions.

You can have functions that exist in multiple segments, for instance:

𝑓(𝑥) = {𝑥
ኼ for 𝑥 ≤ 3
𝑥ኻ.኿ for 𝑥 < 3

This is very clearly a function. Because it fulfils the requirements of mapping values onto new
values. Note how it only maps onto one value for each input. A function only has one output
for each input. So 𝑦 = ±𝑥ኼ is absolutely not a function. Because it maps from one input to
two outputs. However, this doesn’t mean that two inputs can’t map to the same output. Like
𝑦 = 𝑥ኼ here we see that −𝑥 and 𝑥 both result in the same output.

It’s important to know the terminology for talking about functions because you’ll hear peo-
ple talk about functions and not understand what they’re telling you, and you’ll look stupid in
front of all of your friends. Which would be awful.

-Domain: This is the set of values that are your inputs. In a mathematical function, you
can set this to be whatever you want, Reals, Integers, whatever.
-Co-Domain: This is the set of all possible outcomes.
-Range: This however, is the set of all of the actual outcomes of a function.

12



2.2. Bijective Functions 13

Figure 2.1: Domain, Range, Codomain

2.2. Bijective Functions
2.2.1. Injective Functions
Here we’re going to look at a specific type of function, known as an injective function. In this
case, all of the values in the range only have one value mapped to it. This is the case for the
function seen above, and for all linear functions, but it’s not true for 𝑦 = 𝑥ኼ. Because take for
example 4; this is in the range, but it is mapped to by both −2 & 2. You can visualise these by
imagining a graph of the full function, and drawing a horizontal line at a random point. if you
can draw a horizontal line somewhere, anywhere on the graph that cuts the function at two
points, then it’s not injective.

Figure 2.2: The Horizontal test of Injectivity
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2.2.2. Surjective Functions
Surjective and injective functions are not mutually exclusive. Finding out if a function is injec-
tive or not tells you nothing about its surjectivity. A surjective function is one where the range
and the co-domain are the same. That is, every possible outcome, has an input mapped to
it. To do the Horizontal test for surjectivity, make sure that you can draw a horizontal line any-
where on the graph and have it cut the function at least once.

A Bijective function is both injective and surjective.

2.3. Inverse Functions
Inverse functions are pretty self explanatory, instead of having 𝑦 in terms of 𝑥 you just flip the
equation and have 𝑥 in therms of 𝑦. Really quite easy to understand. You can even imagine
an inverse function as being a mirror around the line 𝑦 = 𝑥 The only thing you need to keep
in mind is that you can only make an inverse function of a bijective function.

Think about it. Imagine trying to get the inverse of a function that isn’t injective. You end
up with something with that gives two outputs from the same input. And that wouldn’t be
a function, remember, unique outputs only. You can’t have an inverse function of 𝑦 = 𝑥ኼ
because the inverse of that would be 𝑥 = ±√𝑦. You can however apply a window or a frame
to the graph (I don’t actually know what the correct terminology is but, shush) If you limit the
codomain to be positive values only, well then bam! You’ve got 𝑥 = √𝑦 and you’re all good.

0 2 4 6 8 10
0

1

2

3

𝑦

𝑥

Now imagine you’re trying to make an inverse function of something that isn’t surjective.
This one is very easy to understand. if the codomain has something that isn’t mapped to it,
then the inverse of the function will have a value in the domain, that isn’t mapped to anywhere.
And a functions only job is to map all the values in the domain to other values.
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2.4. Useful Things for the Exam
It’s important to know that for inverse trigonometric functions, we also apply a domain to the

functions. That’s because if you look at the functions over the domain (-∞,∞) they won’t be
bijective. To combat this we have the domains:

𝑦 = arcsin(𝑥) ⇔ sin(𝑦) = 𝑥
with ዅ᎝

ኼ ≤ 𝑦 ≤ ᎝
ኼ

𝑦 = arccos(𝑥) ⇔ cos(𝑦) = 𝑥
with 0 ≤ 𝑦 ≤ 𝜋

𝑦 = arctan(𝑥) ⇔ tan(𝑦) = 𝑥
with ዅ᎝

ኼ < 𝑦 < ᎝
ኼ

Note: Pay attention to the signs. tan is undefined for ᎝ኼ etc.



3
Limits

3.1. The Basics
3.1.1. What is a Limit?
Good question. It’s basically trying to figure out what 𝑓(𝑥) is at 𝑎 based on the trend of the
function as you get close to 𝑎. Why? It’s because sometimes you can’t actually find a defined
value for 𝑎. This is what we call ”undefined”, but limits can be applied to any function, take for
example 𝑓(𝑥) = 𝑥 + 1 This is a really simple linear function, for which no standard input gives
an undefined output.

What if we try to answer the question: ”What is the limit of 𝑓(𝑥) as 𝑥 approaches 1”. A
good way to get an intuitive understanding of limits is with the use of a graph. Looking at the
graph below, You can clearly see, that as 𝑥 nears 1, 𝑓(𝑥) is getting closer and closer to 2. This
is true from both directions. Thus we can say lim፱→ኻ 𝑓(𝑥) = 2

1 2 3 4 5

2

3

4

5

6

𝑥

𝑓(𝑥)

3.1.2. Directional Limits
In the previous section we saw how we find a limit as 𝑥 approaches 𝑎. But what do we mean
by ”approaches” anyway? Does that mean we get close to 𝑎 from the negative side or the
positive side? It’s actually both. See, not all functions are continuous, so a function only has
a limit if 𝑓(𝑥) approaches the same value from both sides of 𝑎.

16
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Take for example the function 𝑓(𝑥) = ፱
|፱| . This is a perfect opportunity for a limit, because

at 𝑥 = 0, 𝑓(𝑥) is undefined.

−3 −2 −1 1 2 3

−2

−1

1

2

𝑥

𝑓(𝑥)

If we start approaching 𝑥 = 0 from the negative side (the left side), it seems pretty obvious
that the limit is going to be lim፱→ኺ 𝑓(𝑥) = −1. What about when we approach from the positive
side (the right side)? Well in that case we end up with the obvious case that lim፱→ኺ 𝑓(𝑥) = 1.
I hope I don’t need to explain that doesn’t make sense because −1 ≠ 1. Clearly in this case
the limit does not exist.

In cases like this we can specify limits of a function from a specific direction. For example, if
we want the limit as we approach 𝑥 = 0 from the negative side we’d write: lim፱→ኺᎽ 𝑓(𝑥) = −1
and similarly for the positive side: lim፱→ኺᎼ 𝑓(𝑥) = 1.

Only when these two limits are equal can we say that lim፱→ፚ exists.

3.2. The Squeeze Theorem

Don’t you love it when mathematicians name things something funny? In the squeeze the-
orem we imagine that 𝑓(𝑥) -the function we’re trying to find the limit of- is being squeezed
between two limits 𝑔(𝑥), ℎ(𝑥). We need to make certain that 𝑔(𝑥) is always less than or equal
to the value of 𝑓(𝑥), and that ℎ(𝑥) is always greater than or equal to the value of 𝑓(𝑥). Such
that:

𝑔(𝑥) ≤ 𝑓(𝑥) ≤ ℎ(𝑥)

for the relevant interval.
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−3 −2 −1 1 2 3

−2

−1

1

2

𝑥

𝑦

This is an extremely simple example, and there’s no way you’d use the squeeze theorem for
this in real life, but it explains the concepts simply. The limits of the two polynomial functions
are the same at 𝑥 = 0, and because 𝑓(𝑥) is always between these two functions (over the
relevant interval), the limit of 𝑓(𝑥) must also be the same.

lim
፱→ፚ

𝑔(𝑥) = 𝐿 = lim
፱→ፚ

ℎ(𝑥)

∴ lim
፱→ፚ

𝑓(𝑥) = 𝐿

This also applies for limits at infinity! Just find two functions that trend towards a single value
for 𝑥 → ∞, and then you’ll get a limit (if there is one) for the function you’re analysing.

3.3. Continuity
It’s very important that you understand continuity. We say that a function is continuous at

𝑥 = 𝑎 if the limit is equal to 𝑓(𝑎). Think about that. This lets us know that there is no ”break” in
the function at 𝑎. A limit is what we expect the output of 𝑓(𝑎) to be, and if these are equal, then
the function acts as we expect. This is continuity at a point. We can also say that a function
is continuous from left, if lim፱→ፚᎽ 𝑓(𝑥) = 𝑓(𝑎). The same can be said for continuity from the
right. Continuity over an interval is just that, the function is continuous at every point over a
specified interval.

Something that was covered in class but not fully explain was the idea that a function can
be continuous even if it’s undefined for a part of the domain. That’s seems counter intuitive,
but it makes sense when you look at a graph.
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0.5 1 1.5 2

0.5

1

1.5

2

𝑥

𝑦

In the graph you can see that, over the domain of the graph, it’s got a definite output. just
once you go below 𝑥 = 1 the function doesn’t make sense. So it’s a continuous function, it
doesn’t break anywhere along the graph, it just has a lower bound.

3.4. L’Hospital
L’Hospital’s rule is a simple way of getting a limit of a function that is composed of two other
functions. Or written in mathematical terms:

lim
፱→ፚ

𝑓(𝑥)
𝑔(𝑥) = lim

፱→ፚ
𝑓ᖣ(𝑥)
𝑔ᖣ(𝑥) (3.1)

This is useful when the fraction is undefined, be that because it goes to ኺ
ኺ or . It’s just another

tool to add to your toolbox. The reason it works is that as you zoom in to a point, you can
linearise the function and it will be close enough to the real thing. And if you recall, a differ-
entiation is taking a tangent at a point of a function. But what about the constants? Don’t you
lose them when you differentiate? Yes, yes you do, however l’Hospital’s rule only works when
𝑓(𝑥) and 𝑔(𝑥) are converging at the same point, so the ratio of the slopes is all that matters.
There are a number of proofs for this, but all you really need to know is that we differentiate
to get an approximation of a function at a point. That’s basically all there is to it, at least that’s
all there is to it in this course.

