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CHAPTER 1

Transcendental and Polynomial
Equations

1.1 INTRODUCTION

We consider the methods for determining the roots of the equation
f (x) = 0 (1.1)

which may be given explicitly as a polynomial of degree n in x or f (x) may be defined
implicitly as a transcendental function. A transcendental equation (1.1) may have no root,
a finite or an infinite number of real and / or complex roots while a polynomial equation (1.1)
has exactly n (real and / or complex) roots. If the function f (x) changes sign in any one of
the intervals [x* – ε, x*], [x*, x* + ε], then x* defines an approximation to the root of f (x)
with accuracy ε. This is known as intermediate value theorem. Hence, if the interval [a, b]
containing x* and ξ where ξ is the exact root of (1.1), is sufficiently small, then

| x* – ξ | ≤ b – a
can be used as a measure of the error.

There are two types of methods that can be used to find the roots of the equation (1.1).
(i) Direct methods : These methods give the exact value of the roots (in the absence of

round off errors) in a finite number of steps. These methods determine all the roots at
the same time.

(ii) Iterative methods : These methods are based on the idea of successive approximations.
Starting with one or more initial approximations to the root, we obtain a sequence of
iterates {xk} which in the limit converges to the root. These methods determine one or
two roots at a time.

Definition 1.1 A sequence of iterates {xk} is said to converge to the root ξ if

lim
k → ∞

 | xk – ξ | = 0.

If xk, xk–1, ... , xk–m+1 are m approximates to a root, then we write an iteration method in
the form

 xk + 1 = φ(xk, xk–1, ... , xk–m+1) (1.2)
where we have written the equation (1.1) in the equivalent form

x = φ(x).
The function φ is called the iteration function. For m = 1, we get the one-point iteration

method
 xk + 1 = φ(xk ), k = 0, 1, ... (1.3)

1
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If φ(x) is continuous in the interval [a, b] that contains the root and | φ′(x) | ≤ c < 1 in
this interval, then for any choice of x0 ∈  [a, b], the sequence of iterates {xk } obtained from (1.3)
converges to the root of x = φ(x) or f (x) = 0.

Thus, for any iterative method of the form (1.2) or (1.3), we need the iteration function
φ(x) and one or more initial approximations to the root.

In practical applications, it is not always possible to find ξ exactly. We therefore attempt
to obtain an approximate root xk + 1 such that

   | f (xk+1 ) | < ε (1.4)

and / or | xk+1 – xk | < ε (1.5)

where xk and xk + 1 are two consecutive iterates and ε is the prescribed error tolerance.

Definition 1.2 An iterative method is said to be of order p or has the rate of convergence p, if
p is the largest positive real number for which

| εk + 1 | ≤ c | εk |
p (1.6)

where εk = xk – ξ is the error in the kth iterate.

The constant c is called the asymptotic error constant. It depends on various order
derivatives of f (x) evaluated at ξ and is independent of k. The relation

εk + 1 = cεk
p + O(εk

p + 1)

is called the error equation.

By substituting xi = ξ + εi for all i in any iteration method and simplifying we obtain the
error equation for that method. The value of p thus obtained is called the order of this method.

1.2 ITERATIVE METHODS FOR SIMPLE ROOTS

A root ξ is called a simple root of f (x) = 0, if f (ξ) = 0 and f ′(ξ) ≠ 0. Then, we can also write
f (x) = (x – ξ) g(x), where g(x) is bounded and g(ξ) ≠ 0.

Bisection Method

If the function f (x) satisfies f (a0) f (b0) < 0, then the equation f (x) = 0 has atleast one real

root or an odd number of real roots in the interval (a0, b0). If m1 = 1
2 (a0 + b0) is the mid point of

this interval, then the root will lie either in the interval (a0, m1) or in the interval (m1, b0)
provided that f (m1) ≠ 0. If f (m1) = 0, then m1 is the required root. Repeating this procedure a
number of times, we obtain the bisection method

mk + 1 = ak + 
1
2

(bk – ak), k = 0, 1, ... (1.7)

where (ak + 1, bk + 1) = 
( , ( ) ( ) ,
( , ), ( ) ( ) .
a m f a f m
m b f m f b

k k k k

k k k k

+ +

+ +

<
<

1 1

1 1

0
0

),   if  
  if  

We take the midpoint of the last interval as an approximation to the root. This method
always converges, if f (x) is continuous in the interval [a, b] which contains the root. If an error
tolerance ε is prescribed, then the approximate number of the iterations required may be
determined from the relation

n ≥ [log(b0 – a0) – log ε] / log 2.
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Secant Method

In this method, we approximate the graph of the function y = f (x) in the neighbourhood
of the root by a straight line (secant) passing through the points (xk–1, fk–1) and (xk, fk), where
fk = f (xk) and take the point of intersection of this line with the x-axis as the next iterate. We
thus obtain

xk + 1 = x
x x
f f

fk
k k

k k
k−

−
−

−

−

1

1
, k = 1, 2, ...

or xk + 1 = 
x f x f

f f
k k k k

k k

− −

−

−
−

1 1

1
, k = 1, 2, ... (1.8)

where xk–1 and xk are two consecutive iterates. In this method, we need two initial approxima-
tions x0 and x1. This method is also called the chord method. The order of the method (1.8) is
obtained as

p = 
1
2

1 5 62( )+ ≈ 1. .

If the approximations are chosen such that f (xk–1) f (xk ) < 0 for each k, then the method
is known as Regula-Falsi method and has linear (first order) rate of convergence. Both these
methods require one function evaluation per iteration.

Newton-Raphson method

In this method, we approximate the graph of the function y = f (x) in the neighbourhood
of the root by the tangent to the curve at the point (xk, fk) and take its point of intersection with
the x-axis as the next iterate. We have the Newton-Raphson method as

xk + 1 = x
f
fk

k

k
−

′
, k = 0, 1, ... (1.9)

and its order is p = 2. This method requires one function evaluation and one first derivative
evaluation per iteration.

Chebyshev method

Writing f (x) = f (xk + x – xk) and approximating f (x) by a second degree Taylor series
expansion about the point xk, we obtain the method

xk + 1 = x
f
f

x x
f
fk

k

k
k k

k

k
−

′
− −

″
′+

1
2 1

2( )

Replacing xk + 1 – xk on the right hand side by (– fk / fk′ ), we get the Chebyshev method

xk + 1 = x
f
f

f
f

f
fk

k

k

k

k

k

k
−

′
−

′
�

��
�

��
″
′

1
2

2

, k = 0, 1, ... (1.10)

whose order is p = 3. This method requires one function, one first derivative and one second
derivative evaluation per iteration.

Multipoint iteration methods

It is possible to modify the Chebyshev method and obtain third order iterative methods
which do not require the evaluation of the second order derivative. We give below two multipoint
iteration methods.
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(i)  xk + 1
*  = x

f
fk

k

k
−

′
1
2

  xk + 1 = x
f

f xk
k

k

−
′ +( )*

1
(1.11)

 order p = 3.
This method requires one function and two first derivative evaluations per iteration.

(ii) x x
f
fk k

k

k
+ = −

′1
*

    xk + 1 = x
f x

fk
k

k
+

+−
′1

1*
*( )

(1.12)

order p = 3.
This method requires two functions and one first derivative evaluation per iteration.

Müller Method

This method is a generalization of the secant method. In this method, we approximate
the graph of the function y = f (x) in the neighbourhood of the root by a second degree curve and
take one of its points of intersection with the x axis as the next approximation.

We have the method as
xk + 1 = xk + (xk – xk – 1) λk + 1, k = 2, 3, ... (1.13)

where hk = xk – xk – 1, hk–1 = xk–1 – xk–2,
λk = hk / hk–1, δk = 1 + λk,

gk = λ k
2  f (xk–2) – δk

2  f (xk–1) + (λk + δk) f (xk),
 ck = λk (λk f (xk–2) – δkf (xk–1) + f (xk)),

λk + 1 = −
± −

2

42

δ

δ
k k

k k k k k

f x

g g c f x

( )

( )
.

The sign in the denominator is chosen so that λk + 1 has the smallest absolute value, i.e.,
the sign of the square root in the denominator is that of gk.

Alternative
We have the method as

xk + 1 = x
a

a a a a
k −

± −

2

4

2

1 1
2

0 2

, k = 2, 3, ... (1.14)

where a2 = fk, h1 = xk – xk–2, h2 = xk – xk–1, h3 = xk–1
 – xk–2,

a1 = 
1
D

[h1
2 ( fk – fk–1) – h2

2 ( fk – fk–2)],

a0 = 
1
D

[h1( fk – fk–1) – h2( fk – fk–2)],

D = h1h2h3.
The sign in the denominator is chosen so that λk + 1 has the smallest absolute value, i.e.,

the sign of the square root in the denominator is that of a1.
This method requires three initial approximations to the root and one function evalua-

tion per iteration. The order of the method is p = 1.84.
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Derivative free methods

In many practical applications, only the data regarding the function f (x) is available. In
these cases, methods which do not require the evaluation of the derivatives can be applied.

We give below two such methods.

(i)  xk + 1 = x
f
gk

k

k
− , k = 0, 1, ... (1.15)

 gk = 
f x f f

f
k k k

k

( )+ −
,

order p = 2.
This method requires two function evaluations per iteration.

(ii)  xk + 1 = xk – w1(xk) – w2(xk), k = 0, 1, ... (1.16)

w1(xk) = 
f
g

k

k

w2(xk) = 
f x w x

g
k k

k

( ( ))− 1

 gk = 
f x f f

f
k k k

k

( )+ −β
β

where β ≠ 0 is arbitrary and order p = 3.
This method requires three function evaluations per iteration.

Aitken ∆2-process

If xk + 1 and xk + 2 are two approximations obtained from a general linear iteration method
  xk + 1 = φ(xk), k = 0, 1, ...

then, the error in two successive approximations is given by
  εk + 1 = a1 εk
  εk + 2 = a1 εk + 1, a1 = φ′(ξ).

Eliminating a1 from the above equations, we get

 εk + 1
2  = εk εk + 2

Using εk = ξ – xk, we obtain

ξ ≈ xk* = x
x x

x x xk
k k

k k k
−

−
− +
+

+ +

( )1
2

2 12
(1.17)

= x
x

xk
k

k

−
( )∆
∆

2

2

which has second order convergence.

A Sixth Order Method

A one-parameter family of sixth order methods for finding simple zeros of f (x), which
require three evaluations of f (x) and one evaluation of the derivative f ′(x) are given by

 wn = x
f x
f xn

n

n
−

′
( )
( )
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zn = w
f w
f x

f x A f w
f x A f wn

n

n

n n

n n
−

′
+

+ −
�

�
	




�
�

( )
( )

( ) ( )
( ) ( ) ( )2

 xn+1 = z
f z
f x

f x f w D f z
f x f w D f zn

n

n

n n n

n n n
−

′
− +

− +
�

�
	




�
�

( )
( )

( ) ( ) ( )
( ) ( ) ( )3

 n = 0, 1, ...

with error term

εn + 1 = 
1

144
 [2 F3

2F2 – 3(2A + 1) F2
3 F3] εn

6 + ...

where F (i) = f  (i) (ξ) / f  ′(ξ).
The  order  of the methods does not depend on D and the error term is simplified when

A = – 1 / 2. The simplified formula for D = 0 and A = – 1 / 2 is

 wn = x
f x
f xn

n

n
−

′
( )
( )

zn = w
f w
f x

f x f w
f x f wn

n

n

n n

n n
−

′
−

−
�

�
	




�
�

( )
( )

( ) ( )
( ) ( )

2
2 5

 xn + 1 = z
f z
f x

f x f w
f x f wn

n

n

n n

n n
−

′
−

−
�

�
	




�
�

( )
( )

( ) ( )
( ) ( )3

, n = 0, 1, ...

1.3 ITERATIVE METHODS FOR MULTIPLE ROOTS

If the root ξ of (1.1) is a repeated root, then we may write (1.1) as
f (x) = (x – ξ)m g(x) = 0

where g(x) is bounded and g(ξ) ≠ 0. The root ξ is called a multiple root of multiplicity m. We
obtain from the above equation

 f (ξ) = f ′(ξ) = ... = f  (m – 1) (ξ) = 0, f  (m) (ξ) ≠ 0.
The methods listed in Section 1.2 do not retain their order while determining a multiple

root and the order is reduced atleast by one. If the multiplicity m of the root is known in
advance, then some of these methods can be modified so that they have the same rate of
convergence as that for determining simple roots. We list some of the modified methods.

Newton-Raphson method

 xk + 1 = x m
f
fk

k

k
−

′
, k = 0, 1, ... (1.18)

 order p = 2.

Chebyshev method

 xk + 1 = x
m m f

f
m f

f
f
fk

k

k

k

k

k

k
− −

′
−

′
�

�
	



�
�

″
′

( )3
2 2

2 2

, k = 0, 1, ... (1.19)

order p = 3.
Alternatively, we apply the methods given in Section 1.2 to the equation

  G(x) = 0 (1.20)

where G(x) = 
f x
f x

( )
( )′
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has a simple root ξ regardless of the multiplicity of the root of f (x) = 0. Thus, the Newton-
Raphson method (1.9), when applied to (1.20) becomes

  xk + 1 = x
G x
G xk

k

k
−

′
( )
( )

or xk + 1 = x
f x f x

f x f x f x
k

k k

k k k

−
′

′ − ″
( ) ( )

[ ( )] ( ) ( )2 , k = 0, 1, 2, ... (1.21)

The secant method for (1.20) can be written as

  xk + 1 = 
x f f x f f

f f f f
k k k k k k

k k k k

− −
′

−

−
′

−

− ′
− ′

1 1 1

1 1
.

Derivative free method

 xk + 1 = xk – W1(xk) – W2(xk) (1.22)

W1(xk) = 
F x
g x

k

k

( )
( )

W2(xk) = 
F x W x

g x
k k

k

( ( ))
( )

− 1

g(xk) = 
F x F x F x

F x
k k k

k

( ( )) ( )
( )

+ −β
β

where  F(x) = − − −
f x

f x f x f x

2 ( )
( ( )) ( )

and β ≠ 0 is an arbitrary constant. The method requires six function evaluations per iteration
and has order 3.

1.4 ITERATIVE METHODS FOR A SYSTEM OF NONLINEAR EQUATIONS

Let the given system of equations be
f x x x
f x x x

f x x x

n

n

n n

1 1 2

2 1 2

1 2

0
0

0

( , , ... , ) ,
( , , ... , ) ,

( , , ... , ) .

=
=

=
............................. (1.23)

Starting with the initial approximations  x(0) = ( , , ... , )( ) ( ) ( )x x xn1
0

2
0 0 , we obtain the sequence

of iterates, using the Newton-Raphson method as
x(k + 1) = x(k) – J–-1 f (k), k = 0, 1, ... (1.24)

where  x(k) = (x1
(k), x2

(k), ... , xn
(k))T

f (k) = (f1
(k), f2

(k), ... , fn
(k))T

  fi
(k) = fi(x1

(k), x2
(k), ... , xn

(k))
and J is the Jacobian matrix of the functions f1, f2, ... , fn evaluated at (x1

(k), x2
(k), ... , xn

(k)). The
method has second order rate of convergence.

Alternatively, we may write (1.24) in the form
 J(x(k+1) – x(k)) = – f (k)

and may solve it as a linear system of equations. Very often, for systems which arise while
solving ordinary and partial differential equations, J is of some special form like a tridiagonal,
five diagonal or a banded matrix.



8-\N-NUM\NU-1-1

8 Numerical Methods : Problems and Solutions

1.5 COMPLEX ROOTS

We write the given equation
 f (z) = 0, z = x + iy

in the form u(x, y) + iv(x, y) = 0,
where u(x, y) and v(x, y) are the real and imaginary parts of f (z) respectively. The problem of
finding a complex root of f (z) = 0 is equivalent to finding a solution (x, y) of the system of two
equations

u(x, y) = 0,
v(x, y) = 0.

Starting with (x(0), y(0)), we obtain a sequence of iterates {x(k), y(k)} using the Newton-
Raphson method as

x
y

x
y

u x y
v x y

k

k

k

k

k k

k k

( )

( )

( )

( )

( ) ( )

( ) ( )
( , )
( , )

+

+
−�

��
�

��
=
�

��
�

��
−

�

��
�

��
1

1 J 1  
 ,  k = 0, 1, ... (1.25)

where J = 

∂
∂

∂
∂

∂
∂

∂
∂

�

�

�
�
�

�

�

�
�
�

u
x

u
y

v
x

v
y x yk k

 

 
 ( , )( ) ( )

is the Jacobian matrix of u(x, y) and v(x, y) evaluated at (x(k), y(k)).
Alternatively, we can apply directly the Newton-Raphson method (1.9) to solve f (z) = 0

in the form

zk + 1 = z
f z
f zk

k

k
−

′
( )
( )

, k = 0, 1, ... , (1.26)

and use complex arithmetic. The initial approximation z0 must also be complex. The secant
method can also be applied using complex arithmetic.

After one root z1 is obtained, Newton’s method should be applied on the deflated polyno-
mial

 f *(z) = 
f z

z z
( )
− 1

.

This procedure can be repeated after finding every root. If k roots are already obtained,
then the new iteration can be applied on the function

 f *(z) = 
f z

z z z z z zk

( )
( )( ) ... ( )− − −1 2

.

The new iteration is

zk + 1 = z
f z
f zk

k

k
−

′
* ( )
* ( )

.

The computation of f *(zk) / f *′(zk) can be easily performed as follows
f
f

d
dz

f
d
dz

f z z z
*
*

(log *) [log ( ) log ( )]
′ = = − − 1

= 
f
f z z
′ −

−
1

1
.
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Hence, computations are carried out with

 
f z
f z

f z
f z z z

k

k

k

k k

* ( )
* ( )

( )
( )

′
=

′
−

−
1

1

Further, the following precautions may also be taken :
(i) Any zero obtained by using the deflated polynomial should be refined by applying

Newton’s method to the original polynomial with this zero as the starting approximation.
(ii) The zeros should be computed in the increasing order of magnitude.

1.6 ITERATIVE METHODS FOR POLYNOMIAL EQUATIONS

The methods discussed in the previous sections can be directly applied to obtain the roots of a
polynomial of degree n

 Pn(x) = a0 x
n + a1 x

n–1 + ... + an–1 x + an = 0 (1.27)
where a0, a1, ... , an are real numbers. Most often, we are interested to determine all the roots
(real or complex, simple or multiple) of the polynomial and we need to know

(i) the exact number of real and complex roots along with their multiplicities.
(ii) the interval in which each real roots lies.
We can obtain this information using Sturm sequences.
Let f (x) be the given polynomial of degree n and let f1(x) denote its first order derivative.

Denote by f2(x) the remainder of f (x) divided by f1(x) taken with reverse sign and by f3(x) the
remainder of f1(x) divided by f2(x) with the reverse sign and so on until a constant remainder is
obtained. The sequence of the functions f (x), f1(x), f2(x), ..., fn(x) is called the Sturm sequence.
The number of real roots of the equation f (x) = 0 in (a, b) equals the difference between the
number of sign changes in the Sturm sequence at x = a and x = b provided f (a) ≠ 0 and f (b) ≠ 0.

We note that if any function in the Sturm sequence becomes 0 for some value of x, we
give to it the sign of the immediate preceding term.

If  f (x) = 0 has a multiple root, we obtain the Sturm sequence f (x), f1(x), ..., fr(x) where
fr–1 (x) is exactly divisible by fr(x). In this case, fr(x) will not be a constant. Since fr(x) gives the
greatest common divisor of f (x) and f ′(x), the multiplicity of the root of f (x) = 0 is one more
than that of the root of fr(x) = 0. We obtain a new Sturm sequence by dividing all the functions
f (x), f1(x), ..., fr(x)  by  fr(x). Using this sequence, we determine the number of real roots of the
equation f (x) = 0 in the same way, without taking their multiplicity into account.

While obtaining the Sturm sequence, any positive constant common factor in any Sturm
function fi(x) can be neglected.

Since a polynomial of degree n has exactly n roots, the number of complex roots equals
(n–number of real roots), where a real root of multiplicity m is counted m times.

If x = ξ is a real root of Pn(x) = 0 then x – ξ must divide Pn(x) exactly. Also, if x = α + iβ is
a complex root of Pn(x) = 0, then its complex conjugate α – iβ is also a root. Hence

 {x – (α + iβ)} {x – (α – iβ)} = (x – α)2 + β2

= x2 – 2αx + α2 + β2

= x2 + px + q
for some real p and q must divide Pn(x) exactly.

The quadratic factor x2 + px + q = 0 may have a pair of real roots or a pair of complex roots.
Hence, the iterative methods for finding the real and complex roots of Pn(x) = 0 are

based on the philosophy of extracting linear and quadratic factors of Pn(x).
We assume that the polynomial Pn(x) is complete, that is, it has (n + 1) terms. If some

term is not present, we introduce it at the proper place with zero coefficient.
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Birge-Vieta method

In this method, we seek to determine a real number p such that x – p is a factor of Pn(x).
Starting with p0, we obtain a sequence of iterates { pk } from

  pk + 1 = p
P p
P pk

n k

n k
−

′
( )
( )

, k = 0, 1, ... (1.28)

or  pk + 1 = p
b

ck
n

n
−

–1
, k = 0, 1, ... (1.29)

which is same as the Newton-Raphson method.
The values of bn and cn–1 are obtained from the recurrence relations

bi = ai + pk bi–1, i = 0, 1, ... , n
ci = bi + pk ci–1, i = 0, 1, ... , n – 1

with  c0 = b0 = a0,  b–1 = 0 = c–1.
We can also obtain bi’s and ci’s by using synthetic division method as given below :

pk a0 a1 a2 ... an–1 an
pkb0 pkb1 ... pkbn–2 pkbn–1

b0 b1 b2 ... bn–1 bn

pkc0 pkc1 ... pkcn–2

c0 c1 c2 ... cn–1

where b0 = a0    and    c0 = b0 = a0.
We have

lim
k → ∞

 bn = 0   and   lim
k → ∞

 pk = p.

The order of this method is 2.
When p has been determined to the desired accuracy, we extract the next linear factor

from the deflated polynomial

 Qn–1(n) = 
P x
x p

n ( )
−

 = b0 x n – 1 + b1 x n–2 + ... + bn–1

which can also be obtained from the first part of the synthetic division.
Synthetic division procedure for obtaining bn is same as Horner’s method for evaluat-

ing the polynomial Pn( pk), which is the most efficient way of evaluating a polynomial.
We can extract a multiple root of multiplicity m, using the Newton-Raphson method

 pk + 1 = p m
b

ck
n

n
= −

− 1
, k = 0, 1, 2, ...

In this case, care should be taken while finding the deflated polynomial. For example, if
m = 2, then as k → ∞, f (x) ≈ bn → 0 and f ′(x) ≈ cn–1 → 0. Hence, the deflated polynomial is given
by

c0 x n–2 + c1 x n–3 + ... + cn–2 = 0.

Bairstow method

This method is used to find two real numbers p and q such that x2 + px + q is a factor of
Pn(x). Starting with p0, q0, we obtain a sequence of iterates {( pk, qk )} from
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 pk + 1 = pk + ∆pk,
 qk + 1 = qk + ∆qk, k = 0, 1, ... (1.30)

where ∆pk = −
−

− −
− − −

− − − −

b c b c

c c c b
n n n n

n n n n

3 1 2

2
2

3 1 1( )

∆qk = −
− −

− −
− − − −

− − − −

b c b b c

c c c b
n n n n n

n n n n

1 1 1 2

2
2

3 1 1

( )

( )
The values of bi’s and ci’s are obtained from the recurrence relations

bi = ai – pk bi–1 – qk bi–2, i = 1, 2, ..., n,
ci = bi – pk ci–1 – qk ci–2, i = 1, 2, ..., n – 1,

with c0 = b0 = a0, c–1 = b–1 = 0.
We can also obtain the values of bi’’s and ci’s using the synthetic division method as

given below :
– pk a0 a1 a2 ... an – 1 an

– pkb0 – pkb1 ... – pkbn–2 – pkbn–1
– qk – qkb0 ... – qkbn–3 – qkbn–2

b0 b1 b2 ... bn–1 bn
– pkc0 – pkc1 ... – pkcn–2

– qkc0 ... – qkcn –3

c0 c1 c2 ... cn–1

where b0 = a0 and c0 = b0 = a0.
We have

lim
k

nb
→ ∞

= 0 , lim
k

nb
→ ∞

− =1 0 ,

lim
k

kp p
→ ∞

= ,   lim
k

kq q
→ ∞

= .

The order of this method is 2.
When p and q have been obtained to the desired accuracy we obtain the next quad-

ratic factor from the deflated polynomial

        Qn–2 (x) = b0 x n–2 + b1 x n–3 + ... + bn–3 x + bn–2

which can be obtained from the first part of the above synthetic division method.

Laguerre method

Define   A = – Pn′ (xk) / Pn(xk),

B = A2 – Pn″ (xk) / Pn(xk).
Then, the method is given by

xk + 1 = x
n

A n nB A
k +

± − −( ) ( )1 2
. (1.31)

The values Pn(xk), Pn′(xk) and Pn″ (xk) can be obtained using the synthetic division method.
The sign in the denominator on the right hand side of (1.31) is taken as the sign of A to make
the denominator largest in magnitude. The order of the method is 2.
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Graeffe’s Root Squaring method

This is a direct method and is used to find all the roots of a polynomial with real coeffi-
cients. The roots may be real and distinct, real and equal or complex. We separate the roots of
the equation (1.27) by forming another equation, whose roots are very high powers of the roots
of (1.27) with the help of root squaring process.

Let ξ1, ξ2, ..., ξn be the roots of (1.27). Separating the even and odd powers of x in (1.27)
and squaring we get

(a0 x n + a2 x n–2 + ...)2 = (a1 x n–1 + a3 x n–3 + ...)2.
Simplifying, we obtain

a0
2 x2n – (a1

2 – 2a0a2) x
2n–2 + ... + (– 1)n an

2 = 0.
Substituting z = – x2, we get

b0 z
n + b1 z

n–1 + ... + bn–1 z + bn = 0 (1.32)
which has roots – ξ1

2, – ξ2
2, ..., – ξn

2. The coefficients bk’s are obtained from :

a0 a1 a2 a3 ... an

a0
2 a1

2 a2
2 a3

2 ... an
2

– 2a0a2 – 2a1a3 – 2a2a4

+ 2a0a4 + 2a1a5 ...

�

b0 b1 b2 b3 ... bn .

The (k + 1)th column in the above table is obtained as explained below:
The terms in each column alternate in sign starting with a positive sign. The first term

is square of the (k + 1)th coefficient ak. The second term is twice the product of the nearest
neighbouring pair ak–1 and ak + 1. The next term is twice the product of the next neighbouring
pair ak–2 and ak + 2. This procedure is continued until there are no available coefficients to form
the cross products.

After repeating this procedure m times we obtain the equation
B0 x n + B1 x n–1 + ... + Bn–1 x + Bn = 0 (1.33)

whose roots are R1, R2, ..., Rn, where
Ri = – ξi

2m, i = 1, 2, ..., n.
If we assume

| ξ1| > | ξ2 | > ... > | ξn |,
then | R1 | >> | R2 | >> ... >> | Rn |.

We obtain from (1.33)

| Ri | ≈ 
| |

| |
B

B
i

i−1
 = | |ξ i

m2

or log (| ξi |) = 2–m [log | Bi | – log | Bi–1 |].
This determines the magnitude of the roots and substitution in the original equation

(1.27) will give the sign of the roots.
We stop the squaring process when another squaring process produces new coefficients

that are almost the squares of the corresponding coefficients Bk’s, i.e., when the cross product
terms become negligible in comparison to square terms.
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After few squarings, if the magnitude of the coefficient Bk is half the square of the
magnitude of the corresponding coefficient in the previous equation, then it indicates that ξk is
a double root. We can find this double root by using the following procedure. We have

Rk ~− −
−

B
B

k

k 1

and Rk + 1 
~− − +B

B
k

k

1

 Rk Rk + 1 
~ ~− − +

−
R

B

Bk
k

k

2 1

1

or   | Rk
2 | = | | ( )ξ k

k

k

m B

B
2 2 1

1
= +

−
.

This gives the magnitude of the double root. Substituting in the given equation, we can
find its sign. This double root can also be found directly since Rk and Rk + 1 converge to the same
root after sufficient squarings. Usually, this convergence to the double root is slow. By making
use of the above observation, we can save a number of squarings.

If ξk and ξk + 1 form a complex pair, then this would cause the coefficients of xn–k in
the successive squarings to fluctuate both in magnitude and sign. If ξk, ξk+1 = βk exp (± iφk)
is the complex pair, then the coefficients would fluctuate in magnitude and sign by an
amount 2βk

m cos (mφk). A complex pair can be spotted by such an oscillation. For m suffi-
ciently large, 2βk can be determined from the relation

 βk
k

k

m B

B
2 2 1

1

( ) ~− +

−

and φ is suitably determined from the relation

2 βk
m  cos (mφk) ~− +

−

B

B
k

k

1

1

.

If the equation has only one complex pair, then we can first determine all the real roots.
The complex pair can be written as ξk, ξk + 1 = p ± iq. The sum of the roots then gives

ξ1 + ξ2 + ... + ξk–1
 + 2p + ξk + 2 + ... + ξn = – a1.

This determines p. We also have | βk |
2 = p2 + q2. Since | βk | is already determined, this

equation gives q.

1.7 PROBLEMS AND SOLUTIONS

Bisection method

1.1 Find the interval in which the smallest positive root of the following equations lies :

(a) tan x + tanh x = 0
(b) x3 – x – 4 = 0.
Determine the roots correct to two decimal places using the bisection method.

Solution
(a) Let f (x) = tan x + tanh x.
Note that f (x) has no root in the first branch of y = tan x, that is, in the interval (0, π / 2).
The root is in the next branch of y = tan x, that is, in the interval (π / 2, 3π / 2).
We have  f (1.6) = – 33.31, f (2.0) = – 1.22,

 f (2.2) = – 0.40,     f (2.3) = – 0.1391, f (2.4) = 0.0676.
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Therefore, the root lies in the interval (2.3, 2.4). The sequence of intervals using the
bisection method (1.7) are obtained as

k ak–1 bk–1 mk f (mk) f (ak–1)
1 2.3 2.4 2.35 > 0
2 2.35 2.4 2.375 < 0
3 2.35 2.375 2.3625 > 0
4 2.3625 2.375 2.36875 < 0

After four iterations, we find that the root lies in the interval (2.3625, 2.36875). Hence,
the approximate root is m = 2.365625. The root correct to two decimal places is 2.37.
(b) For f (x) = x 3 – x – 4, we find f (0) = – 4, f (1) = – 4, f (2) = 2.

Therefore, the root lies in the interval (1, 2). The sequence of intervals using the
bisection method (1.7) is obtained as

k ak–1 bk–1 mk f (mk) f (ak–1)
1 1 2 1.5 > 0
2 1.5 2 1.75 > 0
3 1.75 2 1.875 < 0
4 1.75 1.875 1.8125 > 0
5 1.75 1.8125 1.78125 > 0
6 1.78125 1.8125 1.796875 < 0
7 1.78125 1.796875 1.7890625 > 0
8 1.7890625 1.796875 1.792969 > 0
9 1.792969 1.796875 1.794922 > 0

10 1.794922 1.796875 1.795898  > 0.
After 10 iterations, we find that the root lies in the interval (1.795898, 1.796875).
Therefore, the approximate root is m = 1.796387. The root correct to two decimal places
is 1.80.

Iterative Methods

1.2 Find the iterative methods based on the Newton-Raphson method for finding N , 1 /
N, N1 / 3, where N is a positive real number. Apply the methods to N = 18 to obtain the
results correct to two decimal places.

Solution
(a) Let x = N1 / 2 or x2 = N.
We have therefore f (x) = x2 – N, f  ′ (x) = 2x.
Using Newton-Raphson method (1.9), we obtain the iteration scheme

 xn + 1 = x
x N

xn
n

n
−

−2

2
, n = 0, 1, ...

or xn + 1 = 1
2

x
N
xn

n
+

�

��
�

��
,   n = 0, 1, ...

For N = 18 and x0 = 4, we obtain the sequence of iterates
x1 = 4.25, x2 = 4.2426, x3 = 4.2426, ...

The result correct to two decimal places is 4.24.
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(b) Let x = 1 / N or 1 / x = N.
We have therefore

f (x) = (1 / x) – N, f ′(x) = – 1 / x2.
Using Newton-Raphson method (1.9), we obtain the iteration scheme

 xn + 1 = x
x N

xn
n

n

−
−

−
( / )

( / )
1

1 2 , n = 0, 1, ...

or xn+1 = xn(2 – Nxn), n = 0, 1, ...
For N = 18 and x0 = 0.1, we obtain the sequence of iterates

x1 = 0.02, x2 = 0.0328, x3 = 0.0462,
x4 = 0.0540, x5 = 0.0555, x6 = 0.0556.

The result correct to two decimals is 0.06.
(c) Let x = N1 / 3 or x3 = N.
We have therefore   f (x) = x3 – N, f ′(x) = 3x2.
Using the Newton-Raphson method (1.9) we get the iteration scheme

  xn + 1 = x
x N

x
x

N
x

n
n

n
n

n

−
−

= +
�

��
�

��
3

2 23
1
3

2 , n = 0, 1, ...

For N = 18 and x0 = 2, we obtain the sequence of iterates
x1 = 2.8333, x2 = 2.6363,
x3 = 2.6208, x4 = 2.6207.

The result correct to two decimals is 2.62.

1.3 Given the following equations :

(i) x4 – x – 10 = 0, (ii) x – e–x = 0
determine the initial approximations for finding the smallest positive root. Use these to
find the root correct to three decimal places with the following methods:
(a) Secant method, (b) Regula-Falsi method,

  (c)  Newton-Raphson method.
Solution
(i) For f (x) = x4 – x – 10, we find that

  f (0) = – 10, f (1) = – 10, f (2) = 4.
Hence, the smallest positive root lies in the interval (1, 2).
The Secant method (1.8) gives the iteration scheme

 xk + 1 = x
x x
f f

fk
k k

k k
k−

−
−

−

−

1

1
, k = 1, 2, ...

With x0 = 1, x1 = 2, we obtain the sequence of iterates
x2 = 1.7143, x3 = 1.8385, x4 = 1.8578,
x5 = 1.8556, x6 = 1.8556.

The root correct to three decimal places is 1.856.
The Regula-Falsi method (1.8) gives the iteration scheme

  xk + 1 = x
x x
f f

fk
k k

k k
k−

−
−

−

−

1

1
, k = 1, 2, ...

and  fk fk–1 < 0.
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With x0 = 1, x1 = 2, we obtain the sequence of iterates
x2 = 1.7143, f (x2) = – 3.0776, ξ ∈  (x1, x2),
x3 = 1.8385, f (x3) = – 0.4135, ξ ∈  (x1, x3),
x4 = 1.8536, f (x4) = – 0.0487, ξ ∈  (x1, x4),
x5 = 1.8554, f (x5) = – 0.0045, ξ ∈  (x1, x5),
x6 = 1.8556.

The root correct to three decimal places is 1.856.
The Newton-Raphson method (1.9) gives the iteration scheme

 xk + 1 = x
f x
f xk

k

k
−

′
( )
( )

, k = 0, 1, ...

With x0 = 2, we obtain the sequence of iterates
x1 = 1.8710, x2 = 1.8558, x3 = 1.8556.

Hence, the root correct to three decimal places is 1.856.
(ii) For f (x) = x – e–x, we find that f (0) = – 1, f (1) = 0.6321.
Therefore, the smallest positive root lies in the interval (0, 1). For x0 = 0, x1 = 1, the
Secant method gives the sequence of iterates

x2 = 0.6127, x3 = 0.5638, x4 = 0.5671, x5 = 0.5671.
For x0 = 0, x1 = 1, the Regula-Falsi method gives the sequence of iterates

x2 = 0.6127, f (x2) = 0.0708, ξ ∈  (x0, x2),
x3 = 0.5722, f (x3) = 0.0079, ξ ∈  (x0, x3),
x4 = 0.5677, f (x4) = 0.0009, ξ ∈  (x0, x4),
x5 = 0.5672, f (x5) = 0.00009.

For x0 = 1, the Newton-Raphson method gives the sequence of iterates
x1 = 0.5379, x2 = 0.5670, x3 = 0.5671.

Hence, the root correct to three decimals is 0.567.

1.4 Use the Chebyshev third order method with f (x) = x 2 – a and with f (x) = 1 – a / x2 to
obtain the iteration method converging to a1 / 2 in the form

  xk + 1 = 
1
2

1
8

2

x
a
x x

x
a
xk

k k
k

k
+

�

��
�

��
− −

�

��
�

��

and   xk + 1 = 
1
2

3
3
8

1
2 2 2

x
x
a

x
x
ak

k
k

k−
�

�
�

�

�
� + −

�

�
�

�

�
� .

Perform two iterations with these methods to find the value of 6 .
Solution
(i) Taking  f (x) = x2 – a, f ′ (x) = 2x, f ″(x) = 2
and using the Chebyshev third order method (1.10) we obtain on simplification

 xk + 1 = x
x a

x
x a

x xk
k

k

k

k k
−

−
−

−�

��
�

��
�

��
�

��
2 2 2

2
1
2 2

1

= 
1
2

1
8

2

x
a
x x

x
a
xk

k k
k

k
+

�

��
�

��
− −

�

��
�

��
, k = 0, 1, ...
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For a = 6 and x0 = 2, we get x1 = 2.4375, x2 = 2.4495.

(ii) Taking f (x) = 1 2−
a

x
, f ′ (x) = 

2
3
a

x
, f ″(x) = – 

6
4
a

x
and using the Chebyshev third order method (1.10), we obtain

 xk + 1 = x
x
a

x
x
a

x
xk

k
k

k
k

k
− −
�

��
�

��
− −
�

��
�

��
−
�

��
�

��
1
2

1
8

33 3 2

= 
1
2

3
3
8

1
2 2 2

x
x
a

x
x
ak

k
k

k−
�

��
�

��
+ −

�

��
�

��
, k = 0, 1, ...

For a = 6 and x0 = 2, we get x1 = 2.4167, x2 = 2.4495.

1.5 Perform two iterations using the sixth order method, to find a root of the following
equations :

(i) x4 – x – 10 = 0, x0 = 2.0 ; (ii) x – e–x = 0,   x0 = 1.0.
Solution
(i) First iteration

 f (x) = x4 – x – 10, f  ′(x) = 4x3 – 1,
x0 = 2, f (x0) = 4, f  ′(x0) = 31, w0 = 1.870968, f (w0) = 0.382681,
 z0 = 1.855519, f (z0) = – 0.001609, x1  = 1.855585.

Second iteration
f (x1) = 0.000012, f  ′(x1) = 24.556569, w1 = 1.855585,
f (w1) = 0.000012, z1 = 1.855585, x2 = 1.855585.

(ii) First iteration
f (x) = x – e–x, f  ′(x) = 1 + e–x,
  x0 = 1.0, f (x0) = 0.632121, f  ′( x0) = 1.367879,
 w0 = 0.537882, f (w0) = – 0.046102,

z0 = 0.567427, f (z0) = 0.000445, x1 = 0.567141.
Second iteration

f (x1) = – 0.000004, f  ′(x1) = 1.567145, w1 = 0.567144,
  f (w1) = 0.000001, z1 = 0.567144, x2 = 0.567144.

1.6 Perform 2 iterations with the Müller method (Eqs. (1.13), (1.14)) for the following
equations :
(a) x3 – 1

2
 = 0,    x0 = 0, x1 = 1,   x2 = 1

2
,

(b) log10 x – x + 3 = 0, x0 = 1
4

,    x1 = 1
2

, x2  = 1.

Solution
(a) Using the Müller method (1.13) for f (x) = x 3 − 1

2
, we obtain

First iteration
x0 = 0, x1 = 1, x2 = 0.5,
f0 = – 0.5, f1 = 0.5, f2 = – 0.375,

 h2 = x2 – x1 = – 0.5, h1 = x1 – x0 = 1.0,
λ2 = h2 / h1 = – 0.5, δ2 = 1 + λ2 = 0.5,
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g2 = λ 2
2  f0 – δ2

2  f1 + (δ2 + λ2)f2 = – 0.25,
c2 = λ2(λ2f0 – δ2f1 + f2) = 0.1875,

λ3 = 
−

± −

2

4
2 2

2 2
2

2 2 2

δ

δ

f

g g f c
.

Taking minus sign in the denominator (sign of g2) we obtain
 λ3 = – 0.5352,
 x3 = x2 + (x2 – x1)λ3 = 0.7676.

Second iteration
 x0 = 1, x1 = 0.5, x2 = 0.7676,
f0 = 0.5, f1 = – 0.375, f2 = – 0.0477,

h2 = 0.2676, h1 = – 0.5, λ2 = – 0.5352,
 δ2 = 0.4648, g2 = 0.2276,
 c2 = 0.0755, λ3 = 0.0945,
 x3 = 0.7929.

Alternative
First iteration

 x0 = 0, x1 = 1, x2 = 0.5, x2 – x1 = – 0.5, x2 – x0 = 0.5, x1 – x0 = 1.0,
f0 = – 0.5, f1 = 0.5, f2 = – 0.375,

 D = (x2 – x1)(x2 – x0)(x1 – x0) = – 0.25, a2 = f2 = – 0.375,
 a1 = {[(x2 – x0)2 (f2 – f1) – (x2 – x1)

2 (f2 – f0)] / D} = 1,
a0 = {[(x2 – x0)(f2 – f1) – (x2 – x1)(f2 – f0)] / D} = 1.5,

   x3 = x
a

a a a a
2

2

1 1
2

0 2

2

4
−

+ −
 = 0.7676.

Second iteration
 x0 = 1, x1 = 0.5, x2 = 0.7676, x2 – x1 = 0.2676, x2 – x0 = – 0.2324,

x1 – x0 = – 0.5, f0 = 0.5, f1 = – 0.375, f2 = – 0.0477,
 D = 0.0311, a2 = – 0.0477, a1 = 1.8295, a0 = 2.2669, x3 = 0.7929.

(b) Using Müller method (1.13) with f (x) = log10 x – x + 3, we obtain
First iteration

x0 = 0.25, x1  = 0.5, x2 = 1.0,
f0 = 2.147940, f1 = 2.198970, f2 = 2.0,
h2 = 0.5, h1 = 0.25, λ2 = 2.0,
 δ2 = 3.0, g2 = – 1.198970, c2 = – 0.602060,
 λ3 = 2.314450, x3 = 2.157225,

Second iteration
 x0 = 0.5, x1 = 1.0, x2 = 2.157225,
f0 = 2.198970, f1 = 2.0, f2 = 1.176670,

h1 = 0.5, h2 = 1.157225,
 λ2 = 2.314450, δ2 = 3.314450,
g2 = – 3.568624, c2 = – 0.839738,
 λ3 = 0.901587, x3 = 3.200564.
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Alternative
First iteration

 x0 = 0.25, x1 = 0.5, x2 = 1.0, x2 – x1 = 0.5, x2 – x0 = 0.75, x1 – x0 = 0.25,
f0 = 2.147940, f1 = 2.198970, f2 = 2.0, D = 0.09375, a2 = 2.0,
a1 = – 0.799313, a0 = – 0.802747,

 x3 = x
a

a a a a
2

2

1 1
2

0 2

2

4
−

− −
 = 2.157225.

Second iteration
x0 = 0.5, x1 = 1.0, x2 = 2.157225, x2 – x1  = 1.157225,

x2 – x0 = 1.657225, x1 – x0 = 0.5, f0 = 2.198970,
 f1 = 2.0, f2 = 1.176670, D = 0.958891, a2 = 1.176670,
a1 = – 0.930404, a0 = – 0.189189, x3 = 3.200564.

1.7 The equation x = f (x) is solved by the iteration method xk + 1 = f (xk), and a solution is
wanted with a maximum error not greater than 0.5 × 10–4. The first and second iterates
were computed as : x1 = 0.50000 and x2 = 0.52661. How many iterations must be per-
formed further, if it is known that | f ′(x) | ≤ 0.53 for all values of x.

Solution
For the general iteration method xk + 1 = f (xk), the error equation satisfies

| εn + 1 | ≤ c | εn |, (where c = | f  ′(ξ) | and 0 < c < 1).
Hence, | ξ – xn + 1 | ≤ c | ξ – xn |

= c | ξ – xn + xn + 1 – xn + 1 |
≤ c | ξ – xn + 1 | + c | xn + 1 – xn |.

Thus, we get

 | ξ – xn + 1 | ≤ 
c

c1 −
 | xn + 1 – xn |, n = 0, 1, ...

For n  = 1, we have

| ξ – x2 | ≤ 
c

c1 −
 | x2 – x1 | = 0.03001

where, we have used c = 0.53.
We also have

 | ξ – xn + 2 | ≤ cn | ξ – x2 | ≤ (0.53)n (0.03001).
Now choose n such that

(0.53)n (0.03001) ≤ 5 × 10–5.
We find n ≥ 11.

1.8 A root of the equation f (x) = x – F(x) = 0 can often be determined by combining the
iteration method with Regula-Falsi :
(i) With a given approximate value x0, we compute

x1 = F(x0), x2 = F(x1).
(ii) Observing that f (x0) = x0 – x1 and f (x1) = x1 – x2, we find a better approximation x ′

using Regula-Falsi method on the points (x0, x0 – x1) and (x1, x1 – x2).
(iii) The last x′ is taken as a new x0 and we start from (i) all over again.
Compute the smallest root of the equation x – 5 loge x = 0 with an error less than
0.5 × 10–4 starting with x0 = 1.3.(Inst. Tech. Stockholm, Sweden, BIT 6 (1966), 176)
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Solution
From x = F(x), we have  F(x) = 5 loge x.
First iteration

x0 = 1.3, x1 = F(x0) = 1.311821,
x2 = F(x1) = 1.357081,
 f0 = x0 – x1 = – 0.011821, f1 = x1 – x2 = – 0.045260.

Using Regula-Falsi method (1.8) on the points (1.3, – 0.011821) and (1.311821, – 0.045260),
we obtain

 x′ = 1.295821.
Second iteration

x0 = x′ = 1.295821,
x1 = 1.295722, f0 = 0.000099,
x2 = 1.295340, f1 = 0.000382.

Using Regula-Falsi method (1.8) on the points (1.295821, 0.000099) and
(1.295722, 0.000382) we get

   x ″ = 1.295854
which is the required root and satisfies the given error criteria.

1.9 The root of the equation x = (1 / 2) + sin x by using the iteration method

 xk + 1 = 
1
2

 + sin xk, x0 = 1

correct to six decimals is x = 1.497300. Determine the number of iteration steps required
to reach the root by linear iteration. If the Aitken ∆2-process is used after three approxi-
mations are available, how many iterations are required.
Solution
We have ξ = 1.497300 and x0 = 1, g(x) = (1 / 2) + sin x. The linear iteration method
satisfies the error relation

| εn | < cn | ε0 |.
We now have  c = | g′(ξ) | = | cos ξ | = 0.073430
and ε0 = ξ – x0 = 0.497300.
Choose n such that cn | ε0 | ≤ 5 × 10–7 or

(0.07343)n (0.4973) ≤ 5 × 10–7

which gives n ≥ 6.
Starting with x0 = 1, we obtain from the linear iteration formula

xk + 1 = (1 / 2) + sin xk = g(xk), k = 0, 1, ...
 x1 = 1.34147098, x2 = 1.47381998.

Using Aitken ∆2-process (1.17) we get
 x0*

 = 1.55758094,
x1*

 = g(x0*) = 1.49991268,
x2*

 = g(x1*) = 1.49748881.
Using Aitken ∆2-process (1.17) we get

x0** = 1.49738246,
x1** = g(x0**) = 1.49730641,
x2** = g(x1**) = 1.49730083.
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Using Aitken ∆2-process (1.17) we get
x0*** = 1.49730039,
x1*** = g(x0***) = 1.49730039,
x2*** = g(x1***) = 1.49730039.

The Aitken ∆2-process gives the root as ξ = 1.49730039, which satisfies the given error
criteria. Hence, three such iterations are needed in this case.

1.10 (a) Show that the equation loge x = x2 – 1 has exactly two real roots, α1 = 0.45 and α2 = 1.
(b) Determine for which initial approximation x0, the iteration

 xn + 1 = 1 + log e nx
converges to α1 or α2. (Uppsala Univ., Sweden, BIT 10 (1970), 115).

Solution
(a) From the equation loge x = x2 – 1, we find
that the roots are the points of intersection of
the curves

y = loge x, and y = x2 – 1.
Since the curves intersect exactly at two
points x = 0.45 and x = 1, the equation has
exactly two roots α1 = 0.45 and α2 = 1.
(b) We write the given iteration formula as

  xn + 1 = g(xn)

where g(x) = 1 + log e x .

We have g ′(x) = 
1

2 1x xe+ log
.

For convergence, we require | g ′(x) | < 1. We find that for
x0 < α1, | g ′(x) | > 1, hence no convergence,
x0 < α2, | g ′(x) | < 1, hence converges to α2.

For x0 > x*, where x* is a root of 4x2(1 + loge x) – 1 = 0, | g′(x) | < 1, hence the root
converges to α2.

1.11 If an attempt is made to solve the equation x = 1.4 cos x by using the iteration formula
 xn + 1 = 1.4 cos xn

it is found that for large n, xn alternates between the two values A and B.
(i) Calculate A and B correct to three decimal places.

(ii) Calculate the correct solution of the equation to 4 decimal places.
(Lund Univ., BIT 17 (1977), 115)

Solution
Using the given iteration formula and starting with x0 = 0, we obtain the sequence of
iterates

x1 = 1.4, x2 = 0.2380, x3 = 1.3605.
For xk > 0.79 (approx.), the condition for convergence, | 1.4 sin xk | < 1, is violated.
However, xk = 1.3 when substituted in the given formula gives xk + 1 = 0.374, that is
bringing back to a value closer to the other end. After 28 iterations, we find
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 x28 = 0.3615, x29 = 1.3095, x30 = 0.3616.
Hence, the root alternates between two values A = 0.362 and B = 1.309.
Using the Newton-Raphson method (1.9) with the starting value x0 = 0, we obtain

x1 = 1.4, x2 = 0.91167, x3 = 0.88591,
x4 = 0.88577, x5 = 0.88577.

Hence, the root correct to four decimal places is 0.8858.
1.12 We consider the multipoint iteration method

xk + 1 = x
f x

f x f x f xk
k

k k k
−

′ − ′
α

β
( )

( ( ) / ( ))
where α and β are arbitrary parameters, for solving the equation f (x) = 0. Determine α
and β such that the multipoint method is of order as high as possible for finding ξ, a
simple root of f (x) = 0.
Solution
We have

f x
f x

f
f

ck

k

k

k
k k

( )
( )

( )
( )

...
′

=
+

′ +
= + +�
�	



��

ξ ε
ξ ε

ε ε2 2

2
 [1 + c2 εk + ...]–1

= εk – 
1
2

 c2 εk
2 + O (εk

3)

where ci = f  (i) (ξ) / f ′(ξ).
We also have

  f x
f x
f x

f c Ok
k

k
k k k′ −

′
�

��
�

��
= ′ + − + +�
��

�
��

β ξ β ε β ε ε
( )
( )

( ) ( ) ( )1
1
2 2

2 3

= f c fk k′ + − + +�
�	



��

″ξ β ε β ε ξ
 � ( ) ... ( )1
1
2 2

2

   + − + ″′ +1
2

1 2 2[( ) ... ] ( ) ...β ε ξk f

Substituting these expressions in the given formula and simplifying, we obtain the error
equation as

  εk + 1 = εk – α ε ε β εk k k
c

c+ +�

�	



��
+ − +

�

�
	
	




�
�
�

−
2 2

2

1

2
1 1... ( ) ...

= (1 – α)εk – α 1
2

1 2
2 3− −�

�	



��
+( ) ( )β ε εc Ok k ,

Τhus, for  α = 1, β ≠ 1 / 2, we have second order methods and for α = 1, β = 1 / 2, we have
a third order method.

1.13 The equation

2e– x = 
1

2
1

1x x+
+

+
has two roots greater than – 1. Calculate these roots correct to five decimal places.

(Inst. Tech., Lund, Sweden, BIT 21 (1981), 136)
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Solution

From f (x) = 2e–x – 
1

2
1

1x x+
−

+
 we find that

 f (– 0.8) = – 1.38, f (0) = 0.5, f (1.0) = – 0.0976.
Hence, the two roots of f (x) = 0 which are greater than – 1 lie in the intervals (– 0.8, 0)
and (0, 1). We use Newton-Raphson method (1.9) to find these roots. We have

f (x) = 2
1

2
1

1
e

x x
x− −

+
−

+

 f  ′(x) = − +
+

+
+

−2
1

2

1

12 2e
x x

x

( ) ( )

and   xn + 1 = x
f x
f xn

n

n
−

′
( )
( )

, n = 0, 1, ...

First root
Starting with x0 = – 0.6, we obtain the sequence of iterates as

x1 = – 0.737984, x2 = – 0.699338,
x3 = – 0.690163, x4 = – 0.689753, x5 = – 0.689752.

Hence, the root correct to five decimals is – 0.68975.
Second root
Starting with x0 = 0.8, we obtain the sequence of iterates

x1 = 0.769640, x2 = 0.770091, x3 = 0.770091.
Hence, the root correct to five decimals is 0.77009.

1.14 Find the positive root of the equation

e x = 1
2 6

2 3
0.3+ + +x

x x
e x

correct to five decimal places.
(Royal Inst. Tech. Stockholm, Sweden, BIT 21 (1981), 242)

Solution

From f (x) = e x
x x

ex x− − − −1
2 6

2 3
0.3

we find f (0) = 0, f (1) = – 0.0067, f (2) = – 0.0404, f (3) = 0.5173.
Hence, the positive root lies in the interval (2, 3). Starting with x0 = 2.5 and using the
Newton-Raphson method (1.9)

 xn + 1 = x
f x
f xn

n

n
−

′
( )
( )

, n = 0, 1, ...

we obtain the sequence of iterates
x1 = 2.392307, x2 = 2.364986, x3 = 2.363382,
x4 = 2.363376, x5 = 2.363376.

Hence, the root correct to five decimals is 2.363376 ± 0.5 × 10–6.
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1.15 Assuming that ∆x, in the Taylor expansion of f (x + ∆x), can be approximated by
a1 f (x0) + a2 f 2(x0) + a3 f 3(x0) + ..., where a1, a2, ... are arbitrary parameters to be
determined, derive the Chebyshev methods of third and fourth orders for finding a
root of f (x) = 0.
Solution
We have

 f (x0 + ∆x) = f (x0) + ∆x f ′(x0) + 
1
2

(∆x)2 f ″(x0)

 + 
1
6

(∆x)3 f″′ (x0) + ... ≡ 0

Substituting
∆x = a1f (x0) + a2 f

 2(x0) + a3 f
 3(x0) + ...

in the above expression and simplifying, we get

[1 + a1f ′(x0)] f (x0) + a f x a f x f x2 0 1
2

0
2

0
1
2

′ + ″�
�	



��

( ) ( ) ( )

+ ′ + ″ + ″ ′�
�	



��

+ ≡a f x a a f x a f x f x3 0 1 2 0 1
3

0
3

0
1
6

0( ) ( ) ( ) ( ) ...

Equating the coefficients of various powers of f (x0) to zero, we get
 1 + a1f ′(x0) = 0 (1.34)

 a2f ′(x0) + 
1
2 1

2
0a f x″ ( ) = 0 (1.35)

a f x a a f x a f x3 0 1 2 0 1
3

0
1
6

′ + ″ + ″ ′( ) ( ) ( )  = 0. (1.36)

Solving for a1, a2 from (1.34) and (1.35), we obtain

a1 = −
′
1

0f x( )
, a2 = −

″
′

1
2

0

0
3

f x

f x

( )

[ ( )]
,

 ∆x = − ′
−

″
′

f x
f x

f x

f x
f x

( )
( )

( )

[ ( )]
( )0

0

0

0
3

2
0

1
2

,

x1 = x + ∆x
which is the Chebyshev third order method (1.10).
Solving the equations (1.34), (1.35) and (1.36), we find the same values for a1 and a2 as
given above and

 a3 = −
″
′

+
″ ′
′

[ ( )]

[ ( )]

( )

[ ( )]

f x

f x

f x

f x
0

2

0
5

0

0
42

1
6

.

Hence, ∆x = −
′

−
″

′
+

f x
f x

f x f x

f x

( )
( )

( ) ( )

[ ( )]
0

0

0
2

0

0
3

1
2

1
6

1
2

0

0

0

0

2
0

0

3
f x
f x

f x
f x

f x
f x

″ ′
′

−
″
′

�
�
�

�
�
�

�

�
	
	




�
�
� ′
�

�
	




�
�

( )
( )

( )
( )

( )
( )

and x1 = x0 + ∆x
which is the Chebyshev fourth order method.

1.16 (a) Newton-Raphson’s method for solving the equation f (x) = c, where c is a real valued
constant, is applied to the function

 f (x) = 
cos , |

( ) , | ,
x x
x x x

when|
cos when|

≤
+ − ≥

1
1 12 2 .

For which c is xn = (– 1)n, when x0 = 1 and the calculation is carried out with no error ?
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(b) Even in high precision arithmetics, say 10 decimals, the convergence is troublesome.
Explain ? (Uppsala Univ., Sweden, BIT 24 (1984), 129)

Solution
(a) When we apply the Newton-Raphson method (1.9) to the equation f (x) = c, we get the

iteration scheme

xn + 1 = x
f x c

f xn
n

n
−

−
′

( )
( )

,    n = 0, 1, ...

Starting with x0 = 1, we obtain

x1 = 1
1

1
1− −

−
= −cos

sin
c

which gives c = cos 1 + 2 sin 1.
With this value of c, we obtain

x2 = 1,    x3 = – 1, ...
and hence xn = (– 1)n.
(b) Since f ′(x) = 0, between x0 and the roots and also at x = 0, the convergence will be

poor inspite of high-precision arithmetic.
1.17 The equation f (x) = 0, where

f (x) = 0.1 – x + 
x x x2

2

3

2

4

22 3 4( !) ( !) ( !)
− + −�

has one root in the interval (0, 1). Calculate this root correct to 5 decimals.
(Inst. Tech., Linköping, Sweden, BIT 24 (1984), 258)

Solution
We use the Newton-Raphson method (1.9)

  xn + 1 = x
f x
f xn

n

n
−

′
( )
( )

, n = 0, 1, ...

where f (x) = 0 1
4 36 576 14400

2 3 4 5

. ...− + − + − +x
x x x x

  f  ′(x) =− + − + − +1
2 12 144 2880

2 3 4x x x x
...

With x0 = 0.2, we obtain the sequence of iterates
x1 = 0.100120, x2 = 0.102600, x3 = 0.102602.

Hence, the root correct to 5 decimals is 0.10260.
1.18 Show that the equation

f (x) = cos
( )π x +�

��
�
��

1
8

 + 0.148x – 0.9062 = 0

has one root in the interval (– 1, 0) and one in (0, 1). Calculate the negative root correct
to 4 decimals. (Inst. Tech., Lyngby, Denmark, BIT 25 (1985), 299)
Solution
We have from the given function

 f (– 1) = – 0.0542, f (0) = 0.0177, f (1) = – 0.0511.
Hence, one root lies in the interval (– 1, 0) and one root in the interval (0, 1). To obtain
the negative root, we use the Newton-Raphson method (1.9)
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  xn + 1 = x
f x
f xn

n

n
−

′
( )
( )

, n = 0, 1, ...

where f ′(x) = – π π
8

1
8

0148�
��
�
��

+�
��

�
��

+sin
( )

.
x ,

With x0 = – 0.5, we obtain the following sequence of iterates :
x1 = – 0.508199, x2 = – 0.508129, x3 = – 0.508129.

Hence, the root correct to four decimals is – 0.5081.
1.19 The  equation  x = 0.2 + 0.4 sin (x/b),  where  b  is  a  parameter,  has  one  solution near

x = 0.3. The parameter is known only with some uncertainty : b = 1.2 ± 0.05. Calculate
the root with an accuracy reasonable with respect to the uncertainty of b.

(Royal Inst. Tech. Stockholm, Sweden, BIT 26 (1986), 398)
Solution
Taking b = 1.2, we write the iteration scheme in the form

xn + 1 = 0.2 + 0.4 sin 
xn

1.2
�
��

�
��

, n = 0, 1, ...

Starting with x0 = 0.3, we obtain
x1 = 0.298962, x2 = 0.298626, x3 = 0.298518.

Hence, the root correct to three decimals is 0.299.
1.20 Find all positive roots to the equation

 10 1
0

2x
xe dt� − =

with six correct decimals. (Uppsala Univ., Sweden, BIT 27 (1987), 129)
Solution
We have from the function

f (x) = 10 1
2

xe x− − ,

f (0) = – 1, f (1) = 2.6788, f (2) = – 0.6337,
and   f (a) < 0   for   a > 2.
Hence, the given equation f (x) = 0 has two positive roots, one in the interval (0, 1), and
the other in the interval (1, 2).
We use the Newton-Raphson method (1.9)

  xn + 1 = x
f x
f xn

n

n
−

′
( )
( )

, n = 0, 1, ...

where f ′ (x) = 10(1 – 2x2) e x− 2
.

With x0 = 0.1, we obtain the following sequence of iterates
x1 = 0.10102553, x2 = 0.10102585, x3 = 0.10102585.

Hence, the root correct to six decimals is 0.101026.
With x0 = 1.6, we obtain the following sequence of iterates

 x1 = 1.67437337, x2 = 1.67960443,
x3 = 1.67963061, x4 = 1.67963061.

Hence, the root correct to six decimals is 1.679631.
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1.21 Find all the roots of cos x – x2 – x = 0 to five decimal places.
(Lund Univ., Sweden, BIT 27 (1987), 285)

Solution
For f (x) = cos x – x2 – x, we have

 f (a) < 0   for   a < – 2,  f (– 2) = – 2.4161,
 f (– 1) = 0.5403, f (0) = 1.0, f (1) = – 1.4597,

f (b) < 0   for    b > 1.
Hence,  f (x) = 0 has a real root in the interval (– 2, – 1) and another root in the interval
(0, 1).
We use the Newton-Raphson method (1.9)

  xn + 1 = x
f x
f xn

n

n
−

′
( )
( )

, n = 0, 1, ...

where  f ′(x) = – (sin x + 2x + 1).
Starting with x0 = 0.5 and x0 = – 1.5 we obtain the following sequences of iterates :

x0 = 0.5, x0 = – 1.5,
x1 = 0.55145650, x1 = – 1.27338985,
x2 = 0.55001049, x2 = – 1.25137907,
x3 = 0.55000935, x3 = – 1.25115186,

x4 = – 1.25115184.
Hence, the roots correct to five decimals are 0.55001 and – 1.25115.

1.22 Find a catenary y = c cosh ((x – a)/c) passing through the points (1, 1) and (2, 3).
(Royal Inst. Tech., Stockholm, Sweden, BIT 29 (1989), 375)

Solution
Since the catenary y = c cosh ((x – a)/c) passes through the points (1, 1) and (2, 3), we
have

c cosh [(1 – a)/c] = 1
c cosh [(2 – a)/c] = 3

which can be rewritten as

a = 1 – c cosh–1(1/c), c = 
2

31

−
−

a
ccosh ( / )

.

On eliminating a from the above equations, we get

c = 
1 1

3

1

1

+ −

−
c c

c
cosh ( / )

cosh ( / )
 = g(c).

Define f (c) = c – g(c). We find that, f (0.5) = – 0.1693,
f (1.0) = 0.4327. There is a root of f (c) = 0 in (0.5, 1.0).
Using the iteration scheme

cn + 1 = g(cn), n = 0, 1, ...
with c0 = 0.5, we obtain the sequence of iterates as

c1 = 0.66931131, c2 = 0.75236778, c3 = 0.77411374,
c4 = 0.77699764, c5 = 0.77727732,   c6 = 0.77730310,
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c7 = 0.77730547, c8 = 0.77730568,   c9 = 0.77730570.
With the value c = 0.7773057, we get a = 0.42482219.

1.23 The factorial function n ! was first only defined for positive integers n or 0. For reason-
ably great values of n, a good approximation of n ! is f (n) where

f (x) = (2π)1/2 x x + 1/2 e–x 1
1

12
1

288 2+ +�
��

�
��x x

.

Calculate x to four decimals so that f (x) = 1000.
(Lund Univ., Sweden, BIT 24 (1984), 257)

Solution
Here, the problem is to find x such that

(2π)1/2x x + 1/2 e–x 1
1

12
1

288 2+ +�
��

�
��x x

 = 1000.

Taking logarithms on both sides, we get

f (x) = 
1
2

2
1
2

ln ( )π + +�
��

�
��

x  ln x – x +

  ln 1
1

12
1

288 2+ +�
��

�
��x x

 – 3 ln 10 = 0

and   f ′(x) = 
1

2
2 1 12
24 2882 3x

x
x

x x x
+ − +

+ +
ln

( )
.

Use the Newton-Raphson method

xk + 1 = x
f x
f xk

k

k
−

′
( )
( )

, k =  0, 1, ...

Since 6 ! = 720, we take the initial approximation as x0 = 6.0. We get
x0 = 6.0, f (x0) = – 0.328492, f ′ (x0) = 1.872778,
x1 = 6.175404, f (x1) = 0.002342, f ′ (x1) = 1.899356,
x2 = 6.174171, f (x2) = 0.00000045.

Hence, the root correct to four decimal places is 6.1742.

Multiple roots

1.24 Apply the Newton-Raphson method with x0 = 0.8 to the equation
 f (x) = x3 – x2 – x + 1 = 0

and verify that the convergence is only of first order. Then, apply the Newton-Raphson
method

xn + 1 = x m
f x
f xn

n

n
−

′
( )
( )

with m = 2 and verify that the convergence is of second order.
Solution
Using Newton-Raphson method (1.9), we obtain the iteration scheme

  xn + 1 = x
x x x

x xn
n n n

n n

−
− − +

− −

3 2

2
1

3 2 1
, n = 0, 1, ...

Starting with x0 = 0.8, we obtain
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  x1 = 0.905882, x2 = 0.954132, x3 = 0.977338, x4 = 0.988734.
Since the exact root is 1, we have

| ε0 | = | ξ – x0 | = 0.2 = 0.2 × 100

| ε1 | = | ξ – x1 | = 0.094118 ≈ 0.94 × 10–1

| ε2 | = | ξ – x2 | = 0.045868 ≈ 0.46 × 10–1

| ε3 | = | ξ – x3 | = 0.022662 ≈ 0.22 × 10–1

| ε4 | = | ξ – x4 | = 0.011266 ≈ 0.11 × 10–1

which shows only linear rate of convergence. Using the modified Newton-Raphson method

  xn + 1 = x
f x
f xn

n

n
−

′
2

( )
( )

, n = 0, 1, 2, ...

we obtain the sequence of iterates
x0 = 0.8, x1 = 1.011765
x2 = 1.000034, x3 = 1.000000.

We now have
| ε0 | = | ξ – x0 | = 0.2 ≈ 0.2 × 100

| ε1 | = | ξ – x1 | = 0.011765 ≈ 0.12 × 10–1

| ε2 | = | ξ – x2 | = 0.000034 ≈ 0.34 × 10–4

which verifies the second order convergence.
1.25 The multiple root ξ of multiplicity two of the equation f (x) = 0 is to be determined. We

consider the multipoint method

 xk + 1 = x
f x f x f x

f xk
k k k

k
−

+ ′
′

( ( )/ ( ))
( )

2
2

.

Show that the iteration method has third order rate of convergence. Hence, solve the
equation

9x4 + 30x3 + 34x2 + 30x + 25 = 0    with    x0 = – 1.4
correct to three decimals.
Solution
Since the root ξ has multiplicity two, we have

f (ξ) = f ′(ξ) = 0 and f ′′ (ξ) ≠ 0.
Using these conditions, we get

f x
f x

f
f

c c c ck

k

k

k
k k k k k

( )
( )

( )
( )

... ...
′

=
+

′ +
= + + +�

�	


��

+ + +�
�	



��

−ξ ε
ξ ε

ε ε ε ε ε1
2

1
6

1
24

1
1
2

1
63

2
4 3

2
4

1

= 
1
2

1
12

1
243

2
3
2

4
3ε ε εk k kc c c− + −( )

    + − −�
��

�
��

+5
144

1
48

1
803 4 3

3
5

4c c c c kε ...

where   ci = f  (i) (ξ) / f ″(ξ).
Similarly, we get

 f x
f x
f x

f c c ck
k

k
k k k+

′
�

��
�

��
= ″ + + − +�

�	


��

2 2
1

72
36 112

3
3

4 3
2 4( )

( )
( ) ( ) ...ξ ε ε ε
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and  

f x
f x
f x

f x
c c O

k
k

k

k
k k k

+
′

�
��

�
��

′
= + −�

��
�
��

+
2

2
1
6

11
724 3

2 3 4

( )
( )

( )
( )ε ε ε .

Substituting these expansions in the given multipoint method, we obtain the error
equation

εk + 1 = 
11

144
1

123
2

4
3 4c c Ok k−�

��
�
��

+ε ε( ) .

Hence, the method has third order rate of convergence.
Taking f (x) = 9x4 + 30x3 + 34x2 + 30x + 25
and using the given method with x0 = – 1.4 we obtain the sequence of iterates

x0 = – 1.4, f0 = 1.8944, f0
′ = 12.4160,

x0* = x0 + 
2 0

0

f
f ′

 = – 1.09485, f0* = 6.47026,

x1 = x0 – 
1
2

0

0

f
f

*

′
 = – 1.66056.

Similarly, we get x2 = – 1.66667, x3 = – 1.66667.
Therefore, the root correct to three decimals is – 1.667.

Rate of Convergence

1.26 The equation x2 + ax + b = 0 has two real roots α and β. Show that the iteration method
(i) xk + 1 = – (axk + b)/xk is convergent near x = α if | α | > | β |.

(ii) xk + 1 = – b/(xk + a) is convergent near x = α if | α | < | β |.
(iii) xk + 1 = – (xk

2 + b)/a is convergent near x = α if 2| α | < | α + β |.
Solution
The method is of the form xk + 1 = g(xk). Since α and β are the two roots, we have

 α + β = – a, αβ = b.
We now obtain
(i) g(x) = – a – b/x, g ′(x) = b/x2.
For convergence to α, we need | g′ (α) | < 1. We thus have

| g′(α) | = 
b

α
αβ
α

β
α2 2 1= = <

which gives | β | < | α |.
(ii) g(x) = – b/(a + x), g ′(x) = b/(a + x)2.
For convergence to α, we require

| g′(α) | = 
αβ

α
αβ
β

α
β( )a +

= = <2 2 1

which gives | α | < | β |.
(iii) g(x) = – (x2 + b)/a, g ′(x) = – 2x/a.
For convergence to α, we require

| g ′(α) | = 
2 2

1
α α

α βa
=

+
<

( )
which gives 2| α | < | α + β |.
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1.27 Show that the following two sequences have convergence of the second order with the

same limit a .

(i) xn + 1 = 
1
2

1 2x
a
xn

n

+
�

��
�

��
, (ii) xn + 1 = 

1
2

3
2

x
x
an
n−

�

��
�

��
.

If  xn  is a suitably close approximation to a , show that the error in the first formula for
xn + 1 is about one-third of that in the second formula, and deduce that the formula

 xn + 1 = 
1
8

6
3

2

2

x
a

x
x
an

n

n+ −
�

��
�

��

gives a sequence with third-order convergence.
Solution

Taking the limit as n → ∞ and noting that lim
n

nx
→ ∞

= ξ , lim
n

nx
→ ∞

+ =1 ξ , where ξ is the

exact root, we obtain from all the three methods ξ2 = a. Thus, all the three methods

determine a , where a is any positive real number.

Substituting xn = ξ + εn, xn + 1 = ξ + εn + 1 and a = ξ2, we get
(i) ξ + εn + 1 = (ξ + εn) [1 + ξ2/(ξ + εn)2]/2

= (ξ + εn) [1 + (1 + εn/ξ)–2]/2
= (ξ + εn) [2 – 2(εn/ξ) + 3(εn

2/ξ2) – ...]/2
which gives εn + 1 = εn

2/(2ξ) + O(εn
3). (1.37a)

Hence the method has second order convergence, with the error constant c = 1/(2ξ).
(ii) ξ + εn + 1 = (ξ + εn) [3 – (ξ + εn)2/ξ2]/2

= (ξ + εn) [1 – (εn/ξ) – εn
2/ξ2]/2

which gives εn + 1 = − +3
2

2 2

ξ
ε εn nO ( ) . (1.37b)

Hence, the method has second order convergence with the error constant c* = – 3/(2ξ).
Therefore, the error, in magnitude, in the first formula is about one-third of that in the
second formula.
If we multiply (1.37a) by 3 and add to (1.37b), we find that

  εn + 1 = O(εn
3 ) (1.38)

It can be verified that O(εn
3) term in (1.38) does not vanish.

Adding 3 times the first formula to the second formula, we obtain the new formula

 xn + 1 = 
1
8

6
3

2

2

x
a

x
x
an

n

n+ −
�

��
�

��

which has third order convergence.
1.28 Let the function f (x) be four times continuously differentiable and have a simple zero ξ.

Successive approximations xn, n = 1, 2, ... to ξ are computed from



8-\N-NUM\NU-1-3

32 Numerical Methods : Problems and Solutions

 xn + 1 = 
1
2 1 1( )x xn n+ +′ + ″

where xn +′ 1  = x
f x
f xn

n

n
−

′
( )
( )

, xn +″ 1  = x
g x
g xn

n

n
−

′
( )
( )

g(x) = 
f x
f x

( )
( )′

Prove that if the sequence {xn } converges to ξ, then the convergence is cubic.
(Lund Univ., Sweden, BIT 8 (1968), 59)

Solution

We have g(x) = 
f x
f x

( )
( )′

 g ′(x) = 
( ( )) ( ) ( )

( ( ))

f x f x f x

f x

′ − ″
′

2

2

 xn +′ 1  = x
f x
f xn

n

n
−

′
( )
( )

xn +″ 1  = x
f x f x

f x f x f x
n

n n

n n n

−
′

− ″ ′
( ) / ( )

[ ( ) ( ) / ( ( )) ]1 2

= x
f x
f x

f x f x
f x

f x f x
f x

n
n

n

n n

n

n n

n

−
′

+ ″
′

+ ″
′

�
�
�

��

�
�
�

��
+

�

�

	
	




�

�
�

( )
( )

( ) ( )
( ( ))

( ) ( )
( ( ))

...1 2 2

2

.

From the formula

  x x xn n n+ + += ′ + ″1 1 1
1
2

( )

we obtain  xn + 1 = x
f x
f x

f x
f x

f x
f x

f x
f x

f x
f xn

n

n

n

n

n

n

n

n

n

n
−

′
−

′
�

�
	




�
�

″
′

−
′

�

�
	




�
�

″
′

�

�
	




�
� +

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

...
1
2

1
2

2 3 2

(1.39)

Using xn = ξ + εn, and ci = f
f

i( ) ( )
( )

ξ
ξ′

, i = 1, 2, 3, ...

we find
f x
f x

c c cn

n
n n n

( )
( )

...
′

= − + −�
��

�
��

+ε ε ε1
2

1
2

1
32

2
2
2

3
3

f x
f x

n

n

″
′
( )
( )

 = c2 + (c3 – c2
2) εn + ...

Using these expressions in (1.39), we obtain the error equation, on simplification, as

εn + 1 = ε ε ε εn n n nc c c− − + −�
��

�
��

+�

�
	




�
�

1
2

1
2

1
32

2
2
2

3
3 ...

− 1
2

[εn
2 – c2εn

3 + ...] [c2 + (c3 – c2
2) εn + ...]

− 1
2

[εn
3 + ...] [c2

2 + 2c2(c3 – c2
2) εn + ...] + ...
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= − +1
6 3

3 4c On nε ε( ) .

Hence, the method has cubic convergence.
1.29 Determine the order of convergence of the iterative method

 xk + 1 = (x0 f (xk) – xk f (x0)) / ( f (xk) – f (x0))
for finding a simple root of the equation f (x) = 0.
Solution
We write the method in the equivalent form

xk + 1 = x
x x f x
f x f xk

k k

k
−

−
−

( ) ( )
( ) ( )

0

0
(1.40)

Substituting xk = ξ + εk, xk + 1 = ξ + εk + 1, x0 = ξ + ε0 in (1.40) we get

εk + 1 = ε
ε ε ξ ε
ξ ε ξ εk
k k

k

f
f f

−
− +

+ − +
[ ] ( )
( ) ( )

0

0
. (1.41)

Expanding f (ξ + εk), f (ξ + ε0) in Taylor series about the point ξ and using f (ξ) = 0, we
obtain from (1.41)

  εk + 1 = ε
ε ε ε ξ ε ξ

ε ε ξ ε ε ξk
k k k

k k

f f

f f
−

− ′ + ″ +
− ′ + − ″ +

( ) [ ( ) ( ) ... ]

( ) ( ) ( ) ( ) ...
0

1
2

2

0
1
2

2
0
2

= ε ε εk k k c− + +�
�	



��

×1
2

2
2 ...  1

1
2 0 2

1

+ + +�
�	



��

−

( ) ...ε εk c

= ε ε εk k k c− + +�
�	



��

×1
2

2
2 ...  1

1
2 0 2− + +�

�	


��

( ) ...ε εk c

= 
1
2

 εkε0c2 + O (εk
2ε0 + εkε0

2)

where c2 = f  ″(ξ) / f ′(ξ).
Thus, the method has linear rate of convergence, since ε0 is independent of k.

1.30 Find the order of convergence of the Steffensen method

xk + 1 = x
f
gk

k

k
− , k = 0, 1, 2, ...

 gk = 
f x f f

f
k k k

k

( )+ −

where fk = f (xk). Use this method to determine the non-zero root of the equation
f (x) = x – 1 + e–2x    with x0 = 0.7

correct to three decimals.
Solution
Write the given method as

 xk + 1 = x
f

f x f fk
k

k k k
−

+ −

2

( )
.
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Using xk = ξ + εk, we obtain

fk = f (ξ + εk) = εk f ′(ξ) + 
1
2

2εk f″(ξ) + ...

f (xk + fk) = f f fk kξ ξ ε ξ ε+ + ′ + ″ +�
��

�
��

( ( )) ( ) ...1
1
2

2

= (1 + f ′(ξ)) f ′(ξ) εk + 
1
2

f ″ ( )ξ  [1 + 3f ′(ξ) + (f ′(ξ))2] εk
2 + ...

Substituting these expressions in the given formula, we get the error equation as

εk + 1 = ε
ε ξ ε ξ ξ

ε ξ ξ ξ ξ εk
k k

k k

f f f

f f f f
−

′ + ′ ″ +
′ + + ′ ′ ″ +

2 2 3

2 1
2

23

( ( )) ( ) ( ) ...

( ( )) ( ( )) ( ) ( ) ...

= 
1
2

1 2 3[ ( )]
( )
( )

( )+ ′ ″
′

+f
f
f

Ok kξ ξ
ξ

ε ε .

Hence, the method has second order rate of convergence.
For f (x) = x – 1 + e–2x and x0 = 0.7, we get

f0 = – 0.05340, f (x0 + f0) = – 0.07901,
g0 = 0.47959, x1 = 0.81135,
f1 = 0.00872, f (x1 + f1) = 0.01402,
g1 = 0.60780, x2 = 0.79700,
f 2 = 0.00011, f (x2 + f 2) = 0.00018,
g2 = 0.63636, x3 = 0.79683.

The root correct to three decimal places is 0.797.
1.31 Let x = ξ be a simple root of the equation f (x) = 0. We try to find the root by means of the

iteration formula
xi + 1 = xi – (f (xi))

2 / (f (xi) – f (xi – f (xi)))
Find the order of convergence and compare the convergence properties with those of
Newton-Raphson’s method. (Bergen Univ., Sweden, BIT 20 (1980), 262)
Solution
Substituting xi = ξ + εi, we get

f (xi) = f (ξ + εi) = εi f ′(ξ) + 
1
2

2ε i f  ″(ξ) + ...

f (xi – f (xi)) = f f fi iξ ξ ε ε ξ+ − ′ − ″ +�
�
�

�
�
�

�
��

�
��

( ( )) ( ) ...1
1
2

2

= ( ( )) ( ) ... ( )1
1
2

2− ′ − ″ +�
�
�

�
�
�

′f f fi iξ ε ε ξ ξ

   + − ′ − ″ +�
�
�

�
�
�

″ +1
2

1
1
2

2
2

( ( )) ( ) ... ( ) ...f f fi iξ ε ε ξ ξ

= {1 – f ′ (ξ)} f ′(ξ)εi + 
1
2

 {1 – 3f ′(ξ) + (f ′(ξ))2} f″(ξ) εi
2 + ...

Substituting xi + 1 = ξ + εi + 1 and the above expressions for f (xi) and f (xi – f (xi)) in the
given formula, we obtain on simplification
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εi + 1 = ε ε ξ ε ξ ξ

ε ξ ξ ξ ε
i

i i

i i

f f f

f f f
− ′ + ′ ″ +

′ + − ′ ′ +

2 2 3

2 21
2

3

( ( )) ( ) ( ) ...

( ( )) { ( )} ( ) ...

 = ε ε ε ξ
ξi i i

f
f

− + ″
′

+
�

�
	




�
�

2 ( )
( )

...  1
3
2

1
2

1

+ − ′�
�
�

�
�
�

″
′

+
�

�
	




�
�

−

f
f
f i( )

( )
( )

...ξ ξ
ξ

ε

 = ε ε ε ξ
ξi i i

f
f

− + ″
′

+
�

�
	




�
�

2 ( )
( )

...  1
3
2

1
2

− − ′�
�
�

�
�
�

″
′

+
�

�
	




�
�f

f
f i( )

( )
( )

...ξ ξ
ξ

ε

 = 
1
2

1 2 3( ( ))
( )
( )

( )− ′ ″
′

+f
f
f

Oi iξ ξ
ξ

ε ε .

Hence,  the  method  has  second  order  convergence  if  f ′(ξ) ≠ 1. The error constant is
(1 – f ′(ξ)) f ″(ξ)/(2f ′(ξ)).
The error constant for the Newton-Raphson method is f ″(ξ)/(2f ′(ξ)).

1.32 A root of the equation f (x) = 0 can be obtained by combining the Newton-Raphson method
and the Regula-Falsi method. We start from x0 = ξ + ε, where ξ is the true solution of
f (x) = 0. Further, y0 = f (x0), x1 = x0 – f0 / f0′ and y1 = f1 are computed. Lastly, a straight
line is drawn through the points (x1, y1) and ((x0 + x1) / 2, y0 / 2). If ε is sufficiently small,
the intersection of the line and the x-axis gives a good approximation to ξ. To what
power of ε is the error term proportional. Use this method to compute the positive root
of the equation x4 – x – 10 = 0, correct to three decimal places.
Solution
We have x0 = ξ + ε0,  x1 = ξ + ε1

y0 = f (ξ + ε0) = ε ξ ε ξ ε ξ ε ξ0 0
2

0
3

0
41

2
1
6

1
24

f f f f iv′ + ″ + ″′ + +( ) ( ) ( ) ( ) ...

x1 = x
f

f
0

0

0

−
′
 = ξ ε

ξ ε
ξ ε

+ −
+

′ +0
0

0

f
f

( )
( )

ε1 = ε
ε ξ ε ξ ε ξ ε ξ

ξ ε ξ ε ξ ε ξ0
0

1
2 0

2 1
6 0

3 1
24 0

4

0
1
2 0

2 1
6 0

3−
′ + ″ + ″′ + +
′ + ″ + ″′ + +

f f f f

f f f f

iv

iv

( ) ( ) ( ) ( ) ...

( ) ( ) ( ) ( ) ...

We obtain on simplification

ε1 = 
1
2

1
3

1
2

1
2

7
12

1
82 0

2
3 2

2
0
3

2
3

2 3 4 0
4c c c c c c cε ε ε+ −�

��
�
��

+ − +�
��

�
��

+ ...

where ci = f
f

i( ) ( )
( )

ξ
ξ′

, i = 2, 3, ...

Equation of the straight line through the points (x1, y1) and ((x0 + x1)/2, y0/2) is

y – y1 = 
y y
x x
0 1

0 1

2−
−

 (x – x1).

It intersects the x-axis at   x = x1 – 
x x

y y
y0 1

0 1
12

−
−

.

The error equation is given by

         ε = ε
ε ε

1
0 1

0 1
12

−
−

−y y
y (1.42)
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We have
y1 = f (ξ  + ε1)

= ε ξ ε ξ ε ξ1 1
2

1
31

2
1
6

f f f′ + ″ + ″ ′ +( ) ( ) ( ) ...

= f c c c c c c c′ + + −�
��

�
��

+ − +�
��

�
��

+
�
�
�

�
�
�

�

�
	( ) ...ξ ε ε ε1

2
1
3

1
2

1
2

7
12

1
82 0

2
3 2

2
0
3

2
3

2 3 4 0
4

            + +�
�
�

�
�
�

+



�
�

1
2

1
4 2

2
0
4

2c cε ... ...

= f c c c c c c c′ + −�
��

�
��

+ − +�
��

�
��

+
�

�
	




�
�( ) ...ξ ε ε ε

1
2

1
3

1
2

5
8

7
12

1
82 0

2
3 2

2
0
3

2
3

2 3 4 0
4 .

Similarly, we have

y0 = f c c c′ + + + +�
�	



��

( ) ...ξ ε ε ε ε0 0
2

2 0
3

3 0
4

4
1
2

1
6

1
24

and y0 – 2y1 = f c c c c c c c′ − + −�
��

�
��

+ − −�
��

�
��

+
�

�
	




�
�( ) ...ξ ε ε ε ε0 2 0

2
2
2

3 0
3

2 3 4 2
3

0
41

2
1
2

7
6

5
24

5
4

 ε0 – ε1 = ε ε ε0 2 0
2

2
2

3 0
31

2
1
2

1
3

− + −�
��

�
��

c c c  + − −�
��

�
��

+7
12

1
8

1
22 3 4 2

3
0
4c c c c ε ...

       ε ε
ξ

ε ε0 1

0 1
3 2

2
0
2

2
3

2 3 4 0
3

2
1

1
1
6

1
2

1
2

1
2

1
24

−
−

=
′

+ −�
��

�
��

+ − +�
��

�
��

+�

�
	




�
�y y f

c c c c c c
( )

... .

Substituting these expressions in (1.42) and simplifying, we get

 ε = 
1
8

1
122

3
2 3 0

4
0
5c c c O−�

��
�
��

+ε ε( ).

Hence, the error term is proportional to ε0
4and the method has fourth order rate of

convergence.
For the equation f (x) = x4 – x – 10, we find that f (1) < 0, f (2) > 0 and a root lies in (1, 2).
Let x0 = 2.
First iteration

x0 = 2,   y0 = f (x0) = 4,   f ′(x0) = 31,

x1 = x0 – 
f
f

0

0 ′
 = 1.870968,   y1 = f (x1) = 0.382681,

x = x1 – 
x x
y y

0 1

0 12
−
−

y1 = 1.855703.

Second iteration
x0

 = 1.855703, y0 = f (x0) = 0.002910, f ′(x0) = 24.561445,

x1 = x0 – 
f x
f x

( )
( )

0

0′
 = 1.855585, y1 = f (x1) = 0.000012

 x = x1 – 
x x
y y

0 1

0 12
−
−

 y1 = 1.855585.

Hence, the root correct to three decimal places is 1.856.
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1.33 Determine p, q and r so that the order of the iterative method

xn+1 = pxn + 
qa

x

ra

xn n
2

2

5+

for a1/3 becomes as high as possible. For this choice of p, q and r, indicate how the error
in xn+1 depends on the error in xn. (Lund Univ., Sweden, BIT 8 (1968), 138)
Solution
We have x = a1/3 or x3 = a. We take

   f (x) = x3 – a.
Since ξ is the exact root, we have ξ3 = a.
Substituting xn = ξ + εn, xn+1 = ξ + εn+1 and a = ξ3 in the given method, we obtain

ξ + εn+1 = p(ξ + εn) + 
qa ran n

ξ
ε
ξ ξ

ε
ξ2

2 2

5

5

1 1+
�
��

�
��

+ +
�
��

�
��

− −

= p(ξ + εn) + 
qa n n n

ξ
ε
ξ

ε
ξ

ε
ξ2

2

2

3

31
2 3

4− + − +
�

��
�

��
...

+ 
ra n n n

2

5

2

2

3

31 5 15 35
ξ

ε
ξ

ε
ξ

ε
ξ

− + − +
�

��
�

��
...

= p(ξ + εn) + qξ 1 2 3 4
2

2

3

3− + − +
�

��
�

��
ε
ξ

ε
ξ

ε
ξ

n n n ...

+ rξ 1 5 15 35
2

2

3

3− + − +
�

��
�

��
ε
ξ

ε
ξ

ε
ξ

n n n ...

or εn+1 = (p + q + r – 1)ξ + (p – 2q – 5r)εn

+ 
1
ξ (3q + 15r) ε

ξ
εn nq r2

2
31

4 35– ( )+  + ...

For the method to be of order three, we have
p + q + r = 1

p – 2q – 5r = 0
3q + 15r = 0

which gives p = 5 / 9, q = 5 / 9, r = – 1 / 9.
The error equation becomes

εn+1 = 
5

3 2
3 4

ξ
ε εn nO+ ( ) .

1.34 Given the equation f (x) = 0, obtain an iteration method using the rational approxima-
tion

f (x) = 
x a

b b x
−
+

0

0 1

where the coefficients a0, b0 and b1 are determined by evaluating f (x) at xk, xk–1 and xk–2.
(i) Find the order of convergence of this method.

(ii) Carry out two iterations using this method for the equation
   f (x) = 2x3 – 3x2 + 2x – 3  = 0 with x0 = 0, x1 = 1, x2 = 2.
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Solution
We have, from the given approximation

x – a0 – (b0 + b1x) f (x) = 0. (1.43)
Substituting x = xk, xk–1 and xk–2 in the above equation, we get

xk – a0 – (b0 + b1 xk) fk = 0 (1.44)
xk–1 – a0 – (b0 + b1xk–1) fk–1 = 0 (1.45)
xk–2 – a0 – (b0 + b1xk–2) fk–2 = 0 .(1.46)

Eliminating b0 from the above equations, we obtain
 g2 + a0 g1 + b1x∗  fk fk–1 = 0 (1.47)
 h2 + a0 h1 + b1x′ fk fk–2 = 0 (1.48)

where x∗  = xk–1 – xk, x ′ = xk–2 – xk,
g1 = fk – fk–1, h1 = fk – fk–2,
g2 = xk fk–1 – xk–1 fk, h2 = xk fk–2 – xk–2 fk.

Eliminating b1 from (1.47) and (1.48) and solving for a0, we get

a0 = – 
x g f x h f
x g f x h f

k k

k k

′ − ∗
′ − ∗

− −

− −

2 2 2 1

1 2 1 1
 = xk + 

x x f f f
x h f x g f

k k k

k k

′ ∗ −
− ′
− −

− −

( )
*

1 2

1 1 1 2
(1.49)

The exact root is obtained from

f (ξ) = 
ξ

ξ
−
+

≡
a

b b
0

0 1
0 or ξ = a0.

Thus, we obtain the iteration formula
 xk+1 = a0 (1.50)

where a0 is given by (1.49).
(i) To find the order of convergence of the method, we write (1.50) as

xk+1 = xk + 
NUM
DEN

(1.51)

Substituting xk = ξ + εk and simplifying, we get

      NUM = Dεk 1 +
1
2

( ) ( )ε ε ε ε ε ε ε εk k k k k k k kc c+ + + + + +�

�	
− − − − − −1 2 2

2
1

2
2

2
1 2 3

1
6

+ 
1
4 1 2 2

2( ) ...ε ε εk k kc− −+ + 

��

      DEN = (εk – εk–1)(εk – εk–2)(εk–1 – εk–2)(f ′(ξ))2

 – D 1
1
2 1 2 2+ + + +�

�	
− −( )ε ε εk k k c  1

6
2

1
2

2
2

3( )ε ε εk k k c+ +− −

 + 
1
4 1 2 1 2 2

2( ) ...ε ε ε ε ε εk k k k k k c− − − −+ + + 

��

where ci = 
f
f

i( ) ( )
( )

ξ
ξ′

,   i = 2, 3, ...

Substituting the expressions for NUM and DEN in (1.51), taking DEN to the numerator
and simplifying we get error equation
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  εn+1 = c εnεn–1 εn–2 (1.52)

where  c = 
1
4

1
62

2
3c c− .

From the definition, we have

εn+1 = Aεn
p

εn = Aεn
p
−1 or εn–1 = A–1 / p εn

p1/

εn–1 = A εn
p
−2  = A–1 / p εn

p1/

or εn–2 = A p p
n

p− −( ) ( )1/ 1/ 1/2 2
ε .

Substituting the values of εn+1, εn–1 and εn–2 in terms of εn in the error equation (1.52), we
obtain

 A c A An
p

n
p

n
p p p

n
pε ε ε ε= − − −{ } { }( ) ( )1/ 1/ 1/ 1/ 1/2 2

which gives ε εn
p p p

n
p pcA= − − − + +1 2 1/ 1 1/ 1/2 2( / ) ( ) ( ) ( ) .

Comparing the powers of εn on both sides, we get

 p = 1 + 
1 1

2p p
+ or p3 – p2 – p – 1 = 0

which has the smallest positive root 1.84.
Hence the order of the method is 1.84.
(ii) For f (x) = 2x3 – 3x2 + 2x – 3 and x0 = 0, x1 = 1, x2 = 2, we obtain
First iteration

x* = x1 – x2 = – 1, x ′ = x0 – x2 = – 2, f0 = – 3, f1 = – 2,
 f2 = 5, g1 = f2 – f1 = 7, h1 = f2 – f0 = 8,

x3 = x2 + 
x x f f f

x h f x g f
′ ∗ −

∗ − ′
2 1 0

1 1 1 0

( )
 = 1.6154.

Second iteration
x0 = 1,   x1 = 2, x2 = 1.6154,   f0 = – 2,   f1 = 5,   f2 = 0.8331,

 x*4 = 0.3846,   x ′ = – 0.6154, g1 = – 4.1669,   h1 = 2.8331  g1,   x4 = 1.4849.

1.35 The equation x4 + x = ε, where ε is a small number, has a root which is close to ε. Compu-
tation of this root is done by the expression

ξ = ε – ε4 + 4ε7.
(i) Find an iterative formula xn+1 = F(xn), x0 = 0, for the computation. Show that we get

the expression above after three iterations when neglecting terms of higher order.
(ii) Give a good estimate (of the form Nεk, where N and k are integers) of the maximal

error when the root is estimated by the expression above.
(Inst. Tech. Stockholm, Sweden, BIT 9 (1969), 87)

Solution
(i) We write the given equation x4 + x = ε in the form

x = 
ε

x3 1+
and consider the formula
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xn+1 = 
ε

xn
3 1+

.

The root is close to ε. Starting with x0 = 0, we obtain
x1 = ε

x2 = 
ε
ε1 3+  = ε(1 + ε3)–1 = ε(1 – ε3 + ε6 + ...)

= ε – ε4 + ε7,   neglecting higher powers of ε,

x3 = 
ε

ε ε ε1 4 7 3+ − +( )
 = ε – ε4 + 4ε7 + ...

     x4 = 
ε

ε ε ε1 44 7 3+ − +( )  = ε – ε4 + 4ε7 + ...

(ii) Taking ξ = ε – ε4 + 4ε7, we find that
Error = ξ4 + ξ – ε = (ε – ε4 + 4ε7)4 + (ε – ε4 + 4ε7) – ε

= 22ε10 + higher powers of ε.

1.36 Consider the iteration method
xk+1 = φ (xk),   k = 0, 1, ...

for solving the equation f (x) = 0. We choose the iteration function in the form
φ(x) = x – γ1 f (x) – γ2 f 

2(x) – γ3 f 
3(x)

where γ1, γ2, γ3
 are arbitrary parameters to be determined. Find the γ ’s such that the

iteration method has the orders (i) three (ii) four. Apply these methods to determine a
root of the equation x = ex / 5 with x0 = 0.4 correct to three decimal places.
Solution
Substituting xk = ξ + εk, εk+1 = ξ + εk+1 in the iteration method

xk+1 = xk – γ1fk – γ2 f fk k
2

3
3− γ

and expanding fk in Taylor series about the point ξ, we obtain

εk+1 = εk – γ1 f f f fk k k
iv

k′ + ″ + ′″ + +�
�	



��

( ) ( ) ( ) ( ) ...ξ ε ξ ε ξ ε ξ ε1
2

1
6

1
24

2 3 4

– γ2 ( ( )) ( ) ( ) ( ( )) ( ) ( ) ...f f f f f fk k k′ + ′ ″ + ″ + ′ ″ ′�
��

�
��

+
�

�
	




�
�ξ ε ξ ξ ε ξ ξ ξ ε2 2 3 2 41

4
1
3

– γ3 ( ( )) ( ( )) ( ) ...f f fk k′ + ′ ″ +�
�	



��

ξ ε ξ ξ ε3 3 3 43
2

= [1 – γ1 f ′(ξ)] εk – 1
2 1 2

2 2γ ξ γ ξ εf f k″ + ′�
�	



��

( ) ( ( ))

– 
1
6 1 2 3

3 3γ ξ γ ξ ξ γ ξ εf f f f k′″ + ′ ″ + ′�
�	



��

( ) ( ) ( ) ( ( ))

– 
1

24
1
4

1
3

3
21 2

2
3

2 4γ ξ γ ξ ξ ξ γ ξ ξ εf f f f f fiv
k( ) ( ( )) ( ) ( ) ( ( )) ( )+ ″ + ′ ″′�

��
�
��

+ ′ ″
�

�
	




�
�

    + ...
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If the method is of third order, we have
1 – γ1 f ′(ξ) = 0

1
2

 γ1 f ″(ξ) + γ2 (f ′(ξ))2 = 0

which gives γ1 = 
1 1

22 3f
f
f′

= − ″
′( )

,
( )

( ( ))ξ
γ ξ

ξ
.

Replacing ξ by xk, we obtain the third order method

xk+1 = xk – 
f
f

f f

f
k

k

k k

k′
+

″
′

1
2

2

3( )
. (1.53)

If the method is of fourth order, we have
1 – γ1 f ′(ξ) = 0

1
2

 γ1 f ″(ξ) + γ2 (f ′(ξ))2 = 0

1
6

 γ1 f ″′ (ξ) + γ2 f ′(ξ) f ″(ξ) + γ3 (f ′(ξ))3 = 0

which give γ1 = 
1

f ′ ( )ξ ,

 γ2 = – 
1
2 3

f

f

″
′

( )
( ( ))

ξ
ξ

 γ3 = 
1
2

1
62

3f
f

f
f

f
″
′

− ″′
′

�

�
	




�
� ′( )

( ( ))
( )
( )

( ( ))
ξ

ξ
ξ
ξ

ξ .

Replacing ξ by xk, we obtain the fourth order method

xk+1 = xk – 
f
f

f f
f

f
f

f
f

f
f

k

k

k k

k

k

k

k

k

k

k′
+

″
′

−
″
′

−
″′
′

�

�
	
	




�
�
� ′

1
2

1
2

1
6

2

3 2

3

3( ) ( ) ( )
. (1.54)

For the function f (x) = x – ex / 5, we have

f ′(x) = 1 – 
1
5

 ex, f ″(x) = – 
1
5

ex .

Using the third order method (1.53), we obtain

x0 = 0.4,     f0 = 0.1016, f0′  = 0.7016,     f0″  = – 0.2984,

x1 = 0.2507,      f1 = – 0.0063, f1′  = 0.7430, f1″  = – 0.2570,

x2 = 0.2592,      f2 = 0.00002, f2′  = 0.7408      f2″  = – 0.2592,
 x3 = 0.2592.

Hence, the root exact to three decimal places is 0.259.
Using the fourth order method (1.54), we obtain

x0 = 0.4,      f0 = 0.1016,    f0′  = 0.7016, f0″  = – 0.2984,   f0″′  = – 0.2984

  x1 = 0.2514, f1 = – 0.0058, f1′  = 0.7428, f1″  = – 0.2572, f1″′  = – 0.2572
 x2 = 0.2592

Hence, the root correct to three decimal places is 0.259.
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1.37 The equation
x3 – 5x2 + 4x – 3 = 0

has one root near x = 4, which is to be computed by the iteration
 x0 = 4

  xn+1 = 
3 4 5 2 3+ − + −( )k x x x

k
n n n ,   k integer

(a) Determine which value of k will give the fastest convergence.
(b) Using this value of k, iterate three times and estimate the error in x3.

(Royal Inst. Tech. Stockholm, Sweden, BIT 11 (1971), 125)
Solution
(a) Let ξ be the exact root of the given equation. Hence, we get

ξ3 – 5ξ2 + 4ξ – 3 = 0
From the iteration formula

kxn+1 = 3 + (k – 4) xn + 5 x xn n
2 3−

we get, on substituting xn = ξ + εn and xn+1 = ξ + εn+1

kεn+1 = (3 – 4ξ + 5ξ2 – ξ
3) + (k – 4 + 10ξ – 3ξ2)εn + O(εn

2 ) (1.55)
Since the root is near x = 4, we can choose ξ = 4 + δ.
Substituting ξ = 4 + δ in (1.55), we obtain

kεn+1 = (k – 12)εn + O(δεn).
Hence, highest rate of convergence, is obtained when k = 12.
For k = 12, we obtain the iteration formula

xn+1 = 
1

12
 (3 + 8xn + 5 x xn n

2 3− ).

(b) Starting with x0 = 4, we obtain the sequence of iterates
x1 = 4.25, x2 = 4.2122, x3 = 4.2230, x4 = 4.2201.

Since the root is correct to two decimal places, maximum absolute error is 0.005.

1.38 A sequence { }xn 1
∞  is defined by

 x0 = 5

xn+1 = 
1

16
1
2

4 3x xn n−  + 8xn – 12

Show that it gives cubic convergence to ξ = 4.
Calculate the smallest integer n for which the inequality

| xn – ξ | < 10–6

in valid. (Uppsala Univ., Sweden, BIT 13 (1973), 493)
Solution
As n → ∞, the method converges to

ξ4 – 8ξ3 + 112ξ – 192 = 0.
Hence, the method finds a solution of the equation

    f (x) = x4 – 8x3 + 112x – 192 = 0.
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Substituting xn = ξ + εn and xn+1 = ξ + εn+1 in the given iteration formula, we get the error
equation

εn+1 = 
1

16
1
2

7 12
1
4

3
2

84 3 3 2ξ ξ ξ ξ ξ− + −�
��

�
��

+ − +�
��

�
��  εn

   + 
3
8

3
2

1
4

1
2

1
16

2 2 3 4ξ ξ ε ξ ε ε−�
��

�
��

+ −�
��

�
��

+n n n .

For ξ = 4, we get εn+1 = 
1
2

3 4ε εn nO+ ( ) .

Hence, the method has cubic rate of convergence.
Taking the error equation as

εn+1 = cεn
3 , c = 1 / 2

we find  εn = cε εn nc c− −=1
3

2
3 3( )  = ... = c . c3 . c c

n n3 3
0
32 1

.
−

ε  = c p n

ε0
3 .

where p = (3n – 1) / 2.
Since ε0 = | ξ – x0 | = 1, we have

εn = cp = (1 / 2)p.

Choosing n such that ( / )( )/1 2 3 1 2n −  < 10–6 we obtain n ≥ 4.

1.39 We wish to compute the root of the equation
 e–x = 3 loge

 x,
using the formula

xn+1 = xn – 
3 log exp ( )e n nx x

p
− −

.

Show that, p = 3 gives rapid convergence.
(Stockholm Univ., Sweden, BIT 14 (1974), 254)

Solution
Substituting xn = ξ + εn and xn+1 = ξ + εn+1 in the given iteration method, we get

  εn+1 = εn – 
3 log ( ) exp( )ε ξ ε ξ εe n n

p
+ − − −

= εn – 
1

3 3 1
p e e

n
nlog log exp ( ) exp ( )ξ

ε
ξ

ξ ε+ +
�
��

�
��

− − −
�

�
	
	




�
�
�

= εn – 
1

3 3
2

1
2

2

2
3

2

p
Oe

n n
n n

nlog ( ) exp( ) ...ξ
ε
ξ

ε
ξ

ε ξ ε
ε

+ − +
�

��
�

��
− − − + −

�

��
�

��
�

�
	
	




�
�
�

.

Since ξ is the exact root, e– ξ – 3 loge ξ = 0, and we obtain the error equation as

εn+1 = 1
1 3 2− +
�
��

�
��

�

�
	
	




�
�
�

+−

p
e On nξ

ε εξ ( ) .
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The method will have rapid convergence if

p = 
3
ξ

ξ+ −e (1.56)

where ξ is the root of e–x – 3 loge x = 0. The root lies in (1, 2). Applying the Newton-
Raphson method (1.9) to this equation with x0 = 1.5, we obtain

     x1 = 1.053213, x2 = 1.113665, x3 = 1.115447, x4 = 1.115448.
Taking ξ = 1.1154, we obtain from (1.56), p = 2.9835. Hence p ≈ 3.

1.40 How should the constant α be chosen to ensure the fastest possible convergence with
the iteration formula

xn+1 = 
α

α
x xn n+ +

+

−2 1
1

(Uppsala Univ., Sweden, BIT 11 (1971), 225)

Solution

Since lim lim
n

n
n

x
→ ∞ → ∞

=  xn+1 = ξ

we obtain from the given iteration formula
f (x) = ξ3 – ξ2 – 1 = 0.

Thus, the formula is being used to find a root of
 f (x) = x3 – x2 – 1 = 0.

Substituting xn = ξ + εn, xn+1 = ξ + εn+1, we obtain

(1 + α) (ξ + εn+1) = α (ξ + εn) + 
1
2ξ

 1
2

+
�
��

�
��

−
ε
ξ
n  + 1

which gives  (1 + α) εn+1 = α
ξ

ε ε−
�

��
�

��
+2

3
2

n nO( ) .

For fastest convergence, we must have α = 2 / ξ3.
We can determine the approximate value of ξ by using Newton-Rephson method to the
equation x3 – x2 – 1 = 0.  The  root  lies  in  (1, 2).  Starting  with  x0 = 1.5,  we obtain ξ ≈
1.4656. Hence, α ≈ 0.6353.

System of nonlinear equations

1.41 Perform three iterations of the Newton-Raphson method directly or using (1.25) for
solving the following equations :
(i) 1 + z2 = 0,  z0 = (1 + i) / 2.

(ii) z3 – 4iz2 – 3ez = 0,  z0 = – 0.53 – 0.36i.
Solution
(i) Separating the given equation into real and imaginary parts, we get

u(x, y) = 1 + x2 – y2, v(x, y) = 2xy, x0 = 1 / 2, y0 = 1 / 2
 ux = 2x, uy = – 2y, vx = 2y, vy = 2x.

Using the method (1.25), we obtain
xk+1 = xk – [(uvy – vuy)k] / D,
yk+1 = yk – [(uxv – vxu)k] / D,
 D = (ux vy – uy vx)k, k = 0, 1, 2, ...
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We obtain
u0 = 1.0, v0 = 0.5,  x1 = – 0.25, y1 = 0.75,
u1 = 0.5, v1 = – 0.375,  x2 = 0.075, y2 = 0.975,
u2 = 0.055, v2 = 0.14625, x3 = – 0.00172, y3 = 0.9973.

(ii) We can proceed exactly as in part (i), or can use the method

   zk+1 = zk – 
f z
f z

k

k

( )
( )′

directly. Starting with z0 = (– 0.53, – 0.36) and using complex arithmetic, we obtain
      z1 = (– 0.5080, – 0.3864), z2 = (– 0.5088, – 0.3866),
      z3 = (– 0.5088, – 0.3867).

1.42 It is required to solve the two simultaneous equations
 x = f (x, y), y = g(x, y)

by means of an iteration sequence. Show that the sequence
xn+1 = f (xn, yn), yn+1 = g(xn, yn) (1.57)

will converge to a solution if the roots of the quadratic
λ2 – ( fx + gx) λ + ( fx gy – fy gx) = 0

are less than unity in modulus, the derivatives being evaluated at the solution.
Obtain the condition that the iterative scheme

xn+1 = f (xn, yn), yn+1 = g(xn+1, yn) (1.58)
will converge. Show further that if fx = gy = 0 and both sequences converge, then the
second sequence converges more rapidly than the first.
Solution
Let (ξ, η) be the exact solution and (εn+1, ηn+1) be the error in the (n + 1)th iteration. We
have

xn+1 = f (xn, yn),  ξ = f (ξ, η),
yn+1 = g(xn, yn), η = g(ξ, η)

and the error equations
 ξ + εn+1 = f (ξ + εn, η + ηn)  ≈ ξ + εn fx + ηn fy

 η + ηn+1 = g(ξ + εn, η + ηn) ≈ η + εn gx + ηn gy
where the derivatives are being evaluated at (ξ, η). Hence, we have

ε
η

ε
η

n

n

x y

x y

n

n

f f
g g

+

+

�
�

�
�

= �
��

�
��
�
�
�
�

1

1
, n = 0, 1, ...

which can also be written in the form
En+1 = AEn, n = 0, 1, ...

where En = 
ε
η

n

n

�
��
�
�� and A = 

f f
g g

x y

x y

�
��

�
��

.

The characteristic equation associated with A is given by
λ2 – (fx + gy)λ + ( fx gy – fy gx) = 0 (1.59)

Using (1.59) we find that the necessary and sufficient condition for the convergence of
the iterative sequence (1.57) is that the roots of (1.59) must be less than unity in modu-
lus. When fx = gy = 0, the roots of (1.63) are obtained as



8-\N-NUM\NU-1-4

46 Numerical Methods : Problems and Solutions

λ = ± | |f gy x or ρ(A) = | |f gy x .
The error equations for the iterative scheme (1.58) are obtained as

 ξ + εn+1 = f (ξ + εn, η + ηn) ≈ ξ + εn fx + ηn fy

η + ηn+1 = g(ξ + εn+1, η + ηn) ≈ η + εn+1 gx + ηn gy.
We get from above

 εn+1 = εn fx + ηn fy

ηn+1 = εn gx fx + ηn (gx fy + gy)

or  
ε
η

ε
η

n

n

x y

x x x y y

n

n

f f
g f g f g

+

+

�
��

�
��

= +
�
��

�
��
�
��
�
��

1

1
,

or En+1 = BEn, n = 0, 1, ...

where   B = 
f f

g f g f g
x y

x x x y y+
�
��

�
�� .

