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Chapter 14: Partial Derivatives

§14.5: The Chain Rule (p. 901)

General version:
Ju Odudx; Oudx,  Ou Ox; du 0x,

3, 0%, 0t " ox, 0t Tox,0n T ax, ot

Implicit differentiation:
dy F

dx E,
Also holds for other partial derivatives.

§14.6: Directional Derivatives and the Gradient Vector (p. 910)
Directional derivatives make it possible to calculate rates of change in directions other than x and y.

Directional derivative:
Dyf(x,y) =Vf(x,y) - u= fi(x,y)a+ f,(x,y)b, withu = (a, b) a unit vector in the

desired direction.

Gradient vector:

af . of . Of -
Vf(x'y) = (fx(x'y'z):fy(x'ylz)> = al +@] + &k
The dot product of the gradient vector and a unit vector u, expresses the directional
derivative in the direction of u as the scalar projection of the gradient vector onto u.

The maximum value of the directional derivative occurs when u has the same direction as
the gradient vector Vf(x,y), and is equal to the length of the gradient vector (|Vf (x, y)|.

Tangent plane and normal line:
The equation for a tangent plane is given by:
F (0, Y0, 20) (x — x0) + E, (X0, Y0, 20) (Y — ¥0) + F(X0,¥0,20)(z — 29) = 0

The equation for a normal line is given by:
X—Xo — Y—=Yo — Z—2Zgo
Fx(X0Y0,20)  Fy(x0.Y020)  Fz(X0,Y0,20)

§14.7: Minimum and Maximum Values (p. 922)
Local versus global/absolute and critical point:
A global or absolute minimum or maximum is an extreme value on the full domain of the function, a

local minimum or maximum is an extreme value on a designated domain [a, b]. The partial
derivatives on a critical point are equal to zero. If that equation cannot be solved, the function has no
critical point(s).

Stationary/saddle point:
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A stationary or saddle point is a local maximum with respect to one curve, and a local minimum with

respect to the other. (Think of y = x3 at x = 0.)

Second derivatives test:
The second derivatives test gives the nature of a critical point.

fxx(a: b) fxy(a: b)
fyx(a:b) fyy(a, b)

fx(a, b) show whether the critical point is a local minimum, maximum or a saddle/stationary point.

1. Ifdet (Hf(a, b)) > 0 and f,x(a,b) > 0, (a, b) is a local minimum.

First, define He(a, b) = . The determinant of H¢(a, b) and the value of

2. Ifdet (Hf(a, b)) > 0 and f,,(a,b) <0, (a,b) is a local maximum.
3. Ifdet (Hf(a, b)) < 0, (a, b) is a saddle point.

If det (Hf(a, b)) = 0, the test is inconclusive.

Global/absolute minimum and maximum:
To find the global/absolute extreme value, there are three steps to take:
1. Find the values of f at the critical points of f in D.
2. Find the extreme values of f on the boundary of D.
3. The largest from (1) and (2) is the global/absolute maximum, the smallest the
global/absolute minimum.
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Chapter 15: Multiple Integrals

§15.1: Double Integrals over Rectangles (p. 951)

Definition:
The double integral is defined in the same way as the single integral, and can be
approximated by a (double) Riemann sum.

ﬂRf(x’ y)da = ml}fllooi if(x?j,yg}) AA

i=1j=1

Midpoint Rule:
Rather than taking an arbitrary point (xl-*j, yi*]-), the Midpoint Rule allows taking the center

(J?L)Tj) of R;; and then computing the Riemann sum.

JJreenans tm, i Z £(%7,) b4

i=1j=1
where X, is the midpoint of [x;_4, x;] and ¥, is the midpoint of [yj_l, yj].

§15.2: Iterated Integrals (p. 959)

Fubini’s theorem:

When evaluating a double (or triple) integral, you are free to choose the order of integration.

mﬂmmhﬁmemwww=ffmwmmy

§15.3: Double Integrals over General Regions (p. 965)
Type | and Type Il regions:

Typel: D = {(x,y)|a<x <b, g;(x) <y < g,(x)}

Typell: D ={(x,y)|c <y <d, hi(x) <x < hy(x)}

In integration, there is not much of a difference. One only has to pay attention to the order of

integration.