3.4.1. Using 𝑒 as a limit
Euler’s number 𝑒 is defined as: 𝑦 = 𝑒፱ having a slope of 1 at (0,1), thus:

𝑒 = lim
፱→ኺ

(1 + 𝑥)
Ꮃ
ᑩ (3.2)

This is handy and we can substitute this into a lot of equations to find the limits in terms of e.
Also recall that 𝑤 = ኻ

፱ for 𝑥 →⇔ 𝑤 → 0, for instance:

𝑒 = lim
፰→
(1 + 1

𝑤)
፰

or
𝑒ኼ = lim

፱→ኺ
(1 + 2𝑥)

Ꮃ
ᑩ
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3.5. Useful Things for the Exam
There are a hand full of ways to find the limit of a function but some useful techniques include:

Factorising, eg:

lim
፱→ኼ

𝑥ኼ − 4
𝑥 − 2

lim
፱→ኼ

(𝑥 − 2)(𝑥 + 2)
𝑥 − 2

lim
፱→ኼ

𝑥 + 2
1

Rationalising, eg:

lim
፱→ኺ

√4 + 𝑥 − 2
𝑥

lim
፱→ኺ

(√4 + 𝑥 − 2)(√4 + 𝑥 + 2
) 𝑥(√4 + 𝑥 + 2)

lim
፱→ኺ

4 + 𝑥 − 4
𝑥(√4 + 𝑥 + 2)

lim
፱→ኺ

𝑥
𝑥(√4 + 𝑥 + 2)

lim
፱→ኺ

1
√4 + 𝑥 + 2



4
Differentiation

4.1. The Basics
For the purposes of this summary, I’m going to assume you have a reasonable understand-

ing of secondary school calculus. When we differentiate we’re trying to find the rate of change
of something, in a given instant. Which can be represented as the slope of a function at any
given point. Which is the slope of a line tangential to the function at a given point. there are
many ways to visualise it, but keep the core ideas in your head. We differentiate to find the
rate of change of something in a given instant.

Over the course of this subject we’ll look at a few funky ways of differentiating. The chain
rule, implicit differentiation, and differentials of inverse trigonometric functions. Let’s start at
the beginning with the chain rule.

4.2. The Chain Rule
Take the function 𝐹(𝑥) which is a composition of both 𝑓(𝑥) and 𝑔(𝑥) such that 𝐹(𝑥) =

𝑓(𝑔(𝑥)). If both 𝑓 and 𝑔 are differentiable at 𝑥 then we can say 𝐹 is also differentiable at 𝑥.

𝐹ᖣ(𝑥) = 𝑓ᖣ(𝑔(𝑥)) ∗ 𝑔ᖣ(𝑥) (4.1)

We can also look at a different notation to get a different understanding of how this works.
Good oul’ Leibniz’s got our back here. If we call 𝑦 = 𝑓(𝑢) and we call 𝑢 = 𝑔(𝑥). Then we can
show this:

𝑑𝑦
𝑑𝑥 =

𝑑𝑦
𝑑𝑢
𝑑𝑢
𝑑𝑥

Think of how we’re substituting in a different variable (𝑢) to make differentiating the function 𝑓
a standard differentiation. Then we just multiply by how 𝑢 changes with respect to 𝑥. This will
come back to be useful when we get to integration.

What does it mean to be differentiable? A function is differentiable when you can actually
find a single value for an input when you differentiate. Think back to our limits. A function only
has a limit when the limits from both sides of a point are equal. So, When we differentiate,
we are finding the slope of the function of a distance Δ𝑥, With this value being as small as
possible. So, for a function to be differentiable:

lim
ጂ፱→ኺᎽ

= lim
ጂ፱→ኺᎼ

Thus:
𝑓ᖣ(𝑥) = lim

ጂ፱→ኺ
𝑓(𝑥Δ𝑥) − 𝑓(𝑥)

Δ𝑥 (4.2)

21
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4.3. Implicit Differentiation
The next topic we look at in this course is Implicit differentiation. Which is when we differ-

entiate an implicit function. But what is an implicit function. An explicit function defines a strict
relationship between 𝑥 and 𝑦 (or whatever other variables you’re using), whereas an implicit
function just implies a relation between the two. The most obvious example that you probably
know of is a circle. It’s defined as 𝑥ኼ + 𝑦ኼ = 𝑟ኼ you can also put in the coordinates for the
location of the circle but that doesn’t matter here. We’re only trying to find the rate of change,
nothing more.

−4 −2 2 4

−4

−2

2

4

𝑥

𝑦

When we differentiate we’re seeing how 𝑦 changes with respect to 𝑥, hence the notation
፝፲
፝፱ . So using the logic we just got from the chain rule, we can pretend that 𝑦 is a function of 𝑥,
and the use the chain rule, to allow us to differentiate with respect to 𝑦, and then multiply by
፝፲
፝፱ . For example:

𝑑
𝑑𝑥 𝑥

ኼ + 𝑦ኼ = 25

2𝑥 + 2𝑦𝑑𝑦𝑑𝑥 = 0

2𝑦𝑑𝑦𝑑𝑥 = −2𝑥

𝑑𝑦
𝑑𝑥 =

−𝑥
𝑦

Essentially when we differentiate implicitly we have to keep in mind that 𝑦 changes with
respect to 𝑥, and then we apply the chain rule. Beyond that, it’s as simple as the example
above. But, it’s not like a normal function where the slope of the tangent line is given as a
function of just 𝑥, it’s usually given as a function of 𝑥 and 𝑦. So you need to find the tangent
at a specific coordinate.
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4.4. Inverse Trigonometric Differentials
In this section we’re going to take a look at the differentials of inverse trig functions. There
aren’t any new concepts to understand here, it’s just good to see how they’re derived.

Differentiating arcsin(x) Let’s start by assuming 𝑦 = arcsin 𝑥 Therefore 𝑥 = sin𝑦.
We can use the chain rule to get an expression for this:

𝑑
𝑑𝑥𝑥 =

𝑑
𝑑𝑥𝑠𝑖𝑛(𝑦)

On the left hand side, we’re differentiating 𝑥 which is a simple operation, but on the right, we
need to employ some implicit differentiation.

1 = cos𝑦𝑑𝑦𝑑𝑥

1
cos𝑦 =

𝑑𝑦
𝑑𝑥

This isn’t very useful though, because we want the derivative in terms of 𝑥 not 𝑦. If we can
get cos𝑦 in terms of sin𝑦 then we can just substitute 𝑥 back in. Looking at our trigonometric
identities we know that cosኼ 𝑦 + sinኼ 𝑦 = 1. Thus:

𝑑𝑦
𝑑𝑥 =

1

√1 − sinኼ 𝑦

𝑑𝑦
𝑑𝑥 =

1
√1 − 𝑥ኼ

Differentiating arccos(x) This is done in much the same way:

𝑦 = arccos 𝑥 ∴ 𝑥 = cos𝑦

𝑑
𝑑𝑥𝑥 =

𝑑
𝑑𝑥 cos𝑦

1 = − sin𝑦𝑑𝑦𝑑𝑥

−1
sin𝑦 =

𝑑𝑦
𝑑𝑥

−1
√1 − cosኼ 𝑦

−1
√1 − 𝑥ኼ
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Differentiating arctan(x) We begin, as usual, by defining 𝑥 = tan𝑦

𝑑
𝑑𝑥𝑥 =

𝑑
𝑑𝑥 tan𝑦

1 = 1
cosኼ 𝑦

𝑑𝑦
𝑑𝑥

𝑑𝑦
𝑑𝑥 = cosኼ 𝑦

Defining cosኼ 𝑦 in terms of tan𝑦 is a bit tricky, But lets divide by 1 = cosኼ 𝑦 + sinኼ 𝑦

𝑑𝑦
𝑑𝑥 =

cosኼ 𝑦
cosኼ 𝑦 + sinኼ 𝑦

Cancel out cosኼ 𝑦
𝑑𝑦
𝑑𝑥 =

1
1 + sinᎴ ፲

cosᎴ ፲

𝑑𝑦
𝑑𝑥 =

1
1 + tanኼ 𝑦

𝑑𝑦
𝑑𝑥 =

1
1 + 𝑥ኼ

4.4.1. Useful things to remember
The derivations above are important to understand, but you don’t need to remember them line
for line in the exam. Instead you should be familiar with them, and instead memorise these
relations below:

𝑑
𝑑𝑥 arcsin

𝑥
𝑎 =

𝑥ᖣ

√𝑎ኼ − 𝑥ኼ
(4.3)

𝑑
𝑑𝑥 arccos

𝑥
𝑎 =

−𝑥ᖣ

√𝑎ኼ − 𝑥ኼ
(4.4)

𝑑
𝑑𝑥 arctan

𝑥
𝑎 =

𝑎𝑥ᖣ
𝑎ኼ + 𝑥ኼ (4.5)
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4.5. Linear Approximations
In any function you can pick a point and draw a tangent line at that point. This line will have

a simple linear function in the form 𝑦 = 𝑚𝑥+ 𝑐 If you’re dealing with values close to this point,
the linear function will result in a value close enough to what the real function is. Thus we can
approximate a function with a ”Linear Approximation”

𝐿(𝑥) = 𝑓(𝑎) + 𝑓ᖣ(𝑎)(𝑥 − 𝑎) (4.6)

Here we can see the components and their roles;

• 𝑓(𝑎) gives us the point where we draw the tangent

• 𝑓ᖣ(𝑎) gives us the slope of the tangent

• (𝑥 − 𝑎) gives us the distance from the tangent point.

We combine these as shown because the at 𝑎 we have the correct point, then as we move
along the line we just multiply by the slope, as with any linear function. Take for example the
function ኻ

፱ዅኻ

−4 −2 2 4

−4

−2

2

4

𝑥

𝑦

See in the above graph I’ve drawn a line tangential to the function. This is The tangent line
𝐿(𝑥), at point 𝑥 = −0.5. We can use this to approximate the value of 𝑓(𝑥) in a region close to
𝑥 = −0.5.

4.5.1. Applications
You’ll find many uses for linearisation over the course of your career, but for this course in

particular you should know how to use linearisation to find the approximate square root of a
number, and the approximate decimalisation of a fraction. For the sake of simplicity, I’m just
going to use two examples:

Square roots For example, if we want to find the approximate value of √63.6. Firstly we
define the function 𝑓(𝑥) = √𝑥, then we can find recall equation 4.6 to get a linearisation at
𝑥 = 64

𝐿(𝑥) = 𝑓(𝑎) + 𝑓ᖣ(𝑎)(𝑥 − 𝑎)

𝐿(𝑥) = √𝑎 +
1
2√𝑎

(𝑥 − 𝑎)

𝐿(𝑥) = √64 + 1
2√64

(𝑥 − 64)
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And because we’re trying to approximate 𝑥 = 63.6, we can just substitute that in here to
get:

𝐿(𝑥) = √64 + 1
2√64

(63.6 − 64) = 7.974

Decimals Getting decimals for weird fractions is difficult to do without a calculator but if we
turn it into a function we can get there. Say we want to write ኻ

ኻኺኻ in decimals, well, we can do
that in a similar process. I’m going to define 𝑓(𝑥) = 1/𝑥 and then work from there:

𝐿(𝑥) = 𝑓(𝑎) + 𝑓ᖣ(𝑎)(𝑥 − 𝑎)

𝐿(𝑥) = 𝑓(100) + 𝑓ᖣ(100)(𝑥 − 100)

𝐿(𝑥) = 0.01 + −1
100ኼ (𝑥 − 100)

And we’re finding the approximation for 𝑥 = 101 so we can substitute in 𝑥.