The necessary and sufficient condition for the convergence of the iteration sequence
(1.58) is that the roots of the characteristic equation associated with B, that is,

λ2 – λ( fx + gy + gx fy ) + fx gy = 0 (1.60)
are less than unity in modulus. When fx = gy = 0, the roots of (1.60) are obtained as

λ = 0, gx fy   and   ρ(B) = | gx fy| = [ρ(A)]2.
Hence, the iterative sequence (1.58) is at least two times faster than the iterative sequence
(1.57).

1.43 The system of equations
   y cos (xy) + 1 = 0
sin (xy) + x – y = 0

has one solution close to x = 1, y = 2 Calculate this solution correct to 2 decimal places.
(Umea Univ., Sweden, BIT 19 (1979), 552)

Solution
We obtain from

 f1 (x, y) = y cos (x y) + 1, f2(x, y) = sin (x y) + x – y
the Jacobian matrix as

 J(xn, yn) = 
− −

+ −
�

�
	




�
�

y x y x y x y x y
y x y x x y

n n n n n n n n n

n n n n n n

2

1 1
sin ( ) cos ( ) sin ( )

cos( ) cos ( )

and  J–1 (xn, yn) = 
1 1

1 2D
x x y x y x y x y

y x y y x y
n n n n n n n n n

n n n n n n

cos ( ) sin( ) cos( )
cos ( ) sin ( )

− −
− − −
�

�
	




�
�

where  D = (xn + yn) yn sin (xn yn) – cos (xn yn) [yn cos (xn yn) + 1]
Using the method

x
y

x
y

n

n

n

n

+

+

�
��

�
��

= �
��
�
��

1

1
 – J –1 (xn, yn) 

f x y
f x y

n n

n n

1

2

( , )
( , )

�
��

�
��

, n = 0, 1, ...

and starting with the initial approximation x0 = 1, y0 = 2, we obtain the following sequence
of iterates
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First iteration D = 5.5256,

x
y

1

1

1
2

0 2563 0 4044
0 0304 0 6582

01677
0 0907

10797
19454

�
��
�
��

= �
��
�
��

− −
− −
�
��

�
�� −
�
��

�
��

= �
��

�
��

. .

. .
.
.

.

. .

Second iteration  D = 5.0873,

 
x
y

2

2

10797
19454

0 3038 0 4556
0 0034 0 6420

0 0171
0 0027

10861
19437

�
��
�
��

= �
��

�
��

−
−
− −
�
��

�
�� −
�
��

�
��

= �
��

�
��

.

.
. .
. .

.
.

.

. .

Third iteration D = 5.0504,

x
y

3

3

10861
19437

0 3086 0 4603
0 00005 0 6415

0 00025
0 00002

10862
19437

�
��
�
��

= �
��

�
��

−
−
− −
�
��

�
�� −
�
��

�
��

= �
��

�
��

.

.
. .
. .

.

.
.
. .

Hence, the solution correct to 2 decimal places is x = 1.09, y = 1.94.

1.44 The system of equations
loge (x

2 + y) – 1 + y = 0

x  + xy = 0
has one approximate solution (x0, y0) = (2.4, – 0.6). Improve this solution and estimate
the accuracy of the result. (Lund Univ., Sweden, BIT 18 (1978), 366)
Solution
We have from

 f1 (x, y) = loge (x
2 + y) – 1 + y,

f2(x, y) = x  + xy
the Jacobian matrix as

 J(xn, yn) = 

2 1

1 2

2

2

2

2

x

x y

x y

x y

y x

x
x

n

n n

n n

n n

n n

n
n

( )
( )

( )

( )

( )

+
+ +

+

+

�

�

	
	
	
	
	




�

�
�
�
�
�

and  J–1 (xn, yn) = 1

1

1 2

2

2

2

2

2

D

x
x y

x y
y x

x

x
x y

n
n n

n n

n n

n

n

n n

− + +
+

− +
+

�

�

	
	
	
	
	




�

�
�
�
�
�

( )

( )
( )

( ) ( )

where D = 
4 1 2 1

2

5 2 2

2

x y x x y

x y x
n n n n n

n n n

/ ( ) ( )

( ) ( )

− + + +
+

.

Using the method

  
x
y

x
y

n

n

n

n

+

+

�
��

�
��

= �
��
�
��

1

1
 – J–1 (xn, yn) 

f x y
f x y

n n

n n

1

2

( , )
( , )

�
��

�
��

, n = 0, 1, ...

and starting with (x0, y0) = (2.4, – 0.6), we obtain the following sequence of iterates
First iteration  D = 2.563540,

        
x
y

1

1

2 4
0 6

0 936205 0 465684
0 108152 0 362870

0 040937
0 109193

2 412524
0 644050

�
��
�
��

=
−
�
��

�
��

−
−�

��
�
��
�
��

�
��

=
−
�
��

�
��

.

.
. .
. .

.

.
.
. .
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Second iteration D = 2.633224,

    
x
y

2

2

2 412524
0 644050

0 916186 0 453129
0 122337 0 353998

0 000025
0 000556

2 412249
0 643856

�
��
�
��

=
−
�
��

�
��

−
−�

��
�
�� −
�
��

�
��

=
−
�
��

�
��

.

.
. .
. .

.

.
.
.

Third iteration  D = 2.632964,

          
x
y

3

3

2 412249
0 643856

0 916172 0 453190
0 122268 0 354070

0 0000006
0 0000007

2 412249
0 643856

�
��
�
��

=
−
�
��

�
��

−
−�

��
�
�� −
�
��

�
��

=
−
�
��

�
��

.

.
. .
. .

.

.
.
.

Since the result is exact upto six decimal places, we have the solution
     x = 2.412249 ± 10–6,   y = – 0.643856 ± 10–6.

1.45 Calculate all solutions of the system
 x2 + y2 = 1.12, xy = 0.23

correct to three decimal places. (Lund Univ., Sweden, BIT 20 (1980), 389)
Solution
From the system

f1 (x, y) = x2 + y2 – 1.12, f2(x, y) = xy – 0.23
we have the Jacobian matrix

J(xn, yn) = 
2 2x y

y x
n n

n n

�
�	



��

and J–1 (xn, yn) = 
1

2
2
22 2( )x y

x y
y x

n n

n n

n n−
−

−
�
�	



��

Using the method

 
x
y

x
y

n

n

n

n

+

+

�
��

�
��

= �
��
�
��

1

1
 – J–1 (xn , yn) 

f x y
f x y

n n

n n

1

2

( )
( )

,

,

�
��

�
��

, n = 0, 1, ...

and starting with x0 = 1, y0 = 0.23, we obtain the following sequence of iterates
First iteration

 
x
y

1

1

10
0 23

0 52793 0 24285
0 12142 105585

0 0671
0 0

103542
0 22185

�
��
�
��

= �
��

�
��

−
−

−
�
��

�
��

−�
��

�
��

= �
��

�
��

.
.

. .

. .
.

.
.
. .

Second iteration
x
y

2

2

103542
0 22185

0 50613 0 21689
0 10844 101226

0 00131
0 00029

103469
0 22229

�
��
�
��

= �
��

�
��

−
−

−
�
��

�
�� −
�
��

�
��

= �
��

�
��

.

.
. .
. .

.
.

.

. .

Third iteration
x
y

3

3

103469
0 22229

0 50662 0 21768
0 10884 101324

0 000004
0 000001

103469
0 22229

�
��
�
��

= �
��

�
��

−
−

−
�
��

�
��

−�
��

�
��

= �
��

�
��

.

.
. .
. .

.
.

.

. .

Hence, the solution correct to three decimal places is obtained as
x = 1.035, y = 0.222.

Hence, all solutions of the system are ± (1.035, 0.222).

1.46 Describe how, in general, suitable values of a, b, c and d may be estimated so that the
sequence of values of x and y determined from the recurrence formula

xn+1 = xn + a f (xn, yn) + bg(xn, yn)
yn+1 = yn + c f (xn, yn) + dg(xn, yn)

will converge to a solution of
f (x, y) = 0, g(x, y) = 0.
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Illustrate the method by finding a suitable initial point and a recurrence relation of find
the solution of

y = sin (x + y), x = cos (y – x).
Solution
Let (ξ, η) be the exact solution of the system of equations

f (x, y) = 0, g(x, y) = 0.
Substituting xn = ξ + εn, yn = η + ηn in the iteration method

 xn+1 = xn + a f (xn, yn) + b g(xn, yn)
 yn+1 = yn + c f (xn, yn) + d g(xn, yn)

we obtain the error equations

εn+1 = 1+
∂
∂

+
∂
∂

�
��

�
��

+
∂
∂

+
∂
∂

�
��

�
��

a
f
x

b
g
x

a
f
y

b
g
ynε  ηn + ...

 ηn+1 = c
f
x

d
g
x

c
f
y

d
g
yn

∂
∂

+
∂
∂

�
��

�
��

+ +
∂
∂

+
∂
∂

�
��

�
��

ε 1  ηn + ...

Convergence is obtained when

1 + a 
∂
∂

+ ∂
∂

f
x

b
g
x

 = 0,

 a 
∂
∂

+ ∂
∂

f
y

b
g
y  = 0,

 c 
∂
∂

+ ∂
∂

f
x

d
g
x

 = 0,

1 + c 
∂
∂

+ ∂
∂

f
y

d
g
y

 = 0.

Solving the above system of equations, we obtain

  a = – 
1
D

g
y

∂
∂

,       b = 
1
D

f
y

∂
∂ ,  c = 

1
D

g
x

∂
∂

,        d = – 
1
D

f
x

∂
∂

,

where  D = 
∂
∂

∂
∂

− ∂
∂

∂
∂

f
x

g
y

g
x

f
y

.

Hence we get the iteration method

xn+1 = xn + 
1
D

f
g
y

g
f
yn n−

∂
∂

+
∂
∂

�

�
	




�
�

yn+1 = yn + 
1
D

f
g
x

g
f
xn n

∂
∂

− ∂
∂

�
�	



��
,   n = 0, 1, ...

where the partial derivatives are to be evaluated at (xn, yn).
To find the initial approximation for the given system of equations

 y = sin (x + y), x = cos (y – x),
we approximate

sin (x + y) ≈ x + y

cos (y – x) ≈ 1 – 
1
2

(y – x)2
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and obtain y = x + y or x = 0,

x = 1 – 1
2  (y – x)2 or y = 2 .

We have f (x, y) = y – sin (x + y), g(x, y) = x – cos (y – x), and fx = – cos (x + y),
           fy = 1 – cos (x + y), gx = 1 – sin (y – x), gy = sin (y – x).

1.47 Consider the system of equations f (x, y) = 0, g(x, y) = 0. Let x = x0 + ∆x and y = y0 + ∆y,
where (x0, y0) is an initial approximation to the solution. Assume

∆x = A1(x0, y0) + A2(x0, y0) + A3(x0, y0) + ...
∆y = B1(x0, y0) + B2(x0, y0) + B3(x0, y0) + ...

where A1 (x0, y0), B1 (x0, y0) are linear in f0, g0 ; A2 (x0, y0), B2 (x0, y0) are quadratic in f0,
g0 and so on. Use Taylor series method to derive iterative methods of second and third
order.
Solution
We have f (x0 + ∆x, y0 + ∆y) ≡ 0,

g(x0 + ∆x, y0 + ∆y) ≡ 0.
Expanding f and g in Taylor’s series about the point (x0, y0), we get

f (x0, y0) + [∆x fx + ∆y fy) + 
1
2

 [(∆x)2 fxx + 2∆x ∆y fxy + (∆y)2 fyy] + ... ≡ 0

g(x0, y0) + [∆x gx + ∆ygy) + 
1
2

 [(∆x)2 gxx + 2∆x ∆ygxy + (∆y)2 gyy] + ... ≡ 0 (1.61)

where partial derivatives are evaluated at (x0, y0).
Substituting

 ∆x = A1 + A2 + A3 + ...
∆y = B1 + B2 + B3 + ...

where Ai’s and Bi’s are arbitrary, we obtain

f0 + (A1 fx + B1 fy) + 
1
2

1
21

2
1
2

1 1 2 2A f B f A B f A f B fxx yy xy x y+ + + +�
�	



��
 + ... ≡ 0 (1.62)

g0 + (A1 gx + B1 gy) + 1
2

1
21

2
1
2

1 1 2 2A g B g A B g A g B gxx yy xy x y+ + + +�

�	



��
 + ... ≡ 0. (1.63)

Setting the linear terms to zero, we get
  A1 fx + B1 fy + f0 = 0
 A1 gx + B1 gy + g0 = 0

which gives A1 = – 
fg gf

f g g f
y y

x y x y x y

−
−

�

�
�

�

�
�

( , )0 0

B1 = – 
gf fg

f g g f
x x

x y x y x y

−
−

�

�
�

�

�
�

( , )0 0

Hence, we obtain the second order method
x1 = x0 + (A1)0    xk+1 = xk + (A1)k,
y1 = y0 + (B1)0

  or  yk+1 = xk + (B1)k.
Setting the quadratic terms in (1.62) and (1.63) to zero, we obtain
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  A2 fx + B2 fy + f2 = 0
A2 gx + B2 gy + g2 = 0

where f2 = 
1
2

21
2

1 1 1
2( )A f A B f B fxx xy yy+ +

g2 = 
1
2

21
2

1 1 1
2( )A g A B g B gxx xy yy+ +

are known values.
Solving the above equations, for A2 and B2, we get

A2 = – 
f g g f

f g g f
y y

x y x y

2 2−
−

, B2 = – 
g f f g
f g g f

x x

x y x y

2 2−
−

.

Hence we obtain the third order method
x1 = x0 + A1 + A2,
y1 = y0 + B1 + B2,

or xk+1 = xk + A1(xk, yk) + A2(xk, yk),
yk+1 = xk + B1(xk, yk) + B2(xk, yk).

1.48 Calculate the solution of the system of equations
x3 + y3 = 53

  2y3 + z4 = 69
3x5 + 10z2 = 770

which is close to  x = 3, y = 3, z = 2.
(Stockholm Univ., Sweden, BIT 19 (1979), 285)

Solution
Taking  f1(x, y, z) = x3 + y3 – 53,

 f2(x, y, z) = 2y3 + z4 – 69,
 f3(x, y, z) = 3x5 + 10z2 – 770,

we obtain the Jacobian matrix as

J = 
3 3 0

0 6 4
15 0 20

2 2

2 3

4

x y
y z

x z

�

�

	
	
	




�

�
�
�

.

We write the Newton’s method as
 J(k) ∆x = – f (k), where ∆x = x(k+1) – x(k).

For k = 0, with x0 = 3, y0 = 3, z0 = 2, we get

27 27 0
0 54 32

1215 0 40

1
1
1

�

�

	
	




�

�
�

= −
−

�

�

	
	




�

�
�

∆x .

The solution of the system is ∆x = [– 0.000195 – 0.036842 0.030921]T.
and    x(1) = x(0) + ∆x = [2.999805 2.963158 2.030921]T.
For k = 1, we have J(1) ∆x = – f (1) as

26 998245 26340916 0
0 52 681832 33507273

1214 684131 0 40 618420

0 012167
0 047520
0 009507

. .
. .

. .

.

.

.

�

�

	
	




�

�
�

= −
�

�

	
	




�

�
�

∆x .
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The solution of the system is
 ∆x = [0.000014 – 0.000477 – 0.000669]T.

and      x(2)x(1) + ∆x = [2.999819 2.962681 2.030252]T.

1.49 (a) Take one step from a suitable point with Newton-Raphson’s method applied to the
system

10x + sin (x + y) = 1
8y – cos2 (z – y) = 1

12z + sin z = 1
(b) Suggest some explicit method of the form x(k+1) = F(x(k)) where no inversion is needed

for F, and estimate how many iterations are required to obtain a solution correct to
six decimal places from the starting point in (a).

(Uppsala Univ., Sweden, BIT 19 (1979), 139)
Solution
(a) To obtain a suitable starting point, we use the approximations

sin (x + y) ≈ 0, cos (z – y) ≈ 1, sin (z) ≈ 0,
and obtain from the given equations x0 = 1 / 10, y0 = 1 / 4, z0 = 1 / 12.
Taking,  f1(x, y, z) = 10x + sin (x + y) – 1,

 f2(x, y, z) = 8y – cos2 (z – y) – 1,
 f3(x, y, z) = 12z + sin z – 1,

we write the Newton-Raphson method as
J(k) ∆x = – f (x(k))

where J = 
10 0

0 8 2 2
0 0 12

+ + +
− − −

+

�

�

	
	




�

�
�

cos ( ) cos( )
sin ( ( )) sin ( ( ))

cos

x y x y
z y z y

z
.

Taking the initial approximation as x0 = 1 / 10, y0 = 1 / 4, z0 = 1 / 12, we get

10 939373 0 939373 0
0 8 327195 0 327195
0 0 12 996530

0 342898
0 027522
0 083237

. .
. .

.

.

.

.
−

�

�

	
	




�

�
�

= −
�

�

	
	




�

�
�

∆x .

We solve the third equation for ∆x3, then the second equation for ∆x2 and then the first
equation for ∆x1. We obtain the solution as

 ∆x = [– 0.031040 – 0.003557 – 0.006405]T,
and x(1) = [0.068960 0.246443 0.076928]T.
(b) We write the explicit method in the form

xn+1 = 
1

10
 [1 – sin(xn + yn)] = f1(xn, yn, zn),

yn+1 = 
1
8

 [1 + cos2 (zn – yn)] = f2(xn, yn, zn),

zn+1 = 
1

12
 [1 + sin(zn)] = f3(xn, yn, zn).

Starting with the initial point x(0) = [1 / 10, 1 / 4, 1 / 12]T, we obtain the following se-
quence of iterates
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x(1) = [0.065710, 0.246560, 0.076397]T

x(2) = [0.069278, 0.246415, 0.076973]T

   x(3) = [0.068952, 0.246445, 0.076925]T

x(4) = [0.068980, 0.246442, 0.076929]T

x(5) = [0.068978, 0.246442, 0.076929]T.
Hence, the solution correct to six decimal places is obtained after five iterations.

Polynomial equations

1.50 Obtain the number of real roots between 0 and 3 of the equation
P(x) = x4 – 4x3 + 3x2 + 4x – 4 = 0

using Sturm’s sequence.
Solution
For the given polynomial, we obtain the Sturm’s sequence

f (x) = x4 – 4x3 + 3x2 + 4x – 4,
f1(x) = 2x3 – 6x2 + 3x + 2,
f2(x) = x2 – 3x + 2,
f3(x) = x – 2,
f4(x) = 0.

Since f4(x) = 0, we find that x = 2 is a multiple root of f (x) = 0 with multiplicity 2.
Dividing the elements in the Sturm’s sequence by x – 2, we obtain the new Sturm’s
sequence as

f *(x) = x3 – 2x2 – x + 2,
 f1*(x) = 2x2 – 2x – 1,
 f2*(x) = x – 1,
 f3*(x) = 1.

The changes in signs of fi* are given in the following table.

x f * f1* f2* f3* V

0 + – – + 2

3 + + + + 0

Using Sturm’s theorem, we find that there are two real roots between 0 and 3.
Hence, the polynomial f (x) = 0 has 3 real roots between 0 and 3. One root is 2 which is a
double root.

1.51 Determine the multiplicity of the root ξ = 1, of the polynomial
P(x) = x5 – 2x4 + 4x3 – x2 – 7x + 5 = 0

using synthetic division. Find also P ′(2) and P ″(2).
Solution
Using the synthetic division method, we obtain
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1 1 – 2 4 – 1 – 7 5
1 – 1 3 2 – 5

1 – 1 3 2 – 5 0 = P (1)
1 0 3 5

1 0 3 5 0 = P ′(1)
1 1 4

1 1 4 9 = P ″(1) / 2

Since P(1) = P ′(1) = 0 and P ″(1) ≠ 0, the root 1 is a double root of P(x) = 0.
To find P ′(2) and P ″(2), we again use the synthetic division method

2 1 – 2 4 – 1 – 7 5
2 0 8 14 14

1 0 4 7 7 19 = P (2)
2 4 16 46

1 2 8 23 53 = P ′(2)
2 8 32

1 4 16 55 = P ″(2) / 2

Hence, we get P ′(2) = 53 and P ″(2) = 110.

1.52 Use the Birge-Vieta method to find a real root correct to three decimals of the following
equations :
(i) x3 – 11x2 + 32x – 22 = 0, p = 0.5, (ii) x5 – x + 1 = 0, p = – 1.5,

(iii) x6 – x4 – x3 – 1 = 0, p = 1.5
Find the deflated polynomial in each case.
Solution
Using the Birge-Vieta method (1.29),

 pk+1 = pk – 
b

c
n

n−1
,   k = 0, 1, ...

(where bn = f (xk), cn–1 = f ′(xk–1)) and the synthetic division, we obtain the following
approximations.
(i) First iteration p0 = 0.5.

0.5 1 – 11      32 – 22
0.5 –   5.25 13.375

1 – 10.5 26.75 – 8.625
0.5 –   5.00

1 – 10.0 21.75

p1 = 0.5 + 
8 625
2175
.
.

 = 0.8966.
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Second iteration p1 = 0.8966.

0.8966 1 – 11 32 – 22
0.8966 – 9.0587 20.5692

1 – 10.1034 22.9413 – 1.4308
0.8966 – 8.2548

1 – 9.2068 14.6865

 p2 = 0.8966 + 
14308

14 6865
.
.

 = 0.9940.

Third iteration p2 = 0.9940.

0.9940 1 – 11 32 – 22
0.9940 – 9.9460 21.9217

1 – 10.0060 22.0540 – 0.0783
0.9940 – 8.9579

1 – 9.0120 13.0961

 p3 = 0.9940 + 
0 0783
13 0961

.
.

 = 0.99998.

The root correct to three decimals is 1.00.
Deflated polynomial

1 1 – 11 32 – 22
1 – 10

1 – 10 22

The deflated polynomial is x2 – 10x + 22.
(ii) First iteration p0 = – 1.5.

– 1.5 1 0 0 0 – 1 1
– 1.5 2.25 – 3.375 5.0625 – 6.0938

1 – 1.5 2.25 – 3.375 4.0625 – 5.0938
– 1.5 4.5 – 10.125 20.25

1 – 3 6.75 – 13.5 24.3125

 p1 = – 1.5 + 
5 0938

24 3125
.
.

 = – 1.2905,

Second iteration p1 = – 1.2905.

– 1.2905 1 0 0 0 – 1 1
– 1.2905 1.6654 – 2.1492 2.7735 – 2.2887

1 – 1.2905 1.6654 – 2.1492 1.7735 – 1.2887
– 1.2905 3.3308 – 6.4476 11.0941

1 – 2.5810 4.9962 – 8.5968 12.8676
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p2 = – 1.2905 + 
12887

12 8676
.
.

 = – 1.1903.

Third iteration p2 = – 1.1903

– 1.1903 1 0 0 0 –1 1
– 1.1903 1.4168 – 1.6864 2.0073 – 1.1990

1 – 1.1903 1.4168 – 1.6864 1.0073 – 0.1990
– 1.1903 2.8336 – 5.0593 8.0294

1 – 2.3806 4.2504 – 6.7457 8.0367

 p3 = – 1.1903 + 
0 1990
9 0367
.
.

 = – 1.1683.

Fourth iteration p3 = – 1.1683.

– 1.1683 1 0 0 0 –1 1
– 1.1683 1.3649 – 1.5946 1.8630 – 1.0082

1 – 1.1683 1.3649 – 1.5946 0.8630 – 0.0082
– 1.1683 2.7298 – 4.7838 7.4519

1 – 2.3366 4.0947 – 6.3784 9.3149

 p3 = – 1.1683 + 
0 0082
8 3149
.
.

 = – 1.1673.

The root correct to three decimals is – 1.167.
Deflated polynomial

– 1.167 1 0 0 0 – 1 1
– 1.167 1.3619 – 1.5893 1.8547

1 – 1.167 1.3619 – 1.5893 0.8547

The deflated polynomial is given by
x4 – 1.167x3 + 1.3619x2 – 1.5893x + 0.8547 = 0.

(iii) First iteration p0 = 1.5.

1.5 1 0 – 1 – 1 0 0 – 1
1.5 2.25 1.875 1.3125 1.9688 2.9532

1 1.5 1.25 0.875 1.3125 1.9688 1.9532
1.5 4.5 8.625 14.25 23.3438

1 3 5.75 9.5 15.5625 25.3126

p1 = 1.5 – 
19532

25 3126
.
.

 = 1.4228.
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Second iteration p1 = 1.4228.

1.4228 1 0 – 1 – 1 0 0 – 1
1.4228 2.0244 1.4575 0.6509 0.9261 1.3177

1 1.4228 1.0244 0.4575 0.6509 0.9261 0.3177
1.4228 4.0487 7.2180 10.9207 16.4641

1 2.8456 5.0731 7.6755 11.5716 17.3902

p2 = 1.4228 – 
0 3177
17 3902

.
.

 = 1.4045.

Third iteration p2 = 1.4045.

1.4045 1 0 – 1 – 1 0 0 – 1
1.4045 1.9726 1.3660 0.5140 0.7219 1.0139

1 1.4045 0.9726 0.3660 0.5140 0.7219 0.0139
1.4045 3.9452 6.9071 10.2151 15.0690

1 2.8090 4.9178 7.2731 10.7291 15.7909

p3 = 1.4045 – 
0 0139
15 7909

.
.

 = 1.4036.

The root correct to three decimals is 1.404.
Deflated polynomial

1.404 1 0 – 1 – 1 0 0 – 1
1.404 1.9712 1.3636 0.5105 0.7167

1 1.404 0.9712 0.3636 0.5105 0.7167

The deflated polynomial is given by
x5 + 1.404 x4 + 0.9712 x3 + 0.3636 x2 + 0.5105x + 0.7167 = 0.

1.53 Find to two decimals the real and complex roots of the equation x5 = 3x – 1.
Solution
Taking f (x) = x5 – 3x + 1, we find that f (x) has two sign changes in the coefficients and
thus can have a maximum of two positive real roots. Also, f (– x) = – x5 + 3x + 1 has only
one change of sign and hence has one negative real root.
We find that

f (– 2) < 0, f (– 1) > 0, f (0) > 0, f (1) < 0 and f (2) > 0.
Thus, f (x) = 0 has one negative real root in (– 2, – 1) and two positive real roots in the
intervals (0, 1) and (1, 2) respectively. Hence, the given polynomial has three real roots
and a pair of complex roots.
We first determine the real roots using the Birge-Vieta method (1.29) :

 pk+1 = pk – 
b

c
n

n−1
,   k = 0, 1, ...
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First real root. Let p0 = 0.

0 1 0 0 0 – 3 1
0 0 0 0 0

1 0 0 0 – 3 1 = bn

0 0 0 0

1 0 0 0 – 3 = cn–1

 p1 = 0.3333.

0.3333 1 0 0 0 – 3 1
0.3333 0.1111 0.0370 0.0123 – 0.9958

1 0.3333 0.1111 0.0370 – 2.9877 0.0042 = bn

0.3333 0.2222 0.1111 0.0494

1 0.6666 0.3333 0.1481 – 2.9383 = cn–1

 p2 = 0.3333 + 
0 0042
2 9383
.
.

 = 0.3347.

Hence, the root correct to two decimals is 0.33. Let the root be taken as 0.3347.
First deflated polynomial

0.3347 1 0 0 0 – 3 1
0.3347 0.1120 0.0375 0.0125 – 0.9999

1 0.3347 0.1120 0.0375 – 2.9875 0.0001

The deflated polynomial is
x4 + 0.3347x3 + 0.1120x2 + 0.0375x – 2.9875 = 0

with the error in satisfying the original equation as f (0.3347) = 0.0001.
We now find the second root using the deflated polynomial.
Second real root. Let p0 = 1.2

1.2 1 0.3347 0.1120 0.0375 – 2.9875
1.2 1.8416 2.3444 2.8583

1 1.5347 1.9536 2.3819 – 0.1292 = bn

1.2 3.2816 6.2822

1 2.7347 5.2352 8.6641 = cn–1

p1 = 1.2 + 
01292
8 6641
.
.

 = 1.2149.

1.2149 1 0.3347 0.1120 0.0375 – 2.9875
1.2149 1.8826 2.4233 2.9896

1 1.5496 1.9946 2.4608 0.0021 = bn

1.2149 3.3586 6.5036

1 2.7645 5.3532 8.9644 = cn–1
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 p2 = 1.2149 – 
0 0021
8 9644
.
.

 = 1.2147.

Hence, the root correct to two decimals is 1.21.
Let the root be taken as 1.2147.
Second deflated polynomial

1.2147 1 0.3347 0.1120 0.0375 – 2.9875
1.2147 1.8821 2.4222 2.9878

1 1.5494 1.9941 2.4597 0.0003

The deflated polynomial now is
x3 + 1.5494x2 + 1.9941x + 2.4597 = 0

with the error P4 (1.2147) = 0.0003.
We now find the third root using this deflated polynomial.
Third real root. Let p0 = – 1.4.

– 1.4 1 1.5494 1.9941 2.4597
– 1.4 – 0.2092 – 2.4989

1 0.1494 1.7849 – 0.0392 = bn

– 1.4 1.7508

1 – 1.2506 3.5357 = cn–1

p1 = – 1.4 + 
0 0392
3 5357
.
.

 = – 1.3889.

– 1.3889 1 1.5494 1.9941 2.4597
– 1.3889 – 0.2229 – 2.4600

1 0.1605 1.7712  0.0003 = bn

– 1.3889 1.7061

1 – 1.2284 3.4773 = cn–1

p2 = – 1.3889 + 
0 0003
34773

13888
.
.

– .= .

Hence, the root correct to two decimals is – 1.39.
Let the root be taken as – 1.3888.
We now determine the next deflated polynomial

– 1.3888 1 1.5494 1.9941 2.4597
– 1.3888 – 0.2230 – 2.4597

1 0.1606 1.7711 0.0000

The final deflated polynomial is
x2 + 0.1606x + 1.7711 = 0

whose roots are – 0.0803 ± 1.3284i.
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Hence, the roots are
0.3347, 1.2147, – 1.3888, – 0.0803 ± 1.3284i.

Rounding to two places, we may have the roots as
0.33, 1.21, – 1.39, – 0.08 ± 1.33i.

1.54 Carry out two iterations of  the Chebyshev method, the multipoint methods (1.11) and
(1.12) for finding the root of the polynomial equation x3 – 2 = 0 with x0 = 1, using synthetic
division.
Solution
Chebyshev method (1.10) is given by

xk+1 = xk – 
f
f

f f

f
k

k

k k

k′
−

″
′

1
2

2

3( )
,   k = 0, 1, ...

We use synthetic division method to find fk, fk′  and fk″ .
(i) First iteration x0 = 1

1 1 0 0 – 2
1 1 1

1 1 1 – 1 = fk

1 2

1 2 3 = fk′
1

1 3 = fk″  / 2

x1 = 1 + 
1
3

1
2

6
27

− �
��
�
��  = 1.2222.

Second iteration

1.2222 1 0 0 – 2
1.2222 1.4938 1.8257

1 1.2222 1.4938 – 0.1743 = fk

1.2222 2.9875

1 2.4444 4.4813 = fk ′
1.2222

1 3.6666 = fk″  / 2

x2 = 1.2222 + 
0 1743
4 4813

1
2

0 1743 7 3332

4 4813

2

3

.

.
.
( . ) ( . )

( . )
− −

 = 1.2599.

(ii) Multipoint method (1.11) gives the iteration scheme

xk+1
*  = xk – 

1
2

f
f

k

k′

 xk+1 = xk – 
f

f x
k

k′ +( )*
1

We calculate fk, fk′ , f xk′ +( )*
1  using synthetic division method.
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First iteration x0 = 1.

The values of fk, fk′  can be taken from the first iteration of Chebyshev method. We have

 x1
*  = 1 + 

1
2

1
3

.  = 1.1667,

1.1667 1 0 0 – 2
1.1667 1.3612 1.5881

1 1.1667 1.3612 – 0.4119 = f xk( )*
+1

1.1667 2.7224

1 2.3334 4.0836 = f xk′ +( )*
1

x1 = 1 + 
10

4 0836
.

.
 = 1.2449.

Second iteration x1 = 1.2449.

1.2449 1 0 0 – 2
1.2449 1.5498 1.9293

1 1.2449 1.5498 – 0.0707 = fk

1.2449 3.0996

1 2.4898 4.6494 = fk ′

 x2* = 1.2449 + 
1
2

0 0707
4 6494

.
.
.

 = 1.2525.

1.2525 1 0 0 – 2
1.2525 1.5688 1.9649

1 1.2525 1.5688 – 0.0351 = f xk( )*
+1

1.2525 3.1375

1 2.5050 4.7063 = f xk′ +( )*
1

x2 = 1.2449 + 
0 0707
4 7063
.
.

 = 1.2599.

(iii) Multipoint method (1.12) gives the iteration scheme

x x
f
fk k

k

k
+ = −

′1
*

 xk+1 = x
f x

fk
k

k
+

+−
′1

1*
*( )

.

First iteration x0 = 1.

The values of fk, fk′  can be taken from the first iteration of Chebyshev method, We have

 x1
* = 1 + 

1
3

 = 1.3333.



8-\N-NUM\NU-1-5A

62 Numerical Methods : Problems and Solutions

1.3333 1 0 0 – 2
1.3333 1.7777 2.3702

1 1.3333 1.7777 0.3702 = f1
*

  x1 = 1.3333 – 
0 3702

3
.

 = 1.2099.

Second iteration x1 = 1.2099.

1.2099 1 0 0 – 2
1.2099 1.4639 1.7712

1 1.2099 1.4639 – 0.2288 = fk

1.2099 2.9277

1 2.4198 4.3916 = fk ′

x2
* = 1.2099 + 

0 2288
4 3916
.
.

 = 1.2620

1.2620 1 0 0 – 2
1.2620 1.5926 2.0099

1 1.2620 1.5926 0.0099 = f xk( )*
+1

 x2 = 1.2620 – 
0 0099
4 3916
.
.

 = 1.2597.

1.55 It is given that the polynomial equation
9x4 + 12x3 + 13x2 + 12x + 4 = 0

has a double root near – 0.5. Perform three iterations to find this root using (i) Birge-Vieta
method, (ii) Chebyshev method, for multiple roots. Find the deflated polynomial in each case.

Solution
(i) Birge-Vieta method p0 = – 0.5
First iteration

– 0.5 9 12 13 12 4
– 4.5 – 3.75 – 4.625 – 3.6875

9 7.5 9.25 7.375 0.3125 = b4

– 4.5 – 1.5 – 3.875

9 3.0 7.75 3.5 = c3

 p1 = p0 – 2 
b
c

4

3
0 5

2 0 3125
3 5

�

��
�

��
= − −.

( . )
.

 = – 0.6786.
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Second iteration

– 0.6786 9 12 13 12 4
– 6.1074 – 3.9987 – 6.1083 – 3.9981

9 5.8926 9.0013 5.8917 0.0019 = b4

– 6.1074 0.1458 – 6.2072

9 – 0.2148 9.1471 – 0.3155 = c3

p2 = p1 – 2 
b
c

4

3
0 6786 2

0 0019
0 3155

�

��
�

��
= − −

−
�
��

�
��

.
.
.

 = – 0.6666.

Third iteration

– 0.6666 9 12 13 12 4
– 5.9994 – 4.0000 – 5.9994 – 4.0000

9 6.0006 9.0000 6.0006 0.0 = b4

– 5.9994 – 0.0008 – 5.9989

9 0.0012 8.9992 0.0017 = c3

Since,  b4 = 0, the root is – 0.6666. Again, since b4 = 0 and c3 ≈ 0, the deflated polynomial
is

9x2 + 0.0012x + 8.9992 = 0.
(ii) Chebyshev method p0 = – 0.5.
First iteration

– 0.5 9 12 13 12 4
– 4.5 – 3.75 – 4.625 – 3.6875

9 7.5 9.25 7.375 0.3125 = b4

– 4.5 – 1.5 – 3.875

9 3.0 7.75 3.5 = c3

– 4.5 0.75

9 – 1.5 8.50 = d2 = P ″( p0) / 2

Using (1.19) for m = 2, we have the method as

p1 = p0 – 
b
c

b
c

d
c

4

3

4

3

2
2

3
4−
�

��
�

��
�

��
�

��

 = – 0.5 – 
0 3125

3 5
4

0 3125
3 5

8 5
3 5

2.
.

.
.

.

.
�
��

�
��

− �
��

�
��
�
��
�
��

 =  – 0.6667.

Second iteration

– 0.6667 9 12 13 12 .4
– 6.0003 – 4.0000 – 6.0003 – 4.0000

9 5.9997 9.0000 5.9997 0.0 = b4

– 6.0003 0.0004 – 6.0006

9 – 0.0006 9.0004 – 0.0009 = c3
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Since b4 = 0, the root is – 0.6667. Again, since b4 = 0 and c3 ≈ 0, the deflated polynomial
is given by

9x2 – 0.0006x + 9.0004 = 0.
or x2 – 0.0007x + 1.00004 = 0.
The exact deflated polynomial equation is x2 + 1 = 0.

1.56 Given the two polynomial
  P(x) = x6 – 4.8x4 + 3.3x2 – 0.05

and  Q(x, h) = x6 – (4.8 – h)x4 + (3.3 + h)x2 – (0.05 – h)
(a) Calculate all the roots of P.
(b) When h << 1, the roots of Q are close to those of P. Estimate the difference between

the smallest positive root of P and the corresponding root of Q.
(Denmark Tekniske Hojskole, Denmark, BIT 19 (1979), 139)

Solution
(a) Writing x2 = t, we have the polynomial

 P(t) = t3 – 4.8t2 + 3.3t – 0.05.
Using Graeffe’s root squaring method, we obtain

0 1 – 4.8 3.3 – 0.05

1 23.04 10.89 0.0025
– 6.6 – 0.48

1 1 16.44 10.41 0.0025

1 270.2736 108.3681 0.6250 × 10–5

– 20.82 – 0.0822

2 1 249.4536 108.2859 0.6250 × 10–5

1 62227.0986 11725.8361 0.3906 × 10–10

– 216.5718 – 0.0031

3 1 62010.5268 11725.8330 0.3906 × 10–10

Hence, the roots of P(t) are obtained as
t1

(1) = 4.0546, t2
(1) = 0.7957, t3

(1) = 0.0155,
t1

(2) = 3.9742, t2
(2) = 0.8117, t3

(2) = 0.0155,
t1

(3) = 3.9724, t2
(3) = 0.8121, t3

(3) = 0.0155.
Substituting in P(t), we find that all the roots are positive.
Hence, the roots of the given polynomial P(x) may be taken as

± 1.9931, ± 0.9012, ± 0.1245.
(b) When h << 1, the roots of Q are close to those of P. The approximation to the smallest

positive root x1 of  P and x1
∗  of Q can be approximated from

P = 3.3x2 – 0.05 = 0
Q = (3.3 + h)x2 – (0.05 – h) = 0.
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We obtain x1 = 0 05
3 3
.
.

, x1
∗  = 

0 05
3 3
.
.

−
+

h
h

.

Hence  x1 – x1
∗  = 

0 05
3 3

0 05
3 3

.
.

.
.

− −
+

h
h

= 
0 05
3 3

1 1
0 05

1
3 3

1.
. . .

− −�
��

�
��

+�
��

�
��

�

�

	
	




�

�
�

−h h

= 
0 05
3 3

1 1
6 7

0 66
.
.

.
.

...− − +�
��

�
��

�

�
	




�
�h  ≈ 0 05

3 3
6 7

0 66
.
.

.
.

.
h  ≈ 1.25h

1.57 Using Bairstow’s method obtain the quadratic factor of the following equations (Perform
two iterations)
(i) x4 – 3x3 + 20x2 + 44x + 54 = 0 with (p, q) = (2, 2)

(ii) x4 – x3 + 6x2 + 5x + 10 = 0 with (p, q) = (1.14, 1.42)
(iii) x3 – 3.7x2 + 6.25x – 4.069 = 0 with (p, q) = (– 2.5, 3).
Solution
Bairstow’s method (1.30) for finding a quadratic factor of the polynomial of degree n is
given by

pk+1 = pk + ∆p
 qk+1 = qk + ∆q, k = 0.1, ...

where ∆p = – 
b c b c

c c c b
n n n n

n n n n

− − −

− − − −

−
− −

3 1 2

2
2

3 1 1( )

∆q = – 
b c b b c

c c c b
n n n n n

n n n n

− − − −

− − − −

− −
− −

1 1 1 2

2
2

3 1 1

( )

( )
We use the synthetic division method to determine bi’s and ci’s.
(i) First iteration p0 = 2, q0 = 2

– 2 1 – 3 20 44 54
– 2 – 2 10 – 56 4

– 2 10 – 56

1 – 5 28 – 2 = bn–1 2 = bn

– 2 14 – 80
– 2 14

1 – 7 40           – 68 = cn–1

∆p = – 0.0580, ∆q = – 0.0457,
 p1 = 1.9420, q1 = 1.9543.

Second iteration p1 = 1.9420, q1 = 1.9543

– 1.9420 1 – 3 20 44 54

– 1.9543 – 1.9420 9.597364 – 53.682830 0.047927

– 1.9543 9.658151 – 54.022840
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1 – 4.9420 27.643064 – 0.024679 = bn–1 0.025087 = bn

– 1.9420 13.368728 – 75.849649
– 1.9543 13.453401

1 – 6.8840 39.057492 – 62.420927 = cn–1

∆p = – 0.00072,  ∆q = – 0.000511  p2 = 1.9413,  q2 = 1.9538.

(ii) First iteration p0 = 1.14, q0 = 1.42.

– 1.14 1 – 1 6 5 10
– 1.42 – 1.14 2.4396 – 8.0023 – 0.0416

– 1.42 3.0388 – 9.9678

1 – 2.14 7.0196 0.0365 = bn–1 – 0.0094 = bn

– 1.14 3.7392 – 10.6462
– 1.42 4.6576

1 – 3.28 9.3388 – 5.9521 = cn–1

∆p = 0.0046, ∆q = 0.0019, p1 = 1.1446, q1 = 1.4219.

Second iteration p1 = 1.1446, q1 = 1.4219

– 1.1446 1 – 1 6 5 10
– 1.4219 – 1.1446 2.4547 – 8.0498 0.0005

– 1.4219 3.0494 – 10.0

1 – 2.1446 7.0328 – 0.0004 = bn–1 0.0005 = bn

– 1.1446 3.7648 – 10.7314
 – 1.4219 4.6769

1 – 3.2892 9.3757 – 6.0549 = cn–1

∆p = – 0.00003,   ∆q = 0.00003, p2 = 1.1446, q2 = 1.4219.

(iii) First iteration p0 = – 2.5, q0 = 3.0.

2.5 1 – 3.7 6.25 – 4.069
– 3.0 2.5 – 3.0 0.625

 – 3.0 3.6

1 – 1.2 0.25 = bn–1 0.156 = bn

2.5 3.25
– 3.0

1 1.3 0.50 = cn–1

∆p = 0.1174, ∆q = 0.0974, p1 = – 2.3826, q1 = 3.0974.
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Second iteration p1 = – 2.3826, q1 = 3.0974.

2.3826 1 – 3.7 6.25 – 4.069
– 3.0974 2.3826 – 3.1388 0.0329

– 3.0974 4.0805

1 – 1.3174 0.0138 = bn–1 0.0444 = bn

2.3826 2.5379
– 3.0974

1 1.0652 – 0.5457 = cn–1

∆p = – 0.0175, ∆q = 0.0325,  p2 = – 2.4001, q2 = 3.1299.

1.58 Find all the roots of the polynomial
x3 – 6x2 + 11x – 6 = 0

using the Graeffe’s root squaring method.
The coefficients of the successive root squarings are given below.
Coefficients in the root squarings by Graeffe’s method

m 2m

0 1 1 – 6 11 – 6

1 36 121 36
– 22 – 72

1 2 1 14 49 36

1 196 2401 1296
– 98 – 1008

2 4 1 98 1393 1296

1 9604 1940449 1679616
– 2786 – 254016

3 8 1 6818 1686433 1679616

1 46485124 2.8440562(12) 2.8211099(12)
– 3372866 – 2.2903243(10)

4 16 1 43112258 2.8211530(12) 2.8211099(12)

Successive approximations to the roots are given below. The exact roots of the equation
are 3, 2, 1.

Approximations to the roots

m α1 α2 α3

1 3.7417 1.8708 0.8571
2 3.1463 1.9417 0.9821
3 3.0144 1.9914 0.9995

4 3.0003 1.9998 1.0000
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1.59 Apply the Graeffe’s root squaring method to find the roots of the following equations
correct to two decimals :
(i) x3 – 2x + 2 = 0, (ii) x3 + 3x2 – 4 = 0.
Solution
(i) Using Graeffe’s root squaring method, we get the following results :

m 2m

0 1 1 0 – 2 2

1 0 4 4
4 0

1 2 1 4 4 4

1 16 16 16
– 8 – 32

2 4 1 8 – 16 16

1 64 256 256
32 – 256

3 8 1 96 0 256

1 9216 0 65536
0 – 49152

4 16 1 = B0 9216 = B1 – 49152 = B2 65536 = B3

Since B2 is alternately positive and negative, we have a pair of complex roots based on
B1, B2, B3.
One real root is | ξ1|

16 = 9216 or | ξ1 | = 1.7692. On substituting into the given polyno-
mial, we find that root must be negative. Hence, one real is ξ1 = – 1.7692.
To find the pair of complex roots p ± iq, we have

| β |32 = 
B
B

3

1
or β = 1.0632 = p q2 2+ .

Also, ξ1 + 2p = 0 or p = 0.8846,
 q2 = β2 – p2 or q = 0.5898.

Hence, roots are 0.8846 ± 0.5898i.
(ii)

m 2m

0 1 1 3 0 – 4

1 9 0 16
0 24

1 2 1 9 24 16

1 81 576 256
– 48 – 288
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2 4 1 33 288 256

1 1089 82944 65536
– 576 – 16896

3 8 1 513 66048 65536

1 263169 4362338304 168

– 132096 – 67239936

4 16 1 131073 4295098368 168

almost half

= B0 = B1 = B2 = B3

Since B1 is almost half of the corresponding value in the previous squaring, it indicates
that there is a double root based on B0, B1 and B2. Thus, we obtain one double root as

| ξ1 |
32 = | ξ2 |32 = | B2 |

which gives | ξ1 | = 2.0000. Substituting in the given equation we find that this root is
negative. Hence, ξ1 = – 2.0.
One simple real root : | ξ3 |

16 = | B3 / B2 |
which gives ξ3 = 1.0000. Substituting in the given equation, we find that the root is
positive.
Hence, the roots are 1.0000, – 2.0000, – 2.0000.

1.60 Consider the equation P(x) = 10x10 + x5 + x – 1 = 0.
Compute the largest positive real root with an error less than 0.02 using the Laguerre
method.
Solution
Let x0 = 0.5. We have

p′(x) = 100x9 + 5x4 + 1, p″(x) = 900x8 + 20x3.
First iteration

A = – 
P
P
′ ( . )
( . )
0 5
0 5

 = 3.28511,

B = A2 – 
P
P
″ ( . )
( . )

0 5
0 5

 = 23.89833,

x1 = 0.5 + 
10

9 10 2A B A+ −( )
 = 0.5 + 0.20575 ≈ 0.706.

Second iteration

A = – P
P
′ ( . )
( . )
0 706
0 706

 = – 34.91187

B = A2 – 
P
P
″ ( . )
( . )

0 706
0 706

 = 887.75842

x2 = 0.706 + 
10

9 10 2A B A− −( )
 ≈ 0.6724.



8-\N-NUM\NU-1-5A

70 Numerical Methods : Problems and Solutions

Third iteration

 A = – 
P
P
′ ( . )
( . )
0 6724
0 6724

 = 3928.21138

B = A2 – 
P
P
″ ( . )
( . )

0 6724
0 6724

 = 15466362.32

x3 = 0.6724 + 
10

9 10 2A B A+ −( )
 = 0.672654.

The root correct to two decimals is 0.67.



CHAPTER 2

Linear Algebraic Equations and
Eigenvalue Problems

2.1 INTRODUCTION

Let the given system of n equations be written as
a11 x1 + a12 x2 + ... + a1n xn = b1

a21 x1 + a22 x2 + ... + a2n xn = b2
..................................................
..................................................
an1 x1 + an2 x2 + ... + ann xn = bn. (2.1)

In matrix notation, we can write (2.1) as
Ax = b (2.2)

where   A = 

a a a
a a a

a a a

n

n

n n nn

11 12 1

21 22 2

1 2

�

�

� � �

�

�

�

�
�
�
�

�

�

�
�
�
�

 = (aij )

x = [x1 x2 ... xn ]
T and b = [b1 b2 ... bn ]

T.

Definitions 2.1 A real matrix A is

nonsingular if | A | ≠ 0,
singular if | A | = 0
symmetric if A = AT ,
skew symmetric if A = – AT,
null if aij = 0, i, j = 1(1)n,
diagonal if aij = 0, i ≠ j,
unit matrix if aij = 0, i ≠ j, aii = 1, i = 1(1)n,
lower triangular if aij = 0, j > i,
upper triangular if aij = 0, i > j,
band matrix if aij = 0, for j > i + p and

i > j + q, with band width p + q + 1,
tridiagonal if aij = 0, for | i – j | > 1,
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diagonally dominant if | | | |a aii ij
j
i j

n

≥
=
≠

∑
1

, i = 1(1)n,

orthogonal if A–1 = AT.
A complex matrix A is

Hermitian, denoted by A* or AH, if A = ( )A T  where A  is the complex conjugate of A,

unitary if A–1 = ( )A T ,
normal if AA* = A*A.

Definition 2.2 A matrix A is said to be a permutation matrix if it has exactly one 1 in each row
and column and all other entries are 0.

Definition 2.3 A matrix A is reducible if there exists a permutation matrix P such that

 PAPT = 
A A
0 A
11 12

22

�

�
�

�

�
� or PAPT = 

A 0
A A

11

21 22

�

�
�

�

�
� (2.3)

where A11 and A22 are square submatrices.

Definition 2.4 A real matrix M is said to have ‘property A’ if there exists a permutation matrix
P such that

PMPT = 
A A
A A

11 12

21 22

�
��

�
��

(2.4)

where A11 and A22 are diagonal matrices.

Definition 2.5 A matrix M is positive definite, if x*Mx > 0 for any vector x ≠ 0 and x* = ( )x T .
Further, x*Mx = 0 if x = 0.

If A is a Hermitian, strictly diagonal dominant matrix with positive real diagonal en-
tries, then A is positive definite.
Positive definite matrices have the following important properties :

(i) If A is nonsingular and positive definite, then B = A*A is Hermitian and positive
definite.

(ii) The eigenvalues of a positive definite matrix are all real and positive.
(iii) All the leading minors of A are positive.
The solution of the system of equations (2.2) exists and is unique if | A | ≠ 0. It has

nonzero solution if at least one of bi is not zero. The solution of (2.2) may then be written as
x = A–1b. (2.5)

The homogeneous system (bi = 0, i = 1(1)n) possesses only a trivial solution x1 = x2 = ... =
xn = 0 if | A | ≠ 0. Consider a homogeneous system in which a parameter  λ  occurs. The
problem then is to determine the values of  λ,  called the eigenvalues, for which the system has
nontrivial solution. These solutions are called the eigenvectors or the eigenfunctions and the
entire system is called an eigenvalue problem. The eigenvalue problem may therefore be writ-
ten as

 Ax = λx or (A – λI)x = 0. (2.6)
This system has nontrivial solutions if

| A – λI | = 0 (2.7)
which is a polynomial of degree n in λ and is called the characteristic equation. The n roots
λ1, λ2, ..., λn are called the eigenvalues of A. The largest eigenvalue in magnitude is called the
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spectral radius of A and is denoted by ρ(A). Corresponding to each eigenvalue λi, there exists
an eigenvector xi which is the nontrivial solution of

 (A – λi I) xi = 0. (2.8)
If  the  n  eigenvalues  λi, i = 1(1)n  are distinct, then the n independent eigenvectors xi,

i = 1(1)n constitute a complete system and can be taken as a basis of an n-dimensional space.
In this space, any vector v can be expressed as

v = c1 x1 + c2 x2 + ... + cn xn. (2.9)
Let the n eigenvalues λi, i =1(1)n be distinct and S denote the matrix of the correspond-

ing eigenvectors
 S = [x1 x2 ... xn ].

Then, S–1 AS = D (2.10)
where D is diagonal matrix and the eigenvalues of A are located on the diagonal of  D. Further,
S is an orthogonal matrix. This result is true even if the eigenvalues are not distinct but the
problem has the complete system of eigenvectors.

Norm of a vector x

(i) Absolute norm (l1 norm)

 || x ||1 = | |xi
i

n

=
∑

1

. (2.11)

(ii) Euclidean norm

 || x ||2 = (x*x)1/2 = | |xi
i

n
2

1

1/2

=
∑
�

�
		




�
�� . (2.12)

(iii) Maximum norm (l∞ norm)

|| x ||∞ = max | |
1 ≤ ≤i n

ix . (2.13)

Norm of a matrix A

(i) Frobenius or Euclidean norm

 F(A) = | |
,

aij
i j

n
2

1

1/2

=
∑
�

�
		




�
�� . (2.14)

(ii) Maximum norm

|| A ||∞ = max | |
i

ik
k

a∑ (2.15)

(maximum absolute row sum).

|| A ||1 = max | |
k

ik
i

a∑ (2.16)

(maximum absolute column sum).
(iii) Hilbert norm or spectral norm

|| A ||2 = λ .(2.17)
where λ = ρ(A*A). If A is Hermitian or real and symmetric, then

λ = ρ(A2) = [ ρ(A)]2 and || A ||2 = ρ(A). (2.18)
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Theorem 2.1 No eigenvalue of a matrix A exceeds the norm of a matrix

 || A || ≥ ρ(A). (2.19)

Theorem 2.2 Let A be a square matrix. Then

lim
n

n

→ ∞
=A 0

if || A || < 1, or if and only if ρ(A) < 1.

Theorem 2.3 The infinite series

I + A + A2 + ... (2.20)

converges if lim
m

m

→ ∞
=A 0 . The series  converges to ( I – A )–1.

Consider now the system of equations (2.2) Ax = b.
(i) If A = D, i.e., Dx = b, then the solution of the system is given by

xi = 
b
a

i

ii
, i = 1(1)n (2.21)

where aii ≠ 0.
(ii) If A is a lower triangular matrix, i.e., Lx = b, then, the solution is obtained as

xk = b a x ak kj j
j

k

kk−
�

�
		




�
��

=

−

∑
1

1

, k = 1, 2, ..., n (2.22)

where akk ≠ 0, k = 1(1)n. This method is known as the forward substitution method.
(iii) If A is an upper triangular matrix, i.e., Ux = b, then, the solution is given by

xk = b a x ak kj j
j k

n

kk−
�

�
		




�
��

= +
∑

1

, k = n, n – 1, ..., 1 (2.23)

where akk ≠ 0, k = 1(1)n. This method is known as the backward substitution method.

2.2 DIRECT METHODS

Gauss Elimination Method

Consider the augmented matrix [A|b] of the system of equations Ax = b. Using elemen-
tary row transformations, Gauss elimination method reduces the matrix A in the augmented
matrix to an upper triangular form

[A|b] →
elimination

Gauss
 [U|c]. (2.24)

Back substitution, using (2.23), then gives the solution vector x. For large n, the opera-
tional count is ≈ n3 / 3. The successive elements after each elimination procedure are obtained
as follow :

Set b ai
k

i n
k( )
,
( )= + 1, i, k = 1(1)n (2.25)

with bi
( )1  = bi, i = 1(1)n.

The elements aij
(k) with i, j ≥ k are given by

 aij
(k + 1) = a

a

a
aij

k ik
k

kk
k kj

k( )
( )

( )
( )−
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 i = k  + 1, k + 2, ..., n ; j = k + 1, ..., n, n + 1
aij

(1) = aij. (2.26)

The elements a a ann
n

11
1

22
2( ) ( ) ( ), , ...,  are called the pivots.

To avoid division by zero and to reduce roundoff error, partial pivoting is normally used.
The pivot is chosen as follows :
Choose j, the smallest integer for which

a ajk
k

i ik
k( ) ( )max= , k ≤ i ≤ n (2.27)

and interchange rows k and j. It is called partial pivoting.
If at the kth step, we interchange both the rows and columns of the matrix so that the

largest number in magnitude in the remaining matrix is used as pivot, i.e., after pivoting
 | akk | = max | aij |, i, j = k, k + 1, ..., n,

then, it is called complete pivoting.

Note that, when we interchange two columns, the position of the corresponding ele-
ments in the solution vector is also changed.

Complete pivoting is safe as errors are never magnified unreasonably. The magnifica-
tion factor is less than or equal to

fn = [(n – 1) × 2 × 31/2 × 41/3 × ... × n1/(n – 1) ]1/2

for n × n system of equations. For example, we have the magnification factors

n 5 10 20 100

fn 5.74 18.30 69.77 3552.41

which reveals that the growth is within limits. Eventhough, the bound for the magnification
factor in the case of partial pivoting cannot be given by an expression, it is known (experimen-
tally) that the magnification error is almost eight times, in most cases, the magnification fac-
tor for complete pivoting. Complete pivoting approximately doubles the cost, while the partial
pivoting costs negligibly more than the Gauss elimination.

Gauss elimination with or without partial pivoting are same for diagonally dominant
matrices.

Gauss-Jordan Method

Starting with the augmented matrix, the coefficient matrix A is reduced to a diagonal
matrix rather than an upper triangular matrix. This means that elimination is done not only
in the equations below but also in the equations above, producing the solution without using
the back substitution method.

[A|b] →
Jordan

Gauss
 [I|d]. (2.28)

This method is more expensive from the computation view point compared to the Gauss
elimination method. For large n, the operational count is ≈ n3/2. However, this method is
useful in finding the inverse of a non singular square matrix.

[A|I] →
Jordan

Gauss
 [I|A–1]. (2.29)
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Triangularization Method

In this method, the coefficient matrix A in (2.2) is decomposed into the product of a
lower triangular matrix L and an upper triangular matrix U. We write

A = LU (2.30)
where lij = 0, j > i ; uij = 0, i > j and uii = 1.

This method is also called the Crout’s method. Instead of uii = 1, if we take lii = 1, then
the method is also called the Doolittle’s method.

Comparing the elements of the matrices on both sides, we obtain n2 equations in n2

unknowns, which uniquely determines L and U. We get

lij = aij – l uik kj
k

j

=

−

∑
1

1

, i ≥  j,

uij = a l u lij ik kj
k

i

ii−
�

�
		




�
��

=

−

∑
1

1

, i < j,

uii = 1.
The system of equations (2.2) becomes

LUx = b. (2.31)
We rewrite this system as

Ux = z, (2.32i)
 Lz = b. (2.32ii)

We first find z from (2.32ii) using forward substitution and then find x from (2.32i) using
the back substitution.

Alternately, from (2.32ii) we have
z = L–1b (2.33i)

and from (2.32i) we have
  x = U–1 z. (2.33ii)

The inverse of A can be obtained from
A–1 = U–1L–1. (2.34)

Triangularization is used more often than the Gauss elimination. The operational count
is same as in the Gauss elimination.

LU decomposition is not always guaranteed for arbitrary matrices. Decomposition is
guaranteed when the matrix A is positive definite.

Cholesky Method (Square Root Method)

If the coefficient matrix in (2.2) is symmetric and positive definite, then A can be
decomposed as

A = LLT (2.35)
where lij = 0, j > i.

The elements of L are given by

lii = a lii ij
j

i

−
�

�
		




�
��

=

−

∑ 2

1

1
1/2

, i = 1(1)n
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 lij = a l l lij jk ik
k

j

jj−
�

�
		




�
��

=

−

∑
1

1

,

 i = j + 1, j + 2, ..., n ; j = 1(1)n
 lij = 0, i < j. (2.36)

Corresponding to equations (2.33i,ii) we have
z = L–1b, (2.37i)
x = (LT)–1 z = (L–1)Tz. (2.37ii)

The inverse is obtained as
A–1 = (LT)–1 L–1 = (L–1)T L–1. (2.38)

The operational count for large n, in this case, is ≈ n3 / 6.
Instead of A = LLT, we can also decompose A as A = UUT.

Partition Method

This method is usually used to find the inverse of a large nonsingular square matrix by
partitioning. Let A be partitioned as

 A = 
B C
E D
�

��
�

��
(2.39)

where B, C, E, D, are of orders r × r, r × s, s × r and s × s respectively, with r + s = n. Similarly,
we partition A–1 as

A–1 = 
X Y
Z V
�

��
�

��
(2.40)

where X, Y, Z and V are of the same orders as B, C, E and D respectively. Using the identity

 AA–1 = 
I 0
0 I
1

2

�

�
�

�

�
�

we obtain  V = (D – EB–1 C)–1, Y = – B–1 CV,
Z = – VEB–1,   X = B–1 – B–1 CZ,

where we have assumed that B–1 exists. If B–1 does not exist but D–1 exists then the equations
can be modified suitably. This procedure requires finding the inverse of two lower order matri-
ces, B–1 and (D – EB–1 C)–1.

Condition Numbers

Sometimes, one comes across a system of equations which are very sensitive to round off
errors. That is, one gets different solutions when the elements are rounded to different number
of digits. In such cases, the system is called an ill-conditioned system of equations. The meas-
ure of the ill-conditionedness is given by the value of the condition number of the matrix A.
The condition number is defined as

 cond (A) = K(A) = || A || || A–1 || (2.41)
where || . || is any suitable norm. This number is usually referred to as standard condition
number.

If K(A) is large, then small changes in A or b produces large relative changes in x, and
the system of equations Ax = b is ill-conditioned. If K(A) ≈ 1, then the system (2.2) is well
conditioned. If || . || is the spectral norm, then
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 K(A) = || A ||2 || A
–1 ||2 = 

λ
µ

(2.42)

where λ and µ are the largest and smallest eigenvalues in modulus of A*A. If A is Hermitian or
real and symmetric, we have

 K(A) = 
λ
µ

*
*

(2.43)

where λ*, µ* are the largest and smallest eigenvalues in modulus of A.
Another important condition number is the Aird-Lynch estimate. This estimate gives

both the lower and upper bounds for the error magnification. We have the estimate as
|| ||

|| ||( )
|| ||
|| ||

|| ||
|| ||( )

cr
x

x
x

cr
x1 1+

≤ ≤
−T T

δ

where c is the appropriate inverse of A (usually the outcome of Gauss elimination) ; r = Ax – b,
x is the computed solution and T = || cA – I || < 1.

2.3 ITERATION METHODS

A general linear iterative method for the solution of the system of equations (2.2) may
be defined in the form

x(k + 1) = Hx(k) + c (2.44)
where x(k + 1) and x(k) are the approximations for x at the (k + 1)th and kth iterations, respec-
tively. H is called the iteration matrix depending on A and c is a column vector. In the limiting
case, when k → ∞, x(k) converges to the exact solution

x = A–1 b. (2.45)

Theorem 2.4 The iteration method of the form (2.44) for the solution of (2.2) converges to the
exact solution for any initial vector, if || H || < 1 or iff ρ(H) < 1.

Let the coefficient matrix A be written as
A = L + D + U (2.46)

where L, D, U are the strictly lower triangular, diagonal and strictly upper triangular parts of
A respectively. Write (2.2) as

 (L + D + U)x = b. (2.47)

Jacobi Iteration Method

We rewrite (2.47) as
 Dx = – (L + U) x + b

and define an iterative procedure as
x(k + 1) = – D–1(L + U)x(k) + D–1b. (2.48)

The iteration matrix is given by
 H = – D–1(L + U). (2.49)

The method (2.48) is called the Jacobi Iteration method.
We write (2.48) as

x(k + 1) = x(k) – [I + D–1(L + U)] x(k) + D–1b
 = x(k) – D–1 [D + L + U] x(k) + D–1b

or  x(x + 1) – x(k) = D–1 (b – Ax(k))
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or  v(k) = D–1 r(k), or Dv(k) = r(k) (2.50)
where v(k) = x(k + 1) – x(k) is the error vector and r(k) = b – Ax(k) is the residual vector. From the
computational view point, (2.50) may be preferred as we are dealing with the errors and not
the solutions.

Gauss-Seidel Iteration Method

In this case, we define the iterative procedure as
(D + L) x(k + 1) = – Ux(k) + b

or x(k + 1) = – (D + L)–1 Ux(k) + (D + L)–1b (2.51)
where H = – (D + L)–1 U is the iteration matrix. In terms of the error vector, we can write the
procedure as

v(k + 1) = (D + L)–1 r(k), or (D + L) v(k + 1) = r(k). (2.52)

Successive Over Relaxation (SOR) Method

This method is often used when the coefficient matrix A of the system of equations is
symmetric and has ‘property A’. The iterative procedure is given by

x(k + 1) = (D + wL)–1 [(1 – w)D – wU] x(k) + w(D + wL)–1 b (2.53)
where w is the relaxation parameter. In terms of the error vector v, we can rewrite (2.53) as

v(k + 1) = w(D + wL)–1 r(k), or (D + wL) v(k + 1) = wr(k). (2.54)
When w = 1, eq. (2.53) reduces to the Gauss-Seidel method (2.51). The relaxation pa-

rameter w satisfies the condition 0 < w < 2. If w > 1 then the method is called an over relaxation
method and if w < 1, it is called an under relaxation method. Maximum convergence of SOR is
obtained when

 w = wopt ≈ − − =
+ −

2
1 1

2

1 1
2

2

2µ
µ

µ
[ ] (2.55)

where µ = ρ(HJacobi) and wopt is rounded to the next digit.
The rate of convergence of an iterative method is defined as

v = – ln (ρ(H)), or also as v = – log10( ρ(H)). (2.56)
where H is the iteration matrix.

The spectral radius of the SOR method is Wopt – 1 and its rate of convergence is
v = – ln (Wopt – 1) or V = – log10 (Wopt – 1).

Extrapolation Method

There are some powerful acceleration procedures for iteration methods. One of them is
the extrapolation method. We write the given iteration formula as

x(k + 1) = Hx(k) + c
and consider one parameter family of extrapolation methods as

x(k + 1) = γ [Hx(k) + c] + (1 – γ) x(k) = Hγx
(k) + γc

where Hγ = γH + (1 – γ) I.  Suppose that, we know that all the eigenvalues of H lie in an interval
[a, b], 1 ∉  [a, b], on the real line. Then

 ρ(Hγ) ≤ 1 – | γ |d
where d is the distance from 1 to [a, b]. The optimal value of γ which gives maximum rate of
convergence is γ = 2 / (2 – a – b).



8-\N-NUM\NU-2-1

80 Numerical Methods : Problems and Solutions

2.4 EIGENVALUE PROBLEMS

Consider the eigenvalue problem
Ax = λx. (2.57)

Theorem 2.5 (Gerschgorin) The largest eigenvalue in modulus of a square matrix A cannot
exceed the largest sum of the moduli of the elements in any row or column.

Theorem 2.6 (Brauer) Let Pk be the sum of the moduli of the elements along the kth row
excluding the diagonal element akk. Then, every eigenvalue of A lies inside or on the boundary
of atleast one of the circles

  | λ – akk | = Pk, k = 1(1)n.
We have, therefore

(i) | λi | ≤ max | |
i

ik
k

n

a
=
∑

1

(maximum absolute row sum).

(ii) | λi | ≤ max | |
k

jk
j

n

a
=
∑

1
(maximum absolute column sum).

(iii) All the eigenvalues lie in the union of the circles

 | λi – akk | ≤ | |akj
j
j k

n

=
≠

∑
1

(iv) All the eigenvalues lie in the union of the circles

| λi – akk | ≤ | |ajk
j
j k

n

=
≠

∑
1

(2.58i)

These four bounds are independent. Hence, the required bound is the intersection of
these four bounds.

If A is symmetric, then the circles become intervals on the real line.
These bounds are referred to as Gerschgorin bounds or Gerschgorin circles.

Theorem 2.7 If the matrix A is diagonalized by the similarity transformation S–1 AS, and if B
is any matrix, then the eigenvalues µi of A + B lie in the union of the disks

| µ – λi | ≤ cond∞ (S) || B ||∞ (2.58ii)
where λ1, λ2, ..., λn are the eigenvalues of A and cond∞ (S) is the condition number of S.

Usually, B is a permutation matrix.
Let S–1 AS = D. Then we have,

spectrum (A + B) = spectrum [S–1(A + B)S]
= spectrum [D + S–1 BS]
= spectrum [D + Q]

where Q = (qij) = S–1 BS, and D is a diagonal matix.
By applying Gerschgorin theorem, the eigenvalues of A + B lie in the union of disks

| µ – λi – qii | ≤ | |qij
j
i j

n

=
≠

∑
1
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Further, if A is Hermitian, then condition (2.58ii) simplifies to
 | µ – λi | ≤ n || B ||∞

Let us now consider methods for finding all the eigenvalues and eigenvectors of the
given matrix A.

Jacobi Method for Symmetric Matrices

Let A be a real symmetric matrix. A is reduced to a diagonal matrix by a series of
orthogonal transformations S1, S2, ... in 2 × 2 subspaces. When the diagonalization is com-
pleted, the eigenvalues are located on the diagonal and the orthogonal matrix of eigenvectors
is obtained as the product of all the orthogonal transformations.

Among the off-diagonal elements, let | aik | be the numerically largest element. The
orthogonal transformation in the 2 × 2 subspace spanned by aii, aik, aki, akk is done using the
matrix

S1*
 = 

cos sin
sin cos

θ θ
θ θ

−�
��

�
��

The value of θ is obtained such that (S1*)–1 A S1* = (S1*)T AS1* is diagonalized. We find

tan 2θ = 
2a

a a
ik

ii kk− , − ≤ ≤π θ π
4 4

. (2.59)

If aii = akk, then  θ = 
π
π

/ , ,
/ , .
4 0
4 0

a
a

ik

ik

>
− < (2.60)

The minimum number of rotations required to bring A into a diagonal form is n(n – 1) / 2.
A disadvantage of the Jacobi method is that the elements annihilated by a plane rotation may
not necessarily remain zero during subsequent transformations.

Givens Method for Symmetric Matrices

Let A be a real symmetric matrix. Givens proposed an algorithm using plane rotations,
which preserves the zeros in the off-diagonal elements, once they are created. Eigenvalues
and eigenvectors are obtained using the following procedure :

(a) reduce A to a tridiagonal form B, using plane rotations,
(b) form a Sturm sequence for the characteristic equation of B, study the changes in

signs in the sequences and find the intervals which contain the eigenvalues of B,
which are also the eigenvalues of A.

(c) using any iterative method, find the eigenvalues to the desired accuracy.
(d) find the eigenvectors of B and then the eigenvectors of A.
The reduction to the tridiagonal form is achieved by using orthogonal transformations

as in Jacobi method using the (2, 3), (2, 4), ..., (2, n), (3, 4), ..., (4, 5), ... subspaces. When
reduction  with  respect  to the (2, 3) subspace is being done, θ is obtained by setting a13′ = a31′
= 0, which gives

 tan θ = 
a
a

13

12 4 4
, − ≤ ≤

π
θ

π
(2.61)

where A′ is the transformed matrix. This value of θ, produces zeros in the (3, 1) and (1, 3)
locations. The value of θ, obtained by setting a14* = a41*

 = 0, when working in the (2, 4) subspace,
that is tan θ = a14′ / a′12,

 produces zeros in the (4, 1) and (1, 4) locations. The total number of
plane rotations required to bring a matrix of order n to its tridiagonal form is (n – 1) (n – 2) / 2.
We finally obtain
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 B = 

b c
c b c

c b c

c b c
c b

n n n

n n

1 1

1 2 2

2 3 3

2 1 1

1

0

0

� � �

− − −

−

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

(2.62)

A and B have the same eigenvalues. If ci ≠ 0, then the eigenvalues are distinct. The
characteristic equation of B is

fn = | λI – B | = 0. (2.63)
Expanding by minors, we obtain the sequence { fi }

f0 = 1, f1 = λ – b1

and fr = (λ – br) fr–1 – (cr–1)
2 fr–2 ; 2 ≤ r ≤ n. (2.64)

If none of the ci, i = 1, 2, ..., n – 1 vanish, then { f i } is a Sturm sequence. If any of ci = 0,
then the system degenerates. For example, if any of the ci = 0, then B given by (2.62) is of the
form

 B = 
P 0
0 Q
�
�



� (2.65)

and the characteristic equation of B is
fn = (ch. equation of P) (ch. equation of Q). (2.66)

Let V(x) denote the number of changes in signs in the sequence { fi } for a given number
x. Then, the number of zeros of fn in (a, b) is | V(a) – V(b) | (provided a or b is not a zero of fn).
Repeated application, using the bisection method, produces the eigenvalues to any desired
accuracy.

Let vi be the eigenvector of B corresponding to λi. Then, the eigenvector ui of A is given
by

ui = Svi (2.67)
where S = S1S2 ... Sj is the product of the orthogonal matrices used in the plane rotations.

Householder’s Method for Symmetric Matrices

In Householder’s method, A is reduced to the tridiagonal form by orthogonal transfor-
mations representing reflections. This reduction is done in exactly n – 2 transformations. The
orthogonal transformations are of the form

P = I – 2wwT (2.68)
where w ∈  Rn, such that w = [x1 x2 ... xn]T and

wT w = x1
2 + x2

2 + ... + xn
2 = 1. (2.69)

P is symmetric and orthogonal. The vectors w are constructed with the first (r – 1) components
as zeros, that is

wr
T = (0, 0, ..., 0, xr, xr + 1, ..., xn) (2.70)

with xr
2  + xr + 1

2  + ... + xn
2  = 1. With this choice of wr, form the matrices

Pr = I – 2wr wr
T. (2.71)

The similarity transformation is given by
Pr

–1 APr = Pr
T APr = Pr APr. (2.72)

Put A = A1 and form successively
Ar = Pr Ar–1 Pr, r = 2, 3, ..., n – 1. (2.73)
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At  the  first  transformation,  we  find  xr’s  such that we get zeros in the positions (1, 3),
(1, 4), ..., (1, n) and in the corresponding positions in the first column. In the second
transformation, we find xr’s  such that we get zeros in the positions (2, 4), (2, 5), ..., (2, n) and in
the corresponding positions in the second column. In (n – 2) transformations, A is reduced to
the tridiagonal form. The remaining procedure is same as in Givens method.

For example, consider

A = 

a a a a
a a a a
a a a a
a a a a

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

�

�

�
�
�

�

�

�
�
�

(2.74)

For the first transformation, choose
 w2

T = [0 x2 x3 x4]

  x x x2
2

3
2

4
2+ +  = 1. (2.75)

We find  s1 = a a a12
2

13
2

14
2+ +

 x2
2  = 

1
2

1 12 12

1
+

�

�	



��
a a

s
sign ( )

x3 = 
a a

s x
13 12

1 22
sign ( )

, x4 = 
a a

s x
14 12

1 22
sign ( )

. (2.76)

This transformation produces two zeros in the first row and first column. One more
transformation produces zeros in the (2, 4) and (4, 2) positions.

Rutishauser Method for Arbitrary Matrices

Set A = A1 and decompose A1 as
 A1 = L1U1 (2.77)

with lii = 1. Then, form A2 = U1L1. Since A2 = U1L1 = U1A1 U1
–1, A1 and A2 have the same

eigenvalues. We again write
 A2 = L2U2 (2.78)

with lii = 1. Form A3 = U2L2 so that A2 and A3 have the same eigenvalues. Proceeding this way,
we get a sequence of matrices A1, A2, A3, ... which in general reduces to an upper triangular
matrix. If the eigenvalues are real, then they all lie on the diagonal. The procedure is very
slow, if A has multiple eigenvalues, and it will not converge if A has complex eigenvalues.

Power Method

This method is normally used to determine the largest eigenvalue in magnitude and the
corresponding eigenvector of A. Fastest convergence is obtained when λi’s are distinct and far
separated. Let v be any vector (non orthogonal to x) in the space spanned by the eigenvectors.
Then, we have the algorithm

 yk + 1 = Avk

 vk + 1 = yk + 1 / mk + 1 (2.79)

where mk + 1 = max
r

 | (yk + 1)r |.

Then, λ1 = lim
( )

( )k

k r

k r→ ∞

+y

v
1 , r = 1, 2, ..., n (2.80)

and vk + 1 is the required eigenvector.
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Inverse Power Method

Inverse power method can give approximation to any eigenvalue. However, it is used
usually to find the smallest eigenvalue in magnitude and the corresponding eigenvector of a
given matrix A. The eigenvectors are computed very accurately by this method. Further, the
method is powerful to calculate accurately the eigenvectors, when the eigenvalues are not well
separated. In this case, power method converges very slowly.

If λ is an eigenvalue of A, then 1 / λ is an eigenvalue of A–1 corresponding to the same
eigenvector. The smallest eigenvalue in magnitude of A is the largest eigenvalue in magnitude
of A–1.  Choose  an  arbitrary  vector  y0  (non-orthogonal to x). Applying the power method on
A–1, we have

  zk + 1 = A–1 yk
 yk + 1 = zk + 1 / mk + 1 (2.81)

where mk + 1 has the same meaning as in power method. We rewrite (2.81) as
Azk + 1 = yk (2.81a)
 yk + 1 = zk + 1 / mk + 1 (2.81b)

We find zk + 1 by solving the linear system (2.81a). The coefficient matrix is same for all
iterations.

Shift of Origin
Power and inverse power methods can be used with a shift of origin. We have the follow-

ing methods :

Shifted Power Method
z(k + 1) = (A – qI) z(k)

It can be used to find an eigenvalue farthest from a given number q.

Shifted inverse power method
z(k + 1) = (A – qI)–1 z(k) or (A – qI) z (k + 1) = z(k)

It can be used to find an eigenvalue closest to a given number q.
In both cases, normalization is done according to (2.81b).

2.5 SPECIAL SYSTEM OF EQUATIONS

Solution of tridiagonal system of equations

Consider the system of equations
 Ax = b

where  A = 

q r
p q r

p q r

p qn n

1 1

2 2 2

3 3 3

−
− −

− −

−

�

�

�
�
�
�
�

�

�

�
�
�
�
�

0

0
� � �

A special case of tridiagonal system of equations arise in the numerical solution of the
differential equations. The tridiagonal system is of the form

– pj xj–1
 + qj xj – rj xj + 1 = bj, 1 ≤ j ≤ n (2.82)

where p1, rn are given and x0, xn + 1 are known from the boundary conditions of the given
problem. Assume that
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pj > 0, qj > 0, rj > 0 and qj ≥ pj + rj (2.83)
for 1 ≤ j ≤ n (that is A is diagonally dominant). However, this requirement is a sufficient
condition. For the solution of (2.82) consider the difference relation

 xj = αj xj + 1 + βj, 0 ≤ j ≤ n. (2.84)
From (2.84) we have

xj – 1 = aj–1 xj + βj–1. (2.85)
Eliminating xj –1 from (2.82) and (2.85), we get

xj = 
r

q p
j

j j j− −α 1
 xj + 1 + 

b p

q p
j j j

j j j

+
−

−

−

β
α

1

1
. (2.86)

Comparing (2.84) and (2.86), we have

αj = 
r

q p
j

j j j− −α 1
, βj = 

b p

q p
j j j

j j j

+
−

−

−

β
α

1

1
(2.87)

If x0 = A, then α0 = 0 and β0 = A, so that the relation
x0 = α0 x1 + β0 (2.88)

holds for all x1. The remaining αj, βj, 1 ≤ j ≤ n, can be calculated from (2.87).

α1 = 
r
q

1

1
, β1 = 

b p A
q

1 1

1

+

α2 = 
r

q p
2

2 2 1− α
, β2 = 

b p
q p

2 2 1

2 2 1

+
−

β
α

...  ...

αn = 
r

q p
n

n n n− α –1
, βn = 

b p

q p
n n n

n n n

+
−

−

−

β
α

1

1
.

If xn + 1 = B is the prescribed value, then the solution of the tridiagonal system (2.82) is
given as

xn = αnB + βn
xn–1 = αn–1 xn + βn–1 (2.89)
 ...  ...
x1 = α1x2 + β1.

The procedure converges if | αj | ≤ 1. This method is equivalent to the Gauss elimina-
tion and also minimizes the storage in the machine computations as only three diagonals are
to be stored.

If the problem is to solve only the tridiagonal system, then, set A = 0, B = 0 in the above
algorithm. This gives, from (2.88), α0 = 0, β0 = 0. The remaining procedure is the same as
above.

Solution of five diagonal system of equations

Another system of algebraic equations that is commonly encountered in the solution of
the fourth order differential equations is the five diagonal system

 Ax = b

where  A = 

r s t
q r s t
p q r s t

p q r s
p q r

n n n n

n n n

1 1 1

2 2 2 2

3 3 3 3 3

1 1 1 1

0

0

� �

− − − −

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�
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This leads to the recurrence relation
pj xj–2 + qj xj–1 + rj xj + sj xj + 1 + tj xj + 2 = bj (2.90)

2 ≤ j ≤ n – 2. For the solution, assume the recurrence relation
xj = αj – βj xj + 1 – γj xj + 2, 0 ≤ j ≤ n. (2.91)

From (2.91), we have
xj–1 = αj–1 – βj–1 xj – γj–1 xj + 1

and xj–2 = αj–2 – βj_2 xj–1 – γj–2 xj .
Substituting these expressions in (2.90) and simplifying we get

 xj = 
1

r *
[(bj – p*) – (sj – γj–1 q*) xj + 1 – tj xj + 2] (2.92)

where q* = qj – pj βj–2, p* = pj αj–2 + αj–1 q*
r* = rj – pj γj–2 – βj–1 q*

Comparing (2.92) with (2.91), we have
 αj = (bj – p*) / r*,
 βj = (sj – γj–1 q*) / r*,
γj = tj / r*. (2.93)

Setting j = 0 in (2.91) we have
x0 = α0 – β0x1 – γ0x2. (2.94)

This equation is satisfied for all x1, x2 only if x0 = α0, β0 = 0 = γ0.
If  x0  is  prescribed then α0 is known. If only a given system is to be solved then we set

α0 = x0 = 0. Setting j = 1 in (2.91), we get
 x1 = α1 – β1x2 – γ1x3. (2.95)

This equation should be identical with the first equation of the system

x1 = 
1

1r
 [b1 – s1x2 – t1x3]. (2.96)

Comparing (2.95) and (2.96) we have

α1 = 
b
r
1

1
, β1 = 

s
r
1

1
and γ1 = 

t
r
1

1
. (2.97)

The remaining values αi, βi, γi, i = 2, ... n are obtained from (2.93). Setting j = n in (2.91),
we get

xn = αn – βn xn + 1 – γn xn + 2. (2.98)
Set γn = 0. If the problem is derived from a boundary value problem in which the values

at the end points are prescribed, then xn + 1 = gn + 1 is given. Otherwise, set βn = 0. Then (2.98)
gives either

xn = αn – βn xn + 1 or xn = αn.
The values xn –1, xn – 2, ..., x1 are obtained by back substitution in the equation (2.91).

2.6 PROBLEMS AND SOLUTIONS

2.1 Show that the matrix

12 4 1
4 7 1
1 1 6

−

−

�

�

�
�

�

�

�
�

is positive definite.
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Solution
Let  x = [x1 x2 x3]

T. Then

x*Ax = x AxT

= [ ]x x x
x
x
x

1 2 3

1

2

3

12 4 1
4 7 1
1 1 6

−

−

�

�

�
�

�

�

�
�

�

�

�
�

�

�

�
�

 

= 12 4 7 61
2

1 2 2 1 1 3 1 3 2 3 2 3 2
2

3
2| | ( ) ( ) ( ) | | | |x x x x x x x x x x x x x x x+ + − + + + + +

Let  x1 = p1 + iq1, x2 = p2 + iq2, and x3 = p3 + iq3.
Then,

x*Ax = 12(p1
2 + q1

2) + 8(p1p2 + q1q2) – 2(p1p3 + q1q3)
+ 2(p2p3 + q2q3) + 7(p2

2 + q2
2) + 6(p3

2 + q3
2)

= (p1 – p3)
2 + (q1 – q3)

2 + 4(p1 + p2)
2 + 4(q1 + q2)

2

+ (p2
 + p3)2 + (q2 + q3)2 + 7(p1

2 + q1
2) + 2(p2

2 + q2
2) + 4(p3

2 + q3
2) > 0

Hence A is positive definite.

2.2 Show that the matrix

15 4 2 9 0
4 7 1 1 1
2 1 18 6 6
9 1 6 19 3
0 1 6 3 11

−

−

�

�

�
�
�
�
�

�

�

�
�
�
�
�

is positive definite. (Gothenburg Univ., Sweden, BIT 6 (1966), 359)
Solution
A matrix A is positive definite if x*Ax > 0, x ≠ 0.
Let x = [ p q r s t]T where

 p = p1 + ip2, q = q1 + iq2 etc.

We have   x*Ax = p q r s t p q r s t T  A

= 15 4 22| | ( ) ( )p pq pq pr pr+ + − +
+ + + + +9 7 2( ) | | ( )ps ps q qr qr

+ + + + +( ) ( ) | |qs qs qt qt r18 2

+ + + + +6 6 19 2( ) ( ) | |rs rs rt rt s

+ + +3 11 2( ) | |st st t

Substituting p = p1 + ip2 etc. and simplifying we get
 x*Ax = 4( p1 + q1)

2 + 2( p1 – r1)
2 + 9( p1 + s1)2

+ 4( p2 + q2)
2 + 2( p2 – r2)

2 + 9( p2 + s2)2

+ (q1 + r1)2 + (q1 + s1)
2 + (q1 + t1)

2

+ (q2 + r2)2 + (q2 + s2)
2 + (q2 + t2)

2

+ 6(r1 + s1)
2 + 6(r1 + t1)

2 + 6(r2 + s2)
2

+ 6(r2 + t2)
2 + 3(s1 + t1)2 + 3(s2 + t2)

2

+ 3r1
2 + 3r2

2 + t1
2 + t2

2

> 0
Hence, A is positive definite.
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2.3 The matrix

 A = 1
1

+ −
−

�
�



�

s s
s s

is given. Calculate p and q such that An = pA + qI and determine eA.
(Lund Univ., Sweden, BIT 28 (1988), 719)

Solution

We have  A2 = 
1

1
1

1
+ −

−
�
�



�

+ −
−

�
�



�

s s
s s

s s
s s  = 

1 2 2
2 1 2
+ −

−
�
�



�

s s
s s

= 2
1

1
1 0
0 1

+ −
−

�
�



�

− �
�



�

s s
s s  = 2A – I

A3 = A(2A – I) = 2A2 – A = 2(2A – I) – A = 3A – 2I
 A4 = A(3A – 2I) = 3A2 – 2A = 4A – 3I

By induction, we get
 An = nA + (1 – n)I

Hence, p = n and q = 1 – n.

We have eA = I
A A A

+
!

+
!

+
!

+
1

2 3

2 3
�

= I
A

A I+
!

+
!

+ − +
1

1 2
1
3

1
2

2[ ( ) ]
!
 [3A + (1 – 3)I] + ...

= A 1 I+
!

+
!

+
!

+
�

�
�

�

�
� +

!
− +

!
− +

�

�
�

�

�
�

1
1

1
2

1
3

1
2

1 2
1
3

1 3� �1+ ( ) ( )

= eA I+ +
!

+
!

+
�
�	



�� !

+
!

+
!

+
�
�	



��

�

�
�
�

�

�
�
�

1
1
2

1
3

1
1

1
2

1
3

� �–

= eA + I [(e – 1) – (e – 1)] = eA.
2.4 Solve the following system of equations

(a) 4x1 + x2 + x3 = 4 (b)       x1 + x2 – x3 = 2
 x1 + 4x2 – 2x3 = 4 2x1 + 3x2 + 5x3 = – 3
 3x1 + 2x2 – 4x3 = 6 3x1 + 2x2 – 3x3 = 6

(i) by the Gauss elimination method with partial pivoting,
(ii) by the decomposition method with u11 = u22 = u33 = 1.
Solution
(a) (i) Consider the augmented matrix (A | b). Using elementary row transformations,

we get

(A | b) = 
4 1 1 4
1 4 2 4
3 2 4 6

−
−

�

�

�
�

�

�

�
�
 ∼ −

−

�

�

�
�

�

�

�
�

 
4 1 1 4
0 15 4 9 4 3
0 5 4 19 4 3

/ /
/ /

∼ −
−

�

�

�
�

�

�

�
�

 
4 1 1 4
0 15 4 9 4 3
0 0 4 2

/ /



8-\N-NUM\NU-2-2

Linear Algebraic Equations and Eigenvalue Problems 89

Back substitution gives the solution
x3 = – 1 / 2, x2 = 1 / 2 and x1 = 1

(ii) Writing A = LU, with uii = 1, we have

 

4 1 1
1 4 2
3 2 4

0 0
0

1
0 1
0 0 1

11

21 22

31 32 33

12 13

23−
−

�

�

�
�
�

�

�

�
�
�

=
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

l
l l
l l l

u u
u

Comparing the elements on both sides and solving, we get

L = 
4 0 0
1 15 4 0
3 5 4 4

/
/ −

�

�

�
�

�

�

�
�
, U = 

1 1 4 1 4
0 1 3 5
0 0 1

/ /
/−

�

�

�
�

�

�

�
�

Solving Lz = b, by forward substitution, we get
z = [1 4 / 5 – 1 / 2]T.

Solving Ux = z, by backward substitution, we have
x = [1 1 / 2 – 1 / 2]T.

(b) (i) Using the elementary row operations on the augmented matrix, we get

 (A | b) = 
1 1 1 2
2 3 5 3
3 2 3 6

−
−

−

�

�

�
�

�

�

�
�
 ∼

−
−

−

�

�

�
�

�

�

�
�

 
3 2 3 6
2 3 5 3
1 1 1 2

∼
−

−
�

�

�
�

�

�

�
�

 
3 2 3 6
0 5 3 7 7
0 1 3 0 0

/
/

 ∼
−

−
−

�

�

�
�

�

�

�
�

 
3 2 3 6
0 5 3 7 7
0 0 7 5 7 5

/
/ /

Using, backward substitution, we obtain
x3 = – 1, x2 = 0 and x1 = 1.

(ii) Writing A = LU, with uii = 1, we have

 

1 1 1
2 3 5
3 2 3

0 0
0

1
0 1
0 0 1

11

21 22

31 32 33

12 13

23

−

−

�

�

�
�

�

�

�
�

=
�

�

�
�

�

�

�
�

�

�

�
�

�

�

�
�

l
l l
l l l

u u
u

Comparing the elements on both sides and solving, we get

L = 
1 0 0
2 1 0
3 1 7−

�

�

�
�

�

�

�
� , U = 

1 1 1
0 1 7
0 0 1

−�

�

�
�

�

�

�
�

Solving Lz = b, we get z = [2 – 7 –1]T

Solving Ux = z, we get x = [1 0 – 1]T.

2.5 Find the inverse of the matrix

1 2 1
2 3 1
2 1 3

−
−

�

�

�
�

�

�

�
�

by the Gauss-Jordan method.
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Solution
Consider the augmented matrix (A | I). We have

(A | I) = 
1 2 1 1 0 0
2 3 1 0 1 0
2 1 3 0 0 1

−
−

�

�
		




�
��  

∼ − − −
− −

�

�
		




�
��

 
1 2 1 1 0 0
0 1 3 2 1 0
0 5 1 2 0 1

∼ −
−

�

�
		




�
��

∼
− −

−
−

�

�
		




�
��

   
1 2 1 1 0 0
0 1 3 2 1 0
0 0 16 8 5 1

1 0 5 3 2 0
0 1 3 2 1 0
0 0 16 8 5 1

∼
−

− −
−

�

�
		




�
��

 
1 0 0 1 2 7 16 5 16
0 1 0 1 2 1 16 3 16
0 0 1 1 2 5 16 1 16

/ / /
/ / /
/ / /

The required inverse is

1
16

8 7 5
8 1 3
8 5 1

−
− −
−

�

�
		




�
�� .

2.6 Find the inverse of coefficient matrix of the system

1 1 1
4 3 1
3 5 3

1
6
4

1

2

3

−
�

�

�
�

�

�

�
�

�

�

�
�

�

�

�
�

=
�

�

�
�

�

�

�
�

x
x
x

by the Gauss-Jordan method with partial pivoting and hence solve the system.
Solution
Using the augmented matrix [A | I], we obtain

1 1 1 1 0 0
4 3 1 0 1 0
3 5 3 0 0 1

4 1 0 1 0
1 1 1 1 0 0
3 5 3 0 0 1

−
�

�

�
�

�

�

�
�

−�

�

�
�

�

�

�
�

 ~  
3

~ ~ /
/

 
1 3/4 1/4 0 1/4 0
1 1 1 1 0 0
3 5 3 0 0 1

  
1 3/4 1/4 0 1/4 0
0 1/4 5/4 1 0
0 11/4 15/4 0 1

−�

�

�
�

�

�

�
�

−
−
−

�

�

�
�

�

�

�
�

1 4
3 4

~ /
/

~ /
/

 
1 3/4 1/4 0 1/4 0
0 11/4 15/4 0 1
0 1/4 5/4 1 0

  
1 3/4 1/4 0 1/4 0
0 1 15/11 0 4/11
0 1/4 5/4 1 0

−
−
−

�

�

�
�

�

�

�
�

−
−
−

�

�

�
�

�

�

�
�

3 4
1 4

3 11
1 4

~
/ / /
/ / /
/ / /

 
1 0 − −

−
− −

�

�

�
�

�

�

�
�

14 11 0 5 11 3 11
0 1 15 11 0 3 11 4 11
0 0 10 11 1 2 11 1 11

~
/ / /
/ / /

/ / /
 

1 0 − −
−

− −

�

�

�
�

�

�

�
�

14 11 0 5 11 3 11
0 1 15 11 0 3 11 4 11
0 0 1 11 10 1 5 1 10

~
/ / /
/ /

/ / /
 

1 0 0 7 5 1 5 2 5
0 1 0 3 2 0 1 2
0 0 1 11 10 1 5 1 10

−
−

− −

�

�

�
�

�

�

�
�
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Therefore, the solution of the system is

  

x
x
x

1

2

3

7 5 1 5 2 5
3 2 0 1 2

11 10 1 5 1 10

1
6
4

1
1 2
1 2

�

�

�
�

�

�

�
�

=
−

−
− −

�

�

�
�

�

�

�
�

�

�

�
�

�

�

�
�

=
−

�

�

�
�

�

�

�
�

/ / /
/ /

/ / /
/
/

2.7 Show that the following matrix is nonsingular but it cannot be written as the product of
lower and upper triangular matrices, that is, as LU.

 A = 
1 2 3
2 4 1
1 0 2−

�

�

�
�

�

�

�
�

Solution
We have | A | = 10 ≠ 0. Hence, A is nonsingular.

Write A = 
l
l l
l l l

u u
u

11

21 22

31 32 33

12 13

23

0 0
0

1
0 1
0 0 1

�

�

�
�

�

�

�
�

�

�

�
�

�

�

�
�

Comparing, we get
l11 = 1, l21 = 2, l31 = – 1,

 u12
 = 2, u13 = 3, l22 = 0.

Since the pivot l22 = 0, the next equation for u23 is inconsistent and LU decomposition of
A is not possible.

2.8 Calculate the inverse of the n-rowed square matrix L

 L = 

1
1 2 1

2 3

1 1

0

0

−
−

− −

�

�

�
�
�
�

�

�

�
�
�
�

/
/

( )/

1
�

n n
(Lund Univ.,  Sweden, BIT 10 (1970), 515)

Solution
Since  the  inverse  of  a  lower  triangular  matrix  is  also  lower  triangular,  we  write
L–1 = (pij) and

1
1 2 1

2 3

1 1

11

21 22

1 2

0

0

0−
−

− −

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�

�

�

�
�
�

/
/

( ) /

1  
� �

� �

�n n

p
p p

p p pn n nn

 = I

Comparing the elements on both sides, we obtain

  p11 = 1 ; − 1
2

p11 + p21 = 0 or p21 = 
1
2

,

 p22 = 1 ; − 2
3 21p  + p31 = 0 or p31 = 

1
3

,

− 2
3

p22 + p32 = 0 or p32 = 
2
3

 ; p33 = 1 etc.

We find pij = j / i, i ≥ j.
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Hence, L–1 = 

1
1 2 1
1 3 2 3 1

1 2 1 1

0
/
/ /

/ / ( )/
� � �

�n n n n−

�

�

�
�
�
�

�

�

�
�
�
�

2.9 Given the system of equations

2 3 0 0
2 4 1 0
0 2 6
0 0 4

A
B C

�

�

�
�
�

�

�

�
�
�

=

�

�

�
�
�

�

�

�
�
�

 

1
2
4x

State the solvability and uniqueness conditions for this system. Give the solution when
it exists. (Trondheim Univ., Sweden, BIT 26 (1986), 398)
Solution
Applying elementary row transformations on the augmented matrix, we obtain

2 3 0 0 1
2 4 1 0 2
0 2 6 4
0 0 4

2 3 0 0 1
0 1 1 0 1
0 2 6 4
0 0 4

A
B C

A
B C

�

�

	
	
	




�

�
�
�

∼

�

�

	
	
	




�

�
�
�

  

∼

�

�

	
	
	




�

�
�
�

 

2 3 0 0 1
0 1 1 0 1
0 0 4 2
0 0 4

A
B C

 ∼

− −

�

�

	
	
	




�

�
�
�

 

2 3 0 0 1
0 1 1 0 1
0 0 4 2
0 0 0 2

A
B A C

We conclude that
the solution exists and is unique if B ≠ A,
there is no solution if B = A and C ≠ 2,
a one parameter family of solutions exists if B = A and C = 2,

For B ≠ A, the solution is
x1 = (8A – 2B – 3AC) / (8(B – A)),
x2 = (2B – 4A + AC) / (4(B – A)),
x3 = (2B – AC)  / (4(B – A)),
x4 = (C – 2) / (B – A).

For B = A and C = 2, we have the solution
x = (– 0.25, 0.5, 0.5, 0)T + t(– 0.375A, 0.25A – 0.25A, 1)T,

where t is arbitrary.

2.10 We want to solve the tridiagonal system Ax = b, where A is (N – 1) × (N – 1) and

 A = 

−
−

−

−
−

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

3 1
2 3 1 0

2 3 1

0 2 3 1
2 3

� � � , b = 

1
0
0

0
0

�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

State the difference equation which replaces this matrix formulation of the problem,
and find the solution. (Umea Univ., Sweden, BIT 24 (1984), 257)



8-\N-NUM\NU-2-2

Linear Algebraic Equations and Eigenvalue Problems 93

Solution
The difference equation is

 2xn–1 – 3xn + xn + 1 = 0, n = 1, 2, ..., N – 1
with x0 = – 0.5 and xN = 0. The solution of this constant coefficient difference equation is

xn = A1n + B 2n.
Substituting xN = 0, we get A = – B 2N. Hence

xn = B(2n – 2N).
We determine B from the first difference equation – 3x1 + x2 = 1. We have

– 3B(2 – 2N) +B(22 – 2N) = 1.

The solution is B = 
1

2 21N + −
.

Hence, xn = 
2 2
2 21

n N

N

−
−+  = 

2 2
2 1

1 1n N

N

− −−
−

, n = 1, 2, ..., N – 1.

2.11 Given

A = 

55 0 0 0 0 35
0 55 0 0 0 15
0 0 6 25 0 375 0
0 0 0 55 0 05
0 0 375 0 6 25 0

35 15 0 05 0 55

. .
. .

. .
. .

. .
. . . .

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

, b = 

1
1
1
1
1
1

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

(a) Find the lower triangular matrix L of the Cholesky factorization,
(b) Solve the system Ax = b. (Inst. Tech. Lyngby, Denmark, BIT 24 (1984), 128)
Solution
(a) Write

L = 

l
l l
l l l
l l l l
l l l l l
l l l l l l

11

21 22

31 32 33

41 42 43 44

51 52 53 54 55

61 62 63 64 65 66

0
�

�

	
	
	
	
		




�

�
�
�
�
��

Using LLT = A and comparing we get lij. We obtain

L = 

p
p

p

p p p q

0
0 0 25
0 0 0
0 0 15 0 2

7 2 3 2 0 1 2 0

0
.

.
/( ) /( ) /( )

�

�

	
	
	
	
		




�

�
�
�
�
��

where p = 5 5.  and q = 31 11/ .
(b) We have  LLT x = b.
Set  LTx = z.
Solving  Lz = b, we get z = (1 / p 1 / p 0.4 1 / p 0.2 0)T.
Solving LTx = z, we get x = (2 / 11 2 / 11 0.1 2 / 11 0.1 0)T.



8-\N-NUM\NU-2-3

94 Numerical Methods : Problems and Solutions

2.12 Calculate CTA–1B when A = LLT, with

       L = 

1
1 2
1 2 3
1 2 3 4

0�

�

�
�
�

�

�

�
�
�

,   B = 

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

�

�

�
�
�

�

�

�
�
�
, C = 

1
5

14
30

�

�

�
�
�

�

�

�
�
�
.

(Umea Univ., Sweden, BIT 24 (1984), 398)
Solution

 CTA–1B = CT(LLT)–1 B = CT(LT)–1L–1B

 = CT(L–1)TL–1B = (L–1C)T L–1B.
Since L is lower triangular, we have

1
1 2
1 2 3
1 2 3 4

11

21 22

31 32 33

41 42 43 44

0 0�

�

�
�
�

�

�

�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�

�

�

�
�
�

  =  

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

l
l l
l l l
l l l l

We find

L–1 = 

1
1 2 1 2

0 1 3 1 3
0 0 1 4 1 4

−
−

−

�

�

�
�
�
�

�

�

�
�
�
�

/ /
/ /

/ /

0

and  L–1B = 

1 2 3 4
2 2 2 2

4 3 4 3 4 3 4 3
1 1 1 1
/ / / /

�

�

�
�
�

�

�

�
�
�
, L–1C = 

1
2
3
4

�

�

�
�
�

�

�

�
�
�

Hence, CTA–1B = (L–1C)T L–1B
= (13 14 15 16).

2.13 Find the inverse of the following n × n matrix

 A = 

1
1

1
1

1

2

3 2

1 2 2

x
x x
x x x

x x x xn n

0

� �

�
− −

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

(Lund Univ. Sweden, BIT 11 (1971), 338)
Solution
The inverse of a lower triangular matrix is also a lower triangular matrix. Let the in-
verse of the given matrix A be L. Using the identity AL = I, we get

1
1

1

1

2

1 2

11

21 22

31 32 33

1 2 3

x
x x

x x x

l
l l
l l l

l l l ln
n n n nn

0
0

� �

�

�

�−

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

  = 

1 0 0
0 1 0

0 0 1

�

�

�

�

�

�

�
�
�

�

�

�
�
�
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Comparing elements on both sides, we get
l11 = 1, xl11  + l21 = 0, or l21 = – x, l22 = 1 etc.

We find that  lij = 
1

1
0

,
,
,

 if 
 if 
 otherwise.

i j
x i j

=
− = +

Hence, we obtain

A–1 = 

1
1

0 1

0 0 1

−
−

−

�

�

�
�
�
�
�

�

�

�
�
�
�
�

x
x

x

0

�

�

2.14 Find the inverse of the matrix

2 1 2
1 1 1
2 1 3

−
− −

−

�

�

�
�

�

�

�
�

by the Cholesky method.
Solution
Using the Cholesky method, write

A = LLT = 
l
l l
l l l

l l l
l l

l

11

21 22

31 32 33

11 21 31

22 32

33

0 0
0 0

0 0

�

�

�
�

�

�

�
�

�

�

�
�

�

�

�
�

Comparing the coefficients, we get

 l11
2  = 2, l11 = 2  ;

 l21 = – 1  / 2  ; l31 = 2 / 2  ;

   l22
2  = 1 / 2, l22 = 1  / 2  ;

l32 = 0 ;  l33 = 1.

Hence,  L = 
2 0 0

1 2 1 2 0
2 0 1

−
�

�

�
�
�

�

�

�
�
�

/ /

Since L–1 is also a lower triangular matrix, write

2 0 0
1 2 1 2 0

2 0 1

0 0
0

1 0 0
0 1 0
0 0 1

11

21 22

31 32 33

−
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

=
�

�

�
�

�

�

�
�

/ /

*

* *

* * *

l
l l
l l l

We find L–1 =
1 2 0 0
1 2 2 0

1 0 1

/
/
–

�

�

�
�
�

�

�

�
�
�

Hence, A–1 = (LLT)–1 = (LT)–1 L–1 = (L–1)T L–1 = 
2 1 1
1 2 0
1 0 1

−

−

�

�

�
�

�

�

�
�
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2.15 Find the Cholesky factorization of

1 1 0 0 0
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
0 0 0 1 2

−
− −

− −
− −

−

�

�

�
�
�
�
�

�

�

�
�
�
�
�

(Oslo Univ., Norway, BIT 20 (1980), 529)

Solution
Let L = (lij) where lij = 0 for i < j.
Writing the given matrix as LLT, we obtain

1 1 0 0 0
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
0 0 0 1 2

−
− −

− −
− −

−

�

�

�
�
�
�
�

�

�

�
�
�
�
�

 = 

l
l l
l l l
l l l l
l l l l l

l l l l l
l l l l

l l l
l l

l

11

21 22

31 32 33

41 42 43 44

51 52 53 54 55

11 21 31 41 51

22 32 42 52

33 43 53

44 54

55

0 0 0 0
0 0 0

0 0
0

0
0 0
0 0 0
0 0 0 0

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

 

On comparing corresponding elements on both sides and solving, we get
l11 = 1, l21 = – 1, li1 = 0, i = 3, 4, 5,
l22 = 1, l32 = – 1, li2 = 0, i = 4, 5
l33 = 1, l43 = – 1, l53 = 0,

 l44 = 1, l54 = – 1, l55 = 1.

Hence, L = 

1 0 0 0 0
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

−
−

−
−

�

�

�
�
�
�
�

�

�

�
�
�
�
�

2.16 Determine the inverse of the matrix

1 1 1
4 3 1
3 5 3

−
�

�

�
�

�

�

�
�

using the partition method. Hence, find the solution of the system of equations
 x1 + x2 + x3  = 1

4x1 + 3x2 – x3 = 6
3x1 + 5x2 + 3x3 = 4

Solution
Let the matrix A be partitioned as

 A = B C
E D
�
��

�
��
 = 

1 1 1
4 3 1
3 5 3

−
�

�

�
�
�

�

�

�
�
�

and A–1
 = 

X Y
Z V
�

�
�

�

�
�

Now, B–1 = 1 1
4 3

3 1
4 1

1
�
��

�
��

= − −
−
�
��

�
��

−
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 D – EB–1C = 3 + [3 5]
3 1
4 1

1
1

−
−
�
��

�
�� −
�
��
�
��
 = – 10

 V = (D – EB–1C–1) = − 1
10

Y = – B–1CV = 
3 1
4 1

1
1

1
10

1
10

4
5

−
−
�
��

�
�� −
�
��
�
��

−�
�	



��

= − −
�
��
�
��

Z = – V E B–1  = − −
−
�
��

�
��

= − −1
10

3 5 3 1
4 1

1
10

11 2[ ] [ ] 

X = B–1 – B–1 CZ

= 
−

−
�
��

�
��

− −
−
�
��

�
�� −
�
��
�
��

−3 1
4 1

1
10

3 1
4 1

1
1 11 2[ ]

= 
−

−
�
��

�
��

− −
−

�
��

�
��

= −
�
��

�
��

3 1
4 1

1
10

44 8
55 10

14 0 2
15 0
. .
.

Hence, A–1 = 
14 0 2 0 4
15 0 0 5
11 0 2 0 1

. . .

. .

. . .

−
−

− −

�

�

�
�

�

�

�
�

The solution of the given system of equations is

x = 
14 0 2 0 4
15 0 0 5
11 0 2 0 1

1
6
4

1
0 5
0 5

. . .

. .

. . .
.
.

−
−

− −

�

�

�
�

�

�

�
�

�

�

�
�

�

�

�
�

=
−

�

�

�
�

�

�

�
�

2.17 Find the inverse of the matrix

2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2

�

�

�
�
�

�

�

�
�
�

by the partition method.
Solution
We partition the given matrix as

 A = 

2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2

�

�

�
�
�
�

�

�

�
�
�
�

 = 
B C

E D

�

�
�
�

�

�
�
�

and write the inverse matrix in the form

A–1 = 
X Y
Z V
�

��
�

��

Using the fact that AA–1 = I, we obtain

B C
E D

X Y
Z V

BX CZ BY CV
EX DZ EY DV

�
��

�
��
�
��

�
��

= + +
+ +

�
��

�
��
 = 

I 0
0 I
�
��

�
��

Hence, BX + CZ = I, BY + CV = 0,
EX + DZ = 0,   EY + DV = I.
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We find B–1 = 
1
3

2 1
1 2

−
−
�

��
�

��
.

Solving the above matrix equations, we get

 V = (D – EB–1 C)–1 = 4 3 1
1 2

3
5

2 1
1 4 3

1/
/ ;�

��
�
��

= −
−
�
��

�
��

−

 Y = – B–1 CV = − −
−

�
��

�
��

1
5

2 1
4 2  ;

Z = – VEB–1 = − −
−

�
��

�
��

1
5

2 4
1 2  ;

X = B–1 (I – CZ) = 
1
5

4 3
3 6

−
−
�

��
�

��
.

Thus we obtain

A–1 = 
1
5

4 3 2 1
3 6 4 2
2 4 6 3
1 2 3 4

− −
− −

− −
− −

�

�

�
�
�

�

�

�
�
�
.

2.18 (a) What is wrong in the following computation ?

