
Calculus - Period 2

Testing Series

Convergence/Divergence:
Suppose a is a series of numbers a1, a2, . . ., and
sn =

∑n
k=1 ak. A series sn converges if limn→∞ sn =

s exists as a real number. The limit s is then called
the sum of series a. If s doesn’t exist as a finite
number, the series is divergent. Be careful not to
confuse the series an with the series

∑
an = s.

Monotonic Sequence Theorem
If a sequence is either increasing (an+1 > an for all
n ≥ 1) or decreasing (an+1 < an for all n ≥ 1), it
is called a monotonic sequence. If there are c1 and
c2 such that c1 < an < c2 for all n ≥ 1, it is called
bounded. Every bounded monotonic sequence is
convergent.

Test for divergence:
If limn→∞ an does not exist, or if limn→∞ 6= 0,
then the series sn is divergent.

Integral test:
If f is a continuous positive decreasing function
on [1,∞) and an = f(n) for integer n, then the
series sn is convergent if, and only if, the integral∫∞
1

f(x)dx is convergent.

Comparison test:
Suppose an and bn are series with positive terms
and an ≤ bn for all n, then:

• If
∑

bn is convergent, then
∑

an is conver-
gent.

• If
∑

an is divergent, then
∑

bn is divergent.

Limit comparison test:
Suppose an and bn are series with positive terms.
If limn→∞

an

bn
= c and 0 < c 6= ∞, then either both

series are convergent or divergent.

Alternating series test:
If the alternating series

∞∑
n=1

(−1)n−1an = a1 − a2 + a3 − a4 + a5 − a6 . . .

satisfies an+1 ≤ an for all n and limn→∞ an = 0,
then the series is convergent.

Absolute convergence:

A series
∑

an is called absolutely convergent if the
series

∑
|an| is convergent. A series

∑
an is called

conditionally convergent if it is convergent but not
absolutely convergent. If a series

∑
an is abso-

lutely convergent, then it is convergent.

Ratio test:

• If limn→∞

∣∣∣an+1
an

∣∣∣ = L < 1, then the series∑
an is absolutely convergent.

• If limn→∞

∣∣∣an+1
an

∣∣∣ = L > 1, then the series∑
an is divergent.

Root test:

• If limn→∞
n
√
|an| = L < 1, then the series∑

an is absolutely convergent.

• If limn→∞
n
√
|an| = L > 1, then the series∑

an is divergent.

Power Series

Radius of convergence:
Power series are written as

f(x) =
∞∑

n=0

cn(x− a)n (1)

where x is a variable and the cn’s are constant co-
efficients of the series. When tested for converges,
there are only three possibilities:

• The series converges only if x = a. (R = 0)

• The series converges for all x. (R = ∞)

• The series converges for |x − a| < R and di-
verges for |x− a| > R. For |x− a| = R other
means must point out whether convergence
or divergence occurs.

The number R is called the radius of convergence,
and can often be found using the ratio test.

Differentiation and integration:
Differentiation and integration of power functions
is possible in the interval (a−R, a+R), where the
function does not diverge. It goes as follows:( ∞∑

n=0

cn(x− a)n

)′
=

∞∑
n=1

ncn(x− a)n−1 (2)
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∫ ∞∑
n=0

cn(x− a)ndx =
∞∑

n=0

cn
(x− a)n+1

n + 1
(3)

Representation of functions as power series:
The first way to represent functions as power series
is simple, but doesn’t always work. To find the
representation of f(x), first find a function g(x)
such that f(x) = axb 1

1−g(x) , where a and b are
constants. The power series is then equal to:

f(x) =
∞∑

n=0

a · g(x)n+b (4)

The second way to represent functions as power
series goes as follows. Let f (n)(x) be the n’th
derivative of f(x). Supposing the function f(x)
has a power series (this sometimes still has to be
proven), the following function must be true:

f(x) =
∞∑

n=0

f (n)(a)
n!

(x− a)n (5)

This representation is called the Taylor series of
f(x) at a. For the special case that a = 0, it is
called the Maclaurin series.

Binomial series:
If k is any real number and |x| < 1, the power
function representation of (1 + x)k is:

(1 + x)k =
∞∑

n=0

(
k
n

)
xn (6)

where
(

k
n

)
=

k(k − 1) . . . (k − n + 1)
n!

(7)

for n ≥ 1, and
(

k
0

)
= 1.

Vectors

Notation:
A vector a is often written as:

a = axi + ayj + azk (8)

Where i, j and k are unit vectors.

Vector length:

|a| =
√

a2
x + a2

y + a2
z (9)

Vector addition and subtraction:

a + b = (ax + bx)i + (ay + by)j + (az + bz)k (10)

a− b = (ax − bx)i + (ay − by)j + (az − bz)k (11)

Dot product:

a · b = axbx + ayby + azbz (12)

a · a = |a|2 (13)

cos θ =
a · b
|a||b|

(14)

Cross product:

a× b =

∣∣∣∣∣∣
i j k

ax ay az

bx by bz

∣∣∣∣∣∣ (15)

a× b = (aybz − azby)i+
+(azbx − axbz)j + (axby − aybx)k (16)

Vector Functions:

Notation:

r(t) = f(t)i + g(t)j + h(t)k (17)

Differentiation and integration:

r′(t) = f ′(t)i + g′(t)j + h′(t)k (18)

R(t) = F (t)i + G(t)j + H(t)k + D (19)

Function dependant unit vectors:

T(t) =
r′(t)
|r′(t)|

(20)

N(t) =
T′(t)
|T′(t)|

(21)

B(t) = T(t)×N(t) (22)

Trajectory length:

ds(t) =
√

(dx)2 + (dy)2 + (dz)2 = |r′(t)|dt (23)

s(t) =
∫ t

a

|r′(t)|dt (24)

Trajectory velocity and acceleration:

|v(t)| = ds(t)
dt

= |r′(t)| (25)

a(t) = v′(t) = r′′(t) (26)
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Trajectory curvature:

κ(t) =
∣∣∣∣dT(t)
ds(t)

∣∣∣∣ ==
|T′(t)|
|r′(t)|

(27)

κ(t) =
|r′(t)× r′′(t)|

|r′(t)|3
(28)

Expressing acceleration in unit vectors:

a(t) = |v(t)|′T(t) + κ|v(t)|2N(t) (29)

a(t) =
r′(t) · r′′(t)
|r′(t)|

T(t) +
|r′(t)× r′′(t)|

|r′(t)|
N(t)

(30)
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