𝐿(𝑥) = 0.01 − 0.0001(101 − 100) = 0.0099
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4.6. Differentials
A differential is, the change of something, and the rate of change of one thing, with respect

to another is what we find when we differentiate. We find, for instance, ፝፲፝፱ , 𝑑𝑦 or 𝑑𝑥 in this
case, is a differential. For example, Find the differential of 𝑦 where:

𝑦 = 𝑥ኼ

A simple equation yes, and differentiating it is also simple. But we don’t want the slope of the
tangent, or the rate of change, we want the differential of 𝑦.

𝑑𝑦
𝑑𝑥 = 2𝑥

𝑑𝑦 = 2𝑥 ∗ 𝑑𝑥
We can use this for finding a discrete change in something. For example, (this example

taken from the lectures) what if we want to find the volume increase in a sphere, needed to
make the radius change by 0.1cm. When the starting radius is 10cm. Well, we know that
𝑉 = ኾ

ኽ𝜋𝑟
ኽ, and we know 𝑑𝑟 = 0.1.We can differentiate to get:

𝑑𝑉
𝑑𝑟 = 4𝜋𝑟

ኼ

𝑑𝑉 = 4𝜋𝑟ኼ𝑑𝑟
Thus, we can now substitute in the known values to find the change in volume (𝑑𝑉) needed.

𝑑𝑉 = 4𝜋(10)ኼ(0.1) = 40𝜋

. This same logic can be applied across a number of problems, such as finding the error in
certain things. It’s good to remember that the relative error in something is ፝፱

፱ , or whatever
variable you’re using.



5
Hyperbolic Functions

5.1. The Basics
Hyperbolic functions are similar to trigonometric functions in that you can use them to trace

out a shape. With trigonometric functions you can trace out a circle with a Pythagorean rela-
tionship:

cosኼ 𝑥 + sinኼ 𝑥 = 1 (5.1)

This defines the unit circle. They hyperbolic functions trace out the shape of a hyperbola with
the following relationship:

coshኼ 1 − sinhኼ 𝑥 = 1 (5.2)

They are defined as follows:

sinh 𝑥 = 𝑒፱ − 𝑒ዅ፱
2 (5.3)

cosh 𝑥 = 𝑒፱ + 𝑒ዅ፱
2 (5.4)

tanh 𝑥 = sinh 𝑥
cosh 𝑥 =

𝑒፱ − 𝑒ዅ፱
𝑒፱ + 𝑒ዅ፱ (5.5)

Useful rules to keep in mind:

• sinh 𝑥 = sinh−𝑥

• cosh 𝑥 = cosh−𝑥

• coshኼ 1 − sinhኼ 𝑥 = 1

• sinh 𝑥 + 𝑦 = sinh 𝑥 cosh 𝑥 + sinh𝑦 cosh𝑦

• cosh 𝑥 + 𝑦 = sinh 𝑥 sinh𝑦 + cosh 𝑥 cosh𝑦

• ፝
፝፱ cosh 𝑥 = sinh 𝑥

You can prove these relations by writing them out the long way and doing some algebra, but
just. Keep this in mind. Also pay attention to the inverse hyperbolic equations, and their
derivatives.

• 𝑎𝑟𝑐 sinh 𝑥 = ln (𝑥 + √𝑥ኼ + 1)

• 𝑎𝑟𝑐 cosh 𝑥 = ln (𝑥 + √𝑥ኼ − 1)

• 𝑎𝑟𝑐 tanh 𝑥 = ኻ
ኼ ln

ኻዄ፱
ኻዅ፱

28



6
Integration

6.1. The Basics
6.1.1. Riemann Sum
There are multiple ways of interpreting integration, but in this course we will go with the

geometric interpretation. That is, that the integration of a function is equal to the area enclosed
by the graph of the function and the 𝑥 axis. Let’s calculate this with what we call a Riemann
Sum.

Figure 6.1: A Riemann Sum of a Function

What we see in the figure above, is the approximate area ”under the graph” we find this
by setting boundaries on the domain of the graph [𝑎, 𝑏]. We then divide this into small sub
elements. In each sub interval we pick a point 𝑥∗። . We use these points to evaluate 𝑦 = 𝑓(𝑥∗። ),
this gives us the height of the rectangles. The area of which is equal to the width by the height;
(𝑥∗።ዄኻ − 𝑥∗። )(𝑓(𝑥∗። )). And so the integral is roughly:

Σ(𝑓(𝑥∗። ))(𝑥∗።ዄኻ − 𝑥∗። )

This isn’t totally accurate, of course, so to make it more accurate we reduce the with of the
rectangles and ”increase the resolution”, ∴ make (𝑥∗።ዄኻ − 𝑥∗። ) smaller.

(𝑥∗።ዄኻ − 𝑥∗። ) = Δ𝑥

If we say that we have 𝑛 sub intervals, we can say:

𝑏 − 𝑎
𝑛 = Δ𝑥

29
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∴ 𝐴 =
፧

∑
።዆ኺ
𝑓(𝑥∗። )Δ𝑥

If we want to get as precise as we possible can, we must take a limit of Δ𝑥 going to 0.

lim
ጂ፱→ኺ

፧

∑
።዆ኺ
𝑓(𝑥∗። )Δ𝑥

= ∫
፛

ፚ
𝑓(𝑥)𝑑𝑥

We say that an integral is the ”area under the graph” but that’s not totally correct. It’s the area
enclosed by the function and the 𝑥 axis. If the function becomes negative, this then results in
a ”negative area”, so the integral the positive area enclosed by the graph, plus the negative
area. but the area enclosed, is the positive area, minus the negative area.

6.1.2. The Fundamental Theorem of Calculus
The fundamental theorem of calculus comes in two parts. The first part is:

𝑑
𝑑𝑥 ∫

፱

ፚ
𝑓(𝑥)𝑑𝑥 = 𝑓(𝑥) (6.1)

The second part is:

∫
፛

ፚ
𝑓(𝑥)𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎) (6.2)

Let’s look at these in more detail, The first part (6.1) says that the integral of a function, and
the differential of a function are essentially opposite. Keep in mind that when you integrate
you get a constant of integration 𝐶, but differentiating a constant gives you 0 so you’re fine.
Note this only holds true for continuous functions over an interval.

The second part requires us to define 𝐹(𝑥), this is what we call the primitive function or more
commonly, the Anti-derivative. Where

∫𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝐶

, and
𝑑
𝑑𝑥𝐹(𝑥) = 𝑓(𝑥)

. 𝐹(𝑎) then, is the area under the graph, up to the point 𝑥 = 𝑎, and so on. It only makes
sense then that the area between point 𝑎 and 𝑏 is the difference between 𝐹(𝑏) and 𝐹(𝑎). If
we have an indefinite integral, where we don’t have boundaries, we then just add a constant
of integration ”C” to account for the unknown area.
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6.2. U Substitution
There are a number of tricks to help integrate, usually based on common differentiation rules.

First and foremost is the substitution rule, or as I have been calling it for years; U substitution.
This comes from the the chain rule, but backwards. Recall the chain rule:

𝑑
𝑑𝑥𝐹(𝑔(𝑥))

= 𝐹ᖣ(𝑔(𝑥))𝑔ᖣ(𝑥)
= 𝑓(𝑔(𝑥))𝑔ᖣ(𝑥)

What you can do if you find a function like this is write it out, identify a function of 𝑥 and it’s
derivative, and substitute for 𝑢. For example:

∫𝑓(𝑔(𝑥))𝑔ᖣ(𝑥)𝑑𝑥

𝑢 = 𝑔(𝑥) 𝑑𝑢
𝑑𝑥 = 𝑔

ᖣ(𝑥)

= ∫𝑓(𝑢)𝑑𝑢𝑑𝑥𝑑𝑥

= ∫𝑓(𝑢)𝑑𝑢
= 𝐹(𝑢) = 𝐹(𝑔(𝑥))

Essentially, that’s it. That’s all there is to U substitution. but there are few things to deal
with if you want to use this often. You can manipulate the equation to put ፝፮፝፱ into it, that could
include things like, multiplying by 1, in the form of ፙፙ , just so long as you don’t change the value
of anything.

Note that when you’re integrating with limits, you must change the values as well. This is
because the limits are ”integrate between 𝑥 = 𝑎 and 𝑥 = 𝑏”, so now that we’re integrating with
respect to 𝑢, we must change the limits to be when 𝑢 is 𝑐 and 𝑑. As 𝑢 is a function of 𝑥, just
change the limits to 𝑢(𝑎) and 𝑢(𝑏). Then integrate as normal.

This is all simple in theory, but you’ll need to do a lot of practice to be able to recognise when
to use it. so to give you an example I’ll do an integration:

∫𝑥ኼ(𝑥 + 1)ኼኺ𝑑𝑥

𝑢 = (𝑥 + 1) 𝑑𝑢
𝑑𝑥 = 1 𝑥ኼ = (𝑢 − 1)ኼ

= ∫(𝑢 − 1)ኼ𝑢ኼኺ𝑑𝑢

= ∫(𝑢ኼ + 2𝑢 + 1)𝑢ኼኺ𝑑𝑢

= ∫𝑢ኼኼ + 2𝑢ኼኻ + 𝑢ኼኺ𝑑𝑢

= 1
23𝑢

ኼኽ + 1
222𝑢

ኼኼ + 1
21𝑢

ኼኻ + 𝐶

= 1
23(𝑥 + 1)

ኼኽ + 1
11(𝑥 + 1)

ኼኼ + 1
21(𝑥 + 1)

ኼኻ + 𝐶
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6.3. Integration by Parts
If U substitution is just the chain rule, but backwards, then integration by parts is just the

product rule backwards. It’s just yet another trick that we can use to make out equations easier
to work with. Recall the product rule:

𝑑
𝑑𝑥𝑓(𝑥)𝑔(𝑥) = 𝑓

ᖣ(𝑥)𝑔(𝑥) + 𝑓(𝑥)𝑔ᖣ(𝑥) (6.3)

As we know, integration is directly related to integration, so we want to use this to help us
integrate an equation. The first step is to integrate both sides