1 0 01
1 1

1 0
1 1 10 0 1

0 0
2.�

��
�
��

= �
��

�
��

+ �
��

�
��



�
�

�
�
�

−
n n

= 1 0
1 1 10 1 0

1 1
0 1
0 0

2
1

�
��

�
��

+ × �
��

�
��

�
��

�
��

−
−n n

n

since 0 1
0 0

0 0
0 0

�
��

�
��

= �
��

�
��

k
for k ≥ 2.

(b) Compute 1 0 1
0 1 1

10.
.
�
��

�
��

 exactly. (Lund Univ.,  Sweden, BIT 12 (1972), 589)

Solution
(a) We know that

 (A + B)2 = A2 + AB + BA + B2 = A2 + 2AB + B2

if and only if AB = BA.
In the given example, let

 A = 
1 0
1 1
�
��

�
��

and B = 10–2 
0 1
0 0
�
��

�
��

Then, AB = 10 0 1
0 1

2− �
��

�
��

and BA = 10 1 1
0 0

2− �
��

�
��

Hence, AB ≠ BA and therefore the given expression is not valid.
(b) The given matrix is symmetric. Hence, there exists an orthogonal similarity matrix
S which reduces A to its diagonal form D.

Let S = cos sin
sin cos

θ θ
θ θ

−�
�



�
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Then,  S–1AS = 
cos sin
sin cos

.
.

cos sin
sin cos

θ θ
θ θ

θ θ
θ θ−

�
�



�
�
�



�

−�
�



�

1 0 1
0 1 1

= 
1 0 1 0 1

0 1
+

−
�
�



�

. .
.

 sin 2  cos 2
0.1 cos 2 1  sin 2 =θ θ

θ θ D.

Since D is a diagonal matrix, we choose θ such that 0.1 cos 2θ = 0, which gives θ = π / 4.
Therefore,

A = SDS–1 where D = 
1.1 0
0 0.9
�
�



�

Hence, A10 = SD10S–1

= 
1
2

1 1
1 1

0
0

1 1
1 1

−�
�



�
�
�



� −
�
�



�

a
b  = 

1
2

a b a b
a b a b

+ −
− +

�
�



�

where a = (1.1)10 and b = (0.9)10.

2.19 Compute A10 where

A = 
1
9

4 1 8
7 4 4
4 8 1

−

−

�

�

�
�

�

�

�
�

(Uppsala Univ., Sweden, BIT 14 (1974), 254)
Solution

We find  A2 = AA = 
1
9

1 8 4
8 1 4
4 4 7

− −
− −

− − −

�

�

�
�

�

�

�
�

 A4 = A2A2 = 
1 0 0
0 1 0
0 0 1

�

�

�
�

�

�

�
�
 = I.

Hence,  A8 = A4A4 = I,

A10 = A8A2 = A2 = 
1
9

1 8 4
8 1 4
4 4 7

− −
− −

− − −

�

�

�
�

�

�

�
�
.

2.20. For a linear system of equations of the kind
(I – UVT )x = b

Shermann-Morrisons’s formula gives the solution

    x = I
UV

V U
b+

−
�

�
�

�

�
�

T

T1
.

Let U T = [0 1 2], V T = [1 0 1] and bT = [1 – 1 – 3].
Use Shermann-Morrisons formula to solve the system

 Ax = b when A = I – UV T.
(Royal Inst. Tech., Stockholm, Sweden, BIT 26 (1986), 135)

Solution

We have UV T = 
0 0 0
1 0 1
2 0 2

�

�

�
�

�

�

�
�
, V T U = 2.
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Therefore,  x = [I – UV T ]b = 
1 0 0
1 1 1
2 0 1

1
1
3

1
1
1

− −
− −

�

�

�
�

�

�

�
�

−
−

�

�

�
�

�

�

�
�

=
�

�

�
�

�

�

�
�
.

2.21 The matrix A is rectangular with m rows and n columns, n < m. The matrix ATA is
regular. Let X = (AT A)–1 AT. Show that AXA = A and XAX = X. Show that in the sense
of  the  method  of  least  squares,  the  solution  of the system Ax = b can be written as
x = Xb. Calculate X when

A = 
1 2
1 3
1 4

�

�

�
�

�

�

�
�

(Lund Univ., Sweden, BIT 25 (1985), 428)

Solution
Note that AT A is an n × n regular matrix. We have

 AXA = A(AT A)–1 ATA = AI = A
and  XAX = (AT

 A)–1 ATA (ATA)–1 AT = (AT
 A)–1 AT = X.

The given system is
 Ax = b

 (AT
 A)–1 ATAx = (A

T
 A)–1 AT b

or x = Xb, which is the least square solution of the given problem, as described by
 AT

 (Ax – b) = 0.
For the given A, we have

X = (AT
 A)–1 AT

= 
1
6

29 9
9 3

1 1 1
2 3 4

−
−
�
��

�
��
�
��

�
��
 = 

1
6

11 2 7
3 0 3

−
−
�
��

�
��
.

NORMS AND APPLICATIONS

2.22 A is a given nonsingular n × n matrix, u is a given n × 1 vector, and vT is a given 1 × n
vector
(a) Show that

 (A – uvT )–1 ≈≈≈≈≈ A–1 + αA–1 uvT A–1

where α is a scalar. Determine α and give conditions for the existence of the inverse
on the left hand side.

(b) Discuss the possibility of a breakdown of the algorithm even though A is neither
singular nor ill-conditioned, and describe how such difficulties may be overcome.

(Stockholm Univ., Sweden, BIT 4 (1964), 61)
Solution
(a) We write

 (A – uvT )–1 = [A(I – A–1 uvT )]–1 = (I – A–1 uvT )–1 A–1.
The required inverse exists if

 || A–1 uvT || < 1, or iff ρ(A–1 uvT ) < 1.
If   || A–1 uvT || < 1, then

(I – A–1uvT )–1 = I + A–1 uvT + (A–1 uvT )2 + ...
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Hence,
(A – uvT)–1 = A–1 + A–1 uvT A–1 + ... ≈ A–1 + A–1 uvT A–1

Therefore, α = 1.
(b) The above algorithm may fail if
(i) uvT = A, or

(ii) | I – A–1 uvT | = 0, or
(iii) || A–1 uvT || ≥ 1.
However, if uvT (an n × n matrix) is nonsingular, then we may write the expansion as

 (A – uvT )–1 = ((uvT ) [(uvT )–1 A – I])–1 = – [I– (uvT )–1 A]–1 (uvT )–1.
Setting H = uvT, we obtain

 (A – H)–1 = – [I – H–1 A]–1 H–1  = – [I + H–1 A + (H–1 A)2 + ...] H–1

if  || H–1 A || < 1.
Hence, we obtain

 (A – uvT )–1 ≈ – [I + H–1A]H–1 = – [I + (uvT )–1 A] (uvT )–1.

2.23 The matrix B is defined as
 B = I + irA2

where I is the identity matrix, A is a Hermitian matrix and i2 = – 1. Show that || B ||  > 1,
for all real r ≠ 0. || . || denotes the Hilbert norm. (Lund Univ., Sweden BIT 9 (1969), 87)
Solution
We have B = I + irA2.
Since A is Hermitian, we have

 B*B = (I – irA2)(I + irA2) = I + r2A4.
Using the Hilbert norm, we obtain

 || B || = ρ ρ( * ) ( )B B I A 4= + r2   = 1 + >r2 1λ4

where λ = ρ(A) and r ≠ 0.

2.24 Let R be a n × n triangular matrix with unit diagonal elements and with the absolute
value of non-diagonal elements less than or equal to 1. Determine the maximum possi-
ble value of the maximum norm || R–1 || . (Stockholm Univ., Sweden, BIT 8(1968), 59)
Solution
Without loss of generality, we assume that R is a lower triangular matrix, R = (rij ),
where

rii = 1, rij = 0 for i < j and | rij | ≤ 1 for i > j.
Let R–1 = (lij ), lij = 0 for i < j.
Since RR–1 = I, we have

1
1

1

1

21

31 32

1 2 3

11

21 22

31 32 33

1 2 3

r
r r

r r r

l
l l
l l l

l l l ln n n n n n nn

0 0

�

�

�

�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

 = 

1
1

1

0

0
�

�

�

�
�
�
�

�

�

�
�
�
�
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Comparing the corresponding elements on both sides, we get
 lii = 1, r21 + l21 = 0 or l21 = – r21,

   r31 + r32l21 + l31 = 0 or l31 = – (r31 + r32l21),
r32 + l32 = 0 or l32 = – r32,

r41 + r42l21 + r43l31 + l41 = 0 or l41 = – (r41 + r42l21 + r43l31) etc.
Hence, we have

| l21 | ≤ 1, | l31 | ≤ 2,
| l32 | ≤ 1, | l41 | ≤ 22, ...,
| ln1 | ≤ 2n–2.

Using the maximum norm, we get
 || R–1 || ≤ 1 + 1 + 2 + 22 + ... + 2n–2

= 2 + 2(1 + 2 + ... + 2n–3) = 2n–1.
Hence, the maximum possible value of the maximum norm of R–1 is 2n–1.

2.25 The n × n matrix A satisfies
 A4 = – 1.6 A2 – 0.64 I

Show that lim
m → ∞

 Am exists and determine this limit.

(Inst. Tech., Gothenburg, Sweden, BIT 11 (1971), 455)
Solution
From the given matrix equation, we have

(A2 + 0.8 I)2 = 0.
We get  A2 = – 0.8  I

A3 = – 0.8 A,
A4 = – 0.8 A2 = (– 0.8)2 I,

etc. Hence, Am = (– 0.8)m/2  I,  if m is even,
 Am = (– 0.8)(m – 1)/2 A, if m is odd.

As m → ∞, we have in both cases that lim
m → ∞

 Am = 0.

2.26 Compute [ ln (I + 1
4  A)] Y, when

A = 1 1
1 1
�
��

�
��

and Y = 1
2
�
��
�
��

correct to four decimals. (Uppsala Univ. Sweden, BIT 27 (1987), 129)
Solution
Since 1

4
 || A || = 1

2
, we have

 ln
( / ( / ( / ( /

I A Y
A A A A

Y+�
�	



��

�

�
�

�

�
� = − + − +

�

�
�

�

�
�

1
4

4)
1

4)
2

4)
3

4)
4

2 3 4

�

We get, AY = 
1 1
1 1

1
2

3 1
1

�
��

�
��
�
��
�
��

= �
��
�
��
,

A2 Y = 3 2
1
1

( )
�

��
�

��
, A3 Y = 3(22) 

1
1
�
��
�
��
, ...,
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 Am Y = 3 2
1
1

1( )m− �

��
�

��
.

Hence, ln I A Y+�
�	



��

�

�
�

�

�
� = − + − +�

��
�
��
�

��
�

��
1
4

3
2

1
2

1
8

1
24

1
64

1
1

�

= 
3
2

1 2
1

1 2
2

1 2
3

1
1

2 3/ / /� � � � � �
− + −

�

�
�
�

�

�
�
�
�
��
�
��

�

= 
3
2

1
1
2

1
1

ln +�
�	



��
�
��
�
��
 = 

3
2

3
2

1
1

0 6082 1
1

ln .�
�	


��
�
��
�
��

= �
��
�
��
.

2.27 The matrix A is defined by aij = 1, when i + j is even and aij = 0, when i + j is odd. The
order of the matrix is 2n. Show that

|| A ||F = || A ||∞ = n,
where || A ||F is the Frobenius norm, and that

k

k

n=

∞

∑ �
�	


��

1

1
2

Ak = 
1
n

A . (Uppsala Univ. Sweden, BIT 27 (1987), 628)

Solution
Note that A is of order 2n and is of the form

 A = 

1 0 1 0 1 1 0
0 1 0 1 0 0 1
1 0 1 0 1 1 0

1 0 1 0 1 1 0
0 1 0 1 0 0 1

�

�

�

� �

�

�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

Also, A is symmetric. We have

 || A ||∞ = max | |
i

k
ika n∑ = , || A ||F = n n2 = .

We have, by multiplying
A2 = n A, A3 = n2 A, ..., Ak = nk–1 A.

Hence,

k

n k
k

n n n n=
∑ �
�	


��

= + �
�	


��

+ �
�	


��

+
1

2 31
2

1
2

1
2

1
2

A A A A2 3
�

= 
1

2
1

2
1

22 3n n n
A A A+ + +�  = 

1
2

1
1
2

1
22n n

+ + +�
�	



��

=� A A
1

.

2.28 Consider the matrix

A = 

2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

− −
− −
− −

− −

�

�

�
�
�

�

�

�
�
�
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(a) Determine the spectral norm ρ(A).
(b) Determine a vector x with || x ||2 = 1 satisfying || Ax ||2 = ρ(A).

(Inst. Tech., Lund, Sweden, BIT 10 (1970), 288)
Solution
(a) The given matrix A is symmetric. Hence,  || A ||2 = ρ(A).
The eigenvalues of A are given by

 | A – λI | = (1 – λ)2 (λ2 – 6λ + 5) = 0
which gives λ = 1, 1, 1, 5. Hence, || A ||2 = ρ(A) = 5.
(b) For λ = 5. We have the eigensystem

− − −
− − −
− − −

− − −

�

�

�
�
�

�

�

�
�
�

=

3 1 1 1
1 3 1 1
1 1 3 1
1 1 1 3

x 0

Solving this system, we get x = [1 – 1 –1 1]T. Normalizing, such that
 || x ||2 = (Σ| xi |

2 )1/2 = 1,
we obtain the eigenvector as

x = [1 / 2 – 1 / 2 – 1 / 2 1 / 2]T.

2.29 Determine the condition number of the matrix

A = 
1 4 9
4 9 16
9 16 25

�

�

�
�

�

�

�
�

using the (i) maximum absolute row sum norm, and (ii) spectral norm.
Solution
(i) We have

A–1 = −
− −

−
− −

�

�

�
�
�

�

�

�
�
�

=
−

− −
−

�

�

�
�
�

�

�

�
�
�

1
8

31 44 17
44 56 20
17 20 7

31 8 44 8 17 8
44 8 56 8 20 8
17 8 20 8 7 8

/ / /
/ / /
/ / /

|| A ||∞
 = maximum absolute row sum norm for A
= max {14, 29, 50} = 50.

|| A–1 ||∞ = maximum absolute row sum norm for A–1

= max , ,
31
8

44
8

17
8

44
8

56
8

20
8

17
8

20
8

7
8

+ +�
�	



��

+ +�
�	



��

+ +�
�	



��



�
�

�
�
�

= max , ,
92
8

15
44
8

15

�
�

�
�
�

= .

Therefore,  κ(A) = || A ||∞ || A–1 ||∞ = 750.
(ii) The given matrix is real and symmetric. Therefore, κ(A) = λ* /  µ*, where λ* and µ*

are the largest and the smallest eigenvalues in modulus of A.
The characteristic equation of A is given by

 | A – λI | = 
1 4 9

4 9 16
9 16 25

−
−

−

λ
λ

λ
 = – λ3 + 35λ2 + 94λ – 8 = 0.
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A root lies in (0, 0.1). Using the Newton-Raphson method

  λk + 1 = λ
λ λ λ

λ λk
k k k

k k

−
− − +

− −

3 2

2
35 94 8

3 70 94
, k = 0, 1, 2, ...

with λ0 = 0.1, we get λ1 = 0.08268, λ2 = 0.08257, λ3 = 0.08257. The root correct to five
places is 0.08257. Dividing the characteristic equation by (x – 0.08257), we get the de-
flated polynomial as

x2 – 34.91743x – 96.88313 = 0
whose roots are 37.50092, – 2.58349. Hence,

κ(A) = 
37 50092
0 08257

454 17
.

.
.≈ .

2.30 Let A(α) = 
0 1 0 1
10 15
. .
. .
α α�

��
�
��

Determine α such that cond (A(α)) is minimized. Use the maximum norm.
(Uppsala Univ. Sweden, BIT 16 (1976), 466)

Solution
For the matrix A, cond (A) = || A || || A–1 ||.
Here, we have

A(α) = 
0 1 0 1
10 15
. .
. .

α α�

��
�

��

and A–1(α) = 
1

0 05
15 0 1
10 0 1.
. .
. .α

α
α

−
−
�

��
�

��
.

Using maximum norm, we get
|| A(α) || = max [0.2 | α |, 2.5],

|| A–1(α) || = max ,
2 30 2 20| | +

| |
| | +

| |
�

�
�

�

�
�

α
α

α
α  = 

2 30| | +
| |

α
α

.

We have,  cond (A(α)) = 
1

| |α [2 | α | + 30][max [0.2 | α |, 2.5]]

We want to determine α such that cond (A(α)) is minimum. We have

 cond (A(α)) = max 0 4 6
75

. ,| | +
| |

�

�
�

�

�
�α

α
 5 +  = minimum.

Choose α such that

0.4 | α | + 6 = 5 + 
75
| |α

which gives | α | = 12.5. The minimum value of cond (A(α )) = 11.

2.31 Estimate the effect of a disturbance [ε1, ε2]
T on the right hand side of the system of

equations

1 2
2 1

5
0

1

2−
�
��

�
��
�
��
�
��

= �
��
�
��

x
x

if  | ε1 |, | ε2 | ≤ 10–4. (Uppsala Univ. Sweden, BIT 15 (1975), 335)



8-\N-NUM\NU-2-4

106 Numerical Methods : Problems and Solutions

Solution
The solution of the system of equations Ax = b, is x = A–1b.

if �x  = x + δx is the solution when the disturbance δb = [ε1 ε2]
T is present on the right

hand side, we obtain

 �x  = A–1 (b + δb).
Therefore, we get,  δx = A–1 δb, or || δx || ≤ || A–1 || || δb ||.

Since, A–1 = 
1
5

1 2
2 1−
�
��

�
��
, we have

|| A–1 || = ρ(A–1) = 0 2. .

We also have  || δb || ≤ 2 ε , where ε = max [| ε1 |, | ε2 |].

Hence, we obtain || δx || ≤ 0 4 0 4 10 4. .ε = × − .

2.32 Solve the system
x1 + 1.001x2 = 2.001

x1 + x2 = 2.
Compute  the residual r = Ay – b for y = [2  0]T and compare the relative size || x – y || / || x ||
of the error in the solution with the size || r || / || b || of the residual relative to the right
side.
Solution
The exact solution is  x = [1 1]T. For y = [2 0]T, the residual is

  r = Ay – b

= 1 1001
1 1

2
0

2 001
2

. .�
��

�
��
�
��
�
��

− �
��

�
��
 = −�
��

�
��

0 001
0
.

|| r || = 0.001, || x || = 2 , || b || ≈ 2.829,

|| x – y || = 2 ,

|| ||
|| ||

.
x y

x
− = =

2

2
1 Also, 

|| ||
|| ||

.

.
.

r
b

= =0 001
2 829

0 00035.

Eventhough, || r || / || b || is very small, y is not a solution of the problem.

2.33 Given the system of equations Ax = b, where

A = 
1 2 1 3 1 4
1 3 1 4 1 5
1 4 1 5 1 6

/ / /
/ / /
/ / /

�

�

�
�

�

�

�
�

the vector b consists of three quantities measured with an error bounded by ε. Derive
error bounds for
(a) The components of x.
(b) The sum of the components y = x1 + x2 + x3.

(Royal Inst. Tech., Stockholm, Sweden, BIT 8 (1968), 343)
Solution

(a) Let �x be the computed solution, when the right hand side vector is in error by δb.
Writing �x  = x + δx, we have

 �x  = A–1 (b + δb) = A–1b + A–1 δb.
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Hence, δx = A–1δb.

We find A–1 = 12
6 20 15

20 75 60
15 60 50

−
− −

−

�

�

�
�

�

�

�
�

Hence, δx1 = 12 [6 δb1 – 20 δb2 + 15 δb3],
δx2 = 12 [– 20 δb1 + 75 δb2 – 60 δb3],
δx3 = 12 [15 δb1 – 60 δb2 + 50 δb3],

 | δx1 | ≤ 12(41ε) = 492ε,
| δx2 | ≤ 12(155ε) = 1860ε,
| δx3 | ≤ 12(125ε) = 1500ε.

(b) The error for the sum of the components, y = x1 + x2 + x3, is given by
 δy = δx1 + δx2 + δx3 = 12(δb1 – 5 δb2 + 5 δb3).

Hence, the error bound is obtained as

 | ∆y | ≤ 12(1 + 5 + 5) max
i

 | δbi | ≤ 132ε.

EIGENVALUES AND APPLICATIONS

2.34 Show that the matrix

2 4
1 2 4

1 2 4

1 2 4
1 2

0

0
� � �

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

has real eigenvalues. (Lund Univ., Sweden, BIT 12 (1972), 435)
Solution
We use a diagonal matrix to transform A into a symmetric matrix.
Write

 D = 

d
d

dn

1

2

0

0
�

�

�

	
	
	




�

�
�
�

and consider the similarity transformation B = D–1 AD.
 B = D–1 AD

= 

1
1

1

1

2

/
/

/

d
d

dn

0

0
�

�

�

	
	
	




�

�
�
�

2 4
1 2 4

1 2 4
1 2

0

0
� � �

�

�

	
	
	
	




�

�
�
�
�

d
d

dn

1

2

0

0
�

�

�

	
	
	




�

�
�
�

= 

1
1

1

1

2

/
/

/

d
d

dn

0

0
�

�

�

	
	
	




�

�
�
�

2 4
2 4

2 4
2

1 2

1 2 3

2 1

1

d d
d d d

d d d
d d

n n n

n n

0

0
� � �

− −

−

�

�

	
	
	
	




�

�
�
�
�
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= 

2 4
2 4

2 4
2

2 1

1 2 3 2

2 1 1

1

d d
d d d d

d d d d
d d

n n n n

n n

/
/ /

/ /
/

0

0

� � �

− − −

−

�

�

	
	
	
	




�

�
�
�
�

The matrix B is symmetric if

 
d
d

d
d

d
d

d
d

d
d

d
d

n

n

n

n

1

2

2

1

2

3

3

2

1

1
4 4 4= = =−

−
, , ,�  .

or d d d d d dn n1
2

2
2

2
2

3
2

1
2 24 4 4= = =−, , ..., .

Without loss of generality, we may take dn = 1. Then, we get
 dn–1 = 2, dn–2 = 22,   dn–3 = 23, ..., d1 = 2n – 1.

Therefore, A can be reduced to a symmetric form. Since B is symmetric, it has real
eigenvalues. Hence, A has real eigenvalues.

2.35 Compute the spectral radius of the matrix A–1 where

A = 

0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

(Gothenburg Univ., Sweden, BIT 7(1967), 170)
Solution
The given matrix is symmetric. Consider the eigenvalue problem

 (A – λI)x = 0.
The three term recurrence relation satisfying this equation is

xj–1 – λxj + xj + 1 = 0
with x0 = 0 and x7 = 0. Setting λ  = 2 cos θ  and xj = ξ j, we get

1 – 2 (cos θ)ξ + ξ2 = 0
whose solution is ξ = cos θ ± i sin θ = e± iθ. Hence, the solution is

xj = C cos jθ + D sin jθ.
Using the boundary conditions, we get

x0 = 0 = C
x7 = 0 = D sin (7θ) = sin(kπ).

We get θ = 
kπ
7

, k = 1, 2, 3, 4, 5, 6.

The eigenvalues of A are 2 cos (π/7), 2 cos (2π/7), 2 cos (3π/7), 2 cos (4π/7), 2 cos (5π/7) and
2 cos (6π/7). The smallest eigenvalue in magnitude of A is 2 cos (3π/7) = 2 |cos (4π/7)|.
Hence,

ρ(A–1) = 
1

2 3 7cos ( / )π
.
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2.36 Which of the following matrices have the spectral radius < 1 ?

(a)
0 1 3 1 4

1 3 0 1 2
1 4 1 2 0

/ /
/ /
/ /

−
− −

�

�

�
�

�

�

�
�
, (b)

1 2 1 4 1 4
1 2 0 1 4
1 4 1 2 1 4

/ / /
/ /
/ / /

−
−

− −

�

�

�
�

�

�

�
�
,

(c)
cos sin

.
sin cos

α α

α α

0
0 0 5 0

0−

�

�

�
�

�

�

�
�
, α = 5π/8 (d)

0 5 0 25 0 75
0 25 0 25 0 5
0 5 0 5 10

. . .
. . .
. . .

−

−

�

�

�
�

�

�

�
�

(Uppsala Univ. Sweden, BIT 12 (1972), 272)
Solution
(a) Using the Gerschgorin theorem, we find that

 | λ | ≤ max 
7
12

5
6

3
4

5
6

, ,�
��

�
��

= .

Hence,   ρ(A) < 1.
(b) Using the Gerschgorin theorem, we obtain the independent bounds as
(i) | λ | ≤ 1.

(ii) Union of the circles

λ − ≤1
2

1
2

, λ ≤ 3
4

, λ + ≤1
4

3
4

.

From (ii) we find that there are no complex eigenvalues with magnitude 1. We also find
that | A – I | ≠ 0 and | A + I | ≠ 0.
Hence, λ = ± 1 are not the eigenvalues. Therefore, ρ(A) < 1.
(c) By actual computation, we find that the eigenvalues of the given matrix are 0.5 and
e±iα. Therefore, ρ(A) = 1.
(d) By actual computation, we obtain the characteristic equation of the given matrix as

16λ3 – 28λ2 + 17λ – 5 = 0
which has a real root λ = 1 and a complex pair whose magnitude is less than 1.
Hence, ρ(A) = 1.

2.37 Give a good upper estimate of the eigenvalues of the matrix A in the complex number
plane. Also, give an upper estimate of the matrix norm of A, which corresponds to the
Euclidean vector norm

A =
− +

−
− +

�

�

�
�

�

�

�
�

1 0 1 2
0 2 1

1 2 1 0

i
i

i i
(Uppsala Univ. Sweden, BIT 9 (1969), 294)

Solution
Since the given matrix A is an Hermitian matrix, its eigenvalues are real. By Gerschgorin
theorem, we have

 | λ | ≤ max [ 5 1 2 5 2+ +, , 2 +  ] = 5 2+ .

Hence,  the  eigenvalues  lie  in  the interval [ ( ), ( )]− + +5 2 5 2 , i.e. in the interval
(– 3.65, 3.65).
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The Euclidean norm of A is

 || A || = (Σ | aij |
2 )1/2 = (1 + 5 + 4 + 2 + 5 + 2)1/2 = 19 .

2.38 (a) A and B are (2 × 2) matrices with spectral radii ρ(A) = 0 and ρ(B) = 1. How big can
ρ(AB) be ?

(b) Let A = 1 1
1 1
�
��

�
��
, B = 

β
β

1 1
0 2

�
��

�
��
.

For which β1, β2 does (AB)k → 0 as k → ∞ ?
(Gothenburg Univ., Sweden, BIT 9 (1969), 294)

Solution
(a) Since ρ(A) = 0, it implies that the eigenvalues are 0, 0 and that | A | = 0 and trace

(A) = 0. Therefore, A must be of the form

 A = a a
a a− −

�
�



�

.

Hence, eventhough ρ(B) = 1, it is not possible to bound ρ(AB) as a can take any value.

(b)  A = 1 1
1 1
�
��

�
��
, B = β

β
1 1

0 2

�
��

�
��
.

We have AB = β β
β β

1 2

1 2

1
1

+
+

�
�	



��

which has eigenvalues 0 and 1 + β1 + β2.
Now, ρ(AB) = |1 + β1 + β2|.
Hence, for | 1 + β1 + β2 | < 1, (AB)k → 0 as k → ∞.

2.39 Calculate f (A) = eA – e–A, where A is the matrix

2 4 0
6 0 8
0 3 2−

�

�

�
�

�

�

�
� (Stockholm Univ., Sweden, BIT 18 (1978), 504)

Solution

The eigenvalues of A are λ1 = 0, λ2 = 2 13 , λ3 = − 2 13 .

Let S be the matrix having its columns as eigenvectors corresponding to the eigenvalues
of A. Then, we have

 S–1 AS = D, and SDS–1 = A.
where D is the diagonal matrix with the eigenvalues of A as the diagonal entries.
We have, when m is odd

S–1 AmS = Dm = 
0 0 0
0 2 13 0
0 0 2 13

( )
(– )

m

m

�

�
	
	




�
�
�

= ( )2 13
0 0 0
0 2 13 0
0 0 2 13

1m−

−

�

�
	
	




�
�
�

 = ( ) .2 13 1m− D

Hence,  Am = ( )2 13 1m−  SDS–1 = ( ) .2 13 1m− A
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Now, f (A) = e A – e–A = 2 3 5A A A+ + +
�

�
�

�

�
�

1
3 !

1
5 !

�

= 2
2 4

A A A+ + +
�

�
�
�

�

�
�
�

(2 13
3 !

(2 13
5 !

) )
�

= 2 1
2 4

+ + +
�

�
�
�

�

�
�
�

(2 13
3 !

(2 13
5 !

) )
� A

= 
2 3 5

2 13
2 13

(2 13
3 !

(2 13
5 !

+ + +
�

�
�
�

�

�
�
�

) )
� A

= 
1

13
sinh (2 13) A .

2.40 The matrix

A = 
1 2 3
6 13 18
4 10 14

−
−
−

�

�

�
�

�

�

�
�

is transformed to diagonal form by the matrix

T = 
1 0 1
3 3 4
2 2 3

�

�

�
�

�

�

�
�
, i.e. T –1 AT.

Calculate the eigenvalues and the corresponding eigenvectors of A.
(Uppsala Univ. Sweden, BIT  9 (1969), 174)

Solution
We have the equation

 T –1 AT = D
or AT = TD where D = diag [λ1 λ2 λ3], and λ1, λ2, λ3 are the eigenvalues of A.

We have,
1 2 3
6 13 18
4 10 14

−
−
−

�

�

�
�

�

�

�
�

�

�

�
�

�

�

�
�

 
1 0 1
3 3 4
2 2 3

 = 
1 0 1
3 3 4
2 2 3

 
�

�

�
�

�

�

�
�

�

�

�
�

�

�

�
�

λ
λ

λ

1

2

3

0 0
0 0
0 0

Comparing the corresponding elements on both sides, we obtain λ1 = 1, λ2 = – 1, λ3 = 2.
Since T transforms A to the diagonal form, T is the matrix of the corresponding
eigenvectors. Hence, the eigenvalues are 1, – 1, 2 and the corresponding eigenvectors
are [1 3 2] T,  [0 3 2]T, and [1 4 3]T respectively.

2.41 Show that the eigenvalues of the tridiagonal matrix

A = 

a b
c a b

c a b

c an

1

1 2

2 3

1

0

0
� � �

−

�

�

�
�
�
�
�

�

�

�
�
�
�
�

satisfy the inequality

 | − | < | |�
�	



��

| |�
�	



��

λ a b c
j

j
j

j2 max max

(Uppsala Univ. Sweden, BIT 8 (1968), 246)
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Solution
The ith equation of the eigenvalue system is

cj – 1 xj–1 – (λ – a) xj + bj xj + 1 = 0
with x0 = 0 and xn + 1 = 0.
Setting λ – a = r cos θ and xj = ξ j, we get

bj ξ
2 – (r cos θ)ξ + cj–1 = 0

whose solution is

ξ = [ cos cos ] ( )r r b c bj j jθ θ± − −
2 2

14 2 ,

Requiring ξ to be complex, we get
 r2 cos2 θ < 4bjcj–1.

The solution is then given by
ξ = p ± iq

where p = 
r

bj

cos θ
2

, q = 
4

2
1

2 2b c r

b
j j

j

− – cos θ

and  xj = pj [A cos q j + B sin q j].
Substituting the conditions, we get

x0 = 0 = A
 xn + 1 = 0 = pn + 1 B sin [(n + 1)q] = sin kπ.

Hence, q = 
k

n
π
+ 1

, k = 1, 2, ..., n.

The required bounds are given by
| λ – a |2 = | r cos θ |2 < 4 | bj cj–1 |.

Hence,  | λ – a | < 2 max| |max| |
j

j
j

jb c  .

2.42 Let Pn(λ) = det (An – λI), where

 An = 

a a
a a

a a
a a a a

n

n

n n

0 0
0 0

0 0

1

2

1 2 1

�

�

� � �

�

�

−

−

�

�

�
�
�
�
�

�

�

�
�
�
�
�

Prove the recurrence relation

 Pn(λ) = (a – λ) Pn– 1(λ) – an
2(a – λ)n–2,

 P1(λ) = a1 – λ
and determine all eigenvalues of An.

(Royal Inst. Tech., Stockholm, Sweden, BIT 8 (1968), 243)
Solution

We have  Pn(λ) = 

a a
a a

a a
a a a a

n

n

n n

−
−

−
−

−

−

λ
λ

λ
λ

0 0
0 0

0 0

1

2

1 2 1

�

�

� � �

�

�

 = 0, n ≥ 0.
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Expanding the determinant by the first column, we get

 Pn(λ) = (a – λ) 

a a
a a

a a a a

n

n

n n

−
−

−

−

−

− −

λ
λ

λ

0 0
0 0

1

2

1 2 2 1

�

�

� � �

�

+ (– 1)n–1 an 

0 0 0
0 0

0 0

1

2

�

�

� � �

�

a
a a

a a

n

n−

−

−λ

λ
Expanding the second determinant by the first row, we get

 Pn(λ) = (a – λ)Pn–1 (λ) + (– 1)2n – 3 an
2  

q
q

q

0 0
0 0

0 0

...

...
... ... ...

...

= (a – λ) Pn–1 (λ) + (– 1)2n – 3 an
2 (a – λ)n–2

n = 2, 3, ...,
where   q = a – λ and P1(λ) = a1 – λ.

We have  Pn = (a – λ) [Pn–1 – an
2(a – λ)n–3]

= (a – λ)2 [Pn–2 – (a an n
2

1
2+ − ) (a – λ)n–4]

�

= (a – λ)n–2 [P2 – (a a an n
2

1
2

3
2+ + +− ... )]

= (a – λ)n–2 [λ2 – λ(a + a1) + aa1 – (an
2 + ... + a2

2)]
Hence, the eigenvalues are

λi = a, i = 1, 2, ..., n – 2,

and λ = 
1
2

41 1
2 2

1
2

2
2( ) ( ) ( ... )a a a a a a an n+ ± − + + + +�

��
�
��−

2.43 Let  A = 
− −�

�

�
�

�

�

�
�

2 1 2
2 1 0
0 0 1

and B = 
− −

−
− −

�

�

�
�

�

�

�
�

1 1 1
1 1 1
1 1 1

λi(ε) are the eigenvalues of A + ε B, ε ≥ 0.
Estimate | λi (ε) – λi(0) |, i = 1, 2, 3. (Gothenburg Univ., Sweden, BIT 9 (1969), 174)
Solution
The eigenvalues of A are 1, – 1, 0 and the matrix of eigenvectors is

S = 
0 1 1 2
1 1 1

1 2 0 0

/

/
− −

�

�

�
�

�

�

�
�

and S–1 = 
0 0 2
2 1 2
2 2 4

−
− −

�

�

�
�

�

�

�
�
.

We have  S–1 (A + ε B)S = S–1 AS + εS–1 BS = D + εP
where D is a diagonal matrix with 1, – 1, 0 on the diagonal and

P = S–1 BS = 
1 4 3

1 2 2 3 2
2 8 6

− −
−

− −

�

�

�
�

�

�

�
�

/ /
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The eigenvalues of A + ε B, (ε << 1) lie in the union of the disks
| λ(ε) – λi(0) | ≤ ε cond ∞ (S) || P ||∞

Since, cond∞ (S) = || S || || S–1 || = 24 and || P ||∞
 = 16, we have the union of the disks as

| λ(ε) – λi (0) | ≤ 384ε
where λ1(0) = 1, λ2(0) = – 1 and λ3(0) = 0.
A more precise result is obtained using the Gerschgorin theorem. We have the union of
disks as

| λ(ε) – λi(0) – ε pii | ≤  ε
j
i j

n

ijp
=
≠

∑ | |
1

, or | λ(ε) – 1 – ε | ≤ 7ε,

 | λ(ε) + 1 – 2ε | ≤ 2ε, and | λ(ε) + 6ε | ≤ 10ε.
The eigenvalues of A are real and ε B represents a perturbation. Hence, we assume that
the eigenvalues of A + εB are also real. We now have the bounds for the eigenvalues as

 – 6ε ≤ λ1(ε) – λ1(0) ≤ 8ε,
0 ≤ λ2(ε) – λ2(0) ≤ 4ε,

and  – 16ε ≤ λ3(ε) – λ3(0) ≤ 4ε.
Alternately, we have that the eigenvalues lie in the interval

 – 16ε ≤ λ(ε) – λi(0) ≤ 8ε.

2.44 Using the Gerschgorin’s theorem, find bounds for the eigenvalues λ of the real n × n
matrix A (n ≥ 3)

A = 

a
a

a

a

−
− −

− −

−

�

�

�
�
�
�
�

�

�

�
�
�
�
�

1
1 1

1 1

1

0

0
�

Show that the components xi of the eigenvector x obey a linear difference equation, and
find all the eigenvalues and eigenvectors. (Bergen Univ., Norway, BIT 5 (1965), 214)
Solution
By the Gerschgorin’s theorem, the bound of the eigenvalues is given by
(i) | λ – a | ≤ 2, and (ii) | λ | ≤ | a | + 2.
The ith equation of the eigenvalue system is

– xj–1 + (a – λ)xj – xj + 1 = 0 with x0 = 0 and xn + 1 = 0.
Setting a – λ = 2 cos θ and xj = ξ j, we get

    ξ2 – (2 cos θ)ξ + 1 = 0

  ξ = 2 4 4
2

2cos cosθ θ± −  = cos θ ± i sin θ = e± iθ.

The solution of the difference equation is
xj = Ae(iθ)j + B e(– iθ) j = C cos jθ + D sin jθ.

Using the boundary conditions, we have
x0 = 0 = C

and xn + 1 = 0 = sin kπ = D sin [(n + 1)θ]
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Therefore, θ = 
k

n
π
+ 1

, k = 1, 2, ..., n.

Hence, the eigenvalues are given by

λk = a – 2 cos θ = a – 2 cos k
n

π
+

�
�	



��1

, k = 1, 2, ..., n

and the eigenvectors are x
jk

njk =
+

�
�	



��

sin ,
π
1

 j k n, , ,..., .=1 2

2.45 Use Gerschgorin’s theorem to estimate

| |λ λi i− , i = 1, 2, 3
where λi are eigenvalues of

 A = 
2 3 2 0

1 2 1 0
0 0 1

/
/

−

�

�

�
�

�

�

�
�

and λ i  are eigenvalues of

 
~
A A= +

−
− −

−

�

�

�
�

�

�

�
�

−10
1 1 1
1 1 1
1 1 1

2

(Lund Univ., Sweden, BIT 11 (1971), 225)
Solution
The eigenvalues of A are 1/2, 5/2 and – 1. The corresponding eigenvectors are found to be

[1 – 1  0]T, [3  1  0]T, and [0  0  1]T.
Hence, the matrix

S = 
1 3 0
1 1 0
0 0 1

−
�

�

�
�

�

�

�
�

reduces A to its diagonal form.
We have

 S–1 ~
AS = S–1 (A + 10–2B) S = S–1 AS + 10–2S–1BS

where  B = 
1 1 1
1 1 1
1 1 1

−�

�

�
�

�

�

�
�

– –
–

We also have S–1 = 
1
4

1 3 0
1 1 0
0 0 4

−�

�

�
�

�

�

�
�

, S–1BS = 
2 2 1
0 0 0
2 2 1

�

�

�
�

�

�

�
�

Therefore, S–1 
~
AS = 

1 2 0 0
0 5 2 0
0 0 1

10
2 2 1
0 0 0
2 2 1

2
/

/
−

�

�

�
�

�

�

�
�

+
�

�

�
�

�

�

�
�

−

By Gerschgorin theorem, we obtain that the eigenvalues of 
~
A lies in the union of the

circles
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λ − + ×�
�	



��

−1
2

2 10 2  ≤ 3 × 10–2,

 λ − 5
2

 = 0,

 | λ  – (– 1 + 10–2) | ≤ 4 × 10–2

which are disjoint bounds.
Hence, we have

λ1 = 
1
2

, | λ i  – λ1 | ≤ 5 × 10–2,

λ2 = 5
2

, | λ 2 – λ2 | = 0,

λ3 = – 1, | λ 3 – λ3 | ≤ 5 × 10–2.

ITERATIVE METHODS

2.46 Given

A = 
3 2 1 2
1 2 3 2

/ /
/ /
�
��

�
��

For which values of α does the vector sequence { yn }0
∞ defined by

yn = (I + αA + α2A2)yn + 1, n = 1, 2, ...
y0 arbitrary, converges to 0 as n → ∞ ? (Uppsala Univ. Sweden, BIT 14 (1974), 366)
Solution
From the given equation yn = (I + αA + α2A2) yn–1
we get  yn = (I + αA + α2A2)n y0
where y0 is arbitrary.

Hence, lim
n → ∞

 yn → 0 if and only if ρ(I + αA + α2A2) < 1.

The eigenvalues of

A = 3 2 1 2
1 2 3 2

/ /
/ /
�
��

�
��

are 1 and 2. Hence, the eigenvalues of I + αA + α2A2 are 1 + α + α2 and 1 + 2α + 4α2. We
require that

| 1 + α + α2 | < 1, and | 1 + 2α + 4α2 | < 1.
The first inequality gives

 – 1 < 1 + α + α2 < 1, or – 2 < α (1 + α) < 0.
This gives, α < 0, α + 1 > 0, or α ∈ (– 1, 0).
The second inequality gives

– 1 < 1 + 2α + 4α2 < 1, or – 2 < 2α (1 + 2α) < 0.
This given, α < 0, 1 + 2α > 0, or α∈ (– 1/2, 0).
Hence, the required interval is  (– 1/2, 0).

2.47 The system Ax = b is to be solved, where A is the fourth order Hilbert matrix, the
elements of which are aij = 1/(i + j) and bT = (1 1 1 1). Since A is ill-conditioned, the
matrix B, a close approximation to (the unknown) A–1, is used to get an approximate
solution x0 = Bb
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 B = 

202 1212 2121 1131
1212 8181 15271 8484
2121 15271 29694 16968
1131 8484 16968 9898

− −
− −

− −
− −

�

�

�
�
�

�

�

�
�
�

It is known that the given system has an integer solution, however x0 is not the correct
one. Use iterative improvement (with B replacing A–1) to find the correct integer solution.

(Royal Inst. Tech., Stockholm, Sweden, BIT 26 (1986), 540)
Solution
Let x  be a computed solution of Ax = b and let r = b – Ax  be the residual. Then,

 A(x – x ) = Ax – Ax  = b – Ax  = r, or Aδx = r.
Inverting A, we have

δx = A–1 r ≈ Br.
The next approximation to the solution is then given by x = x  + δx.
We have in the present problem

x0 = Bb = [– 20  182 – 424  283]T,
r = b – Ax0 = [– 0.2667  – 0.2  – 0.1619  – 0.1369]T,

 δx = Br = [– 0.0294  – 2.0443  3.9899  – 3.0793]T,
x = x0 + δx = [– 20.0294 179.9557  – 420.0101 279.9207]T

≈ [– 20 180 – 420  280]T

since an integer solution is required. It can be verified that this is the exact solution.

2.48 The system of equations Ax = y, where

 A = 3 2
1 2
�
��

�
��
, x = x

x
1

2

�
��
�
��
, y = 1

2
�
��
�
��

can be solved by the following iteration
x(n + 1) = x(n) + α(Ax(n) – y),

x(0) = 1
1
�
�


�

.

How should the parameter α be chosen to produce optimal convergence ?
(Uppsala Univ. Sweden, BIT 10 (1970), 228)

Solution
The given iteration scheme is

x(n + 1) = x(n) + α(Ax(n) – y) = (I + αA) x(n) – αy.
Setting n = 0, 1, 2, ..., we obtain

x(n + 1) = qn+ 1 x(0) – α [I + q + ... + qn] y
where q = I + αA.
The iteration scheme will converge if and only if ρ(I + αA) < 1.
The eigenvalues of [I + αA] are λ1 = 1 + α and λ2 = 1 + 4α.
We choose α such that

| 1 + α | = | 1 + 4α |
which gives α = – 0.4.

2.49 (a) Let A = B – C where A, B, C are nonsingular matrices and  set
  Bx(m) = Cx(m–1) + y, m = 1, 2, ...
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Give a necessary and sufficient condition so that
lim

m → ∞
 x(m) = A–1y

for every choice of x(0).
(b) Let A be an n × n matrix with real positive elements aij fulfilling the condition

j

n

ija
=
∑ =

1

1, i = 1, 2, ... n

Show that λ = 1 is an eigenvalue of the matrix A, and give the corresponding eigenvector.
Then, show that the spectral radius ρ(A) ≤ 1.  (Lund Univ., Sweden, BIT 9 (1969), 174)
Solution
(a) We write the given iteration scheme in the form

x(m) = B–1 Cx(m–1) + B–1y
= (B–1C)(m) x(0) + [I + B–1C + (B–1C)2 + ... + (B–1C)m–1] B–1y

If || B–1C || < 1, or ρ(B–1C) < 1, we have

 lim
m → ∞

x(m) = (I – B–1C)–1 B–1y = [B–1 (B – C)]–1 B–1y

= (B–1A)–1 B–1y = A–1BB–1y = A–1y.
Hence, ρ(B–1C) < 1 is the necessary and sufficient condition. || B–1C || < 1 is a sufficient
condition.

(b) Let the n × n matrix A = (aij ), aij > 0, with 
j

n

ija
=
∑

1

 = 1, i = 1, 2, ..., n be

 A = 

a a a
a a a

a a a

n

n

n n nn

11 12 1

21 22 2

1 2

�

�

� � �

�

�

�

�
�
�

�

�

�
�
�

We have | A – λI | = 

a a a
a a a

a a a

n

n

n n nn

11 12 1

21 22 2

1 2

−
−

−

λ
λ

λ

�

�

� � �

�

 = 0.

Adding to the first column, all the remaining columns and using 
j

n

ija
=
∑

1

 = 1, we obtain

| A – λI | = 

1
1

1

0

12 1

22 2

2

−
− −

− −

=

λ
λ λ

λ λ

a a
a a

a a

n

n

n nn

�

�

� � �

�

= (1 – λ) 

1
1

1

0

12 1

22 2

2

a a
a a

a a

n

n

n nn

�

�

� � �

�

−

−

=λ

λ
which shows that λ = 1 is an eigenvalue of A.
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Since λ = 1 is an eigenvalue and 
j

n

ija
=
∑

1

 = 1, i = 1, 2, ..., n, it is obvious that the corre-

sponding eigenvector is [1 1 ... 1]T. Using the Gerschgorin theorem, we have

| | ≤
�

�
�
�

�

�
�
�

≤
=
∑λ max

i
j

n

ija
1

1

Hence, ρ(A) ≤ 1.

2.50 Show that if A is strictly diagonally dominant in Ax = b, then the Jacobi iteration al-
ways converges.
Solution
The Jacobi scheme is

x(k + 1) = – D–1(L + U)x(k) + D–1b
= – D–1(A – D)x(k) + D–1b = (I – D–1A)x(k) + D–1b.

The scheme converges if || I – D–1A || < 1. Using absolute row sum criterion, we have

 
1

1| |
|

= ≠
∑a

a
ii j i j

n

ij
,

|  < 1, for all i

or | aii | > 
j i j

n

ija
= ≠
∑ |
1,

| , for all i.

This proves that if A is strictly diagonally dominant, then the Jacobi iteration converges.

2.51 Show if A is a strictly diagonally dominant matrix, then the Gauss-Seidel iteration scheme
converges for any initial starting vector.
Solution
The Gauss-Seidel iteration scheme is given by

x(k + 1) = – (D + L)–1 Ux(k) + (D + L)–1 b
= – (D + L)–1 [A – (D + L)]x(k) + (D + L)–1 b
= [I – (D + L)–1 A] x(k) + (D + L)–1 b.

Therefore, the iteration scheme will be convergent if
 ρ[I – (D + L)–1 A] < 1.

Let λ be an eigenvalue of I – (D + L)–1 A. Therefore,
(I – (D + L)–1 A) x = λ x or (D + L) x – A x = λ (D + L) x

or – 
j i

n

ij j
j

i

ij ja x a x
= + =
∑ ∑=

1 1

λ , 1 ≤ i ≤ n

or λaii xi = − −
= + =

−

∑ ∑
j i

n

ij j
j

i

ij ja x a x
1 1

1

λ

or   | λaii xi | ≤ | | | | + | | | |
= + =

−

∑ ∑
j i

n

ij j
j

i

ij ja x a x
1 1

1

λ | | .

Since x is an eigenvector, x ≠ 0. Without loss of generality, we assume that || x ||∞ = 1.
Choose an index i such that

| xi | = 1 and | xj | ≤ 1 for all j ≠ i.
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Hence,  | λ | | aii | ≤ | | + | | |
= + =

−

∑ ∑
j i

n

ij
j

i

ija a
1 1

1

λ |

or  | λ |  | | |a a aii
j

i

ij
j i

n

ij− | |
�

�
�
�

�

�
�
�

≤ |
=

−

= +
∑ ∑

1

1

1

Therefore, | λ | ≤  

| |

| | − |

<= +

=

−

∑

∑
j i

n

ij

ii
j

i

ij

a

a a

1

1

1 1

|

which is true, since A is strictly diagonally dominant.

2.52 Solve the system of equations
4x1 + 2x2 + x3 = 4
x1 + 3x2 + x3 = 4

3x1 + 2x2 + 6x3 = 7
Using the Gauss-Jacobi method, directly and in error format. Perform three iterations
using the initial approximation, x(0) = [0.1 0.8 0.5]T.
Solution
Gauss-Jacobi method in error format is given by

 Dv(k) = r(k), where v(k) = x(k + 1) – x(k), r(k) = b – A x(k),
and D is the diagonal part of A.
We have the following approximations.

r(0) = 
4
4
7

4 2 1
1 3 1
3 2 6

0 1
0 8
0 5

15
10
2 1

�

�
		




�
��

−
�

�
		




�
��

�

�
		




�
��

=
�

�
		




�
��

.

.

.

.

.
.

 ; v(0) = 
1 4 0 0

0 1 3 0
0 0 1 6

15
10
2 1

0 375
0 3333
0 350

/
/

/

.

.
.

.
.
.

�

�
		




�
��

�

�
		




�
��

=
�

�
		




�
��
,

x(1) = x(0) + v(0) = 
0 1
0 8
0 5

0 375
0 3333
0 350

0 4750
11333
0 850

.

.

.

.
.
.

.

.
.

�

�
		




�
��

+
�

�
		




�
��

=
�

�
		




�
��
 ; r(1) = 

−
−
−

�

�
		




�
��

10166
0 7249
17916

.

.

.
 ; v(1) = 

−
−
−

�

�
		




�
��

0 25415
0 2416
0 2986

.
.
.

,

x(2) = x(1) + v(1) = 
0 2209
0 8917
0 5514

0 7816
0 5526
12455

0 1954
0 1842
0 2075

.

.

.
;

.

.

.
;

.

.

.

( (
�

�
		




�
��

=
�

�
		




�
��

=
�

�
		




�
��

  2) 2)r v ,

x(3) = x(2) + v(2) = 
0 4163
10759
0 7590

.

.

.

�

�
		




�
�� .

Direct method We write

x1
(k + 1) = 

1
4

 [4 – 2x2
(k) – x3

(k)],   x2
(k + 1) = 

1
3

 [4 – x1
(k) – x3

(k)],

x3
(k + 1) = 

1
6

 [7 – 3x1
(k) – 2x2

(k)].

Using x(0) = [0.1 0.8 0.5]T, we obtain the following approximations.
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 x1
(1) = 0.475, x2

(1) = 1.1333, x3
(1) = 0.85,

 x1
(2) = 0.2209, x2

(2) = 0.8917, x3
(2) = 0.5514,

 x1
(3) = 0.4163, x2

(3) = 1.0759, x3
(3) = 0.7590.

2.53 Solve the system of equations
4x1 + 2x2 + x3 = 4
x1 + 3x2 + x3 = 4

3x1 + 2x2 + 6x3 = 7
using the Gauss-Seidel method, directly and in error format. Perform three iterations
using the initial approximation, x(0) = [0.1 0.8 0.5]T.
Solution
Gauss-Seidel method, in error format, is given by

 (D + L) v(k) = r(k), where v(k) = x(k + 1) – x(k), r(k) = b – A x(k).
We have the following approximations.

 r(0) = 
15
10
2 1

4 0 0
1 3 0
3 2 6

15
10
2 1

0 375
0 2083
0 0931

.

.
.

;
.
.
.

,
.
.
.

( ) ( )
�

�
		




�
��

�

�

�
�

�

�

�
�

=
�

�
		




�
��

=
�

�
		




�
��

  0 0v v

(By forward substitution),

 x(1) = x(0) + v(0) = 
01
0 8
05

0375
0 2083
0 0931

0 475
10083
05931

05097
0 093
0 0002

.
.
.

.
.
.

.
.
.

;
.
.
.

;(1)
�

�
	
	




�
�
�

+
�

�
	
	




�
�
�

=
�

�
	
	




�
�
�

=
−
−

−

�

�
	
	




�
�
�

 r

4 0 0
1 3 0
3 2 6

0 5097
0 093

0 0002

0 1274
0 0115
0 0598

1
�

�

�
�

�

�

�
�

=
−
−

−

�

�
		




�
��

=
−�

�
		




�
��

  1v v( ) ( )
.
.

.
,

.

.

.
;

 x(2) = x(1) + v(1) = 
0 3476
10198
0 6529

0 0829
0 0599
0 0002

.

.

.
,

.

.

.
;( )

�

�
		




�
��

=
−
−
�

�
		




�
��

r 2

4 0 0
1 3 0
3 2 6

0 0829
0 0599
0 0002

0 0207
0 0131
0 0148

0 3269
10067
0 6677

�

�

�
�

�

�

�
�

=
−
−
�

�
		




�
��

=
−
−
�

�
		




�
��

= + =
�

�
		




�
��

v v x x v( ) ( ( ( ) ( )
.
.
.

,
.
.
.

;
.
.
.

2 2) 3) 2 2
.

Direct method We write

x1
(k + 1) = 

1
4

[4 – 2x2
(k) – x

3
(k)], x2

(k + 1) = 
1
3

 [4 – x1
(k + 1) – x3

(k)]

x3
(k + 1) = 

1
6

[7 – 3x1
(k + 1) – 2x2

(k + 1)].

Using x(0) = [0.1 0.8 0.5]T, we obtain the following approximations.
x1

(1) = 0.475, x2
(1) = 1.0083, x3

(1) = 0.5931,
x1

(2) = 0.3476, x2
(2) = 1.0198, x3

(2) = 0.6529,
x1

(3) = 0.3269, x2
(3) = 1.0067, x3

(3) = 0.6677.

2.54 The system of equations Ax = b is to be solved iteratively by
 xn + 1 = Mxn + b
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Suppose A = 1
2 1

k
k
�
��

�
��
, k ≠ 2 2/ , k real,

(a) Find a necessary and sufficient condition on k for convergence of the Jacobi method.
(b) For k = 0.25 determine the optimal relaxation factor w, if the system is to be solved

with relaxation method. (Lund Univ., Sweden, BIT 13 (1973), 375)
Solution
(a) The Jacobi method for the given system is

 xn + 1 = −
�
��

�
��

0
2 0

k
k  xn + b = Mxn + b.

The necessary and sufficient condition for convergence of the Jacobi method is ρ(M) < 1.
The eigenvalues of M are given by the equation

λ2 – 2k2 = 0.

Hence,  ρ(M) = 2  | k |.
The required condition is therefore

2  | k | < 1 or | k | < 1/ 2 .

(b) The optimal relaxation factor is

 wopt = 
2

1 1

2

1 1 22 2+ −
=

+ −µ k

= 
2

1 7 8+ ( / )
 ≈ 1.033 for k = 0.25.

2.55 Suppose that the system of linear equations Mx = y, is given. Suppose the system can be
partitioned in the following way.

M = 

A B 0 0
B A B 0
0 B A B
0 0 B A

x

x
x
x
x

y

y
y
y
y

1 1

1 2 2

2 3 3

3 4

1

2

3

4

1

2

3

4

�

�

�
�
�

�

�

�
�
�

=

�

�

�
�
�

�

�

�
�
�

=

�

�

�
�
�

�

�

�
�
�

, , , 

Ai  and  Bi are p × p matrices and xi and yi are column vectors (p × 1). Suppose that Ai,
i = 1, 2, 3, 4 are strictly diagonally dominant and tridiagonal. In that case, systems of
the type Aiv = w are easily solved. For system Mx = y, we therefore propose the following
iterative method

 A1x1
(n + 1) = y1 – B1 x2

(n)

 A2x2
(n + 1) = y2 – B1 x1

(n) – B2 x3
(n)

 A3x3
(n + 1) = y3 – B2 x2

(n) – B3 x4
(n)

 A4x4
(n + 1) = y4 – B3 x3

(n)

(i) if p = 1, do you recognize the method ?
(ii) Show that for p > 1, the method converges if || Ai

–1 || < 1/2 and || Bi || < 1.
Solution
(i) When p = 1, it reduces to the Jacobi iterative method.
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(ii) The given iteration system can be written as
Ax(n + 1) = – Bx(n) + y

where  A = 

A 0 0 0
0 A 0 0
0 0 A 0
0 0 0 A

1

2

3

4

�

�

�
�
�

�

�

�
�
�
, and B = 

0 B 0 0
B 0 B 0
0 B 0 B
0 0 B 0

1

1 2

2 3

3

�

�

�
�
�

�

�

�
�
�

Therefore, x(n + 1) = – A–1Bx(n) + A–1y = Hx(n) + C

where H = – A–1B = −

�

�

�
�
�
�

�

�

�
�
�
�

−

− −

− −

−

0 A B 0 0
A B 0 A B 0

0 A B 0 A B
0 0 A B 0

1
1

1

2
1

1 2
1

2

3
1

2 3
1

3

4
1

3

The iteration converges if || H || < 1. This implies that it is sufficient to have || Ai
–1 || < 1/2

and || Bi || < 1.

2.56 (a) Show that the following matrix formula (where q is a real number) can be used to
calculate A–1 when the process converges :

x(n + 1) = x(n) + q(Ax(n) – I).

(b) When A = 2 1
1 2
�
�



�
, give the values of q for which the process in (a) can be used. Which

q yields the fastest convergence ?
(c) Let A be a symmetric and positive definite n × n matrix with smallest eigenvalue λ1,

and greatest eigenvalue λ2. Find q to get as fast convergence as possible.
(Royal Inst. Tech., Stockholm, Sweden, BIT 24 (1984), 398)

Solution
(a) When the process converges, x(n) → x and x(n + 1) → x.
Then, we have

x = x + q(Ax – I), q ≠ 0, or Ax = I, or x = A–1.
(b) The iteration converges if and only if ρ(I + qA) < 1.
The eigenvalues of I + qA are obtained from

1 2
1 2

0+ −
+ − =q q

q q
λ

λ
which gives λ = 1 + 3q, 1 + q.
| λ | < 1 gives the condition – (2/3) < q < 0. The minimum value of ρ(I + qA) is obtained
when | 1 + 3q | = | 1 + q |, which gives q = – 1/2. The minimum value is 0.5.
(c) A is a symmetric and positive definite matrix. Hence, λi > 0. The eigenvalues of the

iteration matrix I + qA are 1 + qλi. The iteration converges if and only if
– 1 < 1 + qλi < 1, or – 2 < qλi < 0.

Further,  since  q < 0,  the  smallest  and  largest  eigenvalues of I + qA are 1 + qλ1 and
1 + qλ2 respectively or vice-versa. Hence, fastest convergence is obtained when

| 1 + qλ2 | = | 1 + qλ1 |
which gives q = – 2/(λ1 + λ2).
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2.57 Given the matrix A = I + L + U where

 A = 
1 2 2
1 1 1
2 2 1

−�

�

�
�

�

�

�
�

L and U are strictly lower and upper triangular matrices respectively, decide whether
(a) Jacobi and (b) Gauss-Seidel methods converge to the solution of Ax = b.

(Royal Inst. Tech., Stockholm, Sweden, BIT 29 (1989), 375)
Solution
(a) The iteration matrix of the Jacobi method is

 H = – D–1(L + U) = – (L + U)

= – 
0 2 2
1 0 1
2 2 0

−�

�

�
�

�

�

�
�

The characteristic equation of H is

| λI – H | = 
λ

λ
λ

2 2
1 1
2 2

−
 = λ3 = 0.

The eigenvalues of H are λ = 0, 0, 0 and ρ(H) < 1. The iteration converges.
(b) The iteration matrix of the Gauss-Seidel method is

 H = – (D + L)–1 U

= – 
1 0 0
1 1 0
2 2 1

1
�

�

�
�

�

�

�
�

−

 
0 2 2
0 0 1
0 0 0

−�

�

�
�

�

�

�
�

= – 
1 0 0
1 1 0
0 2 1

0 2 2
0 0 1
0 0 0

−
−

�

�

�
�

�

�

�
�

−�

�

�
�

�

�

�
�
 = −

−
−

−

�

�

�
�

�

�

�
�

0 2 2
0 2 3
0 0 2

The eigenvalues of H are λ = 0, 2, 2 and ρ(H) > 1.
The iteration diverges.

2.58 Solve the system of equations
2x – y = 1

 – x + 2y – z = 0
– y + 2z – w = 0

 – z + 2w = 1
using Gauss-Seidel iteration scheme with x(0) = [0.5 0.5 0.5 0.5]T. Iterate three times.
Obtain the iteration matrix and determine its eigenvalues. Use the extrapolation method
and iterate three times. Compare the maximum absolute error and the rate of conver-
gence of the methods.
Solution
We solve the system of equations directly.

x(k + 1) = 1
2

[1 + y(k)], y(k + 1) = 1
2

[x(k + 1) + z(k)],

z(k + 1) = 1
2

[y(k + 1) + w(k)], w(k + 1) = 1
2

[1 + z(k + 1)].

With x(0) = [0.5 0.5 0.5 0.5]T, we obtain the following approximate values.
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x(1) = [0.75 0.625 0.5625 0.78125]T,
x(2) = [0.8125 0.6875 0.7344 0.8672]T,
x(3) = [0.8434 0.7889 0.8281 0.9140].

The Gauss-Seidel method is x(k + 1) = H x(k) + c, where

H = – (D + L)–1 U = − −
−

−

�

�

�
�
�

�

�

�
�
�

2 0 0 0
1 2 0 0
0 1 2 0
0 0 1 2

–1

 

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

1
16

0 8 0 0
0 4 8 0
0 2 4 8
0 1 2 4

−
−

−

�

�

�
�
�

�

�

�
�
�

=

�

�

�
�
�

�

�

�
�
�

 c = (D + L)–1
 b = 

1
16

 [8 4 2 9]T.

The eigenvalues of H are given by the equation

| H – λI | = λ λ λ2 2 3
4

1
16

0− +�
��

�
��

= ,

whose solution is λ = 0, 0, (3 ± 5 )/8. The eigenvalues lie in the interval

   [a, b] = 
3 5

8
3 5

8
− +�

�
�
�

�

�
�
�

, .

We have ρ(HGS) = 
3 5

8
+

 and rate of convergence (G-S) = – log10 
3 5

8
+�

�
	




�
�  = 0.1841.

We have γ = 
2

2
2

2 3 4
8
5− −

=
−

= =
a b ( / )

1.6, and

 Hγ = γH + (1– γ) I = – 0.6I + 1.6H = 

−
−

−
−

�

�

�
�
�

�

�

�
�
�

0 6 0 8 0 0
0 0 2 0 8 0
0 0 2 0 2 0 8
0 0 1 0 2 0 2

. .
. .
. . .
. . .

γc = [0.8 0.4 0.2 0.9]T.
The extrapolation iteration scheme is given by x(k + 1) = Hγ x

(k) + γ c.
With x(0) = [0.5 0.5 0.5 0.5]T, we get

x(1) = [0.9 0.7 0.6 0.95]T,
x(2) = [0.82 0.74 0.98 0.9]T,
x(3) = [0.9 1.036 0.872 0.99]T.

We also have ρ(Hγ) = 1 – | γ | d, where d is the distance of 1 from [a, b] = 
3 5

8
3 5

8
− +�

�
�
�

�

�
�
�

,  

which is equal to 0.3455. Hence,
 ρ(Hγ) = 1 – (1.6) (0.3455) = 0.4472,

and rate of convergence = – log10 (0.4472) = 0.3495. The maximum absolute errors in the
Gauss-Seidel method and the extrapolation are respectively (after three iterations) 0.2109
and 0.1280.

2.59 (a) Determine the convergence factor for the Jacobi and Gauss-Seidel methods for the
system

4 0 2
0 5 2
5 4 10

4
3
2

1

2

3

�

�

�
�

�

�

�
�

�

�

�
�

�

�

�
�

= −
�

�

�
�

�

�

�
�

x
x
x
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(b) This system can also be solved by the relaxation method. Determine wopt and write
down the iteration formula exactly. (Lund Univ., Sweden, BIT 13 (1973), 493)

Solution
(a) We write the iteration method in the form

x(n + 1) = Mx(n) + c.
For Jacobi method, we have

MJ = – D–1(L + U).
For Gauss-Seidel method, we have

  MGS = – (D + L)–1 U.
The iteration method converges if and only if ρ(M) < 1.
For Jacobi method, we find

 MJ = −
�

�

�
�

�

�

�
�

�

�

�
�

�

�

�
�

1 4 0 0
0 1 5 0
0 0 1 10

0 0 2
0 0 2
5 4 0

/
/

/
 = 

0 0 1 2
0 0 2 5

1 2 2 5 0

−
−

− −

�

�

�
�

�

�

�
�

/
/

/ /

The eigenvalues of MJ are µ = 0 and µ = ± 0 41. .
The convergence factor (rate of convergence) of Jacobi method is

ν = – log10 (ρ(MJ )) = – log10 ( . )0 41  = 0.194.
For Gauss-Seidel method, we find

MGS = −
�

�

�
�

�

�

�
�

�

�

�
�

�

�

�
�

−4 0 0
0 5 0
5 4 10

0 0 2
0 0 2
0 0 0

1

 = −
− −

�

�

�
�

�

�

�
�

�

�

�
�

�

�

�
�

1
200

50 0 0
0 40 0

25 16 20

0 0 2
0 0 2
0 0 0

= −
−

�

�

�
�

�

�

�
�

1
200

0 0 100
0 0 80
0 0 82

Eigenvalues of MGS are 0, 0, 0.41.
Hence, the convergence factor (rate of convergence) for Gauss-Seidel method is

ν = – log10(ρ(MGS)) = – log10 (0.41) = 0.387.

(b) wopt = 
2

1 12
2

µ
µ( )− − , where µ = ρ(MJ)

= 
2

0 41
1 1 0 41 132

.
( . )− − ≈ 1. .

The SOR method becomes
x(n + 1) = Mx(n) + c

where M = (D + woptL)–1 [(1 – wopt) D – wopt U]

= 
4 0 0
0 5 0

5 660 4 528 10

0528 0 2 264
0 0660 2 264
0 0 1320

1

. .

. .
. .

.

�

�

�
�

�

�

�
�

− −
− −

−

�

�

�
�

�

�

�
�

−

= 
1

200

50 0 0
0 40 0

283 18112 20

0528 0 2 264
0 0 660 2 264
0 0 1320− −

�

�

�
�

�

�

�
�

− −
− −

−

�

�

�
�

�

�

�
�. .

. .
. .

.
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= 

− −
− −

�

�

�
�

�

�

�
�

0 1320 0 0 5660
0 0 1320 0 4528

0 0747 0 0598 0 3944

. .
. .

. . .
and c = wopt (D + wopt L)–1 b

= 
1. 1.

0.

132
200

50 0 0
0 40 0

28 3 18.112 20

4
3
2

132
0 6792

1068− −

�

�

�
�

�

�

�
�

−
�

�

�
�

�

�

�
�

= −
−

�

�

�
�

�

�

�
�.

.

2.60 The following system of equations is given
4x + y + 2z = 4
3x + 5y + z = 7
x + y + 3z = 3

(a) Set up the Jacobi and Gauss-Seidel iterative schemes for the solution and iterate
three times starting with the initial vector x(0) = 0. Compare with the exact solution.

(b) Find the spectral radii of the iteration matrices and hence find the rate of convergence
of these schemes. (Use the Newton-Raphson method, to find the spectral radius of
the iteration matrix of the Jacobi method).

Solution
(a) For the given system of equations, we obtain :
Jacobi iteration scheme

x(n + 1) = −
�

�
		




�
��

�

�
		




�
��

+
�

�
		




�
��

�

�
		




�
��

1 4 0 0
0 1 5 0
0 0 1 3

1 4 0 0
0 1 5 0
0 0 1 3

/
/

/

/
/

/

( ) 
0 1 2
3 0 1
1 1 0

 
4
7
3

x n

= −
�

�
		




�
��

+
�

�
		




�
��

0 1 4 1 2
3 5 0 1 5
1 3 1 3 0

1
7 5
1

/ /
/ /
/ /

/( ) x n

Starting with x(0) = 0, we get
x(1) = (1 1.4 1)T,
x(2) = (0.15  0.6 0.2)T,
x(3) = (0.75 1.27 0.75)T.

Gauss-Seidel iteration scheme

x(n + 1) = −
�

�
		




�
��

�

�
		




�
��

+
�

�
		




�
��

�

�
		




�
��

− −4 0 0
3 5 0
1 1 3

4 0 0
3 5 0
1 1 3

4
7
3

1 1

 
0 1 2
0 0 1
0 0 0

 x( )n

= − − −
− −

�

�
		




�
��

+
�

�
		




�
��

1
60

0 15 30
0 9 6
0 2 8

1
60

  
60
48
24

x ( )n

Starting with x(0) = 0, we get
x(1) = (1.0 0.8 0.4)T, x(2) = (0.6 0.96 0.48)T,
x(3) = (0.52 0.992 0.496)T.

Exact solution of the given system of equations is [0.5 1 0.5]T.
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(b) The Jacobi iteration matrix is

MJ = 
0 1 4 1 2

3 5 0 1 5
1 3 1 3 0

− −
− −
− −

�

�

�
�

�

�

�
�

/ /
/ /
/ /

The characteristic equation of MJ is given by
60λ3 – 23λ + 7 = 0.

The equation has one real root in (– 0.8, 0) and a complex pair. The real root can be
obtained by the Newton-Raphson method

λk + 1 = λ
λ λ

λk
k k

k

−
− +

−
60 23 7

180 23

3

2 , k = 0, 1, 2, ...

Starting with λ0 = – 0.6, we obtain the successive approximations to the root as
– 0.7876, – 0.7402, – 0.7361, – 0.7361. The complex pair are the roots of 60λ2 – 44.1660λ
+ 9.5106 = 0, which  is  obtained  as  0.3681  ±  0.1518i.  The  magnitude of this pair
is 0.3981. Hence, ρ(MJ) = 0.7876 and ν = – log10 (0.7876) = 0.1037.
The Gauss-Seidel iteration matrix is

MGS = 
0 1 4 1 2
0 3 20 1 10
0 1 30 2 15

− −�

�

�
�

�

�

�
�

/ /
/ /
/ /

The characteristic equation of MGS is obtained as
60λ3 – 17λ2 + λ = 0

whose roots are 0, 1/12, 1/5. Hence,
 ρ(MGS) = 0.2,

and νGS = – log10(0.2) = 0.6990.
2.61 Given a system of equations Ax = b where

 A = 

2 1 0 0 0
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
0 0 0 1 2

−
− −

− −
− −

−

�

�

�
�
�
�
�

�

�

�
�
�
�
�

, b = 

1
1
1
1
1

�

�

�
�
�
�
�

�

�

�
�
�
�
�

Prove that the matrix A has ‘property A’ and find the optimum value of the relaxation
factor w for the method of successive over-relaxation.

(Gothenburg Univ., Sweden, BIT 8 (1968), 138)
Solution
Choose the permutation matrix as

P = 

0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1

�

�

�
�
�
�
�

�

�

�
�
�
�
�

Then, PAPT = P P

2 1

 

−
− −

− −
− −

−

�

�

�
�
�
�
�

�

�

�
�
�
�
�

0 0 0
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
0 0 0 1 2

T
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= P

0 1 0 2 0
0 2 1 1 0
1 1 2 0 0
2 0 1 0 1
1 0 0 0 2

−
− −

− −
− −

−

�

�

�
�
�
�
�

�

�

�
�
�
�
�

 = 

2 0 1 0 1
0 2 1 1 0
1 1 2 0 0
0 1 0 2 0
1 0 0 0 2

− −
− −

− −
−

−

�

�

�
�
�
�
�

�

�

�
�
�
�
�

Hence, the matrix A, has ‘property A’. The Jacobi iteration matrix is

 HJ = 

0 0 1 2 0 1 2
0 0 1 2 1 2 0

1 2 1 2 0 0 0
0 1 2 0 0 0

1 2 0 0 0 0

− −
− −

− −
−

−

�

�

�
�
�
�
�

�

�

�
�
�
�
�

/ /
/ /

/ /
/

/

The eigenvalues of HJ are µ* = 0, ± 1/2, ± 3 2/ . Therefore,

ρ(HJ ) = 3 2/  = µ.

 wopt = 
2

1 1

4
32+ −

=
µ

.

2.62 The following system of equations is given
3x + 2y = 4.5

 2x + 3y – z = 5
– y + 2z = – 0.5

Set up the SOR iteration scheme for the solution.
(a) Find the optimal relaxation factor and determine the rate of convergence.
(b) Using the optimal relaxation factor, iterate five times with the above scheme with

x(0) = 0.
(c) Taking this value of the optimal relaxation factor, iterate five times, using the error

format of the SOR scheme, with x(0) = 0. Compare with the exact solution.
Solution
(a) The iteration matrix of the Jacobi method is given by

 MJ = – 
1 3 0 0
0 1 3 0
0 0 1 2 1 0

/
/

/

�

�
		




�
��

−
−

�

�
		




�
��

 
0 2 0
2 0 1
0

 = 
0 2 3 0

2 3 0 1 3
0 1 2 0

−
−
�

�
		




�
��

/
/ /

/

Eigenvalues of MJ are λ = 0, ± 11 18/ . Therefore

ρ(MJ) = µ = 11 18/ .
The optimal relaxation parameter for SOR method is obtained as

wopt = 2

1 1 2+ − µ
 ≈ 1.23183,

  ρ(SOR) = wopt – 1 = 0.23183.
Hence, rate of convergence of SOR method is

  ν(SOR) = – log10 (0.23183) = 0.6348.
(b) The SOR iteration scheme can be written as

x(n + 1) = Mx(n) + c
where, with w = wopt = 1.23183, we have
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M = (D + wL)–1 [(1 – w) D – wU]

= 
3 0 0

2 4636 3 0
0 12318 2

0 6954 2 4636 0
0 0 6954 12318
0 0 0 4636

.
– .

. .
. .

.

�

�

�
�

�

�

�
�

− −
−

−

�

�

�
�

�

�

�
�

–1

 

= 
1

18

6 0 0
4 9272 6 0
3 0347 3 6954 9

0 6954 2 4636 0
0 0 6954 12318
0 0 0 4636

−
−

�

�

�
�

�

�

�
�

− −
−

−

�

�

�
�

�

�

�
�

.

. .

. .
. .

.
 

= 
− −�

�

�
�

�

�

�
�

0 2318 0 8212 0
0 1904 0 4426 0 4106
0 1172 0 2726 0 0211

. .

. . .

. . .
and  c = w(D + wL)–1 b

= 
12318

18

6 0 0
4 9272 6 0
3 0347 3 6954 9

.
.
. .

−
−

�

�
	
	




�
�
� −

�

�
	
	




�
�
�

 
4.5
5
0.5

 = 
18477
0 5357
0 0220

.

.

.

�

�
		




�
��

Hence, we have the iteration scheme

x(k + 1) = 
− −�

�

�
�

�

�

�
�

+
�

�

�
�

�

�

�
�

0 2318 0 8212 0
0 1904 0 4426 0 4106
0 1172 0 2726 0 0211

18477
0 5357
0 0220

. .

. . .

. . .

.

.

.

( ) x k

k = 0, 1, 2, ...
Starting with x(0) = 0, we obtain

x(1) = [1.8477 0.5357 0.0220]T

x(2) = [0.9795 1.1336 0.3850]T

x(3) = [0.6897 1.3820 0.4539]T

x(4) = [0.5529 1.4651 0.4891]T

x(5) = [0.5164 1.4902 0.4965]T

(c)   (D + wopt L) v(k + 1) = wopt r
(k)

or (D + 1.2318 L) v(k + 1) = 1.2318r(k) where v(k+1) = x(x+1)– x(k), and r(k) = b – Ax(k).
We have

3 0 0
2 4636 3 0

0 12318 2
12318

2
0 3

5 2

1.
.

.( )

( ) ( )

( ) ( ) ( )

( ) ( )−

�

�

�
�

�

�

�
�

=
− −
− − +

− + −

�

�

�
�
�

�

�

�
�
�

+  
4.5 3
5. 2

0.
v k

k k

k k k

k k

x y
x y z
y z

With x(0) = 0, we obtain the following iterations. The equations are solved by forward
substitution.
First iteration

v(1) = x(1) = [1.8477 0.5357 0.0220]T.
Second iteration

3 0 0
2 4636 3 0

0 12318 2

2 6046
03455
0 0102

.
.

.

.

.

(

−

�

�

�
�

�

�

�
�

=
−
−
−

�

�

�
�

�

�

�
�

 2)v ,

which gives,    v(2) = [– 0.8682 0.5978 0.3631]T,
and x(2) = v(2) + x(1) = [0.9795 1.1335 0.3851]T.
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Third iteration

3 0 0
2.4636 3 0

0
 3)

−

�

�

�
�

�

�

�
�

=
−

−

�

�

�
�

�

�

�
�12318 2

0 8690
0 0315
0 1684.

.

.

.

(v ,

which gives, v(3) = [– 0.2897 0.2484 0.0688]T,
and x(3) = v(3) + x(2) = [0.6898 1.3819 0.4539]T.
Fourth iteration

3 0 0
2.4636 3 0

0
 4)

−

�

�

�
�

�

�

�
�

=
−
−
−

�

�

�
�

�

�

�
�12318 2

0 4104
0 0880
0 0319.

.

.

.

(v ,

which gives, v(4) = [– 0.1368 0.0830 0.0352]T,
and x(4) = v(4) + x(3) = [0.5530 1.4649 0.4891]T.
Fifth iteration

3 0 0
2.4636 3 0

0
 5)

−

�

�

�
�

�

�

�
�

=
−
−
−

�

�

�
�

�

�

�
�12318 2

0 1094
0 0143
0 0164.

.

.

.

(v ,

which gives v(5) = [– 0.0365 0.0252 0.0073]T,
and x(5) = v(5) + x(4) = [0.5165 1.4901 0.4964]T.
Exact solution is x = [0.5 1.5 0.5]T.

EIGENVALUE PROBLEMS

2.63 Using the Jacobi method find all the eigenvalues and the corresponding eigenvectors of
the matrix

 A = 

1 2 2
2 3 2

2 2 1

�

�

�
�
�

�

�

�
�
�

Solution
The largest off-diagonal element is a13 = a31 = 2. The other two elements in this 2 × 2
submatrix are a11 = 1 and a33 = 1.

θ = 
1
2

4
0

41 tan− �
�	


��

= π/

  S1 = 
1 2 0 1 2

0 1 0
1 2 0 1 2

/ /

/ /

−�

�

�
�
�

�

�

�
�
�

The first rotation gives
 B1 = S1

–1 AS1

= 
1 2 0 1 2

0 1 0
1 2 0 1 2

2 2
2 3 2

2 2 1

1 2 0 1 2
0 1 0

1 2 0 1 2

/ /

/ /

/ /

/ /−

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

−�

�

�
�
�

�

�

�
�
�

 
1

 

= 
3 2 0
2 3 0
0 0 1−

�

�

�
�

�

�

�
�
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The largest off-diagonal element in magnitude in B1 is a12 = a21 = 2. The other elements
are a11 = 3, a22 = 3.

θ = 
1
2

4
0

41tan− �
�	


��

= π/ and S2 = 
1 2 1 2 0
1 2 1 2 0

0 0 1

/ /
/ /

−�

�

�
�
�

�

�

�
�
�

The second rotation gives

 B2 = S2
–1B1S2 = 

5 0 0
0 1 0
0 0 1−

�

�

�
�

�

�

�
�

We have the matrix of eigenvectors as

 S = S1S2 = 
1 2 0 1 2

0 1 0
1 2 0 1 2

1 2 1 2 0
1 2 1 2 0

0 0 1

/ /

/ /

/ /
/ /

−�

�

�
�
�

�

�

�
�
�

−�

�

�
�
�

�

�

�
�
�

 

= 
1 2 1 2 1 2

1 2 1 2 0
1 2 1 2 1 2

/ / /
/ /

/ / /

− −

−

�

�

�
�
�

�

�

�
�
�

The eigenvalues are 5, 1, – 1 and the corresponding eigenvectors are the columns of S.

2.64 Find all the eigenvalues and eigenvectors of the matrix

2 3 1
3 2 2
1 2 1

�

�

�
�

�

�

�
�

by the Jacobi method.
Solution
This example illustrates the fact that in the Jacobi method, zeros once created may be
disturbed and thereby the number of iterations required are increased. We have the
following results.
First rotation
Largest off diagonal element in magnitude = a12 = 3.

tan 2θ = 
2 6

0
12

11 22

a
a a−

= , θ = 
π
4

 S1 = 
0 707106781 0 707106781 0
0 707106781 0 707106781 0

0 0 1

. .

. .
−�

�

�
�

�

�

�
�

 A1 = S1
–1 AS1 = S1

T AS1

= 
5 0 0 2 121320343
0 10 0 707106781

2 121320343 0 707106781 10

. .
. .

. . .
−

�

�

�
�

�

�

�
�

Second rotation
Largest off diagonal element in magnitude = a13.

tan 2θ = 
2 13

11 33

a
a a−

.
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We get θ = 0.407413458.

S2 = 
0 918148773 0 0 0 396235825

0 0 10 0 0
0 396235825 0 0 0 918148773

. . .
. . .

. . .

−�

�

�
�

�

�

�
�

A2 = S2
TA1S2

= 
5 915475938 0 280181038 0 0
0 280181038 10 0 649229223

0 0 0 649229223 0 08452433

. . .

. . .
. . .

−
�

�

�
�

�

�

�
�

Notice now that the zero in the (1, 2) position is disturbed. After six iterations, we get

 A6 = S6
T A5S6

= 
5. 0.

0. 1.
0.

9269228 000089 0 0
000089 31255436 0 0

0 0 38563102

−
− −
�

�

�
�

�

�

�
�

.

.

Hence, the approximate eigenvalues are 5.92692, – 1.31255 and 0.38563. The orthogonal
matrix of eigenvectors is given by S = S1S2S3S4S5S6. We find that the corresponding
eigenvectors are

x1 = [– 0.61853 – 0.67629 – 0.40007]T,

x2 = [0.54566 – 0.73605 0.40061]T,

x3 = [0.56540 – 0.29488 – 0.82429]T.

2.65 Transform the matrix

M = 
1 2 3
2 1 1
3 1 1

−
−

�

�

�
�

�

�

�
�

to tridiagonal form by Given’s method. Use exact arithmetic.

Solution

Perform the orthogonal rotation with respect to a22, a23, a32, a33 submatrix. We get

 tan θ = 
a
a

13

12

3
2

= , cos θ = 
2

13
, sin θ = 

3

13
.

Hence,  B = S–1MS = ST MS

= 

1 0 0
0 2 3 3 3
0 3 13 2 13

/ /
/ /−

�

�

�
�
�

�

�

�
�
�
 

1 2 3
2 1 1
3 1 1

−
−

�

�

�
�
�

�

�

�
�
�
 

1 0 0
0 2 3 3 3
0 3 13 2 13

/ /
/ /

−
�

�

�
�
�

�

�

�
�
�

= 

1 3 0
3 1 13 5 13

0 5 13 25 13
/ /
/ /

�

�

�
�
�

�

�

�
�
�

is the required tridiagonal form.
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2.66 Transform the matrix

A = 
1 2 2
2 1 2
2 2 1

�

�

�
�

�

�

�
�

to tridiagonal form by Givens method. Find the eigenvector corresponding to the largest
eigenvalue from the eigenvectors of the tridiagonal matrix.

(Uppsala Univ. Sweden, BIT 6 (1966), 270)
Solution
Using the Given’s method, we have

 tan θ = 
a
a

13

12
1= or θ = 

π
4

 A1 = S–1 AS

= 

1 0 0
0 1 2 1 2
0 1 2 1 2

/ /
/ /−

�

�

	
	




�

�
�  

1 2 2
2 1 2
2 2 1

�

�

	
	




�

�
�  

1 0 0
0 1 2 1 2
0 1 2 1 2

/ /
/ /

−
�

�

	
	




�

�
�

= 
1 2 2 0

2 2 3 0
0 0 1−

�

�

	
		




�

�
��

which is the required tridiagonal form.
The characteristic equation of A1 is given by

fn = | λI – A | = 
λ

λ
λ

− −
− −

+

1 2 2 0
2 2 3 0
0 0 1

 = 0

The Sturm sequence { fn } is defined as
f0 = 1,
f1 = λ – 1,

f2 = (λ – 3) f1 – ( )− 2 2 2f0 = λ2 – 4λ – 5,

f3 = (λ + 1) f2 – (0)2 f1 = (λ + 1)(λ + 1)(λ – 5).
Since, f3(– 1) = 0 and f3(5) = 0, the eigenvalues of A are – 1, – 1 and 5. The largest
eigenvalue in magnitude is 5.

The eigenvector corresponding to λ = 5 of A1 is v1 = [1 2 0]T.

Hence, the corresponding eigenvector of A is
v = Sv1 = [1 1 1]T.

2.67 Transform, using Givens method, the symmetric matrix A, by a sequence of orthogonal
transformations to tridiagonal form. Use exact arithmetic.

 A = 

1 2 2 2
2 2 1 2
2 1 2 2
2 2 2 3

− −
−

−

�

�

�
�
�
�

�

�

�
�
�
�

(Inst. Tech., Lund, Sweden, BIT 4 (1964), 261)
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Solution
Using the Given’s method, we obtain the following.
First rotation

tan θ1 = 
a
a

13

12
1= , θ1 = 

π
4

,

S1 = 

1 0 0 0
0 1 2 1 2 0
0 1 2 1 2 0
0 0 0 1

/ /
/ /

−
�

�

�
�
�
�

�

�

�
�
�
�

 ;  S1
–1 = 

1 0 0 0
0 1 2 1 2 0
0 1 2 1 2 0
0 0 0 1

/ /
/ /−

�

�

�
�
�
�

�

�

�
�
�
�

 ;

 A1 = S1
–1AS1 = 

1 2 0 2
2 1 2 2
0 2 1 0
2 2 0 3

−

−

�

�

�
�
�
�

�

�

�
�
�
�

 = (a′ij).

Second rotation

 tan θ2 = 
a

a
14

12

′

′  = 1, θ2 = 
π
4

,

S2 = 

1 0 0 0
0 1 2 0 1 2
0 0 1 0
0 1 2 0 1 2

/ /

/ /

−
�

�

�
�
�

�

�

�
�
�  ; S2

–1 = 

1 0 0 0
0 1 2 0 1 2
0 0 1 0
0 1 2 0 1 2

/ /

/ /−

�

�

�
�
�

�

�

�
�
�  ;

 A2 = S2
–1A1S2 = 

1 2 2 0 0
2 2 0 1 1

0 1 1 1
0 1 1 4

−
−

− − −

�

�

�
�
�
�

�

�

�
�
�
�

= ( )*aij

Third rotation

 tan θ3 = 
a

a
24

23

*

*  = – 1, θ3 = − π
4

,

S3 = 

1 0 0 0
0 1 0 0
0 0 1 2 1 2
0 0 1 2 1 2

/ /
/ /−

�

�

�
�
�
�

�

�

�
�
�
�

 ; S3
–1 = 

1 0 0 0
0 1 0 0
0 0 1 2 1 2
0 0 1 2 1 2

/ /
/ /

−

�

�

�
�
�
�

�

�

�
�
�
�
 ;

  A3 = S3
–1A2S3 = 

1 2 2 0 0
2 2 0 2 0

0 2 1 2 5 2
0 0 5 2 5 2

−
−

�

�

�
�
�
�

�

�

�
�
�
�

/ /
/ /

which is the required tridiagonal form.
2.68 Find all the eigenvalues of the matrix

1 2 1
2 1 2
1 2 1

−

−

�

�

�
�

�

�

�
�

using the Householder method.
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Solution
Choose w2

T = [0 x2 x3] such that x2
2 + x3

2 = 1. The parameters in the first House-
holder transformation are obtained as follows :

s1 = a a12
2

13
2 5+ = ,

x2
2  = 

1
2

1 12

1
12+

�

�
�

�

�
�

a
s

asign ( )  = 
1
2

1
2
5

5 2
2 5

+
�
�	



��

= +
,

 x3 = 
a a

s x s x
13 12

1 2 1 22
1

2
sign ( )

= − ,

  x2 x3 = −
1

2 5
,

P2 = I – 2w2w2
T = 

1 0 0
0 2 5 1 5
0 1 5 2 5

−
�

�

�
�
�

�

�

�
�
�

/ /
/ /

The required Householder transformation is

A2 = P2A1P2 = 

1 5 0
5 3 5 6 5
0 6 5 13 5

−
− − −

−

�

�

�
�
�

�

�

�
�
�

/ /
/ /

Using the Given’s method, we obtain the Sturm’s sequence as
f0 = 1, f1 = λ – 1,

 f2 = λ λ2 2
5

28
5

− − ,

 f3 = λ3 – 3λ2 – 6λ + 16.
Let V(λ) denote the number of changes in sign in the Sturm sequence. We have the
following table giving V(λ)

λ f0 f1 f2 f3 V(λ)

– 3 + – + – 3
– 2 + – – + 2
– 1 + – – + 2

0 + – – + 2
1 + + – + 2
2 + + – 0 1
3 + + + – 1
4 + + + + 0

Since f3 = 0 for λ = 2, λ = 2 is an eigenvalue. The remaining two eigenvalues lie in
the intervals (– 3, – 2) and (3, 4). Repeated bisection and application of the Sturm’s
theorem gives the eigenvalues as λ2 = – 2.372 and λ3 = 3.372. Exact eigenvalues are
2, (1 ± 33 )/2.
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2.69 Use the Householder’s method to reduce the given matrix A into the tridiagonal form

A = 

4 1 2 2
1 4 1 2
2 1 4 1
2 2 1 4

− −
− − −
− − −

− −

�

�

�
�
�

�

�

�
�
�

Solution
First transformation :

w2 = [0 x2 x3 x4]
T,

 s1 = a a a12
2

13
2

14
2 3+ + = ,

 x2
2  = 

1
2

1
1 1

3
2
3

+ − −�
��

�
��

=( ) ( )
 ; x2 = 

2
3

,

x3 = 
2

2 3
3
2

1

6( )
=  ; x4 = – 

1

6
,

 P2 = I – 2w2w2
T = 

1 0 0 0
0 1 3 2 3 2 3
0 2 3 2 3 1 3
0 2 3 1 3 2 3

− −
−

�

�

�
�
�

�

�

�
�
�

/ / /
/ / /
/ / /

A2 = P2A1P2 = 

4 3 0 0
3 16 3 2 3 1 3
0 2 3 16 3 1 3
0 1 3 1 3 4 3

/ / /
/ / /
/ / /

−
−

�

�

�
�
�

�

�

�
�
�

Second transformation :
w3 = [0 0 x3 x4]T,

 s1 = a a23
2

24
2 5

3
+ = ,

 x3
2  = 

1
2

1
2 3

5 3

5 2

2 5
+

�

�
�

�

�
� =

+�

�	



��
/

/
 = a,

 x4
2  = 1 – x3

2  = 1
5 2

2 5
− +

 = 
5 2

2 5

1
20

− =
a

,

  P3 = I – 2w3 w3
T = 

1 0 0 0
0 1 0 0
0 0 1 2 1 5
0 0 1 5 1 1 10

− −
− −

�

�

�
�
�
�

�

�

�
�
�
�

a
a

/
/ /( )

 A3 = P3A2P3 = 

4 3 0 0
3 16 3 5 3 5 0
0 5 3 5 16 3 9 5
0 0 9 5 12 5

/ /( )
/ ( ) / /

/ /

−
−

�

�

�
�
�
�

�

�

�
�
�
�

is the required tridiagonal form
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2.70 Find approximately the eigenvalues of the matrix

3 1
1 1
�
��

�
��

Using the Rutishauser method. Apply the procedure until the elements of the lower
triangular part are less than 0.005 in magnitude.
We have the following decompositions :

  A1 = A = L1U1 = 
1 0

1 3 1
3 1
0 2 3/ /

�
��

�
��
�
��

�
��

 A2 = U1L1 = 
10 3 1
2 9 2 3

/
/ /

�
��

�
��

= L2 U2 = 
1 0

1 15 1
10 3 1

0 3 5/
/

/
�
��

�
��
�
��

�
��

 A3 = U2L2 = 
17 5 1
1 25 3 5

/
/ /
�
��

�
��

= L3U3 = 
1 0

1 85 1
17 5 1

0 10 17/
/

/
�
��

�
��
�
��

�
��

 A4 = U3L3 = 
58 17 1
2 289 10 17

/
/ /

�
��

�
��

= L4U4  = 
1 0

1 493 1
58 17 1

0 289 493/
/

/
�
��

�
��
�
��

�
��

A5 = U4L4 = 
3 4138 1
0 0012 05862
.
. .
�
��

�
��

To the required accuracy the eigenvalues are 3.4138 and 0.5862. The exact eigenvalues

are 2 ± 2 .

2.71 Find all the eigenvalues of the matrix

 A = 
1 1 1
2 1 2
1 3 2

�

�

�
�

�

�

�
�

using the Rutishauser method. Iterate till the elements of the lower triangular part are
less than 0.05 in magnitude.
Solution
We have

A1 = A = 
1 0 0
2 1 0
1 2 1

1 1 1
0 1 0
0 0 1−

�

�

�
�

�

�

�
�

−
�

�

�
�

�

�

�
� = L1U1

 A2 = U1 L1 = 
1 1 1
0 1 0
0 0 1

1 0 0
2 1 0
1 2 1

4 1 1
2 1 0
1 2 1

−
�

�

�
�

�

�

�
� −

�

�

�
�

�

�

�
�

=
−

− −
−

�

�

�
�

�

�

�
�
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= 
1 0 0
1 2 1 0

1 4 7 6 1

4 1 1
0 3 2 1 2
0 0 1 6

−
�

�

�
�

�

�

�
�

−
−

�

�

�
�

�

�

�
�

/
/ /

/ /
/

 = L2U2

 A3 = U2 L2 = 
19 4 1 6 1

7 8 11 12 1 2
1 24 7 36 1 6

/ /
/ / /

/ / /
−

�

�

�
�

�

�

�
�

= 
1 0 0

7 38 1 0
1 114 11 54 1

19 4 1 6 1
0 18 19 6 19
0 0 38 171

/
/ /

/ /
/ /

/−

�

�

�
�

�

�

�
�

−
�

�

�
�

�

�

�
�

 = L3U3

 A4 = U3L3 = 
4 789474 0 037037 1
0 171745 1011696 0 315789
0 001949 0 045267 0 222222

. .

. . .

. . .

−
− −

−

�

�

�
�

�

�

�
�

= 
1 0 0

0 035859 1 0
0 000407 0 044670 1

4 789474 0 037037 1
0 1013024 0 351648
0 0 0 206107

−
�

�

�
�

�

�

�
�

−
−

�

�

�
�

�

�

�
�

.

. .

. .
. .

.
 = L4U4

 A5 = U4L4
 = 

4 791209 0 007633 1
0 036469 0 997316 0 351648
0 000084 0 009207 0 206107

. .

. . .

. . .
−

�

�

�
�

�

�

�
�

= 
1 0 0

0 007612 1 0
0 000018 0 009231 1

4 791209 0 007633 1
0 0 997374 0 344036
0 0 0 209265

.

. .

. .
. .

.−

�

�

�
�

�

�

�
�

−
�

�

�
�

�

�

�
�

 = L5U5

 A6 = U5L5 = 
4 791285 0 001598 1
0 007586 1000550 0 344036
0 000004 0 001932 0 209265

. .

. . .

. . .

−
− −

−

�

�

�
�

�

�

�
�

= 
1 0 0

0 001583 1 0
0 000001 0 001931 1

4 791285 0 001598 1
0 1000553 0 345619
0 0 0 208597

−
�

�

�
�

�

�

�
�

−
−

�

�

�
�

�

�

�
�

.

. .

. .
. .

.
 = L6 U6

 A7 = U6 L6 = 
4 791289 0 000333 1
0 001584 0 999886 0 345619

0 0 000403 0 208597

. .

. . .
. .

−
�

�

�
�

�

�

�
�

Hence, the eigenvalues are approximately 4.791289, – 0.999886 and 0.208597. The
exact eigenvalues are

λ = (5 + 21 ) / 2 = 4.791288, λ = – 1 and λ = (5 – 21 ) / 2 = 0.208712

2.72 Find the largest eigenvalue of the matrix

A = 

2 1 1 0
1 1 0 1
1 0 1 1
0 1 1 2

�

�

�
�
�

�

�

�
�
�

using power method. (Stockholm Univ., Sweden, BIT 7 (1967), 81)
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Solution
Starting with v0 = [1 1 1 1]T and using the algorithm for power method we obtain

y1 = Av0 = [4 3 3 4]T,

v1 = 
y1

m1
 = [1 3 / 4 3 / 4 1]T,

y2 = Av1 = [7 / 2 11 / 4 11 / 4 7 / 2]T,

v2 = 
y2

2m
 = [1 11 / 14 11 / 14 1]T,

y3 = Av2 = [25 / 7 39 / 14 39 / 14 25 / 7]T,

v3 = 
y3

3m
 = [1 39 / 50 39 / 50 1]T,

 ... ...
y5 = Av4 = [317 / 89 495 / 178 495 / 178 317 / 89]T,

 v5 = [1 495 / 634 495 / 634 1]T,
 y6 = Av5 = [1129 / 317 1763 / 634 1763 / 634 1129 / 317]T,
 v6 = [1 1763 / 2258 1763 / 2258 1]T,

After six iterations, the ratios
 (y6)r / (v5)r, r = 1, 2, 3, 4

are 3.5615, 3.5616, 3.5616 and 3.5615. Hence, the largest eigenvalue in magnitude is
3.5615. The corresponding eigenvector is [1 0.7808 0.7808 1]T.

2.73 Determine the largest eigenvalue and the corresponding eigenvector of the matrix

 A = 
4 1 0
1 20 1
0 1 4

�

�

�
�

�

�

�
�

to 3 correct decimal places using the power method.
(Royal Inst. Tech., Stockholm, Sweden, BIT 11 (1971), 125)

Solution
Starting with v0 = [1 1 1]T and using power method we obtain the following :

  y1 = Av0 = [5 22 5]T,

v1 = 
y1

m1
 = [5 / 22 1 5 / 22]T

y2 = Av1 = [21 / 11 225 / 11 21 / 11]T,

v2 = 
y2

2m
 = [21 / 225 1 21 / 225]T

 ... ...
y7 = Av6 = [1.24806 20.12412 1.24824]T,

v7 = 
y7

7m
 = [0.06202 1 0.06202]T,

y8 = Av7 = [1.24806 20.12404 1.24806]T,

v8 = 
y8

8m
 = [0.06202 1 0.06202]T
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After 8 iterations, the ratios (y8)r / (v7)r, r = 1, 2, 3 are 20.1235, 20.1240 and 20.1235. The
largest eigenvalue in magnitude correct to 3 decimal places is 20.124 and the corre-
sponding eigenvector is

[0.06202 1 0.06202]T.

2.74 Compute with an iterative method the greatest charateristic number λ of the matrix

 A = 

0 0 1 1 0
0 0 1 0 1
1 1 0 0 1
1 0 0 0 1
0 1 1 1 0

�

�

�
�
�
�
�

�

�

�
�
�
�
�

with four correct decimal places. (Lund Univ., Sweden, BIT 4 (1964), 131)
Solution
Starting with v0 = [1 1 1 1 1]T and using the power method, we obtain the following :

y1 = Av0 = [2 2 3 2 3]T

 v1 = 
y1

m1
 = [0.666667 0.666667 1 0.666667 1]T

y2 = Av1 = [1.666667 2 2.333334 1.666667 2.333334]T

v2 = [0.714286 0.857143 1 0.714286 1]T

... ...
y13 = Av12 = [1.675145 2 2.481239 1.675145 2.481239]T

v13 = [0.675124 0.806049 1 0.675124 1]T

y14 = Av13 = [1.675124 2 2.481173 1.675124 2.481173]T

v14 = [0.675124 0.806070 1 0.675134 1]T

After 14 iterations, the ratios (y14)r / (v13)r, r = 1, 2, 3, 4, 5 are 2.481209, 2.481238,
2.481173, 2.481238 and 2.481173. Hence, the largest eigenvalue in magnitude may be
taken as 2.4812.

2.75 Calculate an approximation to the least eigenvalue of A = LLT, where

L = 
1 0 0
1 1 0
1 1 1

�

�

�
�

�

�

�
�

using one step of inverse iteration. Choose the vector (6  – 7 3)T as a first approxima-
tion to the corresponding eigenvector. Estimate the error in the approximate eigenvalue.

(Univ. and Inst. Tech., Linköping, BIT 28 (1988), 373)
Solution
The inverse power method is defined by

 zk+1 = A–1 yk,
 yk + 1 = zk + 1 / mk + 1,

where mk+1 is the maximal element in magnitude of zk + 1 and y0 is the initial approxima-
tion to the eigenvector. We have alternately,

Azk + 1 = LLTzk + 1 = yk,
 yk + 1 = zk + 1 / mk + 1.

Set LTzk + 1 = tk + 1. Solve Ltk + 1 = yk and then solve LTzk + 1 = tk + 1.
Solving Lt1 = y0, where y0 = [6 – 7 3]T, we get t1 = [6 – 13 10]T.
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Solving LTz1 = t1 we get
z1 = [19 – 23 10]T and y1 = [19 / 23 – 1 10 / 23]T

.
Hence, the ratios approximating the largest eigenvalue of A–1 are 19 / 6, 23 / 7, 10 / 3,
i.e., 3.167, 3.286 and 3.333. The approximation to the smallest eigenvalue in magnitude
of A may be taken as 3.2. The exact eigenvalue is 5.0489 (approximately).

2.76 Find the smallest eigenvalue in magnitude of the matrix

 A = 
2 1 0
1 2 1
0 1 2

−
− −

−

�

�

�
�

�

�

�
�

using four iterations of the inverse power method.
Solution
The smallest eigenvalue in magnitude of A is the largest eigenvalue in magnitude of A–1.
We have

A–1
 = 

3 4 1 2 1 4
1 2 1 1 2
1 4 1 2 3 4

/ / /
/ /
/ / /

�

�

�
�

�

�

�
�

Using y(k + 1) = A–1 v(k), k = 0, 1...
and  v(0) = [1, 1, 1]T, we obtain

y(1) = [1.5, 2, 1.5]T, v(1) = [0.75, 1, 0.75]T

y(2) = [1.25, 1.75, 1.25]T, v(2) = [0.7143, 1, 0.7143]T

y(3) = [1.2143, 1.7143, 1.2143]T, v(3) = [0.7083, 1, 0.7083]T

y(4) = [1.2083, 1.7083, 1.2083]T, v(4) = [0.7073, 1, 0.7073]T.
After four iterations, we obtain the ratios as

µ = 
y

v

( )

( )

4

3
r

r

 = (1.7059, 1.7083 1.7059).

Therefore, µ = 1.71 and λ = 1 / µ ≈ 0.5848.
Since | A – 0.5848 I | ≈ 0, λ = 0.5848 is the required eigenvalue. The corresponding
eigenvector is [0.7073, 1, 0.7043]T

The smallest eigenvalue of A is 2 – 2  = 0.5858.
Alternately, we can write

Ay(k + 1) = v(k), k = 0, 1 ...

or
1 0 0
1 2 1 0
0 2 3 1

2 1 0
0 3 2 1
0 0 4 3

−
−

�

�

�
�

�

�

�
�

−
−

�

�

�
�

�

�

�
�

/
/

/
/

 y(k + 1) = v(k)

Writing the above system as
  Lz(k) = v(k) and Uy(k + 1) = z(k)

we obtain for v(0) = [1, 1, 1]T, z(0) = [1, 1.5, 2]T . y(1) = [1.5, 2, 1.5]T.
We obtain the same successive iterations as before.



8-\N-NUM\NU-2-7

Linear Algebraic Equations and Eigenvalue Problems 143

2.77 Find the eigenvalue nearest to 3 for the matrix

 A = 
2 1 0
1 2 1
0 1 2

−
− −

−

�

�

�
�

�

�

�
�

using the power method. Perform five iterations. Take the initial approximate vector as
v(0) = [1, 1, 1]T. Also obtain the corresponding eigenvector.
Solution
The  eigenvalue  of  A which is nearest to 3 is the smallest eigenvalue (in magnitude) of
A – 3I. Hence it is the largest eigenvalue (in magnitude) of (A – 3I)–1. We have

A – 3I = 
− −
− − −

− −

�

�

�
�

�

�

�
�

1 1 0
1 1 1
0 1 1

, (A – 3 I)–1 = 
0 1 1
1 1 1
1 1 0

−
− −

−

�

�

�
�

�

�

�
�
.

Using y(k + 1) = (A – 3I)–1 v(k), k = 0, 1, ... and v(0) = [1, 1, 1]T, we obtain
y(1) = [0, – 1, 0]T, v(1) = [0, – 1, 0]T

y(2) = [1, – 1, 1]T, v(2) = [1, –1, 1]T

y(3) = [2, – 3, 2]T, v(3) = [0.6667, – 1, 0.6667]T

 y(4) =  [1.6667, – 2.3334, 1.6667]T

 v(4) = [0.7143, – 1, 0.7143]T

 y(5) = [1.7143, – 2.4286, 1.7143]T.
After five iterations, we obtain the ratios as

 µ = 
[ ]

[ ]

( )

( )
y
v

5

4
r

r

 = [2.4000, 2.43, 2.4000].

Therefore, µ = 2.4 and λ = 3 ± (1 / µ) = 3 ± 0.42. Since λ = 2.58 does not satisfy | A – 2.58 I |
= 0,  the  correct eigenvalue nearest to 3 is 3.42 and the corresponding eigenvector is

[0.7143, – 1, 0.7143]T. The exact eigenvalues of A are 2 + 2  = 3.42, 2 and 2 – 2  ≈ 0.59.



CHAPTER 3

Interpolation and Approximation

3.1 INTRODUCTION

We know that for a function f (x) that has continuous derivatives upto and including the
(n + 1)st order, the Taylor formula in the neighbourhood of the point x = x0, x0 ∈  [a, b] may
be written as

f (x) = f (x0) + (x – x0) f′(x0) + 
( )

( )
x x

f x
−

!
″0

2

02

+ ... + 
( )

!
x x

n

n− 0  f (n) (x0) + Rn+1(x) (3.1)

where the remainder term Rn+1(x) is of the form

 Rn+1(x) = 
( )

( ) !
x x

n

n−
+

+
0

1

1
 f (n+1)(ξ), x0 < ξ < x. (3.2)

Neglecting Rn+1(x) in (3.1), we obtain a polynomial of degree n :

P(x) = f (x0) + (x – x0) f′(x0) + 
( )

!
( )

x x
f x

−
″0

2

02

  + ... + 
( )

!
( ).( )x x

n
f x

n
n− 0

0 (3.3)

The polynomial P(x) may be called an interpolating polynomial satisfying the (n + 1)
conditions

 f (v)(x0) = P(v)(x0), v = 0, 1, 2, ... , n (3.4)
which are called the interpolating conditions. The conditions (3.4) may be replaced by more
general conditions such as the values of P(x) and  / or its certain order derivatives coincide with
the corresponding values of f (x) and the same order derivatives, at one or more distinct tabu-
lar points, a ≤ x0 < x1 < ... < xn–1 < xn ≤ b. In general, the deviation or remainder due to replace-
ment of a function f (x) by another function P(x) may be written as

E( f, x) = f (x) – P(x). (3.5)
In approximation, we measure the deviation of the given function f (x) from the approxi-

mating function P(x) for all values of x ∈  [a, b].
We now give a few methods for constructing the interpolating polynomials and approxi-

mating functions for a given function f (x).

8-\N-NUM\NU-3-1

144



8-\N-NUM\NU-3-1

Interpolation and Approximation 145

Taylor Series Interpolation

If the polynomial P(x) is written as the Taylor’s expansion, for the function f (x) about a
point x0, x0 ∈  [a, b], in the form

P(x) = f (x0) + (x – x0) f′(x0) + 
1
2 !

 (x – x0)
2 f″(x0) + ...  + 

1
n !

 (x – x0)n f (n)(x0)

then, P(x) may be regarded as an interpolating polynomial of degree n, satisfying the condi-
tions

P (k)(x0) = f (k)(x0), k = 0, 1, ... n.
The term

Rn+1 = 
1

1( )!n +
 (x – x0)

n+1 f (n+1) (ξ), x0 < ξ < x

which has been neglected in the Taylor expansion is called the remainder or the truncation
error.

The number of terms to be included in the Taylor expansion may be determined by the
acceptable error. If this error is ε > 0 and the series is truncated at the term f (n)(x0), then, we
can write

 
1

1( )!n +
 | x – x0 |

 n+1 | f (n+1) (ξ) | ≤  ε

or
1

1( )!n +
 | x – x0|

n+1 Mn+1  ≤  ε

where, Mn+1
 = max

a x b≤ ≤
 | f (n+1)(x) |.

Assume that the value of Mn+1
 or its estimate is available.

For a given ε and x, we can determine n, and if n and x are prescribed, we can determine
ε. When both n and ε are given, we can find an upper bound on (x – x0), that is, it will give an
interval about x0 in which this Taylor’s polynomial approximates f (x) to the prescribed accu-
racy.