§15.4: Double Integrals in Polar Coordinates (p. 974)
Polar coordinates:
Rather than specifying a point by giving the distances to the origin on multiple axes, polar
coordinates specify a point by the (shortest) distance to the origin (radius ) and an angle (8).
Converting can be done with these formula’s:

r2 = x2 4+ y2

x =rcosf
y =rsinf
e
@ =tan" ! (=
an (x)
Jacobian:

When evaluating an integral in polar coordinates, the function to integrate must first be multiplied
with a Jacobian (in this case a factor r, printed in bold in the formula below).

ffrf(x,y)dA = ijbf(rcosG,rsine)rdr do
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§15.5: Applications of Double Integrals (p. 980)
Double integrals can be used to find the center of mass and the moment of inertia of a general
volume.

Center of mass:

m  mJl,
)7=—Mx=lﬂyp(xy)dz4
m ml, '

where the mass m is given by

m= anp(x.y)dA

Moment of Inertia:

L = ﬂl)yzp(x.y)dA
L, = fozp(x,y)dA

Iy = ff 2 +yH)p,y)dA =1, +1,
D

§15.6: Triple Integrals (p. 990)
Definition:
The triple integral of f over the box B is defined as

I m n
ffff(& y,z)dV = lnlliggmzz Z f (X1 Vi 2850 ) AV
B m, é ¢
i=1j=1k=1

Fubini’s theorem:

.U_[Bf(x,y,Z)dV = _LS_Ld_Lbf(x,y,z) dx dy dz

Applications:
Mind that the result of a triple integration is a hypervolume (since you’re integrating over a
volume (3D already), and by integrating, add an extra dimension), something that can only
exist in 4D. Although that is hard to imagine (if possible at all), there are some applications of
triple integrals: calculation of moments, centers of mass and moments of inertia, for
example. Electrical charge can also be expressed as a triple integral.

§15.7: Triple Integrals in Cylindrical Coordinates (p. 1000)

Just as the polar coordinate system is an alternative to a 2D Cartesian system, a cylindrical

coordinate system is an alternative to a 3D Cartesian system. The third dimension is the z-axis and,

surprisingly, stays the same when converting to cylindrical coordinates.

r2 =x2+4y?
X =rcosf
y =rsinf

1 (Y
_ 1(2
6 = tan (x)
zZ=2z
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§15.8: Triple Integrals in Spherical Coordinates (p. 1005)

Another 3D coordinate system is the spherical coordinate system. Just as the (2D) polar coordinate

system, it has a coordinate specifying the distance to the origin (radius, now called p) and an angle 6.

In addition, the spherical coordinate system introduces another angle (¢), which is the angle
between the vector of the point and the z-axis.

4

P(p, 6, &)

Conversion:
x = psing cosf
y = psin¢gsinf
zZ=pcos¢
p2=x2+y%+272

Jacobian:
Rather than having to add a Jacobian factor r (as in the polar coordinate system), the Jacobian for a

spherical coordinate system is p? sin ¢.

§15.9: Change of Variables in Multiple Integrals (p. 1012)
Jacobian:
The Jacobian of the (3D) transformation x = g(u, v,w), ¥y = h(u,v,w) and z = k(u, v, w): is given
by:
dx Odx Ox
du Jdv Jw
d(x,y,z) |9y dy dy
o(w,v,w) |du v ow
dz 0z 0z
Ju Jdv Jdw
This determinant can be computed by cofactor expansion. Obviously, in a 2D transformation, the z-
and w-terms disappear.

Change of variables in a double integral:

fff(x y)dA = f flx@,v,),y(wv ))‘ (x y) du dv

Change of variables in a triple integral:
d(x,y,z)

_UJ flx,y,2)dV = ffff(x(uvw) y(u, v,w), Z(uvw))|a(’ o

du dv dw
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Chapter 16: Vector Calculus

§16.1: Vector Field (p. 1027)

Definition:
A vector field is a function F which assigns to each point (x,y) a two-dimensional vector
F(x,y). Vector fields also exist in 3D: just extrapolate.