∫( 𝑑𝑑𝑥𝑓(𝑥)𝑔(𝑥))𝑑𝑥 = ∫𝑓
ᖣ(𝑥)𝑔(𝑥) + 𝑓(𝑥)𝑔ᖣ(𝑥)𝑑𝑥

𝑓(𝑥)𝑔(𝑥) = ∫𝑓ᖣ(𝑥)𝑔(𝑥)𝑑𝑥 + ∫𝑓(𝑥)𝑔ᖣ(𝑥)𝑑𝑥

∫𝑓(𝑥)𝑔ᖣ(𝑥)𝑑𝑥 = 𝑓(𝑥)𝑔(𝑥) − ∫𝑓ᖣ(𝑥)𝑔(𝑥)𝑑𝑥 (6.4)

This is useful in cases where 𝑓ᖣ(𝑥)𝑔(𝑥) is an easier expression to integrate, for example:

∫𝑥𝑒ኾ፱𝑑𝑥

Note, that sometimes the notation is slightly different, and it’s written like ∫𝑓𝑑𝑔 = 𝑓𝑔 − ∫𝑔𝑑𝑓
but that’s just the same, it’s just a shorthand for ፝፠፝፱ = 𝑔

ᖣ ⇒ 𝑑𝑔 = 𝑔ᖣ𝑑𝑥

𝑓(𝑥) = 𝑥 𝑓ᖣ(𝑥) = 1
𝑔ᖣ(𝑥) = 𝑒ኾ፱ 𝑔(𝑥) = ፞Ꮆᑩ

ኾ

∴∫𝑥𝑒ኾ፱𝑑𝑥 = 𝑥𝑒ኾ፱
4 − ∫ 𝑒

ኾ፱

4 𝑑𝑥

That’s essentially it, that’s the basic principles behind this, but when is it useful? Quite often
actually, because you can use integration by parts multiple times per equation. For example:
1) Reducing the order of polynomials:

∫𝑥ኼ𝑒፱𝑑𝑥

𝑓(𝑥) = 𝑥ኼ 𝑓ᖣ(𝑥) = 2𝑥
𝑔ᖣ(𝑥) = 𝑒፱ 𝑔(𝑥) = 𝑒፱

= 𝑥ኼ𝑒፱ −∫2𝑥𝑒፱𝑑𝑥

= 𝑥ኼ𝑒፱ − (2𝑥𝑒፱𝑑𝑥 − ∫2𝑒፱𝑑𝑥)
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2) We can also take advantage of logarithms

∫𝑥ኾ ln(𝑥)𝑑𝑥

𝑓(𝑥) = ln(𝑥) 𝑓ᖣ(𝑥) = ኻ
፱

𝑔ᖣ(𝑥) = 𝑥ኾ 𝑔(𝑥) = ፱Ꮇ
኿

= 𝑥኿ ln(𝑥)
5 − ∫ 𝑥

኿

5𝑥𝑑𝑥

3) Trig functions and their cyclic nature can be useful too:

(cos 𝑥)ᖥ = (− sin 𝑥)ᖣ = − cos 𝑥

∫ cosኽ 𝑥𝑑𝑥

= ∫ cosኼ 𝑥 cos 𝑥𝑑𝑥

𝑓(𝑥) = cosኼ 𝑥 𝑓ᖣ(𝑥) = −2 sin 𝑥 cos 𝑥
𝑔ᖣ(𝑥) = cos 𝑥 𝑔(𝑥) = sin 𝑥

= cosኼ 𝑥 sin 𝑥 − ∫−2 cos 𝑥 sin 𝑥 sin 𝑥𝑑𝑥

= cosኼ 𝑥 sin 𝑥 + 2∫ cos 𝑥(1 − cosኼ 𝑥)𝑑𝑥

= cosኼ 𝑥 sin 𝑥 + 2∫ cos 𝑥𝑑𝑥 − 2∫ cosኽ 𝑥𝑑𝑥

∫ cosኽ 𝑥 = cosኼ 𝑥 sin 𝑥 + 2∫ cos 𝑥𝑑𝑥 − 2∫ cosኽ 𝑥𝑑𝑥

3∫ cosኽ 𝑥 = cosኼ 𝑥 sin 𝑥 + 2∫ cos 𝑥𝑑𝑥

∫ cosኽ 𝑥 = 1
3(cos

ኼ 𝑥 sin 𝑥 + 2∫ cos 𝑥𝑑𝑥)
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4) We’re also able to make our own composite function to make our lives easier, just by
multiplying by 1. Because ፝

፝፱𝑥 = 1.

∫arctan 𝑥𝑑𝑥

∫1 ⋅ arctan 𝑥𝑑𝑥

𝑓(𝑥) = arctan 𝑥 𝑓ᖣ(𝑥) = ኻ
ኻዄ፱Ꮄ

𝑔ᖣ(𝑥) = 1 𝑔(𝑥) = 𝑥

= 𝑥 arctan 𝑥 − ∫𝑥 1
1 + 𝑥ኼ𝑑𝑥

= 𝑥 arctan 𝑥 − ∫𝑥 1
1 + 𝑥ኼ𝑑𝑥

Notably with integrals, you can manipulate the equation with constants, as long as you divide
by the same constant outside of the integral, so the net impact is just multiplying by 1.

= 𝑥 arctan 𝑥 − 12 ∫
2𝑥

1 + 𝑥ኼ𝑑𝑥

= 𝑥 arctan 𝑥 − 12 ∫
2𝑥

1 + 𝑥ኼ𝑑𝑥

= 𝑥 arctan 𝑥 − 12 ln(1 + 𝑥
ኼ)

= 𝑥 arctan 𝑥 − ln(1 + 𝑥ኼ)
Ꮃ
Ꮄ

= 𝑥 arctan 𝑥 − ln√1 + 𝑥ኼ
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6.4. Improper Integrals
An improper integral is not to be confused with an indefinite integral. It is instead an integral
with at least one undefined boundary, or it has one point on the function that is undefined. The
distinction here is why we have two types of improper integrals.

Type 1 integrals have at least one undefined boundary on the domain:

∫
፛

ፚ
𝑓(𝑥)𝑑𝑥

Where either, 𝑎 = −∞, 𝑏 = ∞ or both!

Type 2 integrals are integrals that are not continuous over the specified interval [𝑎, 𝑏]. For
example:

∫
ኻ

ዅኻ

1
𝑥ኼ𝑑𝑥

6.4.1. Type 1
Type 1 integrals are generally easier to work with compared to Type 2. Essentially what

we’re doing is integrating between point 𝑎 and ∞ (or we could go from −∞, but let’s not worry
about that for now). Because ∞ is not a number, we can’t just put it in and integrate to it.
Instead we substitute it for a variable 𝑏 and integrate to there instead. But because we want
to get as close as possibly to 𝑏 = ∞ we use limits.

Take for example the improper integral :

∫
ጼ

ኻ

1
𝑥ኼ𝑑𝑥

if we integrate this we get:

[−1𝑥 ]
ጼ
ኻ

But this isn’t helpful, so the next step is to substitute in the variable 𝑏 and find the limit.

lim
፛→ጼ

(−1𝑏 − −11 )

= 0 + 1
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The same logic applies if you’re dealing with a lower boundary of −∞. The slight twist
comes when both boundaries are undefined, so integrating over the interval [−∞,∞]. In this
case what you have to do is pick a value 𝑐 where 𝑎 < 𝑐 < 𝑏 and then separate the integral
into these two sections:

∫
ጼ

ዅጼ
𝑓(𝑥)𝑑𝑥 = ∫

፜

ዅጼ
𝑓(𝑥)𝑑𝑥 + ∫

ጼ

፜
𝑓(𝑥)𝑑𝑥

From here we apply the same process of replacing ∞ with a variable 𝑎 or 𝑏, then taking a
limit as they approach ∞.

Convergent and Divergent Type 1
A one sided improper type 1 integral is called convergent if the corresponding limit exists,

and if it doesn’t, we call it Divergent. For example:

∫
ጼ

ኺ
sin 𝑥𝑑𝑥

= lim
፛→ጼ

[− cos 𝑥]፛ኺ

This will diverge, because as you keep increasing 𝑥 you wont get any closer to a specific
value of 𝑦, the cyclic nature prevents us from getting a proper limit.

∫
ጼ

ኻ

1
𝑥𝑑𝑥

lim
፛→ጼ

[ln 𝑥]፛ኻ

= lim
፛→ጼ

ln 𝑏 = ∞

ln(𝑥) is unbounded, so the integral is divergent. And in fact, for any function in the form ኻ
፱ᑟ if

𝑛 is greater than 1 the function will converge, and if it’s less than or equal to 1 it will diverge,

6.4.2. Type 2
Type 2 integrals are where we integrate over a non-continuous section of a function. And

you must be careful when dealing with these because they’re not always obvious. It’s clear
when you’re integrating to infinity because the limits will say so, but you need to check and
make sure a function is continuous for example, what about integrating:

∫
ኻ

ዅኻ

1
𝑥ኼ𝑑𝑥

Seems innocent enough right? just integrate and substitute the limits:

[−1𝑥 ]
ኻ
ዅኻ = (

−1
1 − −1−1) = −2

That’s not right. That’s not right at all, How do I know? Well look at the graph of the function:
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That’s not a negative area! It’s not possible for that to be −2. When it comes to integrating
a Type 2 what we do is we take find the of discontinuity, and give it a label, 𝑐. In the example
above this point is 𝑐 = 0. Then we divide this integral in two, at point 𝑐. And we introduce two
more variables 𝑠 and 𝑡 to help us integrate.

−3 −2 −1 0 1 2 30

2

4

6

What we do is we find the limit as 𝑠 and 𝑡 approach 𝑐. So, in this specific example we’d
have:

∫
፬

ዅኻ

1
𝑥ኼ𝑑𝑥 + ∫

ኻ

፭

1
𝑥ኼ𝑑𝑥

= lim
፬→፜Ꮍ

(−1𝑠 − −1−1) + lim
፭→፜Ꮌ

(−11 − −1𝑡 )

This diverges. How?? Well, that confused me too, because for the rest of the course we
think like an engineer, but in calculus, we think like mathematicians, so, while intuitively you
may think that because 𝑠 and 𝑡 are approaching the same value, we can just say that ኻ፬ =

ኻ
፭ ,

well, no, we can’t. Because the two values could be approaching 𝑐 at a different rate. For
example, 𝑠 could be defined as −2𝑡 and the distance between 𝑡 and 𝑐 would always be twice
as large as 𝑠 to 𝑐. It’s weird, I know, but because we’ve got these two limits, we have to say
this is divergent. But also because lim፬→ኺᎽ

ኻ
፬ is ∞ which, yeah that’s obviously divergent, the

area enclosed is not a proper value.