3.2 LAGRANGE AND NEWTON INTERPOLATIONS

Given the values of a function f (x) at n + 1 distinct points x0, x1, ... , xn, such that
x0 < x1 < x2 < ... < xn, we determine a unique polynomial P(x) of degree n which satisfies the
conditions

P(xi ) = f (xi ), i = 0, 1, 2, ... , n. (3.6)

Lagrange Interpolation

The maximum degree of the polynomial satisfying the n + 1 conditions (3.6) will be n.
We assume the polynomial P(x) in the form

P(x) = l0(x) f (x0) + l1(x) f (x1) + ... + ln(x) f (xn) (3.7)
where li(x), 0 ≤ i ≤ n are polynomials of degree n. The polynomials (3.7) will satisfy the interpo-
lating conditions (3.6) if and only if

 li(xj ) = 
0
1

, ,
, .

i j
i j

≠
= (3.8)

The polynomial li(x) satisfying the conditions (3.8) can be written as
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li(x) = 
( )( )...( )( )...( )

( )( )...( )( )...( )–

x x x x x x x x x x
x x x x x x x x x x

i i n

i i i i i i i n

− − − − −
− − − − −

− +

+

0 1 1 1

0 1 1 1
(3.9)

or  li(x) = 
w x

x x w xi i

( )
( ) ( )− ′

where w(x) = (x – x0) (x – x1)(x – xn).
The functions li(x), i = 0(1)n are called the Lagrange fundamental polynomials and (3.7)

is the Lagrange interpolation polynomial.
The truncation error in the Lagrange interpolation is given by

En(f ; x) = f (x) – P(x).
Since  En( f ; x) = 0 at x = xi, i = 0, 1, ..., n, then for x ∈  [a, b] and x ≠ xi, we define a function

g(t) as

g(t) = f (t) – P(t) – [f (x) – P(x)] 
( )( )...( )

( )( )...( )
t x t x t x
x x x x x x

n

n

− − −
− − −

0 1

0 1
.

We observe that  g(t) = 0 at t = x and t = xi, i = 0, 1, ..., n.
Applying  the  Rolle’s  theorem  repeatedly  for  g(t),  g′(t),  ...,  and  g(n)(t),  we  obtain

g(n+1) (ξ) = 0 where ξ is some point such that
min (x0, x1, ..., xn, x) < ξ <  max (x0, x1, ..., xn, x).

Differentiating  g(t), n + 1 times with respect to t, we get

 g(n+1)(t) = f (n+1)(t) – 
( ) ! [ ( ) ( )]

( )( )...( )
n f x P x

x x x x x xn

+ −
− − −

1

0 1
.

Setting  g(n+1) (ξ) = 0 and solving for f (x), we get

f (x) = P(x) + 
w x

n
f n( )

( ) !
( )( )

+
+

1
1 ξ .

Hence, the truncation error in Lagrange interpolation is given by

En( f ; x) = 
w x

n
f n( )

( ) !
( )( )

+
+

1
1 ξ (3.10)

where min (x0, x1, ..., xn, x) < ξ < max (x0, x1, ..., xn, x).

Iterated Interpolation

The iterated form of the Lagrange interpolation can be written as

I0, 1, 2, ..., n(x) = 
1

1x xn n− −
 

I x x x
I x x x

n n

n n n

0 1 1 1

0 1 2

, , ...,

, , ..., ,

( )
( )

− −

−

−
− (3.11)

The interpolating polynomials appearing on the right side of (3.11) are any two inde-
pendent (n – 1)th degree polynomials which could be constructed in a number of ways. In the
Aitken method, we construct the successive iterated polynomials as follows :

  I0(x) = f (x0), I1(x) = f (x1),

I0,1(x) = 
1

1 0x x−
 I x x x

I x x x
0 0

1 1

( )
( )

−
−

I0, 1, 2(x) = 
1

2 1x x−
 

I x x x
I x x x

0 1 1

0 2 2

,

,

( )
( )

−
−

 I0, 1, 2, 3(x) = 
1

3 2x x−
 

I x x x
I x x x

0 1 2 2

0 1 3 3

, ,

, ,

( )
( )

−
−
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This interpolation is identical with the Lagrange interpolation polynomial but it is much
simpler to construct.

Newton Divided Difference Interpolation

An interpolation polynomial satisfying the conditions (3.6) can also be written in the
form

P(x) = f [x0] + (x – x0) f [x0, x1] + (x – x0)(x – x1) f [x0, x1, x2] + ...
+ (x – x0)(x – x1) ... (x – xn–1) f [x0, x1, ... xn] (3.12)

where f [x0] = f (x0),

f [x0, x1] = 
f x f x

x x
( ) ( )1 0

1 0

−
−

,

f [x0, x1, x2] = 
f x x f x x

x x
[ , ] [ , ]1 2 0 1

2 0

−
− ,

 f [x0, x1, ... xk] = 
f x x x f x x x

x x
k k

k

[ , ,... , ] [ , ,... , ]1 2 0 1 1

0

−
−

− , (3.13)

are the zeroth, first, second and kth order divided differences respectively. The polynomial
(3.12) is called the Newton divided difference interpolation polynomial. The function f (x) may
be written as

f (x) = P(x) + Rn+1(x) (3.14)
where Rn+1(x) is the remainder.

Since P(x) is a polynomial of degree ≤ n and satisfies the conditions
 f (xk) = P(xk), k = 0, 1, ..., n,

the remainder term Rn+1 vanishes at x = xk, k = 0(1)n. It may be noted that the interpolation
polynomial satisfying the conditions (3.6) is unique, and the polynomials given in (3.7), (3.11)
and (3.12) are different forms of the same interpolation polynomial. Therefore, P(x) in (3.12)
must be identical with the Lagrange interpolation polynomial. Hence, we have

Rn+1 = 
f
n

w x
n( ) ( )

( ) !
( )

+

+

1

1
ξ

. (3.15)

When a data item is added at the beginning or at the end of the tabular data and if it is
possible to derive an interpolating polynomial by adding one more term to the previously cal-
culated interpolating polynomial, then such an interpolating polynomial is said to possess
permanence property. Obviously, Lagrange interpolating polynomial does not possess this
property. Interpolating polynomials based on divided differences have the permanence prop-
erty. If one more data item (xn+1, fn+1) is added to the given data (xi, fi ), i = 0, 1, ..., n, then in the
case of Newton’s divided difference formula, we need to add the term

(x – x0)(x – x1) ... (x – xn) f [x0, x1, ..., xn+1]
to the previously calculated nth degree interpolating polynomial.

3.3 GREGORY-NEWTON INTERPOLATIONS

Assume that the tabular points x0, x1, ..., xn are equispaced, that is
xi = x0 + ih, i = 0, 1, ..., n

with the step size h.
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Finite Difference Operators

We define
 Ef (xi ) = f (xi + h) The shift operator

 ∆ f (xi ) = f (xi + h) – f (xi ) The forward difference operator

  ∇ f (xi ) = f (xi ) – f (xi – h) The backward difference opera-
tor

 δ f (xi ) = f x
h

f x
h

i i+�
��

�
�� − −�

��
�
��2 2

The central difference operator

 µ f (xi ) = 
1
2 2 2

f x
h

f x
h

i i+�
��

�
�� + −�

��
�
��

�
�	



��

The averaging operator (3.16)

Repeated application of the difference operators give the following higher order differ-
ences :

E n f (xi ) = f (xi + nh)

∆n f (xi ) = ∆n–1fi+1 – ∆n–1 fi = (E – 1)n fi

= ( )
!

( ) ! !
−

−=
+ −∑ 1

0

k

k

n

i n k
n

n k k
f

∇ nf (xi ) = ∇ n–1fi – ∇ n–1 fi–1 = (1 – E–1)n fi

= ( )
!

( ) ! !
−

−=
−∑ 1

0

k

k

n

i k
n

n k k
f

δ nf (xi ) = δ n–1fi+1/2
 – δ n–1fi–1/2 = (E1/2 – E–1/2)n fi

= ( )
!

( ) ! ! ( / )−
− + −

=
∑ 1 2

0

k
i n k

k

n n
n k k

f (3.17)

where, fi = f (xi ).

We also have

f [x0, x1, ..., xk] = 
1 1

0
k h

f
k h

fk
k

k
k

k
! !

.∆ = ∇ (3.18)

∆ f (x) = h f′ (x), or f′(x) = [∆ f (x)] / h. Error in f′ (x) : O(h).

∆2f (x) = h2f″ (x), or f″(x) = [∆2f (x)] / h2. Error in f ″(x) : O(h).

∇ f (x) = hf′ (x), or f′(x) = [∇ f (x)] / h. Error in f ′(x) : O(h).

∇ 2f (x) = h2f″ (x), or f″(x) = [∇ 2f (x)] / h2. Error in f ″(x) : O(h).

δ2f (x) = h2f″ (x), or f″(x) = [δ2f (x)] / h2. Error in f″ (x) : O(h2).

f [x0, x1] = 
1
h  [∆f0] = f0′,

 f [x0, x1, x2] = 
1

2 2!h
 ∆2f0 = 

1
2 0f ″ .

The results can be generalized to higher order derivations.
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Table: Relationship among the operaters

E ∆ ∇ δ

E E ∆ + 1 (1 – ∇ )–1 1 + 
1
2

1
1
4

2 2δ δ δ+ +���
�
��

∆ E – 1 ∆ (1 – ∇ )–1 – 1
1
2

1
1
4

2 2δ δ δ+ +���
�
��

∇ 1 – E –1 1 –  (1 + ∆)–1 ∇ − + +���
�
��

1
2

1
1
4

2 2δ δ δ

δ E1/2 – E –1/2 ∆(1 + ∆)–1/2 ∇ (1 – ∇ )–1/2 δ

µ 1
2

1/2 1/2( )E E+ − 1
1
2

1 1/2+���
�
�� +∆ ∆( ) 1

1
2

1 1/2− ∇�
��

�
�� − ∇ −( ) 1

1
4

2+���
�
��δ

Gregory-Newton Forward Difference Interpolation

Replacing the divided differences in (3.12) by the forward differences, we get

P(x) = f0 + 
( ) ( )( )

...
x x

h
f

x x x x

h
f

−
+

− −
!

+0
0

0 1
2

2
0

2
∆ ∆

+ 
( )( ) ... ( )

!

x x x x x x

n h
fn

n
n− − − −0 1 1

0∆ (3.19)

or P(x0 + hs) = f0 + s∆f0 + 
s s

f
( )

!
...

− +1
2

2
0∆ + 

s s s n
n

fn( ) ... ( )
!

− − +1 1
0∆ (3.20)

 = 
s
i f

i

n
i�

�
�
�

=
∑

0
0∆

where, s = (x – x0) / h. Note that s > 0.
The error of interpolation is

En( f ; x) = s
n

h fn n

+
�
��

�
��

+ +
1

1 1( ) ( )ξ .

Gregory-Newton Backward Difference Interpolation

We have

P(x) = fn + 
( ) ( )( )

!
...

x x
h

f
x x x x

h
fn

n
n n

n
−

∇ +
− −

∇ +−1
2

2

2

+ 
( )( ) ... ( )

!

x x x x x x

n h
fn n

n
n

n
− − −

∇−1 1 (3.21)

or  Pn(xn + hs) = fn + s∇ fn + 
s s

fn
( )

!
...

+ ∇ +1
2

2  + 
s s s n

n
fn
n

( ) ... ( )
!

+ + − ∇1 1

(3.22)

 = ( )− −�
�
�
� ∇

=
∑ 1

0

i

i

n
i

n
s

i
f

where, s = (x – xn) / h. Note that s < 0.
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The error of interpolation is

En( f ; x) = (– 1)n+1 
−
+

�
�

�
�

+ +s
n h fn n

1
1 1( )ξ .

3.4 HERMITE INTERPOLATION

Given the values of f (x) and f ′(x) at the distinct points xi, i = 0, 1, ..., n, x0 < x1 < x2 < ... < xn, we
determine a unique polynomial of degree ≤ 2n + 1 which satisfies the conditions

  P(xi) = fi ,

 P ′(xi) = fi′ , i = 0, 1, ..., n. (3.23)

The required polynomial is given by

 P(x) = A x f x B x f xi i i i
i

n

i

n

( ) ( ) ( ) ( )+ ′
==
∑∑

00

(3.24)

where Ai(x), Bi(x) are polynomials of degree 2n + 1, and are given by

Ai(x) = [1 – 2(x – xi )li′ (xi )] li
2 (x),

Bi(x) = (x – xi ) li
2 (x),

and li(x) is the Lagrange fundamental polynomial (3.9).
The error of interpolation in (3.24) is given by

E2n+1( f ; x) = 
w x
n

f n
2

2 2

2 2
( )

( ) !
( )( )

+
+ ξ , x0 < ξ < xn. (3.25)

3.5 PIECEWISE AND SPLINE INTERPOLATION

In order to keep the degree of the interpolating polynomial small and also to obtain accurate
results, we use piecewise interpolation. We divide the interval [a, b] containing the tabular
points x0, x1, ..., xn where x0 = a and xn = b into a number of subintervals [xi–1, xi], i = 1, 2, ..., n
and replace the function f (x) by some lower degree interpolating polynomial in each subinterval.

Piecewise Linear Interpolation

If we replace f (x) on [xi–1, xi] by the Lagrange linear polynomial, we obtain

 F1(x) = Pi1(x) = 
x x

x x
f

x x
x x

fi

i i
i

i

i i
i

−
−

+
−
−−

−
−

−1
1

1

1
, (3.26)

 i = 1, 2, ..., n.

Piecewise cubic Hermite Interpolation

Let the values of f (x), f ′(x) be given at the points x0, x1, ..., xn.
If we replace f (x) on [xi–1, xi], by the cubic Hermite interpolation polynomial, we obtain

 F3(x) = Pi3(x) = Ai–1(x) fi–1 + Ai(x) fi + Bi–1(x) fi−′ 1 + Bi(x) fi ′ , (3.27)

 i = 1, 2, ..., n

where Ai–1 = 1
2 1

1

2

1
2−

−
−

�
�
	



�
�

−
−

−

− −

( ) ( )

( )

x x
x x

x x

x x
i

i i

i

i i
,
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 Ai = 1
2

1

1
2

1
2−

−
−

�
�
	



�
�

−
−−

−

−

( ) ( )

( )

x x
x x

x x

x x
i

i i

i

i i
,

Bi–1
 = 

( )( )

( )

x x x x

x x
i i

i i

− −
−

−

−

1
2

1
2 ,

 Bi = 
( )( )

( )

x x x x

x x
i i

i i

− −
−

−

−

1
2

1
2 . (3.28)

We  note  that  piecewise cubic Hermite interpolation requires prior knowledge of f′(xi ),
i = 0, 1, ..., n. If we only use fi, i = 0, 1, ..., n, the resulting piecewise cubic polynomial will still
interpolate f (x) at x0, x1, ..., xn regardless of the choice of mi = f′(xi), i = 0, 1, ..., n. Since P3(x) is
twice continuously differentiable on [a, b], we determine mi’s using these continuity condi-
tions. Such an interpolation is called spline interpolation. We assume that the tabular points
are equispaced.

Cubic Spline Interpolation (Continuity of second derivative)

We assume the continuity of the second derivative. Write (3.27) in the intervals [xi–1, xi]
and [xi, xi+1], differentiate two times with respect to x and use the continuity of second order
derivatives at xi, that is

 lim
ε→ 0

 F ″(xi + ε) = lim
ε→ 0

 F ″(xi – ε). (3.29)

We obtain,

lim ( ) ( )
ε

ε
→ +

+
+ +

+″ + = − − ′ − ′
0

1
2 1

1 1
1

6 4 2
F x

h
f f

h
f

h
fi

i
i i

i
i

i
i [3.29 (i)]

 lim ( ) ( )
ε

ε
→ − −″ − = − + ′ + ′

0 2 1 1
6 2 4

F x
h

f f
h

f
h

fi
i

i i
i

i
i

i . [3.29 (ii)]

Equating the right hand sides, we obtain

1 2 2 1
1

1 1
1h

f
h h

f
h

f
i

i
i i

i
i

i−
+ +

+′ + +
�
��

�
��

′ + ′

= – 
3 31

2
1

1
2

( ) ( )f f

h

f f

h
i i

i

i i

i

− +

+

−
+

−
 i = 1, 2, ..., n – 1. [3.29 (iii)]

These are n – 1 equations in n + 1 unknowns f0′ , f1′ , ..., fn′ . If f0 ″  and fn ″  are pre-
scribed, then from [3.29 (i)] and [3.29 (ii)] for i = 0 and i = n respectively, we obtain

 
2 1 3 1

21
0

1
1

1 0

1
2 0h

f
h

f
f f

h
f′ + ′ =

−
− ″

( )
[3.29 (iv)]

1 2 3 1
21

1
2h

f
h

f
f f

h
f

n
n

n
n

n n

n
n−

−′ + ′ =
−

+ ″
( )

. [3.29 (v)]

The derivatives fi′ , i = 0, 1, ..., n are determined by solving the equations [3.29 (iii)] to

[3.29 (v)]. If f0′  and fn′  are specified, then we determine f1′ , f2′ , ..., fn−′ 1 from the equation
[3.29 (iii)].

For equispaced points, equations [3.29 (iii)] to [3.29 (v)] become, respectively,

f f f
hi i i− +′ + ′+ ′ =1 14
3  (fi+1 – fi–1), i = 1, 2, ..., n – 1 (3.30)
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 2 f f
h0 1
3′ + ′ =  (f1 – f0) – 

h
f

2 0″ [3.31 (i)]

f f
hn n−′ + ′ =1 2
3

 (fn – fn–1) + 
h

fn2
″ [3.31 (ii)]

where xi – xi–1 = h, i = 1(1)n.

The  above  procedure  gives  the  values  of  fi′ , i = 0, 1, ..., n.  Substituting  fi  and  fi′ ,
i = 0, 1, ..., n in the piecewise cubic Hermite interpolating polynomial (3.27), we obtain the
required cubic spline interpolation. It may be noted that we need to solve only an (n – 1) × (n –
1) or an (n + 1) × (n + 1) tridiagonal system of equations for the solution of fi′ . This method is
computationally much less expensive than the direct method.

Cubic Spline Interpolation (Continuity of first derivative)

We assume the continuity of the first derivative. Since F(x) is a cubic polynomial, F ″(x)
must be a linear function. We write F ″(x) on [xi–1, xi] in the form

 F″(x) = 
x x

x x
F x

x x
x x

F xi

i i
i

i

i i
i

−
−

″ +
−
−

″
−

−
−

−1
1

1

1
( )

( )
( ) . (3.32)

Integrating (3.32) two times with respect to x, we get

  F(x) = 
( ) ( )x x

h
M

x x
h

i

i
i

i

i

−
+

−
−

−
3

1
1

3

6 6  Mi + c1x + c2 (3.33)

where Mi = F″(xi) and c1 and c2 are arbitrary constants to be determined by using the condi-
tions F(xi–1) = f (xi–1) and F(xi ) = f (xi ). We obtain

F(x) = 
1

6hi
 (xi – x)3 Mi–1 + 

1
6hi

 (x – xi–1)
3 Mi + 

x
hi

 ( fi – fi–1)

– x
6

 (Mi – Mi–1)hi + 
1
hi

 (xi fi–1 – xi–1 fi ) – 1
6

 (xi Mi–1 – xi–1 Mi )hi

= 
1

6
2 2

1h
x x x x h M

i
i i i i[( ) {( ) }]− − − −

+ 
1

6hi
 [(x – xi–1) {(x – xi–1)2 – hi

2}] Mi

+ 
1
hi

 (xi – x)fi–1 + 
1
hi

 (x – xi–1) fi (3.34)

where, xi–1 ≤ x ≤ xi.
Now, we require that the derivative F ′(x) be continuous at x = xi ± ε as ε → 0. Letting

F ′(xi – ε) = F ′(xi + ε) as ε → 0, we get

h
M

h
M

h
i

i
i

i
i6 3

1
1− + +  (fi – fi –1) = – 

h
M

h
M

h
f fi

i
i

i
i

i i
+ +

+
+

+− + −1 1
1

1
13 6

1
( )

which may be written as

h
M

h h
M

h
Mi

i
i i

i
i

i6 3 61
1 1

1−
+ +

++
+

+  = 
1 1

1
1h

f f
hi

i i
i+

+ − −( )  (fi – fi–1), i = 1, 2, ..., n – 1.

(3.35)
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For equispaced knots hi = h for all i, equations (3.34) and (3.35) reduce to

F(x) = 
1

6h
 [(xi – x)3 Mi–1 + (x – xi–1)3 Mi] + 1

61

2

1h
x x f

h
Mi i i( )− −

�
��

�
��− −

+ 
1

61

2

h
x x f

h
Mi i i( )− −

�
��

�
��− ...[3.36 (i)]

and  Mi–1 + 4Mi + Mi+1 = 
6
2h

 (fi+1 – 2fi + fi–1). ...[3.36 (ii)]

This gives a system of n – 1 linear equations in n + 1 unknowns M0, M1, ..., Mn. The two
additional conditions may be taken in one of the following forms.

(i) M0 = Mn = 0. (natural spline)
(ii) M0 = Mn, M1 = Mn+1, f0 = fn, f1 = fn+1, h1 = hn+1.

(A spline satisfying these conditions is called a Periodic spline)
(iii) For a non-periodic spline, we use the conditions

F ′(a) = f ′(a) = f0′  and F ′(b) = f ′(b) = fn′ .
For i = 0 and i = n, we get

 2M0 + M1 = 
6

1

1 0

1
0h

f f
h

f
−

− ′
�
��

�
��

 Mn–1 + 2Mn = 
6 1

h
f

f f
hn

n
n n

n
′ −

−�
��

�
��

− . (3.37)

This method gives the values of Mi = f ″(xi), i = 1, 2, ..., N – 1, while in method 1, we were
determining f ′(xi). The solutions obtained for Mi, i = 1, 2, ..., N – 1 are substituted in (3.34) or
[3.36 (i)] to find the cubic spline interpolation. It may be noted that in this method also, we
need to solve only an (n – 1) × (n – 1) tridiagonal system of equations for finding Mi.

Splines usually provide a better approximation of the behaviour of functions that have
abrupt local changes. Further, splines perform better than higher order polynomial approxi-
mations.

3.6 BIVARIATE INTERPOLATION

Lagrange Bivariate Interpolation

If  the  values  of  the  function  f (x, y)  at  (m + 1)(n + 1)  distinct  point (xi, yj ), i = 0(1)m, j = 0(1)n
are given, then the polynomial P(x, y) of degree atmost m in x and n in y which satisfies the
conditions

P(xi, yj ) = f (xi, yj ) = fi, j , i = 0(1)m, j = 0(1)n

is given by  Pm,n(x, y) = X x Y y fm i n j i j
i

m

j

n

, , ,( ) ( )
==
∑∑

00
(3.38)

where Xm,i(x) = 
w x

x x w xi i

( )
( ) ( )− ′

, Yn,j(y) = 
w y

y y w yj j

* ( )
( ) *( )− ′



8-\N-NUM\NU-3-1

154 Numerical Methods : Problems and Solutions

and w(x) = (x – x0)(x – x1) ... (x – xm)
w*(y) = (y – y0)(y – y1) ... (y – yn).

Newton’s Bivariate Interpolation for Equispaced Points

With equispaced points, with spacing h in x and k in y, we define
∆x f (x, y) = f (x + h, y) – f (x, y) = (Ex – 1) f (x, y)

∆y f (x, y) = f (x, y + k) – f (x, y) = (Ey – 1) f (x, y)
 ∆xx f (x, y) = ∆x f (x + h, y) – ∆x f (x, y) = (Ex – 1)2 f (x, y)
 ∆yy f (x, y) = ∆y f (x, y + k) – ∆y f (x, y) = (Ey – 1)2 f (x, y)
 ∆xy f (x, y) = ∆x [f (x, y + k) – f (x, y)] = ∆x ∆y f (x, y)

= (Ex – 1)(Ey – 1) f (x, y) = (Ey – 1)(Ex – 1) f (x, y)
= ∆y ∆x f (x, y) = ∆yx f (x, y)

Now, f (x0 + mh, y0 + nk) = E Ex
m

y
n  f (x0, y0) = (1 + ∆x )m (1 + ∆y )n

 f (x0, y0)

= 1
1 2

+ �
��
�
��

+ �
��
�
��

+
�

�
	




�
�

m m
x xx∆ ∆ ... 1 1 2 0 0+ ��

�
� + ��

�
� +�

�	


��

n n f x yy yy∆ ∆ ... ( , )

= 1
1 1 2 1 1 2

+
�
��
�
��

+
�
��
�
��

+
�
��
�
��

+
�
��
�
��
�
��
�
��

+
�
��
�
��

+
�

�
	




�
�

m n m m n n
x y xx xy yy∆ ∆ ∆ ∆ ∆ ...  f (x0, y0) [3.39 (i)]

Let x = x0 + mh and y = y0 + nk. Hence, m = (x – x0) / h and n = (y – y0) / k. Then, from
[3.39 (i)] we have the interpolating polynomial

P(x, y) = f (x0, y0) + 
1 1

0 0h
x x

k
y yx y( ) ( )− + −�

�	


��

∆ ∆  f (x0, y0)

+ 
1
2

1 2 1
2 0 1 0 0 2 0 1!

( )( ) ( )( ) ( )( )
h

x x x x
hk

x x y y
k

y y y yxx xy yy− − + − − + − −�
�	



��

∆ ∆ ∆  f (x0 , y0) + ...

[3.39 (ii)]
This is called the Newton’s bivariate interpolating polynomial  for equispaced points.

3.7 APPROXIMATION

We approximate a given continuous function f (x) on [a, b] by an expression of the form

 f (x) ≈ P(x, c0, c1, ..., cn) = c xi i
i

n

φ ( )
=
∑

0

(3.40)

where φi(x), i = 0, 1, ..., n are n + 1 appropriately chosen linearly independent functions and
c0, c1, ..., cn are parameters to be determined such that

 E(f ; c) =  −  
=
∑f x c xi i
i

n

( ) ( )φ
0

(3.41)

is minimum, where || . || is a well defined norm. By using different norms, we obtain different
types of approximations. Once a particular norm is chosen, the function which minimizes the
error norm (3.41) is called the best approximation. The functions φi(x) are called coordinate
functions and are usually taken as φi(x) = x i, i = 0(1)n for polynomial approximation.



8-\N-NUM\NU-3-2

Interpolation and Approximation 155

Least Squares Approximation

We determine the parameters c0, c1, ..., cn such that

 I(c0, c1, ..., cn) = W x f x c xk
k

N

k i i k
i

n

( ) ( ) ( )
= =
∑ ∑−

�

�
	
	




�
�
�0 0

2

φ  = minimum. (3.42)

Here, the values of f (x) are given at N + 1 distinct points x0, x1, ..., xN.
For functions which are continuous on [a, b], we determine c0, c1, ..., cn such that

I(c0, c1, ..., cn) = W x f x c x dxi i
i

n

a

b
( ) ( ) ( )−
�

�
	
	




�
�
�=

∑
 φ
0

2

 = minimum (3.43)

where W(x) > 0 is the weight function.
The  necessary conditions for (3.42) or (3.43) to have a minimum value is that

 
∂
∂

=I
ci

0 , i = 0, 1, ..., n (3.44)

which give a system of (n + 1) linear equations in (n + 1) unknowns c0, c1, ..., cn in the form

W x f x c x xk k i i k
i

n

k

N

j k( ) ( ) ( ) ( )−
�

�
	
	




�
�
�

=
==
∑∑ φ φ

00

0 (3.45)

or  
a

b

i i
i

n

jW x f x c x x dx
 ∑−
�

�
	
	




�
�
�

=
=

( ) ( ) ( ) ( ) ,φ φ
0

0 (3.46)

 j = 0, 1, ..., n.
The equations (3.45) or (3.46) are called the normal equations. For large n, normal equa-

tions become ill-conditioned, when φi(x) = x i. This difficulty can be avoided if the functions φi(x)
are so chosen that they are orthogonal with respect to the weight function W(x) over [a, b] that
is

W
k

N

=
∑

0

(xk )φi(xk ) φj (xk ) = 0, i ≠ j, (3.47)

or
a

b
W x
 ( ) φi(x) φj(x)dx = 0, i ≠ j. (3.48)

If the functions φi(x) are orthogonal, then we obtain from (3.45)

 ci = 

W x x f x

W x x

k i k k
k

N

k i k
k

N

( ) ( ) ( )

( ) ( )

φ

φ

=

=

∑

∑
0

2

0

, i = 0, 1, 2, ..., n (3.49)

and from (3.46), we obtain

ci = a

b

i

a

b

i

W x x f x dx

W x x dx






( ) ( ) ( )

( ) ( )

φ

φ2
, i = 0, 1, 2, ..., n. (3.50)
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Gram-Schmidt Orthogonalizing Process

Given the polynomials φi(x), the polynomials φi
* (x) of degree i which are orthogonal on

[a, b] with respect to the weight function W(x) can be generated recursively.

We have,  φ0
* (x) = 1

 φi
* (x) = x i – a xir r

r

i

φ* ( )
=

−

∑
0

1

(3.51)

where air = 
a

b
i

r

a

b

r

W x x x dx

W x x dx






( ) ( )

( )( ( ))

*

*

φ

φ 2
, i = 0, 1, 2, ..., n. (3.52)

Over a discrete set of points, we replace the integrals by summation in (3.52).

Uniform (minimax) Polynomial Approximation

Taking the approximating polynomials for a continuous function f (x) on [a, b] in the
form

 Pn(x) = c0 + c1x + ... + cnx n (3.53)
we determine c0, c1, ..., cn such that the deviation

 En(f, c0, c1, ..., cn) = f (x) – Pn(x) (3.54)
satisfies the condition

max
a x b≤ ≤

 |En(f, c0, c1, ..., cn) = min
a x b≤ ≤

 |En(f, c0, c1, ..., cn)|. (3.55)

If we denote
εn(x) = f (x) – Pn(x),

 En(f, x) = max
a x b≤ ≤

| εn(x) |,

then there are atleast n + 2 points a = x0 < x1 < x2 ... < xn < xn+1 = b where (Chebyshev equi-
oscillation theorem)

(i) ε(xi) = ± En, i = 0, 1, ..., n + 1, [3.56 (i)]
(ii) ε(xi) = – ε(xi+1), i = 0, 1, ..., n. [3.56 (ii)]
The best uniform (minimax) polynomial approximation is uniquely determined under

the conditions (3.56). It may be observed that [3.56 (ii)] implies that
ε ′(xi ) = 0, i = 1, 2, ..., n. [3.56 (iii)]

For finding the best uniform approximation it is sufficient to use [3.56 (ii)] and [3.56 (iii)].

Chebyshev Polynomials

The Chebyshev polynomials of the first kind Tn(x) defined on [– 1, 1] are given by
 Tn(x) = cos (n cos–1 x) = cos nθ

where θ = cos–1 x or x = cos θ.
These polynomials satisfy the differential equation

(1 – x2) y″ – x y′ + n2 y = 0.
One independent solution gives Tn(x) and the second independent solution is given by

un(x) = sin (nθ) = sin (n cos–1 x). We note that un(x) is not a polynomial. The Chebyshev
polynomials of second kind, denoted by Un(x) are defined by
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 Un(x) = 
sin [( ) ]

sin
sin [( ) cos ]n n x

x

+
=

+

−

−1 1

1

1

2

θ
θ

Note that Un(x) is a polynomial of degree n.
The Chebyshev polynomials Tn(x) satisfy the recurrence relation

 Tn+1(x) = 2x Tn(x) – Tn–1(x)
 T0(x) = 1, T1(x) = x.

Thus, we have  T0(x) = 1,  1 = T0(x),
 T1(x) = x,  x = T1(x),
 T2(x) = 2x2 – 1, x2 = [T2(x) + T0(x)] / 2,
 T3(x) = 4x3 – 3x, x3 = [T3(x) + 3T1(x)] / 22,
 T4(x) = 8x4 – 8x2 + 1, x4 = [T4(x) + 4T2(x) + 3T0(x)] / 23.

We also have
 Tn(x) = cos nθ  = real part (ein θ) = Re (cos θ + i sin θ)n

= Re cos cos ( sin ) cos ( sin ) ...n n nn
i

n
iθ θ θ θ θ+ �

��
�
��

+ �
��
�
��

+
�

�
	




�
�− −

1 2
1 2 2

= xn + n x x nn
2

1
4

2 2�
�
�
� − + ��

�
�

− ( )  xn–4 (x2 – 1)2 + ...

= 2n–1 xn + terms of lower degree.
The Chebyshev polynomials Tn(x) possess the following properties :
(i) Tn(x) is a polynomial of degree n. If n is even, Tn(x) is an even polynomial and if n is

odd, Tn(x) is an odd polynomial.

(ii) Tn(x) has n simple zeros xk = cos 
2 1

2
k

n
−�

��
�
��π , k = 1, 2, ..., n on the interval [– 1, 1].

(iii) Tn(x) assumes extreme values at n + 1 points xk = cos (kπ / n), k = 0, 1, ..., n and the
extreme value at xk is (– 1)k.

(iv) | Tn(x) | ≤ 1, x ∈  [– 1, 1].
(v) If Pn(x) is any polynomial of degree n with leading coefficient unity (monic polyno-

mial) and ~
( )T xn  = Tn(x) / 2n–1 is the monic Chebyshev polynomial, then

max |
~

( )| max | ( )|
− ≤ ≤ − ≤ ≤

≤
1 1 1 1x

n
x

nT x P x  .

This property is called the minimax property.
(vi) Tn(x) is orthogonal with respect to the weight function

  W(x) = 
1

1 2− x
, and

T x T x

x
dx

m n

m n

m n

m n( ) ( )
,

,

, .1

0

2
0

0
21

1

−
=

≠

= ≠

= =
−


π

π
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Chebyshev Polynomial Approximation and Lanczos Economization

Let the Chebyshev series expansion of f (x) ∈  C[– 1, 1] be

f (x) = 
a

a T xi i
i

0

1
2

+
=

∞

∑ ( ) .

Then, the partial sum

 Pn(x) = 
a

a T xi i
i

n
0

0
2

+
=
∑ ( ) (3.57)

is very nearly the solution of the mini-max problem

max ( )
− ≤ ≤

=

− =∑1 1
0

x
i

i

i

n

f x c x minimum.

To obtain the approximating polynomial Pn(x), we follow the following steps :
1. Transform  the  interval  [a,  b]  to  [– 1,  1]  by  using  the  linear  transformation

x = [(b – a)t + (b + a)] / 2, and obtain the new function f (t) defined on [– 1, 1].
2. Obtain the power series expansion of f (t) on [– 1, 1]. Writing each term t i in terms of

Chebyshev polynomials we obtain

 f (t) = c T ti i
i

( )
=

∞

∑
0

.

The partial sum

Pn(t) = c T ti i
i

n

( )
=
∑

0

(3.58)

is a good uniform approximation to f (t) in the sense

max
− ≤ ≤1 1t

 | f (t) – Pn(t) | ≤ | cn+1 | + | cn+2 | + ... ≤ ε. (3.59)

Given ε, it is possible to find the number of terms to be retained in (3.59).
This procedure is called the Lanczos economization. Replacing each Ti(t) by its polyno-

mial form, we obtain Pn(t). Writing t in terms of x, we obtain the required economized Chebyshev
polynomial approximation to f (x) on [a, b].

3.8 PROBLEMS AND SOLUTIONS

Taylor Series Interpolation

3.1 Obtain a second degree polynomial approximation to f (x) = (1 + x)1/2 over [0, 1] by means
of the Taylor expansion about x = 0. Use the first three terms of the expansion to ap-
proximate f (0.05). Obtain a bound of the error in the interval [0, 1].
Solution
The Taylor expansion of f (x) = (1 + x)1/2 about x = 0 is obtained as

f (x) = f (0) + x f ′(0) + 
1
2

0
1
3

2

!
( )

!
x f ″ +  x3 f ″′ (0) + ... = 1 + 

x x x
2 8 16

2 3

– ...+ −

Taking terms upto x2, we obtain the approximation

f (x) = P(x) = 1 + 
x x
2 8

2

− .
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We have f (0.05) ≈ P(0.05) = 1.0246875.
The error of approximation is given by

 TE = 
x

f
3

3 !
( )″′ ξ .

Hence,  | TE | ≤ max max | ( )|
0 1

3

0 16≤ ≤ ≤ ≤
″′

x x

x
f x

= 
1
6

3

8 10 1 5 2
max

( ) /≤ ≤ +x x
 = 

1
16

 = 0.0625.

3.2 Expand ln(1 + x) in a Taylor expansion about x0 = 1 through terms of degree 4. Obtain a
bound on the truncation error when approximating ln 1.2 using this expansion.
Solution
The Taylor series expansion of ln(1 + x) about x0 = 1 is obtained as

 ln (1 + x) = ln 2 +
1
2

 (x – 1) – 
1
8

 (x – 1)2 + 
1

24
1

1
64

13 4( ) ( ) ...x x− − − +

Taking terms upto degree 4, we get
ln (1.2) ≈ 0.185414.

A bound on the error of approximation is given by

 | TE | ≤ max
( )

!
( )

.21 1

51
5≤ ≤

−
x

vx
f x

= max
( )

.
( ).21 1

5

5
1

120
24

1≤ ≤

−
+x

x
x

 = 0.2 × 10–5.

3.3 Obtain the polynomial approximation to f (x) = (1 – x)1/2 over [0, 1], by means of Taylor
expansion about x = 0. Find the number of terms required in the expansion to obtain
results correct to 5 × 10–3 for 0 ≤ x ≤ 1 / 2.
Solution
We have the Taylor series expansion for f (x) = (1 – x)1/2 about x = 0 as

f (x) = f (0) + x f′(0) + ... + 
x

n
f

n
n

−
−

−

1
1

1
0

( ) !
( )( )  + 

x
n

f
n

n

!
( ) ...( ) 0 +

If we keep the first n terms, then the error of approximation is given by

 TE = 
x
n

n

!
 f (n)(ξ), 0 ≤ ξ ≤ 1 / 2

where f (n)(x) = – 
1
2

1
2

3
2

2 3
2

1 2 1 2. ...
( )

( ) ( )/n
x n−�

��
�
�� − − −

= – 
( ) !
( ) !

( ) ( ) /2 2
2 1 2

11
2 1 2n

n
xn n

n−
−

−−
− −  = – ( ) !

( ) ! ( )( )/

2 2
2 1

1
12 1 2 1 2

n
n xn n
−

− −− −

and f (n)(0) = – 
( ) !

( ) !
2 2

2 12 1

n
nn
−

−−
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Hence, we find n such that

max | |
!

.
( ) !

( ) !
.

0 1/2 2 1
2 2 2

2 1
2 0 005

1
2

≤ ≤

−

−
−≤ −

−
≤

x

n

n
n

n
n

n
TE

or
( ) !
! ( ) !

.
2 2 2

1 2
0 0052

n
n n n

−
−

≤

which gives n ≥ 12. Therefore, atleast 13 terms are required in the Taylor expansion.

3.4 If we use somewhat unsuitable method of Taylor expansion around x = 0 for computa-
tion of sin x in the interval [0, 2π]  and if we want 4 accurate decimal places, how many
terms are needed. If instead we use the fact sin (π + x) = – sin x, we only need the
expansion in [0, π]. How many terms do we then need for the same accuracy.

(Lund Univ., Sweden, BIT 16 (1976), 228)
Solution
Taylor expansion of sin x about x = 0 is given by

 sin x = x – x x x
n

n n3 5 1 2 1

3 5
1
2 1! !

...
( )

( ) !
+ − + −

−

− −

with the error term

 TE = 
( )

( ) !
,

−
+

< <
+1

2 1
0

2 1n nx
n

M xξ

where M = ± cos (ξ) and max | M | = 1.
For x ∈  [0, 2π], we choose the smallest n so that

max
( )

( ) !
.

0 2

2 11
2 1

0 00005
≤ ≤

+−
+

≤
x

n nx
n

M
π

or  
( )
( ) !

.
2
2 1

0 00005
2 1π n

n

+

+
≤

which gives n ≥ 12.
For x ∈  [0, π], we choose the smallest n so that

max
( )

( ) !
.

0

2 11
2 1

0 00005
≤ ≤

+−
+

≤
x

n nx
n

M
π

or
( )

( ) !
.

π 2 1

2 1
0 00005

n

n

+

+
≤

which gives n ≥ 7.

3.5 Determine the constants a, b, c and d such that the interpolating polynomial

ys = y(x0 + sh) = ay0 + by1 + h2(cy dy0 1″ + ″ )

becomes correct to the highest possible order.
Solution
The interpolation error is given by

 TE = y(xs) – a y(x0) – b y(x1) – h2(cy″ (x0) + dy″ (x1))
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Expanding each term in Taylor series about x0, we obtain

TE = y0 + shy
s h

y
s h

y
s h

yiv
0

2 2

0

3 3

0

4 4

02 3 4
′ + ″ + ″ ′ + +

! ! !
...

– ( ) ...a b y bhy h
b

c d y h
b

d y h
b d

yiv+ + ′ + + +�
��

�
�� ″ + +�

��
�
�� ″ ′ + +�

��
�
�� +

�
�	



��

0 0
2

0
3

0
4

02 6 24 2
Setting the coefficients of various powers of h to zero, we get the system of equations

 a + b = 1,
b = s,

b
c d

s
2 2

2

+ + = ,

b
d

s
6 6

3

+ = ,

which give a = 1 – s, b = s, c = 
− − −

=
−s s s

d
s s( )( )

,
( )1 2

6
1

6

2

.

The error term is given by

 TE = 
s b d

h yiv
4

4

24 24 2
− −

�
��

�
��

( )ξ  = 
1

24
 (s4 – 2s3 + s)h4yiv(ξ).

3.6 Determine the constants a, b, c and d such that the interpolating polynomial
y(x0 + sh) = ay(x0 – h) + by(x0 + h) + h[cy′(x0 – h) + dy′(x0 + h)]

becomes correct to the highest possible order. Find the error term.
Solution
The interpolating error is written as

TE = y(x0 + sh) – ay(x0 – h) –  by(x0 + h) – h[cy′ (x0 – h) + dy′ (x0 + h)].
Expanding each term in Taylor series about x0, we obtain

TE = y0 + shy
s h

y
s h

y
s h

yiv
0

2 2

0

3 3

0

4 4

02 6 24
′ + ″ + ″′ + + ...

– 
�
�	 (a + b)y0 + h(– a + b + c + d) y0′  + 

h2

2
 (a + b – 2c + 2d) y0″

+ 
h3

6
 (– a + b + 3c + 3d) y0″′  + 

h
a b c d y iv

4

024
4 4( ) ...+ − + +




�
� .

Putting the coefficients of various powers of h to zero, we get the system of equations
 a + b = 1,

 – a + b + c + d = s,
a + b – 2c + 2d = s2,

– a + b + 3c + 3d = s3,
which has the solution a = (s – 1)(s2 + s – 2) / 4, b = (s + 1)(2 + s – s2) / 4,

c = (s + 1)(s – 1)2 / 4, d = (s – 1)(s + 1)2 / 4.
The error term is given by



8-\N-NUM\NU-3-2

162 Numerical Methods : Problems and Solutions

 TE = 
h4

24
 (s4 – a – b + 4c – 4d) y iv(ξ)

= 
1

24
 (s4 – 2s2 + 1)h4y iv(ξ).

3.7 Determine the parameters in the formula
P(x) = a0(x – a)3 + a1(x – a)2 + a2(x – a) + a3

such that
 P(a) = f (a), P ′(a) = f ′(a),
 P(b) = f (b), P ′(b) = f ′(b).

Solution
Using the given conditions, we obtain the system of equations

f (a) = a3,
f′(a) = a2,
 f (b) = a0(b – a)3 + a1(b – a)2 + a2(b – a) + a3,
f′(b) = 3a0(b – a)2 + 2a1(b – a) + a2,

which has the solution

a0 = 
2 1

3 2( )
[ ( ) ( )]

( )
[ ( ) ( )]

b a
f a f b

b a
f a f b

−
− +

−
′ + ′ ,

 a1
 = 

3 1
22( )

[ ( ) ( )]
( )

[ ( ) ( )]
b a

f b f a
b a

f a f b
−

− −
−

′ + ′ ,

a2 = f′(a), a3 = f (a).

3.8 Obtain the unique polynomial P(x) of degree 5 or less, approximating the function f (x),
where

   f (x0) = 1, f ′(x0) = 2,
 f ″(x0) = 1, f (x1) = 3,
  f ′(x1) = 0, f ″(x1) = – 2, x1 = x0 + h.

Also find P((x0 + x1) / 2).
Solution
We take the polynomial in the form

P(x) = a0 + a1(x – x0) + a2(x – x0)
2 + a3(x – x0)3 + a4(x – x0)

4 + a5(x – x0)5.
Using the given conditions, with h = x1 – x0, we obtain the system of equations

 a0 = 1, a1 = 2, a2 = 1 / 2,
a0 + ha1 + h2a2+ h3a3 + h4a4 + h5a5 = 3,

a1 + 2ha2 + 3h2a3 + 4h3a4 + 5h4a5 = 0,
2a2 + 6ha3 + 12h2a4 + 20h2a5 = – 2,

which has the solution
 a0 = 1, a1 = 2, a2 = 1 / 2,

 a3 = 
1

2 3h
 (40 – 24h – 5h2),

a4 = 
1

2 4h
 (– 60 + 32h + 7h2),
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 a5 = 
3

2 5h
 (8 – 4h – h2).

Substituting in the given polynomial, we obtain

P
x x0 1

2
1

64
+�

��
�
�� =  (128 + 20h – h2).

Lagrange and Newton Interpolation

3.9 For the data (xi, fi ), i = 0, 1, 2, ..., n, construct the Lagrange fundamental polynomials
li(x)  using  the information that they satisfy the conditions li(xj ) = 0, for i ≠ j and = 1 for
i = j.
Solution
Since li(xj ) = 0 for i ≠ j ; (x – x0), (x – x1), ..., (x – xi–1), (x – xi+1), ..., (x – xn) are factors of li(x).
Now, li(x) is a polynomial of degree n and (x – x0)(x – x1) ... (x – xi–1)(x – xi+1) ... (x – xn) is
also a polynomial of degree n. Hence, We can write

 li(x) = A(x – x0)(x – x1) ... (x – xi–1)(x – xi+1) ... (x – xn),
where A is a constant. Since, li(xi) = 1, we get

li(xi ) = 1 = A(xi  – x0)(xi – x1) ... (xi – xi–1)(xi – xi+1) ... (xi – xn).
This determines A. Therefore, the Lagrange fundamental polynomials are given by

 li(x) = 
( )( ) ... ( )( – ) ... ( )

( )( – ) ... ( )( ) ... ( )
x x x x x x x x x x

x x x x x x x x x x
i i n

i i i i i i i n

− − − −
− − − −

− +

− +

0 1 1 1

0 1 1 1
.

3.10 Let f (x) = ln(1 + x), x0 = 1 and x1 = 1.1. Use linear interpolation to calculate an approxi-
mate value of f (1.04) and obtain a bound on the truncation error.
Solution
We have f (x) = ln (1 + x),

 f (1.0) = ln (2) = 0.693147,
 f (1.1) = ln (2.1) = 0.741937.

The Lagrange interpolating polynomial is obtained as

 P1(x) = 
x x−

−
+ −

−
1.

1. 1. 1. 1.
1

0 1
0 693147

1
1 0

( . )  (0.741937)

which gives    P1(1.04) = 0.712663.
The error in linear interpolation is given by

 TE = 
1
2 !

 (x – x0)(x – x1)f ″(ξ), x0 < ξ < x1.

Hence, we obtain the bound on the error as

 | TE | ≤ 
1
2 1 1

max
.1≤ ≤x

 | (x – x0)(x – x1) | max
.11 1≤ ≤x

 |f ″(x) |

Since the maximum of (x – x0)(x – x1) is obtained at x = (x0 + x1) / 2 and f″ (x) = – 1 / (1 + x)2,
we get

 | TE | ≤ 
1
2 4

1
1

1 0
2

1 1 2
( )

max
( ).1

x x

xx

−
+≤ ≤

= 
( . )

.
0 1

8
1
4

2

 = 0.0003125.
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3.11 Determine an appropriate step size to use, in the construction of a table of f (x) = (1 + x)6

on [0, 1]. The truncation error for linear interpolation is to be bounded by 5 × 10–5.
Solution
The maximum error in linear interpolation is given by h2M2 / 8, where

 M2 = max | ( )|
0 1≤ ≤

″
x

f x  = max | ( ) |
0 1

430 1 480
≤ ≤

+ =
x

x .

We choose h so that
 60h2 ≤ 0.00005

which gives h ≤ 0.00091.

3.12 (a) Show that the truncation error of quadratic interpolation in an equidistant table is
bounded by

h3

9 3

�
��

�
��  max | f ″′ (ξ) |.

(b) We  want  to  set  up an equidistant table of the function f (x) = x2 ln x in the interval
5 ≤ x ≤ 10. The function values are rounded to 5 decimals. Give the step size h which
is to be used to yield a total error less than 10–5 on quadratic interpolation in this
table. (Bergen Univ., Sweden, BIT 25 (1985), 299)

Solution
(a) Error in quadratic interpolation based on the points xi–1, xi and xi+1 is given by

TE = 
( )( )( )

!
x x x x x xi i i− − −− +1 1

3
 f ″′ (ξ), xi –1 < ξ < xi+1.

Writing (x – xi ) / h = t, we obtain

TE = 
( )( )( )t t t− +1 1

6
 h3f ″′ (ξ), – 1 < ξ < 1.

The extreme values of g(t) = (t – 1)t(t + 1) = t3 – t occur at t = ± 1 / 3 . Now,

max | g(t) | = 2 / (3 3 ). Hence,

| TE | ≤  
h

f
3

9 3
max| ( )|″′ ξ .

(b) We have f (x) = x2 ln(x), which gives

f ″′ (x) = 
2
x

or max | ( )|
5 10

2
5≤ ≤

″′ =
x

f x .

Hence, we choose h such that

h3

9 3

2
5

0 000005�
��
�
�� ≤ .

which gives h ≤ 0.0580.

3.13 Determine the maximum step size that can be used in the tabulation of f (x) = ex in [0, 1],
so that the error in the linear interpolation will be less than 5 × 10–4. Find also the step
size if quadratic interpolation is used.
Solution
We have

f (x) = ex, f  (r)(x) = e x, r = 1, 2, ...
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Maximum error in linear interpolation is given by

h
e

h e
x

x
2

0 1

2

8 8
max | |
≤ ≤

= .

We choose h so that

h e2

8
0 0005≤ . ,

which gives  h ≤ 0.03836.
Maximum error in quadratic interpolation is given by

h
e

h e
x

x
3

0 1

3

9 3 9 3
max | |
≤ ≤

=

We choose h so that

 
h e3

9 3
0 0005≤ .

which gives  h ≤ 0.1420.

3.14 By considering the limit of the three point Lagrange interpolation formula relative to
x0, x0 + ε and x1 as ε → 0, obtain the formula

 f (x) = 
( )( )

( )
( )

x x x x x

x x
f x1 1 0

1 0
2 0

2− + −
−

  + 
( )( )

( )
( )

x x x x
x x

f x
− −

−
′0 1

1 0
0

+ 
( )
( )

( ) ( )
x x
x x

f x E x
−
−

+0
2

1 0
1

where  E(x) = 
1
6

 (x – x0)2(x – x1)f ″′ (ξ).

Solution
The Lagrange interpolating polynomial relative to the points x0, x0 + ε and x1 is obtained
as

 P2(x) = 
( )( )

( )
( )

( )( )
( )

( )
x x x x

x x
f x

x x x x
x x

f x
− − −
− −

+
− −

− +
+0 1

0 1
0

0 1

0 1
0

ε
ε ε ε

ε

+ 
( )( )

( )( )
( )

x x x x
x x x x

f x
− − −
− − −

0 0

1 0 1 0
1

ε
ε .

Taking the limit as ε → 0, we get

lim ( )
( )

( )
( ) lim –

( )( )
( )

( )
ε ε

ε
ε→ →

=
−
−

+
− − −

−
�
�
	

0
2

0
2

1 0
2 1

0

1 0

0 1
0P x

x x

x x
f x

x x x x
x

f x
x

 + 
( )( )

( )
( ( ) ( ) ( ))

x x x x
x x

f x f x O
− −

− +
+ ′ +



�
�0 1

0 1
0 0

2

ε ε
ε ε

= 
( )
( )

( ) lim
( ) ( )

x x
x x

f x
x x

x x
x x

x x
−
−

+
−
− +

−
− −

−
�
�
	



�
�

→
0

2

1 0
2 1

0

0

0 1

0

0 1ε ε ε
ε

ε  (x – x1)f (x0)

+ 
( )( )

( )
x x x x

x x
f x

− −
−

′0 1

0 1
0

= 
( )( )

( )
( )

x x x x x

x x
f x1 1 0

1 0
2 0

2− + −
−

 + 
( )( )

( )
( )

( )

( )
( )

x x x x
x x

f x
x x

x x
f x

− −
−

′ +
−
−

0 1

0 1
0

0
2

1 0
2 1
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The error in quadratic interpolation is given by

 TE = 
( )( )( )

!
( )

x x x x x x
f

− − − −
′″0 0 1

3
ε

ξ

which in the limit as ε → 0 becomes

TE = 
( ) ( )

!
x x x x− −0

2
1

3
 f ″′ (ξ).

3.15 Denoting the interpolant of f (x) on the set of (distinct) points x0, x1, ..., xn by 
k

n

=
∑

0

lk(x)f

(xk), find an expression for l xk k
n

k

n

( )0 1

0

+

=
∑ .(Gothenburg Univ., Sweden, BIT 15 (1975), 224)

Solution
We have

f (x) = l x f x
x x x x x x

n
fk k

n

k

n
n( ) ( )

( )( ) ... ( )
( ) !

( )( )+
− − −

+=

+∑ 0 1

0

1

1
ξ .

Letting f (x) = x n+1, we get

 x n+1 = l x xk k
n

k

n

( ) +

=
∑ 1

0

 + (x – x0) ... (x – xn).

Taking x = 0, we obtain

 l xk k
n

k

n

( )0 1

0

+

=
∑  = (– 1)n x0x1 ... xn.

3.16 Find the unique polynomial P(x) of degree 2 or less such that
 P(1) = 1, P(3) = 27, P(4) = 64

using each of the following methods : (i) Lagrange interpolation formula, (ii) Newton-
divided difference formula and (iii) Aitken’s iterated interpolation formula. Evaluate
P(1.5).
Solution
(i) Using Lagrange interpolation (3.7), we obtain

 P2(x) = 
( )( )
( )( )

( )
( )( )
( )( )

( )
( )( )
( )( )

( )
x x x x x x− −

− −
+ − −

− −
+ − −

− −
4 3

1 4 1 3
1

1 4
3 1 3 4

27
1 3

4 1 4 3
64

= 
1
6

 (x2 – 7x + 12) – 
27
2

 (x2 – 5x + 4) + 
64
3

 (x2 – 4x + 3)

= 8x2 – 19x + 12.
(ii) We form the divided difference table.

x P(x)

1 1
13

3 27 8
37

4 64
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Using Newton’s divided difference formula (3.12), we obtain

 P2(x) = P [x0] + (x – x0) P [x0, x1] + (x – x0)(x – x1) P [x0, x1, x2]

= 1 + (x – 1)(13) + (x – 1)(x – 3)(8) = 8x2 – 19x + 12.

(iii) Using iterated interpolation (3.11), we obtain

 I01(x) = 
1

1 0

0 0

1 1x x
I x x x
I x x x−

−
−

( )
( )  = 

1
2

1 1
27 3

−
−

x
x  = 13x – 12.

 I02(x) = 
1

2 0

0 0

2 2x x
I x x x
I x x x−

−
−

( )
( )  = 

1
3

1 1
64 4

−
−

x
x  = 21x – 20.

I012(x) = 
1

2 1

01 1

02 2x x
I x x x
I x x x−

−
−

( )
( )  = 

13 12 3
21 20 4

x x
x x

− −
− −

= 8x2 – 19x + 12.

We obtain  P2(1.5) = 1.5.

3.17 Suppose f ′(x) = ex cos x is to be approximated on [0, 1] by an interpolating polynomial on
n + 1 equally spaced points 0 = x0 < x1 < x2 ... < xn = 1. Determine n so that the truncation
error will be less than 0.0001 in this interval.
Solution
The nodal points are given by

 xr = r / n, r = 0, 1, ..., n.

On [0, 1], the maximum of x
r
n

x
n r

n
−���
�
�� −

−�
��

�
��  occurs at x = 1 / 2. Hence,

max
0 1

2 21
2

1
2

1
4≤ ≤

−���
�
�� − −�
��

�
�� = −�
��

�
�� = −�

��
�
�� ≤

x
rx

r
n

x
n r

n
r
n

x

since xr is any point in [0, 1].
Using this result and combining the first and last terms, second and last but one terms,
etc., we get

max ... ( )
0 1 1

1 1
1

1
2≤ ≤ +−���

�
�� − −�
��

�
�� − ≤

x nx x
n

x
n

n
x

We have  f (x) = ex cos x = Re[e(1+i)x]

where Re stands for the real part. We have

f (r)(x) = Re [(1 + i )r e(1+i )x]

= Re 2
4 4

2r xr
i

r
x i x e/ cos sin (cos sin )

π π
+�

��
�
�� +

�
�	



��

= 2r/2 cos 
r

x exπ
4

+�
��

�
�� .

The maximum truncation error is given by
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 | TE | =  max
( )( )( ) ... ( )

( ) !0 1

1 20 1

1≤ ≤

− − − −
+x

n nx x x x

n
 max | ( )|( )

0 1

1

≤ ≤

+

x

nf x

≤ 
1

2 1
2 1

41 0 1

1 2
n x

n x

n
n x e+ ≤ ≤

+

+
+ +�

��
�
��( ) !

max cos ( )( ) / π

≤ 
e

nn2 11 2( ) / ( ) !+ +
For | TE | ≤ 0.0001, we get n ≥ 6.

3.18 If f (x) = eax, show that
 ∆n f (x) = (e ah – 1)ne ax.

Solution
We establish the result by induction. Since

∆ f (x) = e a(x+h) – e ax = (e ah – 1) e a,
the result is true for n = 1.
We assume that the result holds for n = m that is

 ∆m f (x) = (e ah – 1)m e ax.
Then, we have

∆m+1f (x) = (e ah – 1)m [e a(x+h) – e a] = (e ah – 1)m+1e a

and the result also holds for n = m + 1.
Hence, the result holds for all values of n.

3.19 Calculate the nth divided difference of f (x) = 1 / x.
Solution

We have f [x0, x1] = 1 1

1 0x x
−

�
�
	



�
� (x1 – x0) = – 1 / (x0x1).

f [x0, x1, x2] = − +
�
�
	



�
�

1 1

1 2 0 1x x x x
(x2 – x0) = (– 1)2 / (x0x1x2).

Let the result be true for n = k. That is

  f [x0, x1, ..., xk] = 
( )

...
− 1

0 1

k

kx x x
.

We have for n = k + 1
f [x0, x1, ..., xk+1]

= 
1

1 0( )x xk+ −
 ( f [x1, x2, ..., xk+1] – f [x0, ..., xk])

= 
1 1 1

1 0 1 2 1 0 1( )
( )

...
( )

...x x x x x x x xk

k

k

k

k+ +−
−

−
−�

�
	




�
�  = 

( )
...

− +

+

1 1

0 1 2 1

k

kx x x x
.

Hence, f [x0, x1, ..., xn] = (– 1)n / (x0x1 ... xn).

3.20 If f (x) = U(x)V(x), show that
f [x0, x1] = U[x0]V [x0, x1] + U[x0, x1]V [x1].
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Solution
We have f [x0, x1] = [U(x1)V(x1) – U(x0)V(x0)] / (x1 – x0)

= [V(x1){U(x1) – U(x0)} + U(x0) {V(x1) – V(x0)}] / (x1 – x0)
= V(x1)U[x0, x1] + U(x0)V [x0, x1].

3.21 Prove the relations
(i) ∇  – ∆ = – ∆∇. (ii) ∆ + ∇  = ∆ / ∇  – ∇  / ∆.

(iii)
k

n

=

−

∑
0

1

∆2fk = ∆ fn – ∆ f0. (iv) ∆( fi gi) = fi ∆ gi + gi+1 ∆ fi.

(v) ∆ fi
2 = ( fi + fi+1)∆ fi. (vi) ∆( fi / gi) = (gi ∆ fi – fi ∆ gi) / gi gi+1.

(vii) ∆(1 / fi ) = – ∆ fi  / (fi fi+1).
Solution
(i)  L.H.S. = (1 – E–1) – (E – 1) = – (E + E–1 – 2).

 R.H.S. = – (E – 1)(1 – E–1) = – (E + E–1 – 2).

(ii) L.H.S. = (E – 1) + (1 – E–1) = E – E–1.
 R.H.S. = (E  – 1) / (1 – E–1) – (1 – E–1) / (E – 1) = E – E–1.

(iii)  L.H.S. = ∆2

0

1

fk
k

n

=

−

∑  = ( )∆ ∆f fk k
k

n

+
=

−

−∑ 1
0

1

 = (∆ f1 – ∆ f0) + (∆ f2 – ∆ f1) + ... + (∆ fn – ∆ fn–1) = ∆ fn – ∆ f0.

(iv) L.H.S. = fi+1 gi+1
 – fi gi = gi + 1( fi+1 – fi) + fi( gi+1 – gi)  = gi+1 ∆ fi + fi ∆ gi.

(v) L.H.S. = f fi i+ −1
2 2  = ( fi+1 – fi )( fi+1 + fi ) = ( fi+1 + fi ) ∆ fi.

(vi) L.H.S. = 
f
g

f
g

i

i

i

i

+

+
−1

1
 = 

g f f g
g g

i i i i

i i

+ +

+

−1 1

1

= [gi( fi+1 – fi ) – fi( gi+1 – gi )] / (gi gi+1) = [gi ∆fi – fi∆gi] / (gi gi+1).

(vii) L.H.S. = 
1 1 1

1 1
1f f f f

f f
i i i i

i i
+ +

+− = −[ ] = – ∆ fi / (fi fi+1).

3.22 Use the Lagrange and the Newton-divided difference formulas to calculate f (3) from
the following table :

x
f x

0 1 2 4 5 6
1 14 15 5 6 19( )

Solution
Using Lagrange interpolation formula (3.7) we obtain

 P5(x) = 
1

240
 (x – 1)(x – 2)(x – 4)(x – 5)(x – 6)

+ 
14
60

 (x)(x – 2)(x – 4)(x – 5)(x – 6)

– 
15
48

 (x)(x – 1)(x – 4)(x – 5)(x – 6)

+ 
5
48

 (x)(x – 1)(x – 2)(x – 5)(x – 6)



8-\N-NUM\NU-3-3

170 Numerical Methods : Problems and Solutions

– 
6
60

 (x)(x – 1)(x – 2)(x – 4)(x – 6)

+ 
19

240
 (x)(x  – 1)(x – 2)(x – 4)(x – 5)

which gives f (3) = P5(3) = 10.
To use the Newton divided difference interpolation formula (3.12), we first construct
the divided difference table

x f (x)

0 1
1 14 13
2 15 1 – 6
4 5 – 5 – 2 1
5 6 1 2 1 0

6 19 13 6 1 0 0

We obtain the Newton divided difference interpolating polynomial as
 P5(x) = 1 + 13x – 6x(x – 1) + x(x – 1)(x – 2)

= x3 – 9x2 + 21x + 1
which gives   f (3) = P5(3) = 10.

3.23 The following data are part of a table for g(x) = sin x / x2.
x 0.1 0.2 0.3 0.4 0.5

g(x) 9.9833 4.9667 3.2836 2.4339 1.9177
Calculate g(0.25) as accurately as possible
(a) by interpolating directly in this table,
(b) by first tabulating x g(x) and then interpolating in that table,
(c) explain the difference between the results in (a) and (b) respectively.

(Umea Univ., Sweden, BIT 19 (1979), 285)
Solution
(a) First we construct the forward difference table from the given data

x g(x) ∆g ∆2g ∆3g ∆4g

0.1 9.9833
– 5.0166

0.2 4.9667 3.3335
– 1.6831 – 2.5001

0.3 3.2836 0.8334 2.0002
– 0.8497 – 0.4999

0.4 2.4339 0.3335
– 0.5162

0.5 1.9177

Using these differences, we obtain the interpolating polynomial using the first four points
as
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 P3(x) = 9.9833 + 
( . )

.
( . )

x − −0 1
0 1

5 0166

+ − − + − − −( . )( . )
( . )

( . )
( . )( . )( . )

( . )
x x x x x0 1 0 2

2 0 1
3 3335

0 1 0 2 0 3
6 0 12 3  (– 2.5001)

which gives  g(0.25) ≈ P3(0.25) = 3.8647.
We write the error term as

 Error ≈ 
( . )( . )( . )( . )

!( . )

x x x x
f

− − − −0 1 0 2 0 3 0 4

4 0 1 4
4

0∆

since f (4) (ξ) ≈ ∆4f0 / h4, and obtain the error at x = 0.25 as
 | Error | = 0.0469 ≈ 0.05.

Hence, we have g(0.25) = 3.87 ± 0.05.
(b) We first form the table for f (x) = x g(x) and then compute the forward differences.

x f = x g(x) ∆f ∆2f ∆3f ∆4f

0.1 0.99833
– 0.00499

0.2 0.99334 – 0.00327
– 0.00826 0.00001

0.3 0.98508 – 0.00326 0.00006
– 0.01152 0.00007

0.4 0.97356 – 0.00319
– 0.01471

0.5 0.95885

Using the first four points and these forward differences, we obtain the interpolating
polynomial as

 P3(x) = 0.99833 + 
( . )

.
( . )

x − −0 1
0 1

0 00499  + 
( . )( . )

( . )
( . )

x x− − −0 1 0 2

2 0 1
0 00327

2

+ 
( . )( . )( . )

( . )
( . )

x x x− − −0 1 0 2 0 3

6 0 1
0 00001

3

which gives (0.25)g(0.25) ≈ P3(0.25) = 0.989618,
or  g(0.25) = 3.958472.
We write the error term in 0.25g(0.25) as

( . )( . )( . )( . )
!( . )

x x x x
f

− − − −0 1 0 2 0 3 0 4
4 0 1 4

4
0∆

which gives error in 0.25g(0.25) as 0.000001406 and therefore, error in g(0.25) as
0.000005625.
Hence, we have

 g(0.25) = 3.95847 ± 0.000006.
(c) Since the differences in (a) are oscillating and are not decreasing fast, the resulting

error in interpolation would be large.
Since differences in part (b) tend to become smaller in magnitude, we expect more accu-
rate results in this case.
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3.24 In a computer program, quick access to the function 2x is needed, 0 ≤ x ≤ 1. A table with
step size h is stored into an array and the function values are calculated by interpola-
tion in this table.
(a) Which is the maximal step size to be used when function values are wanted correct

to 5 decimal places by linear interpolation ?
(The precision of the computer arithmetic is much better than so.)

(b) The same question when quadratic interpolation is used.
(Royal Inst. Tech., Stockholm, Sweden, BIT 26 (1986), 541)

Solution
We have f (x) = 2x, f (r)(x) = 2x (ln 2)r, r = 1, 2, ...
The maximum errors in linear and quadratic interpolation are given by h2M2 / 8 and

h3M3 / (9 3 ) respectively, where

 Mr = max | ( )|( )

0 1≤ ≤x

rf x .

Since 0 ≤ x ≤ 1, we have
    M2 = 2 (ln 2)2 and M3 = 2(ln 2)3.

(a) We choose h such that

2
8

2h  (ln 2)2 ≤ 0.000005

which gives h ≤ 0.00645.
(b) We choose h such that

2

9 3

3h  (ln 2)3 ≤ 0.000005

which gives h ≤ 0.04891.

3.25 The error  function erf (x) is defined by the integral

 erf (x) = 
2

0

2

π

x
te dt
 − .

(a) Approximate erf (0.08) by linear interpolation in the given table of correctly rounded
values. Estimate the total error.

x 0.05 0.10 0.15 0.20

erf (x) 0.05637 0.11246 0.16800 0.22270

(b) Suppose that the table were given with 7 correct decimals and with the step size
0.001 of the abscissas. Find the maximal total error for linear interpolation in the
interval 0 ≤ x ≤ 0.10 in this table. (Link��oping Univ., Sweden, BIT 26(1986), 398)

Solution
(a) Using linear interpolation based on the points 0.05 and 0.10, we have

 P1(x) = 
x x−

−
+ −

−
0 10

0 05 0 10
0 05637

0 05
0 10 0 05

0 11246
.

. .
( . )

.
. .

( . )

We obtain  erf (0.08) ≈ P1(0.08) = 0.09002.
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The maximum error of interpolation is given by

 | TE | = 
h

M
2

28

where  M2 = max | ( )|
0.05 0.10≤ ≤

″
x

f x  = max .
0.05 0.10

4
0 2251

2

≤ ≤

−− =
x

xx
e

π
.

Hence,  | TE | = 
( . )

( . )
0 05

8
0 2251

2

 = 0.000070 = 7.0 × 10–5.

(b) In this case, h = 0.001 and

 M2 = max
0 0.10

4 2

≤ ≤

−−
x

xx
e

π
 = 

0 4.

π  = 0.2256758.

Hence, we have

| TE | = 
( . )0 001

8

2

 (0.2256758) = 3.0 × 10–8.

3.26 The function f is displayed in the table, rounded to 5 correct decimals. We know that f (x)
behaves like 1 / x when x → 0. We want an approximation of f (0.55). Either we use
quadratic interpolation in the given table, or we set up a new table for g(x) = xf (x),
interpolate in that table and finally use the connection f (x) = g(x) / x. Choose the one
giving the smallest error, calculate f (0.55) and estimate the error.

x f (x) x f (x)

0.1 20.02502 0.6 3.48692
0.2 10.05013 0.7 3.03787
0.3 6.74211 0.8 2.70861
0.4 5.10105 0.9 2.45959

0.5 4.12706 1.0 2.26712

(Bergen Univ., Sweden, BIT 24(1984), 397)
Solution
The second procedure must be chosen as in that case g(x) is a well behaved function as
x → 0 and the interpolation would have the smallest possible error. However, to illus-
trate the difference between the two procedures, we obtain the solution using both the
methods.
We form the forward difference table based on the points 0.5, 0.6, 0.7 and 0.8 for the
function f (x), so that quadratic interpolation can be used.

x f (x) ∆ f ∆2f ∆3f

0.5 4.12706
– 0.64014

0.6 3.48692 0.19109
– 0.44905

0.7 3.03787 – 0.07130
– 0.32926 0.11979

0.8 2.70861
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We obtain the quadratic interpolating polynomial based on the points 0.5, 0.6 and 0.7 as

 P2(x) = 4.12706 + 
( . )

.
( . )

( . )( . )
! ( . )

( . )
x x x− − + − −0 5

0 1
0 64014

0 5 0 6
2 0 1

0 191092

which gives f (0.55) ≈ P2(0.55) = 3.783104.
The error term is given by

 Error (x) = 
( . )( . )( . )

! ( . )
( . )

x x x− − −
−0 5 0 6 0 7

3 01
0 071303

since f ″′ (ξ) ≈ ∆3f0 / h
3. Hence,

| Error (0.55) | = 4.5 × 10–3.
Now, we set up a new table for g(x) = x f (x) and form the forward difference table based
on the points 0.5, 0.6, 0.7 and 0.8 for g(x) as

x g(x) ∆ g ∆2g ∆3g

0.5 2.063530
0.028622

0.6 2.092152 0.005735
0.034357 0.000287

0.7 2.126509 0.006022
0.040379

0.8 2.166888

The quadratic interpolating polynomial for g(x) based on the points 0.5, 0.6 and 0.7 is
obtained as

 P2(x) = 2.063530 + 
( . )

.
x − 0 5

0 1
 (0.028622) + 

( . )( . )
! ( . )

x x− −0 5 0 6
2 0 1 2  (0.005735)

which gives
  0.55f (0.55) = g(0.55) ≈ P2(0.55) = 2.077124,

or f (0.55) = 3.776589.

  Error in g(0.55) = 
( . . )( . . )( . . )

( . )

0 55 0 5 0 55 0 6 0 55 0 7

6 0 1 3
− − −

 (0.000287) = 0.000018.

Hence, | error in f (0.55) | = 3.3 × 10–5.

3.27 The graph of a function f is almost a parabolic segment attaining its extreme values in
an interval (x0, x2). The function values fi = f (xi ) are known at equidistant abscissas x0,
x1, x2. The extreme value is searched. Use the quadratic interpolation to derive x coordi-
nate of the extremum. (Royal Inst. Tech., Stockholm, Sweden, BIT 26(1986), 135)
Solution
Replacing f (x) by the quadratic interpolating polynomial, we have

 P2(x) = f0 + 
( ) ( )( )

!

x x
h

f
x x x x

h
f

−
+

− −0
0

0 1
2

2
0

2
∆ ∆ .

The extremum is attained when

P2′(x) = 0 = 
1 2

20
0 1
2

2
0h

f
x x x

h
f∆ ∆+

− −( )

which gives xextremum = 
1
2 0 1

0
2

0

( )x x h
f

f
+ −

∆
∆

.
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Piecewise and Spline Interpolation

3.28 Determine the piecewise quadratic approximating function of
the form

S∆(x, y) = N fi i
i=
∑

0

8

for the following configuration of the rectangular network.
Solution
We have

N0 = (x2 – h2)(y2 – k2) / d, N1 = x(x – h)y(y + k) / (4d),
N2 = – (x2 – h2)y(y + k) / (2d), N3 = x(x + h)y(y + k) / (4d),
N4 = – x(x – h)(y2 – k2) / (2d), N5 = – x(x + h)(y2 – k2) / (2d),
N6 = x(x – h)y(y – k) / (4d), N7 = – (x2 – h2)(y)(y – k) / (2d),
N8 = x(x + h)y(y – k) / (4d), d = h2k2.

3.29 Determine the piecewise quadratic fit P(x) to f (x) = (1 + x2)–1/2 with knots at – 1, – 1 / 2, 0,
1  /  2, 1. Estimate the error | f – P | and compare this with full Lagrange polynomial fit.
Solution
We have the following data values

x – 1 – 1 / 2 0 1 / 2 1

f 1 / 2 2 / 5 1 2 / 5 1 / 2

We obtain the quadratic interpolating polynomial based on the points – 1, – 1 / 2 and 0,
as

P2(x) = 
( / )
( / )( )

( )
( / )( / )

( )( / )
( ) ( / )

( )
x x x x x x+

− −
�
��
�
��

+ +
−

�
��
�
��

+ + +1 2
1 2 1

1
2

1
1 2 1 2

2
5

1 1 2
1 1 2

1

  = 
1

10
2 5 8 2 2 10 5 8 2 3 10 102[( ) ( ) ]− + + − + +x x

Similarly, the quadratic interpolating polynomial based on the points 0, 1 / 2 and 1 is
obtained as

P2(x) = 
( / )( )

( / )( )
( )

( )
( / )( / )

x x x x− −
− −

+ −
−

�
��
�
��

1 2 1
1 2 1

1
1

1 2 1 2
2
5

 + 
x x( / )
( )( / )

− �
��
�
��

12
1 12

1

2

= 
1

10
2 10 8 2 2 5 8 2 3 10 5 102[( ) ( ) ]− + + − − +x x .

The maximum error of quadratic interpolation is given by

 | TE | ≤ 
h M3

3

9 3
where h = 0.5 and M3 = max | ( )|

− ≤ ≤
″′

1 0x
f x .

We find f ″′ (x) = (9x – 6x3)(1 + x2)–7 / 2,

and  M3 = max | | max |( ) |/

− ≤ ≤ − ≤ ≤

−− +
1 1

3

1 1

2 7 29 6 1
x x

x x x .
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Now, F(x) = 9x – 6x3 attains its extreme values at x2 = 1 / 2.

We get max | |
− ≤ ≤

− =
1 1

39 6
6

2x
x x .

Hence, we have  | TE | ≤ 
1

12 6
 = 0.0340.

Maximum error occurs at two points, x = ± 1 / 2 , in [– 1, 1].

The Lagrangian fourth degree polynomial based on the points – 1, – 1 / 2, 0, 1 / 2, 1 is
obtained as

P4(x) = x x x x+���
�
�� −���

�
�� −

�
��

�
��

1
2

1
2

1
2

3 2
( )  – ( ) ( )x x x x+ −�

��
�
�� −

�
��

�
��

1
1
2

1
16

3 5

+ (x + 1) x x x+���
�
�� −���

�
�� −1

2
1
2

1 4( )( )  – (x + 1) x x x+���
�
�� −

�
��

�
��

1
2

1
16

3 5
( )

+ (x + 1) x x x+���
�
�� −���

�
��
�
��

�
��

1
2

1
2

2

3 2

= 
1

6 5
[( ) ( ) ]4 10 64 24 5 10 64 30 5 6 54 2− + + − + − +x x

The error of interpolation is given by

 TE = 
1
5

1
1
2

1
2!

( )x x x x+ +�
��

�
�� −���

�
��  (x – 1)f v(ξ), – 1 < ξ < 1.

Hence,  | TE | ≤ 
1

120 1 1
5max | ( )|

− ≤ ≤x
G x M

where,  G(x) = (x + 1) x x x x+���
�
�� −���

�
�� −1

2
1
2

1( )

 = x(x2 – 1) x2 1
4

−�
��

�
��  = x x

x5 35
4 4

− + .

G(x) attains extreme values when

G ′(x) = 5x4 – 15
4

1
4

02x + = , – 1 ≤ x ≤ 1.

whose solution is  x2 = 
15 145

40
±

 ≈ 0.0740, 0.6760.

Now, max |G(x)| is obtained for x2 = 0.6760.

We obtain, max
− ≤ ≤1 1x

 |G(x)| = 0.1135.

 M5 =  max | ( )|
− ≤ ≤1 1x

vf x

= max
− ≤ ≤1 1x

 | (– 120x5 + 600x3 – 225x)(1 + x2)–11/2 |

= max | ( )| max
( )− ≤ ≤ − ≤ ≤ +1 1 1 1 2 11/2

1
1x x

H x
x

H(x) attains extreme values when
 H ′(x) = 600x4 – 1800x2 + 225 = 0, – 1 ≤ x ≤ 1.
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We  obtain  x2 = 0.1307,  which  is  the  only  possible  value. We have |H(± 0 1307. )|
= 53.7334. We also have | H(± 1) | = 255. Hence, M5 = 255, and

 maximum error = 
0 1135

120
.

 (255) = 0.2412.

3.30 S3(x) is the piecewise  cubic Hermite interpolating approximant of f (x) = sin x cos x in

the abscissas 0, 1, 1.5, 2, 3. Estimate the error max
0 3≤ ≤x

 | f (x) – S3(x) |.

(Uppsala Univ., Sweden, BIT 19(1979), 425)
Solution
Error in piecewise cubic Hermite interpolation is given by

 TE = 
1
4 !  (x – xi–1)2 (x – xi )2 f iv(ξ), xi–1 < ξ < xi.

Hence,  | TE | ≤ max
!

( ) ( ) max | ( )|
x x x

i i
x x x

iv

i i i i

x x x x f x
− −≤ ≤

−
≤ ≤

− −
1 1

1
4 1

2 2

= 
1

384 1
4

1

( ) max | ( )|x x f xi i
x x x

iv

i i

− −
≤ ≤−

Since, f (x) = 1
2  sin 2x,  f ′(x) = cos 2x,

f″ (x) = – 2 sin 2x f ″′ (x) = – 4 cos 2x,
f iv(x) = 8 sin 2x,

we have

on [0, 1] : | Error | ≤ 1
384 0 1

max
≤ ≤x

 | 8 sin 2x| = 0.0208,

on [1, 1.5] : | Error | ≤  
1

384 16×
 max

.1 1 5≤ ≤x
 | 8 sin 2x | = 0.0012,

  on [1.5, 2] :  | Error | ≤ 
1

16 384 1 5 2× ≤ ≤
max
. x

 | 8 sin 2x | = 0.00099,

on [2, 3] : | Error | ≤ 
1

384 2 3
max
≤ ≤x

 | 8 sin 2x | = 0.0208.

Hence, maximum error on [0, 3] is 0.0208.

3.31 Suppose fi = xi
−2  and fi′  = – 2xi

−3  where xi = i / 2, i = 1(1)4 are given. Fit these values by
the piecewise cubic Hermite polynomial.
Solution
We have the data

i 1 2 3 4

xi 1 / 2 1 3 / 2 2
fi 4 1 4 / 9 1 / 4

fi′ – 16 – 2 – 16 / 27 – 1 / 4

Cubic Hermite interpolating polynomial on [xi–1, xi ] is given by
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P3(x) = 
( )

( )

( )
( )–

x x

x x

x x
x x

fi

i i

i

i i
i

−
−

+
−

−
�
�
	



�
�

−

−
−

2

1
2

1

1
11

2
 + 

( )

( )

( )x x

x x

x x
x x

fi

i i

i

i i
i

−
−

+
−

−
�
�
	



�
�−

− −

1
2

1
2

1
1

2

+
− −

−
′ +

− −
−

′−

−
−

−

−

( )( )

( )

( )( )

( )

x x x x

x x
f

x x x x

x x
fi i

i i
i

i i

i i
i

1
2

1
2 1

1
2

1
2

On [1 / 2, 1], we obtain
 P3(x) = 4(x – 1)2 [1 – 4((1 / 2) – x)](4) + 4(x – (1 / 2))2 [1 – 4(x –1)](1)

+ 4(x – (1 / 2)) (x – 1)2(– 16) + 4(x – 1)(x – (1 / 2))2(– 2)
= – 24x3 + 68x2 – 66x + 23.

On [1, 3 / 2], we obtain
 P3(x) = 4(x – (3 / 2))2[1 – 4(1 – x)](1) + 4(x – 1)2 [1 – 4(x – (3 / 2))](4 / 9)

+ 4(x – 1)(x – (3 / 2))2(– 2) + 4(x – (3 / 2))(x – 1)2(– 16 / 27)
= [– 40x3 + 188x2 – 310x + 189] / 27.

On [3 / 2, 2], we have
 P3(x) = 4(x – 2)2[1 – 4((3 / 2) – x)](4 / 9) + 4(x – (3 / 2))2 [1 – 4(x – 2)] (1

/ 4)
+ 4(x – (3 / 2))(x – 2)2(– 16 / 27) + 4(x – 2)(x – (3 / 2))2(– 1 / 4)

= [– 28x3 + 184x2 – 427x + 369] / 108.

3.32 Find whether the following functions are splines or not.

(i) f (x) = 
x x x
x x

2 1 1 2
3 3 2 3

− + ≤ ≤
− ≤ ≤

,
, (ii) f (x) = 

− − − ≤ ≤
− + ≤ ≤

x x x
x x x

2 3

2 3
2 1 0
2 0 1

,
,

(iii) f (x) = 
− − − ≤ ≤

+ ≤ ≤
x x x
x x x

2 3

2 3
2 1 0
2 0 1

,
,

.

Solution
(i) f (x) defines a second order polynomial. Since f (x) and f ′(x) are continuous in each of

the intervals [1, 2] and [2, 3], the given function is a quadratic spline.
(ii) f (x) defines a third degree polynomial. Since f (x), f ′(x) and f ″(x) are continuous in

each of the intervals [– 1, 0] and [0, 1], the given function is a cubic spline.
(iii) f (x) defines a third degree polynomial. Since f ″(x) is not continuous at x = 0, the

given function is not a spline.

3.33 Fit a cubic spline, s(x) to the function f (x) = x4 on the interval – 1 ≤ x ≤ 1 corresponding
to the partition x0 = – 1, x1 = 0, x2 = 1 and  satisfying the conditions s′(– 1) = f ′(– 1) and
s′(1) = f ′(1).
Solution
We have the data

x – 1 0 1

f (x) 1 0 1

with m0 = f ′(– 1) = – 4 and m2 = f ′(1) = 4.
The nodal points are equispaced with h = 1. We obtain the equation

 m0 + 4m1 + m2 = 3(f2 – f0) = 0
which gives m1 = 0.
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Spline interpolation becomes
On the interval [x0 , x1] : x0 = – 1, x1 = 0, h = 1

s(x) = (x – x1)
2 [1 – 2(x0 – x)] f0 + (x – x0)2 [1 – 2(x – x1)] f1

+ (x – x0)(x – x1)
2 m0 + (x – x1)(x – x0)2 m1

= x2(3 + 2k)(1) + (x – 1)2 (1 – 2x)(0) + (x + 1)x2(– 4) + x(x + 1)2 (0)
= – 2x3 – x2.

On the interval [x1, x2] : x1 = 0, x2 = 1, h = 1
  s(x) = (x – x2)

2 [1 – 2(x1 – x)] f1 + (x – x1)
2 [1 – 2(x – x2)] f2

+ (x – x1)(x – x2)
2 m1 + (x – x2)(x – x1)

2 m2
= (x – 1)2(1 + 2x)(0) + x2(3 – 2x) (1) + x(x – 1)2 (0) + (x – 1) x2 (4)
= 2x3 – x2.

3.34 Obtain the cubic spline fit for the data

x – 1 0 1 2

f (x) 5 – 2 – 7 2

with the conditions f′(– 1) = f′(2) = 1.
Solution
Here, the points are equispaced with h = 1. We have the system of equations

 mi–1 + 4mi + mi+1 = 3( fi+1 – fi–1), i = 1, 2
with  m0 = m3 = 1.
Using the given data, we obtain the system of equations

4m1 + m2 = 3(f2 – f0 ) – m0 = – 36
m1 + 4m2 = 3(f3 – f1) – m3 = 12

which give  m1 = – 53 / 5 and m2 = 27 / 5.
Spline interpolation becomes :
On the interval [x0, x1]. x0 = – 1, x1 = 0, h = 1

 P(x) = (x – x1)
2 [1 – 2(x0 – x)] f0 + (x – x0)

2 [1 – 2(x – x1)] f1

+ (x – x0)(x – x1)
2m0 + (x – x1)(x – x0)

2m1
= x2(3 + 2x)(5) + (x + 1)2 (1 – 2x)(– 2) + x2(x + 1)(1) + (x + 1)2 x(– 53 / 5)

= 
1
5

 [22x3 + 4x2 – 53x – 10].

On the interval [x1, x2] : x1 = 0, x2 = 1, h = 1
P(x) = (x – x2)

2 [1 – 2(x1 – x)]f1 + (x – x1)
2 [1 – 2(x –x2)]f2
+ (x – x1)(x – x2)

2 m1 + (x – x2)(x – x1)
2 m2

= (x – 1)2 (1 + 2x) (– 2) + x2 (3 – 2x)(– 7) + x(x – 1)2(– 53 / 5) + (x – 1) x2 (27 / 5)

= 
1
5

 [24x3 + 4x2 – 53x – 10].

On the interval [x2, x3] : x2 = 1, x3 = 2, h = 1
P(x) = (x – x3)

2 [1 – 2(x2 – x)]f2 + (x – x2)
2 [1 – 2(x – x3)]f3
+ (x – x2)(x – x3)

2 m2 + (x – x3)(x – x2)2 m3
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= (x – 2) 2 (– 1 + 2x)(– 7) + (x – 1)2 (5 – 2x)(2)
+ (x – 1)(x – 2)2 (27 / 5) + (x – 2)(x – 1)2

= 
1
5

 [– 58x3 + 250x2 – 299x + 72].

3.35 Obtain the cubic spline fit for the data

x 0 1 2 3

f (x) 1 4 10 8

under the end conditions f ″(0) = 0 = f ″(3) and valid in the interval [1, 2]. Hence, obtain
the estimate of f (1.5).
Solution
Here the points are equispaced with h = 1. We have the system of equations

Mi–1 + 4Mi + Mi+1 = 6(fi+1 – 2fi + fi–1), i = 1, 2
with M0 = M3 = 0.
Using the given data, we obtain the system of equations

 4M1 + M2 = 6(10 – 8 + 1) = 18
 M1 + 4M2 = 6(8 – 20 + 4) = – 48

which give M1 = 8, M2 = – 14.
Spline interpolation on the interval [x1, x2], where x1 = 1, x2 = 2 becomes

 P(x) = 
1
6

 (x2 – x)[(x2 – x)2 – 1] M1 + 
1
6

 (x – x1)[(x – x1)]
2 – 1]M2 + (x2 – x)f1 + (x – x1)f2

= 
1
6

 (2 – x) [(2 – x)2 – 1](8) + 
1
6

 (x – 1)[(x – 1)2 – 1](– 14) + (2 – x)(4) + (x – 1)(10)

= 
1
3

 [– 11x3 + 45x2 – 40x + 18].

We get f (1.5) ≈ P(1.5) = 7.375.

3.36 Fit the following four points by the cubic splines
i
x
y

i

i

0 1 2 3
1 2 3 4
1 5 11 8

Use the end conditions y0″  = y3″  = 0. Hence, compute (i) y(1.5) and (ii) y ′(2).

Solution
Here, the points are equispaced with h = 1. We have the system of equations

 Mi–1 + 4Mi + Mi+1 = 6(yi+1 – 2yi + yi–1), i = 1, 2
with  M0 = M3 = 0.
We obtain from the given data

 4M1 + M2 = 6(11 – 10 + 1) = 12,
M1 + 4M2 = 6(8 – 22 + 5) = – 54,

which give  M1 = 102 / 15, M2 = – 228 / 15.
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Spline interpolation becomes :
On the interval [x0, x1] : x0 = 1, x1 = 2, h = 1.

 P1(x) = 
1
6

 (x1 – x)[(x1 – x)2 – 1] M0  + 
1
6

 (x – x0)[(x – x0)
2 – 1] M1

+ (x1 – x)y0 + (x – x0)y1

= 
1
6

 (x – 1)[(x – 1)2 – 1] 
102
15
�
��

�
��  + (2 – x)(1) + (x – 1)(5)

= 
1

15
 [17x3 – 51x2 + 94x – 45].

On the interval [x1, x2] : x1 = 2, x2 = 3, h = 1.

 P2(x) = 
1
6

 (x2 – x)[(x2 – x)2 – 1] M1 + 
1
6

 (x – x1)[(x – x1)2 – 1] M2

+ (x2 – x)y1 + (x – x1)y2

= 
1
6

 (3 – x)[(3 – x)2 – 1] 
102
15
�
��

�
��

+ 
1
6

 (x – 2) [(x – 2)2 – 1] −���
�
��

228
15

 + (3 – x)(5) + (x – 2)(11)

= 
1

15
 [– 55x3 + 381x2 – 770x + 531].

On the interval [x2, x3] : x2 = 3, x3 = 4, h = 1.

 P3(x) = 
1
6

 (x3 – x)[(x3 – x)2 – 1] M2

+ 
1
6

 (x – x2)[(x – x2)
2 – 1] M3 + (x3 – x)y2 + (x – x2)y3

= 
1
6

 (4 – x)[(4 – x)2 – 1] −���
�
��

228
15

 + (4 – x)(11) + (x – 3)(8)

= 
1

15
 [38x3 – 456x2 + 1741x – 1980].

Since 1.5 ∈  [1, 2] and 2 ∈  [1, 2], we have

y(1.5) ≈ P1(1.5) = 
103
40

 = 2.575.

y′(2.0) ≈ P1′(2.0) = 
94
15

 = 6.267.

Bivariate Interpolation

3.37 The following data represents a function f (x, y)

y
x 0 1 4

0 1 4 49
1 1 5 53
3 1 13 85

Obtain the bivariate interpolating polynomial which fits this data.
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Solution
Since the nodal points are not equispaced, we determine Lagrange bivariate interpolat-
ing polynomial. We have

X20 = 
( )( )
( )( )
x x− −

− −
1 4

0 1 0 4
, X21 = 

( )( )
( )( )
x x− −

− −
0 4

1 0 1 4
, X22 = 

( )( )
( )( )
x x− −

− −
0 1

4 0 4 1
,

Y20 = 
( )( )
( )( )
y y− −

− −
1 3

0 1 0 3
, Y21 = 

( )( )
( )( )
y y− −

− −
0 3

1 0 1 3
, Y22 = 

( )( )
( )( )
y y− −

− −
0 1

3 0 3 1

and  P2(x, y) = 
ji ==
∑∑

0

2

0

2

X2iY2j fij

     = X20(Y20 f00 + Y21 f01 + Y22 f02)

+ X21(Y20 f10 + Y21 f11 + Y22 f12) + X22(Y20 f20 + Y21 f21 + Y22 f22)
Using the given data, we obtain

Y20 f00 + Y21 f01 + Y22 f02 = 
1
3

 (y2 – 4y + 3) – 
1
2

(y2 – 3y) + 
1
6

(y2 – y) = 1

Y20 f10 + Y21 f11 + Y22 f12 = 
4
3

 (y2 – 4y + 3) – 
5
2

 (y2 – 3y) + 
13
6

 (y2 – y) = y2 + 4

Y20 f20 + Y21 f21 + Y22 f22 = 
49
3

 (y2 – 4y + 3) – 
53
2

 (y2 – 3y) + 
85
6

 (y2 – y) = 4y2 + 49

Hence, we get

P2(x, y) = 
1
4

 (x2 – 5x + 4)(1) – 
1
3

 (x2 – 4x)(y2  + 4) + 
1

12
 (x2 – x)(4y2 + 49)

= 1 + 3x2 + xy2

3.38 Obtain the Newton’s bivariate interpolating polynomial that fits the following data

y x 1 2 3

1 4 18 56
2 11 25 63

3 30 44 82

Solution
We have h = k = 1 and

P2(x, y) = f00 + [(x – x0) ∆x + (y – y0) ∆y]f00

+ 1
2  [(x – x0)(x – x1) ∆xx

 – 2(x – x0)(y – y0) ∆xy + (y – y0)(y – y1) ∆yy]f00

Using the given data, we obtain
∆x f00 = f10 – f00 = 18 – 4 = 14
∆y f00 = f01 – f00 = 11 – 4 = 7

∆xx f00 = f20 – 2f10 + f00 = 56 – 36 + 4 = 24
∆xy f00 = f11 – f10 – f01 + f00 = 25 – 18 – 11 + 4 = 0
∆yy f00 = f02 – 2f01 + f00 = 30 – 22 + 4 = 12.

Therefore,
P2(x, y) = 4 + [14(x – 1) + 7(y – 1)] + 1

2 [24(x – 1)(x – 2) + 12(y – 1)(y – 2)]
 = 12x2 + y2 – 22x + 4y + 9.
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3.39 Using the following data, obtain the (i) Lagrange and (ii) Newton’s bivariate interpolat-
ing polynomials.

y x 0 1 2

0 1 3 7
1 3 6 11

2 7 11 17

Solution
(i) We have

X20 = 
( )( )

( )( )
x x− −

− −
1 2
1 2

, X21 = 
x x( )
( )( )

−
−

2
1 1

, X22 = 
x x( )
( )( )

− 1
2 1

,

 Y20 = 
( )( )

( )( )
y y− −

− −
1 2
1 2

, Y21 = 
y y( )
( )( )

−
−

2
1 1

, Y22 = 
y y( )
( )( )

− 1
2 1

,

and     P2(x, y) = X Y fi j ij
ji

2 2
0

2

0

2

==
∑∑

         = X20(Y20 f00 + Y21 f01 + Y22 f02)

+ X21(Y20 f10 + Y21 f11 + Y22 f12) + X22(Y20 f20 + Y21 f21 + Y22 f22).
Hence, we get

P2(x, y) = 1
2  (x – 1)(x – 2)(y2 + y + 1) – x(x – 2)(y2 + 2y + 3)

+ 1
2  x(x – 1)(y2 + 3y + 7)

= 1 + x + y + x2 + xy + y2.
(ii) We have

P2(x, y) = f00 + (x ∆x + y ∆y)f00 + 1
2  [x(x – 1) ∆xx + 2xy ∆xy + y(y – 1) ∆yy]f00

We obtain
∆x f00 = f10 – f00 = 2,
∆y f00 = f01 – f00 = 2,

∆xx f00 = f20 – 2f10 + f00 = 2,
 ∆yy f00 = f11 – 2f01 + f00 = 2,

 ∆xy f00 = f11 – f10 – f01 + f00 = 1.

Hence, P2(x, y) = 1 + [2x + 2y] + 1
2  [2(x – 1)x + 2xy + 2(y – 1)y]

= 1 + x + y + x2 + xy + y2.

Least Squares Approximation

3.40 Determine the least squares approximation of the type ax2 + bx + c, to the function 2x at
the points xi = 0, 1, 2, 3, 4. (Royal Inst. Tech., Stockholm, Sweden, BIT 10(1970), 398)
Solution
We determine a, b and c such that

 I = [ ]2 2 2

0

4
x

i i
i

i ax bx c− − −
=
∑  = minimum.
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We obtain the normal equations as

[ ]2 2

0

4
x

i i
i

i ax bx c− − −
=
∑  = 0,

[ ]2 2

0

4
x

i i i
i

i ax bx c x− − −
=
∑  = 0,

[ ]2 02

0

4
2x

i i
i

i
i ax bx c x− − − =

=
∑ ,

or 30a + 10b + 5c = 31,
100a + 30b + 10c = 98,

354a + 100b + 30c = 346,
which has the solution

a = 1.143, b = – 0.971, c = 1.286.
Hence, the least squares approximation to 2x is

y = 1.143x2 – 0.971x + 1.286.

3.41 Obtain an approximation in the sense  of the principle of least squares in the form of a
polynomial of the degree 2 to the function 1 / (1 + x2) in the range – 1 ≤ x ≤ 1.
Solution
We approximate the function y = 1 / (1 + x2) by a polynomial of degree 2,
P2(x) = a + bx + cx2, such that

I = 1

1 2
2

2

1

1

+
− − −

�

�
	
	




�
�
�

=
−
 x

a bx cx dx minimum .

We obtain the normal equations as

1
1 2

2

1

1

+
− − −

�

�
	




�
�

−
 x
a bx cx  dx = 0,

1
1 2

2

1

1

+
− − −

�

�
	




�
�

−
 x
a bx cx  x dx = 0,

 1
1 2

2

1

1

+
− − −

�

�
	




�
�

−
 x
a bx cx  x2 dx = 0.

Integrating, we get the equations

2a + 
2
3 2
c = π

,

 
2
3

0
b = ,

2
3

2
5

2
2

a c+ = − π
,

whose solution is a = 3(2π – 5) / 4, b = 0, c = 15(3 – π) / 4.
The least squares approximation is

 P2(x) = 
1
4

 [3(2π – 5) + 15(3 – π)x2].



8-\N-NUM\NU-3-4

Interpolation and Approximation 185

3.42 The following measurements of a function f were made :

x – 2 – 1 0 1 3

f (x) 7.0 4.8 2.3 2 13.8

Fit a third degree polynomial P3(x) to the data by the least squares method. As the value
for x = 1 is known to be exact and f′(1) = 1, we demand that P3(1) = 2 and P3′ (1) = 1.

(Link��oping Univ., Sweden, BIT 28(1988), 904)
Solution
We take the polynomial as

 P3(x) = a3(x – 1)3 + a2(x – 1)2 + a1(x – 1) + a0

Since,  P3(1) = 2 and P3′ (1) = 1

we obtain a0 = 2, a1 = 1.
Hence, we determine a3 and a2 such that

i=
∑

1

5

[f (xi) – a3(xi – 1)3 – a2(xi – 1)2 – (xi – 1) – 2]2 = minimum.

The normal equations are

( ) ( ) ( )x f a x a xi i i i
iii

− − − − −
===
∑∑∑ 1 1 13

3
6

2
5

1

5

1

5

1

5

− − − − =
==
∑∑ ( ) ( )x xi i
ii

1 2 1 04 3

1

5

1

5

,

( ) ( ) ( )x f a x a xi i i i
iii

− − − − −
===
∑∑∑ 1 1 12

3
5

2
4

1

5

1

5

1

5

− − − − =
==
∑∑ ( ) ( )x xi i
ii

1 2 1 03 2

1

5

1

5

.

Using the given data values, we obtain
 858a3 – 244a3 = – 177.3,

244a3 – 114a2 = – 131.7,
which has the solution, a3 = 0.3115, a2 = 1.8220.
Hence, the required least squares approximation is

 P3(x) = 2 + (x – 1) + 1.822(x – 1)2 + 0.3115(x – 1)3.

3.43 A person runs the same race track for five consecutive days and is timed as follows :
days (x) 1 2 3 4 5

times (y) 15.30 15.10 15.00 14.50 14.00

Make a least square fit to the above data using a function a + b / x + c / x2.
(Uppsala Univ., Sweden, BIT 18(1978), 115)
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Solution
We determine the values of a, b and c such that

 I = 
i

i
i i

y a
b
x

c

x=
∑ − − −
�

�
	
	




�
�
�0

4

2

2

 = minimum.

The normal equations are obtained as

y a b
x

c
x

i
i i iii

− − − =
= ==
∑ ∑∑5

1 1
0

0

4

2
0

4

0

4

,

y
x

a
x

b
x

c
x

i

i i i iiiii

− − − =
====
∑∑∑∑ 1 1 1

02 3
0

4

0

4

0

4

0

4

,

 
y
x

a
x

b
x

c
x

i

i i i iiiii
2 2 3 4

0

4

0

4

0

4

0

4 1 1 1
0− − − =

====
∑∑∑∑ .

Using the given data values, we get
 5a + 2.283333b + 1.463611c = 73.90,

 2.283333a + 1.463611b + 1.185662c = 34.275,
 1.463611a + 1.185662b + 1.080352c = 22.207917,

which has the solution,  a = 13.0065, b = 6.7512, c = – 4.4738.
The least squares approximation is

f (x) = 13.0065 + 6 7512 4 4738
2

. .
x x

− .

3.44 Use the method of least squares to fit the curve y = c0 / x + c1 x  to the table of values :

x 0.1 0.2 0.4 0.5 1 2

y 21 11 7 6 5 6

(Royal Inst. Tech., Stockholm, Sweden, BIT 26(1986), 399)
Solution
We determine the values of c0 and c1 such that

i=
∑

1

6

[yi – c0 / xi – c1 xi ]2 = minimum.

We obtain the normal equations as

y
x

c
x

c
x

i

i i iiii

− − =
===
∑∑∑ 0 2 1

1

6

1

6

0

6 1 1
0,

y x c
x

c xi i
iii

i
i

− − =
== =
∑∑ ∑0

1

6

1
1

6

1

61
0 .

Using the given data values, we obtain
 136.5 c0 + 10.100805 c1 = 302.5,

 10.100805 c0 + 4.2 c1 = 33.715243,
which has the solution,      c0 = 1.9733, c1 = 3.2818.
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Hence, the required least squares approximation is

y = 
1.9733

3 2818
x

x+ . .

3.45 A function f (x) is given at four points according to the table :

x 0 0.5 1 2

f (x) 1 3.52 3.73 – 1.27

Compute the values of a, b and the natural number n such that the sum

i=
∑

1

4

[f (xi) – a sin(nxi ) – b]2

is minimized. (Uppsala Univ., Sweden, BIT 27(1987) 628)
Solution
Using the method of least squares, the normal equations are obtained as

i=
∑

1

4

[f (xi) – a sin (nxi ) – b] = 0,

i=
∑

1

4

[f (xi) – a sin (nxi) – b] sin (nxi ) = 0,

 
i=
∑

1

4

[f (xi) – a sin (nxi ) – b] xi cos (nxi ) = 0.

Substituting the values from the table of values, we get the equations
ap3 + 4b = 6.98,

ap2 + bp3 = p1,
 aq2 + bq3 = q1,

where p1 = 3.52 sin(n / 2) + 3.73 sin (n) – 1.27 sin (2n),
p2 = sin2 (n / 2) + sin2 (n) + sin2 (2n),
p3 = sin (n / 2) + sin (n) + sin (2n),
q1 = 1.76 cos (n / 2) + 3.73 cos (n) – 2.54 cos (2n),

q2 = 
1
4

 sin (n) + 
1
2

 sin (2n) + sin (4n),

q3 = 
1
2

 cos (n / 2) + cos (n) + 2 cos (2n).

Solving for a and b from the second and third equations, we get
a = (p1 q3 – q1 p3) / (p2 q3 – q2 p3),
b = (p2 q1 – p1 q2) / (p2 q3 – q2 p3).

Substituting in the first equation, we get
f (n) = 6.98(p2q3 – p3q2) – p3(p1q3 – p3q1) – 4(p2q1 – p1q2) = 0.

This is a nonlinear equation in n, whose solution (smallest natural number) may be
obtained by the Newton-Raphson method. We have

 nk+1 = nk – 
f n
f n

k

k

( )
( )′

.
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It is found that the solution n → 0, if the initial approximation n0 < 1.35. Starting with
n0 = 1.5, we have the iterations as

k nk fk fk′

1 2.11483 – 9.3928 15.277
2 1.98029    1.4792 10.995
3 1.99848 – 0.2782 15.302
4 1.99886 – 0.5680(– 2) 14.677

5 1.99886 – 0.4857(– 5) 14.664

Hence, the smallest natural number is n = 2. The corresponding values of a and b are
a = 3.0013 ≈ 3.0 and b = 0.9980 ≈ 1.0.

The approximation is
 P(x) = 3 sin (2x) – 1.

3.46 Let l(x) be a straight line which is the best approximation of sin x in the sense of the
method of least squares over the interval [– π / 2, π / 2]. Show that the residual
d(x) = sin x – l(x) is orthogonal to any second degree polynomial. The scalar product
is given by

 (f, g) = 
−
 π

π

/

/

2

2
f (x)g(x)dx. (Uppsala Univ., Sweden, BIT 14(1974), 122)

Solution
Let l(x) = a + bx. We determine a and b such that

−
 π

π

/

/

2

2
 [sin x – a – bx]2 dx = minimum.

We obtain the normal equations as

 
−
 π

π

/

/

2

2
 [sin x – a – bx] dx = 0,

−
 π

π

/

/

2

2
 [sin x – a – bx] x dx = 0

which give a = 0, b = 24 / π3.

Hence, we find that l(x) = 
24

3π
x , and d(x) = sin x – 24

3π
x .

Using the given scalar product and taking P2(x) = Ax2 + Bx + C, it is easy to verify that

  (f, g) = 
−
 + + −�

��
�
��π

π

π/

/
( ) sin

2

2
2

3
24

Ax Bx C x
x

dx

is always zero. Hence the result.

3.47 Experiments with a periodic process gave the following data :

t° 0 50 100 150 200 250 300 350

y 0.754 1.762 2.041 1.412 0.303 – 0.484 – 0.380 0.520

Estimate the parameters a and b in the model y = b + a sin t, using the least squares
approximation. (Lund Univ., Sweden, BIT 21(1981), 242)
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Solution
We determine a and b such that

i=
∑

1

8

[yi – b – a sin ti]
2 = minimum.

The normal equations are given by

  8b + a sin t yi
i

i
i= =

∑ ∑=
1

8

1

8

,

b sin sin sint a t y ti
i

i
i

i i
i= = =

∑ ∑ ∑+ =
1

8
2

1

8

1

8

.

Using the given data values (after converting degrees to radians) we obtain
8b – 0.070535 a = 5.928

0.070535 b – 3.586825 a = – 4.655735
which give a = 1.312810,  b = 0.752575.
The least squares approximation is

y = 0.752575 + 1.31281 sin t.

3.48 A physicist wants to approximate the following data :

x 0.0 0.5 1.0 2.0

f (x) 0.00 0.57 1.46 5.05

using a function a ebx + c. He believes that b ≈ 1.
(i) Compute the values of a and c that give the best least squares approximation assum-

ing b = 1.
(ii) Use these values of a and c to obtain a better value of b.

(Uppsala Univ., Sweden, BIT 17(1977), 369)
Solution
(i) We take b = 1 and determine a and c such that

i=
∑

1

4

[f (xi) – aexi – c]2 = minimum.

We obtain the normal equations as

 f x a e ci
x

ii

i( ) – ,− =
==
∑∑

1

4

1

4

4 0

 f x e a e c ei
x x

ii

x

i

i i i( ) − − =
== =
∑∑ ∑2

1

4

1

4

1

4

0.

Using the given data values, we get
12.756059a + 4c = 7.08

65.705487a + 12.756059c = 42.223196
which has the solution,  a = 0.784976, c = – 0.733298.
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The approximation is
f (x) = 0.784976 ex – 0.733298.

(ii) Taking the approximation as
f (x) = 0.784976 ebx – 0.733298,

we now determine b such that

[ ( ) ]f x pe qi
bx

i

i− −
=
∑ 2

1

4

 = minimum

where p = 0.784976 and q = – 0.733298. We obtain the normal equation

 [ ( ) ]f x pe q px ei
bx

i
i

bxi i− − =
=
∑

1

4

0

or x f x q e p x ei i
bx

i
bx

ii

i i{ ( ) }− − =
==
∑∑ 2

1

4

1

4

0

which becomes on simplification
 F (b) = 0.651649 eb/2 + 1.80081 eb + 10.78162 e2b – 1.569952 e4b = 0

We shall determine b by the Newton-Raphson method. Starting with b0 = 1, we obtain

b1 = 1 – F
F

( )
( )
1
1′

 = 1 + 
0 080983
178 101606

.
.−  = 0.9995.

Hence,  b = 0.9995.

3.49 We are given the following values of a function f of the variable t :

t 0.1 0.2 0.3 0.4

f 0.76 0.58 0.44 0.35

Obtain a least squares fit of the form f = ae–3t + be–2t.
(Royal Inst. Tech., Stockholm, Sweden, BIT 17(1977), 115)

Solution
We determine a and b such that

 I = [ ]f ae bei
t t

i

i i− −− −

=
∑ 3 2 2

1

4

 = minimum.

We obtain the following normal equations

 ( )f ae be ei
t t t

i

i i i− − =− − −

=
∑ 3 2 3

1

4

0,

 ( )f ae be ei
t t t

i

i i i− − =− − −

=
∑ 3 2 2

1

4

0,

or  a e b e f et

i

t

i
i

t

i

i i i−

= =

−

=
∑ ∑ ∑+ =6

1

4

1

4
3

1

4
–5 ,

 a e b e f et

i

t

i
i

t

i

i i i−

= = =
∑ ∑ ∑+ =5

1

4

1

4

1

4
–4 –2 .
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Using the given data values, we obtain
1.106023a + 1.332875b = 1.165641,
1.332875a + 1.622740b = 1.409764,

which has the solution a = 0.68523, b = 0.30593.
The least squares solution is

 f (t) = 0.68523 e–3t + 0.30593 e–2t.