The length of a vector is equal to the distance of the point to the origin.

A gradient field is given by:
vf(x’y’z) = fx(xry'z)i + fy(x'y'z)j’ +f‘Z(xly'Z)k

§16.2: Line Integrals (p. 1034)
Definition:
The line integral of f along a smooth curve C is given by:

[reenas= [ reo.y©) [(&) +(2) a

The line integrals with respect to arc length are given by:

b
j fGy)dx = f F(x(©,y(®) X' (Odt
C a

b
f Fy)dy = f F(x(©,y®) ¥ (©dt
Cc a

If the smooth curve C is given by a vector function r(t), a < t < b, the line integral of F along C is:

fF-dr=be(r(t))-r’(t)dt=ch-Tds

(T is the unit tangent vector, see § 13.2.)°

§16.3: The Fundamental Theorem for Line Integrals (p. 1046)
Definition:
The Fundamental Theorem for Line Integrals:

[vr-ar = (@) - 16@)
C

where C is a smooth curve given by r(t), a <t < b.

Conservative vector fields:
A vector field is conservative if there is a scalar function f such that F = Vf. Such a function can be
found in the following manner:
1. Find the partial derivatives of the function (simply the i-, j- and possible k-terms).
2. Integrate f,(x,y, z) with respect to x, which gives a formula with a constant (equal to
9y, 2)).
3. Differentiate this integral and constant to y, in which g(y, z) is replaced by g,,(y, z). When
comparing this function to £, (x, y, z) found in step 1, g, (y, z) can be determined.
4. |Integrate gy(y, z) and fill it in as the constant in the function found in step 2 ,which then
gives a function with another constant, h(z).
5. Differentiate to z and comparing with f,(x, y, z) determined earlier, h'(z) and thus h(z) can
be found.
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Line integrals of a conservative vector field are independent of path. This means that fc F:-dr =
1

fcz F - dr, as long as the starting and ending points of C; and C, are equal.

If F(x,y) = P(x,y)i + Q(x,y)j is a conservative vector field, Z—z = z—i (by Clairaut’s Theorem, which

states fy, = fyx). The statement is not always reversible (although it can be in some cases, namely,

when the region is not closed and simply connected).

Closed and simple paths and simply connected regions:
If the starting and ending points of a path are the same (if r(b) = r(a)) the path C is closed, and
fc F - dr = 0. Closed paths thus need to be split up into two (or more) separate, open paths.

A simple path is a path that does not intersect itself.

A simply connected region is a region without any holes in it.

| _— \
simple, not simple, . .
not clpos'ed not clofcd simply-connected region
—. — /)
/~"' - . / \'\_ ,"/’ :
] \\. ',,‘ \vv,' J
," \ I / \\ /
| | / -
\ | ‘.,\
\‘._ _ " il \ //' '\_” /
simple, not simple,
closed closed regions that are not simply-connected

§16.4: Green’s Theorem (p. 1055)

Green’s Theorem gives the relationship between a line integral around a simple closed curve C and a

double integral over the plan region D bounded by C. A positive orientation of C relates to a

counterclockwise traversal of C.

dex+Qdy ff Z—z—g—i dA

provided that P and Q have continuous partial derivatives on D.

§16.5: Curl and Divergence (p. 1061)

Curl:
If F = Pi+ Qj + Rk is a vector field on R3 and the partial derivatives of P, Q, and R all exist, then

the curl of F is the vector field on R3? defined by:

i j k

p_(PR_0Qy, (9P OR\. @0 0P\ _ 3 o 0
C“rF_(ay 62) +(az 6x>]+(6x a) VxF=l5 & a2
P Q R
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If f is a function of three variables and has continuous second order partial derivatives, then
curl(Vf) = 0.

If curl F = 0 and F has continuous partial derivatives, then F is a conservative vector field.

Divergence:
If F = Pi + Qj + Rk is a vector field on R3 and the partial derivatives of dP/dx, 3Q/dy and dR/dz

exist, then the divergence of F is the function of three variables defined by:
dP 0Q OR

divF = — —=V-F
v 6x+6y+az

If the vector field F has continuous second-order partial derivatives, then div curl F = 0.