Convergent and Divergent Type 2
To be honest, the most important thing you get from this chapter is being able to identify if

an integral is convergent of divergent. This applies to both Type 1 and 2. The key thing to
remember is that if the area enclosed is infinite, it diverges. If you can’t get a proper limit of
the integral, it diverges. Only when you can find an actual limit of the area under the graph
can you say the function converges.
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6.4.3. Comparison Test
When it comes to finding out if a function is convergent or divergent by comparing it to a

differnt function of known characteristics. It states: if 𝑓 and 𝑔 are continuous, with 0 ≤ 𝑔 ≤ 𝑓
for 𝑥 ≥ 𝑎, if

∫
ጼ

ፚ
𝑓𝑥𝑑𝑥

is convergent, then

∫
ጼ

ፚ
𝑔𝑥𝑑𝑥

must also be convergent. This makes perfect sense if you think about it graphically, if 𝑓 con-
verges to a point, and 𝑔 is always less than 𝑓, it is bound within a finite area, and must also
converge.
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Similarly we can say that if 𝑔 diverges, so must 𝑓. Because if the area under 𝑔 is infinite,
and 𝑓 is always greater than 𝑔 then the area under 𝑓 must also be infinite.
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7
Differentials

7.1. The Basics
Yes, we have covered differentiation before, but a differential equation is slightly different.

A Differential Equation (henceforth abbreviated to DE) is basically an equation involving an
unknown function 𝑦(𝑥) and one or more of its derivatives. We call 𝑦 the dependent variable
and we call 𝑥 the independent variable. The order of the DE is equal to the order of the highest
derivatives in the equation. For example:

𝑦ᖥ + 2𝑦ᖣ + 𝑦 = 𝑥𝑒፱

This is a second order DE because of the 𝑦ᖥ

𝑦ኼ𝑦ᖩ + 𝑥ኼ𝑦ኼ𝑦ᖥ = (𝑦ᖣ)ኽ

This is a fourth order DE because of the 𝑦ᖩ

If a DE has just one independent variable (𝑦) then we call it an Ordinary Differential Equation
(ODE), but if it has more than one, (𝑦, 𝑧, 𝑤, etc) we call it a Partial Differential Equation. Which
is not necessary knowledge for this course. We only deal with ODEs of the form ፝፲

፝፱ = 𝐹(𝑥, 𝑦)
(ignore the capital F, I’m not talking about anti derivatives for now) where we solve for 𝑦(𝑥).

When it comes to DEs we can call them separable differentials if they can be described as:

𝑑𝑦
𝑑𝑥 = 𝑔(𝑥)𝑓(𝑦)

Where 𝑓(𝑦) ≠ 0. This allows us to separate the terms and write it as:

1
𝑓(𝑦)𝑑𝑦 = 𝑔(𝑥)𝑑𝑥

This is why 𝑓(𝑦) cannot be 0. Note that we must have a product of 𝑓 and 𝑔, so something like
𝑓(𝑦) + 𝑔(𝑥) is not separable.

7.2. Solving Separable Differentials
The way we solve these is a method called ”the separation of variables” maybe, I don’t know,

it doesn’t matter what it’s called. I’ll just do an example here:

𝑦ᖣ = 𝑥𝑦

Seems a bit tricky at first, but if we write 𝑦ᖣ slightly differently, as ፝፲
፝፱ . we can do a few tricks to

help us calculate this.
𝑑𝑦
𝑑𝑥 = 𝑥𝑦

39
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What we want to do from here is take all 𝑥 elements and put them on one side, and put all the
𝑦 elements and put them on the other side, hence the name.

𝑑𝑦 = 𝑥𝑦𝑑𝑥

1
𝑦𝑑𝑦 = 𝑥𝑑𝑥

This is starting to look promising here. And remember we’re working towards getting 𝑦(𝑥) so
the next step here is to integrate both sides.

∫ 1𝑦𝑑𝑦 = ∫𝑥𝑑𝑥

ln |𝑦| + 𝐶 = 1
2𝑥

ኼ + 𝐶

Now, notice how there’s an unknown constant on both sides of the equation. What we can do,
is just, combine these into one unknown constant and leave it on one side of the equation.

ln |𝑦| = 1
2𝑥

ኼ + 𝐶

From here we want to move closer to finding 𝑦(𝑥)

𝑦 = 𝑒
Ꮃ
Ꮄ፱

Ꮄዄፂ

This is a bit confusing, so let’s try writing it in a simpler way with

𝑦 = 𝑒ፂ ⋅ 𝑒
Ꮃ
Ꮄ፱

Ꮄ

But, if you remember, 𝐶 is just an unknown constant, and 𝑒ፂ is also an unknown constant, so
we can just merge these down and call it 𝐶. This gives us out final answer of

𝑦 = 𝐶 ⋅ 𝑒
Ꮃ
Ꮄ፱

Ꮄ

7.3. Applications
So now that we’ve covered the technique behind solving one of these equations, how about

we look at some examples of where to use it. Most obvious is population growth. Say we
have a population 𝑃 and a change in population with respect to time ፝ፏ

፝፭ . What we can say
(in this case at least) is that the growth in population, is directly related to the population at a
given time; thus ፝ፏ

፝፭ = 𝑘𝑃. And what we want to do is find 𝑃 as a function of 𝑡, given 𝑃(𝑜).
That’s what we call the initial conditions, they help us solve these equations in more than just
a general way.

𝑑𝑃
𝑑𝑡 = 𝑘𝑃

1
𝑃𝑑𝑃 = 𝑘𝑑𝑡

∫ 1
𝑃𝑑𝑃 = 𝑘∫𝑑𝑡

ln |𝑃| = 𝑘𝑡 + 𝐶
𝑃 = 𝐶𝑒፤፭
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From here we can’t do much without 𝑘 or 𝑃(0), this is why we need those initial conditions to
solve the equation. I’m going to arbitrarily make 𝑘 = 0.1 and 𝑃(0) = 100. Subbing these into
the equation we find:

100 = 𝐶𝑒ኺ.ኻ⋅ኺ

100 = 𝐶
Therefore we find the specific equation for the population of bacteria at any given time.

𝑃 = 100𝑒ኺ.ኻ፭

But this isn’t a completely accurate way of modelling population growth, it implies that there
is no maximum population possible. Which is wrong. There are only finite resources in the
universe. Instead we use a different model called Logistic Growth as opposed to exponential
growth.

𝑑𝑃
𝑑𝑡 = 𝑘𝑃(1 −

𝑃
𝑀) (7.1)

Where 𝑀 is the natural maximum of the population. If 𝑃 is much smaller than 𝑀 then 1− ፏ
ፌ

will roughly be 1 so ፝ፏ
፝፭ will roughly be 𝑘𝑃, and if the current population is near the natural

maximum, then the rate of change ፝ፏ
፝፭ will roughly equal 0.

Now, this also applies if for some reason the population goes above 𝑀, say a scientist
introduces more bacteria into the environment. If 𝑃 is significantly higher than 𝑀, then ፝ፏ

፝፭ will
be very negative.

If we go through our usual route of separating then integrating We get the equation:

∫ 1
𝑃 +

1
𝑀 − 𝑃𝑑𝑝 = 𝑘∫𝑑𝑡

You can prove to yourself that ኻ
ፏ(ኻዅ ᑇ

ᑄ )
= ኻ

ፏ +
ኻ

ፌዅፏ by doing the sums out by hand. but for now

just go with it.
= ln |𝑃| − ln |𝑀 − 𝑃| = 𝑘𝑡 + 𝐶

= ln
|𝑃|

|𝑀 − 𝑃| = 𝑘𝑡 + 𝐶

= 𝑃
𝑀 − 𝑃 = 𝐶𝑒

፤፭

And this is our general solution!

7.3.1. Salt Solutions
One very important application to wrap your head around is the salt solution problem. The one
where you have some water in a container, with a certain concentration of salt in it, with other
water, with a different concentration of salt pouring in, and sometimes there will be a hole at
the base of the container letting water flow out.

For these problems we assume the solution is always thoroughly mixed, obviously that’s not
how fluid dynamics works in real life, but we imagine that as soon as salt enters the vessel,
the concentration of the whole volume of water changes.



42 7. Differentials

Figure 7.1: A Water tank with water flowing in, and out. Both with different salt concentrations.

What we’re aiming to find in these problems is how the mass of salt (𝑦) in the container
changes as a function of time (𝑡). You can call these whatever you want, but I’ll be using 𝑦
and 𝑡. What we want to do is write a function of the rate change in salt in the container. This
is expressed as the rate of salt coming in, minus the salt exiting the container.

𝑑𝑦
𝑑𝑡 =

𝑑𝑦
𝑑𝑡 ።፧

− 𝑑𝑦𝑑𝑡 ፨፮፭

The incoming salt is usually given as a constant (but sometimes it isn’t!!!), where you have
a rate of water coming in, and a concentration of salt. Say, 2L per minute, with 5g of salt per
L. (that means you have 10g of salt coming in per minute). Easy!!

The out flowing salt is more difficult, because we may have a constant rate of water being
pumped out, but the concentration of salt in the tank is not constant. Remember how we called
the total amount of salt in the container 𝑦? That comes into play here: ፲ፕ , is the concentration
of salt at any one moment. The amount of out-flowing salt is the concentration of the water,
multiplied by the volume flowing out.

Let’s do an example to try clear things up a bit. Imagine a Drum of volume 100𝐿, with 5𝐿
of 2𝑔/𝐿 salt water flowing in, and 5𝐿 of water flowing out. Notice how the volume remains
constant? That’s handy! Let’s draw up our balance equation.

𝑑𝑦
𝑑𝑡 =

𝑑𝑦
𝑑𝑡 ።፧

− 𝑑𝑦𝑑𝑡 ፨፮፭

𝑑𝑦
𝑑𝑡 = 5𝐿 ⋅ 2

𝑔
𝐿 −

𝑦
100 ⋅ 5𝐿
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𝑑𝑦
𝑑𝑡 = 10 −

𝑦
20

𝑑𝑦
𝑑𝑡 =

200 − 𝑦
20

20
200 − 𝑦𝑑𝑦 = 𝑑𝑡

−20
𝑦 − 200𝑑𝑦 = 𝑑𝑡

−20∫ 1
𝑦 − 200𝑑𝑦 = ∫𝑑𝑡

−20 ln |𝑦 − 200| = 𝑡 + 𝐶

ln |𝑦 − 200| = −𝑡
20 + 𝐶

𝑦 − 200 = 𝐶𝑒
Ꮍᑥ
ᎴᎲ

𝑦 = 𝐶𝑒
Ꮍᑥ
ᎴᎲ + 200

This gives is the general equation for finding the amount of salt (𝑦) in the container. But without
a specific data point, we cant get rid of that constant 𝐶. If we’re told that, 𝑦(0) is 50 for example,
we can then use this information to get rid of 𝐶

50 = 𝐶𝑒ኺ + 200

50 = 𝐶 + 200

𝐶 = −150

This is the most basic of examples, sometimes the volume isn’t constant. Sometimes the
incoming salt ins’t constant. but as long as you apply basic principles to the problem, and you
don’t try to rush ahead and skip some steps you have a good chance of avoiding mistakes.