3.50 The second degree polynomial f (x) = a + bx + cx2 is determined from the condition

d = 
i m

n

=
∑ [f (xi) – yi]

2 = minimum

where  (xi, yi ), i = m(1)n, m < n,  are  given  real  numbers.  Putting  X = x – ξ, Y = y – η,
Xi = xi – ξ, Yi = yi – η, we determine F (x) = A + BX + CX2 from the condition

 D = 
i m

n

=
∑ [F (Xi) – Yi]

2 = minimum.

Show  that  F (X) = f (x) – η.  Also  derive  explicit  formula for F′(0) expressed in Yi when
Xi = ih and m = – n. (Bergen Univ., Sweden, BIT 7(1967), 247)
Solution
We have  f (x) – y = a + bx + cx2 – y

= a + b(X + ξ) + c(X + ξ)2 – Y – η
= (a + bξ + cξ2) + (b + 2cξ)X + cX 2 – Y – η
= (A + BX + CX 2 – η) – Y = F (X) – Y

Hence, F (X) = A + BX + CX 2 – η
= (a + bξ + cξ2) + (b + 2cξ)X + CX 2 – η  = f (x) – η.

Now,  F ′(0) = B.
The normal equations are, when m = – n,

(2n + 1)A + B X C X Yi i i+ =∑ ∑ ∑2 ,

A X B X C X X Yi i i i i∑ ∑ ∑∑+ + =2 3 ,

 A X B X C X X Yi i i i i
2 3 4 2+ + =∑ ∑∑∑ .

Since Xi = ih, we have

X Xi
n

n

i
n

n

− −
∑ ∑= 0 3,  = 0 and

 X i h h ii
n

n n

n

n
2 2 2 2 2

1

2
1
3− −

∑ ∑∑= = =  h2n(n + 1)(2n + 1).

The second normal equation gives

 B X ihYi i
2∑ ∑=

B = 
3

1 2 1

iY

hn n n
i∑

+ +( )( )
.
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3.51 A function is approximated by a piecewise linear function in the sense that

0

1

0

10 2


 ∑−
�

�
	
	




�
�
�=

f x a x dxi i
i

( ) ( )φ

is minimized, where the shape functions φi are defined by

φ0 = 
1 10 0 0 1

0
− ≤ ≤x x, . ,

, otherwise.

 φ10 = 
10 9 0 9 10

0
x x− ≤ ≤, . . ,

, otherwise.

 φi = 
10
10

0

1 1

1 1

( ),
( ),

,
,

x x x x x
x x x x x

i i i

i i i

− ≤ ≤
− ≤ ≤

− −

+ +

otherwise
xi = 0.1i, i = 1(1)9.

Write down the coefficient matrix of the normal equations.
(Uppsala Univ., Sweden, BIT 19(1979), 552)

Solution
We obtain the normal equations as

0

1

0

10


 ∑−
�

�
	
	




�
�
�=

f x a xi i
i

( ) ( )φ  φj(x)dx = 0, j = 0, 1, ..., 10.

For j = 0, we have

 
0

0.1


 [f (x) – a0(1 – 10x) – a1(10x)](1 – 10x)dx = 0

which gives

a0
0

0.1


 (1 – 10x)2 dx + 10a1 
0

0.1


  x(1 – 10x)dx = 
0

0.1


  (1 – 10x)f (x)dx

or
1

30
1

600 1 0
0

0.1
a a I+ = = 
  f (x)(1 – 10x)dx.

For j = 2, 3, ..., 8, we have

x

x

j

j

−



1

[f (x) – aj –1φj–1(x) – aj φj(x) – aj+1φj+1(x)] φj(x)dx

+ 
x

x

j

j+
 1 [f (x) – aj–1φj–1(x) – ajφj(x) – aj+1φj+1(x)]φj(x)dx = 0.

Using the given expressions for φj, we obtain

x

x

j

j

−



1

[f (x) – 10aj–1(xj – x) – 10aj(x – xj–1)] 10(x – xj–1)dx

+ 
x

x

j

j+
 1 [f (x) – 10aj(xj+1 – x) – 10aj+1(x – xj)] 10(xj+1 – x)dx = 0

or 100aj–1 
x

x

j

j

−



1

(xj – x)(x – xj–1)dx + 100aj 
x

x

j

j

−



1

(x – xj–1)
2dx
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+ 100aj 
x

x

j

j +
 1 (xj+1 – x)2 dx + 100aj+1 
x

x

j

j +
 1
(x – xj)(xj+1 – x)dx

= 10 
x

x

j

j

−



1

f (x)(x – xj–1) + 10 
x

x

j

j+
 1
f (x)(xj+1 – x)dx

which gives
1

60
4

60
1

601 1a a a Ij j j j− ++ + = .

For j = 1 and j = 9, we obtain respectively
1

60
4
60

1
600 1 2 1a a a I+ + = , and

1
60

4
60

1
608 9 10 9a a a I+ + =

Similarly, for j = 10, we have

0.9

1 0.


  [f (x) – a9(10 – 10x) – a10(10x – 9)](10x – 9)dx = 0

or a9 
0.9

1 0.


  (10 – 10x)(10x – 9)dx + a10 
0.9

1 0.


  (10x – 9)2 dx = 
0.9

1 0.


  f (x)(10x – 9)dx = I10

or 1
60

1
309 10 10a a I+ = .

Assembling the above equations for j = 0, 1, ..., 10, we obtain
 Aa = b

where a = (a0, a1, ..., a10)
T, b = (I0, I1, ..., I10)T,

and  A = 
1

60
 

2 1 0 0 0
1 4 1 0 0
0 1 4 1 0

0 0 1 4 1
0 0 0 1 2

...

...

...

...

...

�

�

�

	
	
	
	
	
	




�

�
�
�
�
�
�

3.52 Polynomials Pr(x), r = 0(1)n, are defined by

j

n

=
∑

0

Pr(xj )Ps(xj ) 
= ≠
≠ = ≤0

0
,
,

,r s
r s

r s n

 xj = – 1 + 
2 j
n

, j = 0(1)n

subject also to Pr(x) being a polynomial of degree r with leading term  xr. Derive  a
recurrence  relation  for these polynomials and obtain P0(x), P1(x), P2(x) when n = 4.
Hence, obtain coefficients a0, a1, a2 which minimize

[( )1 2 1

0

4

+ −

=
∑ x j
j

 – (a0 + a1xj + a2x j
2 )]2.

Solution
As xPk(x) is a polynomial of degree k + 1, we can write it in the form

xPk(x) = d0 P0(x) + d1 P1(x) + ... + dk+1 Pk+1(x) (3.60)

= 
r

k

=

+

∑
0

1

drPr(x)

where dk+1 = 1.
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We obtain from (3.60)

j

n

=
∑

0
xj Pk( xj)Ps( xj ) = 

j

n

r

k

= =

+

∑ ∑
0 0

1

drPr( xj)Ps( xj ). (3.61)

Using the orthogonality conditions, we get from (3.61)

ds = 
j

n

=
∑

0

xj Pk(xj )Ps (xj ) P xs j
j

n
2

0

( )
=
∑ . (3.62)

If s < k – 1, then xPs(x) is a polynomial of degree s + 1 < k and because of orthogonality
conditions, we get

ds = 0, s < k – 1.
Hence, we have from (3.60)

xPk(x) = dk–1Pk–1(x) + dkPk(x) + dk+1Pk+1(x). (3.63)
Since dk+1 = 1, we can also write the recurrence relation (3.63) in the form

Pk+1(x) = (x – bk)Pk(x) – ckPk–1(x) (3.64)

where bk = dk = x P x P xj k j
j

n

k j
j

n
2

0

2

0

( ) ( )
= =
∑ ∑ (3.65)

 ck = dk–1 = 
j

n

=
∑

0
xj Pk(xj)Pk–1(xj) P xk j

j

n

−
=
∑ 1

2

0

( ) . (3.66)

We also have from (3.64)
 Pk(x) = (x – bk–1)Pk–1(x) – ck–1Pk–2(x)

and P xk j
j

n

j

n
2

00

( ) =
==
∑∑ (xj – bk–1)Pk–1(xj )Pk(xj ) – ck–1 

j

n

=
∑

0
Pk–2(xj )Pk(xj)

which gives
j

n

=
∑

0

xj Pk–1(xj)Pk(xj ) = P xk j
j

n
2

0

( )
=
∑ .

Using (3.66), we have

ck = P x P xk j
j

n

k j
j

n
2

0
1

2

0

( ) ( )
=

−
=

∑ ∑ . (3.67)

Thus, (3.64) is the required recurrence relation, where bk and ck are given by (3.65) and
(3.67) respectively.
For n = 4, we have

 xj = – 1 + 
2
4
j

, j = 0, 1, ..., 4

or x0 = – 1, x1 = – 
1
2

, x2 = 0, x3 = 
1
2

, x4 = 1.

x xj
j

j
j= =

∑ ∑=
0

4
3

0

4

 = 0 and x j
j

2

0

4 5
2=

∑ = .
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Using the recurrence relation (3.64) together with P0(x) = 1, P–1(x) = 0, we obtain
P1(x0) = x – b0

where b0 = x P x P xj j
j

j
j

0
2

0

4

0
2

0

4

( ) ( )
= =
∑ ∑  = 

1
5

 
j=
∑

0

4

xj = 0.

Hence, we have  P1(x) = x.
Similarly, we obtain

 P2(x) = (x – b1) x – c1

where  b1 = x P x P xj j
j

j
j

1
2

0

4

1
2

0

4

( ) ( )
= =
∑ ∑  = x xj

j
j

j

3

0

4
2

0

4

0
= =
∑ ∑ = ,

 c1 = P x P xj
j

j
j

1
2

0

4

0
2

0

4

( ) ( )
= =
∑ ∑  = 

1
5

1
2

2

0

4

x j
j=
∑ = .

Hence, we get  P2(x) = x2 – 
1
2

.

For the problem

[( )1 2 1

0

4

+ −

=
∑ x j
j

 – (d0 P0(xj ) + d1 P1(xj ) + d2 P2(xj ))]
2 = minimum,

we obtain the normal equations as

[( )1 2 1

0

4

+ −

=
∑ x j
j

 – (d0 P0(xj ) + d1P1(xj ) + d2 P2(xj ))] P0(xj) = 0,

  [( )1 2 1

0

4

+ −

=
∑ x j
j

 – (d0 P0(xj ) + d1 P1(xj ) + d2 P2(xj ))] P1(xj) = 0,

[( )1 2 1

0

4

+ −

=
∑ x j
j

 – (d0 P0(xj ) + d1 P1(xj ) + d2 P2(xj ))] P2(xj ) = 0.

The solution of this system is

d0 = 
j

j

j
j

j

P x

x
P x

= =
∑ ∑+

�

�
	
	




�
�
�

=
0

4
0

2 0
2

0

4

1
18
25

( )
( ) ,

 d1 = 
j

j

j
j

j

P x

x
P x

= =
∑ ∑+

�

�
	
	




�
�
�

=
0

4
1

2 1
2

0

4

1
0

( )
( ) ,

d2 = 
j

j

j
j

j

P x

x
P x

= =
∑ ∑+

�

�
	
	




�
�
�

=
0

4
2

2 2
2

0

4

1
16
35

( )
( ) – .

The approximation is given by

d0 P0(x) + d1 P1(x) + d2 P2(x) = 
18
25

16
35

1
2

2− −�
��

�
��x  = 

166
175

16
35

2− x .

Hence, we have a0 = 166 / 175, a1 = 0, a2 = – 16 / 35, and the polynomial is
P(x) = (166 – 80x2) / 175.



8-\N-NUM\NU-3-5

196 Numerical Methods : Problems and Solutions

3.53 Find suitable values of a0, ..., a4 so that  a T xr r
r

* ( )
=
∑

0

4

 is a good approximation to 1 / (1 + x)

for 0 ≤ x ≤ 1. Estimate the maximum error of this approximation.

(Note : Tr
*(x) = cos rθ where cos θ = 2x – 1).

Solution

It can be easily verified that Tr
*(x) are orthogonal with respect to the weight function

 W(x) = 1 / x x( )1 −  and

 0

1

1

0
2 0

0

 −

=
≠
= ≠
= =

T x T x dx

x x

m n
m n
m n

m n
* *( ) ( )

( )

, ,
/ , ,
, .

π
π

Writing

1
1 0 0 1 1 4 4+

= + + +
x

a T x a T x a T x* * *( ) ( ) ... ( )

we obtain ar =  
0

1

0

1 2

1 1 1
 
+ − −
T x dx
x x x

T x dx
x x

r r
* *( )

( ) ( )
[ ( )]

( )
, r = 0, 1, ..., 4

which gives a0 = 
1

1 10

1
0

π 
 + −
T x dx

x x x

* ( )

( ) ( )

ar = 
2

1 10

1

π 
 + −
T x dx

x x x
r
* ( )

( ) ( )
, r = 1, 2, 3, 4.

We have a0 = 
1

1 10

1

π 
 + −
dx

x x x( ) ( )
 = 

2
1

2
0

2

2π
θ

θ π

π/

sin
 +
=

d
I

where I = 
0

2

2
1

1 2 2

π

θ
θ

π/

sin
 +
=d .

Hence, we have  a0 = 1 / 2 .

Similarly, we have,

a1 = 
2 2 1

1 1
4 2 1

10

1

0

2 2

2π π
θ

θ
θ

π


 
−
+ −

= −
+

( )
( ) ( )

sin
( sin )

/x dx
x x x

d

= 
8 3

20

2

π
θ

π/


 −�
�	



��

d I  = 4 – 3 2 ,

a2 = 
2 2 2 1 1

1 10

1 2

π 

− −

+ −
[ ( ) ]
( ) ( )

x

x x x
dx  = 

4 8 1
10

2 4 2

2π
θ θ

θ
θ

π/ [8sin sin ]
sin
 − +

+
d

= 
4

8 16 17
0

2
2

π
θ θ

π/
( sin )
 − +�

�	


��

d I  = 17 2  – 24,
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a3 = 
2 4 2 1 3 2 1

1 10

1 3

π 

− − −
+ −

[ ( ) ( )]
( ) ( )
x x

x x x
dx

= 
4 4 2 1 3 2 1

10

2 2 3 2

2π
θ θ

θ
θ

π/ [ ( sin ) ( sin )]

sin
 − − −
+

d

= 
4

32 80 98 99
0

2
4 2

π
θ θ θ

π/
( sin sin )
 − + −�

�	


��

d I  = 140 – 99 2 ,

a4 = 
2 2 1 8 2 1 1

1 10

1 4 2

π 

− − − +

+ −
[8( ) ( ) ]

( ) ( )
x x

x x x
 dx

= 
4 2 1 8 2 1 1

10

2 2 4 2 2

2π
θ θ

θ
θ

π/ [8( sin ) ( sin ) ]
sin
 − − − +

+
d

= 
4

128 384 544 576 577
0

2
6 4 2

π
θ θ θ θ

π/
( sin sin sin )
 − + − +�

�	


��

d I

= 577 2  – 816.
The maximum error in the approximation is given by | a5 |. We have

a5 = 
2

1 10

1
5

π 
 + −
T x dx

x x x

* ( )

( ) ( )

= 
4 16 2 1 20 2 1 5 2 1

10

2 2 5 2 3 2

2π
θ θ θ

θ
θ

π/ ( sin ) ( sin ) ( sin )
sin
 − − − + −

+
d

= 
4

512 1792 2912 3312 3362 3363
0

2
8 6 4 2

π
θ θ θ θ θ

π/
( sin sin sin sin )
 − + − + −�

�	


��

d I

= 4756 – 3363 2 .

Hence, | a5 | = 3363 2  – 4756 ≈ 0.0002.

Chebyshev Polynomials

3.54 Develop the function f (x) = ln[(1 + x) / (1 – x)] / 2 in a series of Chebyshev polynomials.
(Lund Univ., Sweden, BIT 29 (1989), 375)

Solution

We write f (x) = ′
=

∞

∑ a T xr r
r

( )
0

where Σ′ denotes a summation whose first term is halved. Using the orthogonal proper-
ties of the Chebyshev polynomials, we obtain

ar = 
2

1

1

π −
 (1 – x2)–1 / 2 f (x)Tr(x)dx = 
2

0π

π


 f (cos θ) cos rθ dθ.

Since, f (x) = 
1
2

 ln 
1
1

+
−

x
x

,

we have  f (cos θ) = ln (cot θ / 2).

Hence, we have  ar = 
2

0π

π


 ln (cot(θ / 2)) cos rθ dθ.
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For r = 0, we get

a0 = 
2

2
2

2
2

20 0 0π
θ θ

π
θ θ

π
θ θ

π π π


 
 
�
��
�
��

�
��

�
��

= �
��
�
��

�
��

�
��

= − �
��
�
��

�
�	



��

ln cot ln tan ln cotd d d

Hence, a0 = 0.
Integrating by parts, we have (for r ≠ 0)

 ar = 
2 1

2
1

2 2 20 0

2

π
θ θ θ θ θ θ

π π

r
r

r
r dsin ln cot sin tan�

��
�
��

�
�
�

�
�
�

+ �
��
�
��

�
��
�
��

�

�
	
	




�
�
�
 cosec

= 
2 2

0π
θ
θ

θ
π

π

r
r

d
r

Ir
 =sin
sin

We get I1 = π, and a1 = 2. For r ≥ 2, we have

 Ir = 
0

π θ
θ

θ
 sin
sin

r
d  = 

0

1 1π θ θ θ θ
θ

θ
 − + −sin ( ) cos cos ( ) sin
sin

r r
d

= 
1
2

2 1
1

0 0

π πθ θ
θ

θ θ θ
 
−
+ −

sin ( ) cos
sin

cos ( )
r

d r d

= 
1
2

2
0

π θ θ
θ

θ
 + −sin sin ( )
sin

r r
d  = 

1
2

1
2 2I Ir r+ − .

Hence, we get
Ir = Ir–2 = Ir–4 = ... = I0, if r is even,

and       Ir =  Ir–2 = Ir–4 = ... = I1, if r is odd.
Hence, ar = 0 if r is even and ar = 2 / r if r is odd.
Therefore, we get

1
2

1
1

2
1
3

1
51 3 5ln ...

+
−

= + + +�
�	



��

x
x

T T T

3.55 Let Tn(x) denote the Chebyshev polynomial of degree n. Values of an analytic function,
f (x) in the interval – 1 ≤ x ≤ 1, are calculated from the series expansion

f (x) = a T xr r
r

2
0

( )
=

∞

∑
the first few coefficients of which are displayed in the table :

r ar r ar

0 0.3155 5 – 0.0349
1 – 0.0087 6 0.0048
2 0.2652 7  – 0.0005
3 – 0.3701 8 0.0003

4 0.1581

(a) Calculate f (1) with the accuracy allowed by the table.
(b) Show the relation Trs(x) = Tr(Ts(x)), – 1 ≤ x ≤ 1. With s = 2, the series above can be

written as
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f (x) = 
r=

∞

∑
0

arTr(2x2 – 1).

Use this series to calculate f ( 2  / 2) and after differentiation, f ′( 2  / 2).

(c) f (x) has got a zero close to x0 = 2  / 2.
Use Newton-Raphson method and the result of (b) to get a better approximation to this
zero. (Inst. Tech., Lyngby, Denmark, BIT 24(1984), 397)
Solution
(a) We are given that

T2r(x) = cos (2r cos–1 x).
Hence, we have

T2r(1) = cos (2r cos–1
 1) = cos (0) = 1 for all r.

We have therefore,

f (1) = ar
r=

∞

∑
0

 = 0.3297.

(b) We have Ts(x) = cos (s cos–1 x)
Tr(Ts(x)) = cos (r cos–1{cos (s cos–1 x)})

= cos (rs cos–1 x) = Trs(x).

We get from f (x) = 
r=

∞

∑
0

arTr(2x2 – 1)

 f 
2

2
0

0

�
��
�
��

=
=

∞

∑ a Tr r
r

( ) = 
r=

∞

∑
0

ar cos (πr / 2)

= a0 – a2 + a4 – ... = 0.2039.

We have f′(x) = a Tr r
r

′
=

∞

∑
0

(2x2 – 1)(4x)

and        f ′ 
2

2
4

2
0

0

�
��
�
��

= ′
=

∞

∑ a Tr r
r

( ) .

We also have
  Tr(x) = cos rθ, θ = cos–1 x

Tr′ (x) = 
r rsin
sin

θ
θ .

Hence, we obtain

Tr′ (0) = 
r r

r
rsin ( / )

sin ( / )
sin

π
π

π2
2 2

= �
��
�
�� .

We thus obtain

f ′ 
2

2

�
��
�
��  = 

4

2
 [a1 – 3a3 + 5a5 – ...] = 2.6231.
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(c) Taking x0 = 2 2/  and using Newton-Raphson method, we have

x* = x0 – 
f x
f x

( )
( )

0

0′  = 
2

2
0 2039
2 6231

− .
.

 = 0.6296.

Uniform (minimax) Approximation

3.56 Determine as accurately as possible a straight line y = ax + b, approximating 1 / x2 in
the Chebyshev sense on the interval [1, 2]. What is the maximal error ? Calculate a and
b to two correct decimals. (Royal Inst. Tech., Stockholm, Sweden, BIT 9(1969), 87)
Solution
We have the error of approximation as

 ε (x) = 
1
2x

 – ax – b.

Choosing the points 1, α and 2 and using Chebyshev equi-oscillation theorem, we have
 ε (1) + ε (α) = 0,
 ε (α) + ε (2) = 0,

  ε′(α) = 0,

or  1 – a – b + 1
2α

 – aα – b = 0,

1
4

 – 2a – b + 
1
2α

 – aα – b = 0,

2
3α

 + a = 0.

Subtracting  the  first  two  equations, we get a = – 3 / 4. From the third equation, we get
α3 = 8 / 3. From the first equation, we get

2b = 
7
4

3
4

1 7
4

3
4

3
8

7
4

9
82

+ + = + + = +α
α

α α α .

Hence, b ≈ 1.655.
The maximal error in magnitude is | ε (1) | = | ε (α) | = | ε (2) |.
Hence, max. error = ε (1) = 1 – a – b ≈ 0.095.

3.57 Suppose that we want to approximate a continuous function f (x) on | x |≤ 1 by a
polynomial Pn(x) of degree n. Suppose further that we have found

 f (x) – Pn(x) = αn+1Tn+1(x) + r(x),
where Tn+1(x) denotes the Chebyshev polynomial of degree n + 1 with

 1
2

1
21 1n n n+ +≤ ≤| |α ,

and | r(x) | ≤ |αn+1 | / 10, | x | ≤ 1.

Show that
0 4
2

11
21

.
max| ( ) ( )|

.
| |

*
n x

n nf x P x≤ − ≤
≤

where, finally P xn
* ( )  denotes the optimal polynomial of degree n for f (x) on | x | ≤ 1.

(Uppsala Univ., Sweden, BIT 13 (1973), 375)
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Solution

We have  1
2

1
2

11 1 1n n n nT x+ + +≤ ≤ ≤| | ; | ( )|α

and | r(x) | ≤ 
1

2 10n ( )
, or − ≤ ≤

0 1
2

0 1
2

.
( )

.
n nr x .

From the given equation

 max
| |x ≤ 1

 | f (x) – Pn(x) | ≥ | αn+1 | – | r(x) | ≥ 
1

2
1

2 101n n+ −
( )

Also, max
| |x ≤ 1

 | f (x) – Pn(x) | ≤ | αn+1 | + | r(x) | ≤ 
1

2

1

2 10n n+
( )

.

Hence,  
1

2
0 1
2

1
2

0 1
21 1n n x

n n nf x P x+ ≤
− ≤ − ≤ +.

max| ( ) ( )|
.

| |

*

which gives  0 4
2

11
21

.
max| ( ) ( )|

.
| |

*
n x

n nf x P x≤ − ≤
≤

.

3.58 Determine the polynomial of second degree, which is the best approximation in maxi-

mum norm to x  on the point set {0, 1 / 9, 4 / 9, 1}.
(Gothenburg Univ., Sweden, BIT 8 (1968), 343)

Solution
We have the error function as

ε(x) = ax2 + bx + c – x .
Using the Chebyshev equioscillation theorem, we have

ε(0) + ε(1 / 9) = 0,
ε(1 / 9) + ε(4 / 9) = 0,

ε(4 / 9) + ε(1) = 0,

which give  
a

b c
81

1
9

2
1
3

+ + = ,

 
17
81

5
9

2 1a b c+ + = ,

 
97
81

13
9

2
5
3

a b c+ + = .

The solution of this system is
a = – 9 / 8, b = 2, c = 1 / 16.

Hence, the best polynomial approximation is

 P2(x) = 
1

16
 (1 + 32x – 18x2).

3.59 Two terms of the Taylor expansion of ex around x = a are used to approximate ex on the
interval 0 ≤ x ≤ 1. How should a be chosen ao as to minimize the error in maximum
norm ? Compute a correct to two decimal places.

(Lund Univ., Sweden, BIT 12 (1972), 589)
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Solution
We have  ex ≈ ea + (x – a)ea = Ax + B
where A = ea and B = (1 – a)ea.
We approximate ex by Ax + B such that

 max
0 1≤ ≤x  | ex – Ax – B | = minimum.

Defining the error function
ε(x) = ex – Ax – B

on the points 0, α, 1 and using the Chebyshev equioscillation theorem, we get
ε(0) + ε(α) = 0, or (1 – B) + (eα – Aα – B) = 0,
ε(α) + ε(1) = 0, or (eα – Aα – B) + (e – A – B) = 0,

ε′(α) = 0, or eα – A = 0.
Subtracting the first two equations, we get A = e –1.
Third equation gives eα = A = e – 1. Since, A = ea, we get α = a = ln (e – 1) ≈ 0.5412.

First equation gives B = 1
2  [1 + (1 – α)ea] ≈ 0.8941

Hence, the best approximation is
 P(x) = (e – 1)x + 0.7882.

3.60 Calculate min max
p x0 1≤ ≤

 | f (x) – P(x) | where P is a polynomial of degree at most 1 and

f (x) = 
x

x
y

dy
1 2

3
 (Uppsala Univ., Sweden, BIT 18 (1978), 236)

Solution

We have f (x) = 
x

x

y
dy

x1 2

3

2

2
1
2
 = +– .

Let f (x) be approximated by P0(x) = C, where C = (m + M) / 2, and

 m = min [ ( ) ] , max [ ( ) ]
0 1 0 1

0
1
2≤ ≤ ≤ ≤

= = =
x x

f x M f x .

Hence, we get the approximation as P0(x) = 1 / 4 and

 max | ( ) ( )|
0 1

0
1
4≤ ≤

− =
x

f x P x .

Now, we approximate f (x) by P1(x) = a0 + a1x such that

 max | ( ) ( )|
0 1

1
≤ ≤

−
x

f x P x  = minimum.

Let ε(x) = 1
2 (1 – x2) – a0 – a1x.

Choosing the points as 0, α, 1 and using the Chebyshev equioscillation theorem, we
have

ε(0) + ε(α) = 0, or 1
2 0

1
2− +a� � (1 – α2) – a0 – a1α = 0,

ε(α) + ε(1) = 0, or 1
2 (1 – α2) – a0 – a1α – a0 – a1 = 0,

ε′(α) = 0, or α + a1 = 0.
Subtracting the first two equations, we get a1 = – 1 / 2. Third equation gives α = 1 / 2.
First equation gives a0 = 9 / 16. Hence, we obtain the approximation as
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 P1(x) = 
9

16 2
− x

.

We find, max | ( ) ( )| | ( )| –
0 1

1 00
1
2

1
16≤ ≤

− = = =
x

f x P x aε .

Therefore, we have min max | ( ) ( )|
p x

f x P x
0 1

1
16≤ ≤

− = .

3.61 Consider the following approximating polynomial :

Determine min
g

 || 1 – x – g(x) || where g(x) = ax + bx2 and a and b are real numbers.

Determine a best approximation g if

 || f ||2 = 
0

1


 f 2(x)dx

Is the approximation unique ? (Uppsala Univ., Sweden, BIT 10(1970), 515)
Solution
Using the given norm, we have

 I = 
0

1


 [1 – x – ax – bx2]2 dx = minimum.

We obtain the normal equations as

0

1


 (1 – x – ax – bx2) x dx = 0.

0

1


 (1 – x – ax – bx2) x2 dx = 0.

Integrating, we get
4a + 3b = 2,

15a + 12b = 5,
whose solution is   a = 3, b = – 10 / 3.
The unique least squares approximation is given by

g(x) = 3x – 
10
3

 x2.

Chebyshev Polynomial Approximation (Lanczos Economization)

3.62 Suppose that we want to approximate the function f (x) = (3 + x)–1 on the interval
– 1 ≤ x ≤ 1 with a polynomial P(x) such that

max
| |x ≤ 1

 | f (x) – P(x) | ≤ 0.021.

(a) Show that there does not exist a first degree polynomial satisfying this condition.
(b) Show that there exists a second degree polynomial satisfying this condition.

(Stockholm Univ., Sweden, BIT 14 (1974), 366)
Solution
We have, on – 1 ≤ x ≤ 1

f (x) = 
1

3
1
3

1
1
3

1

+
= +���

�
��

−

x
x  = 

1
3

1
9

1
27

1
81

2 3− + − +x x x ...

If we approximate f (x)  by P1(x) = (3 – x) / 9, then |error of approximation| is greater
than 1 / 27 ≈ 0.04, which is more than the tolerable error.
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If we approximate f (x) by the second degree polynomial

 P2(x) = 
1
3

1
9

1
27

2− +x x

Then, | error of approximation | ≤ 
1
81

1
243

1
729

1
2187

+ + + +... ≈ 0.0185.

Alternately,

| error of approximation | ≤ 
1

3
1

3
1

3
1

3
1

1
3

1
34 5 6 4 2+ + + = + + +�

��
�
��... ...

= 
1
81

1
1 1 3

1
54−

�
�
	



�
� =

( / )
 ≈ 0.0185.

Expressing P2(x) in terms of Chebyshev polynomials, we get

 P2(x) = 
1
3

1
9

1
27

2− +x x  = 
1
3

1
9

1
27

1
20 1 2 0T T T T− + +. ( )

= 
19
54

1
9

1
540 1 2T T T− + .

If we truncate P2(x) at T1, then max | error of approximation | is 1 / 54 = 0.0185 and the
total error becomes 0.0185 + 0.0185 = 0.0370, which is again more than the tolerable
error.
Hence, there does not exist a polynomial of first degree satisfying the given accuracy.
P2(x) is the second degree polynomial satisfying the given condition.

3.63 (a) Approximate f (x) = (2x – 1)3 by a straight line on the interval [0, 1], so that the
maximum norm of the error function is minimized (use Lanczos economization).

(b) Show that the same line is obtained if f is approximated by the method of least
squares with weight function 1 / x x( )1 − .

(c) Calculate the norm of the corresponding error functions in (a) and (b).
(Linköping Univ., Sweden, BIT 28(1988), 188)

Solution
(a) Substituting  x = (t + 1) / 2, we get f (t) = t3 on the interval [– 1, 1].
We want to approximate f (t) = t3 by a straight line on [– 1, 1]. We write

 f (t) = t3 = 
1
4

 (3T1 + T3)

where T1, T3 are Chebyshev polynomials.
Hence,  linear  approximation  to  f (t) is 3T1 / 4  = 3t / 4 or linear approximation to f (x)
is 3(2x – 1) / 4. The maximum absolute error is 1 / 4.
(b) We take the approximation in the form

 P1(x) = a0 + a1(2x – 1)
and determine a0 and a1 such that

0

1 1

1
 −x x( )
 [(2x – 1)3 – a0 – a1 (2x – 1)]2 dx = minimum.

We have the normal equations as

0

1 3
0 12 1 2 1

1
0
 − − − −

−
=[( ) ( )]

( )

x a a x dx

x x
,
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0

1 3
0 12 1 2 1 2 1

1
0
 − − − − −

−
=[( ) ( )]( )

( )

x a a x x dx

x x
,

which gives a
dx

x x
a

x dx

x x

x

x x
dx0

0

1

1
0

1

0

1 3

1
2 1

1
2 1

1
 
 
−
+ −

−
= −

−( )
( )

( )
( )

( )
,

a
x

x x
dx a

x dx

x x

x

x x
dx0

0

1

1
0

1 2

0

1 42 1
1

2 1
1

2 1
1
 
 
−

−
+ −

−
= −

−
( )

( )
( )

( )
( )

( )
.

We obtain

0

1

0

1

2 2

2

1
2

1 2 1

 
 
−

=
− −

= =
−

dx

x x

dx

x
d

( ) ( ( ) ) /

/

π

π
θ π,

0

1

0

1

2 2

22 1

1
2

2 1

1 2 1
0
 
 
−

−
= −

− −
= =

−

( )

( )

( )

( ( ) )
sin

/

/x

x x
dx

x dx

x
d

π

π
θ θ ,

0

1 2

0

1 2

2 2

2
22 1

1
2

2 1

1 2 1 2
 
 
−
−

=
−

− −
= =

−

( )
( )

( )

( ( ) )
sin

/

/x
x x

dx
x dx

x
d

π

π
θ θ

π
,

0

1 3

0

1 3

2 2

2
32 1

1
2

2 1

1 2 1
0
 
 
−

−
=

−

− −
= =

−

( )

( )

( )

( ( ) )
sin

/

/x

x x
dx

x dx

x
d

π

π
θ θ ,

0

1 4

0

1 4

2 2

2
42 1

1
2

2 1

1 2 1

3
8
 
 
−

−
=

−

− −
= =

−

( )

( )

( )

( ( ) )
sin

/

/x

x x
dx

x dx

x
d

π

π
θ θ

π .

Hence, we obtain a0 = 0 and a1 = 3 / 4.
The approximation is given by

 P1(x) = 
3
4

 (2x – 1)

which is same as obtained in (a).
(c) Error norm in (a) is 1 / 4.
Error norm in (b) can be obtained by evaluating E 2.

 E 2 = 
0

1
3

21

1
2 1

3
4

2 1
 −
− − −�

�	


��x x

x x dx
( )

( ) ( )

= 
0

1 6

0

1 4

0

1 22 1
1 1

3
2

2 1
1

9
16

2 1
1
 
 
−

− −
− −

−
+ −

−
( )

( ) ( )
( )

( )
( )

( )

x

x x x x

x

x x
dx

x

x x
dx

= 2 3
9
80

2
6

0

2
4

0

2
2π π π

θ θ θ θ θ θ
/ / /

sin sin sin
 
 
− +d d d

= 
π π
2

15
24

9
8

9
16 32

− +�
��

�
�� = .

Hence,  E = 
π

4 2
 = 0.3133.
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3.64 The function P3(x) = x3 – 9x2 – 20x + 5 is given. Find a second degree polynomial P2(x)
such that

δ = max
0 4≤ <x

 | P3(x) – P2(x) |

becomes as small as possible. The value of δ and the values of x for which | P3(x) – P2(x)|
= δ should also be given. (Inst. Tech., Lund, Sweden, BIT 7 (1967), 81)
Solution
Using the transformation, x = 2(t + 1), we get

P3(t) = 8(t + 1)3 – 36(t + 1)2 – 40(t + 1) + 5 = 8t3 – 12t2 – 88t – 63
= – 63T0 – 88T1 – 6(T2 + T0) + 2(T3 + 3T1)
= – 69T0 – 82T1 – 6T2 + 2T3

where – 1 ≤ t ≤ 1.
If we truncate the polynomial at T2, we have

max
− ≤ ≤1 1t

| P3(t) – P2(t) | = max
− ≤ ≤1 1t

 | P3(t) – (– 69T0 – 82T1 – 6T2) = max
− ≤ ≤1 1t

 | 2T3 | = 2.

The required approximation is
P2(t) = – 69T0 – 82T1 – 6T2 = – 69 – 82t – 6(2t2 – 1) = – 63 – 82t – 12t2

which has the maximum absolute error δ  = 2.
Substituting t = (x – 2) / 2, we obtain

 P2(x) = – 3x2 – 29x + 7.
We also have

 | P3(x) – P2(x) | = | x3 – 6x2 + 9x – 2 | = 2
for x = 0, 1, 3 and 4.

3.65 Find a polynomial P(x) of degree as low as possible such that

max| ( )| .
| |x

xe P x
≤

− ≤
1

2
0 05. (Lund Univ., Sweden, BIT 15 (1975), 224)

Solution
We have – 1 ≤ x ≤ 1, and

ex2  = 1 + x2 + 
x x x4 6 8

2 6 24
+ + + ...  ≈ 1 +  x2 + 

x x x4 6 8

2 6 24
+ +  = P(x)

   | error | = 
x x10 12

5 6! !
...+ +  ≤ 

1
5

1
6! !

+  + ...

= e – 1
1
1

1
2

1
3

1
4

+ + + +
�
��

�
��! ! ! !

 | = 0.00995.

We now write

P(x) = T0 + 
1
2

 (T2 + T0) + 
1

16
 (T4 + 4T2 + 3T0)

+ 
1

192
 (T6 + 6T4 + 15T2 + 10T0)

+ 
1

3072
 (T8 + 8T6 + 28T4 + 56T2 + 35T0)

= 
1

3072
 (T8 + 24T6 + 316T4 + 2600T2 + 5379T0)
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Since

  
1

3072
248 6( )T T+  ≤  0.00814

and the total error (0.00995 + 0.00814 = 0.01809) is less than 0.05, we get the approxi-
mation

ex2  ≈ 
1

3072
 (316T4 + 2600T2 + 5379T0)

= 
1

3072
 [316(8x4 – 8x2 + 1) + 2600(2x2 – 1) + 5379]

= 
1

3072
 [2528x4 + 2672x2 + 3095]

= 0.8229x4 + 0.8698x2 + 1.0075.

3.66 The  curve  y  =  e–x  is  to  be  approximated  by  a  straight  line  y  =  b  –  ax  such  that
| b – ax – e–x | ≤ 0.005. The line should be chosen in such a way that the criterion is
satisfied over as large an interval (0, c) as possible (where c > 0). Calculate a, b and c to
3 decimal accuracy. (Inst. Tech., Lund, Sweden, BIT 5 (1965), 214)
Solution
Changing the interval [0, c] to [– 1, 1] by the transformation x = c(t + 1 ) / 2, we have the
problem of approximating exp[– c(t + 1) / 2] by A + Bt, satisfying the condition

max
− ≤ ≤1 1t

 | A + Bt – exp[– c(t + 1) / 2] | ≤ 0.005.

We write  f (t) = exp[– c(t + 1) / 2] ≈ 1 – 
c t c t( ) ( )+ + +1

2
1

8

2 2

 = g(t)

with the approximate error of approximation – c3(t + 1)3 / 48 (where higher powers of c
are neglected).
Writing each power of t in terms of Chebyshev polynomials, we obtain

g(t) = 1
2 8 4 2 8

2 2 2
2− +

�
��

�
��

+ −
�
��

�
��

+c c c c
t

c
t

= 1
2 8 4 2 16

2

0

2

1

2

2 0− +
�
��

�
��

+ −
�
��

�
��

+ +c c
T

c c
T

c
T T( )

= 1
2

3
16 4 2 16

2

0

2

1

2

2− +
�
��

�
��

+ −
�
��

�
��

+
c c

T
c c

T
c

T .

If we truncate at T1, then g(t) has maximum absolute error c2 / 16. We also have

max ( )
− ≤ ≤

−
+ =

1 1

3
3

3

48
1

6t

c
t

c .

We choose c such that the total error

c c3 2

6 16
+  ≤ 0.005.
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We solve the equation

c c3 2

6 16
+  = 0.005, or f (c) = 8c3 + 3c2 – 0.24 = 0

using the Newton-Raphson method. The smallest positive root lies in the interval (0,
0.25). Starting with c0 = 0.222, we get

 c1 = 0.223837, c2 = 0.223826.
Taking c = 0.2238, we obtain

 f (t) = 0.8975T0 – 0.0994T1 = 0.8975 – 0.0994t
and  t = (2x – c) / c = 8.9366x – 1.
Hence, f (x) = 0.8975 – 0.0994(– 1 + 8.9366x) = 0.9969 – 0.8883x.

3.67 Find the lowest order polynomial which approximates the function

f (x) = ( )−
=
∑ x r

r 0

4

in the range 0 ≤ x ≤ 1, with an error less than 0.1.
Solution
We first change the interval [0, 1] to [– 1, 1] using the transformation x = (1 + t) / 2.
We have

 f (x) = 1 – x + x2 – x3 + x4, 0 ≤ x ≤ 1.

F(t) = 1
1
2

1
1
4

1
1
8

1
1

16
12 3 4− + + + − + + +( ) ( ) ( ) ( )t t t t

= 
11
16

1
8

1
4

1
8

1
16

2 3 4− + + +t t t t

= 
11
16

1
8

1
8

1
32

30 1 2 0 3 1T T T T T T− + + + +( ) ( )  + 
1

128
 (T4 + 4T2 + 3T0)

= 
107
128

1
32

5
32

1
32

1
1280 1 2 3 4T T T T T− + + + .

Since 1
32

1
1283 4T T+  ≤ 0.1, we obtain the approximation

F(t) = 
107
128

1
32

5
32

107
128

1
32

5
320 1 2T T T t− + = − +  (2t2 – 1)

= 
5

16 32
87

128
2t

t− + .

Substituting t = 2x – 1, we obtain the polynomial approximation as

g(x) = 
1

128
 (160x2 – 168x + 131).

3.68 Approximate

F(x) = 
1 1

0x
e

t
dt

x t


 −

by a third degree polynomial P3(x) so that
max

− ≤ ≤1 1x
 | F(x) – P3(x) | ≤  3 × 10–4.

(Inst. Tech., Lund, Sweden, BIT 6 (1976), 270)
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Solution

We have F(x) = 
1

1
2 6 24 120 720 50400

2 3 4 5 6

x
t t t t t t

dt
x


 + + + + + + +
�
��

�
��

...

= 1
4 18 96 600 4320 35280

2 3 4 5 6

+ + + + + + +x x x x x x
...

We truncate the series at the x5 term. Since, – 1 ≤ x ≤ 1, the maximum absolute error is
given by

1
7 7

1
8 8

3 10 5

( !) ( !)
...+ + ≈ × − .

Now, F(x) = 1
4 18 96 600 4320

2 3 4 5

+ + + + +
x x x x x

= T0 + 
1
4

1
36

1
384

31 2 0 3 1( ) ( ) ( )T T T T T+ + + +

+ 
1

4800
 (T4 + 4T2 + 3T5) + 

1
69120

 (T5 + 5T3 + 10T1)

= 
14809
14400

1783
6912

103
3600

37
13824

1
4800

1
691200 1 2 3 4 5T T T T T T+ + + + + .

If we truncate the right side at T3, the neglected terms gtive the maximum error as

T T4 5

4800 69120
+  £ 0.00022.

The total error is 0.00003 + 0.00022 = 0.00025 < 3 × 10–4. Hence, we have

 P3(x) = 
14809
14400

1783
6912

103
3600

2 1
37

13824
4 32 3+ + − + −x x x x( ) ( )

= 
37

3456
103

1800
3455
13824

4799
4800

3 2x x x+ + + .

3.69 The function f (x) is defined by

f (x) = 
1 1

0 2

2

x
e

t
dt

x t


 − −

Approximate f (x) by a polynomial P(x) = a + bx + cx2, such that
max
| |x ≤ 1

 | f (x) – P(x) | ≤ 5 × 10–3. (Lund Univ., Sweden, BIT 10 (1970), 228)

Solution
We have the given function as

 f (x) = 
1

1
2 6 24 120 7200.

2 4 6 8 10

x
t t t t t

dt
x


 − + − + − +
�
��

�
��

...

= 1 – 
x x x x x2 4 6 8 10

6 30 168 1080 7920
+ − + − +...

Truncate the series at x8. Since – 1 ≤ x ≤ 1, the maximum absolute error is given by

1
11 6

1
13 7( !) ( !)

+  + ... ≈ 0.00014.
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We get,  P(x) = 1 – 
x x x x2 4 6 8

6 30 168 1080
+ − +

= T0 – 
1

12
1

2402 0( )T T+ +  (T4 + 4T2 + 3T0)

– 
1

5376
 (T6 + 6T4 + 15T2 + 10T0)

+ 
1

138240
 (T8 + 8T6 + 28T4 + 56T2 + 35T0)

= 0.92755973T0 – 0.06905175T2 + 0.003253T4 – 0.000128T6 + 0.000007T8.
Truncating the right hand side at T2, we obtain

P(x) = 0.92755973T0  – 0.06905175T2 = 0.9966 – 0.1381x2.

The maximum absolute error in the neglected terms is 0.00339.
The total error is 0.00353.

3.70 The function F is defined by

F(x) = 
0

x


 exp (– t2 / 2)dt

Determine the coefficients of a fifth degree polynomial P5(x) for which
 | F(x) – P5(x) | ≤ 10–4 when | x | ≤ 1

(the coefficients should be accurate to within ± 2 × 10–5)
(Uppsala Univ., Sweden, BIT 5 (1965), 294)

Solution
We have the given function as

f (x) = 
0

2 4 6 8 10

1
2 8 48 384 3840

x t t t t t
dt
 − + − + − +

�
��

�
��

...

= x
x x x x x

− + − + − +
3 5 7 9 11

6 40 336 3456 42240
...

Truncate the series at x9. Since – 1 ≤ x ≤ 1, the maximum absolute error is given by
1

11 2 5

1

13 2 62 6( )( !) ( )( !)
+  + ... ≈ 0.000025.

We get P(x) = x – 
x x x x3 5 7 9

6 40 336 3456
+ − +

= T1 – 
1

24
 (T3 + 3T1) + 

1
640

 (T5 + 5T3 + 10T1)

    – 
1

21504
 (T7 + 7T5  + 21T3 + 35T1)

    + 
1

884736
 (T9 + 9T7 + 36T5 + 84T3 + 105T1)

= 0.889116T1 – 0.034736T3 + 0.001278T5 – 0.000036T7 + 0.000001T9.
Neglecting T7 and T9 on the right hand side, we obtain

 P(x) = 0.889116x – 0.034736(4x3 – 3x) + 0.001278(16x5 – 20x3 + 5x)
= 0.0204x5 – 0.1645x3 + 0.9997x
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The neglected terms have maximum absolute error 0.000037.
The total error is 0.000062.

3.71 Find the polynomial of degree 3 minimizing || q(x) – P(x) ||2 where the norm is defined by

( g, h) = 
0

∞


  g(x)h(x)e–x dx and q(x) = x5 – 3x3 + x.

(Umea Univ., Sweden, BIT 19 (1979), 425)
Solution
The Laguerre polynomials defined by

Ln+1(x) = (– 1)n + 1 ex 
d

dx

n

n

+

+

1

1  [e–x xn+1]

are orthogonal on [0, ∞) with respect to the weight function e–x. We have
 L0(x) = 1
 L1(x) = x – 1
 L2(x) = x2 – 4x + 2
 L3(x) = x3 – 9x2 + 18x – 6
 L4(x) = x4 – 16x3 + 72x2 – 96x + 24
 L5(x) = x5 – 25x4 + 200x3 – 600x2 + 600x – 120

and  1 = L0(x)
x = L1(x) + L0(x)

x2 = L2(x) + 4L1(x) + 2L0(x)
x3 = L3(x) + 9L2(x) + 18L1(x) + 6L0(x)
 x4 = L4(x) + 16L3(x) + 72L2(x) + 96L1(x) + 24L0(x)
x5 = L5(x) + 25L4(x) + 200L3(x) + 600L2(x) + 600L1(x) + 120L0(x).

The given polynomial can be written as
q(x) = x5 – 3x3 + x

= L5(x) + 25L4(x) + 197L3(x) + 573L2(x) + 547L1(x) + 103L0(x).
Taking the approximating polynomial in the form

 P3(x) = a0 L0(x) + a1 L1(x) + a2 L2(x) + a3 L3(x)
and using the given norm, we want to determine a0, a1, a2 and a3 such that

0

∞


 [q(x) – P3(x)]e–x Li(x)dx = 0, i = 0,1, 2, 3.

or  
0

∞


 [L5 + 25L4 + (197 – a3)L3 + (573 – a2)L2 + (547 – a1)L1 + (103 – a0)L0]e
–x Li(x)dx = 0.

Setting i = 0, 1, 2, 3, and using the orthogonal properties of Laguerre polynomials

 
0

∞


 e–x Li(x)Lj(x)dx = 0,  i ≠ j,

we get  a0 = 103, a1 = 547, a2 = 573, a3 = 197.
Hence,  P3(x) = 103 + 547(x – 1) + 573(x2 – 4x + 2) + 197(x3 – 9x2 + 18x – 6)

= 197x3 – 1200x2 + 1801x – 480.



CHAPTER 4

Differentiation and Integration

4.1 INTRODUCTION

Given a function f (x) explicitly or defined at a set of n + 1 distinct tabular points, we discuss
methods to obtain the approximate value of the rth order derivative f (r) (x), r ≥ 1, at a tabular
or a non-tabular point and to evaluate

w x
a

b
( )� f (x) dx,

where w(x) > 0 is the weight function and a and / or b may be finite or infinite.

4.2 NUMERICAL DIFFERENTIATION

Numerical differentiation methods can be obtained by using any one of the following three
techniques :

(i) methods based on interpolation,
(ii) methods based on finite differences,

(iii) methods based on undetermined coefficients.

Methods Based on Interpolation

Given the value of f (x) at a set of n + 1 distinct tabular points x0, x1, ..., xn, we first write
the interpolating polynomial Pn(x)  and then differentiate Pn(x), r times, 1 ≤ r ≤ n, to obtain

Pn
r( )(x). The value of Pn

r( )(x) at the point x*, which may be a tabular point or a non-tabular point
gives the approximate value of f (r) (x) at the point x = x*. If we use the Lagrange interpolating
polynomial

 Pn(x) = l x f xi i
i

n

( ) ( )
=
∑

0
(4.1)

having the error term
 En(x) = f (x) – Pn(x)

= 
( ) ( ) ... ( )

( ) !
x x x x x x

n
n− − −

+
0 1

1
 f (n+1) (ξ) (4.2)

we obtain   f (r) (x*) ≈ P xn
r( ) ( )∗ , 1 ≤ r ≤ n

and E xn
r( ) ( )∗  = f (r)(x*) – P xn

r( ) ( )∗ (4.3)

is the error of differentiation. The error term (4.3) can be obtained by using the formula
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1
1( ) !n

d
dx

j

j+
 [f (n+1) (ξ)] = 

j
n j

!
( ) !+ + 1

 f (n+j+1) (ηj )

 j = 1, 2, ..., r
where min (x0, x1, ..., xn, x) < ηj < max (x0, x1, ..., xn, x).

When the tabular points are equispaced, we may use Newton’s forward or backward
difference formulas.

For n = 1, we obtain

    f (x) = 
x x
x x

f
x x
x x

−
−

+
−
−

1

0 1
0

0

1 0
 f1 ...[4.4 (i)]

and  f ′(xk) = 
f f
x x

1 0

1 0

−
−  k = 0, 1 ...[4.4 (ii)]

Differentiating the expression for the error of interpolation

 E1(x) = 
1
2

 (x – x0)(x – x1) f ″(ξ), x0 < ξ < x1

we get, at x = x0 and x = x1

 E x E x1
1

0 1
1

1
( ) ( )( ) ( )= −  = 

x x0 1

2
−

 f ″(ξ), x0 < ξ < x1.

For n = 2, we obtain

 f (x) = 
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
x x x x

x x x x
f

x x x x
x x x x

f
x x x x

x x x x
− −
− −

+
− −
− −

+
− −
− −

1 2

0 1 0 2
0

0 2

1 0 1 2
1

0 1

2 0 2 1
 f2 ...[4.5 (i)]

E2(x) = 
1
6

(x – x0)(x – x1)(x – x2) f ″′ (ξ), x0 < ξ < x2 ...[4.5 (ii)]

 f ′(x0) = 
2 0 1 2

0 1 0 2
0

0 2

1 0 1 2
1

0 1

2 0 2 1

x x x
x x x x

f
x x

x x x x
f

x x
x x x x

− −
− −

+
−

− −
+

−
−( )( ) ( )( ) ( )( – )

 f2

...[4.5 (iii)]
with the error of differentiation

 E x2
1

0
1
6

( ) ( ) =  (x0 – x1)(x0 – x2) f ″′ (ξ), x0 < ξ < x2.

Differentiating (4.5 i) and (4.5 ii) two times and setting x = x0, we get

  f ″(x0) = 2 
f

x x x x
f

x x x x
f

x x x x
0

0 1 0 2

1

1 0 1 2

2

2 0 2 1( )( ) ( )( ) ( )( )− −
+

− −
+

− −
�
�
�

�
�
� (4.6)

with the error of differentiation

 E2
2( ) (x0) = 

1
3

 (2x0 – x1 – x2) f ″′ (ξ) + 
1

24
 (x0 – x1)(x1 – x2) [f

iv(η1) + f iv(η2)]

where x0 < ξ, η1, η2 < x2.
For equispaced tabular points, the formulas [4.4 (ii)], [4.5 (iii)], and (4.6) become,

respectively
 f ′(x0) = (f1 – f0) / h, (4.7)
f ′(x0) = (– 3f0 + 4f1 – f2) / (2h), (4.8)
f ″(x0) = (f0 – 2f1 + f2) / h2, (4.9)

with the respective error terms
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E1
1( ) (x0) = – 

h
2

 f ″(ξ), x0 < ξ < x1,

E2
1( ) (x0) = – 

h2

3
 f ′″ (ξ), x0 < ξ < x2,

E2
2( ) (x0) = – hf ′″ (ξ), x0 < ξ < x2.

If we write En
r( ) (xk) = | f (r) (xk) – P xn

r
k

( ) ( )|

= c hp + O(hp+1)
where c is a constant independent of h, then the method is said to be of order p. Hence, the
methods (4.7) and (4.9) are of order 1, whereas the method (4.8) is of order 2.

Methods Based on Finite Differences

Consider the relation

 Ef (x) = f (x + h) = f (x) + hf ′(x) + 
h2

2 !
 f ″(x) + ...

= 1
2

2 2

+ + +
�
	


�
�


hD
h D

!
...  f (x) = e hD f (x) (4.10)

where D = d / dx is the differential operator.
Symbolically, we get from (4.10)

E = ehD, or hD = ln E.
We have δ = E1 / 2 – E–1 / 2 = ehD / 2 – e– hD / 2

= 2 sinh (hD / 2).
Hence, hD = 2 sinh–1 (δ / 2).
Thus, we have

 hD = ln E

   ln (1 + ∆) = ∆ – 
1
2

1
3

2 3∆ ∆+  – ...

=   – ln (1 – ∇ ) = ∇  + 
1
2

1
3

2 3∇ + ∇  + ...

2 sinh–1 
δ
2
�
	

�
�
  = δ – 

1
2 3

2

2
3

. !
δ  + ... (4.11)

Similarly, we obtain

 ∆r – 
1
2

3 5
24

1r
r rr∆ + + +( )

 ∆r+2 – ...

∇ r + 
1
2

3 5
24

1r
r rr∇ + ++ ( )

 ∇ r+2 + ...
hr D r =

µδ r – 
r r rr+ + + ++3
24

5 52 135
5760

2
2

µδ  µδ r+4 – ...,  (r odd)

δ r – 
r r rr r

24
5 22
5760

2 4δ δ+ ++ +( )
 – ...,  (r even) (4.12)
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where, µ = 1
4

2

+
�
	


�
�


δ
 is the averaging operator and is used to avoid off-step points in the

method.
Retaining various order differences in (4.12), we obtain different order methods for a

given value of r. Keeping only one term in (4.12), we obtain for r = 1
 (fk+1 – fk) / h, ...[4.13 (i)]

f ′(xk) =  (fk – fk–1) / h, ...[4.13 (ii)]
(fk+1 – fk–1) / (2h), ...[4.13 (iii)]

and for r = 2
(fk+2 – 2fk+1 + fk) / h2, ...[4.14 (i)]

f ″(xk) = (fk – 2fk–1 + fk–2) / h2, ...[4.14 (ii)]
(fk+1 – 2fk + fk–1) / h2. ...[4.14 (iii)]

The methods (4.13i), (4.13ii), (4.14i), (4.14ii) are of first order, whereas the methods
(4.13iii) and (4.14iii) are of second order.

Methods Based on Undetermined Coefficients
We write

      hr f (r)(xk ) = a f xi k i
i m

m

( )+
= −
∑ (4.15)

for symmetric arrangement of tabular points and

hr f (r)(xk ) = a f xi k i
i m

n

( )+
= ±
∑ (4.16)

for non symmetric arrangement of tabular points.
The error term is obtained as

Er(xk ) = 
1

hr  [hr f (r) (xk ) – Σai f (xk+i )]. (4.17)

The coefficients ai’s in (4.15) or (4.16) are determined by requiring the method to be of a
particular order. We expand each term in the right side of (4.15) or (4.16) in Taylor series
about the point xk and on equating the coefficients of various order derivatives on both sides,
we obtain the required number of equations to determine the unknowns. The first non-zero
term gives the error term.

For m = 1 and r = 1 in (4.15), we obtain
 hf ′(xk ) = a–1 f (xk–1) + a0 f (xk ) + a1f (xk+1)

= (a–1 + a0 + a1) f (xk ) + (– a–1 + a1) hf ′(xk ) + 
1
2

(a–1 + a1) h
2 f ″(xk )

+ 
1
6

 (– a–1 + a1) h
3 f ″′ (xk ) + ...

Comparing the coefficients of f (xk), hf ′(xk) and (h2 / 2) f ″(xk) on both sides, we get
a–1 + a0 + a1 = 0, – a–1 + a1 = 1, a–1 + a1 = 0

whose solution is a0 = 0, a–1 = – a1 = – 1 / 2. We obtain the formula

h fk′ = 
1
2

 (fk+1 – fk–1), or fk′ = 
1

2h
 (fk+1 – fk–1). (4.18)



8-\N-NUM\NU-4-1

216 Numerical Methods : Problems and Solutions

The error term in approximating f ′(xk) is given by (– h2 / 6) f ″′ (ξ), xk–1 < ξ < xk+1.
For m = 1 and r = 2 in (4.15), we obtain

h2 f ″(xk ) = a–1 f (xk–1) + a0 f (xk ) + a1 f (xk+1)
= (a–1 + a0 + a1) f (xk ) + (– a–1 + a1) hf ′(xk )

+ 
1
2

 (a–1 + a1) h
2 f ″(xk ) + 

1
6

 (– a–1 + a1) h
3 f ″′ (xk )

+ 
1

24
 (a–1 + a1) h

4 f iv(xk ) + ......

Comparing the coefficients of f (xk ), hf ′(xk ) and h2 f ″(xk ) on both sides, we get
a–1 + a0 + a1 = 0, – a–1 + a1 = 0, a–1 + a1 = 2

whose solution is a–1 = a1 = 1, a0 = – 2. We obtain the formula

h2 fk″ = fk–1 – 2fk + fk+1, or fk″ = 
1
2h

 (fk–1 – 2fk + fk+1). (4.19)

The error term in approximating f ″(xk ) is given by (– h2 / 12) f (4) (ξ), xk–1 < ξ < xk+1.
Formulas (4.18) and (4.19) are of second order.
Similarly, for m = 2 in (4.15) we obtain the fourth order methods

f ′(xk ) = (fk–2 – 8fk–1 + 8fk+1 – fk+2) / (12h) (4.20)
f ″(xk ) = (– fk–2 + 16fk–1 – 30 fk + 16fk+1 – fk+2) / (12h2) (4.21)

with the error terms (h4 / 30) f v(ξ) and (h4 / 90) f vi (ξ) respectively and xk–2 < ξ < xk+2.

4.3 EXTRAPOLATION METHODS

To obtain accurate results, we need to use higher order methods which require a large number
of function evaluations and may cause growth of roundoff errors. However, it is generally
possible to obtain higher order solutions by combining the computed values obtained by using
a certain lower order method with different step sizes.

If g(x) denotes the quantity f (r) (xk) and g(h) and g(qh) denote its approximate value
obtained by using a certain method of order p with step sizes h and qh respectively, we have

g(h) = g(x) + chp + O(hp+1), (4.22)
 g(qh) = g(x) + c qp hp + O(hp+1). (4.23)

Eliminating c from (4.22) and (4.23) we get

g(x) = 
q g h g qh

q

p

p
( ) ( )−

− 1
 + O(hp+1) (4.24)

which defines a method of order p + 1. This procedure is called extrapolation or Richardson’s
extrapolation.

If the error term of the method can be written as a power series in h, then by repeating
the extrapolation procedure a number of times, we can obtain methods of higher orders. We
often take the step sizes as h, h / 2, h / 22, .... If the error term of the method is of the form

 E(xk ) = c1h + c2h2 + ... (4.25)
then, we have

 g(h) = g(x) + c1h + c2h
2 + ... (4.26)

Writing (4.26) for h, h / 2, h / 22, ... and eliminating ci’s from the resulting equations, we
obtain the extrapolation scheme
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g (p)(h) = 
2 2

2 1

1 1p p p

p
g h g h( ) ( )( / ) ( )− −−

−
, p = 1, 2, ... (4.27)

where   g (0) (h) = g(h).
The method (4.27) has order p + 1.
The extrapolation table is given below.

Table 4.1. Extrapolation table for (4.25).

Order

Step First Second Third Fourth

h g(h) g(1) (h) g(2)(h) g(3)(h)
h / 2 g(h / 2) g(1)(h / 2) g(2) (h / 2)
h / 22 g(h / 22) g(1) (h / 22)

h / 23 g(h / 23)

Similarly, if the error term of the method is of the form
 E(xk ) = g(x) + c1h2 + c2 h

4 + ... (4.28)
then, we have

 g(h) = g(x) + c1h
2 + c2 h

4 + ... (4.29)
The extrapolation scheme is now given by

g(p)(h) = 
4 2

4 1

1 1p p p

p
g h g h( ) ( )( / ) ( )− −−

−
, p = 1,2, ... (4.30)

which is of order 2p + 2.
The extrapolation table is given below.

Table 4.2. Extrapolation table for (4.28).

Step

Order Second Fourth Sixth Eighth

h g(h) g(1) (h) g(2)(h) g(3)(h)
h / 2 g(h / 2) g(1)(h / 2) g(2)(h / 2)
h / 22 g(h / 22) g(1) (h / 22)

h / 23 g(h / 23)

The extrapolation procedure can be stopped when
| g(k) (h) – g(k–1) (h / 2) | < ε

where ε is the prescribed error tolerance.

4.4 PARTIAL DIFFERENTIATION

One way to obtain numerical partial differentiation methods is to consider only one variable at
a time and treat the other variables as constants. We obtain

∂
∂
�
	

�
�


f
x x yi j( , )

 = 
( )/ ( ),
( )/ ( ),
( )/( ) ( ),

, ,

, ,

, ,

f f h O h
f f h O h
f f h O h

i j i j

i j i j

i j i j

+

−

+ −

− +
− +

− +

1

1

1 1
22

(4.31)
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∂
∂
�
	

�
�
 =

− +
− +

− +

+

−

+ −

f
y

f f k O k
f f k O k
f f k O kx y

i j i j

i j i j

i j i j
i j( , )

, ,

, ,

, ,

( )/ ( ),
( )/ ( ),
( )/( ) ( ),

1

1

1 1
22

(4.32)

where h and k are the step sizes in x and y directions respectively.
Similarly, we obtain

  
∂
∂

�
	


�
�


2

2
f

x x yi j( , )
 = (fi–1, j – 2fi, j + fi+1, j ) / h2 + O(h2),

  
∂
∂

�
	


�
�


2

2
f

y x yi j( , )
 = (fi, j+1 – 2fi, j + fi, j–1) / k2 + O(k2),

∂
∂ ∂
�
	


�
�


2 f
x y

x yi j( , )

 = (fi+1, j+1 – fi+1, j–1 – fi–1, j+1 + fi–1, j–1) / (4hk) + O(h2 + k2).

(4.33)

4.5 OPTIMUM CHOICE OF STEP LENGTH

In numerical differentiation methods, error of approximation or the truncation error is of the
form chp which tends to zero as h → 0. However, the method which approximates f (r)(x) con-
tains hr in the denominator. As h is successively decreased to small values, the truncation
error decreases, but the roundoff error in the method may increase as we are dividing by a
smaller number. It may happen that after a certain critical value of h, the roundoff error may
become more dominant than the truncation error and the numerical results obtained may
start worsening as h is further reduced. When f (x) is given in tabular form, these values may
not themselves be exact. These values contain roundoff errors, that is f (xi ) = fi + εi, where f (xi )
is the exact value and fi is the tabulated value. To see the effect of this roundoff error in a
numerical differentiation method, we consider the method

 f ′(x0) = 
f x f x

h
h( ) ( )

–1 0

2
−

 f ″(ξ), x0 < ξ < x1. (4.34)

If the roundoff errors in f (x0) and f (x1) are ε0 and ε1 respectively, then we have

 f ′(x0) = 
f f

h h
h1 0 1 0

2
−

+
−

−
ε ε

 f ″(ξ) (4.35)

or  f ′(x0) = 
f f

h
1 0−

 + RE + TE (4.36)

where RE and TE denote the roundoff error and the truncation error respectively. If we take

 ε = max ( | ε1 |, | ε2 |), and M2 = max
x x x0 1≤ ≤  | f ″(x) |

then, we get | RE | ≤ 
2ε
h

, and | TE | ≤ 
h
2

 M2.

We may call that value of h as an optimal value for which one of the following criteria is
satisfied :

(i) | RE | = | TE | [4.37 (i)]
(ii) | RE | + | TE | = minimum. [4.37 (ii)]
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If we use the criterion [4.37(i)], then we have

 
2

2
ε

h
h=  M2

which gives hopt = 2 ε/M2 , and | RE | = | TE | = ε M2 .

If we use the criterion [4.37 (ii)], then we have
2

2 2
ε

h
h

M+  = minimum

which gives – 2 1
22 2

ε
h

M+  = 0, or hopt = 2 ε/M2 .

The minimum total error is 2(εM2)
1 / 2.

This means that if the roundoff error is of the order 10–k (say) and M2 ≈ 0(1), then the
accuracy given by the method may be approximately of the order 10–k / 2. Since, in any numeri-
cal differentiation method, the local truncation error is always proportional to some power of
h, whereas the roundoff error is inversely proportional to some power of h, the same technique
can be used to determine an optimal value of h, for any numerical method which approximates
f (r) (xk ), r ≥ 1.

4.6 NUMERICAL INTEGRATION

We approximate the integral

I = w x f x dx
a

b
( ) ( )� (4.38)

by a finite linear combination of the values of f (x) in the form

I = w x f x dx f x
a

b

k k
k

n

( ) ( ) ( )� ∑=
=

λ
0

.(4.39)

where xk, k = 0(1)n are called the abscissas or nodes which are distributed within the limits of
integration [a, b] and λk, k = 0(1)n are called the weights of the integration method or the
quadrature rule (4.39). w(x) > 0 is called the weight function. The error of integration is given
by

 Rn = w x f x dx f xk k
k

n

a

b
( ) ( ) ( )−

=
∑� λ

0
. .(4.40)

An integration method of the form (4.39) is said to be of order p, if it produces exact
results (Rn ≡ 0), when f (x) is a polynomial of degree ≤ p.

Since in (4.39), we have 2n + 2 unknowns (n + 1 nodes xk’s and n + 1 weights λk’s), the
method can be made exact for polynomials of degree ≤ 2n +1. Thus, the method of the form
(4.39) can be of maximum order 2n + 1. If some of the nodes are known in advance, the order
will be reduced.

For a method of order m, we have

w x x dx xi
k k

i

k

n

a

b
( ) −

=
∑� λ

0

 = 0, i = 0, 1, ..., m (4.41)

which determine the weights λk’s and the abscissas xk’s. The error of integration is obtained
from
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Rn = 
C

m( ) !+ 1
 f (m+1) (ξ), a < ξ < b, (4.42)

where C = w x x dx x
a

b
m

k k
m

k

n

( )� ∑+ +

=

−1 1

0

λ . (4.43)

4.7 NEWTON-COTES INTEGRATION METHODS

In  this  case, w(x) = 1  and  the nodes xk’s are uniformly distributed in [a, b] with x0 = a, xn = b
and the spacing h = (b – a) / n. Since the nodes xk’s, xk = x0 + kh, k = 0, 1, ..., n, are known, we
have only to determine the weights λk’s, k = 0, 1, ..., n. These methods are known as Newton-
Cotes integration methods and have the order n.  When both the end points of the interval of
integration are used as nodes in the methods, the methods are called closed type methods,
otherwise, they are called open type methods.

Closed type methods

For n = 1 in (4.39), we obtain the trapezoidal rule

f x dx
h

a

b
( ) =� 2

 [f (a) + f (b)] (4.44)

where h = b – a. The error term is given as

 R1 = – 
h3

12
 f ″(ξ), a < ξ < b. (4.45)

For n = 2 in (4.39), we obtain the Simpson’s rule

f x dx
h

f a f
a b

f b
a

b
( ) ( ) ( )= + +�

	

�
�
 +�

��
�
��� 3

4
2

(4.46)

where h = (b – a)2. The error term is given by

R2 = 
C
3 !

 f ″′ (ξ), a < ξ < b.

We find that in this case

C = x dx
b a

a
a b

b
a

b
3 3

3
3

6
4

2
− − + +�

	

�
�
 +

�

�
�
�

�

�
�
�� ( )
 = 0

and hence the method is exact for polynomials of degree 3 also. The error term is now given by

  R2 = 
C
4 !  f iv(ξ), a < ξ < b.

We find that  C = x dx
b a

a
a b

b
b a

a

b
4 4

4
4

5

6
4

2 120� −
−

+
+�

	

�
�
 +

�

�
�
�

�

�
�
�

= −
−( ) ( )

.

Hence, the error of approximation is given by

R2 = – 
( )

( )
b a

f
hiv− = −

5 5

2880 90
ξ  f iv(ξ), a < ξ < b. (4.47)

since h = (b – a) / 2.
For n = 3 in (4.39), we obtain the Simpson’s 3 / 8 rule
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 f x dx
h

a

b
( ) =� 3

8
 [f (a) + 3f (a + h) + 3f (a + 2h) + f (b)] (4.48)

where h = (b – a) / 3. The error term is given by

R3 = – 
3
80

 h5 f iv (ξ), a < ξ < b, (4.49)

and hence the method (4.49) is also a third order method.
The weights λk’s of the Newton-Cotes rules for n ≤ 5 are given in Table 4.3. For large n,

some of the weights become negative. This may cause loss of significant digits due to mutual
cancellation.

Table 4.3. Weights of Newton-Cotes Integration Rule (4.39)

n λ0 λ1 λ2 λ3 λ4 λ5

1 1 / 2 1 / 2
2 1 / 3 4 / 3 1 / 3
3 3 / 8 9 / 8 9 / 8 3 / 8
4 14 / 45 64 / 45 24 / 45 64 / 45 14 / 45

5 95 / 288 375 / 288 250 / 288 250 / 288 375 / 288 95 / 288

Open type methods

We approximate the integral (4.38) as

I = f x dx f xk k
k

n

a

b
( ) ( )=

=

−

∑� λ
1

1

, (4.50)

where the end points x0 = a and xn = b are excluded.
For n = 2, we obtain the mid-point rule

 f x dx h f a b
a

b
( ) ( )= +� 2 (4.51)

where h = (b – a) / 2. The error term is given by

R2 = 
h

f
3

3
″ ( )ξ .

Similarly, for different values of n and h = (b – a) / n, we obtain

n = 3 :  I = 
3
2
h

 [f (a + h) + f (a + 2h)].

 R3 = 
3
4

 h3 f ″(ξ). (4.52)

n = 4 :  I = 
4
3
h

 [2f (a + h) – f (a + 2h) + 2f (a + 3h)].

R4 = 
14
45

 h5 f iv(ξ). (5.53)

n = 5 : I = 
5
24
h

 [11f (a + h) + f (a + 2h) + f (a + 3h) + 11f (a + 4h)].

 R5 = 
95

144
 h5 f iv(ξ), (4.54)

where a < ξ < b.
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4.8 GAUSSIAN INTEGRATION METHODS

When both the nodes and the weights in the integration method (4.39) are to be determined,
then the methods are called Gaussian integration methods.

If the abscissas xk’s in (4.39) are selected as zeros of an orthogonal polynomial, orthogonal
with respect to the weight function w(x) on the interval [a, b], then the method (4.39) has order
2n + 1 and all the weights  λk > 0.

The proof is given below.
Let f (x) be a polynomial of degree less than or equal to 2n + 1. Let qn(x) be the Lagrange

interpolating polynomial of degree ≤ n, interpolating the data (xi, fi ), i = 0, 1, ..., n

qn(x) = l x f xk k
k

n

( ) ( )
=
∑

0

with  lk(x) = 
π

π
( )

( ) ( )
x

x x xk k− ′
.

The polynomial [f (x) – qn(x)] has zeros at x0, x1, ... xn. Hence, it can be written as
f (x) – qn(x) = pn+1(x) rn(x)

where rn(x) is a polynomial of degree atmost n and pn+1(xi ) = 0, i = 0, 1, 2, ... n. Integrating this
equation, we get

w x
a

b
( )�  [f (x) – qn(x)] dx = w x

a

b
( )�  pn+1(x) rn(x) dx

or   w x f x dx w x q x dx w xn
a

b

a

b

a

b
( ) ( ) ( ) ( ) ( )= + ��� pn+1(x) rn(x) dx.

The second integral on the right hand side is zero, if pn+1 (x) is an orthogonal polyno-
mial, orthogonal with respect to the weight function w(x), to all polynomials of degree less
than or equal to n.

We then have

w x f x dx w x q x dx f xn k k
k

n

a

b

a

b
( ) ( ) ( ) ( ) ( )= =

=
∑�� λ

0

where  λk = w x l x dxk
a

b
( ) ( ) .�

This proves that the formula (4.39) has precision 2n + 1.

Observe that l xj
2 ( )  is a polynomial of degree less than or equal to 2n.

Choosing f (x) = l xj
2 ( ) , we obtain

 w x l x dx l xj
a

b

k j k
k

n

( ) ( ) ( )2 2

0
� ∑=

=

λ .

Since lj(xk ) = δjk, we get

λj = w x l x dxj
a

b
( ) ( )2�  > 0.

Since any finite interval [a, b] can be transformed to [– 1, 1], using the transformation

 x = 
( ) ( )b a

t
b a− + +

2 2
we consider the integral in the form
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w x f x dx f xk k
k

n

( ) ( ) ( )=
=

− ∑� λ
0

1

1

. (4.55)

Gauss-Legendre Integration Methods
We consider the integration rule

f x dx f xk k
k

n

( ) ( )=
=

−
∑� λ

0
1

1
. (4.56)

The nodes xk’s are the zeros of the Legendre polynomials

 Pn+1(x) = 
1

2 11

1

1n

n

nn
d
dx+

+

++( ) !
 [(x2 – 1)n+1]. (4.57)

The first few Legendre polynomials are given by
 P0(x) = 1, P1(x) = x, P2(x) = (3x2 – 1) / 2, P3(x) = (5x3 – 3x) / 2,
 P4(x) = (35x4 – 30x2 + 3) / 8.

The Legendre polynomials are orthogonal on [– 1, 1] with respect to the weight function
w(x) = 1. The methods (4.56) are of order 2n + 1 and are called Gauss-Legendre integration
methods.

For n = 1, we obtain the method

  f x dx f f( ) = −
�
	


�
�


+
�
	

�
�
−� 1

3

1

31

1

(4.58)

with the error term (1 / 135) f (4) (ξ), – 1 < ξ < 1.
For n = 2, we obtain the method

  
−� = − + +
1

1 1
9

5 3 5 8 0 5 3 5f x dx f f f( ) [ ( / ) ( ) ( / )] (4.59)

with the error term (1 / 15750) f (6) (ξ), – 1 < ξ < 1.
The nodes and the corresponding weights of the method (4.56) for n ≤ 5 are listed in

Table 4.4.
Table 4.4. Nodes and Weights for the Gauss-Legendre Integration Methods (4.56)

nodes weights
n xk λk

1 ± 0.5773502692 1.0000000000

2 0.0000000000 0.8888888889
± 0.7745966692 0.5555555556

3 ± 0.3399810436 0.6521451549
± 0.8611363116 0.3478548451

4 0.0000000000 0.5688888889
± 0.5384693101 0.4786286705
± 0.9061798459 0.2369268851

5 ± 0.2386191861 0.4679139346
± 0.6612093865 0.3607615730

± 0.9324695142 0.1713244924
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Lobatto Integration Methods

In this case, w(x) = 1 and the two end points – 1 and 1 are always taken as nodes. The
remaining n – 1 nodes and the n + 1 weights are to be determined. The integration methods of
the form

−
=

−

� ∑= − + +
1

1

0
1

1

1 1f x dx f f x fk k n
k

n

( ) ( ) ( ) ( )λ λ λ (4.60)

are called the Lobatto integration methods and are of order 2n – 1.
For n = 2, we obtain the method

−� =
1

1 1
3

f x dx( )  [f (– 1) + 4f (0) + f (1)] (4.61)

with the error term (– 1 / 90) f (4)(ξ), – 1 < ξ < 1.
The nodes and the corresponding weights for the method (4.60) for n ≤ 5 are given in

Table 4.5.
Table 4.5. Nodes and Weights for Lobatto Integration Method (4.60)

n nodes xk weights λk

2 ± 1.00000000 0.33333333
0.00000000 1.33333333

3 ± 1.00000000 0.16666667
± 0.44721360 0.83333333

4 ± 1.00000000 0.10000000
± 0.65465367 0.54444444

0.00000000 0.71111111

5 ± 1.00000000 0.06666667
± 0.76505532 0.37847496
± 0.28523152 0.55485837

Radau Integration Methods

In this case, w(x) = 1 and the lower limit – 1 is fixed as a node. The remaining n nodes
and n + 1 weights are to be determined. The integration methods of the form

  
−

=
� ∑= − +

1

1

0
1

1f x dx f f xk k
k

n

( ) ( ) ( )λ λ (4.62)

are called Radau integration methods and are of order 2n.
For n = 1, we obtain the method

−� = − + �
	

�
�
1

1 1
2

1
3
2

1
3

f x dx f f( ) ( ) (4.63)

with the error term (2 / 27) f ″′ (ξ), – 1 < ξ < 1.
For n = 2, we obtain the method

 
−� 1

1
f x dx( )  = 

2
9

1
16 6

18
1 6

5
16 6

18
1 6

5
f f f( )− + + −�

	

�
�


+ − +�
	


�
�


(4.64)

with the error term (1 / 1125) f (5) (ξ), – 1 < ξ < 1.
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The nodes and the corresponding weights for the method (4.62) are given in Table 4.6.
Table 4.6. Nodes and Weights for Radau Integration Method (4.62)

n nodes xk weights λk

1 – 1.0000000 0.5000000
0.3333333 1.5000000

2 – 1.0000000 0.2222222
– 0.2898979 1.0249717

0.6898979 0.7528061

3 – 1.0000000 0.1250000
– 0.5753189 0.6576886

0.1810663 0.7763870
0.8228241 0.4409244

4 – 1.0000000 0.0800000
– 0.7204803 0.4462078

0.1671809 0.6236530
0.4463140 0.5627120
0.8857916 0.2874271

5 – 1.0000000 0.0555556
– 0.8029298 0.3196408
– 0.3909286 0.4853872

0.1240504 0.5209268
0.6039732 0.4169013
0.9203803 0.2015884

Gauss-Chebyshev Integration Methods

We consider the integral

−
=

� ∑
−

=
1

1

2
01

f x dx

x
f xk k

k

n( )
( )λ (4.65)

where w(x) = 1 / 1 2− x  is the weight function. The nodes xk’s are the zeros of the Chebyshev
polynomial

Tn+1(x) = cos ((n + 1) cos–1 x). (4.66)
The first few Chebyshev polynomials are given by

T0(x) = 1, T1(x) = x, T2(x) = 2x2 – 1,
 T3(x) = 4x3 – 3x, T4(x) = 8x4 – 8x2 + 1.

The Chebyshev polynomials are orthogonal on [– 1, 1] with respect to the weight func-

tion w(x) = 1 / 1 2− x . The methods of the form (4.65) are called Gauss-Chebyshev integration
methods and are of order 2n + 1.
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We obtain from (4.66)

xk = cos 
( )2 1

2 1
k
n
+
+

�
	


�
�


π
, k = 0.1, ..., n. (4.67)

The weights λk’s in (4.65) are equal and are given by

λk = 
π

n + 1
, k = 0, 1, ..., n. (4.68)

For n = 1, we obtain the method

 
−� −

= −
�
	


�
�
 +

�
	

�
�


�
�
�

�
�
�

1

1

21 2
1

2

1

2

f x

x
dx f f

( ) π
(4.69)

with the error term (π / 192) f (4)(ξ), – 1 < ξ < 1.

For n = 2, we obtain the method

−� −
= −

�
	


�
�


+ +
�
	

�
�


�

�
�
�

�

�
�
�1

1

2

1

1 3
3

2
0

3
2x

f x dx f f f( ) ( )
π

(4.70)

with the error term (π / 23040) f (6) (ξ), – 1 < ξ < 1.

Gauss-Laguerre Integration Methods

We consider the integral

 
0

0

∞ −

=
� ∑=e f x dx f xx

k k
k

n

( ) ( )λ (4.71)

where w(x) = e–x is the weight function. The nodes xk’s are the zeros of the Laguerre polynomial

Ln+1(x) = (– 1)n+1 ex d

dx

n

n

+

+

1

1
 [e–x xn+1] (4.72)

The first few Laguerre polynomials are given by

 L0(x) = 1, L1(x) = x – 1, L2(x) = x2 – 4x + 2,

 L3(x) = x3 – 9x2 + 18x – 6.

The Laguerre polynomials are orthogonal on [0, ∞) with respect to the weight function
e–x. The methods of the form (4.71) are called Gauss-Laguerre integration method and are of
order 2n + 1.

For n = 1, we obtain the method

0

2 2
4

2 2
2 2

4
2 2

∞ −� = + − + − +e f x dx f fx ( ) ( ) ( ) (4.73)

with the error term (1 / 6) f (4) (ξ), – 1 < ξ < 1.

The nodes and the weights of the method (4.71) for n ≤ 5 are given in Table 4.7.
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Table 4.7. Nodes and Weights for Gauss-Laguerre Integration Method (4.71)

n nodes xk weights λk

1  0.5857864376 0.8535533906
3.4142135624 0.1464466094

2 0.4157745568 0.7110930099
2.2942803603 0.2785177336
6.2899450829 0.0103892565

3 0.3225476896 0.6031541043
1.7457611012 0.3574186924
4.5366202969 0.0388879085
9.3950709123 0.0005392947

4 0.2635603197 0.5217556106
1.4134030591 0.3986668111
3.5964257710 0.0759424497
7.0858100059 0.0036117587

12.6408008443 0.0000233700

5 0.2228466042 0.4589646740
1.1889321017 0.4170008308
2.9927363261 0.1133733821
5.7751435691 0.0103991975
9.8374674184 0.0002610172

15.9828739806 0.0000008955

Gauss-Hermite Integration Methods

We consider the integral

−∞

∞ −

=
� ∑=e f x dx f xx

k k
k

n
2

0

( ) ( )λ (4.74)

where w(x) = e x− 2
 is the weight function. The nodes xk’s are the roots of the Hermite polynomial

 Hn+1(x) = (– 1)n+1 e x− 2
 d

dx

n

n

+

+

1

1
 (e x− 2

). (4.75)

The first few Hermite polynomials are given by
 H0(x) = 1, H1(x) = 2x, H2(x) = 2(2x2 – 1),
 H3(x) = 4(2x3 – 3x).

The Hermite polynomials are orthogonal on (– ∞, ∞) with respect to the weight function

w(x) = e x− 2
. Methods of the form (4.74) are called Gauss-Hermite integration methods and are

of order 2n + 1.
For n = 1, we obtain the method

 
−∞

∞
−� = −

�
	


�
�
 +

�
	


�
�


�
�
�

�
�
�e f x dx f fx2

2
1
2

1
2

( )
π

(4.76)

with the error term ( / )π 48 f (4) (ξ), – ∞ < ξ < ∞.



8-\N-NUM\NU-4-2

228 Numerical Methods : Problems and Solutions

For n = 2, we obtain the method

 
− ∞

∞
−� = −

�
	


�
�


+ +
�
	

�
�


�

�
�
�

�

�
�
�

e f x dx f f fx2

6
6

2
4 0

6
2

( ) ( )
π

(4.77)

with the error term ( / )π 960 f (6)(ξ), – ∞ < ξ < ∞.
The  nodes  and  the  weights  for  the  integration  method (4.74) for n ≤ 5 are listed in

Table 4.8.
Table 4.8. Nodes and Weights for Gauss-Hermite Integration Methods (4.74)

n  nodes xk weights λk

0 0.0000000000 1.7724538509

1 ± 0.7071067812 0.8862269255

2 0.0000000000 1.1816359006
± 1.2247448714 0.2954089752

3 ± 0.5246476233 0.8049140900
± 1.6506801239 0.0813128354

4 0.0000000000 0.9453087205
± 0.9585724646 0.3936193232
± 2.0201828705 0.0199532421

5 ± 0.4360774119 0.7264295952
± 1.3358490740 0.1570673203
± 2.3506049737 0.0045300099

4.9 COMPOSITE INTEGRATION METHODS

To avoid the use  of higher order methods and still obtain accurate results, we use the compos-
ite integration methods. We divide the interval [a, b] or [– 1, 1] into a number  of subintervals
and evaluate the integral in each subinterval by a particular method.

Composite Trapezoidal Rule

We  divide  the  interval  [a, b] into N subintervals [xi–1, xi ], i = 1, 2, ..., N, each of length
h = (b – a) / N, x0 = a, xN = b and xi = x0 + ih, i = 1, 2, ..., N – 1. We write

f x dx f x dx f x dx f x dx
x

x

x

x

x

x

a

b

N

N
( ) ( ) ( ) ... ( )= + + +

−
����

11

2

0

1
. (4.78)

Evaluating each of the integrals on the right hand side of (4.78) by the trapezoidal rule
(4.44), we obtain the composite rule

f x dx
h

a

b
( ) =� 2

 [f0 + 2(f1 + f2 + ... + fN–1) + fN ] (4.79)

where fi = f (xi ).
The error in the integration method (4.79) becomes

R1 = – 
h3

12
 [f ″(ξ1) + f ″(ξ2) + ... + f ″(ξN )], xi–1 < ξi < xi. (4.80)

Denoting
 f ″(η) = max

a x b≤ ≤
 | f ″(x) |, a < η < b
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we obtain from (4.80)

 | R1 | ≤ 
Nh3

12
 f ″(η) = 

( )
( )

( )b a

N
f

b a− ″ = −3

212 12
η  h2 f ″(η). (4.81)

Composite Simpson’s Rule

We divide the interval  [a, b] into 2N subintervals each of length h = (b – a) / (2N). We
have 2N + 1 abscissas x0, x1, ..., x2N with x0 = a, x2N = b, xi = x0 + ih, i = 1, 2, ..., 2N – 1.

We write

f x dx f x dx f x dx f x dx
x

x

x

x

x

x

a

b

N

N
( ) ( ) ( ) ... ( )= + + +

−
����

2 2

2

2

4

0

2
. (4.82)

Evaluating each of the integrals on the right hand side of (4.82) by the Simpson’s rule
(4.46), we obtain the composite rule

 f x dx
h

a

b
( ) =� 3

[f0 + 4(f1 + f3 + ... + f2N–1) + 2(f2 + f4 + ... + f2N–2) + f2N].

(4.83)
The error in the integration method (4.83) becomes

 R2 = – 
h5

90
 [f iv(ξ1) + f iv(ξ2) + ... + f iv(ξN)], x2i–2 < ξi < x2i (4.84)

Denoting  f iv(η) = max
a x b≤ ≤

 | f iv(x) |, a < η < b

we obtain from (4.84)

 | R2 | ≤ Nh
f

b a

N
f

b aiv iv
5 5

490 2880 180
( )

( )
( )

( )η η=
−

=
−  h4 f iv(η) (4.85)

4.10 ROMBERG INTEGRATION

Extrapolation procedure of section 4.3, applied to the integration methods is called Romberg
integration. The errors in the composite trapezoidal rule (4.79) and the composite Simpson’s
rule (4.83) can be obtained as

 I = IT + c1h
2 + c2h4 + c3h

6 + ... (4.86)
 I = IS + d1h

4 + d2h6 + d3h
8 + ... (4.87)

respectively, where ci’s and di’s are constants independent of h.
Extrapolation procedure for the trapezoidal rule becomes

 I h
I h I h

T
m

m
T
m

T
m

m
( )

( ) ( )

( )
( / ) ( )

=
−

−

− −4 2
4 1

1 1

, m = 1, 2,... (4.88)

where I hT
( ) ( )0  = IT (h).

The method (4.88) has order 2m + 2.
Extrapolation procedure for the Simpson’s rule becomes

I h
I h I h

S
m

m
S
m

S
m

m
( )

( ) ( )

( )
( / ) ( )

=
−

−

+ − −

+

4 2

4 1

1 1 1

1 , m = 1, 2,... (4.89)

where IS
( )0 (h) = IS (h).

The method (4.89) has order 2m + 4.
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4.11 DOUBLE INTEGRATION

The problem of double integration is to evaluate the integral of the form

 I = f x y dx dy
c

d

a

b
( , )�� . (4.90)

This integral can be evaluated numerically  by two successive integrations in x any y
directions respectively, taking into account one variable at a time.

Trapezoidal rule
If we evaluate the inner integral in (4.90) by the trapezoidal rule, we get

IT = d c
f x c f x d dx

a

b−
+�2

[ ( , ) ( , )] . (4.91)

Using the trapezoidal rule again in (4.91) we get

IT = 
( ) ( )b a d c− −

4
 [f (a, c) + f (b, c) + f (a, d) + f (b, d)]. (4.92)

The composite trapezoidal rule for evaluating (4.90) can be written as

IT = 
hk
4

 [{ f00 + f0M + 2( f01 + f02 + ... + f0, M–1)}

+ 2 { ( ... )},f f f f fi iM i i i M
i

N

0 1 2 1
1

1

2+ + + + + −
=

−

∑
+ { fN0 + fNM + 2( fN1 + fN2 + ... + fN, M–1)}] (4.93)

where h and k are the spacings in x and y directions respectively and
 h = (b – a) / N, k = (d – c) / M,
 xi = x0 + ih, i = 1, 2, ..., N – 1,
 yj = y0 + jk, j = 1, 2, ..., M – 1,
x0 = a, xN = b, y0 = c, yM = d.

The computational molecule of the method (4.93) for M = N = 1 and M = N = 2 can be
written as

Trapezoidal rule Composite trapezoidal rule

Simpson’s rule

If we evaluate the inner integral in (4.90) by Simpson’s rule then we get

IS = 
k

f x c f x c k f x d dx
a

b

3
4[ ( , ) ( , ) ( , )]+ + +� (4.94)

where k = (d – c) / 2.
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Using Simpson’s rule again in (4.94), we get

 IS = 
hk
9

 [f (a, c) + f (a, d) + f (b, c) + f (b, d)

+ 4{f (a + h, c) + f (a + h, d) + f (b, c + k)
+ f (a, c + k)} + 16f (a + h, c + k)] (4.95)

where h = (b – a) / 2.
The composite Simpson’s rule for evaluating (4.90) can be written as

IS = 
hk

f f f fi i N
i

N

i

N

9
4 200 2 1 0 2 0 2 0

1

1

1

+ + +
�
��
��

�
��
��

�

�
�
� −

=

−

=
∑∑ , , ,

+ 4 f f f fj i j i j N j
i

N

i

N

j

M

0 2 1 2 1 2 1 2 2 1 2 2 1
1

1

11

4 2, , , ,− − − − −
=

−

==

+ + +
�
��
��

�
��
��

∑∑∑

+ 2 f f f fj i j i j N j
i

N

i

N

j

M

0 2 2 1 2 2 2 2 2
1

1

11

1

4 2, , , ,+ + +
�
��
��

�
��
��

−
=

−

==

−

∑∑∑

+ f f f fM i M i M N M
i

N

i

N

0 2 2 1 2 2 2 2 2
1

1

1

4 2, , , ,+ + +
�
��
��

�
��
��

−
=

−

=
∑∑ (4.96)

where h and k are the spacings in x and y directions respectively and
h = (b – a) / (2N), k = (d – c) / (2M),
xi = x0 + ih, i = 1, 2, ..., 2N – 1,
yj = y0 + jk, j = 1, 2, ..., 2M – 1,

 x0 = a, x2N = b, y0 = c, y2M = d.
The computational module for M = N = 1 and M = N = 2 can be written as

Simpson’s rule Composite Simpson’s rule

4.12 PROBLEMS AND SOLUTIONS

Numerical differentiation

4.1 A differentiation rule of the form
f ′(x0) = α0 f0 + α1 f1 + α2 f2,

where xk = x0 + kh is given. Find the values of α0, α1 and α2 so that the rule is exact for
f ∈  P2. Find the error term.
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Solution
The error in the differentiation rule is written as

 TE = f ′(x0) – α0 f (x0) – α1 f (x1) – α2 f (x2).
Expanding each term on the right side in Taylor’s series about the point x0, we obtain

TE = – (α0 + α1 + α2) f (x0) + (1 – h(α1 + 2α2)) f ′(x0)

– 
h2

2
 (α1 + 4α2) f ″(x0) – 

h3

6
 (α1 + 8α2) f ″′ (x0) – ...

We choose α0, α1 and α2 such that
α0 + α1 + α2 = 0,

 α1 + 2α2 = 1 / h,
 α1 + 4α2 = 0.

The solution of this system is
α0 = – 3 / (2h), α1 = 4 / (2h), α2 = – 1 / (2h).

Hence, we obtain the differentiation rule
f ′(x0) = (– 3f0 + 4f1 – f2) / (2h)

with the error term

 TE = 
h3

1 26
8( )α α+  f ″′ (ξ) = – 

h2

3
 f ″′ (ξ), x0 < ξ < x2.

The error term is zero if f (x) ∈  P2. Hence, the method is exact for all polynomials of
degree ≤ 2.

4.2. Using the following data find f ′(6.0), error = O(h), and f ″(6.3), error = O(h2)

x 6.0 6.1 6.2 6.3 6.4

f (x) 0.1750 – 0.1998 – 0.2223 – 0.2422 – 0.2596

Solution
Method of O(h) for f ′(x0) is given by

 f ′(x0) = 
1

0 0h
f x h f x[ ( ) ( )]+ −

With x0 = 6.0 and h = 0.1, we get

 f ′(6.0) = 
1

0 1.
 [ f (6.1) – f (6.0)]

= 
1

0 1.
 [– 0.1998 – 0.1750] = – 3.748.

Method of O(h2) for f ″(x0) is given by

f ″(x0) = 
1
2h

 [ f (x0 – h) – 2f (x0) + f (x0 + h)]

With x0 = 6.3 and h = 0.1, we get

f ″(6.3) = 
1

1 2( )0.
 [ f (6.2) – 2f (6.3) + f (6.4)] = 0.25.
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4.3 Assume that f (x) has a minimum in the interval xn–1 ≤ x ≤ xn+1 where xk = x0 + kh. Show
that the interpolation of f (x) by a polynomial of second degree yields the approximation

fn – 
1
8 2

1 1
2

1 1

( )f f
f f f

n n

n n n

+ −

+ −

−
− +

�
	


�
�


, fk = f (xk)

for this minimum value of f (x). (Stockholm Univ., Sweden, BIT 4 (1964), 197)
Solution
The interpolation polynomial through the points (xn–1, fn–1), (xn, fn) and (xn+1, fn+1) is
given as

f (x) = f (xn–1) + 
1
h

(x – xn–1) ∆fn–1 + 
1

2 2! h
 (x – xn–1)(x – xn) ∆2fn–1

Since f (x) has a minimum, set f ′(x) = 0.

Therefore f ′(x) = 1 1
2

1 2h
f

hn∆ − +  (2x – xn–1 – xn) ∆2fn–1 = 0

which gives xmin = 
1
2

 (xn + xn–1) – h 
∆
∆

f

f
n

n

−

−

1
2

1

.

Hence, the minimum value of f (x) is

f (xmin) = fn–1 + 
1 1

2 1
1

2
1h

x x h
f
fn n
n

n

( )− −
�
�
�
�

�
�
�
�−

−

−

∆
∆

 ∆fn–1

+ 
1

2
1
22 1

1
2

1h
x x h

f
f

n n
n

n

( )− −
�
�
�
�

�
�
�
�−

−

−

∆
∆

 
1
2 1

1
2

1

( )x x h
f
f

n n
n

n
−

−

−
− −

�
�
�
�

�
�
�
�

∆
∆  ∆2fn–1

Since xn – xn–1 = h, we obtain

fmin = fn–1 + 1
2 2

1
81

1
2

2
1

∆
∆
∆

f
f

f
n

n

n
−

−

−
− −

( )
 ∆2fn–1

= fn – ∆fn–1 + 1

8 2
1∆ fn−

 [4∆fn–1 ∆
2fn–1 – 4(∆fn–1)

2 – (∆2fn–1)
2]

= fn – 
1

8 2
1∆ fn−

 [(4∆fn–1 + ∆2fn–1) ∆2fn–1 + 4(∆fn–1)2]

Using
∆fn–1 = fn – fn–1, ∆2 fn–1 = fn+1 – 2fn + fn–1,

and simplifying, we obtain

fmin = fn – 
f f f f

f f f
n n n n

n n n

+ − + −

+ −

− +
− +

1
2

1 1 1
2

1 1

2
8 2( )

 = fn – 1
8 2

1 1
2

1 1

( )f f
f f f

n n

n n n

+ −

+ −

−
− +

�
	


�
�


.

4.4 Define

S(h) = 
− + + + −y x h y x h y x

h
( ) ( ) ( )2 4 3

2
(a) Show that

 y′(x) – S(h) = c1 h2 + c2 h3 + c3 h4 + ...
and state c1.
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(b) Calculate y′(0.398) as accurately as possible using the table below and with the aid of
the approximation S(h). Give the error estimate (the values in the table are correctly
rounded).

x 0.398 0.399 0.400 0.401 0.402

f (x) 0.408591 0.409671 0.410752 0.411834 0.412915

(Royal Inst. Tech. Stockholm, Sweden, BIT 19(1979), 285)
Solution
(a) Expanding each term in the formula

S(h) = 
1

2h
[– y(x + 2h) + 4y(x + h) – 3y(x)]

in Taylor series about the point x, we get

S(h) = y′(x) – 
h

y x
h

y x
hiv

2 3 4

3 4
7
60

″′ − −( ) ( )  yv(x) – ...

= y′(x) – c1 h2 – c2 h3 – c3 h4 – ...
Thus we obtain

y′(x) – S(h) = c1h2 + c2 h3 + c3 h4 + ...
where c1 = y′″ (x) / 3.
(b) Using the given formula with x0 = 0.398 and h = 0.001, we obtain

y′(0.398) ≈ 1
2 0 001( . )

 [– y(0.400) + 4y(0.399) – 3y(0.398)]

= 1.0795.
The error in the approximation is given by

Error ≈ c1h
2 = 

h
y x

h
h

y
2

0

2

3
3

03 3
1

″′ ≈ �
	


�
�
( ) ∆

= 
1

3h
(y3 – 3y2 + 3y1 – y0)

= 
1

3h
 [y(0.401) – 3y(0.400) + 3y(0.399) – y(0.398)] = 0.

Hence, the error of approximation is given by the next term, which is

Error ≈ c2 h3 = 
1
4 4

13
0

3

4
4

0h y x
h

h
fiv( ) ≈ �

	

�
�
∆

= 
1

4h
(y4 – 4y3 + 6y2 – 4y1 + y0)

= 
1

4h
 [y(0.402) – 4y(0.401) + 6y(0.400) – 4y(0.399) + y(0.398)]

= – 0.0005.

4.5 Determine α, β, γ and δ such that the relation

 y′
a b+�
	


�
�
2

 = α y(a) + β y(b) + γ y″(a) + δ y″(b)

is exact for polynomials of as high degree as possible. Give an asymptotically valid ex-
pression for the truncation error as | b – a | → 0.
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Solution
We write the error term in the form

 TE = y′ 
a b+�
	


�
�
2

 – α y(a) – β y(b) – γ y″(a) – δ y″(b).

Letting (a + b) / 2 = s, (b – a) / 2 = h / 2 = t, in the formula, we get
 TE = y′(s) – α y(s – t) – β y(s + t) – γ y″(s – t) – δ y″(s + t).

Expanding each term on the right hand side in Taylor series about s, we obtain
 TE = – (α + β)y(s) + {1 – t(β – α)} y′(s)

– 
t2

2
( )α β γ δ+ + +

�
�
�

�
�
�

 y″(s) – t
t

3

6
( ) ( )β α δ γ− + −

�
��
��

�
��
��

 y″′ (s)

– 
t t4 2

24 2
( ) ( )β α δ γ+ + +

�
��
��

�
��
��

 y iv(s)

– t t5 3

120 6
( ) ( )β α δ γ− + −

�
��
��

�
��
��

 yv(s) – ...

We choose α, β, γ and δ such that
 α + β = 0,

     – α + β = 1 / t = 2 / h,

 
h2

8
 (α + β) + γ + δ = 0,

  
h3

48
 (– α + β) + 

h
2

(δ – γ) = 0.

The solution of this system is
α = – 1 / h, β = 1 / h, γ = h / 24 and δ = – h / 24.

Since,

 
t t h h4 2 4 2

24 2 384 8
( ) ( ) ( ) ( )β α δ γ α β δ γ+ + + = + + +

�
�
�

�
�
�  = 0,

we obtain the error term as

 TE = – 
h h5 3

3840 48
( ) ( )β α δ γ− + −

�
�
�

�
�
� yv (ξ)

= – h4 
1

1920
1

576
−�

	

�
�
  y

v(ξ) = 
7

5760
h4 y v(ξ), a < ξ < b.

4.6 Find the coefficients as’s in the expansion

D = as
s

s

µδ
=

∞

∑
1

(h = 1, D = differentiation operator, µ =  mean value operator and δ = central difference
operator) (Arhus Univ., Denmark, BIT 7 (1967), 81)
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Solution

Since µ = [1 + 1
4 δ2]1/2, we get

 hD = 2 sinh–1 
δ µ

µ
δ

2
2

2
1�

	

�
�
 = �

	

�
�


−sinh  = 
2

1 4 22 1 2
1µ

δ
δ

[ ( / )]
sinh

/+
�
	

�
�


−

= 2µ 1
4 2

2 1/2
1+

�
�
�

�
�
� �

	

�
�


−
−δ δ

sinh

= µ 1
1
2 4

3
8 4

1
2 3

2 2 2 2

2
3− +

�
	

�
�


−
�

�
�
�

�

�
�
� − +
�
�
�

�
�
�

δ δ δ δ...
( !)

...

= µ δ δ δ− + −
�
�
�

�
�
�

1
3

2
5

2
3

2
5

!
( !)

!
... (4.97)

The given expression is
 D = a1µδ + a2 µδ2 + a3 µδ3 + ... (4.98)

Taking h = 1 and comparing the right hand sides in (4.97) and (4.98), we get

 a2n = 0, a2n+1 = 
( ) ( !)

( ) !
−

+
1
2 1

2n n
n

.

4.7 (a) Determine the exponents ki in the difference formula

f ″(x0) = 
f x h f x f x h

h
a hi

k

i

i
( ) ( ) ( )0 0 0

2
1

2+ − + −
+

=

∞

∑
assuming that f (x) has convergent Taylor expansion in a sufficiently large interval
around x0.

(b) Compute f ″(0.6) from the following table using the formula in (a) with h = 0.4, 0.2
and 0.1 and perform repeated Richardson extrapolation.

x f (x)

0.2 1.420072
0.4 1.881243
0.5 2.128147
0.6 2.386761
0.7 2.657971
0.8 2.942897

1.0 3.559753

(Lund Univ., Sweden, BIT 13 (1973), 123)
Solution
(a) Expanding each term in Taylor series about x0 in the given formula, we obtain

 ki = 2i, i = 1, 2, ...
(b) Using the given formula, we get

h = 0.4 :  f ″(0.6) = 
f f f( ) ( . ) ( . )

( . )
1.0 2 0 6 0 2

0 4 2

− +
 = 1.289394.
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h = 0.2 :  f ″(0.6) = 
f f f( . ) ( . ) ( . )

( . )

0 8 2 0 6 0 4

0 2 2

− +
 = 1.265450.

h = 0.1 :  f ″(0.6) = 
f f f( . ) ( . ) ( . )

( . )
0 7 2 0 6 0 5

0 1 2

− +
 = 1.259600.

Applying the Richardson extrapolation

fi h,″  = 
4

4 1
1 1 2

i
i h i h

i

f f− −″ − ″

−
, ,

where i denotes the ith iterate, we obtain the following extrapolation table.

Extrapolation Table

h O(h2) O(h4) O(h6)

0.4 1.289394
1.257469

0.2 1.265450 1.257662
1.257650

0.1 1.259600

4.8 (a) Prove that one can use repeated Richardson extrapolation for the formula

 f ″(x) ≈ 
f x h f x f x h

h
( ) ( ) ( )+ − + −2

2

What are the coefficients in the extrapolation scheme ?
(b) Apply this to the table given below, and estimate the error in the computed f ″(0.3).

x f (x)

0.1 17.60519
0.2 17.68164
0.3 17.75128
0.4 17.81342

0.5 17.86742

(Stockholm Univ., Sweden, BIT 9(1969), 400)
Solution
(a) Expanding each term in the given formula in Taylor series, we get

f x h f x f x h

h

( ) ( ) ( )+ − + −2
2  = f ″(x) + c1 h2 + c2 h4 + ...

If we assume that the step lengths form a geometric sequence with common ratio 1 / 2,
we obtain the extrapolation scheme

 fi h,″  = 
4

4 1
1 1 2

i
i h i h

i

f f− −″ − ″

−
, ,

, i = 1, 2, ...

where i denotes the ith iterate.
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(b) Using the given formula, we obtain for x = 0.3

h = 0.2 :  f ″(0.3) = 
f f f( . ) ( . ) ( . )

( . )
0 5 2 0 3 0 1

0 2 2

− +
 = – 0.74875. (4.99)

h = 0.1 :  f ″(0.3) = 
f f f( . ) ( . ) ( . )

( . )

0 4 2 0 3 0 2

0 1 2
− +

 = – 0.75. (4.100)

Using extrapolation, we obtain
 f ″(0.3) = – 0.750417. (4.101)

If the roundoff error in the entries in the given table is ≤ 5 × 10–6, then we have

roundoff error in (4.99) is  ≤ 
4 5 10

0 2

6

2

× × −

( . )
 = 0.0005,

roundoff error in (4.100) is ≤ 
4 5 10

0 1

6

2

× × −

( . )
 = 0.002,

roundoff error in (4.101) is ≤ 
4 0 002 0 0005

3
( . ) .+

 = 0.0028,

and the truncation error in the original formula is

 TE ≈ 
h2

12
 f iv (0.3) ≈ 

1
12 2h

 δ4 f (0.3)

= 
1

12 2h
 [ f (0.5) – 4f (0.4) + 6f (0.3) – 4f (0.2) + f (0.1)] = 0.000417.

4.9 By use of repeated Richardson extrapolation find f ′(1) from the following values :

x f (x)

0.6 0.707178
0.8 0.859892
0.9 0.925863
1.0 0.984007
1.1 1.033743
1.2 1.074575

1.4 1.127986

Apply the approximate formula

 f ′(x0) = 
f x h f x h

h
( ) ( )0 0

2
+ − −

with h = 0.4, 0.2, 0.1.
(Royal Inst. Tech., Stockhlom, Sweden, BIT 6 (1966), 270)

Solution
Applying the Richardson’s extrapolation formula

   f
f f

ii h

i
i h i h

i,
– , – ,–

–
, , ,...′ =

′ ′
=

4

4 1
1 21 1 2

where i denotes the ith iterate, we obtain



8-\N-NUM\NU-4-3

Differentiation and Integration 239

h O(h2) O(h4) O(h6)

0.4 0.526010
0.540274

0.2 0.536708 0.540299
0.540297

0.1 0.539400

4.10 The formula
Dh = (2h)–1 (3 f (a) – 4 f (a – h) + f (a – 2h))

is suitable to approximation of f ′(a) where x is the last x-value in the table.
(a) State the truncation error Dh – f ′(a) as a power series in h.
(b) Calculate f ′(2.0) as accurately as possible from the table

x f (x) x f (x)

1.2 0.550630 1.7 0.699730
1.3 0.577078 1.8 0.736559
1.4 0.604826 1.9 0.776685
1.5 0.634261 1.95 0.798129
1.6 0.665766 2.0 0.820576

(Royal Inst. Tech., Stockholm, Sweden, BIT 25 (1985), 300)
Solution
(a) Expanding each term in Taylor series about a in the given formula, we obtain

Dh – f ′(a) = – 
h

f a
h

f a
hiv

2 3 4

3 4
7
60

″′ + −( ) ( )  f v(a) + ...

Hence, the error in Dh – f ′(a) of the form c1 h2 + c2 h3 + ...
(b) The extrapolation scheme for the given method can be obtained as

f
f f

i h

i
i h i h

i,
, ,′ =

′ − ′

−

+
− −

+

2

2 1

1
1 1 2

1
, i = 1, 2, ...

where i denotes the ith iterate. Using the values given in the table, we obtain

h = 0.4 :  f ′(2.0) = 
1

2 0 4( . )
 [3f (2.0) – 4f (1.6) + f (1.2)] = 0.436618.

h = 0.2 :  f ′(2.0) = 
1

2 0 2( . )
 [3f (2.0) – 4f (1.8) + f (1.6)] = 0.453145.

h = 0.1 : f ′(2.0) = 
1

2 0 1( . )
 [3f (2.0) – 4f (1.9) + f (1.8)] = 0.457735.

h = 0.05 :  f ′(2.0) = 
1

2 0 05( . )
 [3f (2.0) – 4f (1.95) + f (1.9)] = 0.458970.