Green’s Theorem:
Using curl and div, it is possible to rewrite Green’s Theorem in the following vector forms:

jéCF-dr=.UD(curlF)-de
jéCF-nds=JfDdivF(x,y)dA

§16.6: Parametric Surfaces and their Areas (p. 1070)

Definition:

A parametric surface is a surface described by the tip of the position vector r(u, v) = x(u, v)i +
y(u,v)j + z(u, v)k as (u, v) moves through the region D. The equations x = x(u,v), y = y(u, v)
and z = z(u, v) are parametric equations.

Surface area:
If a smooth parametric surface is given by r(u,v) = x(u, v)i + y(u,v)j + z(u, v)k, (u,v) € D and
S is covered once (as (u, v) moves through D), the surface area of S is:

A(S) = ﬂ |ry, X1,| dA
D
0z

_Ox., Ody. 0z _0x.,  0y.
Whereru_aul+au1+aukandr"_aul+av]+avk'

When S is given by z = f(x, y) and f(x, y) has continuous partial derivatives, S is given by:
dz\2 9z\*
A(S) =ﬂ 1+(—) +(—> dA
D ox dy

Tangent plane:
1. Find the tangent vectors (r, and 1,,);
2. Find the normal vector to the tangent plane (r,, X 1,,);
3. Find a parameterization of (x,y, z) in (u, v);
4. Compute the tangent plane by replacing the i, j and k unit vectors from step 2 by x — x,,
y — yo and z — z, and (obviously) equating to 0.

§16.7: Surface Integrals (p. 1081)
A surface integral is to a surface area what a line integral (fo(x, y,z)ds = f;f(r(t))lr’(t)l dt is

to arc length:

.Usf(x,y,z) as = ﬂ;)f(r(u,v)) lry, X ,| dA
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Also note that the value of the surface integral is equal to the surface area for f(x,y,z) = 1:

ffld5=ff |ry, xr,| dA = A(S)
s D

Graphs:
For graphs with parametric equations x = x, y = y and z = g(x, y), the surface integral is given by:

ﬁsf(x’y’g(x'y)) ds = ffo(x,y,g(x,y))Jl + (Z—i)z + (Z—;)Z dA

Formulas similar to the one above (with a projection on the xy-plane) can be derived for projections
onthe xz- (x = x, y = h(x,z) and z = z) and yz-planes ‘(x = k(y,z),y = y and z = z).

Oriented surfaces:
Surface integrals can only be applied to oriented surfaces. Thus, these need to be defined. The unit
normal vector gives the upward orientation of the surface by:
Ty X1,
n=——
|7y X 1|

Vector fields:
If F is a continuous vector field defined over an oriented surface S with unit normal vector n, the the

surface integral (or flux integral) of F over S is

[ 7-as - [[-nas

If S is given by r(u, v), then the equation above simplifies to ffs F-(r, xr,) dA.

Furthermore, if S is given by z = g(x,y), x and y can be thought of parameters and F - (r, X ry)

can be rewritten as (Pi + Qj + Rk) - (—Z—zi - g—ij + k), with finally results into a new equation for

the surface integral (assuming the upward orientation for S):
a d
ﬂF-dS: ﬂ (—P—g—Q—g+R)dA
s D ox dy

Similar formulas exist for the case where x = k(y,z) ory = h(x, 2).

§16.8: Stokes’ Theorem (p. 1092)

Stokes’ Theorem can be regarded as a higher-dimensional version of Green’s Theorem (§16.4).

Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise-
smooth boundary curve C with positive orientation. Let F be a vector field whose components have
continuous partial derivatives on an open region in R3 that contains S. Then

JF-dr=churlF-dS=f F-dr
c s as

§16.9: The Divergence Theorem
When Green’s Theorem (fC F-nds = [[ divF(x,y) dA)is extended to vector fields on R, this

yields the Divergence Theorem

.UF-ndS=ff divF (x,y,z) dV
s E

where § is the boundary surface of the solid region E.
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