7.4. Direction Fields
The differential of a function gives you the tangent line at any specific point. But it can also

be described implicitly. For instance we can say that ፝፲፝፱ = 𝑦 − 𝑥 this gives us the slope of a
function at any point. See, we can say, 𝑥 = 1 and that tells us nothing about 𝑦, so for each
value of 𝑦 there is a different differential. And we can draw these all on a graph, drawing ፝፲

፝፱
at every point, giving us something like this:
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Figure 7.2: A Directional Field

This is what we get when we solve a DE generally, but when we’re given initial conditions,
we are given one specific point on the curve. If we go to those coordinates on the directional
fields, you can follow the arrows at that point and then plot the curve of the specific function.
For example, if we go to the coordinates (−2,−1) and follow the directions we get the following
curve:

Figure 7.3: A Specific Function in a Directional Field

7.5. Linear First-Order Differentials
Another way of looking at DEs is A Linear First Order Differential. They’re called this be-

cause they feature 𝑦 and no higher powers of 𝑦. They can all be written in the form:

𝑑𝑦
𝑑𝑥 + 𝑃(𝑥)𝑦(𝑥) = 𝑄(𝑥) (7.2)

Where both 𝑃 and 𝑄 are continuous functions of 𝑥 over a given interval. A DE can be both
linear or separable, and in such circumstances, you can choose how to deal with them.
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7.5.1. The Integration Factor
You may get lucky and see a simple way of relating these terms together, but often that’s

not the case. Instead we introduce an integrating factor 𝐼(𝑥) to make our lives easier.

𝐼(𝑥)𝑑𝑦𝑑𝑥 + 𝐼(𝑥)𝑃(𝑥)𝑦(𝑥) = 𝐼(𝑥)𝑄(𝑥)

This isn’t much good to us as is. We want to move to the form:

(𝐼(𝑥)𝑦(𝑥))ᖣ = 𝐼(𝑥)𝑄(𝑥)

Because this will allow us to find 𝑦(𝑥) much more easily, and hence solve the equation. From
the product rule we know that:

(𝐼(𝑥)𝑦(𝑥))ᖣ = 𝐼(𝑥)𝑦ᖣ + 𝐼ᖣ𝑦(𝑥)

If we know this, then we can relate it to the previous expression, and state that:

𝐼ᖣ𝑦(𝑥) = 𝐼(𝑥)𝑃(𝑥)𝑦(𝑥)

This is handily enough a separable differential equation. I’ll skip over the calculations, but
from here we find that 𝐼(𝑥) = 𝑒∫ፏ(፱)፝፱. Because we multiplied both sides of the equation by
𝐼(𝑥) we can ignore the integration constant for 𝐼 only. As we can divide it out later.

When we want to move on from here we can rewrite: 𝐼𝑦ᖣ+𝐼ᖣ𝑦 = 𝐼𝑄 as (𝐼𝑦)ᖣ = 𝐼𝑄, because
of the product rule. From the fundamental theorem of calculus you can make a quick move
from here by integrating both sides.

𝐼𝑦 = ∫ 𝐼𝑄𝑑𝑥

And the final step to then divide by 𝐼(𝑥), to find the function of 𝑦(𝑥).

𝑦 = 1
𝐼 ∫ 𝐼𝑄𝑑𝑥

7.5.2. Solving Linear Differentials
So we’ve looked at the concept of an integration factor, but how do we actually use this to

solve a problem. Well because of how this subject is examined you don’t actually need to
derive anything written above, instead you just need to know the following few steps:

• Write the formula in the form ፝፲
፝፱ + 𝑃(𝑥)𝑦(𝑥) = 𝑄(𝑥)

• Multiply by 𝐼(𝑥)

• Calculate 𝐼 = 𝑒∫ፏ፝፱

• Substitute in the new value of 𝐼 and solve for 𝑦

That’s pretty much it. That’s all of the new concepts introduced in this chapter, but this does
rely heavily on past knowledge with respect to differentiation and integration. The Chain rule,
integration by parts, U substitution, are all important things for solving these questions.
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7.6. Applications
7.6.1. Simple Example
In my experience you get the best understanding of something when you see it put to use.

So let’s work through some examples to see how this is actually used.

𝑦ᖣ = 6 − 2𝑦

First of all we want to rewrite this into the standard format:

𝑦ᖣ + 2𝑦 = 6

In this equation we can see that 𝑃 = 2 and 𝑄 = 6. Not particularly exciting functions of 𝑥, but
they are nonetheless. From this we can work out what 𝐼, the integrating factor is.

𝐼 = 𝑒∫ኼ፝፱ = 𝑒ኼ፱

Remember, the integrating constant doesn’t matter because we can just divide it out on both
sides of the equation. Substitute this into the format (𝐼𝑦)ᖣ = 𝐼𝑄 to get:

(𝑦𝑒ኼ፱)ᖣ = 6𝑒ኼ፱

= 𝑦𝑒ኼ፱ = ∫6𝑒ኼ፱

= 𝑦𝑒ኼ፱ = 3𝑒ኼ፱ + 𝐶

= 𝑦 = 3 + 𝐶𝑒ዅኼ፱

And this is our final solution. We can’t go any further without any extra information. If we had
some initial conditions then we could substitute in some values for C, but we don’t, so we can’t.

7.6.2. More Difficult Salt Solutions
We saw the salt solution problem from earlier, but that was a reasonably simple one to solve.

The volume remained constant, so we could easily set up a separable differential equation.
But in this next example that’s not the case.

Let’s examine this problem with these conditions:

• A tank containing 800L of Water and 240g of salt

• 50L/min flowing in, with a concentration of 0.6g/L

• 20L/min flowing out
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Figure 7.4: A New Water tank with 50L/min flowing in and 20L/min flowing out

If we want to find the volume of the container after a given amount of time, we can start with
our balance equation and work from there.

𝑑𝑉
𝑑𝑡 =

𝑑𝑉
𝑑𝑡 ።፧

− 𝑑𝑉𝑑𝑡 ፨፮፭

= 𝑑𝑉
𝑑𝑡 = 50 − 20

= 𝑑𝑉 = 30𝑑𝑡

= ∫𝑑𝑉 = ∫30𝑑𝑡

= 𝑉 = 30𝑡 + 𝐶

But, because we have those initial conditions of 𝑉(0) = 800 we can find 𝐶 = 800. This is
obviously one way of finding the equation for volume at a given time, but you could probably
have done this intuitively to get 𝑉 = 800 + 30𝑡, but sometimes the problems won’t be that
simple, so this is just a backup plan that works every time.

The next step is to set up the balance equation for the amount of salt in the container. I’m
again going to call salt 𝑦 for the purposes of the equation, but you can use whatever you want.

𝑑𝑦
𝑑𝑡 =

𝑑𝑦
𝑑𝑡 ።፧

− 𝑑𝑦𝑑𝑡 ፨፮፭

= 𝑑𝑦
𝑑𝑡 = (50 ⋅ 0.6) − (20 ⋅

𝑦
800 + 30𝑡)

= 𝑑𝑦
𝑑𝑡 = 30 −

20𝑦
800 + 30𝑡
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This is our balance equation. It’s not visibly separable, but we can rearrange it to be a linear
differential.

= 𝑑𝑦
𝑑𝑡 +

2𝑦
80 + 3𝑡 = 30

Notice anything familiar? It’s in the form of Eq(7.2) where 𝑃 = ኼ
ዂኺዄኽ፭ and 𝑄 = 30. Remember

the next step? Calculate 𝐼.
𝐼 = 𝑒∫ፏ፝፱

𝐼 = 𝑒∫
Ꮄ

ᎺᎲᎼᎵᑥ፝፱

𝐼 = 𝑒ln (ዂኺዄኽ፭)
Ꮄ
Ꮅ

𝐼 = (80 + 3𝑡)
Ꮄ
Ꮅ

Now that we have 𝐼 we can jump ahead and substitute it into the format of (𝐼𝑦)ᖣ = 𝐼𝑄.

((80 + 3𝑡)
Ꮄ
Ꮅ𝑦)ᖣ = 30(80 + 3𝑡)

Ꮄ
Ꮅ

(80 + 3𝑡)
Ꮄ
Ꮅ𝑦 = ∫30(80 + 3𝑡)

Ꮄ
Ꮅ

(80 + 3𝑡)
Ꮄ
Ꮅ𝑦 = 30(35)(

1
3)(80 + 3𝑡)

Ꮇ
Ꮅ + 𝐶

Why are we dividing by 3 in this step? It’s because of the chain rule. If we were to differentiate
something, we multiply by the differential of what’s in the brackets. When we integrate, we do
the opposite.

(80 + 3𝑡)
Ꮄ
Ꮅ𝑦 = 6(80 + 3𝑡)

Ꮇ
Ꮅ + 𝐶

𝑦 = 6(80 + 3𝑡) + 𝐶(80 + 3𝑡)
ᎽᎴ
Ꮅ

𝑦 = 480 + 18𝑡 + 𝐶(80 + 3𝑡)
ᎽᎴ
Ꮅ

We’ve arrived at a familiar spot here, using our initial conditions of 𝑦(0) = 240we can calculate
for 𝐶.

240 = 480 + 𝐶(80)
ᎽᎴ
Ꮅ

−240 = 𝐶(80)
ᎽᎴ
Ꮅ

𝐶 = −4456
Substitute this back into the original our general solution and we now have a specific solution
for the amount of salt in the drum:

𝑦 = 480 + 18𝑡 − 4456(80 + 3𝑡)
ᎽᎴ
Ꮅ



8
Complex Numbers

8.1. The Basics
Let’s begin our discussion of what complex numbers are by first reminding ourselves what

”Normal numbers” are. Starting from the simple ways of counting that we learned in primary
school, we begin with Natural Numbers ℕ. If we plot these on a number line, we get a line with
a whole bunch of dots on it from 1 to infinity.

1 2 3
What about below that? Then we introduce the concept of Integers ℤ, These numbers

include all ”whole numbers” less than 1. And on a number line that would look something like
this:

−3 −2 −1 0 1 2 3

From here we can start to fill in the gaps between all of the dots along this line, and we
can start bu filling in all of the fractions. These are all Rational Numbers ℚ, or Quotients if
you will. Then with all of those filled in we can finally complete the number line with the Real
Numbers ℝ. This collection of numbers is everything on the number line. So, even including
numbers that cannot be expressed as fractions like 𝜋, or √2. But there are more numbers to
be discussed, and nowhere to put them on the line.