Using the extrapolation scheme, we obtain the following extrapolation table.
Extrapolation Table

h O(h2) O(h3) O(h4) O(h5)

0.4 0.436618
0.458654

0.2 0.453145 0.459352
0.459265 0.459402

0.1 0.457735 0.459399
0.459382

0.05 0.458970

Hence, f ′(2.0) = 0.4594 with the error 2.0 × 10–6.
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4.11 For the method

 f ′(x0) = 
− + −

+
3 4

2 3
0 1 2

2f x f x f x
h

h( ) ( ) ( )
 f ″′ (ξ), x0 < ξ < x2

determine the optimal value of h, using the criteria
(i) | RE | = | TE |,

(ii) | RE | +| TE | = minimum.
Using this method and the value of h obtained from the criterion | RE | = | TE |,
determine  an  approximate  value  of  f ′(2.0) from the following tabulated values of
f (x) = loge x

x 2.0 2.01 2.02 2.06 2.12

f (x) 0.69315 0.69813 0.70310 0.72271 0.75142

given that the maximum roundoff error in the function evaluations is 5 × 10–6.
Solution
If ε0, ε1 and ε2 are the roundoff errors in the given function evaluations f0, f1 and f2
respectively, then we have

f ′(x0) = 
− + −

+
− + −

+
3 4

2
3 4

2 3
0 1 2 0 1 2

2f f f
h h

hε ε ε
 f ″′ (ξ)

= 
− + −3 4

2
0 1 2f f f

h
 + RE + TE.

Using ε = max (| ε0 |, | ε1 |, | ε2 |),

and  M3 = max
x x x0 2≤ ≤  | f ″′ (x) |,

we obtain  | RE | ≤ 
8
2 3

2
3ε

h
h M

, | |TE ≤ .

If we use | RE | = | TE |, we get

8
2 3

2
3ε

h
h M

=

which gives h3 = 
12

3

ε
M

, or hopt = 
12

3

1/3
ε

M
�
	


�
�


and | RE | = | TE | = 
4

12

2 3
3
1/3

1/3

ε /

( )

M
.

If we use | RE | + | TE | = minimum, we get

     4
3
3

2ε
h

M h
+  = minimum

which gives  
− +4 2

32
3ε

h

M h
 = 0, or hopt = 

6

3

1/3
ε

M
�
	


�
�


.

Minimum total error = 62/3 ε2/3 M3
1/3 .
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When, f (x) = loge (x), we have

 M3 = max | ( )| max
. .12 . .122 0 2 2 0 2 3

2 1
4≤ ≤ ≤ ≤

″′ = =
x x

f x
x

.

Using the criterion, | RE | = | TE | and ε = 5 × 10–6, we get
hopt = (4 × 12 × 5 × 10–6)1/3 ~−  0.06.

For h = 0.06, we get

f ′(2.0) = 
− + −3 0 69315 4 072271 075142

012
( . ) ( . ) .

.
 = 0.49975.

If we take h = 0.01, we get

f ′(2.0) = 
− + −3 0 69315 4 0 69813 070310

0 02
( . ) ( . ) .

.
 = 0.49850.

The exact value of f ′(2.0) = 0.5.
This verifies that for h < hopt, the results deteriorate.

Newton-Cotes Methods

4.12 (a) Compute by using Taylor development

0.1

0.2 2

� x
x

dx
cos

with an error < 10–6.
(b) If  we  use the trapezoidal formula instead, which step length (of the form 10–k,

2 × 10–k or 5 × 10–k) would be largest giving the accuracy above ? How many decimals
would be required in function values ?

(Royal Inst. Tech., Stockholm, Sweden, BIT 9(1969), 174)
Solution

(a)
0.1

0.2 2

0.1

0.2
2

2 4 1

1
2 24� �= − + −

�
	


�
�


−
x

x
dx x

x x
dx

cos
...

= 
0.1

0.2
2

2 4

1
2

5
24� + + +

�
	


�
�


x
x x

dx...  = 
x x x3 5 7

0.1

0.2

3 10
5
168

+ + +
�
�
�

�
�
�...

= 0.00233333 + 0.000031 + 0.000000378 + ... = 0.002365.
(b) The error term in the composite trapezoidal rule is given by

 | TE | ≤ 
h

b a
x

2

0.1 0.212
( ) max−

≤ ≤
 | f ″(x) |

= 
h

x

2

0.1 0.2120
max
≤ ≤

 | f ″(x) |.

We have f (x) = x2 sec x,
f ′(x) = 2x sec x + x2 sec x tan x,
f ″(x) = 2 sec x + 4x sec x tan x + x2 sec x (tan2 x + sec2 x).

Since f ″(x) is an increasing function, we get

 max
0.1 0.2≤ ≤x

 | f ″(x) | = f ″(0.2) = 2.2503.



8-\N-NUM\NU-4-3

242 Numerical Methods : Problems and Solutions

We choose h such that

 
h2

120
 (2.2503) ≤ 10–6, or h < 0.0073.

Therefore, choose h = 5 × 10–3 = 0.005.
If the maximum roundoff error in computing fi, i = 0, 1, ..., n is ε, then the roundoff error
in the trapezoidal rule is bounded by

 | RE | ≤ h

i

n

2
1 2 1

1

1

+ +
�

�
�
�

�

�
�
�=

−

∑  ε = nhε = (b – a)ε = 0.1ε.

To meet the given error criterion, 5 decimal accuracy will be required in the function
values.

4.13 Compute

 Ip = 
x dx

x

p

30

1

10+�    for p = 0, 1

using trapezoidal and Simpson’s rules with the number of points 3, 5 and 9. Improve the
results using Romberg integration.
Solution
For 3, 5 and 9 points, we have h = 1 / 2, 1 / 4 and 1 / 8 respectively. Using the trapezoidal
and Simpson’s rules and Romberg integration we get the following
p = 0 : Trapezoidal Rule

h O(h2) O(h4) O(h6)

1 / 2 0.09710999
0.09763534

1 / 4 0.09750400 0.09763357
0.09763368

1 / 8 0.09760126

Simpson’s Rule

h O(h4) O(h6) O(h8)

1 / 2 0.09766180
0.09763357

1 / 4 0.09763533 0.09763357
0.09763357

1 / 8 0.09763368

p = 1 : Trapezoidal Rule

h O(h2) O(h4) O(h6)

1 / 2 0.04741863
0.04811455

1 / 4 0.04794057 0.04811657
0.04811645

1 / 8 0.04807248
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Simpson’s Rule

h O(h4) O(h6) O(h8)

1 / 2 0.04807333
0.04811730

1 / 4 0.04811455 0.04811656
0.04811658

1 / 8 0.04811645

4.14 The arc length L of an ellipse with half axes a and b is given by the formula L = 4aE(m)
where m = (a2 – b2) / a2 and

 E(m) = 
0

2
2 1/21

π
φ φ

/
( sin )� − m d .

The function E(m) is an elliptic integral, some values of which are displayed in the
table :

m 0 0.1 0.2 0.3 0.4 0.5

E(m) 1.57080 1.53076 1.48904 1.44536 1.39939 1.35064

We want to calculate L when a = 5 and b = 4.
(a) Calculate L using quadratic interpolation in the table.
(b) Calculate L applying Romberg’s method to E(m), so that a Romberg value is got with

an error less than 5 × 10–5. (Trondheim Univ., Sweden, BIT 24(1984), 258)
Solution
(a) For a = 5 and b = 4, we have m = 9 / 25 = 0.36.
Taking the points as x0 = 0.3, x1 = 0.4, x2 = 0.5 we have the following difference table.

x f (x) ∆f ∆2f

0.3 1.44536
– 0.04597

0.4 1.39939 – 0.00278
– 0.04875

0.5 1.35064

The Newton forward difference interpolation gives

 P2(x) = 1.44536 + (x – 0.3) −�
	


�
�


0 04597
01

.
.

 + (x – 0.3) (x – 0.4) −
�
	


�
�


0 00278
2 0 01
.
( . )

.

We obtain  E(0.36) ≈ P2 (0.36) = 1.418112.
Hence, L = 4aE(m) = 20E(0.36) = 28.36224.
(b) Using the trapezoidal rule to evaluate

 E(m) = 
0

2
2 1/21

π
φ φ

/
( sin )� − m d , m = 0.36

and applying Romberg integration, we get
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h O(h2) O(h4)
method method

π / 4 1.418067
1.418088

π / 8 1.418083

Hence, using the trapezoidal rule with h = π / 4, h = π / 8 and with one extrapolation, we
obtain E(m) correct to four decimal places as

 E(m) = 1.4181, m = 0.36.
Hence, L = 28.362.

4.15 Calculate 
0

1/2� x
x

dx
sin

.

(a) Use Romberg integration with step size h = 1 / 16.
(b) Use 4 terms of the Taylor expansion of the integrand.

(Uppsala Univ., Sweden, BIT 26(1986), 135)
Solution
(a) Using trapezoidal rule we have with

h = 
1
2

 :  I = 
h

f a f b
2

[ ( ) ( )]+  = 
1
4

1
1 2

1 2
+

�
��

�
��

/
sin /  = 0.510729

where we have used the fact that lim
x→0

(x / sin x) = 1.

h = 
1
4

 :  I = 
1
8

1 2
1 4

1 4
1 2

1 2
+
�
	


�
�
 +
�
	


�
�


�
�
�

�
�
�

/
sin /

/
sin /

 = 0.507988.

h = 
1
8

 : I = 
1

16
1 2

1 8
1 8

2 8
2 8

3 8
3 8

1 2
1 2

+ + +
�
�
�

�
�
�

+
�
	


�
�


�
�
�

�
�
�

/
sin /

/
sin /

/
sin /

/
sin /

 = 0.507298.

h = 
1

16
 :  I = 

1
32

1 2
1 16

1 16
2 16

2 16
3 16

3 16
4 16

4 16
+ + + +
�
�
�

�
�
�

/
sin /

/
sin /

/
sin /

/
sin /

+ 
5 16

5 16
6 16

6 16
7 16

7 16
1 2

1 2
/

sin /
/

sin /
/

sin /
/

sin /
+ +

�
�
�

+
�
	


�
�

�
�
�

= 0.507126.
Using extrapolation, we obtain the following Romberg table :

Romberg Table

h O(h2) O(h4) O(h6) O(h8)

1 / 2 0.510729
0.507074

1 / 4 0.507988 0.507068
0.507068 0.507069

1 / 8 0.507298 0.507069
0.507069

1 / 16 0.507126
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(b) We write

 I = 
0

1 2

3 5 7

6 120 5040

/

...
�

− + − +

x

x x x x
dx

= 
0

1 2 2 4 6
1

1
6 120 5040

/
...� − − + −

�
	


�
�


�

�
�
�

�

�
�
�

−
x x x

dx

= 
0

1 2 2
4 61

6
7

360
31

15120

/
...� + + + +

�
�
�
�

�
�
�
�

x
x x dx

= x
x x x+ + + +

�
�
�

�
�
�

3 5 7

0

1/2

18
7
1800

31
105840

...  = 0.507068.

4.16 Compute the integral y dx
0

1�  where y is defined through x = y ey, with an error < 10–4.

(Uppsala Univ., Sweden, BIT 7(1967), 170)
Solution
We shall use the trapezoidal rule with Romberg integration to evaluate the integral.
The solution of y ey – x = 0 for various values of x, using Newton-Raphson method is
given in the following table.

x y x y

0 0 0.500 0.351734
0.125 0.111780 0.625 0.413381
0.250 0.203888 0.750 0.469150
0.375 0.282665 0.875 0.520135

1.000 0.567143

Romberg integration gives

h O(h2) O(h4) O(h6)
method method method

0.5 0.317653
0.330230

0.25 0.327086 0.330363
0.330355

0.125 0.329538

The error of integration is 0.330363 – 0.330355 = 0.000008.
The result correct to five decimals is 0.33036.

4.17 The area A inside the closed curve y2 + x2 = cos x is given by

A = 4 
0

2 1/2
α� −(cos )x x dx

where α is the positive root of the equation cos x = x2.
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(a) Compute α to three correct decimals.
(b) Use Romberg’s method to compute the area A with an absolute error less than 0.05.

(Linköping Univ., Sweden, BIT 28(1988), 904)
Solution
(a) Using Newton-Raphson method to find the root of equation

f (x) = cos x – x2 = 0
we obtain the iteration scheme

xk+1 = xk + 
cos
sin

x x
x x

k k

k k

−
+

2

2
,   k = 0, 1, ...

Starting with x0 = 0.5, we get

 x1 = 0.5 + 
0 627583
1479426
.
.

 = 0.924207.

 x2 = 0.924207 + 
− 0 251691
2 646557

.
.

 = 0.829106.

 x3 = 0.829106 + 
− 0 011882
2 395540

.
.

 = 0.824146.

x4 = 0.824146 + 
− 0 000033
2 382260

.
.

 = 0.824132.

Hence, the value of α correct to three decimals is 0.824.
The given integral becomes

A = 4 
0

0.824
2 1/2� −(cos )x x dx .

(b) Using the trapezoidal rule with h = 0.824, 0.412 and 0.206 respectively, we obtain
the approximation

A ≈ 
4 0 824

2
( . )

 [1 + 0.017753] = 1.677257

A ≈ 
4 0 412

2
( . )

 [1 + 2(0.864047) + 0.017753] = 2.262578.

A ≈ 
4 0 206

2
( . )

 [1 + 2(0.967688 + 0.864047 + 0.658115) + 0.017753]

= 2.470951.
Using Romberg integration, we obtain

h O(h2) O(h4) O(h6)
method method method

0.824 1.677257
2.457685

0.412 2.262578 2.545924
2.540409

0.206 2.470951

Hence, the area with an error less than 0.05 is 2.55.
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4.18 (a) The natural logarithm function of a positive x is defined by

ln x = – 
x

dt
t

1� .

We want to calculate ln (0.75) by estimating the integral by the trapezoidal rule T(h).
Give the maximal step size h to get the truncation error bound 0.5(10–3). Calculate
T(h) with h = 0.125 and h = 0.0625. Extrapolate to get a better value.

(b) Let fn(x) be the Taylor series of ln x at x = 3 / 4, truncated to n + 1 terms. Which is the
smallest n satisfying

| fn(x) – ln x | ≤ 0.5(10–3) for all x ∈  [0.5, 1].
(Trondheim Univ., Sweden, BIT 24(1984), 130)

Solution
(a) The error in the composite trapezoidal rule is given as

| R | ≤ 
( )

( )
b a h

f
h− ″ =

2 2

12 48
ξ  f ″(ξ),

where f ″(ξ) = max
0.75 1≤ ≤x  | f ″(x) |.

Since f (t) = – 1 / t, we have f ′(t) = 1 / t2, f ″(t) = – 2 / t3

and therefore  max | ( )| max
0.75 1 0.75 1 3

2
≤ ≤ ≤ ≤

″ =
t t

f t
t

 = 4.740741.

Hence, we find h such that

 
h2

48
(4.740741) < 0.0005

which gives h < 0.0712. Using the trapezoidal rule, we obtain
h = 0.125 : t0 = 0.75, t1 = 0.875, t2 = 1.0,

I = – 
0 125

2
1 2 1

0 1 2

.
t t t

+ +
�
�
�

�
�
� = – 0.288690.

h = 0.0625 : t0 = 0.75, t1 = 0.8125, t2 = 0.875, t3 = 0.9375, t4 = 1.0,

I = – 
0.0625

2
1

2
1 1 1 1

0 1 2 3 4t t t t t
+ + +
�
	


�
�


+
�

�
�
�

�

�
�
�
 = – 0.287935.

Using extrapolation, we obtain the extrapolated value as
I = – 0.287683.

(b) Expanding ln x in Taylor series about the point x = 3 / 4, we get

ln x = ln(3 / 4) + x −�	

�
�

�
	

�
�


3
4

4
3

– x x
n

n

n n n

−�	

�
�


�
	

�
�
 + + −�

	

�
�


− − �
	

�
�


−3
4

1
2

4
3

3
4

1 1 4
3

2 2 1

. . ...
( ) ! ( )

!
 + Rn

with the error term

 Rn = 
( / )

( ) !
! ( )x

n
nn n

n
−

+
−+

+
3 4

1
11

1ξ
, 0.5 < ξ < 1.

We have

 | Rn | ≤ 
1

1
3
4

1
0.5 1

1

0.5 1 1( )
max max

n
x

xx

n

x n+
−�	

�
�
≤ ≤

+

≤ ≤ +  = 
1
1 2 1( )n n+ + .



8-\N-NUM\NU-4-3

248 Numerical Methods : Problems and Solutions

We find the smallest n such that
1
1 2 1( )n n+ +  ≤ 0.0005

which gives n = 7.

4.19 Determine the coefficients a, b and c in the quadrature formula

 y x dx
x

x
( )

0

1�  = h(ay0 + by1 + cy2) + R

where xi = x0 + ih, y(xi) = yi. Prove that the error term R has the form
 R = ky(n)(ξ),   x0 ≤ ξ ≤ x2

and determine k and n. (Bergen Univ., Sweden, BIT 4(1964), 261)
Solution
Making the method exact for y(x) = 1, x and x2 we obtain the equations

x1 – x0 = h(a + b + c),

 
1
2 1

2
0
2( )x x−  = h(a x0 + b x1 + c x2),

 
1
3 1

3
0
3( )x x−  = h( )a x b x c x0

2
1
2

2
2+ + .

Simplifying the above equations, we get
  a + b + c = 1,

 b + 2c = 1 / 2,
  b + 4c = 1 / 3.

which give a = 5 / 12, b = 2 / 3 and c = – 1 / 12.
The error term R is given by

 R = 
C

y
3 !

″′ (ξ), x0 < ξ < x2

where C = x dx h a x b x c x
h

x

x
3

0
3

1
3

2
3

4

40

1
− + + =� [ ] .

Hence, we have the remainder as

R = 
h

y
4

24
′″ ( )ξ .

Therefore, k = h4 / 24 and n = 3.

4.20 Obtain a generalized trapezoidal rule of the form

f x dx
h

x

x
( ) =� 20

1

(f0 + f1) + ph2( )f f0 1′ − ′ .

Find the constant p and the error term. Deduce the composite rule for integrating

a

b
f x dx� ( ) , a = x0 < x1 < x2 ... < xN = b.

Solution
The method is exact for f (x) = 1 and x. Making the method exact for f (x) = x2, we get

1
3 21

3
0
3

0
2

1
2( ) ( )x x

h
x x− = +  + 2ph2(x0 – x1).
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Since, x1 = x0 + h, we obtain on simplification p = 1 / 12.
The error term is given by

Error = 
C
3 !

 f ″′ (ξ),   x0 < ξ < x1

where C = x dx
h

x x ph x x
x

x
3

0
3

1
3 2

0
2

1
2

2
3

0

1
− + + −�
��

�
��� ( ) ( )  = 0.

Therefore, the error term becomes

Error = 
C
4 !  f iv(ξ),   x0 < ξ < x1

where C = x dx
h

x x ph x x
x

x
4

0
4

1
4 2

0
3

1
3

2
4

0

1
− + + −�
��

�
��� ( ) ( )  = 

h5

30
.

Hence, we have the remainder as

Error = 
h

f iv
5

720
( )ξ .

Writing the given integral as

 f x dx f x dx f x dx f x dx
x

x

x

x

x

x

a

b

N

N
( ) ( ) ( ) ... ( )= + + +

−
����

11

2

0

1

where x0 = a, xN = b, h = (b – a) / N, and replacing each integral on the right side by the
given formula, we obtain the composite rule

f x dx
h

a

b
( ) =� 2

[f0 + 2(f1 + f2 + ... + fN–1) + fN ] + 
h

f fN

2

012
( ′ − ′ ).

4.21 Determine α and β in the formula

f x dx h
i

n

a

b
( ) =

=

−

∑�
0

1

[f (xi) + α hf ′(xi) + βh2 f ″(xi)] + O(hp)

with the integer p as large as possible. (Uppsala Univ., Sweden, BIT 11(1971), 225)
Solution
First we determine the formula

f x dx h a f b f c f
x

x
( ) [ ]= + ′ + ″� 0 0 0

0

1
.

Making the method exact for f (x) = 1, x and x2, we get a = 1, b = h / 2 and c = h2 / 6.
Hence, we have the formula

f x dx h f
h

f
h

f
x

x
( ) = + ′ + ″

�
�
�

�
�
�� 0 0

2

02 60

1

which has the error term

 TE = 
C

f
3 !

( )′″ ξ

where C = x dx h x
h

x h x
h

x

x
3

0
3

0
2 2

0

43
2 40

1
− + +�
��

�
��

=�
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Using this formula, we obtain the composite rule as

f x dx f x dx f x dx f x dx
x

x

x

x

x

x

a

b

n

n
( ) ( ) ( ) ... ( )= + + +

−
����

11

2

0

1

= h f
h

f
h

fi i i
i

n

+ ′ + ″
�
	


�
�
=

−

∑ 2 6

2

0

1

The error term of the composite rule is obtained as

| TE | = 
h4

24
 | f ″′ (ξ1) + f ″′ (ξ2) + ... + f ″′ (ξn) |

≤ 
nh

f
b a h4 3

24 24
′″ = −

( )
( )

ξ  f ″′ (ξ),

where a < ξ < b and f ″′ (ξ) = max | f ″′ (x) |, a < x < b.

4.22 Determine a, b and c such that the formula

0
0

3

h
f x dx h af bf

h
cf h� = + �

	

�
�
 +

�
�
�

�
�
�

( ) ( ) ( )

is exact for polynomials of as high degree as possible, and determine the order of the
truncation error. (Uppsala Univ. Sweden, BIT 13(1973), 123)
Solution
Making the method exact for polynomials of degree upto 2, we obtain

f (x) = 1 :  h = h(a + b + c),  or a + b + c = 1.

f (x) = x :   
h

h bh ch
2

2 3
= +( ) ,   or 1

3
1
2b c+ = .

f (x) = x2 :
h

h bh ch
3 2 2

3 9
= +( ) ,  or 1

9
1
3b c+ = .

Solving the above equations, we get a = 0, b = 3 / 4 and c = 1 / 4.
Hence, the required formula is

 f x dx
hh

( ) =� 40
[3f (h / 3) + f (h)].

The truncation error of the formula is given by

TE = 
C
3 !  f ″′ (ξ), 0 < ξ < h

where C = x dx h
bh

ch
hh

3
3

3
4

0 27 36
− +
�
�
�

�
�
� = −� .

Hence, we have

TE = – 
h4

216
 f ′″ (ξ) = O(h4).
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4.23 Find the values of a, b and c such that the truncation error in the formula

−� h

h
f (x)dx = h[af (– h) + bf (0) + af (h)] + h2c [f ′(– h) – f ′(h)]

is minimized.
Suppose that the composite formula has been used with the step length h and h / 2,
giving I(h) and I(h / 2). State the result of using Richardson extrapolation on these
values.

(Lund Univ., Sweden, BIT 27(1987), 286)
Solution
Note that the abscissas are symmetrically placed. Making the method exact for f (x) = 1,
x2 and x4, we obtain the system of equations

f (x) = 1  : 2a + b = 2,
 f (x) = x2 : 2a – 4c = 2 / 3,
f (x) = x4 : 2a – 8c = 2 / 5,

which gives a = 7 / 15, b = 16 / 15, c = 1 / 15.
The required formula is

−� =
h

h
f x dx

h
( )

15
 [7f (– h) + 16f (0) + 7f (h)] + 

h2

15
 [f ′(– h) – f ′(h)].

The error term is obtained as

 R = 
C
6 !  f

vi(ξ),   – h < ξ < h

where C = 
−� − −�

��
�
��

=
h

h
x dx

h
h h6 6 7

15
14

12
15

16
105

( )  h7.

Hence, we get the error term as

R = 
h7

4725
 f vi(ξ), – h < ξ < h.

The composite integrating rule can be written as

f x dx
h

a

b
( ) =� 15

 [7(f0 + f2n) + 16(f1 + f3 + ... + f2n–1) + 14(f2 + f4 + ... + f2n–2)]

+ 
h2

15
 (f0′ – f n2′ ) + O(h6).

The truncation error in the composite integration rule is obtained as
R = c1h6 + c2 h8 + ...

If I(h) and I(h / 2) are the values obtained by using step sizes h and h / 2 respectively,
then the extrapolated value is given

I = [64 I(h / 2) – I(h)] / 63.

4.24 Consider the quadrature rule

 f x dx w f x
a

b

i i
i

n

( ) ( )� ∑=
=0

where wi > 0 and the rule is exact for f (x) = 1. If f (xi) are in error atmost by (0.5)10–k,
show that the error in the quadrature rule is not greater than 10–k (b – a) / 2.
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Solution
We have wi > 0. Since the quadrature rule is exact for f (x) = 1, we have

w b ai
i

n

= −
=
∑

0

.

We also have

| Error | = w f x f xi i i
i

n

[ ( ) * ( )]−
=
∑

0
 ≤ w f x f xi i i

i

n

| ( ) * ( )|−
=
∑

0

≤ (0.5)10–k wi
i

n

=
∑ =

0

1
2  (b – a)10–k.

Gaussian Integration Methods

4.25 Determine the weights and abscissas in the quadrature formula

−
=

� ∑=
1

1

1

4

f x dx A f xk k
k

( ) ( )

with x1 = – 1 and x4 = 1 so that the formula becomes exact for polynomials of highest
possible degree. (Gothenburg Univ., Sweden, BIT 7(1967), 338)
Solution
Making the method

−� 1

1
f x dx( )  = A1 f (– 1) + A2 f (x2) + A3 f (x3) + A4 f (1)

exact for f (x) = xi, i = 0, 1, ..., 5, we obtain the equations
A1 + A2 + A3 + A4 = 2, (4.102)

 – A1 + A2 x2 + A3 x3 + A4 = 0, (4.103)

A1 + A2 x A x2
2

3 3
2+  + A4 = 

2
3

, (4.104)

– A1 + A2x A x2
3

3 3
3+  + A4 = 0, (4.105)

A1 + A2 x A x2
4

3 3
4+  + A4 = 

2
5

, (4.106)]

– A1 + A2x A x2
5

3 3
5+  + A4 = 0. (4.107)

Subtracting (4.104) from (4.102), (4.105) from (4.103), (4, 106) from (4.104) and (4.107)
from (4.105), we get

4
3

 = A2( ) ( )1 12
2

3 3
2− + −x A x ,

0 = A2x2( ) ( )1 12
2

3 3 3
2− + −x A x x ,

4
15

 = A2x x A x x2
2

2
2

3 3
2

3
21 1( ) ( )− + − ,

0 = A2x x A x x2
3

2
2

3 3
3

3
21 1( ) ( )− + − .



8-\N-NUM\NU-4-4

Differentiation and Integration 253

Eliminating A3 from the above equations, we get

4
3

x3 = A2( )1 2
2− x (x3 – x2),

– 
4
15

 = A2x2( )1 2
2− x (x3 – x2),

4
15

x3 = A2x x2
2

2
21( )− (x3 – x2),

which give x2 x3 = – 1 / 5, x2 = – x3 = 1 / 5  and A1 = A4 = 1 / 6, A2 = A3 = 5 / 6.

The error term of the method is given by

TE = 
C
6 !

 f vi(ξ),   – 1 < ξ < 1

where C = 
−� − + + +
1

1
6

1 2 2
6

3 3
6

4x A A x A x A[ ]  = 
2
7

26
75

32
525

− = − .

Hence, we have TE = – 
2

23625
 f vi(ξ).

4.26 Find the value of the integral

I = 
2

3 2
1� +
cos

sin
x
x

dx

using Gauss-Legendre two and three point integration rules.
Solution
Substituting x = (t + 5) / 2 in I, we get

I = 
2

3

1

12
1

1
2

5
1 5 2� �+

= +
+ +−

cos
sin

cos( )
sin (( )/ )

x
x

dx
t
t

dt .

Using the Gauss-Legendre two-point formula

−� =
�
	

�
�
 + −

�
	


�
�
1

1 1
3

1
3

f x dx f f( )

we obtain I = 
1
2

 [0.56558356 – 0.15856672] = 0.20350842.

Using the Gauss-Legendre three-point formula

 
−� = −

�
	


�
�


+ +
�
	

�
�


�

�
�
�

�

�
�
�1

1 1
9

5
3
5

8 0 5
3
5

f x dx f f f( ) ( )

we obtain I = 
1

18
 [– 1.26018516 + 1.41966658 + 3.48936887] = 0.20271391.

4.27 Determine the coefficients in the formula

0

2h� x–1 / 2 f (x)dx = (2h)1/2[A0f (0) + A1 f (h) + A2 f (2h)] + R

and calculate the remainder R, when f ″′ (x) is constant.
(Gothenburg Univ., Sweden, BIT 4(1964), 61)
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Solution
Making the method exact for f (x) = 1, x and x2, we get

f (x) = 1 :  2 2h  = 2h (A0 + A1 + A2)
or A0 + A1 + A2 = 2.

f (x) = x :  
4 2

3
h h

 = 2h (A1h + 2A2h)

or A1 + 2A2 = 
4
3

.

f (x) = x2 :  
8 2

5

2h h
 = 2h (A1h2 + 4A2h

2)

or A1 + 4A2 = 
8
5

.

Solving the above system of equations, we obtain
 A0 = 12 / 15, A1 = 16 / 15 and A2 = 2 / 15.

The remainder R is given by

R = 
C
3 !  f ″′ (ξ),   0 < ξ < 2h

where  C = 
0

2
1/2 3 2

h
x x dx h� − −( ) [A1h

3 + 8A2h
3] = 

16 2
105

7 2h / .

Hence, we have the remainder as

 R = 
8 2
315

7 2h /  f ″′ (ξ).

4.28 In a quadrature formula

 
−� −
1

1
( )a x f (x)dx = A–1 f (– x1) + A0 f (0) + A1 f (x1) + R

the coefficients A–1, A0, A1 are functions of the parameter a, x1 is a constant and the
error R is of the form Cf (k)(ξ). Determine A–1, A0, A1 and x1, so that the error R will be of
highest possible order. Also investigate if the order of the error is influenced by differ-
ent values of the parameter a. (Inst. Tech., Lund, Sweden, BIT 9(1969), 87)
Solution
Making the method exact for f (x) = 1, x, x2 and x3 we get the system of equations

A–1 + A0 + A1 = 2a,

x1 (– A–1 + A1) = – 
2
3

,

 x1
2 (A–1 + A1) = 

2
3
a

,

x1
3 (– A–1 + A1) = – 

2
5

,

which has the solution

x1 = 
3
5

, A–1 = 
5
9

3
5

a +
�
�
�
�

�
�
�
�,
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A0 = 
8
9
a

, A1 = 
5
9

3
5

a −
�
�
�
�

�
�
�
�.

The error term in the method is given by

R = 
C
4 !  f iv(ξ),   – 1 < ξ < 1

where C = 
−

−� − − +
1

1
4

1
4

1 1( ) [ ( )]a x x dx x A A  = 0

Therefore, the error term becomes

R = 
C
5 !  f v(ξ),   – 1 < ξ < 1

where  C = 
−� − −
1

1
5

1
5( )a x x dx x (– A–1 + A1) = – 

8
175

.

Hence, we get R = – 
1

2625
 f v(ξ).

The order of the method is four for arbitrary a. The error term is independent of a.

4.29 Determine xi and Ai in the quadrature formula below so that σ, the order of approxima-
tion will be as high as possible

  
−� +
1

1
22 1( )x f (x)dx = A1 f (x1) + A2 f (x2) + A3 f (x3) + R.

What is the value of σ ? Answer with 4 significant digits.
(Gothenburg Univ., Sweden, BIT 17 (1977), 369)

Solution
Making the method exact for f (x) = xi, i = 0, 1, 2, ..., 5 we get the system of equations

A1 + A2 + A3 = 
10
3

,

 A1x1 + A2x2 + A2x3 = 0,

A1x A x A x1
2

2 2
2

3 3
2 22

15
+ + = ,

A1x A x A x1
3

2 2
3

3 3
3+ +  = 0,

A1x A x A x1
4

2 2
4

3 3
4 34

35
+ + = ,

 A1 x A x A x1
5

2 2
5

3 3
5 0+ + = ,

which simplifies to A1(x3 – x1) + A2(x3 – x2) = 
10
3

x3,

A1(x3 – x1)x1 + A2(x3 – x2)x2 = – 
22
15

,

A1(x3 – x1)x A x x x x1
2

2 3 2 2
2

3
22
15

+ − =( ) ,

A1(x3 – x1)x A x x x1
3

2 3 2 2
3 34

35
+ − = −( ) ,

  A1(x3 – x1)x A x x x x1
4

2 3 2 2
4

3
34
35

+ − =( ) ,
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or    A1(x3 – x1)(x2 – x1) = 
10
3

22
152 3x x + ,

 A1(x3 – x1)(x2 – x1)x1 = – 
22
15

(x2 + x3),

 A1(x3 – x1)(x2 – x1)x x x1
2

2 3
22
15

34
35

= + ,

 A1(x3 – x1)(x2 – x1)x1
3 34

35
= − (x2 + x3),

Solving this system, we have x1
2 51

77
=  or x1 = ± 0.8138 and x2x3 = 0.

For x2 = 0, we get x3 = – x1

 A1 = 
11

15 1
2x

 = 1.1072,

A2 = 
10
3

 – 2A1 = 1.1190, A3 = 1.1072.

For x3 = 0, we get the same method.
The error term is obtained as

 R = 
C
6 !  f

vi(ξ),   – 1 < ξ < 1

where C = 
−� +
1

1
2 62 1( )x x dx  – [A1x A x A x1

6
2 2

6
3 3

6+ + ] = 0.0867.

The order σ, of approximation is 5.

4.30 Find a quadrature formula

f x dx

x x

( )

( )10

1

−�  = α1 f (0) + α2 f 
1
2
�
	

�
�
  + α3 f (1)

which is exact for polynomials of highest possible degree. Then use the formula on

dx

x x−� 30

1

and compare with the exact value. (Oslo Univ., Norway, BIT 7(1967), 170)
Solution
Making the method exact for polynomials of degree upto 2, we obtain

for f (x) = 1 : I1 = 
dx

x x( )10

1

−�  = α1 + α2 + α3,

for f (x) = x : I2 = 
x dx

x x( )1

1
20

1

−
=�  α2 + α3,

for f (x) = x2 : I3 = x dx
x x

2

0

1

1
1
4( )−

=�  α2 + α3,
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where  I1 = dx

x x

dx

x( ) ( )1
2

1 2 10

1

20

1

−
=

− −��  = 
dt

t1 21

1

−−�  = sin–1 t
−1

1

 = π,

 I2 = 
0

1

1� −
xdx

x x( )
 = 2

0

1

2 21

1

1 2 1

1

2 1
� �− −

= +

−−

xdx

x

t

t
dt

( )

( )

= 
1
2 1

1
2 1 22 1

1

21

1 tdt

t

dt

t
dt

−
+

−
=

−− �� π
,

I3 = 
x dx

x x

2

0

1

1( )−�  = 2
x dx

x

t

t
dt

2

2 1

1 2

20

1

1 2 1

1
4

1

1− −
=

+

−−��
( )

( )

= 
1
4 1

1
2 1

1
4 11

1 2

2 1

1

2 1

1

2− − −� � �−
+

−
+

−

t

t
dt

t

t
dt

dt

t
 = 

3
8
π

.

Hence, we have the equations
α1 + α2 + α3 = π,

 
1
2 22 3α α π+ = ,

 
1
4

3
82 3α α π+ = ,

which gives α1 = π / 4, α2 = π / 2, α3 = π / 4.
The quadrature formula is given by

f x dx
x x

f f f
( )
( )

( ) ( )
1 4

0 2
1
2

1
0

1

−
= + �

	

�
�
 +

�
��

�
��� π
.

We now use this formula to evaluate

 I = 
dx

x x

dx

x x x−
=

+ −� �30

1

0

1

1 1( )
 = 

f x dx

x x

( )

( )10

1

−�
where f (x) = 1 1/ + x .
We obtain

 I = 
π
4

1
2 2

3
2

2
+ +

�
�
�
�

�
�
�
�
 ≈ 2.62331.

The exact value is
 I = 2.62205755.

4.31 There is a two-point quadrature formula of the form
I2 = w1 f (x1) + w2 f (x2)

where – 1 ≤ x1 < x2 ≤ 1 and w1 > 0, w2 > 0 to calculate the integral 
−� 1

1
f x dx( ) .

(a) Find w1, w2, x1 and x2 so that I2 = 
−� 1

1
f x dx( )  when f (x) = 1, x, x2 and x3.
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(b) To  get  a  quadrature  formula  In  for  the  integral  
a

b
f x dx� ( ) ,  let  xi  =  a  +  ih,

i = 0, 1, 2, ..., n, where h = (b – a) / n, and approximate 
x

x

i

i
f x dx

−
�

1

( )  by a suitable

variant of the formula in (a). State In.
(Inst. Tech. Lyngby, Denmark, BIT 25(1985), 428)

Solution
(a) Making the method

 
−� 1

1
f x dx( )  = w1 f (x1) + w2 f (x2)

exact for f (x) = 1, x, x2 and x3, we get the system of equations
 w1 + w2 = 2,

w1 x1 + w2 x2 = 0,

 w1 x w x1
2

2 2
2+  = 2 / 3,

 w1x w x1
3

2 2
3+  = 0,

whose solution is x2 = – x1 = 1 / 3 , w2 = w1 = 1.

Hence  
−� = − +
1

1
1 3 1 3f x dx f f( ) ( / ) ( / )

is the required formula.
(b) We write

 In = f x dx
a

b
( )�

= f x dx f x dx f x dx
x

x

x

x

x

x

i

i
( ) ( ) ... ( )+ + +

−
���

11

2

0

1
 + ... + f x dx

x

x

n

n
( )

−
�

1

where x0 = a, xn = b, xi = x0 + ih, h = (b – a) / n.
Using the transformation

x = 
1
2

[(xi – xi–1)t + (xi + xi–1)] = 
h
2

 t + mi

where mi = (xi + xi–1) / 2, we obtain, on using the formula in (a),

 f x dx
h

f m
h

f m
h

i i
x

x

i

i
( ) = −

�
	


�
�


+ +
�
	


�
�


�

�
�
�

�

�
�
�−

� 2
3

6
3

61

.

Hence, we get

In = 
h

f m
h

f m
h

i

n

i i2
3

6
3

6
1=

∑ −
�
	


�
�


+ +
�
	


�
�


�

�
�
�

�

�
�
�
.

4.32 Compute by Gaussian quadrature

I = 
0

1 1

1� +
−

ln ( )

( )

x

x x
dx

The error must not exceed 5 × 10–5. (Uppsala Univ., Sweden, BIT 5(1965), 294)



8-\N-NUM\NU-4-4

Differentiation and Integration 259

Solution
Using the transformation, x = (t + 1) / 2, we get

 I = 
0

1

1

1

2

1

1

3 2

1
� �+

−
= +

−−

ln ( )

( )

ln {( )/ }x

x x
dx

t

t
dt

Using Gauss-Chebyshev integration method

 –1

( )
( )

1

2
01

� ∑
−

=
=

f t

t
dt f tk k

k

n

λ

where  tk = cos 
( )2 1
2 2
k
n

+
+

�
	


�
�


π
, k = 0, 1, ..., n,

λk = π / (n + 1), k = 0, 1, ..., n,
we get for f (t) = ln {(t + 3) / 2}, and

n = 1 : I = 
π
2

1
2

1
2

f f−
�
	


�
�
 +

�
	


�
�


�
�
�

�
�
�  = 1.184022,

n = 2 : I = 
π
3

3
2

0
3

2
f f f−
�
	


�
�


+ +
�
	

�
�


�

�
�
�

�

�
�
�

( )  = 1.182688,

n = 3 : I = 
π π π π π
4 8

3
8

3
8 8

f f f fcos cos cos cos�
	

�
�


�
	


�
�
 + �

	

�
�


�
	


�
�
 + − �

	

�
�


�
	


�
�
 + − �

	

�
�


�
	


�
�


�
�
�

�
�
�

= 1.182662.
Hence, the result correct to five decimal places is I = 1.18266.

4.33 Calculate

(cos )( )2 1 2 1/2

0

1
x x dx− −�

correct to four decimal places. (Lund Univ., Sweden, BIT 20(1980), 389)
Solution
Since, the integrand is an even function, we write the integral as

I = 
cos ( ) cos ( )2

1

1
2

2

12 1

1

20

1 x

x
dx

x

x
dx

−
=

−−�� .

Using the Gauss-Chebyshev integration method, we get for f (x) = (cos (2x)) / 2,
(see problem 4.32)

n = 1 : I = 0.244956,
n = 2 : I = 0.355464,
n = 3 : I = 0.351617,

n = 4 : I = 
π π π π π
5 10

3
10

0
3
10 10

f f f f fcos cos ( ) cos cos�
	

�
�


�
	


�
�
 + �

	

�
�


�
	


�
�
 + − �

	

�
�


�
	


�
�
 + − �

	

�
�


�
	


�
�


�
�
�

�
�
�

= 0.351688.
Hence, the result correct to four decimal places is I = 0.3517.
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4.34 Compute the value of the integral

0 5

1 5 2

2

2 2 1

1 1.

. sin ( )

( )� − + − +
+ −

x x x

x
dx

with an absolute error less than 10–4. (Uppsala Univ., Sweden, BIT 27(1987), 130)
Solution
Using the trapezoidal rule, we get

h = 1.0 : I = 
1
2

 [ f (0.5) + f (1.5)] = 1.0.

h = 0.5 I = 
1
4

 [ f (0.5) + 2f (1) + f (1.5)] = 1.0.

Hence, the solution is I = 1.0.

4.35 Derive a suitable two point and three point quadrature formulas to evaluate

0

2 1/4
1π/

sin� �
	


�
�
x dx

Obtain the result correct to 3 decimal places. Assume that the given integral exists.
Solution
The integrand and its derivatives are all singular at x = 0. The open type formulas or a
combination of open and closed type formulas discussed in the text converge very slowly.
We write

 
0

2 1/4

0

2
1/4

1/4
1π π/ /

sin sin� ��
	


�
�
 =

�
	


�
�


−

x
dx x

x
x

dx

= 
0

2
1/4

π/
( )� −x f x dx .

We shall first construct quadrature rules for evaluating this integral.
We write

 
0

2
1/4

0

π
λ

/
( ) ( )� ∑−

=

=x f x dx f xi i
i

n

.

Making the formula exact for f (x) = 1, x, x2, ..., we obtain the following results for n = 1
and 2

xi λi

n = 1 0.260479018 1.053852181
1.205597553 0.816953346

n = 2 0.133831762 0.660235355
0.739105922 0.779965743

1.380816210 0.430604430

Using these methods with f (x) = (x / sin x)1 / 4, we obtain for
n = 1 : I = 1.927616.
n = 2 : I = 1.927898.

Hence, the result correct to 3 decimals is 1.928.
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4.36 Compute

0

2

21

π/ cos log (sin )

sin� +
x x

x
dxe

to 2 correct decimal places. (Uppsala Univ., Sweden, BIT 11(1971), 455)
Solution
Substituting sin x = e–t, we get

I = – 
0 21

∞
−

−� +

�
	


�
�


e
t

e
t

t  dt.

We can now use the Gauss-Laguerre’s integration methods (4.71) for evaluating the
integral with f (t) = t / (1 + e–2t). We get for

n = 1 : I = – [0.3817 + 0.4995] = – 0.8812.
n = 2 : I = – [0.2060 + 0.6326 + 0.0653] = – 0.9039.
n = 3 : I = – [0.1276 + 0.6055 + 0.1764 + 0.0051] = – 0.9146.
n = 4 : I = – [0.0865 + 0.5320 + 0.2729 + 0.0256 + .0003] = – 0.9173.
n = 5 : I = – [0.0624 + 0.4537 + 0.3384 + 0.0601 + 0.0026 + 0.0000]

= – 0.9172.
Hence, the required value of the integral is – 0.917 or – 0.92.

4.37 Compute

0

0.8
1� +�	


�
�


sin x
x

dx

correct to five decimals. (Umea Univ., Sweden, BIT 20(1980), 261)
Solution
We have

 I = 0.8 + 
0

0.8� �	
 �
�


sin x
x

dx .

The integral on the right hand side can be evaluated by the open type formulas. Using
the methods (4.50) with f (x) = sin x / x, we get for

n = 2 : I = 0.8 + 0.8 f (0.4) = 1.578837.

n = 3 : I = 0.8 + 
3
2

0 8
3

0 8
3

6
3

. .�
	

�
�

�
	

�
�
 + �

	

�
�


�
��

�
��

f f
1.

 = 1.576581.

n = 4 : I = 0.8 + 
0 8
3
.�

	

�
�
  [2f (0.2) – f (0.4) + 2f (0.6)] = 1.572077.

n = 5 : I = 0.8 + 
0 8
24
.�

	

�
�
  × [11f (0.16) + f (0.32) + f (0.48) + 11 f (0.64)] = 1.572083.

Hence, the solution correct to five decimals is 1.57208.

4.38 Integrate by Gaussian quadrature (n = 3)

1

2

31� +
dx

x
.
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Solution
Using the transformation x = (t + 3) / 2, we get

I = 
1

2

3 1

1

31
1
2 1 3 2� �+

=
+ +−

dx

x

dt

t[( )/ ]
.

Using the Gauss-Legendre four-point formula

 
−� 1

1
f x dx( )  = 0.652145 [f (0.339981) + f (– 0.339981)]

+ 0.347855 [f (0.861136) + f (– 0.861136)]

we obtain I = 
1
2

 [0.652145 (0.176760 + 0.298268) + 0.347855(0.122020 + 0.449824)]

= 0.254353.

4.39 Use Gauss-Laguerre or Gauss-Hermite formulas to evaluate

(i)
0 1

∞ −

� +
e

x
dx

x
, (ii)

0

∞ −

� e
x

dx
x

sin
,

(iii)
− ∞

∞ −

� +
e

x
dx

x2

1 2 , (iv)
− ∞

∞ −� e dxx2
.

Use two-point and three-point formulas.
Solution
(i, ii) Using the Gauss-Laguerre two-point formula

 
0

∞
−� e f x dxx ( )  = 0.853553 f (0.585786) + 0.146447 f (3.414214)

we obtain  I1 = 
0 1

∞ −

� +
e

x
dx

x

 = 0.571429, where f (x) = 
1

1+ x
.

 I2 = 
0

∞ −� e x  sin x dx = 0.432459, where f (x) = sin x.

Using the Gauss-Laguerre three-point formula

 
0

∞ −� e f x dxx ( )  = 0.711093 f (0.415775) + 0.278518 f (2.294280)

+ 0.010389 f (6.289945)

we obtain I1 = 
0 1

∞ −

� +
e

x
dx

x

 = 0.588235.

  I2 = 
0

∞ −� e x  sin x dx = 0.496030.

(iii, iv) Using Gauss-Hermite two-point formula

− ∞

∞ −� e f x dxx2

( )  = 0.886227 [f (0.707107) + f (– 0.707107)]

we get  I3 = 
− ∞

∞ −

� +
e

x
dx

x2

1 2  = 1.181636, where f (x) = 
1

1 2+ x
.

 I4 = 
− ∞

∞ −� e dxx2

 = 1.772454, where f (x) = 1.
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Using Gauss-Hermite three-point formula

− ∞

∞ −� e f x dxx2
( )  = 1.181636 f (0) + 0.295409 [f (1.224745) + f (– 1.224745)]

we obtain  I3 = 
− ∞

∞ −

� +
e

x
dx

x2

1 2
 = 1.417963.

 I4 = 
− ∞

∞ −� e dxx2
 = 1.772454.

4.40 Obtain an approximate value of

I = 
−� −
1

1
2 1/21( ) cosx x dx

using
(a) Gauss-Legendre integration method for n = 2, 3.
(b) Gauss-Chebyshev integration method for n = 2, 3.
Solution
(a) Using Gauss-Legendre three-point formula

−� = − + +
1

1 1
9

5 0 6 8 0 5 0 6f x dx f f f( ) [ ( . ) ( ) ( . )]

we obtain I = 
1
9

5 0 4 0 6 8 5 0 4 0 6[ . cos . . cos . ]+ +

= 1.391131.
Using Gauss-Legendre four-point formula

 
−� 1

1
f x dx( )  = 0.652145 [f (0.339981) + f (– 0.339981)]

+ 0.347855 [f (0.861136) + f (– 0.861136)]

we obtain I = 2 × 0.652145 [ 1 0 339981 2− ( . )  cos (0.339981)]

+ 2 × 0.347855 [ 1 0 861136 2− ( . )  cos (0.861136)]

= 1.156387 + 0.230450 = 1.3868837.

(b) We write I = 
− −� �− =

−1

1
2

1

1

2
1

1

1
x x dx

x
cos  f (x) dx

where f (x) = (1 –  x2) cos x.
Using Gauss-Chebyshev three-point formula

  −� −
=

�
	

�
�


+ + −
�
	


�
�


�

�
�
�

�

�
�
�1

1

2

1

1 3
3

2
0

3
2x

f x dx f f f( ) ( )
π

we obtain I = 
π
3

1
4

3
2

1
1
4

3
2

cos cos+ +
�
�
�
�

�
�
�
�
 = 1.386416.
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Using Gauss-Chebyshev four-point formula

−� −
=

1

1

2

1

1 4x
f x dx( )

π
 [f (0.923880) + f (0.382683) + f (– 0.382683) + f (– 0.923880)]

we obtain I = 
π
4

 [2(0.088267) + 2(0.791813)] = 1.382426.

4.41 The Radau quadrature formula is given by

−� 1

1
f x dx( )  = B1 f (– 1) + H f x Rk k

k

n

( ) +
=
∑

1

Determine xk, Hk and R for n = 1.
Solution
Making the method

 
−� 1

1
f x dx( )  = B1 f (– 1) + H1 f (x1) + R

exact for f (x) = 1, x and x2, we obtain the system of equations
B1 + H1 = 2,

 – B1 + H1x1 = 0,

B1 + H1x1
2  = 2 / 3,

which has the solution x1 = 1 / 3, H1 = 3 / 2, B1 = 1 / 2.
Hence, we obtain the method

−� = − + �
	

�
�
1

1 1
2

1
3
2

1
3

f x dx f f( ) ( ) .

The error term is given by

 R = 
C
3 !

 f ″′ (ξ),   – 1 < ξ < 1

where  C = 
−� − + =
1

1
3

1 1 1
3 4

9
x dx B H x– [ ] .

Hence, we have

R = 
2

27
 f ″′ (ξ), – 1 < ξ < 1.

4.42 The Lobatto quadrature formula is given by

−� 1

1
f x dx( )  = B1 f (– 1) + B2 f (1) + H f x Rk k

k

n

( )
=

−

∑ +
1

1

Determine xk, Hk and R for n = 3.
Solution
Making the method

−� 1

1
f x dx( ) = B1 f (– 1) + B2 f (– 1) + H1 f (x1) + H2 f (x2) + R

exact for f (x) = xi, i = 0, 1, ..., 5, we obtain the system of equations
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B1 + B2 + H1 + H2 = 2,
 – B1 + B2 + H1x1 + H2x2 = 0,

B1 + B2 + H1 x H x1
2

2 2
2 2

3
+ = ,

– B1 + B2 + H1 x H x1
3

2 2
3+  = 0,

B1 + B2 + H1 x H x1
4

2 2
4 2

5
+ = ,

– B1 + B2 + H1
x H x1

5
2 2

5+  = 0,
or

H1( ) ( )1 1
4
31

2
2 2

2− + − =x H x ,

H1
( ) ( )1 11

2
1 2 2

2− + −x x H x x2 = 0,

 H1( ) ( )1 1
4
151

2
1
2

2 2
2

2
2− + − =x x H x x ,

 H1
( ) ( )1 11

2
1
3

2 2
2

2
3− + −x x H x x  = 0,

or

 H1( )1 1
2− x (x2 – x1) = 

4
3 2x ,

H1( )1 1
2− x (x2 – x1)x1 = – 

4
15

,

H1( )1 1
2− x (x2 – x1)x1

2  = 
4
15

x2.

Solving the system, we get x1x2 = – 1 / 5, and x1 = – x2.
The solution is obtained as

x1 = 1 / 5 , x2 = – 1 / 5 ,
 H1 = H2 = 5 / 6, B1 = B2 = 1 / 6.

The method is given by

−� =
1

1 1
6

f x dx( )  [f (– 1) + f (1)] + 
5
6

1

5

1

5
f f
�
	

�
�


+ −
�
	


�
�


�
�
�

�
�
�.

The error term is

 R = 
C
6 !

 f vi(ξ),   – 1 < ξ < 1

where C = 
−� − + + +
1

1
6

1 2 1 1
6

2 2
6x dx B B H x H x[ ]

= 
2
7

1
3

1
75

32
525

− +�
	


�
�


�
��

�
��

= − .

Hence, we have

 R = – 
2

23625
 f vi(ξ), – 1 < ξ < 1.
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4.43 Obtain the approximate value of

I = 
−

−� 1

1 2
e x dxx cos

using
(a) Gauss-Legendre integration method for n = 2, 3.
(b) Radau integration method for n = 2, 3.
(c) Lobatto integration method for n = 2, 3.
Solution
(a) Using Gauss-Legendre 3-point formula

−� = −
�
	


�
�


+ +
�
	

�
�


�

�
�
�

�

�
�
�1

1 1
9

5
3
5

8 0 5
3
5

f x dx f f f( ) ( )

we obtain I = 1.324708.
Using Gauss-Legendre 4-point formula

−� 1

1
f x dx( )  = 0.652145 [f (0.339981) + f (– 0.339981)]

+ 0.347855 [f (0.861136) + f (– 0.861136)]
we obtain I = 1.311354.
(b) Using Radau 3-point formula

−� = − +
+ −�

	

�
�


+
− +�

	

�
�
1

1 2
9

1
16 6

18
1 6

5
16 6

18
1 6

5
f x dx f f f( ) ( )

we obtain I = 1.307951.
Using Radau 4-point formula

−� 1

1
f x dx( )  = 0.125000 f (– 1) + 0.657689 f (– 0.575319)

+ 0.776387 f (0.181066) + 0.440924 f (0.822824)
we obtain I = 1.312610.
(c) Using Lobatto 3-point formula

    
−� = − + +
1

1 1
3

1 4 0 1f x dx f f f( ) [ ( ) ( ) ( )]

we obtain I = 1.465844.
Using Lobatto 4-point formula

−� 1

1
f x dx( )  = 0.166667 [f (– 1) + f (1)] + 0.833333 [f (0.447214) + f (– 0.447214)]

we obtain I = 1.296610.

4.44 Evaluate

 I = 
0

10

∞� e x– log (1 + x) dx

correct to two decimal places, using the Gauss-Laguerre’s integration methods.
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Solution
Using the Gauss-Laguerre’s integration methods (4.71) and the abscissas and weights
given in Table 4.7, with f (x) = log10 (1 + x), we get for

n = 1 : I = 0.2654.
n = 2 : I = 0.2605.
n = 3 : I = 0.2594.
n = 4 : I = 0.2592.

Hence, the result correct to two decimals is 0.26.

4.45 Calculate the weights, abscissas and the remainder term in the Gaussian quadrature
formula

1
0π

∞� −exp( ) ( )t f t

t
 dt = A1f (t1) + A2 f (t2) + Cf (n)(ξ).

(Royal Inst. Tech., Stockholm, Sweden, BIT 20(1980), 529)
Solution
Making the method

 
1

0π

∞ −

� e f t

t

t ( )
 dt = A1 f (t1) + A2 f (t2)

exact for f (t) = 1, t, t2 and t3 we obtain

A1 + A2 = 
1

0π

∞ −

� e

t
dt

t

(substitute t  = T)

= 
2 2

20

2

π π
π∞

−� =e dTT .  = 1.

A1t1 + A2 t2 = 
1

0π

∞
−� te dtt (integrate by parts)

= 
1

2

1
20π

∞ −

� =e

t
dt

t

.

A1
t A t t e t
1
2

2 2
2

0

3 21
+ =

∞
−�π

/  dt (integrate by parts)

= 
3

2

3
40π

∞
−� =te dtt .

A1t A t t e dtt
1
3

2 2
3

0

5 21+ =
∞

−�π
/ (integrate by parts)

= 
5

2

15
80

3 2

π

∞
−� =t e dtt/ .

Simplifying the above system of equations, we get

A1(t2 – t1) = t2 – 
1
2

,

A1(t2 – t1)t1 = 
1
2

3
42t − ,
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A1(t2 – t1)t1
2  = 

3
4

15
82t − ,

which give t1 = 
1
2 2

3
4

2
1
2

3
4 2

15
8

1
2 2

3
4

t

t

t

t

−
−

=
−
−

.

Simplifying, we get

4t2
2  – 12t2 + 3 = 0, or t2 = 

3 6
2

±
.

We also obtain

 t1 = 
3 6

2
+

, A1 = 3 6
6

3 6
62

+
=

−
, A .

Hence, the required method is

1 3 6
6

3 6
2

3 6
6

3 6
20π

∞ −

� = + −�
	


�
�


+ − +�
	


�
�


e
t

f t dt f f
t

( )

The error term is given by

 R = 
C
4 !

 f iv(ξ),   0 < ξ < ∞

where  C = 
1

0

7 2
1 1

4
2 2

4

π

∞
−� − +t e dt A t A tt/ [ ]

= 
7

2 0π

∞� t5 / 2 e–t dt – [ A t A t1 1
4

2 2
4+ ]

= 
105
16

3 6
6

3 6
2

3 6
6

3 6
2

4 4

− + −�
	


�
�


− − +�
	


�
�
 = 

105
16

81
16

3
2

– = .

Hence, the error term is given by f iv(ξ) / 16.

4.46 The total emission from an absolutely black body is given by the formula

E = 
0 3 0

32
1

∞ ∞� �=
−

E d
h

c
d

eh kT( ) /ν ν π ν ν
ν .

Defining x = hν / kT, we get

 E = 2

13

4

0

3πh

c

kT
h

x dx

ex
�
	


�
�


∞� –
.

Calculate the value of the integral correct to 3 decimal places.
(Royal Inst. Tech., Stockholm, Sweden, BIT 19(1979), 552)

Solution
We write

I = 
0

3

0

3

1 1

∞ ∞
−

−� �−
=

−

�
	


�
�


x dx

e
e

x

e
dx

x
x

x

Applying the Gauss-Laguerre integration methods (4.71) with f (x) = x3 / (1 – e–x), we get
for
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n = 1 : I = 6.413727,
n = 2 : I = 6.481130,
n = 3 : I = 6.494531.

Hence, the result correct to 3 decimal places is 6.494.

4.47 (a) Estimate 
0

0.5

0

0.5

1�� +
sin xy

xy
dx dy using Simpson’s rule for double integrals with both

step sizes equal to 0.25.
(b) Calculate the same integral correct to 5 decimals by series expansion of the integrand.

(Uppsala Univ., Sweden, BIT 26(1986), 399)
Solution
(a) Using Simpson’s rule with h = k = 0.25, we have three nodal points each, in x and y
directions.  The  nodal  points  are  (0, 0),  (0, 1 / 4), (0, 1 / 2), (1 / 4, 0), (1 / 4, 1 / 4), (1 / 4,
1 / 2), (1 / 2, 0), (1 / 2, 1 / 4) and (1 / 2, 1 / 2). Using the double Simpson’s rule, we get

I = 
1

144
0 0 4

1
4

0
1
2

0 4 0
1
4

4
1
4

1
4

1
2

1
4

f f f f f f( , ) , , , , ,+ �
	


�
�
 + �

	

�
�
 + �

	

�
�
 + �

	

�
�
 + �

	

�
�


�
�
�

�
�
�

�
�
��

+ f 0
1
2

4
1
4

1
2

1
2

1
2

, , ,�
	


�
�
 + �

	

�
�
 + �

	

�
�

�
��

f f

= 
1

144
 [0 + 0 + 0 + 4 (0 + 0.235141 + 0.110822) + 0 + 0.443288 + 0.197923]

= 0.014063.
(b) Using the series expansions, we get

I = 
0

1/2

0

1/2
11�� + −( ) sinxy xy dx dy

= 
0

1 2

0

1 2
2 2

3 3

1
6

//
( ...) ...�� − + − − +

�
	


�
�


xy x y xy
x y

dx dy

= 
0

1/2

0

1/2
2 2 3 3 4 4 5 5 6 65

6
5
6

101
120

101
120�� − + − + − +�

��
�
��

xy x y x y x y x y x y ...  dx dy

= 
0

1 2 2 3 4 5 6

8 24
5
384

5
960

101
46080

101
107520

/
...� − + − + − +

�
	


�
�


x x x x x x
dx

= 
1

64
1

576
5

24576
5

153600
101

17694720
101

96337920
− + − + −  + ... = 0.014064.

4.48 Evaluate the double integral

0

1

1

2

2 2
2

1 1� � + +

�
	


�
�


xy

x y
dy dx

( )( )
using
(i) the trapezoidal rule with h = k = 0.25.

(ii) the Simpson’s rule with h = k = 0.25.
Compare the results obtained with the exact solution.
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Solution
Exact solution is obtained as

 I = 
0

1

2 1

2

2
2

1 1� �+ +
x

x
dx

y

y
dy.  = 

1
2

1 12

0

1 2

1

2
ln( ln( )+ +x y

= 
1
2

(ln 2) ln(5 / 2) = 0.317562.

With h = k = 1 / 4, we have the nodal points
 (xi, yi), i = 0, 1, 2, 3, 4, j = 0, 1, 2, 3, 4,

where xi = i / 4, i = 0, 1, ..., 4 ; yj = 1 + ( j / 4), j = 0, 1, ..., 4.
Using the trapezoidal rule, we obtain

 I = 
1

2

0

1�� f x y dy dx( , )

= k
2 0

1� [ f (x, y0) + 2f (x, y1) + 2f (x, y2) + 2f (x, y3) + f (x, y4)] dx

= 
hk
4

 [S1 + 2S2 + 4S3] = 
1

64
(S1 + 2S2 + 4S3)

where S1 = f (x0, y0) + f (x4, y0) + f (x0, y4) + f (x4, y4) = 0.9.

S2 = [ ( , ) ( , )]f x y f x yi i
ji

0 4
1

3

1

3

+ +
==
∑∑ [f (x0, yj) + f (x4, yj)] = 3.387642.

S3 = 
i=
∑

1

3

[ f (xi, y1) + f (xi, y2) + f (xi, y3)] = 3.078463.

Hence, we get I = 0.312330.
Using Simpson’s rule, we obtain

I = 
k
3 0

1� [f (x, y0) + 4 f (x, y1) + 4 f (x, y3) + 2f (x, y2) + f (x, y4)] dx

= 
hk
9

 [T1 + 2T2 + 4T3 + 8T4 + 16T5]

= 
1

144
 [T1 + 2T2 + 4T3 + 8T4 + 16T5]

where T1 = f (x0, y0) + f (x4, y0) + f (x0, y4) + f (x4, y4) = 0.9.
T2 = f (x2, y0) + f (x2, y4) + f (x0, y2) + f (x4, y2) = 1.181538.
T3 = f (x0, y1) + f (x4, y1) + f (x0, y3) + f (x4, y3) + f (x1, y4)

+ f (x3, y4) + f (x1, y0) + f (x3, y0) + f (x2, y2)
= 2.575334.

T4 = f (x2, y1) + f (x2, y3) + f (x1, y2) + f (x3, y2) = 1.395131.
T5 = f (x1, y1) + f (x3, y1) + f (x1, y3) + f (x3, y3) = 1.314101.

Hence, we get I = 0.317716.

4.49 Evaluate the double integral

dx

x y
dy

( )2 2 1/21

5

1

5

+

�
	


�
�
��

using the trapezoidal rule with two and four subintervals and extrapolate.
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Solution
With h = k = 2, the nodal point are

(1, 1), (3, 1), (5, 1), (1, 3), (3, 3), (5, 3), (1, 5), (3, 5), (5, 5).
Using the trapezoidal rule, we get

I = 
2 2

4
×

 [f (1, 1) + 2f (1, 3) + f (1, 5) + 2{ f (3, 1) + 2f (3, 3) + f (3, 5)}

+ f (5, 1) + 2f (5, 3) + f (5, 5)]
= 4.1345.

With h = k = 1, the nodal points are
(i, j), i = 1, 2, ..., 5, j = 1, 2, ..., 5.

Using the trapezoidal rule, we get

I = 
1
4

 [f (1, 1) + 2(f (1, 2) + f (1, 3) + f (1, 4)) + f (1, 5)

+ 2{f (2, 1), + 2(f (2, 2) + f (2, 3) + f (2, 4)) + f (2, 5)}
+ 2{f (3, 1) + 2(f (3, 2) + f (3, 3) + f (3, 4)) + f (3, 5)}
+ 2{f (4, 1) + 2(f (4, 2) + f (4, 3) + f (4, 4)) + f (4, 5)}
+ f (5, 1) + 2(f (5, 2) + f (5, 3) + f (5, 4)) + f (5, 5)]

= 3.9975.
Using extrapolation, we obtain the better approximation as

I = 
4 3 9975 4 1345

3
( . ) .−

 = 3.9518.

4.50 A three dimensional Gaussian quadrature formula has the form

−−− ��� 1

1

1

1

1

1
f x y z dx dy dz( , , )  = f (α, α, α) + f (– α, α, α) + f (α, – α, α)

+ f (α, α, – α) + f (– α, – α, α) + f (– α, α, – α)
+ f (α, – α, – α) + f (– α, – α, – α) + R

Determine α so that R = 0 for every f which is a polynomial of degree 3 in 3 variables i.e.

f = a x y zijk
i j k

i j k, , =
∑

0

3

(Lund Univ., Sweden, BIT 15(1975), 111)

Solution
For i = j = k = 0, the method is exact.
The integral

−−− ��� 1

1

1

1

1

1
x y z dx dy dzi j k  = 0

when i and / or j and / or k is odd. In this case also, the method is exact.
For f (x, y, z) = x2y2z2, we obtain

8
27

8 6= α .

The value of α is therefore α = 1 / 3 .

Note that α = – 1 / 3  gives the same expression on the right hand side.



CHAPTER 5

Numerical Solution of Ordinary
Differential Equations

5.1 INTRODUCTION

Many problems in science and engineering can be formulated either in terms of the initial
value problems or in terms of the boundary value problems.

Initial Value Problems

An mth order initial value problem (IVP), in its canonical representation, can be written
in the form

 u(m) = f (x, u, u′, ... , u(m–1)) (5.1 i)
 u(a) = η1, u′(a) = η2, ... , u(m–1) (a) = ηm (5.1 ii)

where m represents the highest order derivative.
The equation (5.1 i) can be expressed as an equivalent system of m first order equations

y1 = u,

 y1′  = y2 ,

 y2′  = y3 ,
..........

 ym−′ 1 = ym,

ym′  = f (x, y1, y2, ..., ym). (5.2 i)
The initial conditions become

 y1(a) = η1, y2(a) = η2, ..., ym(a) = ηm. (5.2 ii)
The system of equations (5.2 i) and the initial conditions (5.2 ii), in vector form becomes

 y′ = f (x, y),
 y(a) = ηηηηη, (5.3)

where  y = [y1 y2 ... ym]T, ηηηηη = [η1 η2 ... ηm]T

f (x, y) = [y2 y3 ... f ]
T.

Thus, the methods of solution for the first order initial value problem (IVP)
dy
dx

 = f (x, y),

 y(a) = η, (5.4)
may be used to solve the system of first order initial value problems (5.3) and the mth order
initial value problem (5.1).

The behaviour of the solution of (5.4) can be predicted by considering the homogeneous
linearized form
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dy
dx

 = λ y,

y(a) = η, (5.5)
where λ may be regarded as a constant. The equation (5.5) is called a test problem.

We will assume the existence and uniqueness of the solution of (5.4) and also that f (x, y)
has continuous partial derivatives with respect to x and y of as high an order as required.

Boundary Value Problems

An mth order boundary value problem (BVP) can be represented symbolically as
 L y = r(x),
Uµ y = γµ, µ = 1, 2, ..., m (5.6)

where L is an mth order differential operator, r(x) is a given function of x and Uµ are the m
boundary conditions.

The simplest boundary value problem is given by a second order differential equation of
the form

– y″ + p(x)y′ + q(x)y = r(x), (5.7)
where p(x), q(x) and r(x) are continuous functions of x or constants, with one of the three
boundary conditions

(i) first kind :  y(a) = γ1, y(b) = γ2, (5.8)
(ii) second kind :   y′(a) = γ1, y′(b) = γ2, (5.9)

(iii) third kind :   a0 y(a) – a1 y′(a) = γ1,
b0 y(b) +  b1 y′(b) = γ2. (5.10)

A homogeneous boundary value problem possesses only a trivial solution y(x) ≡ 0. We,
therefore, consider those boundary value problems in which a parameter λ occurs either in the
differential equation or in the boundary conditions, and we determine values of λ, called
eigenvalues, for which the boundary value problem has a nontrivial solution. Such a solution is
called an eigenfunction and the entire problem is called an eigenvalue or a characteristic value
problem.

In general, a boundary value problem does not always have a unique solution. However,
we shall assume that the boundary value problem under consideration has a unique solution.

Difference Equations

A k-th order linear nonhomogeneous difference equation with constant coefficients may
be written as

a0 ym+k + a1 ym+k–1 + ... + ak ym = φm (5.11)
where m can take only the integer values and a0, a1, a2, ..., ak are constants.

The general solution of (5.11) is of the form
 ym = ym

(H) + ym
(P) (5.12)

where ym
(H) is the solution of the associated homogeneous difference equation

a0 ym+k + a1 ym+k–1 + ... + ak ym = 0 (5.13)
and ym

(P) is any particular solution of (5.11).
In order to obtain ym

(H), we attempt to determine a solution of the form
 ym = ξm. (5.14)

Substituting (5.14) into (5.13), we get the polynomial equation
a0ξm+k + a1ξm+k–1 + ... + ak ξm = 0

or a0ξ
k + a1ξ

k–1 + ... + ak = 0. (5.15)
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This equation is called the characteristic equation of (5.13). The form of the complemen-
tary solution ym

(H) depends upon the nature of the roots of (5.15).

Real and Unequal Roots

If the roots of (5.15) are real and unequal, then the solution of (5.13) is of the form
 ym

(H) = C1ξ1
m + C2ξ2

m + ... + Ckξk
m (5.16)

where Ci's are arbitrary constants and ξi, i = 1(1)k are the real and unequal roots of (5.15).

Real and p, (p ≤ k) Equal Roots

The form of the solution (5.16) gets modified to
ym

(H) = (C1 + C2m + ... + Cpmp–1) ξm + Cp+1 ξ
m

p+1 + ... + Ck ξk
m (5.17)

where  ξ1 = ξ2 = ... = ξp = ξ.

Two Complex Roots and k – 2 Distinct and Real Roots

The form of the solution (5.16) becomes
ym

(H) = rm (C1 cos mθ + C2 sin mθ) + C3ξ3
m + ... + Ckξk

m (5.18)
where  ξ1 = α + iβ, ξ2 = α – iβ and r2 = (α2 + β2), θ = tan–1 (β / α).

The particular solution ym
(P) will depend on the form of  φm. If  φm = φ, a constant, then

we have
ym

(P) = φ / (a0 + a1 + ... + ak). (5.19)
From the form of the solutions (5.16)-(5.18), we conclude that the solution of the differ-

ence equation (5.13) will remain bounded as m → ∞ if and only if the roots of the characteristic
equation (5.15), ξ i , lie inside the unit circle in the complex plane and are simple if they lie on
the unit circle. This condition is called the root condition.

Routh-Hurwitz Criterion

To test the root condition when the degree of the characteristic equation is high, or the
coefficients are functions of some parameters, we use the transformation

ξ = 
1
1

+
−

z
z (5.20)

which maps the interior of the unit circle | ξ | = 1 onto the left half plane z ≤ 0, the unit circle
| ξ | = 1 onto the imaginary axis, the point ξ = 1 onto z = 0, and the point ξ = – 1 onto z = – ∞
as shown in Fig. 5.1.

Fig. 5.1. Mapping of the interior of the unit circle onto the left half plane.
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Substituting (5.20) into (5.15) and grouping the terms together, we get
b0 zk + b1 zk–1 + ... + bk = 0 (5.21)

This is called the transformed characteristic equation.
For k = 1, we get b0 = a0 – a1, b1 = a0 + a1,
For k = 2, we get b0 = a0 – a1 + a2, b1 = 2 (a0 – a2), b2 = a0 + a1 + a2,
For k = 3, we get b0 = a0 – a1 + a2 – a3, b1 = 3a0 – a1 – a2 + 3a3,

 b2 = 3a0 + a1 – a2 – 3a3, b3 = a0 + a1 + a2 + a3.

Note that  bk = ai
i

k

=
∑

0
.

Denote

D = 

b b b b
b b b b

b b b
b b b

b

k

k

k

k

k

1 3 5 2 1

0 2 4 2 2

1 3 2 3

0 2 2 4

0
0

0 0 0

�

�

�

�

� � � �

−

−

−

−

where bj ≥ 0 for all j. Routh-Hurwitz criterion states that the real parts of the roots of (5.21) are
negative if and only if the principal minors of D are positive.

Using the Routh-Hurwitz criterion, we obtain for
 k = 1 : b0 > 0, b1 > 0,
 k = 2 : b0 > 0, b1 > 0, b2 > 0, (5.22)
 k = 3 : b0 > 0, b1 > 0, b2 > 0, b3 > 0, b1b2 – b3b0 > 0,

as the necessary and sufficient conditions for the  real parts of the roots of (5.21) to be negative.
If any one or more of the bi’s are equal to zero and other bj’s are positive, then it indi-

cates that a root lies on the unit circle | ξ | = 1. If any one or more of the bj’s are negative, then
there is atleast one root for which | ξ i | > 1.

5.2 SINGLESTEP METHODS

We consider the numerical solution of the initial value problem (5.4)

dy
dx

 = f (x, y), x ∈  [a, b]

y(a) = η.
Divide the interval [a, b] into N equally spaced subintervals such that

 xn = a + nh, n = 0, 1, 2, ..., N,
h = (b – a) / N.

The parameter h is called the step size and xn, n = 0(1)N are called the mesh or step
points.

A single step method for (5.4) is a related first order difference equation. A general
single step method may be written as
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 yn+1 = yn + h φ (tn+1, tn, yn+1, yn, h), n = 0, 1, 2,... (5.23)
where φ is a function of the arguments tn, tn+1, yn, yn+1, h and also depends on f. We often write
it as φ (t, y, h). This function φ is called the increment function. If yn+1 can be obtained simply by
evaluating the right hand side of (5.23), then the method is called an explicit method. In this
case, the method is of the form

yn+1 = yn + h φ (tn, yn, h).
If the right hand side of (5.23) depends on yn+1 also, then it is called an implicit method.

The general form in this case is as given in (5.23).
The local truncation error Tn+1 at xn+1 is defined by

Tn+1 = y(xn+1) – y(xn) – h φ (tn+1, tn, y (tn+1), y(tn), h). (5.24)
The largest integer p such that

| h–1 Tn+1 | = O(h
p
) (5.25)

is called the order of the single step method.
We now list a few single step methods.

Explicit Methods

Taylor Series Method

If the function y(x) is expanded in the Taylor series in the neighbourhood of x = xn, then
we have

 yn+1 = yn + hy′n + 
h2

2 !
 yn″ + ... + 

h
p

p

!
 yn

(p)

n = 0, 1, 2, ..., N – 1 (5.26)
with remainder

Rp+1 = 
h
p

p+

+

1

1( ) !
 y(p+1) (ξn), xn < ξn < xn+1.

The equation (5.26) is called the Taylor series method of order p. The value p is chosen so
that | Rp+1 | is less than some preassigned accuracy. If this error is ε, then

hp+1 | y(p+1) (ξn) | < (p + 1) ! ε
or hp+1 | f (p) (ξn) | < (p + 1) ! ε.

For a given h, this equation will determine p, and if p is specified then it will give an
upper bound on h. Since ξn is not known, | f  (p) (ξn) is replaced by its maximum value in [x0, b].
As the exact solution may not be known, a way of determining this value is as follows. Write
one more non-vanishing term in the series than is required and then differentiate this series p
times. The maximum value of this quantity in [x0, b] gives the required bound.

The derivatives yn
(p), p = 2, 3, ... are obtained by successively differentiating the differ-

ential equation and then evaluating at x = xn. We have
y′(x) = f (x, y),

 y″(x) = fx + f fy
y′″ (x) = fxx + 2f fxy + f 2fyy + fy ( fx + ffy).

Substituting p = 1 in (5.26), we get
yn+1 = yn + h fn, n = 0(1)N – 1 (5.27)

which is known as the Euler method.
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Runge-Kutta methods

The general Runge-Kutta method can be written as

yn+1 = yn + 
i

v

=
∑

1

wi Ki,  n = 0, 1, 2, ..., N – 1 (5.28)

where Ki = hf x c h y a Kn i n
m

i

im m+ +
�

	




�

�




=

−

∑,
1

1

with c1 = 0.
For v = 1, w1 = 1, the equation (5.28) becomes the Euler method with p = 1. This is the

lowest order Runge-Kutta method. For higher order Runge-Kutta methods, the minimum
number of function evaluations (v) for a given order p is as follows :

p 2 3 4 5 6 ...

v 2 3 4 6 8 ...

We now list a few Runge-Kutta methods.

Second Order Methods

Improved Tangent method :
 yn+1 = yn + K2,   n = 0(1)N – 1, (5.29)
 K1 = hf (xn, yn),

 K2 = hf x
h

y
K

n n+ +�
	


�
�
2 2

1,  .

Euler-Cauchy method (Heun method)

yn+1 = yn + 
1
2

 (K1 + K2),   n = 0(1)N – 1, (5.30)

 K1 = hf (xn, yn),
 K2 = hf (xn + h, yn + K1).

Third Order Methods

Nyström method

yn+1 = yn + 
1
8

 (2K1 + 3K2 + 3K3),  n = 0(1)N – 1, (5.31)

 K1 = hf (xn, yn),

K2 = hf x h y Kn n+ +�
	


�
�


2
3

2
3 1, ,

K3 = hf x h y Kn n+ +�
	


�
�


2
3

2
3 2, .

Heun method

yn+1 = yn + 
1
4

 (K1 + 3K3),  n = 0(1)N – 1, (5.32)

K1 = hf (xn, yn),
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K2 = hf x h y Kn n+ +�
	


�
�


1
3

1
3 1,

K3 = hf x h y Kn n+ +�
	


�
�


2
3

2
3 2, .

Classical method

yn+1 = yn + 
1
6

 (K1 + 4K2 + K3),  n = 0(1)N – 1, (5.33)

K1 = hf (xn, yn),

K2 = hf x h y Kn n+ +�
	


�
�


1
2

1
2 1, ,

 K3 = hf (xn + h, yn – K1 + 2K2).

Fourth Order Methods

Kutta method

yn+1 = yn + 
1
8

 (K1 + 3K2 + 3K3 + K4),  n = 0(1)N – 1, (5.34)

 K1  = hf (xn, yn),

 K2 = hf x h y Kn n+ +�
	


�
�


1
3

1
3 1, ,

K3 = hf x h y K Kn n+ − +�
	


�
�


2
3

1
3 1 2,  ,

K4 = hf (xn + h, yn + K1 – K2 + K3).
Classical method

yn+1 = yn + 
1
6

 (K1 + 2K2 + 2K3 + K4), n = 0(1)N – 1, (5.35)

K1 = hf (xn, yn),

 K2 = hf x h y Kn n+ +�
	


�
�


1
2

1
2 1,

K3 = hf x h y Kn n+ +�
	


�
�


1
2

1
2 2,

 K4 = hf (xn + h, yn + K3).

Implicit Runge-Kutta Methods

The Runge-Kutta method (5.28) is modified to

 yn+1 = yn + 
i

v

=
∑

1

 wi Ki, n = 0(1)N – 1, (5.36)

where Ki = hf x c h y a Kn i n
m

v

im m+ +
�

	




�

�




=
∑,

1

.

With v function evaluations, implicit Runge-Kutta methods of order 2v can be obtained.
A few methods are listed.
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Second Order Method
 yn+1 = yn + K1,   n = 0(1)N – 1, (5.37)

K1 = hf x h y Kn n+ +�
	


�
�


1
2

1
2 1, .

Fourth Order Method

 yn+1 = yn + 
1
2

 (K1 + K2),   n = 0(1)N – 1, (538)

K1 = hf x h y K Kn n+ −
�
	


�
�


+ + −
�
	


�
�


�
	


�
�


1
2

3
6

1
4

1
4

3
61 2, ,

K2 = hf x h y K Kn n+ +
�
	


�
�


+ +
�
	


�
�


+
�
	


�
�


1
2

3
6

1
4

3
6

1
41 2, .

5.3 MULTISTEP METHODS

The general k-step or multistep method for the solution of the IVP (5.4) is a related k-th order
difference equation with constant coefficients of the form

yn+1 = a1 yn + a2 yn–1 + ... + ak yn–k+1

+ h (b0
yn+′ 1 + b1 y′n + ... + bk y′n–k+1) (5.39)

or symbolically, we write (5.39) as
ρ(E) yn–k+1 – hσ(E) y′n–k+1 = 0

where ρ(ξ) = ξk – a1ξ
k–1 – a2 ξ

k–2 ... – ak,
σ(ξ) = b0ξk + b1ξk–1

 + b2 ξ
k–2 + ... + bk. (5.40)

The formula (5.39) can be used if we know the solution y(x) and y′(x) at k successive
points. The k-values will be assumed to be known. Further, if  b0 = 0, the method (5.39) is
called an explicit or a predictor method. When b0 ≠ 0, it is called an implicit or a corrector
method. The local truncation error of the method (5.39) is given by

Tn+1 = y(xn+1) – 
i

k

=
∑

1

ai y(xn–i+1) – h 
i

k

=
∑

0

 bi y′(xn–i+1). (5.41)

Expanding the terms on the right hand side of (5.41) in Taylor’s series and rearranging
them we obtain

Tn+1 = C0 y(xn) + C1h y′(xn) + C2h
2 y″(xn) + ...

+ Cph
p y(p)(xn) + Cp+1 h

p+1 y(p + 1)(xn) + ... (5.42)

where  C0 = 1 – 
m

k

=
∑

1

 am

 Cq = 
1

1 1
1q

a m
m

k

m
q

!
( )− −

�

�
�
�

�

�
�
�=

∑

– 
1

1( ) !q −
 
m

k

=
∑

0

 bm(1 – m)q–1,  q = 1(1)p. (5.43)
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Definitions

Order : If  C0 = C1 = ... = Cp = 0
and Cp+1 ≠ 0 in (5.42), then the multistep method (5.39) is said to be of order p.

Consistency :  If p ≥ 1,  then  the  multistep method (5.39) is said to be consistent, i.e., if
C0 = C1 = 0 or

ρ(1) = 0 and ρ′(1) = σ(1). (5.44)
Convergence : If lim

h → 0
 yn = y(xn), 0 ≤ n ≤ N (5.45)

and provided the rounding errors arising from all the initial conditions tend to zero, then the
linear multistep method (5.39) is said to be convergent.

Attainable Order of Linear Multistep Methods

As the number of coefficients in (5.39) is 2k + 1, we may expect that they can be deter-
mined so that 2k + 1 relations of the type (5.43) are satisfied and the order would be equal to
2k. However, the order of a k-step method satisfying the root condition cannot exceed k + 2. If
k is odd, then it cannot exceed k + 1.

Linear Multistep Methods

We now determine a few wellknown methods which satisfy the root condition.
Putting y(t) = et and eh = ξ into (5.39), we get

ρ(ξ) – log ξ σ(ξ) = 0. (5.46)
As h → 0, ξ → 1 and we may use (5.46) for determining ρ(ξ) or σ(ξ) of maximum order if

σ(ξ) or ρ(ξ) is given.
If  σ(ξ)  is  specified,  then  (5.46)  can  be  used  to determine ρ(ξ) of degree k. The term

(log ξ)σ(ξ) can be expanded as a power series in (ξ – 1) and terms upto (ξ – 1)k can be used to
give ρ(ξ). Similarly, if ρ(ξ) is given, we can use the equation

σ(ξ) – 
ρ ξ

ξ
( )

log
 = 0 (5.47)

to determine σ(ξ) of degree ≤ k. The term ρ(ξ) / (log ξ) is expanded as a power series in (ξ – 1),
and terms upto (ξ – 1)k for implicit methods and (ξ – 1)k–1 for explicit methods are used to get
σ(ξ).

Adams-Bashforth Methods
ρ(ξ) = ξk–1 (ξ – 1),

σ(ξ) = ξk–1 

m

k

=

−

∑
0

1

 γm(1 – ξ–1)m.

γm + 
1
2

 γm–1 + ... + 
1

1m +
 γ0 = 1, m = 0, 1, 2, ... (5.48)

We have the following methods.
(i) k = 1 : γ0 = 1.

  yn+1 = yn + hy′n

  Tn+1 = 
1
2

 h2 y″(xn) + O(h3),  p = 1.

(ii)  k = 2 ; γ0 = 1, γ1 = 1 / 2.

yn+1 = yn + 
h
2

 (3y′n – yn−′ 1),
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  Tn+1 = 
5

12
 h3 y′″ (xn) + O(h4),  p = 2.

(iii) k = 3 : γ0 = 1, γ1 = 1 / 2, γ2 = 5 / 12.

yn+1 = yn + 
h
12

 (23y′n – 16 yn−′ 1 + 5 yn−′ 2 ),

Tn+1 = 
3
8

 h4 y(4)(xn) + O(h5),  p = 3.

Nyström methods
ρ(ξ) = ξk–2 (ξ2 – 1),

 σ(ξ) = ξk–1 
m

k

=

−

∑
0

1

 γm (1 – ξ–1)m.

γm + 
1
2

 γm–1 + ... + 
1

1m +
 γ0 = 

2 0
1 1 2
,
, , , ...

m
m

=
= (5.49)

We have the following methods.
(i) k = 2 : γ0 = 2, γ1 = 0.

 yn+1 = yn–1 + 2hy′n,

 Tn+1 = 
h3

3
 y(3) (xn) + O(h4), p = 2.

(ii) k = 3 : γ0 = 2, γ1 = 0 γ2 = 1 / 3.

yn+1 = yn–1 + 
h
3

 (7y′n – 2 yn−′ 1 + yn−′ 2 ),

 Tn+1 = 
h4

3
 y(4) (xn) + O(h5),  p = 3.

Adams-Moulton Methods
ρ(ξ) = ξk–1 (ξ – 1),

 σ(ξ) = ξk 
m

k

=
∑

0
 γm(1 – ξ–1)m.

γm + 
1
2

γm–1 + ... + 
1

1m +  γ0 = 
1 0
0 1 2
,
, , , ...

m
m

=
= (5.50)

We have the following methods.
(i) k = 1 : γ0 = 1, γ1 = – 1 / 2.

 yn+1 = yn + 
h
2

 ( yn+′ 1 + yn′ )

 Tn+1 = – 
1

12
 h3 y′″  (xn) + O(h4),  p = 2.

(ii) k = 2 : γ0 = 1, γ1= – 1 / 2, γ2 = – 1 / 12.

 yn+1 = yn + 
h
12

 (5 yn+′ 1 + 8yn′  – yn−′ 1),

Tn+1 = – 
1

24
 h4 y(4) (xn) + O(h5),  p = 3.
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(iii) k = 3 : γ0 = 1, γ1 = – 
1
2

, γ2 = – 
1

12
, γ3 = – 

1
24

.

yn+1 = yn + 
h

24
 (9 yn+′ 1 + 19 y′n – 5 yn−′ 1 + yn−′ 2 ),

Tn+1 = – 
19

720
 h5 y(5) (xn) + O(h6),  p = 4.

Milne Method
ρ(ξ) = ξk–2 (ξ2 – 1),

σ(ξ) = ξk 
m

k

=
∑

0
 γm(1 – ξ–1)m

γm + 
1
2

 γm–1 + ... + 
1

1m +  γ0  = 

2 0
1 1
0 2 3

,
,
, , , ......

m
m
m

=
− =

=
(5.51)

We have the following method.
k = 2 :  γ0 = 2, γ1 = – 2, γ2 = 1 / 3.

  yn+1 = yn–1 + 
h
3

 ( yn+′ 1 + 4 yn′  + yn−′ 1),

  Tn+1 = – 
1

90
 h5 y(5) (xn) + O(h6), p = 4.

Numerical Differentiation Methods
σ(ξ) = ξk, ρ(ξ) of degree k. (5.52)

We have the following methods.

(i) k = 1 :  yn+1 = yn + h yn+′ 1,

Tn+1 = – 
h2

2
 y″ (xn) + O(h3),  p = 1.

(ii) k = 2 : yn+1 = 
4
3

 yn – 
1
3

 yn–1 + 
2
3

 h yn+′ 1,

Tn+1 = – 
2

9

3h
 y(3) (xn) + O(h4),  p = 2.

(iii) k = 3 : yn+1 = 
18
11

 yn – 
9
11

 yn–1 + 
2
11

 yn–2 + 
6
11

 h yn+′ 1,

 Tn+1 = – 
3

22
 h4 y(4) (xn) + O(h5),  p = 3.

5.4 PREDICTOR CORRECTOR METHODS

When ρ(ξ) and σ(ξ) are of the same degree, we produce an implicit or a corrector method. If the
degree of σ(ξ) is less than the degree of ρ(ξ), then we have an explicit or a predictor method.
Corrector method produces a non-linear equation for the solution at xn+1. However, the predic-

tor method can be used to predict a value of yn+1
0( )  and this value can be taken as the starting

approximation of the iteration for obtaining yn+1 using the corrector method. Such methods
are called the Predictor-Corrector methods.
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Suppose that we use the implicit method

 yn+1 = hb0 fn+1 + 
m

k

=
∑

1
 (am yn–m+1 + hbm fn–m+1)

to find yn+1.
This equation may be written as

y = F(y) (5.53)
where y = yn+1,

F(y) = hb0 f (xn+1, y) + c,

c = 
m

k

=
∑

1
 (am yn–m+1 + hbm fn–m+1).

An iterative method can be used to solve (5.53) with suitable first approximation y(0).
The general iterative procedure can be written as

y(s+1) = F(y(s)), s = 0, 1, 2, ..... (5.54)
which converges if

 h
f x y

y
bn∂

∂
( , )+1

0  < 1. (5.55)

P(EC)m E method

We use the explicit (predictor) method for predicting yn+1
0( )  and then use the implicit

(corrector) method iteratively until the convergence is obtained. We write (5.54) as

P : Predict some value yn+1
0( ) ,

E : Evaluate f (xn+1, yn+1
0( ) ),

C : Correct yn+1
(1)  = hb0 f (xn+1, yn+1

0( ) ) + c,

E : Evaluate f (xn+1, yn+1
1( ) ),

C : Correct yn+1
2( )  = hb0 f (xn+1, yn+1

1( ) ) + c.

The sequence of operations
PECECE ...CE (5.56)

is denoted by P(EC)m E and is called a predictor-corrector method. Note that the predictor may
be of the same order or of  lower order than the corrector method.

If the predictor is of lower order, then the order of the method PECE is generally that of
the predictor. Further application of the corrector  raises the order of the combination by 1,
until the order of the corrector is obtained. Further application may atmost reduce the magni-
tude of the error constant. Therefore, in practical applications, we may use only 2 or 3 correc-
tor iterations.

PMpCMc  Method
For m = 1, the predictor-corrector method becomes PECE. If the predictor and the cor-

rector methods  are of the same order p then we can use the estimate of the truncation error to
modify the predicted and the corrected values. Thus, we may write this procedure as PMp CMc.
This is called the modified predictor-corrector method. We have
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 y(xn+1) – yn
p
+1

( )  = Cn
p
+1

( )  hp+1 y(p+1)(xn) + O(hp+2),

y(xn+1) – yn
c
+1

( )  = Cp
c
+1

( )  hp+1 y(p+1)(xn) + O(hp+2), (5.57)

where yn
p
+1

( )  and yp
c
+1

( )  represent the solution values obtained by using the predictor and correc-
tor methods respectively. Estimating hp+1 y(p+1)(xn) from (5.57), we may obtain the modified
predicted and corrected values mn+1 and yn+1 respectively and write the modified predictor-
corrector method as follows :

Predicted value :

(i) pn+1 = 
m

k

=
∑

1

 (am
( )0 yn–m+1 + hbm

( )0 fn–m+1).

Modified predicted value :

(ii) mn+1 = pn+1 + Cp
p
+1

( )  (Cp
c
+1

( )  – Cp
p
+1

( ) )–1 (pn – cn).

Corrected value :

(iii) cn+1 = hb0 f (xn+1, mn+1) + 
m

k

=
∑

1

 (am yn–m+1 + hbm fn–m+1).

Modified corrected value :

(iv) yn+1 = cn+1 + C p
c
+1

( )  (Cp
c
+1

( )  – Cp
p
+1

( ) )–1 (pn+1 – cn+1). (5.58)

The quantity (p1 – c1) in (5.58 (ii)) required for modification of the first step is generally
put as zero.

5.5 STABILITY ANALYSIS

A numerical method is said to be stable if the cumulative effect of all the errors is bounded
independent of the number of mesh points. We now examine the stability of the single step and
multistep methods.

Single Step Methods
The application of the single step method (5.23) to the test problem (5.5) leads to a first

order difference equation of the form
 yn+1 = E(λ h) yn (5.59)

where E(λ h) depends on the single-step method.
The analytical solution of the test problem (5.5) gives

y(xn+1) = eλ h y(xn). (5.60)
To find the error equation, we substitute yn+1 = εn+1 + y(xn+1) into (5.59) and use (5.60) to

get
 εn+1 = E(λh) εn – [eλh – E(λh)] y(xn)

= E(λh) εn – Tn+1 (5.61)
where Tn+1 is the local truncation error and is independent of εn.

The first term on the right side of (5.61) represents the propagation of the error from the
step xn to xn+1 and will not grow if | E(λ h) | ≤ 1.
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Definitions

Absolute Stability : If | E(λ h) | ≤ 1, λ < 0, then the single step method (5.23) is said to
be absolutely stable.

Interval of Absolute Stability : If the method (5.23) is absolutely stable for all λ h ∈  (α, β)
then the interval (α, β) on the real line is said to be the interval of absolute stability.

Relative Stability : If E(λ h) ≤ eλh, λ > 0, then the singlestep method (5.23) is said to be
relatively stable.

Interval of Relative Stability : If the method (5.23) is relatively stable for all λ h ∈  (α, β),
then the interval (α, β) on the real line is said to be the interval of relative stability.

Multistep Methods

Applying the method (5.39) to (5.5) and substituting yn = εn + y(xn), we obtain the error
equation

 εn+1 = 
m

k

=
∑

1
am εn–m+1 + λh 

m

k

=
∑

0

 bm εn–m+1 – Tn+1 (5.62)

where Tn+1 is the local truncation error and is independent of εn.
We assume that Tn+1 is a constant and is equal to T. The characteristic equation of (5.62)

is given by
ρ(ξ) – hλσ(ξ) = 0. (5.63)

The general solution of (5.62) may be written as

εn = A1ξ 1h
n  + A2 ξ2h

n  + ... + Akξ kh
n  + 

T
hλσ( )1

(5.64)

where Ai are constants to be determined from the initial errors and ξ1h, ξ2h, ..., ξkh are the
distinct roots of the characteristic equation (5.63). For h → 0, the roots of the characteristic
equation (5.63) approach the roots of the equation

ρ(ξ) = 0. (5.65)
The equation (5.65) is called the reduced characteristic equation. If ξ1, ξ2, ..., ξk are the

roots of ρ(ξ) = 0, then for sufficiently small h λ, we may write
ξ ih = ξ i (1 + h λ) κi + O (| λ h |2), i = 1(1)k (5.66)

where κi are called the growth parameters. Substituting (5.66) into (5.63) and neglecting terms
of O (| λ h |2), we obtain

 κi = 
σ ξ

ξ ρ ξ
( )
( )
i

i i′
,  i = 1(1)k. (5.67)

From (5.66), we have

ξ ih
n  ≈ ξ i

n  e hn kiλ , i = 1(1)k. (5.68)

For a consistent method we have, ρ′(1) = σ(1). Hence, we get κ1 = 1 and (5.66) becomes
 ξ1h = 1 + hλ + O(| λ h |2). (5.69)

Definitions

The multistep method (5.39) is said to be
stable if | ξ i | < 1, i ≠ 1.
unstable if | ξ i | > 1 for some i or if there is a multiple root of ρ(ξ) = 0 of modulus
unity.
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weakly stable if ξ i’s are simple and if more than one of these roots have modulus
unity.
absolutely stable if | ξ ih | ≤ 1, λ < 0, i = 1(1) k.
relatively stable if | ξ ih | ≤ | ξ1h |, λ > 0, i = 2(1)k.
A-stable if the interval of absolute stability is (– ∞, 0).

To obtain the interval of absolute stability of a multistep method, we often use the
Routh-Hurwitz criterion.

5.6. SYSTEM OF DIFFERENTIAL EQUATIONS

The system of m equations in vector form may be written as

d
dx
y

 = f (x, y1, y2, ..., ym),

 y(0) = ηηηηη, (5.70)
where y = [y1 y2 ... ym]T, ηηηηη = [η1 η2 ... ηm]T,

f = 

f x y y y
f x y y y

f x y y y

m

m

m m

1 1 2

2 1 2

1 2

( , , ... )
( , , , ... )

............................
( , , , ...

,

)

�

�

�
�
�
�

�

�

�
�
�
�

.

The singlestep and multistep methods developed in Sections 5.2 and 5.3 can be directly
written for the system (5.70).

Taylor Series Method

We write (5.26) as

 yn+1 = yn + hy′n + 
h2

2 !
 y″n + ... + 

h
p

p

!
 yn

(p),

n = 0, 1, 2, ... N – 1, (5.71)

where yn
k( )  = [ y n

k
1,
( ) y n

k
2,
( ) ... ym n

k
,

( ) ]T.

Second order Runge-Kutta Method

The second order Runge-Kutta method (5.30) becomes

yn+1 = yn + 
1
2

 (K1 + K2), n = 0, 1, 2, ..., N – 1,

where  Kj = [K1j  K2j ..... Kmj ]
T ,  j = 1, 2.

and  Ki1 = hfi (xn, y1, n, y2, n ..., ym, n),

Ki2 = hfi(xn + h, y1, n + K11, y2, n + K21 , ..., ym, n + Km1).

   i = 1, 2, ..., m.

Fourth Order Runge-Kutta Method

The fourth order Runge-Kutta method (5.35) becomes

yn+1 = yn + 
1
6

 (K1 + 2K2 + 2K3 + K4),

n = 0, 1, 2, ..., N – 1, (5.72)
where Kj = [K1 j  K2 j ... Kmj]

T,  j = 1, 2, 3, 4,
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and  Ki1 = hfi (xn, y1, n  y2, n , ... , ym, n )

 Ki2 = hfi x
h

y K y K y Kn n n m n m+ + + +�
	


�
�
2

1
2

1
2

1
21 11 2, 21 1, , , ... ,, ,

Ki 3 = hfi x
h

y K y K y Kn n n m n m+ + + +�
	


�
�
2

1
2

1
2

1
21 12 2, 22 2, , , ... ,, , ,

Ki 4 = h fi (xn + h, y1, n + K13, y2, n + K23, ..., ym, n + Km3)
 i = 1, 2, ..., m.

Stability Analysis

The stability of the numerical methods for the system of first order differential equa-
tions is discussed by applying the numerical methods to the homogeneous locally linearized
form of the equation (5.70). Assuming that the functions fi have continuous partial derivatives
(∂fi / ∂yk) = aik and A denotes the m × m matrix (aik), we may, to terms of first order, write (5.70)
as

 
d
dx
y

 = Ay (5.73)

where A is assumed to be a constant matrix with distinct eigenvalues λi, i = 1(1)n. The analytic
solution y(x) of (5.73) satisfying the initial conditions y(0) = ηηηηη is given by

 y(x) = exp (Ax) ηηηηη (5.74)
where exp (Ax) is defined as the matrix function

exp (Ax) = I + Ax + 
( )

!
Ax 2

2
 + ... (5.75)

and I is a unit matrix.
The transformation y = PZ, where P is the m × m non-singular matrix formed by the

eigenvectors corresponding to λ1, λ2, ..., λm, i.e.,
P = [y1 y2 ... ym],

transforms (5.73) into a decoupled system of equations
d
dx
Z

 = DZ (5.76)

where  D = 

λ
λ

λ

1

2

0

0
�

m

�

�

�
�
�

�

�

�
�
�
 .

Application of the Taylor series method (5.71) to (5.76) leads to an equation of the form
 vn+1 = E(Dh) vn (5.77)

where E(Dh) represents an approximation to exp (Dh). The matrix E(Dh) is a diagonal matrix
and each of its diagonal element Es(λs h), s = 1(1)m is an approximation to the diagonal element
exp (λs h), s = 1(1)m respectively, of the matrix exp (Dh). We therefore, have the important
result that the stability analysis of the Taylor series method (5.71) as applied to the differential
system (5.73) can be discussed by applying the Taylor series method (5.71) to the scalar equation

y′ = λs y (5.78)
where λs, s = 1(1)m are the eigenvalues of A. Thus, the Taylor series method (5.71) is absolutely
stable if |Es (λs h) | < 1, s = 1(1)m, where Re(λs) < 0 and Re is the real part of λs.
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Multistep Methods

The multistep method (5.39) for (5.70) may be written in the form

yn+1 = 
m

k

=
∑

1
 am yn–m+1 + h 

m

k

=
∑

0
 bm fn–m+1 (5.79)

where am’s and bm’s have the same values as in the case of the method (5.39).
The stability analysis can be discussed by applying the method  (5.79) to (5.73) or (5.78).

Boundary Value Problems

5.7 SHOOTING METHODS

Consider the numerical solution of the differential equation (5.7)
  – y″ + p(x) y′ + q(x) y = r(x),  a < x < b

subject to the boundary conditions (5.10)
a0 y(a) – a1 y′(a) = γ1,
b0 y(b) + b1 y′(b) = γ2, (5.80)

where a0, a1, b0, b1, γ1 and γ2 are constants such that
  a0 a1 ≥ 0, | a0 | + | a1 | ≠ 0,
 b0 b1 ≥ 0, | b0 | + | b1 | ≠ 0, and | a0 | + | b0 | ≠ 0.

The boundary value problem (5.7) subject to the boundary conditions (5.80) will have a
unique solution if the functions p(x), q(x) and r(x) are continuous on [a, b] and q(x) > 0.

To solve the differential equation (5.7) subject to (5.80) numerically, we first define the
function y(x) as

y(x) = φ0(x) + µ1φ1(x) + µ2 φ2(x) (5.81)
where µ1 and µ2 are arbitrary constants and φ’s are the solutions on [a, b] of the following
IVPs :

– φ0″  + p(x) φ′0 + q(x) φ0 = r(x),

 φ0(a) = 0, φ′0(a) = 0. (5.82)

 – φ1″  + p(x)φ′1 + q(x)φ1 = 0,

 φ1(a) = 1, φ′1(a) = 0. (5.83)

 – φ2″  + p(x)φ′2 + q(x)φ2 = 0,

 φ2(a) = 0, φ′2(a) = 1. (5.84)
The first condition in (5.80) will be satisfied by (5.81) if

a0µ1 – a1µ2 = γ1. (5.85)
The shooting method requires the solution of the three initial value problems (5.82),

(5.83) and (5.84).
Denoting φi(x) = w(i +1)(x) and φ′i (x) = v(i +1)(x), i = 0, 1, 2, the IVPs (5.82)-(5.84) can be

written as the following equivalent first order systems.

w
v

( )

( )

1

1
�
��

�
��
′
 = 

v
pv qw r

( )

( ) ( )

1

1 1+ −
�
��

�
��
 ,  

w
v

( )

( )
( )
( )

1

1
0
0

�
��

�
��
 = 

0
0
�
��
�
�� , (5.86)

 
w
v

( )

( )

2

2
�
��

�
��

′
 = 

v
pv qw

( )

( ) ( )

2

2 2+
�
��

�
��  ,  

w
v

( )

( )
( )
( )

2

2
0
0

�
��

�
��
 = 

1
0
�
��
�
�� , (5.87)
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w
v

(

(

3)

3)
�
��

�
��

′
 = 

v
pv qw

(

( (

3)

3) 3)+
�
��

�
��  ,  

w
v

(

(
( )
( )

3)

3)
0
0

�
��

�
��  = 

0
1
�
��
�
�� , (5.88)

respectively.
Now, any of the numerical methods discussed in Sections 5.2 and 5.3 can be applied to

solve (5.86), (5.87) and (5.88). We denote the numerical solutions of (5.86), (5.87) and (5.88) by

wi
( )1 , vi

( )1  ; vi
( )2 , wi

( )2  ; wi
(3), vi

(3)  ;  i = 0, 1, ..., N (5.89)

respectively.
The solution (5.81) at x = b gives

y(b) = wN
( )1  + µ1wN

( )2  + µ2 wN
(3) , (5.90)

y′(b) = vN
( )1  + µ1vN

( )2  + µ2 vN
(3) . (5.91)

Substituting (5.90) and (5.91) into the second condition in (5.80) we obtain

(b0wN
( )2  + b1vN

( )2 ) µ1 + (b0wN
(3) + b1vN

(3) ) µ2 = γ2 – (b0wN
( )1  + b1vN

( )1 ). (5.92)

We can determine µ1 and µ2 from (5.85) and (5.92).
Thus, the numerical solution of the boundary value problem is given by

y(xi) = wi
( )1  + µ1wi

( )2  + µ2 wi
(3),  i = 1(1)N – 1 (5.93)

Alternative

When the boundary value problem in nonhomogeneous, then it is sufficient to solve the
two initial value problems

– φ1″  + p(x) φ′1 + q(x) φ1 = r(x), ...[5.94 (i)]

– φ2″  + p(x) φ′2 + q(x) φ2 = r(x) ...[5.94 (ii)]

with suitable initial conditions at x = a.
We write the general solution of the boundary value problem in the form

y(x) = λφ1(x) + (1 – λ) φ2(x) (5.95)
and determine λ so that the boundary condition at the other end, that is, at x = b is satisfied.

We solve the inital value problems [5.94 (i)],[5.94 (ii)] upto x = b using the initial
conditions.

(i) Boundary conditions of the first kind :
     φ1(a) = γ1, φ′1(a) = 0,

  φ2(a) = γ1, φ′2(a) = 1.
From (5.95), we obtain

y(b) = γ2 = λ φ1(b) + (1 – λ) φ2(b),

which gives λ = 
γ φ

φ φ
2 2

1 2

−
−

( )
( ) ( )

b
b b

 ,  φ1(b) ≠ φ2(b). (5.96)

(ii) Boundary conditions of the second kind :
 φ1(a) = 0, φ′1(a) = γ1
  φ2(a) = 1, φ′2(a) = γ1.
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From (5.95), we obtain
y′(b) = γ2 = λ φ′1(b) + (1 – λ) φ′2(b).

which gives λ = 
γ φ

φ φ
2 2

1 2

− ′
′ − ′

( )
( ) ( )

b
b b

 ,  φ′1(b) ≠ φ′2(b). (5.97)

(iii) Boundary conditions third kind :
 φ1(a) = 0, φ′1(a) = – γ1 / a1,
 φ2(a) = 1, φ′2(a) = (a0 – γ1) / a1.

From (5.95), we obtain
 y(b) = λφ1(b) + (1 – λ) φ′1(b),
y′(b) = λ φ′2(b) + (1 – λ) φ′2(b).

Substituting in the second condition, b0 y(b) + b1 y′(b) = γ2, in (5.10), we get
γ2 = b0[λ φ1(b) + (1 – λ) φ2(b)] + b1 [λ φ′1(b) + (1 – λ) φ′2(b)]

which gives

λ = 
γ φ φ

φ φ φ φ
2 0 2 1 2

0 1 1 1 0 2 1 2

− + ′
+ ′ − + ′

[ ( ) ( )]
[ ( ) ( )] [ ( ) ( )]

b b b b
b b b b b b b b

(5.98)

The results obtained are identical in both the approaches.

Nonlinear Second Order Differential Equations

We now consider the nonlinear differential equation
y″ = f (x, y, y′),  a < x < b

subject to one of the boundary conditions (5.8) to (5.10). Since the differential equation is non
linear, we cannot write the solution in the form (5.81) or (5.95).

Depending on the boundary conditions, we proceed as follows :
Boundary condition of the first kind : We have the boundary conditions as

y(a) = γ1 and y(b) = γ2.
We assume y′(a) = s and solve the initial value problem

y″ = f (x, y, y′),
y(a) = γ1, y′(a) = s (5.99)

upto x = b using any numerical method. The solution, y(b, s) of the initial value problem (5.99)
should satisfy the boundary condition at x = b. Let

φ (s) = y(b, s) – γ2. (5.100)
Hence, the problem is to find s, such that φ(s) = 0.
Boundary condition of the second kind : We have the boundary conditions as

y′(a) = γ1 and y′(b) = γ2.
We assume y(a) = s and solve the initial value problem

y″ = f (x, y, y′),
 y(a) = s, y′(a) = γ1, (5.101)

upto x = b using any numerical method. The solution y(b, s) of the initial value problem (5.101)
should satisfy the boundary condition at x = b. Let

φ(s) = y′(b, s) – γ2. (5.102)
Hence, the problem is to find s, such that φ(s) = 0.
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Boundary condition of the third kind : We have the boundary conditions as
a0 y(a) – a1 y′(a) = γ1
b0 y(b) + b1 y′(b) = γ2.

Here, we can assume the value of y(a) or y′(a).
Let y′(a) = s. Then, from

a0 y(a) – a1 y′(a) = γ1, we get  y(a) = (a1s + γ1) / a0.
We now solve the initial value problem

y″ = f (x, y, y′),
y(a) = (a1s + γ1) / a0, y′(a) = s, (5.103)

upto x = b using any numerical method. The solution y(b, s) of the initial value problem (5.103)
should satisfy the boundary condition at x = b. Let

φ(s) = b0 y(b, s) + b1 y′(b, s) – γ2. (5.104)
Hence, the problem is to find s, such that φ(s) = 0.
The function φ(s) in (5.100) or (5.102) or (5.104) is a nonlinear function in s. We solve the

equation
φ(s) = 0 (5.105)

by using any iterative method discussed in Chapter 1.

Secant Method

The iteration method for solving φ(s) = 0 is given by

  s(k+1) = s(k) – 
s s
s s

k k

k k

( ) ( )

( ) ( )( ) ( )
−
−

�
�
�

�
�
�

−

−

1

1φ φ  φ(s(k)),  k = 1, 2, (5.106)

which s(0) and s(1) are two initial approximations to s. We solve the initial value problem (5.99)
or (5.101) or (5.103) with two guess values of s and keep iterating till

| φ(s(k+1)) | < (given error tolerance).

Newton-Raphson Method

The iteration method for solving φ(s) = 0 is given by

s(k+1) = s(k) – 
φ
φ

( )
( )

( )

( )

s
s

k

k′
 ,  k = 0, 1, ..... (5.107)

where s(0) is some initial approximation to s.
To determine φ′(s(k)), we proceed as follows :

Denote  ys = y(x, s), y′s = y′(x, s), ys″  = y″(x, s).

Then, we can write (5.103) as

 ys″  = f (x, ys , y′s), ...[5.108 (i)]
ys(a) = (a1s + γ1) / a0, y′s(a) = s. ...[(5.108 (ii)]

Differentiating [5.108 (i)] partially with respect to s, we get
∂
∂s

ys( )″  = 
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

f
x

x
s

f
y

y
s

f
y

y
ss

s

s

s+ +
′

′

= 
∂
∂

∂
∂

∂
∂

∂
∂

f
y

y
s

f
y

y
ss

s

s

s+
′

′
(5.109)

since x is independent of s.
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Differentiating [5.108 (ii)] partially with respect to s, we get

 
∂
∂s

 [ys(a)] = 
a
a

1

0
 , 

∂
∂s

 [y′s (a)] = 1.

Let v = 
∂
∂
y
s
s  . Then,we have

 v′ = 
∂
∂
v
x

 = 
∂

∂x
 

∂
∂
y
s
s�

��
�
��  = 

∂
∂s

 
∂
∂
y
x
s�

��
�
��  = 

∂
∂s

 (y′s)

v″ = 
∂
∂
v
x
′

 = 
∂

∂x
 

∂
∂

∂
∂s
y
x
s�

	

�
�


�
��

�
��
 = 

∂
∂s

 
∂
∂

∂
∂

2

2
y

x s
s�

�
�
�

�
�
�
�

=  ( ys″ ).

From (5.108) and (5.109), we obtain

v″ = 
∂
∂

f
ys

 (x, ys , y′s) v + 
∂

∂
f

ys′
 (x, ys , y′s) v′ ...[5.111 (i)]

v(a) = a1 / a0, v′(a) = 1. ...[5.111 (ii)]
The differential equation [5.111 (i)] is called the first variational equation. It can be

solved step by step along with (5.108), that is, (5.108) and (5.111) can be solved to gether as a
single system. When the computation of one cycle is completed, v(b) and v′(b) are available.

Now, from (5.104), at x = b, we have
d
ds
φ

 = b0 
∂
∂
y
s
s  + b1 

∂
∂
y
s
s′  = b0 v(b) + b1v′(b). (5.112)

Thus, we have the value of φ′(s(k)) to be used in (5.107).
If the boundary conditions of the first kind are given, then we have

a0 = 1, a1 = 0, b0 = 1, b1 = 0 and φ(s) = ys(b) = γ2.
The initial conditions (5.110), on v become

v(a) = 0, v′(a) = 1.
Then, we have from (5.112)

d
ds
φ

 = v(b). (5.113)

5.8 FINITE DIFFERENCE METHODS

Let the interval [a, b] be divided into N + 1 subintervals, such that
 xj = a + jh, j = 0, 1, ..., N + 1,

where x0 = a, xN+1 = b and h = (b – a) / (N + 1).

Linear Second Order Differential Equations

We consider the linear second order differential equation
– y″ + p(x)y′ + q(x)y = r(x) (5.114)

subject to the boundary conditions of the first kind
y(a) = γ1, y(b) = γ2. (5.115)

Using the second order finite difference approximations

 y′(xj ) ≈ 
1

2h
 [yj+1 – yj–1],

 y″(xj ) ≈ 1
2h

 [yj+1 – 2yj + yj–1],

at x = xj, we obtain the difference equation



8-\N-NUM\NU-5-2

Numerical Solution of Ordinary Differential Equations 293

– 
1
2h

 (yj+1 – 2yj + yj–1) + 
1

2h
 (yj+1 – yj–1) p(xj) + q(xj) yj = r(xj), (5.116)

j = 1, 2, ..., N.
The boundary conditions (5.115) become

 y0 = γ1, yN+1 = γ2.
Multiplying (5.116) by h2 / 2, we obtain

Aj yj–1 + Bj yj + Cj yj+1 = 
h2

2
 r(xj),   j = 1, 2, ..., N (5.117)

where Aj = – 
1
2

 1
2

1
2

2

+�	

�
�
 = +

�
	


�
�


h
p x B

h
q x Cj j j j( ) , ( ) ,  = – 

1
2

 1
2

−�	

�
�


h
p x j( ) .

The system (5.117) in matrix notation, after incorporating the boundary conditions,
becomes

A y = b
where        y = [y1, y2, ....., yN]T

b = 
h2

2
 r x

A
h

r x r x r x
C

h
N n

n
T

( ) , ( ), ..... , ( ), ( )1
1 1
2 2 1

2
2

2 2
− −�

��
�
��−

γ γ
,

 A = 

B C
A B C

A B C
A B

N N N

N N

1 1

2 2 2

1 1 1

0

0

... ... .. ..
− − −

�

�

�
�
�
�
�

�

�

�
�
�
�
�

The solution of this system of linear equations gives the finite difference solution of the
differential equation (5.114) satisfying the boundary conditions (5.115).

Local Truncation Error

The local truncation error of (5.117) is defined by

Tj = Aj y(xj–1) + Bj y(xj) + Cj y(xj+1) – 
h2

2
 r (xj)

Expanding each term on the right hand side Taylor’s series about xj, we get

Tj = – 
h4

24
[y(4)(ξ1) – 2p(xj) y

(3)(ξ2)],   j = 1, 2, ..., N

where  xj–1 < ξ1 < xj+1 and xj–1 < ξ2 < xj+1.
The largest value of p for which the relation

  Tj = 0 (hp+2)
holds is called the order of the difference method. (5.118)

Therefore, the method (5.116) is of second order.

Derivative Boundary Conditons

We now consider the boundary conditions
a0 y(a) – a1 y′(a) = γ1,
b0 y(b) + b1 y′(b) = γ2. (5.119)
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The  difference equation (5.116) at the internal nodes, j = 1, 2, ..., N gives N equations in
N + 2 unknowns. We obtain two more equations using the boundary conditions (5.119). We
obtain the second order approximations for the boundary conditons as follows.

(i) At x = x0 : a0 y0 – 
a
h
1

2
[y1 – y–1] = γ1,

or  y–1 = – 2 20

1
0 1

1

ha
a

y y
h

a
+ + γ1. (5.120)

At  x = xN+1 : b0 yN+1 + 
b
h
1

2
 [yN+2 – yN] = γ2,

or yN+2 = yN – 
2 20

1
1

1

hb
b

y
h

bN + +  γ2. (5.121)

The values y–1 and yN+2 can be eliminated by assuming that the difference equation
(5.116) holds also for j = 0 and N + 1, that is, at the boundary points x0 and xN+1. Substituting the
values of y–1 and yN+1 from (5.120) and (5.121) into the equations (5.116) for j = 0 and  j = N + 1,
we obtain two more equations.

(ii) At x = x0 :  a0 y0 – 
a
h
1

2
 (– 3y0 + 4y1 – y2) = γ1,

or  (2ha0 + 3a1) y0 – 4a1 y1 + a1 y2 = 2hγ1. (5.122)

At x = xN+1 : b0 yN+1 + 
b
h
1

2
 (3yN+1 – 4yN + yN–1) = γ2

or b1 yN–1 – 4b1 yN + (2hb0 + 3b1)yN+1 = 2h γ2. (5.123)

Fourth Order Method when y′′′′′ is Absent in (5.114)

Consider the differential equation
 – y″ + q(x)y = r(x), a < x < b (5.124)

subject to the boundary conditions of the first kind
y(a) = γ1, y(b) = γ2. (5.125)

We write the differential equation as
y″ = q(x)y – r(x) = f (x, y). (5.126)

A fourth order difference approximation for (5.126) is obtained as

 yj–1 – 2yj + yj+1 = 
h

y y yj j j

2

1 112
10( − +″ + ″ + ″ ),  j = 1, 2, ..., N, (5.127)

which is also called the Numeröv method.
We can also write the method as

1
12

2
5

6
1

12 12

2

1 1

2 2

1 1

2

−
�
�
�

�
�
� − +

�
�
�

�
�
� + −

�
�
�

�
�
� = −− − + +

h
q y

h
q y

h
q y

h
j j j j j j  [rj–1 + 10rj + rj+1],

(5128)
where ri = r(xi), qi = q(xi), i = j – 1, j, j + 1.

The truncation error associated with (5.127) is given by

Tj = – 
h

y
6

6

240
( ) ( )ξ , xj–1 < ξ < xj+1.
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Derivative boundary conditions (5.119)

Fourth order approximations to the boundary conditions
a0 y(a) – a1 y′(a) = γ1, ...[5.129(i)]

  b0 y(b) + b1 y′(b) = γ2 ...[5.129(ii)]
are given as follows.

At x = x0 : y1 = y0 + h y
h

y y0

2

0 1/26
2′ + ″ + ″[ ] (5.130)

where y1 / 2 = y0 + 
h

y
h

y
2 80

2

0′ + ″ .

Solving (5.130) for y0′ , we get

 y0′  = 
1

6
21 0 0 1/2h

y y
h

y y( ) (− − ″ + ″ ).

Substituting in [5.129(i)], we get an O(h4) approximation valid at x = a as
1

6
21 0 0 1/2h

y y
h

y y( ) [− − ″ + ″ ] = 
1

1a
(a0y0 – γ1). (5.131)

At x = xN : yN = yN+1 – h yN +′ 1  + 
h

y yN N

2

1/2 16
2[ + +″ + ″ ] (5.132)

where yN+1 / 2
 = y

h
y

h
yN N N+ ′ + ″

2 8

2

 .

Solving (5.132) for yN +′ 1 , we obtain

y
hN +′ =1
1

 (yN+1 – yN) + 
h

y yN N6
2 1/2 1[ ]+ +″ + ″ .

Substituting in [5.129(ii)], we get an O(h4) aproximation valid at x = b as

1
6

21 1/2 1h
y y

h
y yN N N N( ) (+ + +− + ″ + ″ ) = 

1

1b
(γ2 – b0 yN+1). (5.133)

Nonlinear Second Order Differential Equation y″ = f(x, y)

We consider the nonlinear second order differential equation
y″ = f (x, y) (5.134)

subject to the boundary conditions (5.119).
Substituting

 yj″ = 
1
2h

(yj+1 – 2yj + yj–1)

in (5.134), we obtain
yj+1 – 2yj + yj–1 = h2 f (xj, yj),  j = 1, 2, ..., N (5.135)

with the truncation error

TE = 
h4

12
yiv(ξ),  xj–1 < ξ < xj+1.
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The system of equations (5.135) contains N equations in N + 2 unknowns. Two more
equations are obtained by using suitable difference approximations to the boundary conditions.

The difference approximations (5.120), (5.121) or (5.122), (5.123) at x = a and x = b can
be used to obtain the two required equations. The totality of equations (5.135), (5.120), (5.121)
or (5.135), (5.122), (5.123) are of second arder.

We write the Numeröv method for the solution of (5.134) as

 yj+1 – 2yj + yj–1 = 
h2

12
 [fj+1 + 10 fj + fj–1] (5.136)

which is of fourth order, that is, TE = O(h6).
Suitable approximations to the boundary conditions can be written as follows :

At x = x0 :  hy0′ = y1 – y0 – 
h2

6
 [2f (x0, y0) + f (x1, y1)] (5.137)

At x = xN+1 : hy′n+1 = yN+1 – yN + 
h2

6
 [f (xN, yN) + 2f (xN+1, yN+1)] (5.138)

The truncation error in (5.137) and (5.138) is O(h4).
Substituting in (5.119), we obtain the difference equations corresponding to the bound-

ary conditions at x = x0 and x = xN+1 respectively as

(ha0 + a1) y0 – a1 y1 + 
a h1

2

6
 (2f0 + f1) = hγ1 (5.139)

hb0 yN+1 + b1(yN+1 – yN) + 
b h1

2

6
 (fN + 2fN+1) = hγ2. (5.140)

Alternately, we can use the O(h4) difference approximations (5.131) and (5.133) at the
boundary points x = a and x = b.

The difference approximations discussed above produce a system of (N + 2) nonlinear
equations in (N + 2) unknowns.

This system of nonlinear equations can be solved by using any iteration method.

5.9 PROBLEMS AND SOLUTIONS

Difference Equations

5.1 Solve the difference equation
yn+1 – 2 sin x yn + yn–1 = 0

when y0 = 0 and y1 = cos x. (Lund Univ., Sweden, BIT 9(1969), 294)
Solution
Substituting yn = A ξn, we obtain the characteristic equation as

  ξ2 – 2(sin x)ξ + 1 = 0
whose roots are ξ1 = – ieix = sin x – i cos x, ξ2 = ie–ix = sin x + i cos x.
The general solution is given by

yn = C1in e–inx + C2(– 1)nin einx.
The initial conditions give

C1 + C2 = 0,
C1ie

–ix – C2ie
ix = cos x,



8-\N-NUM\NU-5-2

Numerical Solution of Ordinary Differential Equations 297

or i(C1 – C2) cos x – (C1 + C2) i sin x] = cos x.
We get C1 – C2 = 1 / i and C1 + C2 = 0, whose solution is

C1 = 1 / (2i), C2 = – 1 / (2i).
The general solution becomes

yn = 
( )i n+1

2
 [(– 1)n einx – e–inx].

5.2 Find yn from the difference equation

∆2 yn+1 + 
1
2

∆2 yn = 0, n = 0, 1, 2, ...

when y0 = 0, y1 = 1 / 2, y2 = 1 / 4.
Is this method numerically stable ? (Gothenburg Univ., Sweden, BIT 7(1967), 81)
Solution
The difference equation may be written in the form

yn+3 – 
3
2

1
22y yn n+ +  = 0.

The characteristic polynomial

ξ3  – 
3
2

1
2

02ξ + =

has the roots 1, 1, –1 / 2. The general solution becomes

 yn = C1 + C2 n + C3 −�	

�
�


1
2

n

.

The initial conditions lead to the following equations
C1 + C3 = 0,

 C1 + C2 – 
1
2

1
23C = ,

C1 + 2C2 + 
1
4

1
43C = ,

which give C1 = 1 / 3, C2 = 0, C3 = – 1 / 3.
Hence, the solution is

yn = 
1
3

1 1
1

2
1+ −�

��
�
��

+( )n
n .

The characteristic equation does not satisfy the root condition (since 1 is a double root)
and hence the difference equation is unstable.

5.3 Show that all solutions of the difference equation
yn+1 – 2λ yn + yn–1 = 0

are bounded, when n → ∞ if – 1 < λ < 1, while for all complex values of λ there is atleast
one unbounded solution. (Stockholm Univ., Sweden, BIT 4(1964), 261)
Solution
The characteristic equation

ξ2 – 2λ ξ  + 1 = 0

has the roots ξ = λ ± λ2 1− .

The product of roots satisfies the equation ξ1ξ2 = 1.
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The general solution is given by

yn = C1ξ ξ1 2 2
n nC+ .

Now, | yn | is bounded if | ξ1 | ≤ 1 and | ξ2 | ≤ 1.
For λ real and | λ | < 1, ξ is a complex pair given by

ξ1, 2 = λ ± i 1 2− λ

and | ξ1, 2 | = 1. Hence, both the solutions are bounded.
For complex values of  λ, ξ is also complex, but they do not form a complex pair. However,

| ξ1 | | ξ2 | = 1.
Hence, either | ξ1 | > 1, | ξ2 | < 1 or | ξ1 | < 1, | ξ2 | > 1 while satisfying the above
equation. Hence, there is one unbounded solution.

5.4 (i) Each term in the sequence 0, 1, 1 / 2, 3 / 4, 5 / 8, ..., is equal to the arithmetic mean of
the two preceeding terms. Find the general term.

(ii) Find the general solution of the recurrence relation
yn+2 + 2b yn+1 + c yn = 0

where b and c are real constants.
Show that solutions tend to zero as n → ∞, if and only if, the point (b, c) lies in the
interior of a certain region in the b-c plane, and determine this region.
Solution
(i) If y0, y1, ..., yn is the sequence, then we have

yn+2 = 
1
2

(yn+1 + yn), or 2yn+2 = yn+1 + yn

which is a second order difference equation with initial conditions
y0 = 0, y1 = 1.

The characteristic equation is
 2ξ2 – ξ – 1 = 0

whose roots are 1, – 1 / 2.
The general solution becomes

yn = C1 + C2 −�	

�
�


1
2

n

Using the initial conditions, we obtain C1 = 2 / 3, C2 = – 2 / 3.
Hence, the general term becomes

yn = 
2
3

1
1
2

− −�	

�
�


�

�
�
�

�

�
�
�

n

.

(ii) The characteristic equation of the given difference equation is
 ξ2 + 2bξ + c = 0

whose roots are   ξ = – b ± b c2 − .
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The general solution of the difference equation is given
by

yn = C1ξ ξ1 2 2
n nC+ .

Now,  yn → 0  as  n → ∞  if  and  only if | ξ1 | < 1 and
| ξ2 | < 1.
Substituting ξ = (1 + z) / (1 – z), we get the transformed
characteristic equation as

(1 – 2b + c)z2 + 2(1 – c)z + 1 + 2b + c = 0.
The Routh-Hurwitz criterion requires that

1 – 2b + c ≥ 0, 1 – c ≥ 0, and 1 + 2b + c ≥ 0.
Therefore, | ξ i | < 1 and hence yn → 0 as n → ∞ if the
point (b, c) lies in the interior of the triangular region
of the b-c plane bounded by the straight lines

c = 1, 2b – 1 = c, 1 + 2b + c = 0
as shown in Fig. 5.2.

5.5 Solve the difference equation
∆2yn + 3∆yn – 4yn = n

2

with the initial conditions y0 = 0, y2 = 2. (Stockholm Univ., Sweden, BIT 7(1967), 247)
Solution
Substituting for the forward differences in the difference equation we obtain

yn+2 + yn+1 – 6yn = n2.
Substituting yn = A ξn in the homogeneous equation, we obtain the characteristic equa-
tion as

ξ2 + ξ – 6 = 0
whose roots are ξ1 = – 3 and ξ2 = 2.
The complementary solution may be written as

 yn
H( )

= C1(– 3)n + C2 2n.
To obtain the particular solution, we set

yn
P( )

 = an2 + bn + c
where a, b and c are constants to be determined.
Substituting in the difference equation, we get

 [a(n + 2)2 + b(n + 2) + c] + [a(n + 1)2 + b(n + 1) + c] – 6 [an2 + bn + c] = n2

or – 4an2 + (6a – 4b)n + (5a + 3b – 4c) = n2.
Comparing the coefficients of like powers of n, we obtain

– 4a = 1, 6a – 4b = 0, 5a + 3b – 4c = 0.
The solution is  a = – 1 / 4, b = – 3 / 8 and c = – 19 / 32.
The particular solution becomes

 yn
P( )

 = – 
1
4

 n2 – 
3
8

 n – 
19
32

.

Thus, the general solution of the difference equation takes the form

Fig. 5.2. Stability region
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yn = C1(– 3)n + C22
n – 

1
32

 (8n2 + 12n + 19).

The initial conditions y0 = 0, y2 = 2 yield the equations
C1 + C2 = 19 / 32,

9C1 + 4C2 = 139 / 32,
whose solution is C1 = 63 / 160, C2 = 32 / 160.
The general solution becomes

yn = 
1

160
 [63(– 3)n + 32(2)n – 40n2 – 60n – 95].

5.6 Find the general solution of the difference equation

yn+1 – 2yn = 
n
n2

. [Linköping Univ., Sweden, BIT 27 (1987), 438]

Solution
The characteristic equations is ξ – 2 = 0, which gives ξ = 2.
The complemetary solution is given by

yn = A 2n.
We assume the particular solution in the form

yn = 
n
n2

 A1 + B
n
1

2
.

Substituting in the difference equation we obtain

n
A

B n
A

B
n n n n
+

+ − −+ +
1

2 2
2

2
2
21 1

1
1 1

1  = 
n
n2

,

or  
n
n2

 −�	

�
�


3
2 1A  + 

1
2n  

1
2

3
21 1A B−�

	

�
�
  = 

n
n2

.

Comparing the coefficients of n / 2n and 1 / 2n, we get

 – 
3
2

 A1 = 1, 
1
2

 A1 – 
3
2

 B1 = 0,

which gives      A1 = – 2 / 3, B1 = – 2 / 9.
The particular solution becomes

yn = – 
2
3

2
9

n +�
	


�
�
  2

–n
.

Therefore, the general solution is given by

yn = A2n – 
2
3

2
9

n +�
	


�
�
  2

–n
.

5.7 A sequence of functions fn(x), n = 0, 1, ... defines a recursion formula
fn+1(x) = 2x fn(x) – fn–1(x),  | x | < 1
 f0(x) = 0, f1(x) = 1.

(a) Show that fn(x) is a polynomial and give the degree and leading coefficient.
(b) Show that

f x
T x

x
x

f x
T x

n

n

n

n

+

+

�
��

�
��

= −
�
��

�
��
�
��

�
��

1

1
2

1
1 1

( )
( )

( )
( )

where  Tn(x) = cos (n cos–1 x). (Univ. Stockholm, Sweden, BIT 24(1984), 716)
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Solution
The characteristic equation of the given recurrence formula is

 ξ2 – 2xξ + 1 = 0

with | x | < 1 and having the roots  ξ = x ± i 1 2− x .
We may write x = cos θ. Then, we obtain ξ = e± iθ.
The general solution becomes

fn(x) = A cos (nθ) + B sin (nθ).
Using the conditions f0(x) = 0 and f1(x) = 1, we obtain

 A = 0, B = 1 / sin θ.
Therefore, the general solution is given by

 fn(x) = 
sin ( )

sin
nθ
θ .

(a) We have

fn+1(x) = 
sin ( )

sin
n + 1 θ

θ  = 
sin ( ) cos

sin
cos ( ) sin

sin
n nθ θ

θ
θ θ

θ
+  = x fn(x) + Tn(x)

where  Tn(x) = cos (nθ) = cos (n cos–1 x).
Hence, f1(x) = x f0(x) + T0(x) = 1

f2(x) = x f1(x) + T1(x) = x + x = 2x
f3(x) = x f2(x) + T2(x) = x(2x) + (2x2 – 1) = 22 x2 – 1
f4(x) = x f3(x) + T3(x) = x(22 x2 – 1) + (4x3 – 3x) = 23 x3 – 4x

... ... ... ...
Thus, fn(x) is a polynomial of degree n – 1 and its leading coefficient is 2n–1.
(b) We have

 cos (n + 1)θ = cos (nθ) cosθ – sin (nθ) sin θ,
or Tn+1(x) = xTn(x) – (1 – x2) fn(x).
We may now write

f x
T x

x
x x

f x
T x

n

n

n

n

+

+

�
��

�
��

= −
�
��

�
��
�
��

�
��

1

1
2

1
1

( )
( )

( )
( ) .

5.8 Consider the recursion formula
 yn+1 = yn–1 + 2hyn,

y0 = 1, y1 = 1 + h + h2 
1
2 6 24

2

+ +
�
	


�
�


h h
.

Show that yn – enh = O(h2) as h → 0, for nh = constant.
(Uppsala Univ., Sweden, BIT 14(1974), 482)

Solution
The characteristic equation is

ξ2 – 2hξ – 1 = 0,
whose roots are ξ1h = h + (1 + h2)1/2

= 1 + h + 
1
2

1
8

2h − h4 + O(h6)

= eh – 
1
6

1
1
6

3 4 3 4h O h e h O hh+ = − +�
	


�
�
( ) ( ) .
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 ξ2h = h – (1 + h2)1/2

= – 1
1
2

1
8

2 4 6− + − +�
	


�
�
h h h O h( )

= – e h O h e h O hh h− −+ +�
	


�
�
 = − + +�

	

�
�


1
6

1
1
6

3 4 3 4( ) ( ) .

The general solution is given by

yn = C1ξ ξ1 2 2h
n

h
nC+

where C1 and C2 are arbitrary constants to be determined using the initial conditions.
Satisfying the initial conditions and solving for C1 and C2, we get

C1 = 
y h

h h

1 2

1 2

−
−

ξ
ξ ξ

 = 1 + 
1

12
h3 + O(h4).

C2 = 
ξ
ξ ξ

1 1

1 2

h

h h

y−
−

 = – 
1

12
3h  + O(h4).

Substituting for C1 and C2 into the general solution, we have

yn = 1
1

12
1

1
6

1
12

3 4 2 4+ +�
	


�
�
 − +�

	

�
�
 +h O h e x h O hx

n
n( ) ( )  (– 1) n–1 h3e xn−  + O(h4)

 = e x h ex
n

xn n− 1
6

2  + O(h3)

where  xn = nh.
Hence, we obtain

 yn – exn  = O(h2).

5.9 The linear triangular system of equations

2 1
1 2 1

1 2 1

1 2 1
1 2

0 001
0 002
0 003

0 998
0 999

−
− −

− −

− −
−

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

=

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

0

0

x
� � � �

.

.

.

.

.
can be associated with the difference equations

 – xn–1 + 2xn – xn+1 = 
n

1000
, n = 1(1)999,

x0 = 0, x1000 = 0.
Solve the system by solving the difference equation.

(Lund Univ., Sweden, BIT 20(1980), 529)
Solution
The characteristic equation of the difference equation is

– ξ2 + 2ξ – 1 = 0
whose roots are 1, 1.
The complementary solution is given by

xn
H( )  = C1 + C2n.
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Since, ξ = 1 is a double root of the characteristic equation, we assume

 xn
P( )  = C3 n2 + C4 n3

where the constants C3 and C4 are to be determined.
Substituting in the difference equation, we get

C3 [– (n – 1)2 + 2n2 – (n + 1)2] + C4 [– (n – 1)3 + 2n3 – (n + 1)3] = 
n

1000

or – 2C3 – 6nC4 = 
n

1000
.

Comparing the coefficients of like powers of n, we obtain
C3 = 0, C4 = – 1/6000.

The general solution becomes

xn = C1 + C2 n – 
n3

6000
.

The constants C1 and C2 are determined by satisfying the boundary conditions. We get
C1 = 0, C2 = 1000 / 6.

Hence, we have the solution

xn = – 
1

6000
(n3 – 106 n), n = 1(1)999.

5.10 We want to solve the tridiagonal system Ax = b, where A is (N – 1) × (N – 1) and

 A = 

−
−

−

−
−

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

3 1
2 3 1

2 3 1

2 3 1
2 3

0

0

� � � , b = 

1
0
0

0
0

�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

State the difference equation which replaces the matrix formulation of the problem, and
find the solution. (Umea Univ., Sweden, BIT 24(1984), 398)
Solution
Assuming that x = [x1 x2 ... xN–1]

T, we get the difference equation
2xn–1 – 3xn + xn+1 = 0,  n = 1, 2, ..., N – 1.

For n = 1, the difference equation is 2x0 – 3x1 + x2 = 0.
To match the first equation – 3x1 + x2 = 1 in Ax = b, we set x0 = – 1 / 2. Similarly,
comparing the difference equation for n = N – 1 and the last equation in Ax = b, we set
xN = 0.
Hence, The boundary conditions are x0 = – 1 / 2, and xN = 0.
The characteristic equation of the difference equation is

ξ2 – 3ξ + 2 = 0
whose roots are ξ = 1, ξ = 2.
The general solution becomes

xn = C1 + C22
n

.
The boundary conditions give

C1 + C2 = – 1 / 2,
C1 + C22N = 0.
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The solution of this system is

C1 = – 
2

2 1

1N

N

−

−
, C2 = 

1

2 2 1( )N −
.

The general solution is given by

xn = 
2 2

2 1

1 1n N

N

− −−
−

.

5.11 Consider the recursion formula for vectors
T y(j+1) = y(j) + c,

 y(0) = a

where T = 

1 2
1 2

1 2
1 2

+ −
− + −

− + −
− +

�

�

�
�
�
�
�

�

�

�
�
�
�
�

s s
s s s

s s s
s s

0

0

...

Is the formula stable, i.e. is there any constant k such that | y(n) | < k for all n ≥ 0 ?
(Royal Inst. Tech., Stockholm, Sweden, BIT 19(1979), 425)

Solution
The matrix may be written as

T = I + s J

where J = 

2 1
1 2 1

1 2 1
1 2

−
− −

− −
−

�

�

�
�
�
�
�

�

�

�
�
�
�
�

0

0

� � �

The recursion formula may be written as
y(j+1) = Ay(j) + Ac, j = 0, 1, 2, ...

where  A = (I + sJ)–1.
Setting  j = 0, 1, 2, ..., n, we get

y(1) = Ay(0) + Ac,
y(2) = Ay(1) + Ac

= A2y(0) + (A + I)Ac,
.................................

y(n) = Any(0) + (An–1 + An–2 + ... + I)Ac
= Any(0) + (I – An)(I – A)–1 Ac

since, (I + A + A2 + ... + An–1)(I – A) = I – An and (I – A)–1 exists.
The method is stable if || A || < 1. We know that if λi is the eigenvalue of J, then the
eigenvalue µi of A is (1 + sλi)

–1, where

 λi = 4 sin2 
i
M
π

2
�
	


�
�
 ,   i (1) (M – 1).

Thus, we have

 µi = 
1

1 4 22+ s i Msin ( /( ))π
, i = 1(1)(M – 1).
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Hence, 0 < µi < 1, for s > 0.
For s < 0, we may also have 1 + 4s < – 1 and hence | µi | < 1.
This  condition  gives  s < – 1 / 2.  Hence, the method is stable for s < – 1 / 2 or s > 0.

Initial Value Problems

Taylor Series Method

5.12 The following IVP is given
 y′ = 2x + 3y, y(0) = 1.

(a) If the error in y(x) obtained from the first four terms of the Taylor series is to be less
than 5 × 10–5 after rounding, find x.

(b) Determine the number of terms in the Taylor series required to obtain results cor-
rect to 5 × 10–6 for x ≤ 0.4

(c) Use Taylor’s series second order method to get y(0.4) with step length h = 0.1.
Solution
(a) The analytic solution of the IVP is given by

y(x) = 
11
9

2
9

3e x − (3x + 1).

We have from the differential equation and the initial condition
y(0) = 1, y′(0) = 3, y″(0) = 11,

 y″′ (0) = 33, y iv(0) = 99.
Hence, the Taylor series method with the first four terms becomes

y(x) = 1 + 3x + 
11
2

11
2

2 3x x+ .

The remainder term is given by

 R4 = 
x

y
4

4

24
( ) (ξ).

Now | R4 | < 5 × 10–5 may be approximated by

 
x

e x
4

3

24
99  < 5 × 10–5,

or  x4e3x < 0.00001212, or x ≤ 0.056.
(This value of x can be obtained by applying the Newton-Raphson method on

   f (x) = x4e3x – 0.00001212 = 0).
Alternately, we may not use the exact solution. Writing one more term in the Taylor
series, we get

y(x) = 1 + 3x + 
11
2

11
2

33
8

2 3x x+ + x4.

Differentiating four times, we get  y(4)(x) = 99. We approximate max| y(4)(ξ) | = 99.
Hence, we get

  | R4 | = 
x

y
4

4

24
99
24

( ) ( )ξ ≤  x4

Now, 
99
24

 x4 < 5 × 10–5, gives x ≤ 0.059.
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(b) If we use the first p terms in the Taylor series method then we have

max
!

max
[ , ]0 0.4 0 0.4≤ ≤ ∈x

px
p ξ

 |  y(p)(ξ)| ≤ 5 × 10–6.

Substituting from the analytic solution we get

( . )
!

0 4 p

p
 (11) 3p–2 e1.2 ≤ 5 × 10–6 or p > 10.

Alternately, we may use the procedure as given in (a).
Writing p + 1 terms in the Taylor series, we get

y(x) = 1 + 3x + ... + 
( )

!
11 3 2p

p

−

 x p

Differentiating   p  times,  we  get  y(p)(x)  =  (11)3p–2.  We  approximate
   max  | y(p)(ξ) | = (11)3p–2.

Hence, we get

 max
| |

!0 0.4≤ ≤

�
�
�

�
�
�

x

px
p

 (11)3p–2 ≤ 5 × 10–6

or
( . )

!
0 4 p

p
 (11)3p–2 ≤ 5 × 10–6, which gives p ≥ 10.

(c) The second order Taylor series method is given by

 yn+1 = yn + h yn′  + 
h

yn

2

2
″ , n = 0, 1, 2, 3

We have  yn′  = 2xn + 2yn

yn″  = 2 + 3 yn′  = 2 + 3(2xn + 3yn) = 2 + 6xn + 9yn.
With h = 0.1, the solution is obtained as follows :

n = 0, x0 = 0 : y0 = 1

  y0′  = 2 × 0 + 3y0 = 3
 y0″  = 2 + 6 × 0 + 9 × 1 = 11,

 y1 = 1 + 0.1(3) + 
( . )0 1

2

2

 × 11 = 1.355.

n = 1, x1 = 0.1 : y1′  = 2 × 0.1 + 3(1.355) = 4.265.
 y1″  = 2 + 6 × 0.1 + 9(1.355) = 14.795.

y2 = y1 + h y1′  + 
1
2

2
1h y ″

 = 1.355 + 0.1(4.265) + 
( . )0 1

2

2

 (14.795) = 1.855475.

n = 2, x2 = 0.2 : y2′  = 2 × 0.2 + 3(1.855475) = 5.966425.
 y2″  = 2 + 6 × 0.2 + 9(1.855475) = 19.899275.

y3 = y2 + h y2′  + 
h

y
2

22
″

 = 1.855475 + 0.1(5.966425) + 
( . )0 1

2

2

 (19.899275) = 2.5516138.
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n = 3, x3 = 0.3 : y3′  = 2 × 0.3 + 3(2.5516138) = 8.2548414
 y3″  = 26.764524

y4 = 2.5516138 + 0.1(8.2548414) + 
( . )0 1

2

2

(26.764524)

 = 3.5109205.
Hence, the solution values are

 y(0.1) ≈ 1.355, y(0.2) ≈ 1.85548,
 y(0.3) ≈ 2.55161, y(0.4) ≈ 3.51092.

5.13 Compute an approximation to y(1), y′(1) and y″(1) with Taylor’s algorithm of order two
and steplength h = 1 when y(x) is the solution to the initial value problem

y′″  + 2y″ + y′ – y = cos x, 0 ≤ x ≤ 1, y(0) = 0, y′(0) = 1, y″(0) = 2.
(Uppsala Univ., Sweden, BIT 27(1987), 628)

Solution
The Taylor series method of order two is given by

y(x0 + h) = y(x0) + hy′(x0) + 
h2

2
y″(x0).

 y′(x0 + h) = y′(x0) + hy″(x0) + 
h2

2
 y″′ (x0).

y″(x0 + h) = y″(x0) + hy″′ (x0) + 
h2

2
y(4)(x0).

We have  y(0) = 0, y′(0) = 1, y″(0) = 2,
y″′ (0) = – 2 y″(0) – y′(0) + y(0) + 1 = – 4,

y(4)(0) = – 2 y″′ (0) – y″(0) + y′(0) = 7.
For h = 1, x0 = 0, we obtain

y(1) ≈ 2, y′(1) ≈ 1, y″(1) ≈ 3 / 2.
Alternately, we can use the vector form of the Taylor series method. Setting y = v1, we
write the given IVP as

v
v
v

v
v

x v v v

v
v
v

1

2

3

2

3

1 2 3

1

2

32
0

0
1
2

�

�
�
�
�

�
�
�

′

=
+ − −

�

�
�
�

�

�
�
�
�

�
�
�
�

�
�
� =

�

�
�
�
�

�
�
�cos

, ( )  ,

or       v′ = f (x, v), v(0) = [0 1 2]T.
where v = [v1 v2 v3]T.
The Taylor series method of second order gives

   v(1) = v(0) + h v′(0) + 
h2

2
 v″(0) = v(0) + v′(0) + 0.5 v″(0)

We have v(0) = [0 1 2]T

  v′(0) = 

v
v

x v v v

2

3

1 2 32
0

1
2
4cos

( )
+ − −

�

�
�
�

�

�
�
� =

−

�

�
�
�
�

�
�
�

 v″(0) = 
v
v

x v v v

2

3

1 2 32
0

2
4
7

′
′

− + ′ − ′ − ′

�

�
�
�

�

�
�
� = −

�

�
�
�
�

�
�
�sin

( )
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Hence, we obtain

         

v
v
v

y
y
y

1

2

3

1
1
1

1
1
1

0
1
2

1
2
4

5
2
4
7

2
1
5

( )
( )
( )

( )
( )
( )

�

�
�
�

�

�
�
� = ′

″

�

�
�
�

�

�
�
� =
�

�
�
�
�

�
�
� +

−

�

�
�
�
�

�
�
� + −

�

�
�
�
�

�
�
� =
�

�
�
�
�

�
�
�0.

1.

5.14 Apply Taylor series method of order p to the problem y′ = y, y(0) = 1 to show that

 | yn – y(xn) | ≤ 
h

p
x e

p

n
xn

( ) !+ 1
.

Solution
The p-th order Taylor series method for y′ = y is given by

yn+1 = 1
2

2

+ + + +
�
	


�
�


h
h h

p

p

!
...

!  yn = A yn, n = 0, 1, 2, ...

where A = 1 + h + 
h h

p

p2

2 !
...

!
+ + .

Setting n = 0, 1, 2, ..., we obtain the solution of this first order difference equation which
satisfies the initial condition, y(0) = y0 = 1, as

 yn = An = 1
2

2

+ + + +
�
	


�
�


h
h h

p

p n

!
...

!
.

The analytic solution of the initial value problem gives

y(xn) = exn .
Hence, we have

 y(xn) – yn = enh – 1
2

2

+ + + +
�
	


�
�


h
h h

p

p n

...
!

 ≤ n 
h
p

p+

+

1

1( ) !
 eθh e(n–1)h.

Since, nh = xn and 0 < θ < 1, we get

 | yn – y(xn) | ≤ 
h

p
x e

p

n
xn

( ) !+ 1
.

Runge-Kutta Methods

5.15 Given the equation
y′ = x + sin y

with y(0) = 1, show that it is sufficient to use Euler’s method with the step h = 0.2 to
compute y(0.2) with an error less than 0.05.

(Uppsala Univ., Sweden, BIT 11(1971), 125)
Solution
The value y(0.2) with step length h = 0.2 is the first value to be computed with the help
of the Euler method and so there is no question of propagation error contributing to the
numerical solution. The error involved will only be the local truncation error given by

| T1 | = 
1
2

h2 | y″(ξ) |, 0 < ξ < h.

Using the differential equation, we find
y″(ξ) = 1 + cos(y(ξ)) y′(ξ) = 1 + cos(y(ξ)) [ξ + sin (y(ξ))].
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We obtain   max
[ , ]ξ ∈ 0 0.2

 | y″(ξ) | ≤ 2.2.

Hence, we have

| T1 | ≤ 
1
2

 (0.2)2 2.2 = 0.044 < 0.05.

5.16 Consider the initial value problem
 y′ = x(y + x) – 2, y(0) = 2.

(a) Use Euler’s method with step sizes h = 0.3, h = 0.2 and h = 0.15 to compute ap-
proximations to y(0.6) (5 decimals).

(b) Improve the approximation in (a) to O(h3) by Richardson extrapolation.
(Linköping Inst. Tech., Sweden, BIT 27(1987), 438)

Solution
(a) The Euler method applied to the given problem gives

yn+1 = yn + h[xn(yn + xn) – 2], n = 0, 1, 2, ...
We have the following results.

h = 0.3 :
n = 0, x0 = 0 : y1 = y0 + 0.3[– 2] = 2 – 0.6 = 1.4.
n = 1, x1 = 0.3 : y2 = y1 + 0.3[0.3(y1 + 0.3) – 2] = 1.4 – 0.447 = 0.953.
h = 0.2 :
n = 0, x0 = 0 : y1 = y0 + 0.2[– 2] = 2 – 0.4 = 1.6.
n = 1, x1 = 0.2 : y2 = y1 + 0.2[0.2(y1 + 0.2) – 2] = 1.6 + 0.04(1.6 + 0.2) – 0.4 = 1.272.
n = 2, x2 = 0.4 : y3 = y2 + 0.2[0.4(y2 + 0.4) – 2]

 = 1.272 + 0.08(1.272 + 0.4) – 0.4 = 1.00576.
h = 0.15 :
n = 0, x0 = 0 : y1 = y0 + 0.15[– 2] = 2 – 0.3 = 1.7.
n = 1, x1 = 0.15 : y2 = y1 + 0.15[0.15(y1 + 0.15) – 2]

 = 1.7 + 0.0225(1.7 + 0.15) – 0.3 = 1.441625.
n = 2, x2 = 0.30 : y3 = y2 + 0.15[0.3(y2 + 0.3) – 2]

 = 1.441625 + 0.045(1.441625 + 0.3) – 0.3 = 1.219998.
n = 3, x3 = 0.45 : y4 = y3 + 0.15[0.45(y3 + 0.45) – 2]

 = 1.2199981 + 0.0675(1.6699988) – 0.3 = 1.032723.
(b) Since the Euler method is of first order, we may write the error expression in the

form
y(x, h) = y(x) + c1h + c2h

2 + c3h
3 + ...

We now have
  y(0.6, 0.3) = y(0.6) + 0.3c1 + 0.09c2 + O(h3).

y(0.6, 0.2) = y(0.6) + 0.2c1 + 0.04c2 + O(h3).
y(0.6, 0.15) = y(0.6) + 0.15c1 + 0.0225c2 + O(h3).

Eliminating c1, we get
 p = 0.2y(0.6, 0.3) – 0.3y(0.6, 0.2)

 = – 0.1y(0.6) + 0.006c2 + O(h3).
 q = 0.15y(0.6, 0.2) – 0.2y(0.6, 0.15)

 = – 0.05y(0.6) + 0.0015c2 + O(h3).
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Eliminating c2, we have
 0.0015 p – 0.006 q = 0.00015y(0.6) + O(h3).

Hence, the O(h3) result is obtained from

 y(0.6) ≈ 
0 0015 0 006

0 00015
. .

.
p q−

 = 10 p – 40 q.

From (a) we have
y(0.6, 0.3) = 0.953 ; y(0.6, 0.2) = 1.00576 ; and y(0.6, 0.15) = 1.03272.

Substituting these values, we get
p = – 0.111128, q = – 0.05568, and

 y(0.6) = 1.11592.

5.17 (a) Show  that  Euler’s  method  applied  to  y′ = λ y, y(0) = 1, λ < 0 is stable for step-sizes
– 2 < λ h < 0 (stability means that yn → 0 as n → ∞).

(b) Consider the following Euler method for y′ = f (x, y),
yn+1 = yn + p1hf (xn, yn)
yn+2 = yn+1 + p2hf (xn+1, yn+1), n = 0, 2, 4, ...

where p1, p2 > 0 and p1 + p2 = 2. Apply this method to the problem given in (a) and show
that this method is stable for

– 
2

1 2p p
 < λh < 0, if 1 – 

1

2
 < p1, p2 < 1 + 

1

2
.

(Linköping Univ., Sweden, BIT 14(1974), 366)
Solution
(a) Applying the Euler method on y′ = λ y, we obtain

yn+1 = (1 + λh) yn,  n = 0, 1, 2, ...
Setting n = 0, 1, 2, ..., we get

yn = (1 + λh)n y0.
The solution which satisfies the initial condition y0 = 1, is given by

yn = (1 + λh) n, n = 0, 1, 2, ...
The Euler method will be stable (in the sense yn → 0 as n → ∞) if

 | 1 + λh | < 1, λ < 0, or – 2 < λh < 0.
(b) The application of Euler’s method gives

yn+1 = (1 + p1hλ)yn
yn+2 = (1 + p2hλ)yn+1

or yn+2 = (1 + p1hλ)(1 + p2hλ)yn.
The characteristic equation of this difference equation is

 ξ2 = (1 + p1hλ)(1 + p2hλ).
The stability condition | ξ | < 1 is satisfied if (using the Routh-Hurwitz criterion)

(i) 1 – (1 + p1hλ)(1 + p2hλ) > 0,
and (ii) 1 + (1 + p1hλ)(1 + p2hλ) > 0.
The condition (i) is satisfied if

– 2hλ – p1 p2h2 λ2 > 0,

or  – hλ p1 p2 
2

1 2p p
h+

�
	


�
�


λ  > 0, or – 
2

1 2p p
 < hλ < 0.
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The condition (ii) is satisfied if

2 + 2hλ + p1 p2 h2λ2 > 0 or p p h
p p p p1 2

1 2

2

1 2

1
2

1λ +
�
	


�
�


+ −  > 0

A sufficient condition is

 2 – 
1

1 2p p
 > 0, or 2p1 p2 – 1 > 0.

Substituting p2 = 2 – p1, we have

2 p1
2  – 4p1 + 1 < 0, or (p1 – 1)2 – 

1
2

 < 0.

Similarly, we obtain

 (p2 – 1)2 – 
1
2

 < 0.

Hence, if follows

 1 – 
1

2
 < p1, p2 < 1 + 

1

2
.

5.18 (a) Give the exact solution of the IVP y′ = xy, y(0) = 1.
(b) Estimate the error at x = 1, when Euler’s method is used, with step size h = 0.01. Use

the error formula

 | y(xn) – y(xn ; h) | ≤ 
hM

L2
 [exp (xn – a) L – 1]

when  Euler’s  method  is  applied  to  the  problem y′ = f (x, y); y(x) = A, in a ≤ x ≤ b and
h = (b – a) / N, xn = a + nh and | ∂f / ∂y | ≤ L ; | y″(x) | ≤ M.

(Uppsala Univ., Sweden, BIT 25(1985), 428)
Solution
(a) Integrating the differential equation

1
y

dy
dx  = x

we obtain y = cex2 2/ .

The initial condition gives y(0) = c = 1.

The exact solution becomes y(x) = ex2 2/ .
(b) We have at x = 1,

 
∂
∂
f
y

 = | x | ≤ L = 1,

| y″(x) | = (1 + x2)ex2 2/ ≤ M = 3.297442,

| y(xn) – y(xn; h) | ≤ 
1
2

 [(0.01) 3.297442] (e – 1) = 0.0283297.

Hence, we obtain
 | y(xn) – y(xn; h) | ≤ 0.03.

5.19 Apply the Euler-Cauchy method with step length h to the problem
 y′ = – y, y(0) = 1.

(a) Determine an explicit expression for yn.
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(b) For which values of h is the sequence { }yn 0
∞  bounded ?

(c) Compute lim
h → 0

 {(y(x ; h) – e–x) / h2}.

Solution
Applying the Euler-Cauchy method

K1 = hf (xn, yn),
K2 = hf (xn + h, yn + K1),

yn + 1 = yn + 
1
2

(K1 + K2),

to y′ = – y, we obtain
 K1 = – hyn,
 K2 = – h(yn – hyn) = – h(1 – h)yn,

yn + 1 = 1
1
2

2− +�
	


�
�
h h  yn.

(a) The solution of the first order difference equation satisfying the initial condition
   y(0) = 1 is given by

 yn = 1
1
2

2− +�
	


�
�
h h

n

, n = 0, 1, 2, ......

(b) The sequence { }yn 0
∞  will remain bounded if and only if

 1
1
2

2− +h h  ≤ 1, or 0 < h ≤ 2.

(c) The analytic solution of the IVP gives y(xn) = e xn− .
We also have

 e–h = 1 – h + 
h2

2
 – 

h3

6
 e– θh ,  0 < θ < 1.

The solution  in (a) can be written as

 yn = 
e

h
O hh

n
− + +

�
	


�
�


3
4

6
( )  = e

h
O hh

n

− + +
�
	


�
�


�

�
�
�

�

�
�
�

1
6

3
4( )

= e–nh 1
6

3
4+ +

�
	


�
�


nh
O h( )  = e–nh + 

1
6

 xn e–nh h2 + O(h4).

Hence, at a fixed point xn = x, and h → 0, we obtain

lim
h → 0  

( ( ; ) )y x h e

h

x− −

2   = 
1
6

 x e–x.

5.20 Heun’s method with step size h for solving the differential equation
y′  = f (x, y), y(0) = c

can be written as
 K1 = h f (xn, yn),
K2 = h f (xn + h, yn + K1),

yn+ 1 = yn + 

1
2

 (K1 + K2).
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(a) Apply Heun’s method to the differential equation y′ = λ y, y(0) = 1. Show that
yn = [H(λh)]n

and state the function H. Give the asymptotic expression for yn – y(xn) when h → 0.
(b) Apply Heun’s method to the differential equation y′ = f (x), y(0) = 0 and find yn.

(Royal Inst. Tech., Stockholm, Sweden, BIT 26(1986), 540)
Solution
(a) We have  K1 = λh yn,

K2 = λh (yn + λh yn) = λh(1 + λh)yn ,

yn + 1 = yn + 
1
2

 [λhyn + λh (1 + λh) yn]

= 1
1
2

2+ +�
	


�
�
λ λh h( )  yn.

This is a first order difference equation. The general solution satisfying the initial con-
dition, y(0) = 1, is given by

yn = 1
1
2

2+ +�
	


�
�
λ λh h

n

( ) .

Therefore, we have

H(λh) = 1 + λh + 
1
2

 (λh)2.

The analytic solution of the test equation gives
 y(xn) = (eλh)n .

Hence, we may write yn in the form

yn = e h O hh
n

λ λ− +�
��

�
��

1
6

3 4( ) ( )  = eλ nh 1
1
6

3 4− +�
��

�
��

n h O h( ) ( )λ

= y(xn) – 
1
6

xn λ3 h2 e xnλ  + O(h4)

Therefore, the asymptotic expression for yn – y(xn) is given by

 lim
h → 0  

y y x

h
n n−�

	

�
�


�
��

�
��

( )
2  = – 

1
6

xn λ
3 e xnλ .

(b) The Heun method for y′ = f (x), becomes

yn = f x dx
xn

( )
0�  = T(h).

where  T(h) is the expression for the trapezoidal rule of integration.

5.21 Consider the following Runge-Kutta method for the differential equation y′ = f (x, y)

 yn + 1 = yn + 
1
6

 (K1 + 4K2 + K3),

 K1 = hf (xn, yn),

 K2 = hf x
h

y
K

n n+ +�
	


�
�
2 2

1, ,

 K3 = hf (xn + h, yn – K1 + 2K2).
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(a) Compute y(0.4) when

y′ = 
y x
y x

+
− , y(0) = 1

and h = 0.2. Round to five decimals.
(b) What is the result after one step of length h when y′ = – y, y (0) = 1.

(Lund Univ., Sweden, BIT 27(1987), 285)
Solution
(a) Using y0 = 1, h = 0.2, we obtain

 K1 = 0.2 
y x
y x

0 0

0 0

+
−

�
�
�

�
�
� = 0.2.

 K2 = 0.2 
y
y

0

0

0 1 0 1
0 1 0 1

+ +
+ −

�
�
�

�
�
�

. .

. .  = 0.24.

 K3 = 0.2 
y
y

0

0

0 2 0 48 0 2
0 2 0 48 0 2

− + +
− + −

�
�
�

�
�
�

. . .

. . .
 = 0.27407.

  y1 = 1 + 
1
6

 (0.2 + 0.96 + 0.27407) = 1.23901.

Now, using y1 = 1.23901, x1 = 0.2, we obtain

 K1 = 0.2 
y
y

1

1

0 2
0 2

+
−

�
	


�
�


.

.
 = 0.277.

 K2 = 0.2 
y
y

1

1

0 13850 0 3
0 13850 0 3

+ +
+ −

�
	


�
�


. .

. .
 = 0.31137.

 K3 = 0.2 
y
y

1

1

0 277 0 62274 0 4
0 277 0 62274 0 4

− + +
− + −

�
	


�
�


. . .

. . .
 = 0.33505.

  y2 = y1 + 
1
6

 (0.277 + 4 × 0.31137 + 0.33505) = 1.54860.

(b) For f (x, y) = – y, we get
 K1 = – hy0,

 K2 = – h y hy0 0
1
2

−�
	


�
�
  = − +�
	


�
�
h h

1
2

2 y0 ,

 K3 = – h y hy h h y0 0
2

02
1
2

+ + − +�
	


�
�


�
	


�
�

 = (– h + h2 – h3) y0,

y1 = y0 + 
1
6

 − + − +�
	


�
�
 + − + −

�
	


�
�
hy h h y h h h y0

2
0

2 3
04

1
2

( )

= 1
1
2

1
6

2 3
0− + −�

	

�
�
h h h y .

Therefore, y1 = 1
1
2

1
6

2 3− + −�
	


�
�
h h h  .
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5.22 Use the classical Runge-Kutta formula of fourth order to find the numerical solution at
x = 0.8 for

dy
dx

 = x y+ , y(0.4) = 0.41.

Assume the step length h = 0.2.
Solution
For n = 0 and h = 0.2, we have

x0 = 0.4, y0 = 0.41,
 K1 = hf (x0, y0) = 0.2 (0.4 + 0.41)1/2 = 0.18,

 K2 = hf x
h

y K0 0 12
1
2

+ +�
	


�
�
,  = 0.2 0 4 0 1 0 41

1
2

0 18
1/2

. . . ( . )+ + +�
��

�
��

 = 0.2,

 K3 = hf x
h

y K0 0 22
1
2

+ +�
	


�
�
,  = 0.2 0 4 0 1 0 41

1
2

0 2
1/2

. . . ( . )+ + +�
��

�
��

= 0.2009975,
 K4 = hf (x0 + h, y0 + K3) = 0.2 [0.4 + 0.2 + 0.41 + 0.2009975]1/2

= 0.2200907.

y1 = y0 + 
1
6

 (K1 + 2K2 + 2K3 + K4)

= 0.41 + 0.2003476 = 0.6103476.
For n = 1, x1 = 0.6, and y1 = 0.6103476, we obtain

K1 = 0.2200316, K2 = 0.2383580, K3 = 0.2391256, K4 = 0.2568636,
y2 = 0.6103476 + 0.2386436 = 0.8489913.

Hence, we have y(0.6) ≈ 0.61035, y(0.8) ≈ 0.84899.

5.23 Find the implicit Runge-Kutta method of the form
 yn + 1 = yn + W1 K1 + W2 K2,

 K1 = hf (yn),
 K2 = hf (yn + a(K1 + K2)),

for the initial value problem y′ = f (y), y(t0) = y0.
Obtain the interval of absolute stability for y′ = λ y, λ < 0.
Solution
Expanding K2 in Taylor series, we get

 K2 = hfn + ha(K1 + K2) fy + 
1
2

ha2 (K1
 + K2)

2 fyy

+ 
1
6

 ha3 (K1 + K2)
3 fyyy + ......

where  fy = ∂f (xn) / ∂y.
We assume the expression for K2 in the form

 K2 = hA1 + h2A2 + h3A3 + ....
Substituting for K2 and equating coefficients of like powers of h, we obtain

A1 = fn,
 A2 = 2a fn fy ,
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A3 = aA2 fy + 2a2 fyy fn
2  = 2a2 fn fy

2  + 2a2 fn
2 fyy ,

We also have

 y(xn + 1) = y(xn) + hy′(xn) + 
h2

2
y″ (xn) + 

h3

6
 y′″  (xn) + .......

where y′ = f,
 y″ = fy f,

y′″  = fyy f
2 + f y

2 f, ......

The truncation error in the Runge-Kutta method is given by
 Tn + 1 = yn + 1 – y(xn + 1)

= yn + W1h fn + W2 [hfn + h2 2afnfy

+ h3 (2a2fn f y
2  + 2a2 fn

2 fyy)] – [y(xn) + hfn

+ 
h2

2
 fy fn + 

h3

6
 (fyy fn

2  + fn f y
2 )] + O(h4).

To determine the three arbitrary constants a, W1 and W2, the necessary equations are
 W1 + W2 = 1,

 2W2 a = 1 / 2,
 2W2 a

2 = 1 / 6,
whose solution is a = 1 / 3, W2 = 3 / 4, W1 = 1 / 4.
The implicit Runge-Kutta method becomes

 K1 = hf (yn),

 K2 = hf y K Kn + +�
	


�
�


1
3 1 2( ) ,

 yn + 1 = yn + 
1
4

 (K1 + 3K2).

The truncation error is of the form O(h4)  and hence, the order of the method is three.
Applying the method to y′ = λ y, λ < 0, we get

 K1 = λh yn = h yn,

K2 = hλ y K Kn + +�
	


�
�


1
3 1 2( )   = h  y hy Kn n+ +�

	

�
�


1
3

1
3 2 .

Solving for K2, we get

K2 = 
h h

h
[ ( / )]

( / )
1 3

1 3
+

−  yn

where h  = hλ.

Therefore,  yn + 1 = yn + 
1
4 h yn + 

3
4
h

 1 3
1 3

+
−

�
�
�

�
�
�

( / )
( / )
h
h

 yn = 
1 2 3 6

1 3

2+ +
−

�
�
�

�
�
�

( / ) ( / )
( / )

h h
h

 yn

The characteristic equation is

ξ = 
1 2 3 6

1 3

2+ +
−

( / ) ( / )
( / )

h h
h

.
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For absolute stability we require | ξ | < 1. Hence, we have

– 1
3

−
�
	


�
�


h
 < 1 + 

2
3

h  + 
h 2

6
 < 1 – 

h
3

.

The right inequality gives

h  + 
h 2

6
 < 0 , or

h
6

 (6 + h ) < 0.

Since, h  < 0, we require 6 + h  > 0, which gives h  > – 6.
The left inequality gives

2 + 
h
3  + 

h 2

6  > 0

which is always satisfied for h  > – 6.

Hence, the interval of absolute stability is h  ∈ (– 6, 0).

5.24 Determine the interval of absolute stability of the implicit Runge-Kutta method

 yn + 1 = yn  + 
1
4

 (3K1 + K2),

K1 = hf x
h

y Kn n+ +�
	


�
�
3

1
3 1,

 K2 = hf (xn + h, yn + K1),
when applied to the test equation y′ = λ y, λ < 0.
Solution
Applying the method to the test equation we have

 K1 = hλ y Kn +�
	


�
�


1
3 1 ,

or  K1 = 
h
h1 3−

�
�
�

�
�
�

( / )
 yn, where h  = λh.

 K2 = hλ (yn + K1) = h  y
h
h

yn n+
−

�
�
�

�
�
�

1 3( / )
 = 

h h
h

+
−

�
�
�

�
�
�

( / )
( / )
2 3

1 3

2

yn

Therefore,   yn + 1 = 
1 2 3 6

1 3

2+ +
−

�
�
�

�
�
�

( / ) ( / )
( / )

h h
h

 yn.

The characteristic equation of themethod is same as in example 5.23. The interval of
absolute stability is (– 6, 0).

5.25 Using the implicit method
 yn + 1 = yn + K1,

 K1 = hf t
h

y Kn n+ +�
	


�
�
2

1
2 1, ,

find the solution of the initial value problem
y′ = t2 + y2, y(1) = 2,  1 ≤  t ≤ 1.2 with h = 0.1.
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Solution
We have f (t, y) = t2 + y2. Therefore,

 K1 = t
h

y
K

n n+�
	


�
�
 + +�

	

�
�


�

�
�
�

�

�
�
�2 2

2
1

2

.

We obtain the following results.
n = 0 : h = 0.1, t0 = 1, y0 = 2.

K1 = 0.1 [(1.05)2 + (2 + 0.5 K1)
2] = 0.51025 + 0.2 K1 + 0.025 K1

2.
This is an implicit equation in K1 and can be solved by using the Newton-Raphson method.
We have

  F (K1) = 0.51025 – 0.8 K1 + 0.025 K1
2 ,

F′ (K1) = – 0.8 + 0.05K1.

We assume K1
0( ) = h f (t0, y0) = 0.5. Using the Newton-Raphson method

 K s
1

1( )+  = K1
(s) – 

F K

F K

s

s

( )

( )

( )

( )
1

1′
, s = 0, 1, ......

We obtain K1
1( )  = 0.650322, K1

2( )  = 0.651059, K1
3)(   = 0.651059.

Therefore, K1 ≈ K1
3)(  = 0.651059 and y(1.1) ≈ y1 = 2.651059.

n = 1 : h = 0.1, t1 = 1.1, y1 = 2.65106
K1 = 0.1[(1.15)2 + (2.65106 + 0.5 K1)

2]

= 0.835062 + 0.265106 K1 + 0.025 K1
2

F (K1) = 0.835062 – 0.734894 K1 + 0.025 K1
2

F ′ (K1) = – 0.734894 + 0.05 K1.

We assume K1
0( ) = hf (t1, y1)  = 0.823811. Using the Newton-Raphson method, we get

 K1
1( )  = 1.17932, K1

2( )  = 1.18399, K1
3)(  = 1.18399.

Therefore, K1 ≈ K1
3)(  = 1.18399 and y(1.2) ≈ y2 = 3.83505.

5.26 Solve the initial value problem
 u′ = – 2tu2, u(0) = 1

with h = 0.2 on  the interval [0, 0.4]. Use the second order implicit Runge-Kutta method.
Solution
The second order implicit Runge-Kutta method is given by

uj + 1 = uj + K1,  j = 0, 1

 K1 = hf t
h

u Kj j+ +�
	


�
�
2

1
2 1,

which gives K1 = – h (2tj + h) u Kj +�
	


�
�


1
2 1

2

.

This is an implicit equation in K1 and can be solved by using an iterative method. We
generally use the Newton-Raphson method. We write

F (K1) = K1 + h(2tj + h) u Kj +�
	


�
�


1
2 1

2

 = K1 + 0.2 (2tj + 0.2) u Kj +�
	


�
�


1
2 1

2
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We have F ′(K1) = 1 + h (2tj + h) (uj + 
1
2

K1) = 1 + 0.2 (2tj + 0.2) (uj + 
1
2

K1).

The Newton-Raphson method gives

K s
1

1( )+
 = K s

1
( )  – 

F K

F K

s

s

( )

( )

( )

( )
1

1′
 , s = 0, 1, ......

We assume K1
0( ) = hf (tj ,  uj),  j = 0, 1.

We obtain the following  results.

j = 0 ; t0 = 0, u0 = 1, K1
0( )  = – h(2t0

u0
2 ) = 0,

 F ( K1
0( ) ) = 0.04, F ′( K1

0( ) ) = 1.04, K1
1( )  = – 0.03846150,

F ( K1
1( ) ) = 0.00001483, F ′( K1

1( ) ) = 1.03923077, K1
2( )  = – 0.03847567

 F ( K1
2( ) ) = 0.30 × 10–8.

Therefore, K1 ≈ K1
2( )  = – 0.03847567,

and u(0.2) ≈ u1 = u0 + K1 = 0.96152433.

j = 1 ; t1 = 0.2, u1 = 0.96152433, K1
0( )

 = – h(2t1
u1

2 ) = – 0.07396231,

F ( K1
0( ) ) = 0.02861128, F ′( K1

0( ) ) = 1.11094517, K1
1( )  = – 0.09971631,

F ( K1
1( ) ) = 0.00001989, F ′( K1

1( ) ) = 1.10939993, K1
2( )  = – 0.09973423,

F ( K1
2( ) ) = 0.35 × 10–7, F ′( K1

2( ) ) = 1.10939885, K1
3)(  = – 0.099773420.

Therefore,  K1 ≈ K1
3)(  = – 0.09973420,

and u(0.4) ≈ u2 = u1 + K1 = 0.86179013.

Multistep Methods

5.27 Find the solution at x = 0.3 for the differential equation
y′ = x – y2 , y(0) = 1

by the Adams-Bashforth method of order two with h = 0.1. Determine the starting val-
ues using a second order Runge-Kutta method.
Solution
The second order Adams-Bashforth method is

 yn + 1 = yn  + 
h
2

 (3yn′  – yn −′ 1), n = 1, 2, .....

We need the value of  y(x) at x = x1 for starting the computation. This value is deter-
mined with the help of the second order Runge-Kutta method

 yn + 1 = yn + 
1
2

(K1 + K2),
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  K1 = hf (xn, yn),

 K2 = hf (xn + h, yn + K1).

We have y′ = x – y2 , y0 = 1, x0 = 0,

K1  = 0.1(0 – 1) = – 0.1,

K2 = 0.1(0.1 – (1 – 0.1)2) = – 0.071,

y1 = 1 + 
1
2

 (– 0.1 – 0.071) = 0.9145.

 y0′  = 0 – 1 = – 1,

 y1′  = 0.1 – (0.9145)2 = – 0.73631.

Using the Adams-Bashforth method, we now obtain

y2 = y1 + 
0 1
2
.

 (3 1y ′  – y0′ )

= 0.9145 + 
0 1
2
.

 (– 3 × 0.73631 + 1) = 0.85405.

 y2′  = 0.2 – (0.85405)2 = – 0.52940,

y3 = y2 + 
0 1
2
.

 (3 2 1y y′ − ′ )

= 0.85405 + 
0 1
2
.

 (3 × (– 0.52940) + 0.73631) = 0.81146.

Therefore, we have
 y1 = 0.9145, y2 = 0.85405,  y3 = 0.81146.

5.28 Derive a fourth order method of the form

 yn + 1 = ayn – 2 + h( )by cy dy eyn n n n′ + ′ + ′ + ′− − −1 2 3

for the solution of y′ = f (x, y). Find the truncation error.

Solution

The truncation error of the method is written as

 Tn + 1 = y(xn + 1) – ay(xn – 2) – h[by′(xn)

+ cy′(xn – 1) + dy′(xn – 2) + ey′(xn – 3)]

= C0 y(xn) + C1hy′(xn) + C2 h2 y″(xn) + C3 h3 y′″ (xn)

+ C4 h4 y(4) (xn) + C5 h5 y(5) (xn) + .......

To determine a, b, c, d and e we have the following equations

  C0 = 1 – a = 0,

C1 = 1 + 2a – (b + c + d + e) = 0,

C2 = 
1
2

 (1 – 4a) + (c + 2d + 3e) = 0,

C3 = 
1
6

 (1 + 8a) – 
1
2

 (c + 4d + 9e) = 0,
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C4 = 
1

24
 (1 – 16a) +  

1
6

 (c + 8d + 27e) = 0,

whose solution is, a = 1, b = 21 / 8, c = – 9 / 8, d = 15 / 8, e = – 3 / 8.
Thus, we obtain the method

 yn + 1 = yn – 2 + 
h

y y y yn n n n8
21 9 15 31 2 3( )′ − ′ + ′ − ′− − − ;

with the truncation error

 Tn + 1 = 
1

120
1 32

1
24

16 81( ) ( )+ − + +�
��

�
��

a c d e  h5 y(5) (ξ) = 
27
80

h5 y(5) (ξ)

where xn – 3 < ξ < xn + 1.

5.29 If ρ(ξ) = (ξ – 1) (ξ – λ) where λ is  a real and –1 ≤ λ < 1, find σ(ξ), such that the resulting
method is an implicit method. Find the order of the method for λ = – 1.
Solution

We have σ(ξ) = 
ρ ξ

ξ
( )

log
  = 

( )( )
log ( )

ξ λ ξ
ξ

− − + −
+ −

1 1 1
1 1

= 
( )[( ) ( )]

[( ) – ( ) ( ) .....]
ξ λ ξ

ξ ξ ξ
− − + −

− − + − −
1 1 1

1 1 11
2

2 1
3

3

= [(1 – λ) + {ξ – 1)] 1
1
2

1
1
3

1 2
1

− − − − +���
���

�
��

�
��

−

( ) ( ) ...ξ ξ

= 1 – λ + 
3

2
− λ

 (ξ – 1) + 
5
12
+ λ

 (ξ – 1)2 – 
1
24
+ λ

 (ξ – 1)3 + O((ξ – 1)4)

Hence, σ(ξ) = 1 – λ + 
3

2
− λ

 (ξ – 1) + 
5
12
+ λ

 (ξ – 1)2

Thus, we find that for λ ≠ – 1, the order is 3 while for λ = – 1, the order is 4.

5.30 One method for the solution of the differential equation y′ = f (y) with y(0) = y0 is the
implicit mid-point method

 yn + 1 = yn + hf 
1
2 1( )y yn n+�
	


�
�
+ .

Find the local error of this method. (Lund Univ., Sweden, BIT 29(1989), 375)
Solution
The truncation error of the method is given by

 Tn + 1 = y(xn + 1) – y(xn) – hf 
1
2 1( ( ) ( ))y x y xn n+�
	


�
�
+

= y (xn) + hy′(xn) + 
1
2

 h2y″(xn)

+ 
1
6

h3y′″ (xn) + .... – y(xn)  – hf y x hy x h y xn n n( ) ( ) ( ) ......+ ′ + ″ +�
	


�
�


1
2

1
4

2
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= hy′(xn) + 
1
2

h2y″(xn) + 
1
6

h3y′″ (xn) – h f hy h y fn n n y+ ′ + ″ +�
	


�
�


�
��

1
2

1
4

2 ......

+ ′ + ″ +�
	


�
�
 +

�

�
�
�

1
2

1
2

1
4

2
2

hy h y fn n yy...... ...

We have  y′ = f,  y″ = f fy,  y″′  = f fy
2 + f 2fyy.

On simplification, we obtain

 Tn + 1 = – 
1

24
h3 fn (2 fy

2  – f fyy) xn  + O(h4).

5.31 Consider an implicit two-step method

yn + 1 – (1 + a) yn + a yn – 1 = 
h

a y a y a yn n n12
5 8 1 1 51 1[( ) ( ) ( ) ]+ ′ + − ′ − + ′+ −

where – 1 ≤ a < 1, for the solution of the  initial value problem y′ = f (x, y), y(x0) = y0.
(i) Show that the order of the two-step method is 3 if  a ≠ – 1 and is 4 if a = – 1.

(ii) Prove that the interval of absolute stability is (– 6(a + 1) / (a – 1), 0) and that the
interval of  relative stability is (3(a + 1) / (2(a – 1)), ∞).

Solution
(i) The truncation error of the two-step method is given by

 Tn + 1 = y(xn + 1) – (1 + a) y (xn) + ay (xn – 1)

– 
h
12

 [(5 + a) y′(xn + 1) + 8(1 – a) y′(xn) – (1 + 5a) y′(xn – 1)]

= C0 y(xn) + C1h y′(xn) + C2 h2 y″(xn) + C3 h3 y′″ (xn) + C4 h4 y(4)(xn) + ......
where C0 = 0,  C1 = 0, C2 = 0, C3 = 0, C4 = – (1 + a) / 24.
Hence, the truncation error is

Tn  + 1 = – 
1

24
(1 + a)h4 y(4) (xn) +  

a −�
	


�
�


1
90  h5 y(5) (xn)  + O(h6).

Therefore, the two-step method has order 3 if a ≠ – 1 and order 4 if a = –1.
(ii) The characteristic equation of the method is given by

1
12

5− +
�
	


�
�


h
a( ) ξ2 – ( ) ( )1

2
3

1+ + −�
	


�
�
a h a ξ + a

h
a+ +

�
	


�
�
12

1 5( )  = 0.

Absolute Stability : Setting ξ = (1 + z) / (1 – z ), the transformed characteristic equation
is obtained as

2 1
3

1( ) ( )+ + −
�
	


�
�


a
h

a  z2 + 2 ( ) ( )1
2

1− − +
�
	


�
�


a
h

a  z – h (1 – a) = 0.

The Routh-Hurwitz criterion is satisfied if

2(1 + a) + 
h
3

(1 – a) > 0,

 (1 – a) – 
h
2

 (1 + a) > 0,

 – h  (1 – a) > 0.
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For h  < 0 and – 1 ≤ a < 1,  the conditions will be satisfied if h  ∈  (– 6(1 + a) / (1– a), 0).

Hence, the interval of absolute stability is h  ∈  (– 6(1 + a) / (1 – a), 0).
Relative Stability : It is easily verified that the roots of the characteristic equation are

real and distinct for all h  and for all a. The end points of the interval of relative stability
are given by ξ1h = ξ2h and ξ1h = – ξ2h. The first condition is never satisfied that is, the
interval extends to + ∞, ; the second condition gives

(1 + a) + 2
3

h (1 – a) = 0 or h  = 
3 1
2 1
( )
( )
a
a

+
−  .

Hence, the interval of relative stability is

h  ∈  
3 1
2 1
( )
( )

,
a
a

+
−

∞
�
	


�
�
 .

5.32 Determine the constants α, β and γ so that the difference approximation
yn + 2 – yn – 2 + α(yn + 1 – yn – 1) = h (β (fn + 1 + fn – 1) + γ fn]
for  y′ = f (x, y) will have the order of approximation 6. Is the difference equation stable
for h = 0 ? (Uppsala Univ., Sweden, BIT 9(1969), 87)
Solution
The truncation error of the method  is given by

 Tn + 1 = y(xn + 2) – y(xn – 2) + α (y(xn + 1) – y(xn – 1))
– h [β (y′(xn + 1) + y′(xn – 1)) + γ y′(xn)]

= C0 y(xn) + C1hy′(xn)  + C2h2y″ (xn) + C3h
3 y′″ (xn)

+ C4h
4 y(4) (xn)  + C5h

5y(5) (xn)
+ C6h

6 y(6) (xn) + C7h
7 y(7) (xn) + ......

where C0 = 0, C1 = 4 + 2α – 2β – γ, C2 = 0, C3 = 
1
6

(16 + 2α) –  β,

C4 = 0, C5 = 
1

120
(64 + 2α) – 

β
12

, C6 = 0, C7 = 
1

5040
(256 + 2α) – 

β
360

.

Setting Ci = 0, i = 1, 3, 5, we obtain
α = 28, β = 12, γ = 36 and C7 = 1 / 35.

The sixth order method is
yn + 2 +  28yn + 1 – 28yn – 1 – yn – 2 = h(12 fn + 1 + 36 fn + 12 fn – 1)

with the truncation error

 Tn + 1 = 
1

35
 h7 y(7) (xn) + O(h8).

The reduced characteristic equation (h = 0) is
ξ4 + 28ξ3 – 28ξ –1 = 0

whose roots are ξ = 1, – 1, –0.03576, – 27.96424.
Since the root condition is not satisfied, the method is unstable.
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5.33 The difference equation
1

1( )+ a
 (yn + 1 – yn) + 

a
a( )1 +

 (yn – yn – 1) = – hyn, h > 0, a > 0

which approximates the differential equation y′  = – y is called strongly stable, if for
sufficiently small values of h lim

n → ∞
 yn = 0 for all solutions yn. Find the values of a for

which strong stability holds. (Royal Inst. Tech., Stockholm, Sweden, BIT 8(1968), 138)
Solution
The reduced characteristic equation (h = 0) is

ξ2 – (1 – a) ξ – a = 0.
whose roots are 1, – a. The root condition is satisfied if | a |  < 1. The characteristic
equation is given by

ξ2 – [1 – a – h(1 + a)] ξ – a = 0.
Setting ξ = (1 + z) / (1 – z), the transformed characteristic equation is obtained as

[2(1 – a) – h(1 + a)] z2 + 2(1 + a)z + h(1 + a) = 0.
Since, |a| < 1, we get 1 + a > 0.
The Routh-Hurwitz criterion is satisfied if

0 < h < 2(1 – a) / (1 + a).

5.34 To solve the differential equation y′ = f (x, y), y(x0) = y0, the method

 yn  + 1 = 
18
19

(yn –  yn – 2) + yn – 3 + 
4
19
h

 (fn + 1 + 4 fn + 4 fn – 2 + fn – 3)

is suggested.
(a) What is the local truncation error of the method ?
(b) Is the method stable ? (Lund Univ., Sweden, BIT 20(1980), 261)
Solution
The truncation error of the method may be written as

 Tn + 1 = y(xn + 1) –  
18
19

 (y(xn) – y(xn – 2)) – y(xn –3)

– 
4
19
h

 (y′(xn + 1) + 4y′(xn) + 4y′(xn – 2) + y′(xn – 3))

= C0 y(xn) + C1h y′(xn) + C2h
2 y″(xn) + C3h

3 y′″ (xn) + .....
where C0 = 0  = C1 = C2, C3 = 2 / 3.
Hence, the truncation error becomes

 Tn + 1 = 
2
3

 h3 y′″ (xn) + O(h4).

The reduced characteristic equation is (set h = 0)

ξ4 – 
18
19

(ξ3 – ξ) – 1 = 0

whose roots are ± 1, (9 ± i 280 ) / 19.
The roots have modulus one and hence the root condition is satisfied.



8-\N-NUM\NU-5-5

Numerical Solution of Ordinary Differential Equations 325

The characteristic equation is given by

(19 – 4h ) ξ4 – (18 + 16h ) ξ3 + (18 – 16h ) ξ – (19 + 4h ) = 0

where  h  = λh < 0.
Let the characteristic equation be written as

aξ4 + bξ3 + cξ2 + dξ + e = 0.
Substituting ξ = (1 + z) / (1 – z), we obtain the transformed characteristic equation as

v0 z
4 + v1 z3 + v2 z2 + v3 z + v4 = 0

where v0 = a – b + c – d + e, v1 = 4a – 2b + 2d – 4e,
v2 = 6a – 2c + 6e,  v3 = 4a + 2b – 2d – 4e,
v4 = a + b + c + d + e.

Substituting a = 19 – 4h , b = – (18 + 16h ), c = 0, d = 18 – 16h , and e = – (19 + 4h ), we
obtain the transformed equation as

6h  z4 + 56z3  – 12h z2 + 20z – 10h  = 0.
The necessary condition for the application of the Routh-Hurwitz criterion is vi ≥ 0.

Since h  < 0, this condition is violated. Hence, there is atleast one root which lies in the
right half-plane of the z-plane. Hence, the method is unstable for h > 0. It is stable for
h = 0 and so we may conclude that the method is weakly stable.

5.35 For the corrector formula

yn + 1 – αyn – 1 = Ayn + Byn – 2 + h( )Cy Dy Eyn n n+ −′ + ′ + ′1 1  + T

we have T = O(h5).
(a) Show that A = 9(1 – α) / 8, B = – (1 – α) / 8, and determine C, D and E.
(b) Find the zero-stability conditions.
Solution
(a) Expanding each term in the truncation error in Taylor’s series, we have

T = y(xn + 1) – αy(xn – 1) – Ay(xn) – By(xn – 2)
– h(Cy′(xn + 1) + Dy′(xn) + Ey′(xn – 1))

= C0 y(xn)  + C1h y′(xn) + C2h
2 y″(xn)

+ C3h3 y′″ (xn) + C4h
4 y(4) (xn) + O(h5)

where C0 = 1 – α – A – B,

C1 = 1 + α + 2B – (C + D + E),

C2 = 
1
2

 (1 – α – 4B) – (C – E),

C3 = 
1
6

  (1 +  α + 8B) – 
1
2

 (C + E),

C4 = 
1

24
 (1 – α – 16B) – 

1
6

 (C – E).

Setting Ci = 0, i = 0, 1, ..., 4, we obtain

A = 
9
8

(1 – α), B = – 
1
8

 (1 – α), C = – 
1

24
 (α – 9),

 D = 
1

12
(9 + 7α), E = 

1
24

(17α – 9).
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(b) The reduced  characteristic equation is (set h = 0)

ξ3 – 
9
8

(1 – α) ξ2 – αξ  + 
1
8

(1 – α) = 0,

with one root ξ = 1 and the other two roots  are the roots of

ξ2 + 
1
8

(9α – 1)ξ + 
1
8

(α – 1) = 0.

Setting ξ = (1 + z ) / (1 – z), we get the transformed equation as

(1 – α) z2  +  
1
4

(9 –  α) z + 
1
4

(3 + 5α) = 0.

Routh-Hurwitz criterion gives the conditions 1 – α > 0, 9 – α > 0, and 3 + 5α > 0 which
give α ∈  (– 0.6, 1). Hence, the root condition is satisfied if – 0.6 < α < 1. Therefore, the
method is stable  for –0.6 < α < 1.

5.36 Use the two-step formula

yn + 1 = yn – 1 + 
h

y y yn n n3
41 1( )+ −′ + ′ + ′

to  solve  the test problem y′ = λy, y(0)  = y0, where λ < 0.

Determine lim
n → ∞

 | yn | and lim
n → ∞

 y(xn) where xn = nh, h fixed, and y(x) is the exact solution

of the test problem. (Uppsala Univ., Sweden, BIT 12(1972), 272)
Solution
We apply the method to the test equation y′ = λ y, λ < 0, and obtain

1
3

−
�
	


�
�


h
 yn + 1 – 

4
3
h

 yn – 1
3

+
�
	


�
�


h
 yn – 1 = 0.

The characteristic equation is given by

 1
3

−
�
	


�
�


h
ξ2 – 

4
3
h ξ – 1

3
+

�
	


�
�


h
 = 0,

whose roots are  ξ1h = 
2
3

1
3

1
3

2 1/2
h h h+ +
�
	


�
�


�

�
�
�

�

�
�
�

−
�
	


�
�


= 1
2 6 24 72

2 3 4 5

+ + + + + +h
h h h h

... ~_  eh  + c1h
5,

ξ2h  = 
2
3

1
3

1
3

2 1/2
h h h

– +
�
	


�
�


�

�
�
�

�

�
�
�

−
�
	


�
�


= – 1
3 18 54

2 3

− + + +
�
	


�
�


h h h
...  ~_  – ( )/e c hh− +3

2
3 ,

where  c1 = λ5 / 180 and c2
 = 2λ3 / 81.

The general solution of the difference equation is

yn  = A Bh
n

h
nξ ξ1 2+
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We have ξ 1h
n   ~_  (eλh + c1h

5)n = eλnh (1 + c1h
5e–λh)n = eλnh (1 + nc1h

5e–λh + ...)

~_  eλnh 1
180

5 5

+
�
	


�
�


n hλ
.

We also find ξ2h = (– 1)n (e–λh / 3 + c2h
3)n = (– 1)n e–nλh/3(1 + c2h

3enλh/3)n

~_  (– 1)ne–λnh/3 1
2
81

3 3+�	

�
�
n hλ .

Hence, the general solution is

yn ~_  Aeλnh 1
180

5
5+

�
	


�
�


n
h

λ
 + B(– 1)n e–λnh/3 1

2
81

3 3+�	

�
�
n hλ

For λ < 0, the limiting value as n → ∞  is given by

lim lim
n

n
n

nhy A e
n

h
→ ∞ →∞

= +
�
	


�
�


λ λ
1

180

5
5

 + B lim ( ) /

n

n nhe n h
→ ∞

−− +�	

�
�
1 1

2
81

3 3 3λ λ

The first term on the right tends to zero whereas the second term oscillates and tends to
infinity.

Therefore, we obtain lim
n→ ∞

 | yn | = ∞.

In the limit, the analytic solution tends to zero

lim
n → ∞

 y(xn) = lim
n

xe n

→ ∞
=λ 0.

5.37 The formula

 yn+3 = yn + 
3
8

3 31 2 3
h

y y y yn n n n( )′ + ′ + ′ + ′+ + +

with a small step length h is used for solving the equation y′ = – y. Investigate the
convergence properties of the method. (Lund Univ., Sweden, BIT 7(1967), 247)
Solution

The formula may be written as ρ(E)yn – hσ(E) yn′  = 0, where

   ρ(ξ) = ξ3 – 1 and σ(ξ) = 
3
8

 (ξ3 + 3ξ2 + 3ξ + 1) = 
3
8

 (ξ + 1)3.

The roots of the reduced characteristic equation are 1, ω, ω2 where ω is the cube root of
unity. The growth parameters are given by

κj = 
σ ξ

ξ ρ ξ
( )

( )
j

j j′
,  j = 1, 2, 3.

We have κj = 
( )ξ

ξ
j

j

+ 1

8

3

3 .

We obtain the following values for the growth parameters.

j = 1 : ξ1 = 1, κ1 = 
1
8

8
1

.  = 1.

j = 2 : ξ2 = ω, κ2 = 
1
8

1 1
8

3

3
( )+

= −
ω

ω
.

j = 3 : ξ3 = ω2, κ3 = 1
8

1 1
8

2 3

6
( )+

= −
ω

ω
.
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The difference equation has the following approximate roots.
ξjh = ξj (1 – hκj + O(h2)), j = 1, 2, 3.
ξ1h = 1 – h + O(h2).

ξ2h  = 1
8

1
2

3
2

2+ +�
	


�
�
 − +
�
	


�
�


h
O h i( ) .

ξ 3h = 1
8

1
2

3
2

2+ +�
	


�
�
 − −
�
	


�
�


h
O h i( ) .

The solution of the difference equation becomes
 yn = C1(1 – h + O(h)2)n

+ C2 
1

8
1
2

3
2

2+ +�
	


�
�
 − +
�
	


�
�


h
O h i

n n

( )

+ C3 
1

8
1
2

3
2

2+ +�
	


�
�
 − −
�
	


�
�


h
O h i

n n

( )

≈ C1e
–nh + (– 1)n enh/8 a

n
a

n
1 23 3

cos sin .
π π+�

	

�
�


The first term is the desired solution of the differential equation. The second term arises
because the first order differential equation is discretized with the help of the third
order difference equation. The behaviour of the extraneous solution is exactly opposite
to that of the analytic solution. This term oscillates and grows at an exponential rate
and no matter how small initially, it over shadows the first term if xn = nh is sufficiently
large. The roots of the reduced characteristic equation satisfy the root condition. Hence,
the method is weakly stable.

5.38 (a) Show that if the trapezoidal rule is applied to the equation y′ = λy, where λ is an
arbitrary complex constant with negative real part, then for all h > 0

| yn | < | y0 |, n = 1, 2, 3 ...
(b) Show that if A is a negative definite symmetric matrix, then a similar conclusion

holds  for  the  application  of  the trapezoidal rule to the system y′′′′′ = Ay, y(0) given,
h > 0. (Stockholm Univ., Sweden, BIT 5(1965), 68)

Solution
(a) The trapezoidal rule is

yn+2 = yn + 
h

y yn n2 1( )+′ + ′ ,  n = 0, 1, 2 ...

Substituting y′ = λ y, we obtain

yn+1 = 
1 2
1 2

+
−

�
��

�
��

λ
λ
h
h

/
/

 yn,   n = 0, 1, 2 ...

Hence, the growth factor is given by
[1 + (λh / 2)] / [1 – (λh / 2)].
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Setting (λh / 2) = u + iv where u and v are real with u < 0, we get

 | yn+1 | = 
( )
( )

| |
1
1

+ +
− −

u iv
u iv

yn  = 
1 2
1 2

2 2

2 2

1/2
+ + +
+ + −

�
�
�

�
�
�

u v u

u v u
yn| |

Since u < 0, the growth factor is always less than one. Hence
| yn | < | y0 |, n = 1, 2, ...

(b) Since A is a negative definite symmetric matrix, the eigenvalues of A are real, nega-
tive and distinct. We define the matrix

Y = [y1, y2, ..., ym]
formed by the eigenvectors of A.
Using the transformation y = Yz, we get for the system

      y′′′′′ = Ay
z′′′′′ = Dz

where D = Y–1AY is the diagonal matrix with the eigenvalues located on the diagonal.
We get similar conclusion as in (a), since λ is an eigenvalue of A.

Predictor-Corrector Methods

5.39 Let a linear multistep method for the initial value problem
 y′ = f (x, y), y(0) = y0

be applied to the test equation y′ = – y. If the resulting difference equation has at least
one characteristic root α(h) such that | α(h) | > 1 for arbitrarily small values of h, then
the method is called weakly stable. Which of the following methods are weakly stable ?
(a) yn+1 = yn–1 + 2hf (xn, yn).

(b) yn  = – yn + 2yn–1 + 2hf (xn, yn)

  yn+1 = yn–1 + 2hf (xn, yn ).

(c) yn+1 = – 4yn + 5yn–1 + 2h(2fn + fn–1)

yn+1 = yn–1 + 1
3 h[f (xn+1, yn+1) + 4fn + fn–1]

fi = f (xi, yi). (Gothenburg Univ., Sweden, BIT 8(1968), 343)
Solution
Apply the given methods to y′ = – y.
(a) The difference equation is obtained as

yn+1 = yn–1 – 2hyn.
The characteristic equation is given by

ξ2 + 2hξ – 1 = 0.
Setting ξ = (1 + z) / (1 – z), the transformed characteristic equation is obtained as

– hz2 + 2z + h = 0.
Applying the Routh-Hurwitz criterion, we find that there is at least one root which lies
in the right half plane of the z-plane or there is atleast one root of the characteristic
equation which is greater than one.
The reduced characteristic equation is ξ2 – 1 = 0, whose roots are 1, –1. Hence, the
method is weakly stable.
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(b) The difference equation is obtained as
 yn  = – yn + 2yn–1 – 2hyn,
yn+1 = yn–1 – 2hyn .

The composite scheme is given by
yn+1 = yn–1 – 2h[– yn + 2yn–1 – 2hyn]

or yn+1 – (2h + 4h2)yn – (1 – 4h)yn–1 = 0.
The characteristic equation is given by

 ξ2 – (2h + 4h2)ξ – (1 – 4h) = 0.
The reduced characteristic equation is  ξ2 – 1 = 0, whose roots are 1, – 1.
Setting ξ = (1 + z) / (1 – z), the transformed characteristic equation is obtained as

 (3h + 2h2)z2 + 2(1 – 2h)z + h(1 – 2h) = 0.
The Routh-Hurwitz criterion requires

3h + 2h2 > 0, 1 – 2h > 0 and h(1 – 2h) > 0.
We obtain the condition as h < 1 / 2. The method is absolutely stable for h < 1 / 2.
Hence, the method is not weakly stable.
(c) The difference equation is obtained as

yn+1 = – 4yn + 5yn–1 – 2h(2yn + yn–1)

 yn+1 = yn–1 – 
h
3

 ( yn+1 + 4yn + yn–1)

Eliminating yn+1, we obtain the difference equation

 yn+1 = yn–1 + 
2

3 3

2h
y

h
n −  (6 – 2h)yn–1.

The characteristic equation is given by

ξ2 – 
2
3

 h2 ξ – 1 2
2
3

2− +�
	


�
�
h h  = 0

Setting ξ = (1 + z) / (1 – z), the transformed characteristic equation is obtained as

h z2 + 2 1
1
3

2
3

2 2− +�
	


�
�
 + −�

	

�
�
h h z h h  = 0.

The Routh-Hurwitz criterion requires

h > 0, 1 – h + 
1
3

 h2 > 0 and h 1
2
3

−�	

�
�
h  > 0.

The third inequality gives h < 3 / 2, which also satisfies the second equation. The method
is absolutely stable for h < 3 / 2.
Hence, the method is not weakly stable.
The method in (a) is the only weakly stable method.

5.40 Find the characteristic equations for the PECE and P(EC)2E methods of the P-C set

yn+
∗

1 = yn + 
h
2

 (3 1y yn n′ − ′− ) ,

 yn+1 = yn + 
h
2

 ( y yn n+
∗ ′ + ′

1 ).

when applied to the test equation y′ = λ y, λ < 0.
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Solution
We apply the P-C set to the test equation y′ = λ y  and get

P :  yn+
∗

1  = yn + 
λh
2

 (3yn – yn–1),

E :  y yn n+
∗

+
∗′ =1 1λ ,

C : yn+1 = yn + 
λh
2

 ( yn+
∗

1 + yn) = 1
3
4 4

2
2

1+ +�
	


�
�
 − −h h y

h
yn n ,

E : yn+′ 1 = λ yn+1,

where h  = λh.
The characteristic equation of the PECE method is obtained as

ξ2 – 1
3
4 4

2
2

+ +�
	


�
�
 +h h

hξ  = 0.

The next corrector iteration is given by

yn+1 = yn + 
h

h h y
h

y yn n n2
1

3
4 4

2
2

1+ +�
	


�
�
 − +

�
�
�

�
�
�−

= 1
2

3
8 8

2
3

3

1+ + +
�
	


�
�


− −h
h

h y
h

yn n .

The characteristic equation is given by

ξ2 – 1
2

3
8 8

0
2

3
3

+ + +
�
	


�
�


+ =h
h

h
hξ .

5.41 Apply the P-C set
P : yn+1 = yn + h fn,

C : yn+1 = yn + 
h
2

 (fn+1 + fn)

to the test problem y′ = – y, y(0) = 1.
(a) Determine an explicit expression for yn obtained using P(EC)mE  algorithm.
(b) For which values of h, when the corrector is iterated to converge, is the sequence

{ }yn 0
∞  bounded ?

(c) Show also that the application of the corrector more than twice does not improve the
results.

Solution
(a) The P(EC)mE method can be written as

  yn+1
0( )  = yn + h fn,

yn
s
+1

( )  = yn + 
h

f fn
s

n2 1
1

+
− +( )� � , s = 1(1)m,

yn+1 = yn
m
+1

( ) ,

where f f x yn
s

n n
s

+
−

+ +
−=1

1
1 1

1( ) ( )( , ) .
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When applied to the test problem y′ = – y, the above P(EC)mE scheme becomes

yn+1
0( )  = (1 – h)yn,

y y
h

h y yn n n n+ = + − − −1
1

2
1( ) [ ( ) ] = 1

2

2

− +
�
	


�
�


h
h

yn,

y y
h

h
h

y yn n n n+ = + − − +
�
	


�
�


−
�

�
�
�

�

�
�
�1

2
2

2
1

2
( )

= 1
2 2

2 2

2− + −
�
	


�
�


h
h h

yn ,

....................................

y h
h h h

yn
m

m

m n+

+
= − + − + +

−�
	


�
�
1

2 2 1

1
2 4 2

( ) ...
( )

= [1 – h{1 + (– p) + (– p)2 + ... + (– p)m}]yn

= 1 2
1

1

1

−
− −

− −
�
�
�

�
�
�

�

�
�
�

�

�
�
�

+
p

p
p

y
m

n
( )

( )  = 
1

1 + p [1 – p – 2(– p)m+2]yn

where  p = h / 2.
Therefore, we have

yn+1 = 
1 2

1

2− − −
+

�
	


�
�


+p p
p

y
m

n
( )

.

The solution of the first order difference scheme satisfying the initial condition becomes

yn = 
1 2

1

2− − −
+

�
	


�
�


+p p
p

m n
( )

.

(b) If the corrector is iterated to converge, i.e., m → ∞, the last equation in (a) will con-
verge if p < 1, or 0 < h < 2, which is the required condition.

(c) The analytic solution is y(x) = e–x,
so that y(xn+1) = e–h y(xn).

The local truncation error is given by
Tn+1 = yn+1 – y(xn+1)

= 
1 2 2 2

1 2

2− − −
+

−
�
�
�

�
�
�

+
−( / ) ( / )

( / )
( )

h h
h

e y x
m

h
n

We find that

1 2 2 2
1 2

2− − −
+

−
+

−( / ) ( / )
( / )

h h
h

e
m

h

becomes – 
1
2

 h2 + O(h3) for 0 corrector,

– 
1
6

 h3 + O(h4) for 1 corrector,
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1
12

 h3 + O(h4) for 2 correctors,

1
12

 h3 + O(h4) for 3 correctors.

We thus notice that the application of the corrector more than twice does not improve
the result because the minimum local truncation error is obtained at this stage.

5.42 Obtain the PMpCMc algorithm for the P-C set

yn+1 = yn + 
h
2

 (3 1y yn n′ − ′− )

yn+1 = yn + 
h
2

 ( y yn n+′ + ′1 )

Find the interval of absolute stability when applied to y′  = λ y, λ < 0.
Solution
First, we obtain the truncation error of the P-C set.

Tn
P
+1

( )  = y(xn+1) – y(xn) – 
h
2

 [3y′(xn) – y′(xn–1)] = 
5

12
 h3 y″′ (xn) + ...

or  y(xn+1) – yn
P
+ =1

5
12

( )  h3 y″′ (xn) + ...

and Tn
C
+1

( )  = y(xn+1) – y(xn) – 
h
2

 [y′(xn+1) + y′(xn)] = – 
1

12
 h3 y″′ (xn) + ...

or     y(xn+1) – yn
C
+ = −1

1
12

( ) h3 y″′ (xn) + ...

Comparing with (5.57), we get Cp
P
+1

( )  = 5 / 12, Cp
C
+1

( )  = – 1 / 12,

and  [ – ] –( ) ( ) –1C Cp
c

p
P

+ + =1 1 2.
From (5.58), we now write PMp CMc algorithm as

pn+1 = yn + 
h

y yn n2
3 1( ′ − ′− ),

 mn+1 = pn+1 – 
5
6

(pn – cn),

cn+1 = yn + 
h

m yn n2 1( )+′ + ′ ,

 yn+1 = cn+1 + 
1
6

(pn+1 – cn+1).

Applying  the  method  on y′ = λ y, and substituting pn = b1ξ
n, cn = b2ξ

n, mn = b3 ξ
n and

yn = b4ξn into the PMpCMc algorithm we obtain

 b1ξ
2 = ξ ξ+ −
�
	


�
�


h
b

2
3 1 4( ) ,

 b3 ξ = ξ −�	

�
�
 +5

6
5
61 2b b ,

 b2 ξ = 1
2 24+

�
	


�
�


+h
b

h
 ξ b3,
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b4 = b2 + 
1
6

1
6

5
6

1
61 2 2b b b− = +  b1,

where bi, i = 1(1)4 are arbitrary parameters and h  = λh.
Eliminating bi’s we get the characteristic equation as

ξ θ ξ θ
ξ ξ

ξ θξ θ

2 0 0 1 3
6 5 5 6 0

0 1
1 5 0 6

− +
− −

− − +
− −

( )

( )
 = 0,

where θ = h  / 2. Expanding the determinant, we obtain
6ξ3 – 3 (5θ2 + 6θ + 2)ξ2 + 2(3θ + 10θ2) ξ – 5θ2 = 0.

Setting ξ = (1 + z) / (1 – z), the transformed equation is obtained as
v0z

3 + v1z
2 + v2z + v3 = 0,

where v0 = 4(3 + 6θ + 10θ2), v1 = 4(6 + 3θ – 5θ2),
v2 = 4(3 – 6θ – 5θ2), v3 = – 12θ.

The Routh-Hurwitz criterion requires vi > 0 and v1v2 – v0v3 > 0.
Since  θ < 0,  we  find  v0 > 01, v4 > 0 for all θ. We use Newton-Raphson method to find
θ < 0 satisfying v1v2 – v0v3 > 0. We obtain – 0.6884 ≤ θ < 0. For these values of θ, we find
that v1 > 0, v2 > 0.
Hence, the second order modified Adams predictor-corrector (PMpCMc) method is abso-
lutely stable for all θ in the interval [– 0.6884, 0).

5.43 The formulas

yn+
∗

1
 = yn + 

h
y y y yn n n n24

55 59 37 91 2 3( ′ − ′ + ′ − ′− − − ) + T1

yn+1 = yn + 
h

y y y yn n n n24
9 19 51 1 2( *′ + ′ − ′ + ′+ − − ) + T2

may be used as a P-C set to solve y′ = f (x, y). Find T1 and T2 and an estimate of the
truncation error of the P-C set. Construct the corresponding modified P-C set.
Solution
We have

T1 = y(xn+1) – y(xn) – 
h
24

 [55y′(xn) – 59y′(xn–1) + 37y′(xn–2) – 9y′(xn–3)]

= C0y(xn) + C1h y′(xn) + C2h
2 y″(xn)

+ C3h3 y″′ (xn) + C4h
4 y(4)(xn) + C5h

5 y(5)(xn) + ...

= 
251
720

h5 y(5)(ξ1)

where xn–3 < ξ1 < xn+1.
Similarly, we obtain

T2 = y(xn+1) – y(xn) – 
h
24

[9y′(xn+1) + 19y′(xn) – 5y′(xn–1) + y′(xn–2)]

= C0 y(xn) + C1h y′(xn) + C2h
2 y″(xn)

+ C3h3 y″′ (xn) + C4h
4 y(4)(xn) + C5h

5 y(5)(xn) + ...
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= – 
19

720
h5 y(5)(ξ2).

where xn–2 < ξ2 < xn+1. The estimate of the truncation error is obtained as follows :

y(xn+1) – y∗
n+1 = 

251
720

h5 y(5)(xn) + O(h6),

y(xn+1) – yn+1 = – 
19

720
h5 y(5)(xn) + O(h6),

 yn+1 – y∗
n+1 = 

3
8

h5 y(5)(xn) + O(h6).

Therefore, y(xn+1) = y∗
n+1 + 

251
270

 (yn+1 – y∗
n+1),

y(xn+1) = yn+1 – 
19

270
 (yn+1 – y∗

n+1).

The modified P-C method may be written as

pn+1 = yn + 
h

y y y yn n n n24
55 59 37 91 2 3( ′ − ′ + ′ − ′− − − ),

mn+1 = pn+1 – 
251
270

(pn – cn),

cn+1 = yn + 
h

m y y yn n n n24
9 19 51 1 2[ + − −′ − ′ − ′ + ′ ],

 yn+1 = cn+1 + 
19

270
(pn+1 – cn+1).

5.44 Which of the following difference methods are applicable for solving the initial value
problem.

y′ + λ y = 0, y(0) = 1, λ > 0.
For what values of λ are the methods stable ?

(a) yn+1 = 
1
2

1
4 3

21 1y y
h

y yn n n n− + ′ + ′− −( )

(b) 
y y h y y

y y
h

y y

n n n n

n n n n

+
∗

−

+ +
∗

= + ′ − ′

= + ′ + ′

�
��

��
1 1

1 1

2

2

( ) (predictor)

( ) ( )corrector

using the corrector just once. (Gothenburg Univ., Sweden, BIT 6(1966), 83)
Solution
(a) Substituting y′ = – λy, λ > 0, in the method we get the difference equation as

yn+1 – 
1
2

2
3

1
4 3

−�
	


�
�
 + +

�
	


�
�


h y
h

n  yn–1 = 0

where h  = λh.
The reduced characteristic equation is given by (set h = 0)

ξ2 – 
1
2

1
4

ξ +  = 0

whose roots are (1 ± i 3 ) / 4.
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We have | ξ | = 1 / 2 and the root condition is satisfied. The characteristic equation of
the method is given by

ξ2 – 1
2

2
3

1
4 3

−�
	


�
�
 + +

�
	


�
�


h
h

ξ  = 0.

Setting ξ = (1 + z) / (1 – z), we get the transformed characteristic equation as
v0 z

2 + v1 z + v2 = 0

where v0 = 
7
4 3

2
3
4 31− = −
�
	


�
�


h
v

h
, ,  v2 = 

3
4

+ h h,  > 0

Routh-Hurwitz criterion is satisfied if 0 < h  < 9 / 4. Hence, the method is absolutely
stable in this interval.
(b) We have

P :   y h y hyn n n+
∗

−= − +1 11 2( )

E :  y hyn n+
∗

+
∗′ = −1 1

C :  yn+1 = yn – 
h

h y hy yn n n2
1 2 1[( ) ]− + +−  = (1 – h h y

h
yn n+ − −

2
2

12
)

E :  y hyn n+ +′ = −1 1.

where h  > 0.
The characteristic equation of the PECE method is obtained as

ξ2 – (1 – h h
h+ +2

2

2
)ξ  = 0.

Setting ξ = (1 + z) / (1 – z), the transformed characteristic polynomial is obtained as

2
3
2

2− +�
	


�
�
h h  z2 + (2 – h 2 ) z + 

h
h

2
2( )−  = 0.

The Routh-Hurwitz criterion is satisfied if

4 – 2h h+ 3 2 > 0, 2 – h 2  > 0, h h( )2 −  > 0.

We obtain h 2  < 2, or h < 2  as the required condition.
System of differential equations

5.45 Use the Taylor series method of order two, for step by step integration of the initial
value problem

 y′ = xz + 1, y(0) = 0,
 z′ = – xy, z(0) = 1,

with h = 0.1 and 0 ≤ x ≤ 0.2.
Solution
The second order Taylor series method for the IVP can be written as

yn+1 = yn + hyn′ + 
h

yn

2

2
″ ,

zn+1 = zn + hzn′ + 
h

zn

2

2
″ .



8-\N-NUM\NU-5-5

Numerical Solution of Ordinary Differential Equations 337

Using the differential equations, the second order Taylor series method becomes

yn+1 = 1
2 2

2 2 2

−
�
	


�
�


+ +
�
	


�
�


h x
y hx

hn
n n  zn + h,

zn+1 = − −
�
	


�
�


+ −
�
	


�
�


−hx
h

y
h x

z
h

n n
n

n

2 2 2 2

2
1

2 2
xn.

With h = 0.1, we obtain

n = 0, x0 = 0 :  y1 = 0 + 
( . )0 1

2

2

 + 0.1 = 0.105,  z1 = 1.

n = 1, x1 = 0.1 :   y2 = 1
0 1 0 1

2

2 2

−
�
	


�
�


( . ) ( . )
 0.105 + 0 1 0 1

0 1
2

2

. .
( . )× +

�
	


�
�
  1 + 0.1 = 0.219995.

 z2 = − −
�
	


�
�


+ −
�
	


�
�


−( . )
( . )

.
( . ) ( . )

0 1
0 1

2
0 105 1

0 1
2

0 1
2

2
2 4 2

 × 0.1 = 0.997875.

Therefore, the required values are
y1 = 0.105, y2 = 0.219995, z1 = 1.0, z2 = 0.997875.

5.46 The system
 y′ = z
 z′ = – by – az

where 0 < a < 2 b , b > 0, is to be integrated by Euler’s method with known values. What
is the largest step length h for which all solutions of the corresponding difference equa-
tion are bounded ? (Royal Inst. Tech., Stockholm, Sweden, BIT 7(1967), 247)
Solution
The application of the Euler method to the system yields

yn+1 = yn + hzn

zn+1 = zn + h(– byn – azn)
n = 0, 1, 2, ...

We write the system in the matrix form as

y
z

h
bh ah

y
z

n

n

n

n

+

+

�
��

�
��

= − −
�
��

�
��
�
��
�
��

1

1

1
1  = Ay

The characteristic equation of A is given by
ξ2 – (2 – ah)ξ + 1 – ah + bh2 = 0.

Using the transformation ξ = (1 + z) / (1 – z), we obtain the transformed characteristic
equation as

(4 – 2ah + bh2)z2 + 2(a – bh)hz + bh2 = 0.
The Routh-Hurwitz criterion requires

 4 – 2ah + bh2 ≥ 0, a – bh ≥ 0, bh2 ≥ 0.
As b > 0, we require

(2 – b h)2 + 2(2 b  – a)h ≥ 0,
 a – bh ≥ 0.

Since 0 < a < 2 b , the conditions will be satisfied if 0 < h ≤ a / b.
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5.47 Euler method and Euler-Cauchy (Heun) methods are used for solving the system
 y′ = – kz, y(x0) = y0
z′ = ky, z(x0) = z0, k > 0.

If the numerical method is written as

y
z

y
y

n

n

n

n

+

+

�
��

�
��

= �
��
�
��

1

1
A

determine A for both the methods. Does there exist a value of h for which the solutions
do not grow exponentially as n increases.
Solution
Let  f1(t, y, z) = – k z, f2(t, y, z) = k y.
Euler method gives

yn+1 = yn + h f1(tn, yn, zn) = yn – hk zn,
zn+1 = zn + h f2(tn, yn, zn) = zn + hk yn.

In matrix notation, we can write

y
z

y
z

n

n

n

n

+

+

�
��

�
��

= �
��
�
��

1

1
A , where A = 1

1
−�

��
�
��

hk
hk

.

The eigenvalues of A are λ1, 2 = 1 ± ihk.

Since, | λ | = 1 2 2+ h k  > 1, yn → ∞ as n → ∞. Hence, Euler method diverges.

Euler-Cauchy method gives

y
z

y
z

K
K

K
K

n

n

n

n

+

+

�
��

�
��

= �
��
�
��

+ �
��

�
��

+ �
��

�
��

1

1

11

21

12

22

1
2

1
2

where K11 = hf1(tn, yn, zn) = – hkzn.
K21 = hf2(tn, yn, zn) = hkyn,
K12 = hf1(tn + h, yn + K11, zn + K21) = – kh(zn + khyn),
K22 = hf2(tn + h, yn + K11, zn + K21) = kh(yn – kh zn)

In matrix notation, we write the system as

y
z

y
z

n

n

n

n

+

+

�
��

�
��

= �
��
�
��

1

1
A , where A = 

1 2
1 2

2 2

2 2
− −

−
�
��

�
��

( )/
( )/

k h kh
kh k h

.

The eigenvalues of A are λ1, 2 = [1 – (k2h2) / 2] ± ikh.

Since, | λ | = 1 42 2+ ( )/k h  > 1, yn → ∞ as h → ∞. Hence, Heun’s method also diverges.

Therefore, for both the methods, there does not exist any value of h for which solutions
do not grow exponentially as n increases.

5.48 The classical Runge-Kutta method is used for solving the system
 y′ = – kz, y(x0) = y0
 z′ = ky, z(x0) = z0

where k > 0 and x, x0, y, y0, z and z0 are real. The step length h is supposed to be > 0.
Putting yn ≈ y(x0 + nh) and zn ≈ z(x0 + nh), prove that

y
z

y
z

n

n

n

n

+

+

�
��

�
��

= �
��
�
��

1

1
A

where A is a real 2 × 2 matrix. Find under what conditions the solutions do not grow
exponentially for increasing values of n. (Bergen Univ., Norway, BIT 6(1966), 359)



8-\N-NUM\NU-5-6

Numerical Solution of Ordinary Differential Equations 339

Solution
We apply the classical fourth order Runge-Kutta method to the system of equations

 y′ = f (x, y, z) = – kz,
 z′ = g(x, y, z) = ky.