Let’s take a step to the side and look at how we operate with numbers. For the purposes of
this we can imagine that numbers are represented by vectors on the number line. When we
add two numbers we do the ”head to tail” operation of vectors, and find our end position.

1 + 2 =
1111111 2

= 3
You can extrapolate out from here how subtracting a number works.

Multiplication is a little bit more tricky, In this case we are stretching the vector by a factor of
the other vector to get our final answer.

1.5 ⋅ 2 =
1.5 ⋅ 21.5 ⋅ 21.5 ⋅ 21.5 ⋅ 21.5 ⋅ 21.5 ⋅ 21.5 ⋅ 21.5

2
= 3

49
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We can also imagine that multiplication is when we add up the angles of the vectors as well.
If we take 0 to be the origin that is. So, positive numbers have an argument of 0𝑟𝑎𝑑, and
negative numbers have an argument of 𝜋𝑟𝑎𝑑. Let’s take some very simple examples here:

1 ⋅ 1 = 1

And the arguments?

0 + 0 = 0

So this shows us we have a vector with the argument of 0.

−1 ⋅ 1 = −1

𝜋 + 0 = 𝜋

This shows us we have a vector with an argument of 𝜋 so it will be pointing in the negative
direction.So now what if we have something a bit trickier than this?

𝑥ኼ = −1

Well, we can say that 𝑥 has an argument of 𝛼, and −1 has an argument of either 𝜋, or 3𝜋
because 2𝜋 is a full circle. Thus:

𝑥 ⋅ 𝑥 = −1

𝛼 + 𝛼 = 𝜋, 3𝜋

𝛼+ = 𝜋
2 ,
3𝜋
2

But now wait a minute, that means that the square root for−1 is perpendicular to the number
line? Exactly, and we use this new perpendicular line to define the ”Complex Plane” or ”Argand
Diagram” if you want to be fancy. The two axes are the Real Axis, which is horizontal, and
the Imaginary Axis is the vertical one. Where the real axis uses units of 1, the imaginary axis
uses units of 𝑖 where 𝑖 is the imaginary unit, defined as 𝑖 = √−1.

8.2. The Complex Plane
Remember everything we did with vectors back at the start? Well this is pretty similar. We

can treat the complex plane with similar techniques. so when we have a complex number, we
can treat it’s real and imaginary components as coordinates.

We often write imaginary numbers as 𝑧 or 𝑤 but honestly it doesn’t matter what you call
them. A complex number is defined as 𝑧 = 𝑎 + 𝑖𝑏 where 𝑎 and 𝑏 are both real numbers. But
𝑖 is still the imaginary unit. If we plot this on the complex plane we see the following:
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𝑅𝑒

⃗𝐼𝑚

a

𝑧b

8.3. Adding Complex Numbers
Now, the comparison to vectors goes even further, because say you have two complex num-
bers, that you want to add, you’d add them up the same way you’d add two vectors. Combine
the 𝑖 components and then combine the 𝑗 components. For example:

𝑧 + 𝑎 + 𝑖𝑏

𝑤 = 𝑐 + 𝑖𝑑

𝑧 + 𝑤 = 𝑎 + 𝑐 + 𝑖(𝑑 + 𝑏)

Thus we can say the real component of (𝑧 + 𝑤) is 𝑅𝑒(𝑧 + 𝑤) = (𝑎 + 𝑐) and the imaginary
component of (𝑧 + 𝑤) is 𝐼𝑚(𝑧 + 𝑤) = (𝑑 + 𝑏)

𝑅𝑒

𝐼𝑚

𝑤

𝑧

𝑧 + 𝑤

In a vector plane we’d call the length of the vectors the ”magnitude” of the vectors, in the
Complex plane we call it the ”modulus” of the number, and we calculate it in pretty much the
exact same way. With Pythagoras.

8.4. Multiplying Complex Numbers
Multiplying complex numbers is again, really simple if you can recall what we defined earlier.
We stretch out a vector by the length of the other one, and then we add the arguments of the
two vectors together to find the argument of the resultant.
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𝑅𝑒

𝐼𝑚

𝑤
𝑧

𝑧 ∗ 𝑤

You can also work this out algebraically, remembering that 𝑖ኼ is just −1

(𝑎 + 𝑖𝑏)(𝑐 + 𝑖𝑑) = 𝑎𝑐 + 𝑖𝑎𝑑 + 𝑖𝑏𝑐 + 𝑖ኼ𝑏𝑑

8.5. Complex Conjugate
So if 𝑧 is 𝑥+𝑖𝑦 then the conjugate of 𝑧 is 𝑥−𝑖𝑦. We mirror it about the Real Axis in the complex
plane.

𝑅𝑒

𝐼𝑚

𝑧

𝑧̄

If we multiply a complex number by it’s conjugate we get:

𝑧 ⋅ 𝑧̄ = (𝑥 + 𝑖𝑦)(𝑥 − 𝑖𝑦) = 𝑥ኼ + 𝑦ኼ

Which just so happens to be the modulus of 𝑧, squared!

Let’s talk about the arguments for a second again. that’s the angle between the vector and
the x axis, in the same was the unit circle works. Thus, we can use our friends from the world
of trigonometry again here. So, to find the argument of 𝑧 we just need the arctan ፲

፱ , or if 𝑥
happens to be negative, then we say the argument is the arctan ፲

፱ + 𝜋. We’re using radians
here still.
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8.6. Applications of Complex numbers
8.6.1. Division
What if we want to divide a complex number by a real number? That’s easy! On the complex

plane, just scale the vector, and add up the argument. But what about algebraically? Let’s
say we want to find; ፳፱ in that case we’d just get: ፳፱ =

ፚ
፱ + 𝑖

፛
፱ . This is easy for us to work with

because the denominator is a real number. But what if we want to divide a complex number by
another complex number ፳፰? in such a case we first multiply by 1, in the form of ፰፰ . This is the
conjugate of 𝑤 and if you remember from earlier, a complex number multiplied its conjugate
gives us the modulus squared; which is a real number! So this is nice to work with.

𝑎 + 𝑖𝑏
𝑐 + 𝑖𝑑 =

𝑎 + 𝑖𝑏
𝑐 + 𝑖𝑑

𝑐 − 𝑖𝑑
𝑐 − 𝑖𝑑 =

(𝑎 + 𝑖𝑏)(𝑐 + 𝑖𝑑)
𝑐ኼ + 𝑑ኼ

8.6.2. Quadratic equations
Quadratic equations. You often want to find the roots of them, as in; when the equation is

equal to zero. Not always possible though is it? Well it is if you think of it on the complex plane!
There will always be 2 solutions to a quadratic equation (𝑎𝑥ኼ + 𝑏𝑥 + 𝑐 = 0) on the complex
plane, and they will be complex conjugates of each other! How cool is that!? You can think
about this using the quadratic formula (or the minus b formula, or the abc formula, whatever
you call it).

𝑥 = −𝑏 ± √𝑏ኼ − 4𝑎𝑐
2𝑎

What if 𝑏ኼ − 4𝑎𝑐 is a negative number? Then the solutions aren’t real, they’re complex.
And with the knowledge of the imaginary unit 𝑖, you can use this to help you out whenever you
need it. For instance:

√−𝑎 = 𝑖√|𝑎|

8.7. Other Ways of Representing Complex Numbers
we’re all familiar with Cartesian coordinates (𝑥, 𝑦), but there are more ways of describing

the location of something in 2D space, and for that matter we have more than one way of
representing a complex number. Because after all, a complex number is made of a real and
an imaginary component.

• Cartesian Coordinates:
𝑧 = 𝑎 + 𝑖𝑏 𝑎, 𝑏 ∈ ℝ

• Polar Form:
𝑧 = 𝑟(cos𝜃 + 𝑖 sin𝜃) 𝑟 ∈ ℝ

• Exponential Form:
𝑧 = 𝑟𝑒።᎕ 𝑟 ∈ ℝ

These are the three ways of looking at complex numbers that we’ll deal with in this course,
but to understand them a bit clearer let’s start by graphing them out visually.
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8.7.1. The Polar Form

𝑅𝑒

𝐼𝑚

𝑧

𝑎

𝑏

𝜃

Above you can see a complex number 𝑧 plotted on the complex plane. You can define it with
the components 𝑎 and 𝑏 if you like, but sometimes that makes doing calculations difficult. As
such we start defining new things to make calculations easier. You’ll remember the modulus
from earlier. This is the length of the vector point to 𝑧 it’s defined as √𝑧 ⋅ 𝑧, or for our usecase
right here; √𝑎ኼ ⋅ 𝑏ኼ where 𝑎 is the real part of the number, and 𝑏 is the imaginary part.

The Argument is the angle of the vector with respect to the positive real axis. Labeled as
𝜃 in the graph above. We already discussed the argument earlier, but just to make sure it’s
clear as day, the argument can be calculated as:

𝐴𝑟𝑔(𝑧) = {
arctan ፛

ፚ if 𝑎 > 0

arctan ፛
ፚ + 𝜋 if 𝑎 < 0

(8.1)

If 𝑎 just so happens to be equal to one, then the number is on the imaginary axis, so 𝜃
will obviously be either ᎝

ኼ or ኽ᎝
ኼ depending on if 𝑏 is positive or negative. Thus, to define

somewhere in polar form we need polar coordinates (𝑟,𝜃). You can think of these as if 𝑟 is the
radius of a circle, and 𝜃 is the position along the circumference.

If you remember how triangles work, you can see that we can define the horizontal and
vertical components (𝑎 and 𝑏) by using trigonometric functions:

𝑎 = 𝑟 cos𝜃
𝑏 = 𝑟 sin𝜃

and as such we finally get to the polar representation of a complex number:

𝑧 = 𝑟(cos𝜃 + 𝑖 sin𝜃) (8.2)

8.7.2. The Exponential Form
You’re just going to have to trust me that this works because the background information

you need to derive it come up next quarter. Anyway, the exponential form comes from a
combination of the polar format and Euler’s formula.

𝑒።᎕ = cos𝜃 + 𝑖 sin𝜃 (8.3)
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Just, trust me. This works. This will make your life easier, but we don’t have time to go into
it now. If we recall our way of describing the polar format (8.2) you can see how we get our
exponential form.

𝑧 = 𝑟𝑒።᎕ (8.4)

With this form we can make our lives easier, because multiplication, division, and expo-
nents suddenly become miles easier.

Let’s first start by defining two complex numbers so that we can demonstrate how these
operations work.

𝑧ኻ = 𝑟ኻ𝑒።᎕Ꮃ

𝑧ኼ = 𝑟ኼ𝑒።᎕Ꮄ

If we multiply the two numbers, we get the following:

𝑧ኻ𝑧ኼ = 𝑟ኻ𝑟ኼ𝑒።(᎕Ꮃዄ᎕Ꮄ) (8.5)

This is logical if you think about it in terms of normal algebra. But it’s even smarter when
you think about it, because 𝑟ኻ𝑟ኼ is where we stretch the magnitude of the vectors, and 𝜃ኻ + 𝜃ኼ
is when we add the arguments of the two numbers together. Just like from the very beginning
of this chapter! How cool is that!?

Division is very similar to multiplication. Just treat the numbers as you would any exponents.

𝑧ኻ
𝑧ኼ
= 𝑟ኻ
𝑟ኼ
𝑒።(᎕Ꮃዅ᎕Ꮄ) (8.6)

The rules of exponents come in really handy in this chapter. If you want to raise a complex
number by a power then it becomes really simple in the exponential form.

𝑧፧ኻ = (𝑟ኻ𝑒።᎕Ꮃ)፧ = 𝑟፧ኻ 𝑒።፧᎕Ꮃ (8.7)

8.8. De Moivre’s Theorem
Jumping straight from eq(8.7) we can arrive at one of the most useful theorems in maths. If

𝜃 ∈ ℝ and 𝑛 is a positive integer, then:

(cos𝜃 + 𝑖 sin𝜃)፧ = (cos𝑛𝜃 + 𝑖 sin𝑛𝜃) (8.8)

Why does this work? well think of the polar form.

(𝑒።᎕)፧ = 𝑒።፧᎕

we can see that the new argument is now 𝑛𝜃. With our knowledge of Euler’s formula (8.3) we
can see why this works.
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8.9. Trigonometric Identities
In secondary school you probably just took trigonometric identities for granted, they’re just

something that exist out there. But with De Moivre’s theorem, we can actually derive them.

8.9.1. Double Angle Formulae
The double angle formulae are as follows:

sin 2𝜃 = 2 sin𝜃 cos𝜃 (8.9)

cos 2𝜃 = cosኼ 𝜃 − sinኼ 𝜃 (8.10)

But how does De Moivre fit into this? Well:

(cos𝜃 + 𝑖 sin𝜃)ኼ = cos 2𝜃 + 𝑖 sin 2𝜃

But if we multiply out the left hand side we find it is equal to:

cosኼ 𝜃 + 2𝑖 sin𝜃 cos𝜃 − sinኼ 𝜃 = cos 2𝜃 + 𝑖 sin 2𝜃

And because we have real and imaginary components we can separate them out and equate
them:

cos 2𝜃 = cosኼ 𝜃 − sinኼ 𝜃

𝑖 sin 2𝜃 = 2𝑖 sin𝜃 cos𝜃

(We can just divide 𝑖 out of both sides to get the original equation(8.9))

But what if we have different angles?

sin (𝜃 + Φ) = sin𝜃 cosΦ+ sinΦ cos𝜃 (8.11)

cos (𝜃 + Φ) = cos𝜃 cosΦ+ sin𝜃 sinΦ (8.12)

To deal with this we should look back to our good friend; the exponential form:

cos𝜃 + Φ + 𝑖 sin𝜃 + Φ = 𝑒።᎕ዄጓ

= 𝑒።᎕ ⋅ 𝑒።ጓ

= (cos𝜃 + 𝑖 sin𝜃)(cosΦ+ 𝑖 sinΦ)

= (cos𝜃 cosΦ− sin𝜃 sinΦ) + 𝑖(sin𝜃 cosΦ+ sinΦ cos𝜃)

And once again, we have both a real and imaginary part, so we can separate them and get
our formulae. By now you’re probably starting to see the pattern emerging. You can use the
exponential form and De Moivres theorem to find how angles relate to each other. Try this out
for yourself. Try to define cos 3𝜃 in terms of cos𝜃 and sin𝜃. It starts off from 𝑒።ኽ᎕
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8.10. Roots of Unity
In my opinion this is one of the most fun and cool parts of complex numbers, and it all relates

back to the fundamental theorem of algebra (no we didn’t cover it, no you don’t need to know
it). Essentially what we are saying is that in circumstances as: 𝑥፧ = 𝑎 solve for 𝑥. there are 𝑛
solutions, and when you plot them on the complex plane, they arguments will all differ by ኼ᎝

፧ .
Honestly, I think this is fascinating! we can prove this, again, with the exponential form.

𝑒።ᎎዄ።ኼ᎝፤ = 𝑒፧።᎕

𝑖𝛼 + 𝑖2𝜋𝑘 = 𝑛𝑖𝜃
𝛼
𝑛 +

2𝑘𝜋
𝑛 = 𝜃

With 𝑘 being a an integer, we can see how this cycles around. Below we can see the three
cubic roots of 1:

𝑅𝑒

𝐼𝑚

𝑧ኻ

𝑧ኼ

𝑧ኽ



A
Appendix

A.1. Extra things to know
This Calculus exam will likely be very different to exams that you’re used to. You’re not

allowed to used a calculator, and you’re not allowed to have any formulae sheets with you, so
you need to be familiar with trig functions so you can calculate them without using a calculator.
Hence: this appendix exists.

A.2. Angles

Degrees 0° 30° 45° 60° 90°

Radians 0 𝜋
6

𝜋
4

𝜋
3

𝜋
2

sin𝜃 0 1
2

√2
2

√3
2 1

cos𝜃 1 √3
2

√2
2

1
2 0

tan𝜃 0 √3
3 1 √3

A.3. Co-functions

sin(𝜋2 − 𝑥) = cos 𝑥

cos(𝜋2 − 𝑥) = sin 𝑥

tan(𝜋2 − 𝑥) = cot 𝑥

cot(𝜋2 − 𝑥) = tan 𝑥

sec(𝜋2 − 𝑥) = csc 𝑥

csc(𝜋2 − 𝑥) = sec 𝑥

58
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A.4. Double Angles
sin(2𝑥) = 2 sin 𝑥 cos 𝑥
cos(2𝑥) = cosኼ 𝑥 − sinኼ 𝑥

= 2 cosኼ 𝑥 − 1
= 1 − 2 sinኼ 𝑥

tan(2𝑥) = 2 tan 𝑥
1 − tanኼ 𝑥

A.5. Half angles

sin
𝑥
2 = ±

√1 − cos 𝑥
2

cos
𝑥
2 = ±

√1 + cos 𝑥
2

tan
𝑥
2 =

1 − cos 𝑥
sin 𝑥

= sin 𝑥
1 + cos 𝑥

A.6. Power reducing formulas

sinኼ 𝑥 = 1 − cos 2𝑥
2

cosኼ 𝑥 = 1 + cos 2𝑥
2

tanኼ 𝑥 = 1 − cos 2𝑥
1 + cos 2𝑥

A.7. Product to sum

sin 𝑥 sin𝑦 = 1
2[ cos(𝑥 − 𝑦) − cos(𝑥 + 𝑦)]

cos 𝑥 cos𝑦 = 1
2[ cos(𝑥 − 𝑦) + cos(𝑥 + 𝑦)]

sin 𝑥 cos𝑦 = 1
2[ sin(𝑥 + 𝑦) + sin(𝑥 − 𝑦)]

tan 𝑥 tan𝑦 = tan 𝑥 + tan𝑦
cot 𝑥 + cot𝑦

tan 𝑥 cot𝑦 = tan 𝑥 + cot𝑦
cot 𝑥 + tan𝑦

A.8. Pythagorean identities
sinኼ 𝑥 + cosኼ 𝑥 = 1

1 + tanኼ 𝑥 = secኼ 𝑥
1 + cotኼ 𝑥 = cscኼ 𝑥
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A.9. Sum and difference of angles

sin(𝑥 + 𝑦) = sin 𝑥 cos𝑦 + cos 𝑥 sin𝑦
sin(𝑥 − 𝑦) = sin 𝑥 cos𝑦 − cos 𝑥 sin𝑦
cos(𝑥 + 𝑦) = cos 𝑥 cos𝑦 − sin 𝑥 sin𝑦
cos(𝑥 − 𝑦) = cos 𝑥 cos𝑦 + sin 𝑥 sin𝑦

tan(𝑥 + 𝑦) = tan 𝑥 + tan𝑦
1 − tan 𝑥 tan𝑦

tan(𝑥 − 𝑦) = tan 𝑥 − tan𝑦
1 + tan 𝑥 tan𝑦

A.10. Sum to product

sin 𝑥 + sin𝑦 = 2 sin (𝑥 + 𝑦2 ) cos (𝑥 − 𝑦2 )

sin 𝑥 − sin𝑦 = 2 cos (𝑥 + 𝑦2 ) sin (𝑥 − 𝑦2 )

cos 𝑥 + cos𝑦 = 2 cos (𝑥 + 𝑦2 ) cos (𝑥 − 𝑦2 )

cos 𝑥 − cos𝑦 = −2 sin (𝑥 + 𝑦2 ) sin (𝑥 − 𝑦2 )

tan 𝑥 + tan𝑦 = sin(𝑥 + 𝑦)
cos 𝑥 cos𝑦

tan 𝑥 − tan𝑦 = sin(𝑥 − 𝑦)
cos 𝑥 cos𝑦

A.11. Source
To be clear, I didn’t type all of this out, instead I took it from here: Which saved me an in-

credible amount of time.

http://evgenii.com/blog/basic-trigonometric-identities
Basic trigonometric identities by Evgenii Neumerzhitckii is licensed under a Creative Com-

mons Attribution 4.0 International License.

http://evgenii.com/blog/basic-trigonometric-identities
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A.12. Rules of Integration
Remember that integration is just differentiation backwards.

∫ 𝑥
ᖣ

𝑥 𝑑𝑥 = ln 𝑥 + 𝐶

∫𝑎፱𝑑𝑥 = 𝑎፱
ln𝑎 + 𝐶

∫ tan 𝑥𝑑𝑥 = − ln cos 𝑥 + 𝐶

∫ 𝑥ᖣ

√𝑎ኼ − 𝑥ኼ
𝑑𝑥 = arcsin

𝑥
𝑎 + 𝐶

∫ 𝑥ᖣ
𝑎ኼ + 𝑥ኼ𝑑𝑥 =

1
𝑎 arctan

𝑥
𝑎 + 𝐶

∫ 𝑥ᖣ
cosኼ 𝑥𝑑𝑥 = tan 𝑥 + 𝐶

∫ ln 𝑥𝑑𝑥 = 𝑥 ln 𝑥 − 𝑥 + 𝐶
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