We have for  α = kh,
 K1 = hf (xn, yn, zn) = – khzn = – α zn,

 l1 = hg(xn, yn, zn) = khyn = α yn,

K2 = hf x
h

y
K

z
l

n n n+ + +�
	


�
�
2 2 2

1 1, ,  = – kh z y zn n n+�
	


�
�
 = −1

2
1
2

α α–  α2 yn,

l2 = hg x
h

y K z ln n n+ + +�
	


�
�
2

1
2

1
21 1, ,  = kh y zn n+ −�

	

�
�


1
2

( )α

= −α yn
1
2

 α2 zn,

K3 = hf x
h

y K z ln n n+ + +�
	


�
�
2

1
2

1
22 2, ,  = – kh z y zn n n+ −�

	

�
�


�
	


�
�


1
2

1
2

2α α

= – 
1
2

1
4

2 3α α αyn + − +�
	


�
�
 zn,

l3 = hg x
h

y K z ln n n+ + +�
	


�
�
2

1
2

1
22 2, ,  = kh y z yn n n− −�

	

�
�


1
2

1
4

2α α

= α α−�
	


�
�
 −1

4
1
2

3 yn α2zn,

 K4 = hf (xn + h, yn + K3, zn + l3) = – kh z y zn n n+ −�
	


�
�
 −

�
	


�
�
α α α

1
4

1
2

3 2

= − +�
	


�
�
 + − +�

	

�
�
α α α α2 4 31

4
1
2

yn  zn,

l4 = hg (xn + h, yn + K3, zn + l3) = kh y y zn n n− + − +�
	


�
�


�
	


�
�


1
2

1
4

2 3α α α

= α α α α−�
	


�
�
 + − +�

	

�
�


1
2

1
4

3 2 4yn  zn,

yn+1 = yn + 
1
6

(K1 + 2K2 + 2K3 + K4)

= 1
2 24 6

2 4 3

− +
�
	


�
�


+ − +
�
	


�
�


α α
α

α
yn  zn

zn+1 = zn + 
1
6

 (l1 + 2l2 + 2l3 + l4)

= α
α α α

−
�
	


�
�


+ − +
�
	


�
�


3 2 4

6
1

2 24
yn  zn
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Thus, we have the system of difference equations

y
z

y
z

n

n

n

n

+

+

�
��

�
��

=
− + − +

− − +

�

�

�
�
�
�

�

�

�
�
�
�

�
��
�
��

1

1

2 4 3

3 2 4

1
2 24 6

6
1

2 24

α α
α

α

α
α α α

The characteristic equation is given by

1
2 24 6

6
1

2 24

2 4 3

3 2 4

− +
�
	


�
�


− − +

− − +
�
	


�
�


−

α α ξ α α

α α α α ξ
 = 0.

We obtain

  ξ = 1
2 24 6

2 4 3

− +
�
	


�
�


± −
�
	


�
�


α α α α
i .

We have

 | ξ |2 = 1
2 24 6

1
576

2 4 2 3 2

− +
�
	


�
�


+ −
�
	


�
�


=α α α α  (576 – 8α6 + α8).

Now, | ξ |2 ≤ 1 gives | 576 – 8α6 + α8 | ≤ 576,
or        – 576 ≤ 576 – 8α6 + α8 ≤ 576.
The right inequality gives α2 ≤ 8. The left inequality is satisfied for these values of α.
Hence, for 0 < α2 ≤ 8, the solutions do not grow exponentially for increasing values of n.

5.49 The solution of the system of equations
 y′ = u,  y(0) = 1,
 u′ = – 4y – 2u, u(0) = 1,

is to be obtained by the Runge-Kutta fourth order method. Can a step length h = 0.1 be
used for integration. If so find the approximate values of y(0.2) and u(0.2).
Solution
We have K1 = hun,

 l1 = h(– 4yn – 2un),

K2 = h u hy hun n n+ − −�
��

�
��

1
2

4 2( )  = – 2h2yn
 + (h – h2)un,

 l2 = (– 4h + 4h2) yn – 2hun,
K3 = (– 2h2 + 2h3) yn + (h – h2)un,
 l3 = (– 4h + 4h2) yn + (– 2h + 2h3)un,

 K4 = (– 4h2 + 4h3) yn + (h – 2h2 + 2h4)un,
 l4 = (– 4h + 8h2 – 8h4) yn + (– 2h + 4h3 – 4h4)un,

 yn+1 = 1 2
4
3

1
3

2 3 2 4− +�
	


�
�
 + − +�

	

�
�
h h y h h hn  un

un+1 = − + −�
	


�
�
 + − + −�

	

�
�
4 4

4
3

1 2
4
3

2
3

2 4 3 4h h h y h h hn  un
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or y
u

h h h h h
h h h h h h

y
u

n

n

n

n

+

+

�
��

�
��

= − + − +
− + − − + −
�
��

�
��
�
��
�
��

1

1

2 3 2 4

2 4 3 4
1 2 4 3 1 3
4 4 4 3 1 2 4 3 2 3

( / ) ( / )
( / ) ( / ) ( / )

For h = 0.1, we obtain
y
u

y
u

y
u

n

n

n

n

n

n

+

+

�
��

�
��

= −
�
��

�
��
�
��
�
��

= �
��
�
��

1

1

0 98133 0 09003
0 36013 0 80127
. .
. . A .

We find that  the roots of the characteristic equation ξ2 – 1.7826ξ + 0.818733 = 0, are
complex with modulus | ξ | ≤ 0.9048. Hence, h = 0.1 is a suitable step length for the
Runge-Kutta method.
We have the following results.

n = 0, x0 = 0 : y
u

y
u

1

1

0

0

1
1

07136
44114

�
��
�
��

= �
��
�
��

= �
��
�
��

= �
��

�
��

A A 1.
0.

.

n = 1, x1 = 0.1 : y
u

y
u

2

2

1

1

107136
0 44114

09107
03236

�
��
�
��

= �
��
�
��

= �
��

�
��

= −
�
��

�
��

A A .
.

1.
0.

.

5.50 Find the values of y(0.4) and u(0.4) for the system of equations
y′ = 2y + u, y(0) = 1,

 u′ = 3y + 4u, u(0) = 1,
using the fourth order Taylor series method with h = 0.2.
Solution
We have

y′ = Ay, where y = 
y
u
�
��
�
�� and A = 

2 1
3 4
�
��

�
�� .

Differentiating the given system of equations, we get

y″ = Ay′ = A2y = 
7 6

18 19
�
��

�
��y,

 y″′  = Ay″ = A3y = 
32 31
93 94
�
��

�
��y,

 yiv = Ay″′  = A4y = 
157 156
468 469
�
��

�
��y.

Substituting in the fourth order Taylor series method

 yn+1 = yn + hy′n + 
h h h

n n n
iv

2 3 4

2 6 24
y y y″ + ″′ +

= I 2 3+ + + +
�
�
�

�
�
�h

h h h
nA A A A y

2 3 4
4

2 6 24
.

we get

y
u

h h h h h
h

h h

h h h h h h h h

y

u
n

n

n

n

+

+

�
��

�
��

=
+ + + + + + +

+ + + + + + +

�

�

�
�
�
�

�

�

�
�
�
�

�
��
�
��

1

1

2 3 4
2

3 4

2 3 4 2 3 4

1 2
7
2

19
6

193
24

4
2

31
6

156
24

3
18
2

93
6

468
24

1 4
19
2

94
6

469
24

For h = 0.2, we have

y
u

y
u

n

n

n

n

+

+

�
��

�
��

= �
��

�
��
�
��
�
��

1

1

593133 371733
1152 3366

1. 0.
1. 2. , n = 0, 1, ...
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Therefore, we obtain

n = 0 :  
y
u

y
u

x x

0

0 0

1

1 0.2

1
1

964866
4518

�
��
�
��

= �
��
�
��
�
��
�
��

= �
��

�
��= =

; 1.
3.

n = 1 :
y
u

y
u

x x

1

1 0.2

2

2 0.4

964866
4518

4 313444
10 256694

�
��
�
��

= �
��

�
��
�
��
�
��

= �
��

�
��= =

1.
3.

; .
. .

5.51 To integrate a system of differential equations
y′ = f (x, y),  y0 is given,

one can use Euler’s method as predictor and apply the trapezoidal rule once as correc-
tor, i.e.

 yn+
∗

1 = yn + hf (xn, yn)

  yn+1 = yn + 
h
2

[f (xn, yn) + f (xn+1, yn+
∗

1)]

(also known as Heun’s method).
(a) If this method is used on y′ = Ay, where A is a constant matrix, then yn+1 = B(h)yn.

Find the matrix B(h).
(b) Assume that A has real eigenvalues λ satisfying λi ∈  [a, b], a < b < 0. For what values

of h is it true that lim
n → ∞

 yn = 0 ?

(c) If the scalar equation  y′ = λ y is integrated as above, which is the largest value of p
for which

lim
h

n
x

p

y e y

h→

−
0

0
λ

,  x = nh,

x fixed, has finite limit ?  (Royal Inst. Tech., Stockholm, Sweden, BIT 8(1968), 138)
Solution
(a) Applying the Heun method to y′ = Ay, we have

 yn+
∗

1 = yn + hAyn = (I + hA)yn,

 yn+1 = yn + 
h

n n2 1[ ]Ay Ay+ +
∗  = yn + 

h
hn n2

[ ) ]Ay A(I A y+ +

= I A A+ +
�
	


�
�


h
h2

2
2 yn.

Hence, we have B(h) = I + hA + 
h2

2
A2

.

(b) Since A has real eigenvalues λi, A2 will have real eigenvalues λ i
2 . The stability

requirement is ρ(B(h)) ≤ 1. Hence we require

1
2

2
2+ +h

h
i iλ λ  ≤ 1.

This  condition  is  satisfied  for  hλi ∈  (– 2, 0).  Since λi ∈  [a, b], a < b < 0 ; lim
n → ∞

 yn = 0 if

0 < h < – 2 / a.
(c) Here, we have

    yn+1 = 1
2

2 2

+ +
�
	


�
�


λ
λ

h
h  yn,   n = 0, 1, 2, ...
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yn = 1
2

2 2

+ +
�
	


�
�


λ
λ

h
h

n

 y0.

Hence, yn = e h O hh
n

λ λ− +�
��

�
��

1
6

3 3 4( )  y0 = eλnh 1
1
6

3 3 4
0− +�

��
�
��

λ nh O h y( )

= e y h x ex
n

xn nλ λλ0
2 31

6
− y0 + O(h4).

We find

lim
h

n
x

n
xy e y

h
y x e

n
n

→

−
= −

0

0
2 0

31
6

λ
λλ .

Therefore, we obtain p = 2.

5.52 Consider the problem
 y′ = Ay

y(0) = 
1
0
�
��
�
�� , A = 

−
−

�
��

�
��

2 1
1 20

(a) Show that the system is asymptotically stable.
(b) Examine the method

yn+1 = yn + 
h
2

(3Fn+1 – Fn)

for the equation y′ = F(x, y). What is its order of approximation ? Is it stable ? Is it
A-stable ?

(c) Choose step sizes h = 0.2 and h = 0.1 and compute approximations to y(0.2) using the
method in (b). Finally, make a suitable extrapolation to h = 0. The exact solution is
y(0.2) = [0.68 0.036]T with 2 significant digits.

(Gothenburg Univ., Sweden, BIT 15(1975), 335)
Solution
(a) The eigenvalues of A are given by

− −
− −

2 1
1 20

λ
λ  = 0.

We obtain λ1 = – 20.055, λ2 = – 1.945.
The eigenvectors corresponding to the eigenvalues are

λ1 = – 20.055 : [– 1 18.055]T.
λ2 = – 1.945 :  [18.055 1]T.

The analytic solution is given by

 y = k1 
−�

��
�
��

1
18 055.

 e–20.055x + k2 
18 055

1
.�

��
�
��  e

–1.945x

Satisfying the initial conditions we obtain
k1 = – 3.025 × 10–3, k2 = 0.055.

The system is asymptotically stable, since as x → ∞, y(x) → 0.
(b) The truncation error may be written as

 Tn+1 = y(xn+1) – y(xn) – 
h
2

 [3y′(xn+1) – y′(xn)] = – h2 y″(ξ)

where xn < ξ < xn+1. Therefore, the method is of order one.
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Applying the method to the test equation y′ = λ y, λ < 0, we get

yn+1 = [(1 – h  / 2) / (1 – 3h  / 2)]yn

where h  = λh.
The characteristic equation is

ξ = 
1 2
1 3 2

−
−

h
h
/
/

.

For λ < 0, we have h  < 0 and the stability condition | ξ | ≤ 1 is always satisfied.
Hence, the method is absolutely stable for h  ∈  (– ∞, 0). The method is also A-stable

as lim
n→ ∞

 yn = 0 for all h  < 0.

(c) The method  yn+1 = yn + 
h
2

 (3Fn+1 – Fn)

when applied to the given system, leads to the equations

  y1, n+1 = y1, n + 
h
2

 [3(– 2y1, n+1 + y2, n+1) – (– 2y1, n + y2, n)]

y2, n+1 = y2, n + 
h
2

 [3(y1, n+1 – 20y2, n+1) – (y1, n – 20y2, n)]

or
1 3 3 2
3 2 1 30

1 2
2 1 10

1 1

2, 1

1

2,

+ −
− +
�
��

�
��
�
��

�
��

= + −
− +
�
��

�
��
�
��

�
��

+

+

h h
h h

y
y

h h
h h

y
y

n

n

n

n

/
/

/
/

, ,

Inverting the coefficient matrix, we obtain

    
y
y D h

a a
a a

y
y

n

n

n

n

1 1

2, 1

11 12

21 22

1

2,

1, ,

( )
+

+

�
��

�
��

= �
��

�
��
�
��

�
��

where D(h) = 1 + 33h + (351 / 4)h2, a11 = 1 + 31h + (117 / 4)h2,
a12 = h, a21 = h, a22 = 1 + 13h + (117 / 4)h2.

We have the following results.
h = 0.2 :  y(0) = [1 0]T, y(0.2) = [0.753 0.018]T.
h = 0.1 : y(0) = [1 0]T, y(0.1) = [0.8484 0.01931]T,

 y(0.2) = [0.720 0.026]T.
The extrapolated values are given by

 y(0.2) = 2y(0.2 ; 0.1) – y(0.2 ; 0.2)

= 2 
0 720
0 026

0 753
0 018

0 687
0 034

.

.
.
.

.

.
�
��

�
��

− �
��

�
��

= �
��

�
��

Shooting Methods

5.53 Find the solution of the boundary value problem
y″ = y + x,  x ∈  [0, 1],

y(0) = 0, y(1) = 0
with the shooting method. Use the Runge-Kutta method of second order to solve the
initial value problems with h = 0.2.
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Solution
We assume the solution of the differential equation in the form

 y(x) = φ0(x) + µ1φ1(x) + µ2φ2(x)
where µ1, µ2 are parameters to be determined.
The related initial value problems are given by

I : φ0″  = φ0 + x,
φ0(0) = 0, φ0′ (0) = 0.

II :   φ1″  = φ1,
φ1(0) = 0, φ′1(0) = 1.

III : φ2″  = φ2,
φ2(0) = 1, φ2′ (0) = 0.

The solution satisfies the boundary condition at x = 0. We get
 y(0) = 0 = φ0(0) + µ1φ1(0) + µ2φ2(0) = 0 + µ1(0) + µ2

which gives µ2 = 0. Hence, we have
  y(x) = φ0(x) + µ1φ1(x)

and it is sufficient to solve the initial value problems I and II.
We write these IVP as the following equivalent first order systems

  I : 
W
V

V
W x

( )

( )

( )

( )

1

1

1

1
�
��

�
��
′

=
+

�
��

�
��

where W(1) = φ0. The initial conditions are
W(1)(0) = 0, V(1)(0) = 0

 II : W
V

( )

( )

2

2
�
��

�
��
′
 = V

W

( )

( )

2

2
�
��

�
��

where W(2) = φ1. The initial conditions are
W (2)(0) = 0, V (2)(0) = 1

With h = 0.2 and [W0
1( )  V0

1( ) ]T = [0 0]T,

we have    
W
V

n

n

+

+

�
�
��

�
�
��

1
1

1
1

( )

( )  = 
1

1

1
2

2

1
2

2
+

+
�

�
�
�

�

�
�
�

h h
h h  

W
V

n

n

( )

( )

1

1

�
�
��

�
�
��  + 

1
2

2h

h

�

�
�
�

�

�
�
�
 xn + 

0
1
2

2h
�
��

�
��

or  
W
V

n

n

+

+

�
�
��

�
�
��

1
1

1
1

( )

( )  = 
1. 0.
0. 1.
02 2
2 02

�
��

�
��  

W
V

n

n

( )

( )

1

1

�
�
��

�
�
��  + 

0 02
0 2
.
.

�
��

�
��  xn + 

0
0 02.
�
��

�
��

.

For n = 0 :   
W
V

1
1

1
1

( )

( )

�
�
��

�
�
��  = 

0
0 02.
�
��

�
��
 , n = 1 :   

W
V

2
1

2
1

( )

( )

�
�
��

�
�
��  = 

0 008
0 0804

.
.
�
��

�
��

n = 2 :   
W
V

3
1

3
1

( )

( )

�
�
��

�
�
��
 = 

0 03224
0 183608

.
.
�
��

�
��
 , n = 3 :   

W
V

4
1

4
1

( )

( )

�
�
�

�
�
�  = 

0 0816064
0 3337281
.
.
�
��

�
��

n = 4 :   
W
V

5
1

5
1

( )

( )

�
�
��

�
�
��
 = 

0 1659841
0 5367238
.
.
�
��

�
��
.
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Similarly, for [W0
2( )  V0

2( ) ]T = [0 1]T, we have from

 
W
V

n

n

+

+

�
�
��

�
�
��

1
2

1
2

( )

( )  = 
102 0 2
0 2 102
. .
. .

�
��

�
��
 

W
V

n

n

( )

( )

2

2

�
�
��

�
�
��
,

For n = 0 :
W
V

1
2

1
2

( )

( )

�
�
��

�
�
��
 = 

0 2
102

.
.
�
��

�
��
 , n = 1 : 

W
V

2
2

2
2

( )

( )

�
�
�

�
�
�  = 

0 408
0 0804

.
.
�
��

�
��

n = 2 :  
W
V

3
2

3
2

( )

( )

�
�
��

�
�
��  = 

0.
1.

63224
183608

�
��

�
��
 , n = 3 : 

W
V

4
2

4
2

( )

( )

�
�
��

�
�
��
 = 

0.
1.

8816064
3337202

�
��

�
��

n = 4 :  
W
V

5
2

5
2

( )

( )

�
�
��

�
�
��  = 

1.
1.

1659826
5236074

�
��

�
��
.

The boundary conditions at x = 1 will be satisfied if
y(1) = φ0(1) + µ1φ1(1) = 0

or µ1 = −
φ
φ

0

1

1
1

( )
( )

 = – 
W
W

5
1

5
2

( )

( )
 = – 0.142355.

The solution is given as  y(x) = φ0(x) – 0.142355 φ1(x)
yielding the numerical solution

y(0.2) ≈ – 0.28471 × 10–1,  y(0.4) ≈ – 0.500808 × 10–1,
y(0.6) ≈ – 0.577625 × 10–1,  y(0.8) ≈ – 0.438946 × 10–1,
y(1.0) ≈ 0.

Alternative

We write the general solution of the boundary value problem as
y(x) = λφ0(x) + (1 – λ) φ1(x)

and determine λ so that the boundary condition at x = b = 1 is satisfied.
We solve the two initial value problems

 φ0″  = φ0 + x, φ0(0) = 0, φ′0(0) = 0,

 φ1″  = φ1 + x, φ1(0) = 0, φ′1(0) = 1.
Using the second order Runge-Kutta method with h = 0.2, we obtain the equations (see
equations of system 1)

W
V

n
i

n
i
+

+

�
�
��

�
�
��

1

1

( )

( )  = 
102 0 2
0 2 102
. .
. .

�
��

�
��
 

W
V

n
i

n
i

( )

( )

�
�
��

�
�
��  + 

0 02
0 2
.
.

�
��

�
��
 xn + 

0
0 02.
�
��

�
��
 , n = 0, 1, 2, 3, 4 ; i = 1, 2.

where W (1) = φ0, V (1) = φ′0, W (2) = φ1, V (2) = φ′1.

Using the conditions    i = 1, W0
1( )  = 0, V0

0( )  = 0, we get

W
V

1
1

1
1

( )

( )

�
�
��

�
�
��  = 

0
0 02.
�
��

�
�� , 

W
V

2
1

2
1

( )

( )

�
�
��

�
�
��
 = 

0 008
0 0804

.
.
�
��

�
��  , 

W
V

3
1

3
1

( )

( )

�
�
��

�
�
��  = 

0 03224
0 183608

.
.
�
��

�
�� ,

W
V

4
1

4
1

( )

( )

�
�
��

�
�
��  = 

0 081606
0 333728
.
.
�
��

�
�� , 

W
V

5
1

5
1

( )

( )

�
�
��

�
�
��  = 

0 165984
0 536724
.
.
�
��

�
��  .
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Using the conditions i = 2, W0
2( )  = 0, V0

2( )  = 1, we get

 
W
V

1
2

1
2

( )

( )

�
�
��

�
�
��  = 

0 2
104

.
.
�
��

�
��  

W
V

2
2

2
2

( )

( )

�
�
��

�
�
��  = 

0 416
11608

.
.
�
��

�
�� , 

W
V

3
2

3
2

( )

( )

�
�
��

�
�
��  = 

0 66448
1367216

.
.
�
��

�
�� ,

W
V

4
2

4
2

( )

( )

�
�
��

�
�
��  = 

0.
1.

963213
667456

�
��

�
��
 

W
V

5
2

5
2

( )

( )

�
�
��

�
�
��  = 

1.
2.

331968
073448

�
��

�
��
.

From (5.96), we obtain

λ = – 
W

W W
5

2

5
1

5
2

( )

( ) ( )−
 = 1.142355 (since γ2 = 0).

Hence, we get  y(x) = 1.142355 W(1)(x) – 0.142355 W(2)(x).
Substituting x = 0.2, 0.4, 0.6, 0.8 and 1.0 we get

y(0.2) ≈ – 0.028471, y(0.4) ≈ – 0.0500808,
y(0.6) ≈ – 0.0577625, y(0.8) ≈ – 0.0438952,
y(1.0) ≈ 0.

5.54 Find the solution of the boundary value problem
x2 y″ – 2y + x = 0, x ∈  [2, 3]

y(2) = y(3) = 0
with the shooting method. Use the fourth order Taylor series method with h = 0.25 to
solve the initial value problems. Compare with the exact solution

y(x) = (19x2 – 5x3 – 36) / 38x.
Solution
We assume the solution of the boundary value problem as

y(x) = φ0(x) + µ1φ1(x) + µ2φ2(x)
where µ1, µ2 are parameters to be determined.
The boundary value problem is replaced by the following three initial value problems.

   I : x2φ0″  – 2φ0 + x = 0, φ0(2) = 0, φ′0 (2) = 0.

 II :    x2φ1″  – 2φ1 = 0, φ1(2) = 0, φ′1(2) = 1.

III : x2φ2 – 2φ2 = 0, φ2(2) = 1, φ′2(2) = 0.
Using the boundary conditions, we get

y(2) = 0 = φ0(2) + µ1φ1(2) + µ2φ2(2) = 0 + 0 + µ2(1)
which gives  µ2 = 0.

y(3) = 0 = φ0(3) + µ1φ1(3)
which gives µ1 = – φ0(3) / φ1(3).
Hence, it is sufficient to solve the systems I and II.
The equivalent systems of first order initial value problems are

I :   φ0(x) = W (1)

 φ′0(x) = W (1)′ = V (1),
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  φ0″  = V (1)′ = 
2 1
2

1

x
W

x
( ) −  ,

and
W
V

( )

( )

1

1

�
�
�

�
�
�
′
 = 

V

x
W

x

( )

( )

1

2
12 1−

�

�

�
�
�

�

�

�
�
�
, with 

W

V

( )

( )
( )
( )

1

1
2
2

�
�
�

�
�
�  = 

0
0
�
��
�
�� .

II :  φ1(x) = W (2)

φ′(x) = W (2)′ = V (2)

φ1″ (x) = V (2)′ = (2 / x2) W (2),

and W
V

( )

( )

2

2

�
�
�

�
�
�
′
 = 

V
x W

( )

( )( / )

2

2 22
�
��

�
��  , with

W

V

( )

( )
( )
( )

2

2
2
2

�
�
�

�
�
� = 

0
1
�
��
�
�� .

Denote y = [W (i) V (i)]T, i = 1, 2. Then, the Taylor series method of fourth order gives

yn+1 = yn + hy′n + 
h2

2
yn″  + 

h2

6
 yn″′  + 

h4

24
 yn

( )4 .

I : For the first system, we get

 hy′ = 
hV
t x W

( )

( ){( / ) }

1

12 1−
�
��

�
��  , h

2 y″ = 
2
2 4

2 1

2 1 2 1 2
t W ht
t V t x W t

( )

( ) ( )( / )
−

− +
�
��

�
��
,

 h3y′″  = 
2 4
16 8 4

2 1 3 1 2

3 1 3 1 3
ht V t W ht

x t W t V t

( ) ( )

( ) ( )( / )
− +

− −
�
��

�
�� ,

 h4 y(4) = 
16 8 4

80 40 20

4 1 3 1 3

4 1 4 1 4
t W t V ht

x t W t V t

( ) ( )

( ) ( )( / )
− −

− + +
�
��

�
��
 , t = h / x.

The Taylor series method becomes

W
V n

( )

( )

1

1
1

�
��

�
�� +

 = 
a a
a a

11 12

21 22

�
��

�
�� 

W
V n

( )

( )

1

1
�
��

�
��  + 

b
b

1

2

�
��
�
��

where a11 = 1 + t2 – (2 / 3) t3 + (2 / 3) t4,  a12 = h [1 + (t2 / 3) – (t3 / 3)],

a21 = 
1
x

 2 2
8
3

10
3

2 3 4t t t t− + −�
��

�
��  , a22 = 1 + t2 – 

4
3

 t3 + 
5
3

t4,

b1 = h − + −
�
�
�

�
�
�

t t t
2 6 6

2 3

 , b2 = – t + 
t2

2
 – 

2
3

 t3 + 
5
6

 t4.

We obtain the following results, with h = 0.25.

x0 = 2, (t / x) = 1 / 8, W0
1( )  = 0, V0

1( )  = 0.
 a11 = 1.014486, a12 = 0.251139, b1 = – 0.015055,
 a21 = 0.111572, a22 = 1.013428, b2 = – 0.118286.

 W1
1( )  = – 0.015055, V1

1( )  = – 0.118286.
x1 = 2.25, (t / x) = 1 / 9.

 a11 = 1.011533, a12 = 0.250914, b1 = – 0.013432,
 a21 = 0.089191, a22 = 1.010771, b2 = – 0.105726,

 W2
1( )  = – 0.058340, V2

1( )  = – 0.226629.
x2 = 2.5, (t / x) = 0.1.
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 a11 = 1.0094, a12 = 0.25075, b1 = – 0.012125,
 a21 = 0.072933, a22 = 1.008833, b2 = – 0.095583,

 W3
1( )  = – 0.127841, V3

1( )  = – 0.328469.
x3 = 2.75, (t / x) = 1 / 11.

 a11 = 1.007809, a12 = 0.250626, b1 = – 0.011051,
 a21 = 0.060751, a22 = 1.007377, b2 = – 0.087221,

 W4
1( )  = – 0.222213, V4

1( )  = – 0.425880.
II : For the second system, we obtain the system

W
V n

( )

( )

1

1
1

�
��

�
�� +

 = 
a a
a a

11 12

21 22

�
��

�
�� 

W
V n

( )

( )

1

1
�
��

�
��

where a11, a12, a21 and a22 are same as defined in system I.
We obtain the following results.

x0 = 2, (t / x) = 1 / 8 : W1
2( )  = 0.251139, V1

2( )  = 1.013428.

x1 = 2.25, (t / x) = 1 / 9 : W2
2( )  = 0.508319, V2

2( )  = 1.046743.

x2 = 2.5, (t / x) = 0.1 : W3
2( )  = 0.775568, V3

2( )  = 1.093062.

x3 = 2.75, (t / x) = 1 / 11 : W4
2( )  = 1.055574, V4

2( )  = 1.148242.

Hence, we obtain µ1 = – 
W

W
4

1

4
2

( )

( )  = 
0.
1.

222213
055574

 = 0.210514.

We get y(x) = φ0(x) + 0.210514 φ1(x).
Setting x = 2.25, 2.5, 2.75, 3.0, we obtain

 y(2.25) = 0.037813, y(2.5) = 0.048668,
 y(2.75) = 0.035427, y(3.0) = 0.0000001.

The error in satistying the boundary condition y(3) = 0 is 1 × 10–7.

5.55 Use the shooting method to solve the mixed boundary value problem
u″ = u – 4x ex, 0 < x < 1,

u(0) – u′(0) = – 1, u(1) + u′(1) = – e.
Use the Taylor series method

uj+1 = uj + hu′j + 
h2

2
 uj″  + 

h3

6
uj′″ .

 uj+′ 1 = u hu
h

uj j j′ + ″ + ′″
2

2
to solve the initial value problems. Assume h = 0.25. Compare with the exact solution
u(x) = x(1 – x) ex.
Solution
We assume the solution in the form

u(x) = u0(x) + µ1u1(x) + µ2 u2(x)
where u0(x), u1(x) and u2(x) satisfy the differential equations

 u u x e u ux
0 0 1 14 0″ = − ″ =– , – ,

 u2″  – u2 = 0.
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The initial conditions may be assumed as
 u0(0) = 0, u0′ (0) = 0,
u1(0) = 1, u1′ (0) = 0,

 u2(0) = 0, u2′ (0) = 1.
We solve the three, second order initial value problems

 u0″  = u0 – 4 x ex, u0(0) = 0, u0′ (0) = 0,
u1″  = u1. u1(0) = 1, u1′ (0) = 0,
u2″  = u2, u2(0) = 0, u2′ (0) = 1

by using the given Taylor series method with h = 0.25. We have the following results.

(i) i = 0, u0, 0 = 0, u0 0,′  = 0.

Hence,  u j0,″  = u0, j – 4xj e
x j ,  u j0,′″  = u j0,′  – 4(xj + 1) e

x j ,  j = 0, 1, 2, 3.

 u0, j+1 = u0, j + hu
h

u x e
h

u x ej j j
x

j j
xj j

0

2

0

3

02
4

6
4 1, , ,( ) [ ( ) ]′ + − + ′ − +

= 1
2 6

2
3

1 2
2

0

3

0
3 2+

�
	


�
�


+ +
�
	


�
�


′ − + +�
��

�
��

h
u h

h
u h x h x ej j j j

x j
, , ( )

= 1.03125 u0, j + 0.25260 u j0,′  – (0.13542 xj + 0.01042)ex j .

 u j0 1, +′  = u h u x e
h

u x ej j j
x

j j
xj j

0 0

2

04
2

4 1, , ,[ ] [ ( ) ]′ + − + ′ − +

= hu0, j + 1
2

2

0+
�
	


�
�


′
h

u j,  – 2[2hxj + h2(1 + xj)] ex j

= 0.25 u0, j + 1.03125 u j0,′  – 2(0.5625xj + 0.0625)e
x j .

Therefore, we obtain
u0(0.25) ≈ u0, 1 =  – 0.01042, u′0(0.25) ≈ u′0, 1 = – 0.12500,
u0(0.50) ≈ u0, 2 = – 0.09917, u′0(0.50) ≈ u′0, 2 = – 0.65315,
u0(0.75) ≈ u0, 3 = – 0.39606, u′0(0.75) ≈ u′0, 3 = – 1.83185,
u0(1.00) ≈ u0, 4 = – 1.10823, u′0(1.00) ≈ u′0, 4 = – 4.03895.

(ii) i = 1, u1, 0 = 1, u′1,0 = 0.
u″1, j  = u1, j, u′″1 , j =  u′1, j,  j = 0, 1, 2, 3.

u1, j+1 = u1, j + hu′1, j + 
h

u
h

uj j

2

1

3

12 6, ,+ ′

 = 1
2 6

2

1

3

1+
�
	


�
�


+ +
�
	


�
�


′h
u h

h
uj j, ,  = 1.03125 u1, j + 0.25260 u′1, j

u′1, j+1 = u′1, j + h u1, j + 
h2

2
 u′1, j

 = hu1,j + 1
2

2

1+
�
	


�
�


′
h

u j,  = 0.25 u1, j + 1.03125u j1,′

Hence,
u1(0.25) ≈ u1, 1 = 1.03125, u1′ (0.25) ≈ u1 1, ′  = 0.25,

u1(0.50) ≈ u1, 2 = 1.12663, u1′ (0.50) ≈ u1 2,′  = 0.51563,
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u1(0.75) ≈ u1,3 = 1.29209, u1′ (0.75) ≈ u1 3,′  = 0.81340,

u1(1.00) ≈ u1,4 = 1.53794, u1′ (1.00) ≈ u1 4, ′  = 1.16184.

(iii) i = 2, u2,0 = 0, u2 0′ ,  = 1.

 u u uj j j2, 2, 2,″ = ″′,  = u j2,′ , j = 0, 1, 2, 3.
Since the differential equaton is same as for u1, we get

 u2,j+1 = 1.03125 u2,j + 0.25260u j2,′
u j2, 1+′  = 0.25 u2, j + 1.03125u j2,′

Hence, u2(0.25) ≈ u2,1 = 0.25260, u2′ (0.25) ≈ u2,1′  = 1.03125,

u2(0.50) ≈ u2,2 = 0.52099, u2′ (0.50) ≈ u2,2′  = 1.12663,

u2(0.75) ≈ u2,3 = 0.82186, u2′ (0.75) ≈ u2,3′  = 1.29208,

u2(1.00) ≈ u2,4 = 1.17393, u2′ (1.00) ≈ u2,4′  = 1.53792.
From the given boundary conditions, we have

a0 = a1 = 1, b0 = b1 = 1, γ1 = – 1, γ2 = – e.
 µ1 – µ2 = – 1

[u1(1) + u1′ (1)] µ1 + [u2(1) + u2′ (1)] µ2 = – e – [u0(1) + u0′ (1)]
or   2.69978µ1 + 2.71185 µ2 = 2.42890.
Solving these equations, we obtain µ1 = – 0.05229, µ2 = 0.94771.
We obtain the solution of the boundary value problem from

  u(x) = u0(x) – 0.05229 u1(x) + 0.94771 u2(x).
The solutions at the nodal points are given in the Table 5.1. The maximum absolute
error which occurs at x = 0.75, is given by

 max. abs. error = 0.08168.

Table 5.1. Solution of Problem 5.55.

xj Exact : u(xj) uj

0.25 0.24075 0.17505
0.50 0.41218 0.33567
0.75 0.39694 0.31526

1.00 0.0 – 0.07610

Alternative

Here, we solve the initial value problems
 u1″  – u1 = – 4x ex, u1(0) = 0, u1′ (0) = – (γ1 / a1) = 1,
 u2″  – u2 = – 4x ex, u2(0) = 1, u2′ (0) = [(a0 – γ1)) / a1] = 2.

Using the given Taylor’s series method with h = 0.25, we obtain (as done earlier)

   ui, j+1 = 1.03125 ui, j + 0.25260 ui j,′  – (0.13542xj + 0.01042)e
x j

   ui j, +′ 1 = 0.25 ui,j + 1.03125 ui j,′  – 2(0.5625xj + 0.0625)ex j

    i = 1, 2 and j = 0, 1, 2, 3.
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Using the initial conditions, we obtain
 u1(0.25) ≈ u1,1 = 0.24218, u1′ (0.25) ≈ u1 1,′  = 0.90625,

 u1(0.50) ≈ u1,2 = 0.42182, u1′ (0.50) ≈ u1 2,′  = 0.47348,

 u1(0.75) ≈ u1,3 = 0.42579, u1′ (0.75) ≈ u1 3,′  = – 0.53976,

 u1(1.00) ≈ u1,4 = 0.06568, u1′ (1.00) ≈ u1 4,′  = – 2.50102.

 u2(0.25) ≈ u2,1 = 1.52603, u2′ (0.25) ≈ u2,1′  = 2.18750,

 u2(0.50) ≈ u2,2 = 2.06943, u2′ (0.50) ≈ u2,2′  = 2.11573,
 u2(0.75) ≈ u2,3 = 2.53972, u2′ (0.75) ≈ u2,3′  = 1.56571,

u2(1.00) ≈ u2,4 = 2.77751, u2′ (1.00) ≈ u2,4′  = 0.19872.
Using the boundary condition at x = 1, we obtain, on using (5.98),

λ = 
− − + ′
+ ′ − + ′
e u u

u u u u
[ ( ) ( )]

[ ( ) ( )] [ ( ) ( )]
2 2

1 1 2 2

1 1
1 1 1 1

 = 
−

− −
5 69451

2 43534 2 97623
.

. .
 = 1.05228.

Hence, we have
u(x) = λu1(x) + (1 – λ)u2(x) = 1.05228 u1(x) – 0.05228 u2(x)

Substituting x = 0.25, 0.5, 0.75 and 1.0, we get
u(0.25) ≈ 0.17506, u(0.50) ≈ 0.33568,
 u(0.75) ≈ 0.31527, u(1.00) ≈ – 0.07609.

These values are same as given in the Table except for the round off error in the last
digit.

5.56 Use the shooting method to find the solution of the boundary value problem
y″ = 6y2,

y(0) = 1, y(0.5) = 4 / 9.
Assume the initial approximations

 y′(0) = α0 = – 1.8,  y′(0) = α1 = – 1.9,
and find the solution of the initial value problem using the fourth order Runge-Kutta
method with h = 0.1. Improve the value of y′(0) using the secant method once. Compare
with the exact solution y(x) = 1 / (1 + x)2.
Solution
We use the fourth order Runge-Kutta method to solve the initial value problems :

  I :       y″ = 6y2,
y(0) = 1, y′(0) = – 1.8,

II :     y″ = 6y2,
 y(0) = 1, y′(0) = – 1.9,

and obtain the solution values at x = 0.5. We then have

g(α0) = y(α0 ; b) – 
4
9

,  g(α1) = y(α1 ; b) – 
4
9

.

The secant method gives

     αn+1 = αn – 
α α

α α
n n

n ng g
−
−

�
�
�

�
�
�−

−

1

1( ) ( )
g(αn), n = 1, 2, ...
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The solution values are given by

x y(0) = 1 y(0) = 1 y(0) = 1 y(0) = 1
   α0 = – 1.8    α0 = – 1.9   αsc = 1.998853 y′(0) = – 2

0.1 0.8468373 0.8366544 0.8265893 0.8264724
0.2 0.7372285 0.7158495 0.6947327 0.6944878
0.3 0.6605514 0.6261161 0.5921678 0.5917743
0.4 0.6102643 0.5601089 0.5108485 0.5102787

0.5 0.5824725 0.5130607 0.4453193 0.4445383

Difference Methods

5.57 Use the Numerov method with h = 0.2, to determine y(0.6), where y(x) denotes the
solution of the initial value problem

y″ + xy = 0, y(0) = 1, y′(0) = 0.
Solution
The Numerov method is given by

 yn+1 – 2yn + yn–1 = 
h

y y yn n n

2

1 112
10( + −″ + ″ + ″ ),  n ≥ 1.

= – 
h2

12
 [xn+1 yn+1 + 10xn  yn + xn–1 yn–1]

Solving for yn+1, we get

 1
12

2

1+
�
�
�

�
�
�+

h
xn  yn+1 = 2yn – yn–1 – 

h2

12
 [10xnyn + xn–1yn–1].

Here, we require the values y0 and y1 to start the computation. The Numerov method
has order four and we use a fourth order single step method to determine the value y1.
The Taylor series method gives

 y(h) = y(0) + hy′(0) + 
h2

2
 y″(0) + 

h3

6
y′″ (0) + 

h4

24
y(4)(0).

We have  y(0) = 1,  y′(0) = 0,  y″(0) = 0,  y′″ (0) = – 1,  y(4)(0) = 0,

y(5)(0) = 0,  y(6)(0) = 4.
Hence, we obtain

 y(h) = 1 – 
h h3 6

6 180
+  + ...

For h = 0.2, we get

y(0.2) ≈ y1 = 1 – 
( . )0 2

6

3

 + ... ≈ 0.9986667.

We have the following results, using the Numerov method.

n = 1 :  1
12

0 4
2

+
�
�
�

�
�
�

h
( . )  y2 = 2y1 – y0 – 

h2

12
 [10(0.2)y1 + 0]
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or y2 = 
1

0013333
2 9986667 1

04
12

2 9986667
1.

0.
0.

0.( ) { ( )}− −�
��

�
��   = 0.9893565.

n = 2 : 1
12

0 6
2

+
�
�
�

�
�
�

h
( . )  y3 = 2y2 – y1 – 

h2

12
 [10(0.4) y2 + 0.2 y1]

or y3 = 
1
002

2 9893565 9986667
04

12
10 4 9893565 2 9986667

1.
0. 0.

0.
0. 0. 0. 0.( ) { ( ) ( ) }− − +�

��
�
��

 = 0.9642606.

5.58 Solve the boundary value problem
y″ + (1 + x2) y + 1 = 0,  y (± 1) = 0

with step lengths h = 0.5, 0.25 and extrapolate. Use a second order method.
Solution
Replacing x by – x, the boundary value problem remains unchanged. Thus, the solution
of the problem is symmetrical about the y-axis. It is sufficient to solve the problem in the
interval [0, 1]. The nodal points are  given  by

xn = nh, n = 0, 1, 2, ......., N
where Nh = 1.
The second order method gives the difference equation

1
2h

[yn – 1 – 2yn +  yn + 1] + ( )1 2+ xn yn + 1 = 0,

or – yn – 1 + [2 – ( )1 2+ xn h2] yn –  yn + 1 =  h2, n = 0, 1, 2, ......., N.

The boundary condition gives yN = 0.
For h  = 1 / 2, N = 2, we have

n = 0 : – y–1 + (7 / 4) y0 – y1 = 1 / 4 ,
n = 1 : – y0 + (27 / 16) y1 – y2 = 1 / 4.

Due to symmetry y–1 = y1 and the boundary condition gives y2 = 0.
The system of linear equations is given by

7 4 2
1 27 16

/
/

−
−
�
��

�
��  = 

y
y

0

1

�
��
�
��  = 

1
4

1
1
�
��
�
��

whose solution is y0 = 0.967213, y1 = 0.721311.
For h = 1 / 4, N = 4, we have the system of equations

31 16 2 0 0
1 495 256 1 0
0 1 123 64 1
0 0 1 487 256

/
/

/
/

−
− −

− −
−

�

�

�
�
�

�

�

�
�
�  

y
y
y
y

0

1

2

3

�

�

�
�
�

�

�

�
�
�  = 

1
16

1
1
1
1

�

�

�
�
�

�

�

�
�
�

Using the Gauss-elimination method to solve the system of equations, we obtain
y0 = 0.941518, y1 = 0.880845, y2 = 0.699180, y3 = 0.400390.

Using the extrapolation formula

y(x) = 
1
3

(4yh / 2 – yh),

the extrapolated values at x = 0, 0.5 are obtained as
  y0 = 0.932953, y1 = 0.691803.
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5.59 Use a second order method for the solution of the boundary value problem
y″ = xy + 1,  x ∈  [0, 1],

y′(0) + y(0) = 1, y(1) = 1,
with the step length h = 0.25.
Solution
The nodal points are xn = nh, n = 0(1)4, h = 1 / 4, Nh = 1. The discretizations of the
differential equation at x = xn  and that of the boundary conditions at x = 0 and x =  xN  =
1 lead to

– 1
2h

 (yn – 1 – 2yn + yn + 1)  + xn yn + 1 = 0,  n  = 0(1) 3,

y y
h

1 1

2
− −  + y0 = 1, y4 = 1.

Simplifying we get
– yn – 1 + (2 + xnh2)yn – yn + 1  = – h2,  n = 0(1)3
y–1 = 2hy0 + y1 – 2h, y4 = 1.

We have the following results.

n = 0, x0 = 0 : – y–1  + 2y0 –  y1 = – 
1

16
,

n = 1, x1 = 0.25 : – y0 + 129
64

y1 –  y2  = – 
1

16
,

n = 2, x2 = 0.5 : – y1 + 65
32

 y2 – y3 = – 
1

16
 ;

n = 3, x3 = 0.75 : – y2 + 131
64

 y3 – y4 = – 
1

16
,

and          y–1 = 1
2

y0 +  y1 – 1
2

, y4 = 1.

Substituting for y–1 and y4, we get the following system of equations

3 2 2 0 0
1 129 64 1 0
0 1 65 32 1
0 0 1 131 64

/
/

/
/

−
− −

− −
−

�

�

�
�
�

�

�

�
�
�  

y
y
y
y

0

1

2

3

�

�

�
�
�

�

�

�
�
�  = – 

1
16

9
1
1

15−

�

�

�
�
�

�

�

�
�
�

Using the Gauss  elimination method, we find
y0 = – 7.4615, y1 = – 5.3149,  y2 =  – 3.1888, y3 = – 1.0999.

5.60  A table of the function y = f (x) is given
x 4 5 6 7

y 0.15024 0.56563 1.54068 3.25434
x 8 9 10

y 5.51438 7.56171 8.22108
It is known that f satisfies the differential equation

y″ +  1
4 1

2− − +�
	


�
�
x

n n
x

( )
y = 0

where n is a positive integer.
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(a) Find n.
(b) Compute f (12) using Numeröv’s method with step size 1.

(Uppsala Univ., Sweden, BIT 8(1968), 343)
Solution
(a) The application of the  Numeröv method at x = 5 gives, with h = 1,

y4 – 2y5 + y6 = 
1

12
104 5 6( )y y y″ + ″ + ″

or 12y4
 – 24y5 + 12y6 = y y y4 5 610″ + ″ + ″ .

We now use the differential equation and the given data to find y4″ , y5″  and y6″ . We have,
x4 = 4, x5 = 5, x6 = 6, and

 y4″  = – 1 1
1

16
− − +�

	

�
�


n n( )
y4 = 

n n( )+ 1
16

y4 .

 y5″  = – 1
4
5

1
25

− − +�
	


�
�


n n( )
y5 = – 0.113126 + 

1
25

 n(n + 1)y5,

 y6″  = – 1
4
6

1
36

− − +�
	


�
�


n n( )
y6 = – 0.51356 + 

1
36

n(n + 1)y6.

Substituting into the Numeröv method, we get
 8.36074 = 0.278439 n(n + 1),

or n(n + 1) – 30.027187 = 0.
Solving  for  n, we get

n = 
− +1 11.0049

2
 = 5.0025 ≈ 5.

Hence, we obtain n = 5.
(b) We take n = 5 and apply Numeröv’s method at x = 10 and 11.
We have at x = 10,

12y11 – 24y10 + 12y9 = y y y9 10 1110″ + ″ + ″

where y10″  = – 1
4
10

30
100

− −�
	


�
�
  y10 = – 2.466324,

y9″  = – 1
4
9

30
81

− −�
	


�
�
 y9 = – 1.400317.

y11″  = – 1
4
11

30
121

− −�
	


�
�
 y11 = – 0.388430y11.

Substituting, we get 12.388430 y11 = 24y10 – 12y9 – 26.063557.
Simplifying, we get y11 = 6.498147.
We  have at x = 11,

12y12 – 24y11 + 12y10  = y y y12 11 1010″ + ″ + ″ .

where y12″   = – 1
1
3

5
24

− −�
	


�
�
 y12 =  – 

11
24

y12.

Substituting, we get  12.458333 y12 = 24y11 – 12y10 + 10 11 10y y″ + ″

= 20.1157y11 – 12y10 + y10″
Simplifying,  we get y12 =  2.375558.
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5.61 Find difference approximations of the solution y(x) of the boundary value problem
y″ + 8(sin2 πx)y = 0, 0 ≤ x ≤ 1,
y(0) =  y(1) = 1

taking step-lengths h =1 / 4 and h  = 1 / 6. Also find an approximate value for y′ (0).
(Chalmer’s Inst. Tech., Gothenburg, Sweden, BIT 8(1968), 246)

 Solution
The  nodal points are given by xn  = nh, n = 0(1) N,

Nh = 1.
We apply the second order method at x = xn and obtain

yn – 1 – 2yn + yn + 1 + 8h2 sin2 (π xn) yn  = 0
or – yn – 1 + [2 –  8h2 sin2(πxn)] yn – yn + 1 = 0.
The boundary conditions become y0 = yN = 1.
The solution is symmetrical about the point x = 1 / 2. It is sufficient to consider the
interval [0, 1 / 2].
For  h = 1 / 4, we have the mesh points as 0, 1 / 4 and 1 / 2.
We  have the following difference equations.

n = 1 : – y0 + 2 8
1

16
1
2

−�	

�
�
. .  y1 – y2 = 0, or

7
4

 y1 – y2 = 1.

n = 2 : – y1 + 2 8
1

16
1−�	

�
�
. .  y2 – y3 = 0, or – 2y1 + 

3
2

 y2 = 0,

since y1 ≈ y3.
Solving, we get y1 = 2.4, y2 = 3.2.
We also  find

y0′  =  
y y

h
1 0−

 = 
2. 1.

0.
4 0

25
−

 = 5.6,

which is a first order approximation.
A second order approximation is given by

 y0′  = 
1

2h
 [– 3y0 + 4y1 – y2] = 6.8.

For h = 1 / 6, we have the mesh points as 0, 1 / 6, 1 / 3 and 1 / 2.
We have the following system of equations

 

35 18 1 0
1 11 6 1

0 2 16 9

/
/

/

−
− −

−

�

�
�
�

�

�
�
�  

y
y
y

1

2

3

�

�
�
�
�

�
�
�  = 

1
0
0

�

�
�
�
�

�
�
�

where we have incorporated the boundary condition y0 = 1, and have used the symmet-
ric condition y2 = y4.
The  solution is obtained as y1 = 1.8773, y2 = 2.6503, y3 = 2.9816.

A first order approximation to y0′   is given by

 y0′  = 
1
h

[y1 – y0] = 5.2638.
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A second order approximation to y0′  is given by

 y0′  = 
1

2h
[– 3y0 + 4y1 – y2] = 5.5767.

5.62 Determine a difference approximation of the problem

d
dx

x
dy
dx

( )1 2+�
��

�
��  – y = x2 + 1,

y(– 1) = y(1) = 0.
Find approximate value of y(0) using the steps h = 1 and h = 0.5 and perform Richardson
extrapolation. (Royal Inst. Tech., Stockholm, Sweden, BIT 7(1967), 338)
Solution
We write the differential equation as

(1 + x2) y″ + 2xy′ – y = x2 + 1.
The boundary  value problem is symmetric about at x = 0. Therefore, it is sufficient to
consider the interval [0, 1].
A second order difference approximation is given by

1
2h

 (1 + xn
2 ) (yn – 1 – 2yn +  yn + 1) + 

2
2
x
h
n  (yn + 1  – yn – 1) – yn = xn

2  +  1,

or       (1 + xn
2  – hxn) yn – 1 – [2(1 + xn

2 ) + h2] yn + (1 + xn
2  + hxn) yn + 1  = h2(xn

2  + 1).

For h = 1, we have only one mesh point as 0. We have the difference approximation as
y–1 – 3y0 + y1 = 1, which gives y0 = – 1 / 3, since  y–1 = 0 = y1.
For h =  1 / 2, we have two mesh points as 0 and 1 / 2. We have the following difference
approximations.

n  = 0, x0 = 0 : y–1 – 
9
4

 y0 + y1 = 
1
4

, or – 9y0 + 8y1 = 1.

n = 1, x1 = 
1
2

 : y0 – 
11
4

 y1 + 
3
2

y2 = 
5
16

, or 4y0
 – 11y1 =  

5
4

.

Solving, we get y0 = – 0.3134,  y1 = – 0.2276.
The extrapolated value at x = 0 is given by

y0 = 
1
3

 [4yh / 2 (0) – yh (0)] = – 0.3068.

5.63 Given the boundary value problem

(1 + x2) y″ + 5
3

x
x

+�
	


�
�
  y′ + 

4
3

 y + 1 = 0,

y(– 2) = y(2) = 0.6.
(a) Show that the solution is symmetric, assuming that it is unique.
(b) Show that when x = 0, the differential equation is replaced by a central condition

4 y″ + 
4
3

1 0y + =
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(c) Discretize  the  differential  equation  and  the  central  condition  at  xn = nh,
n = ± N, ± N – 1, ..., ± 1, 0 and formulate the resulting three point numerical
problem. Choose h = 1 and find approximate values of y(0), y(1) and y(– 1).

(Royal Inst. Tech., Stockholm, Sweden, BIT 18 (1978), 236)
Solution
(a) Replacing x by – x in the boundary value problem, we get

(1 + x2) y″ (– x) + 5
3

x
x

+�
	


�
�
  y′ (– x) + 

4
3

 y(– x) + 1 = 0,

y(2) = y(– 2) = 0.6.
The function y(– x) satisfies the same boundary value problem.
Hence, we deduce that the solution is symmetric about x = 0.
(b) Taking the limits as x → 0, we get

lim
x → 0  ( )1 5

3 4
3

12+ ″ + +�
	


�
�
 ′ + +

�
��

�
��

x y x
x

y y  = 4y″ + 
4
3

y + 1 = 0.

(c) The discretization of the differential equation at x = xn may be written as
1
2h

 (1 + xn
2 ) (yn – 1 – 2yn + yn + 1)

+ 
1

2h
 5

3
x

xn
n

+
�
	


�
�
  ( )y yn n+ −−1 1  + 

4
3

yn + 1 = 0,

n ≠ 0, n = ±1, ± 2, .......,  ±(N – 1).
At n = 0, we get from the central condition

4
2h

 (y–1 – 2y0 + y1) + 
4
3 0y  + 1 = 0.

Due to  symmetry, we need to  consider the discretization of the boundary value problem
at n = 0(1)N – 1, with the boundary condition yN = 0.6.
For h = 1, we  have the following difference equations.

n = 0,  x0 = 0 : 4(– 2y0 + 2y1) + 
4
3 0y  + 1 = 0,

n = 1,  x1 = 1 : (1 + x1
2 ) (y0 – 2y1  + y2) + 

1
2

 5
3

1
1

x
x

+
�
	


�
�
  ( )y y2 0−  + 

4
3 1y  + 1 = 0,

and  y2 = 0.6.
Simplifying, we get

−�
��

�
��

20 3 8
2 8 3

/
/  

y
y

0

1

�
��
�
��  = 

−�
��
�
��

1
4 6.

The solution is obtained as y0 = 1.1684, y1 = 0.8487.

5.64 We solve the boundary value  problem
(1 + x2) y″ – y = 1,
y′(0) = 0, y(1) = 0

with the band matrix method. The interval (0, 1) is divided into N subintervals of  lengths
h = 1 / N . In order to get  the  truncation error O(h2) one has to discretize the equation
as well as boundary conditions by central differences. To approximate the boundary
condition at x = 0, introduce a fictive x1 = – h and replace y′(0) by a  central difference
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approximation. x1 is eliminated by using this equation together with the main difference
equation at x = 0.
(a) State the system arisen.
(b) Solve the system with  h = 1 / 3. Use 5 decimals in calculations.
(c) If the problem is solved with h = 1 / 4 we get y(0) ≈ – 0.31980.
Use this result and the one of (b) to get a better estimate of  y(0).

(Inst. Tech., Linköping, Sweden,  BIT 24(1984), 129)
Solution
The nodal points are xn = nh, n = 0(1)N.
(a) The second order discretization of the boundary condition y′(0) and the differential

equation is given by
1
h

 (y1 – y–1) = 0,

1
2h

 (1  + xn
2 )(yn – 1 – 2yn  + yn + 1)  – yn = 1,

and  yN = 0.
After simplification we obtain, for

n = 0 : (2 + h2) y0 – 2y1 =  – h2,
1 ≤ n ≤ N – 1 : – (1+ n2 h2) yn – 1 + [2 + (2n2 + 1)h2]yn – (1 + n2h2) yn + 1 = – h2,

and yN  = 0, with y–1 = y1.
(b) For h = 1 / 3, we have the system of equations

19 9 2 0
10 9 21 9 10 9

0 13 9 3

/
/ / /

/

−
− −

−

�

�
�
�

�

�
�
�  

y
y
y

0

1

2

�

�
�
�
�

�
�
�  = – 

1
9

 
1
1
1

�

�
�
�
�

�
�
�

whose solution is
y0 = – 0.32036, y1 =  – 0.28260,  y2 = – 0.17310.

(c) We have   y(0, h) = y0 + c1h
2 + O(h3).

Therefore, y 0
1
4

,�	

�
�
  = y(0) + 

C1

16
 + O(h3),

y 0
1
3

,�	

�
�
  = y(0) + 

C1

9
 + O(h3).

Richardson extrapolation (eliminating C1) gives
y(0) ≈ [16y1 /  4 (0) – 9y1/3 (0)] / 7 = – 0.31908.

5.65 (a) Find the coefficients a and b in the operator formula
δ2 + aδ4 = h2D2(1 + bδ2) + O(h8)

(d) Show that this formula defines an explicit multistep method for the integration of
the special second order differential equation y″ = f  (x, y).
Prove by considering the case f  (x, y) = 0 that the proposed method is unstable.

(Stockholm Univ., Sweden, BIT 8(1968), 138)
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Solution
(a) We assume that the function y(x) ∈  CP + 1 [a, b] for p ≥ 1. Applying the difference
operator on y(xn), the truncation error Tn is written as

Tn = δ2 y(xn) + aδ4 y(xn) – h2(1 + bδ2) y″ (xn)
We know that

δ2 y(xn) = h2y″(xn) + 
h4

12
y(4) (xn) + 

h6

360
y(6) (xn) + 

h8

20160
y(8) (xn) + ...

δ4 y(xn) = h4y(4)(xn) + 
h6

6
 y(6) (xn) + 

h8

80
y(8) (xn) + ...

δ2 y″(xn) = h2y(4) (xn)  + 
h4

12
y(6) (xn) +  

h8

360
y(8) (xn)  + ...

Substituting the expansions in  the truncation error, we obtain
 Tn = C2 h

2 y″(xn) + C4h
4 y(4) (xn) + C6h

6 y(6) (xn) + C8h8 y(8) (xn) + ....

where C2 = 0, C4 = 
1

12
 + a – b,  C6 = 

1
360

 + 
a
6

 – 
b

12
.

Setting C4 = 0, C6 = 0 we get a = 1/20, b = 2/15.
The truncation error is given by

 Tn = 
1

20160 80 360
+ −�

	

�
�


a b
 h8 y(8) (xn) + O(h4)

=  
23

75600
 h8 y(8) (xn) + O(h10)

(b) The characteristic equation when f (x, y) = 0, is

ξ(ξ – 1)2 + 
1

20
 (ξ – 1)4 = 0

whose roots are 1, 1, – 9 ± 4 5 .
The root condition is not satisfied. Hence, the method is unstable.

5.66 (a) Determine the constants in the following relations :
h–4δ4 = D4(1 + aδ2 + bδ4) + O(h6),

hD = µδ + a1∆
3 E–1  + (hD)4(a2 + a3 µδ + a4δ

2) + O(h7).
(b) Use the relations in (a) to construct a difference method for the boundary value

problem
 yiv (x) = p(x)y(x) + q(x)

y(0), y(1), y′(0) and y′(1) are given.
The step size is h = 1/N, where N is a natural number. The boundary conditions should
not be approximated with substantially lower accuracy than the difference equation.
Show that the number of equations and the number of unknowns agree.

(Uppsala Univ., Sweden,  BIT 8(1968), 59)
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Solution
(a) Applying the difference operators on y(xn), we obtain the truncation error at x = xn as

Tn
( )2  =  δ4y(xn) – h4(1 + aδ2 + bδ4)y(4) (xn) + O(h10)

=  C6h
6y(6)(xn) + C8h

8y(8)(xn) + O(h10)

where C6 = 
1
6

 – a, C8 = 
1

80
  – 

a
12

 – b.

Setting C6 = 0, C8 = 0, we obtain a = 1/6, b = –1/720.
Next, we apply the first  derivative operator hD on y(xn) and write as

 Tn
( )1   = h y′(xn) – µδ y(xn) – a1∆

3 y(xn – h)

– h4(a2 + a3 µδ + a4δ
2) y(4) (xn) + O (h7)

= hy′(xn) – 
1
2

 [y(xn + 1)  – y(xn – 1)] – a1[y(xn + 2)

– 3y(xn + 1) + 3y(xn) – y(xn – 1)]  – h4 (a2 + a4δ
2)y(4) (xn)

– 
1
2

 h4a3 [y
(4) (xn + 1) – y(4) (xn – 1)]

=  C3 h
3 y(3) (xn) + C4 h

4 y(4) (xn) + C5 h
5 y(5) (xn) + C6 h

6 y(6) (xn) +  O(h7)

where C3 = –  
1
6

 – a1, C4 = – 
a1

2
 – a2,

C5 = – 
1

120
 –  

a1

4
 – a3, C6 = – 

a1

12
 – a4.

Setting  C3 = C4 = C5 = C6 = 0, we obtain
 a1 = – 1/6, a2 = 1/12, a3 = 1/30, a4 = 1/72.

(b) The difference scheme at x = xn , can be written as

 δ4yn = h4 1
1
6

1
720

2 4+ −�
	


�
�
δ δ  [p(xn)yn + q(xn)],

n = 1 (1) N – 1,

 y′(xn) = h–1 µδy E yn n−�
��

�
��

−1
6

3 1∆  + h3
1

12
1

30
1

72
2+ +�

	

�
�
µδ δ  [p(xn)yn + q(xn)],

n = 0, N.
When n = 1, the first equation contains the unknown y– 1 outside [0, 1]. This unknown
can be  eliminated using the second equation at n = 0. Similarly, when n = N – 1, the first
equation contains,  yN + 1  outside  [0, 1]  which can be eliminated using the second
equation at n = N. Further, y(0), y(1) are prescribed. Hence, we finally have (N – 1)
equations in N – 1 unknowns.

5.67 The differential equation y″ + y = 0, with initial conditions y(0) = 0, y(h) = K, is solved
by the Numeröv method.

(a) For which values of h is the sequence { }yn 0
∞  bounded ?

(b) Determine  an explicit expression for yn . Then, compute y6 when h = π/6 and K = 1/2.
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Solution
The Numeröv method

  yn +1 – 2yn + yn – 1 = 
h

y y yn n n

2

1 112
10( )+ −″ + ″ + ″

is applied to the equation y″ = – y yielding
 yn + 1 – 2Byn  + yn – 1 = 0

where    B = 1
5
12

1
1

12
2 2−�	

�
�
 +�	


�
�
h h .

The characteristic equation is
ξ2 – 2Bξ + 1 = 0

whose roots  are   ξ = B ± B2 1− .

(a) The solution yn will remain bounded if

 B2 ≤ 1, or 1
5
12

1
12

2
2 2 2

−�	

�
�
 ≤ +

�
	


�
�


h
h

or – 
h2

6
 (6 – h2) ≤ 0.

Hence, we obtain 0 < h2 ≤ 6.
(b) Since, | B |  ≤ 1,  let B = cos θ.  The roots of the characteristic equation are given by
ξ = cos θ ± i sin θ, and the solution can be written as

 yn = C1 cos nθ + C2 sin nθ.
Satisfying the initial conditions, we obtain

y0 = C1 = 0,
y1 = K = C2 sin θ, or C2 = K/sin θ.

We have yn = K 
sin
sin

nθ
θ

 .

For n = 6, h = π/6 and K = 1/2, we have

B = cos θ = 1
5
12 36

1
1

12 36

2 2

−
�
�
�

�
�
� +
�
�
�

�
�
�. .

π π
 = 0.865984,

and  θ = 0.523682.

Hence,  y6 = 
1
2

 
sin
sin

6θ
θ  ≈ – 0.0005.

5.68 A diffusion-transport problem is described by the differential equation for x > 0,

py″ + V y′ = 0, p > 0, V > 0, p/V << 1 (and starting conditions at x = 0).
We wish to solve the problem numerically by a difference method with stepsize h.
(a) Show that the difference equation which arises when central differences are used for

y″ and y′ is stable for any h > 0 but that when p/h is too small the numerical solution
contains slowly damped oscillations with no physical meaning.

(b) Show that when forward-difference approximation is used for y′ then there are no
oscillations. (This technique is called upstream differencing and is very much in use
in the solution of streaming problems by difference methods).

(c) Give the order of accuracy of the method in (b).
[Stockholm Univ., Sweden, BIT 19(1979), 552]
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Solution
(a) Replacing the derivatives y″ and y′ in the differential equation by their central dif-
ference approximations, we obtain

p

h2
 (yn–1 – 2yn + yn+1) + 

V
h2

 (yn+1 – yn–1) + O(h2) = 0.

Neglecting the truncation error, we get

1
2

2 1
21 1+

�
	


�
�
 − + −

�
	


�
�
+ −

Vh
p

y y
Vh

p
yn n n  = 0.

The characteristic equation is given by

 1
2

+
�
	


�
�


Vh
p  ξ2 – 2ξ + 1

2
−

�
	


�
�


Vh
p  = 0,

or   (1 + Re) ξ2 – 2ξ + (1 – Re) = 0
where Re = Vh / (2p) is called the cell Reynold number.
The roots are given by ξ = 1 and ξ = (1 – Re) / (1 + Re).
The solution of the difference equation is given by

yn = C1 + C2 
1
1

−
+

�
	


�
�


Re
Re

n

when (p / h) is too small, that is
Hence, move if Re >> 1, then the solution will contain slowly damped oscillations.
(b) Let now the forward difference approximation to y′ be used. Neglecting the trunca-
tion  error we get the difference equation

1 2 1
21+

�
	


�
�
 − +

�
	


�
�
+

Vh
p

y
Vh

pn  yn + yn–1 = 0,

or (1 + 2 Re)yn+1 – 2(1 + Re)yn + yn–1 = 0.
The characteristic equation is given by

(1 + 2Re) ξ2 – 2 (1 + Re) ξ + 1 = 0,
whose roots are ξ = 1 and 1 / (1 + 2Re). The solution of the difference equation is

yn = A + 
B

Re n( )1 2+
 .

Hence, for Re > 1, the solution does not have any oscillations.
(c) The truncation error of the difference scheme in (b) is defined by

Tn = 1 2 1
21+

�
	


�
�
 − +

�
	


�
�
+

Vh
p

y x
Vh

pn( )  y(xn) + y(xn–1).

Expanding each term in Taylor’s series, we get

Tn = 
V
p

y x y x h O hn n′ + ″
�
��

�
��

+( ) ( ) ( )2 3

where  xn–1 < ξ < xn+1.
The order of the difference scheme in (b) is one.
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5.69 In order to illustrate the significance of the fact that even the boundary conditions for a
differential equation are to be accurately approximated when difference methods are
used, we examine the differential equation

y″ = y,

with boundary conditions y′(0) = 0, y(1) = 1, which has the solution y(x) = 
cosh
cosh ( )

x
1

 .

We put xn = nh, assume that 1 / h is an integer and use the difference approximation

yn″  ≈ (yn+1 – 2yn + yn–1) / h2.

Two different representations for the boundary conditions are
(1) symmetric case :  y–1 = y1 ; yN = 1, N = 1 / h,
(2) non-symmetric case

y0 = y1, yN = 1.
(a) Show that the error y(0) – y0 asymptotically approaches ah2 in the first case, and bh

in the second case, where a and b are constants to be determined.
(b) Show that the truncation error in the first case is O(h2) in the closed interval [0, 1].

[Stockholm Univ., Sweden, BIT 5(1965) 294]
Solution
(a) Substituting the second order difference approximation into the differential equa-
tion, we get the difference equation

yn+1 – 2 1
2

2

+
�
	


�
�


h
 yn + yn–1 = 0.

The characteristic equation is given by

ξ2 – 2 1
2

2

+
�
	


�
�


h
 ξ + 1 = 0

with roots  ξ1h = 1 + 
h2

2
 + 1

2
1

2 2 1/2

+
�
	


�
�


−
�

�
�
�

�

�
�
�

h

= 1 + 
h2

2
 + h 1

4

2 1/2

+
�
�
�

�
�
�

h
 = 1 + h + 

h2

2
 + 

h3

8
 + ...

= eh 1
1

24
3 4− +�

	

�
�
h O h( ) ,

 ξ2h = 1 + 
h2

2
 – 1

2
1

2 2 1/2

+
�
	


�
�


−
�

�
�
�

�

�
�
�

h
 = 1 – h + 

h2

2
 – 

h3

8
 + ...

= e–h 1
1

24
3 4+ +�

	

�
�
h O h( ) .

The solution of the difference equation may be written as
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yn = C1 e
nh 1

24
3 4− +�

	

�
�


n
h O h( )  + C2 e

–nh 1
24

3 4+ +�
	


�
�


n
h O h( )

where C1 and C2 are arbitrary parameters to be determined with the help of the
discretization of the boundary conditions.
(1) Symmetric case : We have y–1 = y1. Hence, we obtain

 C1 e
h 1

1
24

3 4− +�
	


�
�
h O h( )  + C2 e–h 1

1
24

3 4+ +�
	


�
�
h O h( )

= C1 e
–h 1

1
24

3 4+ +�
	


�
�
h O h( )  + C2 eh 1

1
24

3 4− +�
	


�
�
h O h( )

We get C1 = C2.
Next, we satisfy yN = 1, Nh = 1.

 yN = C1 e 1
1

24
2 3− +�

	

�
�
h O h( )  + C2 e–1 1

1
24

2 3+ +�
	


�
�
h O h( )  = 1.

Since C1 = C2, we obtain

 C1 = 
1

2 1 12 12 3[ cosh ( ) ( / ) sinh ( ) ( )]− +h O h

= 
1

2 1cosh ( )  1
1

24 1

2
3

1

− +
�
�
�

�
�
�

−
h

O h
sinh ( )
cosh ( )

( )

= 
1

2 1cosh ( )  1
1

24 1

2
3+ +

�
�
�

�
�
�

h
O h

sinh ( )
cosh ( )

( )

The solution of the difference equation becomes

yn = C1 2
12

2

cosh sinhx
x h

xn
n

n−
�
�
�
�

�
�
�
�
 .

y0 = 2C1 = 
1

1cosh ( )
 + 

h2

224
1
1

sinh ( )
cosh ( )

 + O(h3).

We get from the analytic solution y(0) = 1 / cosh (1).
Hence, we have  y(0) – y0 = ah2,

where    a = – 
1

24
1
12

sinh ( )
cosh ( )

 = – 0.020565.

(2) Non-symmetric case : y0 = y1, yN = 1.
Satifying the boundary conditions, we obtain

C1 + C2 = C1 eh + C2 e–h + O(h3),
or (eh – 1) C1 = (1 – e–h) = C2 + O(h3),

or h
h

O h+ +
�
�
�

�
�
�

2
3

2
( )  C1 = h

h
O h− +

�
�
�

�
�
�

2
3

2
( )  C2

 or C1 = 1
2

1
2

1
2+�	


�
�
 −�	


�
�
 +

�
��
��

�
��
��

−h h
O h( )  C2 = [1 – h + O(h2)] C2.
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 yN = C1 e + C2 e–1 + O(h3),
or    1 = [(1 – h) e + e–1 + O(h2)] C2.
Neglecting the error term, we obtain

C2 = 
1

2 1cosh ( ) − he
 = 

1
2 1

1
2 1

1

cosh ( ) cosh ( )
−

�
��

�
��

−
he

= 
1

2 1
1

2 1cosh ( ) cosh ( )
+

�
��

�
��

he
 ,

where the O(h2) term is neglected.

 C1 = (1 – h)C2 = 
1

2 1
1

2 1cosh ( ) cosh ( )
− +

�
��

�
��

h
he

where the O(h2) term is neglected.
Thus, we have y0 = C1 + C2

= 
1

2 1
2

1cosh ( ) cosh ( )
− +

�
��

�
��

h
he

 = 
1

2 1
2

1
1cosh ( )

sinh ( )
cosh ( )

+
�
��

�
��

h

= 
1

1
1

2 12cosh ( )
sinh ( )

cosh ( )
+

�
�
�

�
�
�

h

y(0) – y0 = 
1

1cosh ( )  – y0 = – 
h
2

1
2 12

sinh ( )
cosh ( )

�
	


�
�
  = 12 ah.

We have  bh = 12 ah, or b = 12a = – 0.24678.
(b) Hence, from (a), in the symmetric case the truncation error is O(h2) while in the
nonsymmetric case it is O(h).

5.70 A finite difference approximation to the solution of the two-point boundary value problem
y″ = f (x)y + g(x), x ∈ [a, b]

y(a) = A, y(b) = B
is defined by

– h–2 (yn–1 – 2yn + yn+1) + f (xn)yn = – g(xn), 1 ≤ n ≤ N – 1,
and y0 = A, yN = B,
where N is an integer greater than 1, h = (b – a) / N, xn = a + nh, and yn denotes the
approximation to y(xn).
(i) Prove that if f (x) ≥ 0, x ∈  [a, b] and y(x) ∈  C4 [a, b], then

| y(xn) – yn | ≤ 
h2

24
 M4 (xn – a)(b – xn)

where M4 = max
[ , ]x a b∈

| y(4) (x) |.

(ii) Show that with N = 3, the difference scheme gives an approximation to the solution
of

y″ – y = 1,  x ∈  [0, 1]
y(0) = 0,  y(1) = e – 1,

for which  | y(xn) – yn | ≤ 
e

864
 ,  0 ≤ n ≤ 3.
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Solution
(i) The difference equation at x = xn is defined by

– yn–1 + 2yn – yn+1 + h2fn yn = – gnh2, n = 1(1) N – 1.
Incorporating the boundary conditions y0 = A and yN = B into the difference equations,
we write the system of equations in matrix notation as

 Jy + h2 Fy = D

where J = 

2 1
1 2 1

1 2 1
1 2

−
− −

− −
−

�

�

�
�
�
�
�

�

�

�
�
�
�
�

0

0

... , F = 

f
f

fN

1

2

1

0

0 �

−

�

�

�
�
�

�

�

�
�
�

y = [y1 y2 ... yN–1]T, D = [A – h2g1 – h2g2 ... B – h2gN–1]
T.

Exact solution satisfies the equation
Jy(xn) + h2 F y(xn) = D – T

where T = [T1 T2 ... TN–1]
T is the truncation error.

In order to find the error equation, we put yn = y(xn) + εn in the difference equation and
obtain

 Jεεεεε + h2 Fεεεεε = T
where    εεεεε = [ε1 ε2 ... εN–1]

T.
The truncation error is given by

Tn = y(xn+1) – 2y(xn) + y(xn–1) – h2f (xn) y(xn) – h2 g(xn)

= 
h4

12
 y(4) (ξ), xn–1 < ξ < xn+1.

Hence, | Tn | ≤ 
h4

12
 M4,  M4 = max

[ , ]x a b∈
 | y(4) (x) |.

Since f (x) ≥ 0, x ∈  [a, b] we have
J + h2 F > J.

The matrices J and J + h2 F are irreducibly diagonal dominent with non-positive off
diagonal elements and positive diagonal elements. Hence, J and J + h2 F are monotone
matices.
If follows that (J + h2F)–1 < J–1.
Hence, we get εεεεε = (J + h2 F)–1 T ≤ J–1T.
We now determine J–1 = ( ji,  j ) explicitly. On multiplying the rows of J by the jth column
of J–1, we have the following difference equations.
(i) – 2 j1, j  – j2, j = 0,

(ii) – ji–1, j + 2 ji, j – ji+1, j = 0,   2 ≤ i ≤ j – 1,
(iii) – jj–1, j + 2 jj, j – jj+1, j = 1,
(iv) – ji–1, j + 2 ji, j – ji+1, j = 0,   j + 1 ≤ i ≤ N – 2,
(v) – jN–2, j + 2 jN–1, j = 0.
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On solving the difference equations, we get

 ji, j = 

i N j
N

i j

j N i
N

i j

( )
, ,

( )
, ,

− ≤

− ≥

Note that the matrix J–1 is symmetric. The row sum of the nth row of J–1 is

jn j
j

N

,
=

−

∑
1

1

 = 
n N n( )−

2
 = 

( )( )x a b x

h
n n− −

2 2 .

Thus, we have

  | εn | ≤ 
h4

12
 M4 

( )( )x a b x

h
n n− −

2 2

or | y(xn) – yn | ≤ 
h2

24
 M4 (xn – a)(b – xn).

(ii) We are given that
 N = 3, f (x) = 1, g(x) = 1, A = 0,
B = e – 1, a = 0, b = 1, h = 1 / 3.

We have y(4) (x) = y″(x) = y(x) + 1.

Therefore,  M4 = max
[ , ]x ∈ 0 1

 |y(4) (x) | = max
[ , ]x ∈ 0 1

 | y(x) + 1 | = e – 1 + 1 = e.

Maximum  of  (xn – a)(b – xn)  occurs  for  xn = (a + b) / 2  and  its maximum magnitude is
(b – a)2 / 4 = 1 / 4. Hence

 | y(xn) – yn | ≤ 
e

864
 , 0 ≤ n ≤ 3.

5.71 Consider the homogeneous boundary value problem
y″ + Λ y = 0,

y(0) = y(1) = 0.
(a) Show that the application of the fourth order Numerov method leads to the system

J I−
+

�
��

�
��

λ
λ1 12/  y = 0

where λ = h2 Λ.
(b) Show that the approximation to the eigenvalues by the second and fourth order meth-

ods are given by 2(1 – cos n πh) / h2 and 12(1 – cos nπh) / [h2(5 + cos nπh)], 1 ≤ n ≤ N
– 1, respectively, where h = 1 / N.

(c) Noticing that Λn = n2 π2, show that the relative errors

Λ
Λ

n n

n

h− −2 λ

for the second and the fourth order methods are given by Λnh2 / 12 and Λ n
2 h4 / 240,

respectively, when terms of higher order in h are neglected.
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Solution
(a) The application of the Numeröv method leads to the system

yn+1 – 2yn + yn–1 + 
λ
12

 (yn+1 + 10yn + yn–1) = 0,

n = 1, 2, ... N – 1,

or – yn+1 + 2yn – yn–1 – 
λ
λ1 12+ /

yn = 0,

n = 1, 2, ..., N – 1,
where λ = h2Λ.
Incorporating the boundary conditions we obtain

J I−
+

�
	


�
�


λ
λ1 12/  y = 0.

(b) For the second order method, we have
 yn+1 – 2[1 – (λ / 2]yn + yn–1 = 0,

  y0 = yN = 0.
The characteristic equation of the difference equation is given by

ξ2 – 2[1 – (λ / 2)] ξ + 1 = 0.
Substitute  cos θ = 1 – (λ / 2).  Then  the roots of the characteristic equation are given by

ξ = cos θ ± i sin θ = e i± θ
. The solution of the difference scheme becomes

  yn = C1 cos nθ + C2 sin nθ.
Boundary  conditions  y(0) = 0,  y(1) = 0 lead to C1 = 0, C2 sin (Nθ) = 0, or θ = nπ / N. Since
h = 1 / N, we have

1 – 
1
2

 λn = cos θ = cos (n π h), or λn = 2 [1 – cos (n π h)],

or Λn = 
2
2h

 [1 – cos (n π h)].

Similarly, for the Numeröv method, we substitute
1 5 12
1 12
−
+

λ
λ

/
/

 = cos θ

and find that θ = nπ / N = nπh.
The eigenvalue is given by

1
5
12

1
1

12
−�

��
�
��

+�
��

�
��

��
�

��
�

λ λn n  = cos (n π h), or λn = 
12 1

5
[ cos ( )]

cos ( )
−

+
n h

n h
π

π

or Λn = 
12 1

52h
n h
n h

−
+

�
��

�
��

cos ( )
cos ( )

π
π  .

(c) The analytical solution of the eigenvalue problem gives Λn = n2 π2.

We have 1 – cos (n π h) = 1 – 1 + 
1
2

 n2 π2 h2 – 
1

24
 n4 π4 h4 + O(h6)

    = 
1
2

 n2 π2 h2  1
1

12
2 2 2 4− +�

��
�
��

n h O hπ ( )

For the second order method, we obtain
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1
2h

 λn = 
2
2h

 [1 – cos (n π h)]

= n2π2 1
1

12
2 2 2 4− +�

��
�
��

n h O hπ ( ) ,

Thus, the relative error in the eigenvalue is given by

  
Λ

Λ
n n

n

h− −2 λ
 = 

Λ n

12
 h2 + O(h4).

We have

 [5 + cos (n π h)]–1 = 6
1
2

1
24

2 2 2 4 4 4 6
1

− + +�
��

�
��

−

n h n h O hπ π ( )

= 
1
6

1
1

12
1

144
2 2 2 4 4 4 6

1

− − +���
���

�
��

�
��

−

n h n h O hπ π ( )

= 
1
6

1
1

12
2 2 2 6+ +�

��
�
��

n h O hπ ( )

[ cos ( )]
[ cos ( )]
1
5

−
+

n h
n h

π
π  = 

1
6

1
2

2 2 2�
	

�
�

�
	


�
�
n hπ  1

1
12

1
360

2 2 2 4 4 4 6− + +�
��

�
��

n h n h O hπ π ( )

× 1
1

12
2 2 2 6+ +�

��
�
��

n h O hπ ( )  = 
1

12
 n2 π2 h2 1

1
240

4 4 4 6− +�
��

�
��

n h O hπ ( )

1
2h

 λn = 
12

2h
 
[ cos ( )]
[ cos ( )]
1
5

−
+

n h
n h

π
π  = n2 π2 1

1
240

4 4 4 6− +�
��

�
��

n h O hπ ( )

Therefore, for the Numeröv method, the relative error is given by

 
Λ

Λ
n n

n

h− −2 λ
 = 

1
240

 n2 π2 h4 + O(h6) = 
1

240
 Λ n

2  h4 + O(h6).

5.72 Solving the differential equation y″ = y, 0 ≤ x ≤ 1, with boundary conditions
y(0) = y(1) = 1, is associated with minimizing the integral

I = ( )y y dx′ +� 2 2

0

1

.

Find Imin using the approximate solution y = 1 + ax(1 + x).
[Lund Univ., Sweden, BIT 29(1989), 158]

Solution

We have  I = [ ( ) ( ) ( ) ]a x a x x a x x dx2 2 2 2 2 2

0

1

1 2 1 2− + + − + −�
= 

11
30

1
1
3

2a + +  a.

Setting dI / da = 0, we find that the minimum is obtained for a = – 5 / 11.

Hence, we get Imin = 
61
66

 = 0.9242.
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5.73 Solve the boundary value problem
 y″ + y2 = 0,

y(0) = 0, y(1) = 1,
by minimizing the integral

I = ( )3 22 3

0

1

y y dx′ −� .

Use the trial function y = ax + bx2. Compute a and b as well as the minimum value.
[Lund Univ., Sweden, BIT 29(1989), 376]

Solution
The boundary condition y(1) = 1, gives a + b = 1. Substituting y(x) = ax + bx2, in the
integral and simplifying we obtain

 I = 
0

1
2 2 32 2� + − +[3( ) ( ) ]a bx ax bx dx

= 3 a ab b a a b ab b2 2 3 2 2 32
4
3

2
1
4

3
5

1
2

1
7

+ +�
	


�
�
 − + + +�

	

�
�


= 
1

70
 [a3 – 66a2 + 150a – 260],

For minimum value of I, we require dI / da = 0, which gives
a2 – 44a + 50 = 0.

Solving, we get

a = 22 – 434  = 1.1673 and

b = 1 – a = – 0.1673.
The other value of a is rejected.
We find  Imin = 2.47493.

5.74 In order to determine the smallest value of λ for which the differential equation

y″ = 
1

3 + x
 y′ – λ(3 + x)y,

y(– 1) = y(1) = 0,
has non-trivial solutions, Runge-Kutta method was used to integrate two first order
differential equations equivalent to this equation, but with starting values y(– 1) = 0,
y′(– 1) = 1.
Three step lengths h, and three values of λ were tried with the following results for y(1)

h          λ 0.84500 0.84625 0.84750

2 / 10 0.0032252 0.0010348 – 0.0011504
4 / 30 0.0030792 0.0008882 – 0.0012980

1 / 10 0.0030522 0.0008608 – 0.0013254

(a) Use the above table to calculate λ, with an error less than 10–5.
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(b) Rewrite the differential equation so that classical Runga-Kutta method can be used.
[Inst. Tech., Stockholm, Sweden, BIT 5(1965), 214]

Solution

(a) Note from the computed results that y(1) is a function of λ. Denote the dependence as
y(1, λ).
We now use the Müller  method to find the improved value of λ.
The parameter values for various values of h are as follows :

 λk–2 = 0.84500, λk–1 = 0.84625, λk = 0.84750
  hk = λk – λk–1 = 0.84750 – 0.84625 = 0.00125.

 hk–1 = λk–1 – λk–2 = 0.84625 – 0.84500 = 0.00125.

  µk = 
h

h
k

k−1
 = 1.

 δk = 1 + µk = 2.

 gk = µk
2 yk–2 – δ µ δk k k k ky y2

1− + +( )

= y y yk k k− −− +2 14 3 .
  Ck = µk (µk yk–2 – δk yk–1 + yk) = yk–2 – 2yk–1 + yk.

 µk+1 = – 
2

42

δ

δ
k k

k k k k k

y

g g C y± −
The sign in the denominator is chosen as that of gk.

 λk+1 = λk + (λk – λk–1) µk+1.
We obtain h = 2 / 10 : gk = – 0.0043652, Ck = 0.0000052,

  µk+1 = – 0.5267473, λk+1 = 0.8468416.
h = 4 / 30 : gk = – 0.0043676, Ck = 0.0000048,

µk+1 = – 0.593989, λk+1 = 0.8467575.
h = 1 / 10 : gk = – 0.0043672, Ck = 0.0000052,

µk+1 = – 0.6065413, λk+1 = 0.8467418.
Hence, the eigenvalue is obtained as 0.84674.
(b) Substituting y′ = z we have two first order differential equations

 y′ = z,

 z′ = 
1

3( )+ x
 z – λ(3 + x)y,

with initial conditions y(– 1) = 0, z(– 1) = 1.
This system can be used with prescribed λ and h to find y(1).

5.75 Obtain the numerical solution of the nonlinear boundary value problem

u″ = 
1
2

 (1 + x + u)3

u′(0) – u(0) = – 1 / 2, u′(1) + u(1) = 1
with h = 1 / 2. Use a second order finite difference method.
Solution
The nodal points are x0 = 0, x1 = 1 / 2, x2 = 1. We have
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a0 = – 1, a1 = – 1, γ1 = – 1 / 2, b0 = b1 = γ2 = 1.
The system of nonlinear equations, using (5.135), (5.137), (5.138), becomes

 (1 + h)u0 – u1 + 
h

x u x u
h2

0 0
3

1 1
3

2
1
3

1
1
6

1
2

( ) ( )+ + + + +�
��

�
��

−  = 0

– u0 + 2u1 – u2 + 
h2

2
 (1 + x1 + u1)

3 = 0

– u1 + (1 + h)u2 + 
h

x u x u
2

1 1
3

2 2
3

2
1
6

1
1
3

1( ) ( )+ + + + +�
��

�
�� – h = 0.

The Newton-Raphson method gives the following linear equations

3
2

1
8

1 1
1

16
3
2

0

1 2
3
8

3
2

1

0 1
1

16
3
2

3
2

1
8

2

0
2

1

2

1

2

1

2

2
2

+ + − + +�
	


�
�


− + +�
	


�
�
 −

− + +�
	


�
�
 + +

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

( )

( )

( ) ( )

( )

( ) ( )

u u

u

u u

s s

s

s s

 

∆
∆
∆

u
u
u

s

s

s

0

1

2

( )

( )

( )

�

�

�
�
�

�

�

�
�
�

= – 

3
2

1
8

1
3

1
1
6

3
2

1
4

2
1
8

3
2

3
2

1
8

1
6

3
2

1
3

2
1
2

0 1 0
3

1

3

0 1 2 1

3

1 2 1

3

2
3

u u u u

u u u u

u u u u

s s s s

s s s s

s s s s

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )

− + + + +�
	


�
�


�

�
�
�

�

�
�
�

−

− + − + +�
	


�
�


− + + +�
	


�
�
 + + −

�

�
�
�

�

�
�
�

�

�

�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

and u u u u u us s s s s s
0

1
0 0 1

1
1 1

( ) ( ) ( ) ( ) ( ) ( ),+ += + = +∆ ∆ , u u us s s
2

1
2 2

( ) ( ) ( )+ = + ∆ .

Using u o
0
( )  = 0.001, u1

0( )  = – 0.1, u2
0( )  = 0.001, we get after three iterations

u0
3)(  = – 0.0023, u1

3)(  = – 0.1622, u2
3)(  = – 0.0228.

The analytical solution of the boundary value problem is

u(x) = 
2

2 − x
 – x – 1.

u(0) = 0, u(1 / 2) = – 0.1667, u(1) = 0.



PROGRAM 1

/*PROGRAM BISECTION
Findings simple root of f(x) = 0 using bisection method. Read the end points of the interval
(a, b) in which the root lies, maximum number of iterations n and error tolerance eps.*/

#include <stdio.h>
#include <math.h>

float f();

main()
{

float a, b, x, eps, fa, fx, ff, s;
int i, n;
FILE *fp;

fp = fopen(“result”,“w”);

printf(“Please input end points of interval (a, b),\n”);
printf(“in which the root lies\n”);
printf(“n: number of iterations\n”);
printf(“eps: error tolerance\n”);
scanf(“%f %f %d %E”,&a, &b, &n, &eps);
fprintf(fp,“A = %f, B = %f, N = %d,”, a, b, n);
fprintf(fp,“EPS = %e\n”, eps);

/*Compute the bisection point of a and b */

x = (a + b)/2.0;
for(i = 1; i <= n; i++)
{

fa = f(a);
fx = f(x);
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if(fabs(fx) <=eps)
goto l1;

ff = fa * fx;
if(ff < 0.0)

x = (a + x)/2.0;
else
{

a = x;
x = (x + b)/2.0;

}
}
printf(“No. of iterations not sufficient\n”);
goto l2;

l1: fprintf(fp,“ITERATIONS = %d,”,i);
fprintf(fp,“ ROOT = %10.7f, F(X) = %E\n”, x, fx);
printf(“\nPLEASE SEE FILE ‘result’ FOR RESULTS\n\n”);
fclose(fp);

12: return 0;
}

/********************************************************/
float f(x)

float x;
{ float fun;

fun = cos(x) - x * exp(x);
return(fun);

}
/********************************************************/
A = 0.000000, B = 1.000000, N = 40, EPS = 1.000000e-04
ITERATIONS = 25, ROOT = 0.5177526, F(X) = 1.434746E-05
/********************************************************/

PROGRAM 2

/*PROGRAM REGULA-FALSI
Finding a simple root of f(x)=0 using Regula-Falsi method. Read the end points of the interval
(a, b) in which the root lies, maximum number of iterations n and the error tolerance eps. */

#include <stdio.h>
#include <math.h>
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float f();

main()
{
float a, b, x, eps, fa, fb, fx;
int i, n;
FILE *fp;

fp = fopen(“result”,“w”);
printf(“Input the end points of the interval (a, b) in”);
printf(“which the root lies”);
printf(“n: number of iterations\n”);
printf(“eps: error tolerance\n”);
scanf(“%f %f %d %E”, &a, &b, &n, &eps);
fprintf(fp,“a = %f b = %f n = %d”, a, b, n);
fprintf(fp,“ eps = %e\n\n”, eps);

/*Compute the value of f(x) at a & b and calculate the new
approximation x and value of f(x) at x. */
for (i = 1; i <= n; i++)

{ fa = f(a);
fb = f(b);
x = a - (a - b) * fa / (fa - fb);
fx = f(x);

if(fabs(fx) <= eps)

/*Iteration is stopped when abs(f(x)) is less than or equal to eps.
Alternate conditions can also be used. */

goto l1;
if((fa * fx) < 0.0)

b = x;
else

a = x;
}

printf(“\nITERATIONS ARE NOT SUFFICIENT”);
goto l2;

11: fprintf(fp,“Number of iterations = %d\n”, i);
fprintf(fp,“Root = %10.7f, f(x) = %e\n”, x, fx);
printf(“\nPLEASE SEE FILE ‘result’ FOR RESULTS\n\n”);

12: return 0;
}

/********************************************************/
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float f(x)
float x;

{ float fun;
fun = cos(x) - x * exp(x);
return(fun);

}
/********************************************************/
a = 0.000000 b = 1.000000 n = 20 eps = 1.000000e-04
Number of iterations = 9
Root = 0.5177283, f(x) = 8.832585e-05
/********************************************************/

PROGRAM 3

/*PROGRAM SECANT METHOD
Finding a simple root of f(x) = 0 using Secant method. Read any two approximations to the
root, say, a, b; maximum number of iterations n and the error tolerance eps. The method
diverges if the approximations are far away from the exact value of the root. */

#include <stdio.h>
#include <math.h>

float f();

main()
{
float a, b, x, eps, fa, fb, fx;
int i, n;
FILE *fp;

fp = fopen(“result”,“w”);
printf(“Input any two approximations to the root ”);
printf(“n: number of iterations\n”);
printf(“eps: error tolerance\n”);
scanf(“%f %f %d %E”, &a, &b, &n, &eps);
fprintf(fp,“a = %f b = %f n = %d”, a, b, n);
fprintf(fp,“ eps = %e\n\n”, eps);

/*Compute the value of f(x) at a & b and calculate the new
approximation x and value of f(x) at x. */
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for (i = 1; i <= n; i++)
{ fa = f(a);

fb = f(b);
x = a - (a - b) * fa / (fa - fb);

fx = f(x);
if(fabs(fx) <= eps)

/* Iteration is stopped when abs(f(x)) is less than or equal to eps.
Alternate conditions can also be used. */

goto l1;
a = b;
b = x;

}
printf(“\nITERATIONS ARE NOT SUFFICIENT”);
goto 12;

11: fprintf(fp,“Number of iterations = %d\n”, i);
fprintf(fp,“Root = %10.7f, f(x) = %e\n”, x, fx);
printf(“\nPLEASE SEE FILE ‘result’ FOR RESULTS\n\n”);

12: return 0;
}

/********************************************************/
float f(x)

float x;
{ float fun;

fun = cos(x) - x * exp(x);
return(fun);

}
/********************************************************/
a = 0.100000 b = 0.200000 n = 40 eps = 1.000000e-04
Number of iterations = 5
Root = 0.5177556, f(x) = 5.281272e-06
/********************************************************/

PROGRAM 4

/* PROGRAM NEWTON-RAPHSON METHOD
Finding a simple root of f(x) = 0 using Newton-Raphson method. Read initial approximation

xold. Maximum number of iterations n and error tolerance eps. */

#include <stdio.h>
#include <math.h>
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float f();
float df();

main()
{
float xold, eps, fx, dfx, xnew;
int i, n;
FILE *fp;

fp = fopen(“result”,“w”);
printf(“Input value initial approximation xold\n”);
printf(“n: number of iterations\n”);
printf(“eps: error tolerance\n”);
scanf(%f %d %E”, &xold, &n, &eps);
fprintf(“fp,“Input value initial approximation xold\n”);
fprintf(fp,“number of iterations n,”);
fprintf(fp,“ error tolerance eps\n”);
fprintf(fp,“xold = %f n = %d eps = %e\n\n”, xold, n, eps);

/*Calculate f and its first derivative at xold  */
for(i = 1; i <= n; i++)

{ fx = f(xold);
dfx = df(xold);
xnew = xold - fx / dfx;
fx = f(xnew);
if(fabs(fx) <= eps) goto l10;

/* Iteration is stopped when abs(f(x)) is less than or equal to eps.
Alternate conditions can also be used. */

xold = xnew;
}

printf(“\nITERATIONS ARE NOT SUFFICIENT”);
goto 120;

l10:
fprintf(fp,“Iterations = %d”,i);
fprintf(fp,“ Root = %10.7f, f(x) = %e\n”, xnew, fx);
printf(“\nPLEASE SEE FILE ‘result’ FOR RESULTS\n\n”);

l20: return 0;
}

/********************************************************/
float f(x)

float x;
{ float fun;
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fun = cos(x) - x * exp(x);
return(fun);

}
/********************************************************/
float df(x)

float x;
{ float dfun;

dfun = - sin(x) - (x + 1.0) * exp(x);
return(dfun);

}
/********************************************************/
Input value initial approximation xold
number of iterations n, error tolerance eps
xold = 1.000000 n = 15 eps = 1.000000e-04
Iterations = 4 Root = 0.5177574, f(x) = 2.286344e-08
/********************************************************/

PROGRAM 5

/* PROGRAM MULLER METHOD
Finding a root of f(x) = 0 using Muller method. Read three initial approximations x0, x1 and
x1, maximum number of iterations n and error tolerance eps. */

#include <stdio.h>
#include <math.h>

float f();

main()
{
float x, x0, x1, x2, fx, fx0, fx1, fx2;
float al, dl, c, g, p, q, eps;
int i, n;
FILE *fp;

fp = fopen(“result”,“w”);
printf(“Input three initial approximations : x0, x1, x2\n”);
printf(“number of iterations : n, \n”);
printf(“error tolerance : eps\n”);
scanf(“%f %f %f %d %E”, &x0, &x1, &x2, &n, &eps);
fprintf(fp,“Input three initial approximations x0, x1, x2\n”);
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fprintf(fp,“Number of iterations n and error tolerance eps\n”);
fprintf(fp,“x0 = %f, x1 = %f, x2 = %f\n”, x0, x1, x2);
fprintf(fp,“n = %d, eps%e\n”, n, eps);

/*Compute f(x) at x0, x1 and x2 */
for(i = 1; i <= n; i++)

{ fx0 = f(x0);
fx1 = f(x1);
fx2 = f(x2);

/*Calculate the next approximation x */
al = (x2 - x1) / (x1 - x0);
dl = 1.0 + al;
g = al * al * fx0 - dl * dl * fx1 + (al + dl) * fx2;
c = al * (al * fx0 - dl * fx1 + fx2);
q = g * g - 4.0 * dl * c * fx2;
if(q < 0.0)

q = 0.0;
p = sqrt(q);
if(g < 0.0)

p = - p;
 al = - 2.0 * dl * fx2 / (g + p);

x = x2 + (x2 - x1) * al;
 fx = f(x);

if(fabs(fx) <= eps) goto l10;

/* Iteration is stopped when abs(f(x)) is less than or equal to eps.
Alternate conditions can also be used. */

x0 = x1;
x1 = x2;
x2 = x;

}
 printf(“ITERATIONS ARE NOT SUFFICIENT\n”);
 fprintf(fp,“\nITERATIONS ARE NOT SUFFICIENT”);
 goto l20;

l10:
 fprintf(fp,“ITERATIONS = %d ROOT = %10.7f”, i, x);
 fprintf(fp,“ F(x) = %e\n”, fx);
 printf(“\nPLEASE SEE FILE ‘result’ FOR RESULTS\n\n”);
fclose(fp);
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l20: return 0;
 }

/********************************************************/
float f(x)

float x;
{ float fun;

fun = cos(x) - x * exp(x);
return(fun);

}
/********************************************************/
Input three initial approximations x0, x1, x2
Number of iterations n and error tolerance eps
x0 = -1.000000, x1 = 0.000000, x2 = 1.000000
n = 10, eps1.000000e-06
ITERATIONS = 4 ROOT = 0.5177574 F(x) = 2.286344e-08
/********************************************************/

PROGRAM 6

/*PROGRAM BAIRSTOW METHOD
Extraction of a quadratic factor from a polynomial

{x**n + a[1] * x**(n - 1) + ..... + a[n-1] * x + a[n] = 0}
of degree greater than two using Bairstow method. n gives the degree of the polynomial. a[i]
represents coefficients of polynomial in decreasing powers of x. p & q are initial approxima-
tions. m is the number of iterations and eps is the desired accuracy. */

#include <stdio.h>
#include <math.h>

main()
{
float a[10], b[10], c[10], p, q, cc, den, delp;
float delq, eps;
int i, n, m, j, k, l;
FILE *fp;

fp = fopen(“result”,“w”);

printf(“Input initial approximations of p & q:\n”);
printf(“Degree of polynomial : n,\n”);
printf(“Number of iterations :m,\n”);
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printf(“Desired accuracy :eps,\n”);
scanf(“%f %f %d %d %E”, &p, &q, &n, &m, &eps);
fprintf(fp,“ Input initial approximations of p & q:\n”);
fprintf(fp,“Degree of polynomial: n,\n”);
fprintf(fp,“Number of iterations :m,\n”);
fprintf(fp,“Desired accuracy :eps,\n”);
fprintf(fp,“p = %f, q = %f, n = %d”, p, q, n);
fprintf(fp,“m = %d, eps = %e\n”, m, eps);

/* Read coefficients of polynomial in decreasing order */
printf(“Input coefficients of polynomial in decreasing”);
printf(“ order\n”);
fprintf(fp,“Coefficients of polynomial are\n”);
for (i = 1; i <= n; i++)

{ scanf(“%f”, &a[i]);
fprintf(fp,“ %.4f”,a[i]);

}
fprintf(fp,“\n”);

/* generate b[k] & c[k] */
for (j = 1; j <= m;j++)

{ b[1] = a[1] - p;
b[2] = a[2] - p * b[1] - q;
for (k = 3; k <= n; k++)

b[k] = a[k] - p * b[k-1] - q * b[k-2];
c[1] = b[1] - p;
c[2] = b[2] - p * c[1] - q;
l = n - 1;
for (k = 3; k <=l; k++)

c[k] = b[k] - p * c[k-1] - q * c[k-2];
cc = c[n-1] - b[n-1];
den = c[n-2] * c[n-2] - cc * c[n-3];
if(fabs(den) == 0.0)

{ fprintf(fp,“WRONG INITIAL APPROXIMATION\n”);
printf(“\n WRONG INITIAL APPROXIMATION\n”);
got l2;

}
delp = -(b[n] * c[n-3] - b[n-1] * c[n-2]) / den;
delq = -(b[n-1] * cc - b[n] * c[n-2]) / den;
p = p + delp;
q = q + delq;
if((fabs(delp) <= eps) && (fabs(delq) <= eps))
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goto l2;
}

printf(“ITERATIONS NOT SUFFICIENT\n”);
fprintf(fp,“ITERATIONS NOT SUFFICIENT\n”);
goto l3;

l2: fprintf(fp,“ITERATIONS = %d, P = %11.7e, ”, j, p);
fprintf(fp, “Q = %11.7e\n”, q);
printf(“\nPLEASE SEE FILE ‘result’ FOR RESULTS\n\n”);
fclose(fp);

l3: return 0;
}

/********************************************************/
Input initial approximations of p & q:
Degree of polynomial: n,
Number of iterations :m,
Desired accuracy :eps,
p = 0.500000, q = 0.500000,n = 4 m = 10, eps = 1.000000e-06
Coefficients of polynomial are

1.0000 2.0000 1.0000 1.0000
ITERATIONS = 7, P = 9.9999994e-01, Q = 1.0000000e+00
/********************************************************/

PROGRAM 7

/*PROGRAM GAUSS ELIMINATION METHOD
Solution of a system of nxn linear equations using Gauss elimination method with partial
piviting. The program is for a 10×10 system. Change the dimension if higher order system is to
be solved. */

#include <stdio.h>
#include <math.h>

main()
{
float a[10][11], x[10], big, ab, t, quot, sum;
int n, m, l, i, j, k, jj, kp1, nn, ip1;
FILE *fp;

fp = fopen(“result”,“w”);
printf(“Input number of equations : n\n”);
scanf(“%d”, &n);
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fprintf(fp,“Order of the system = %d\n”, n);
m = n + 1;
l = n - 1;
printf(“Input the augmented matrix row-wise\n”);
fprintf(fp,“Elements of the augmented matrix :\n”);

for (i = 1; i <= n; i++)
{ for (j = 1; j <= m; j++)

{ scanf(“%f”, &a[i][j]);
fprintf(fp,“ %.6f”, a[i][j]);

}
fprintf(fp,“\n”);

}
for (k = 1; k <= l; k++)

{ big = fabs(a[k][k]);
jj = k;
kp1 = k + 1;
for(i = kp1; i <= n; i++)

{ ab = fabs(a[i][k]);
if((big - ab) < 0.0)

{ big = ab;
jj = i;

}
}

if((jj - k) > 0)
{ for (j = k; j <= m; j++)

{ t = a[jj][j];
a[jj][j] = a[k][j];
a[k][j] = t;

}
}

for (i = kp1; i <= n; i++)
{ quot = a[i][k]/a[k][k];

for (j = kp1; j <= m; j++)
a[i][j] = a[i][j] - quot*a[k][j];

}
for (i = kp1; i <= n; i++)

a[i][k] = 0.0;
}

x[n] = a[n][m]/a[n][n];
for (nn = 1; nn <= 1; nn++)
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{ sum = 0.0;
i = n - nn;
ip1 = i + 1;
for(j = ip1; j <= n; j++)

sum = sum + a[i][j]*x[j];
x[i] = (a[i][m] - sum)/a[i][i];

}
fprintf(fp,“SOLUTION VECTOR\n”);
for (i = 1; i <= n; i++)

fprintf(fp,“ %8.5f”, x[i]);
fprintf(fp,“\n”);
printf(“PLEASE SEE FILE ‘result’ FOR RESULTS\n”);
return 0;

}
/********************************************************/
Order of the system = 3
Elements of the augmented matrix :

1.000000 1.000000 1.000000 6.000000
3.000000 3.000000 4.000000 20.000000
2.000000 1.000000 3.000000 13.000000

SOLUTION VECTOR
3.00000 1.00000 2.00000

/********************************************************/

PROGRAM 8

/*PROGRAM JORDAN METHOD
Matrix inversion and solution of NXN system of equations using Gauss Jordan method. If the
system of equations is larger than 15x15, change the dimensions if the float statement. */

#include <stdio.h>
#include <math.h>

main()
{
float a[15][15], ai[15][15], b[15], x[15];
float aa[15][30], big, ab, t, p, sum;
int n,m, m2, i, j, lj, k, kp1, jj, lk, li, l3;
FILE *fp;
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fp = fopen(“result”,“w”);
printf(“Input order of matrix : n\n”);
scanf(“%d”, &n);
printf(“Input augmented matrix row-wise\n”);
for (i = 1; i <= n; i++)

{ for (j = 1; j <= n; j++)
scanf(“%f”, &a[i][j]);
scanf(“%f”, &b[i]);

}
fprintf(fp,“Order of the system = %d\n”, n);
fprintf(fp,“Elements of the augmented matrix :\n”);
for (i = 1; i <= n; i++)

{ for (j = 1; j <= n; j++)
fprintf(fp,“ %8.4f”, a[i][j]);

fprintf(fp,“ %8.4f\n”, b[i]);
}

m = n + n;
m2 = n + 1;

/* Generate the augmented matrix aa. */
for (i = 1; i <= n; i++)

{ for (j = 1; j <= n; j++)
aa[i][j] = a[i][j];

}
for (i = 1; i <= n; i++)

{ for (j = m2; j <= m; j++)
aa[i][j] = 0.0;

}
for (i = 1; i <= n; i++)

{ j = i + n;
aa[i][j] = 1.0;

}

/*Generate elements of b matrix. */
for (lj = 1; lj <= n; lj++)

{ /*Search for the largest pivot. */
k = lj;
if(k < n)

{ jj = k;
big = fabs(aa[k][k]);
kp1 = k + 1;
for(i = kp1; i <= n; i++)
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{ ab = fabs(aa[i][k]);
if((big - ab) < 0.0)

{ big = ab;
jj = i;

}
}

/*Interchange rows if required. */
if((jj - k) != 0)

{ for (j = k; j <= m; j++)
{ t = aa[jj][j];

aa[jj][j] = aa[k][j];
aa[k][j] = t;

}
}

}
p = aa[lj][lj];
for (i = lj; i <= m; i++)

aa[lj][i] = aa[lj][i] / p;
for (lk = 1; lk <= n; lk++)

{ t = aa[lk][lj];
for (li = lj; li <= m; li++)

{ if((lk - lj) != 0)
aa[lk][li] = aa[lk][li] - aa[lj][li] * t;

}
}

}
for (i = 1; i <= n; i++)

{ for (j = m2; j <= m; j++)
{ l3 = j - n;

ai[i][l3] = aa[i][j];
}

}
fprintf(fp,“\n INVERSE MATRIX\n”);
for (i = 1; i <= n; i++)

{ for (j = 1; j <= n; j++)
fprintf(fp,“ %11.5f”, ai[i][j]);

fprintf(fp,“\n”);
}

for (i = 1; i <= n; i++)
{ sum = 0.0;

for (k = 1; k <= n; k++)
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sum = sum + ai[i][k] * b[k];
x[i] = sum;

}
fprintf(fp,“\n SOLUTION VECTOR\n”);
for (i = 1; i <= n; i++)

fprintf(fp,“ %11.5f”, x[i]);
fprintf(fp,“\n”);
printf(“\nPLEASE SEE FILE ‘result’ FOR RESULTS\n\n”);
fclose(fp);
return 0;
}

/********************************************************/
Order of the system = 4
Elements of the augmented matrix :

3.0000 4.0000 2.0000 2.0000 6.0000
2.0000 5.0000 3.0000 1.0000 4.0000
2.0000 2.0000 6.0000 3.0000 3.0000
1.0000 2.0000 4.0000 6.0000 6.0000

INVERSE MATRIX
0.59756 – 0.46341 0.17073 – 0.20732

– 0.14024 0.35366 – 0.18293 0.07927
– 0.18902 0.08537 0.23171 – 0.06707

0.07317 – 0.09756 – 0.12195 0.21951
SOLUTION VECTOR

1.00000 0.50000 – 0.50000 1.00000
/********************************************************/

PROGRAM 9

/*PROGRAM GAUSS-SEIDEL
Program to solve a system of equations using Gauss-Seidel iteration method. Order of the
matrix is n, maximum number of iterations is niter, error tolerance is eps and the initial
approximation to the solution vector x is oldx. If the system of equations is larger than 10x10,
change the dimensions in float. */

#include <stdio.h>
#include <math.h>

main()
{
float a[10][10], b[10], x[10], oldx[10], sum, big, c;
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float eps;
int n, niter, i, j, ii, jj, k, l;
FILE *fp;

fp = fopen(“result”,“w”);

printf(“Input the order of matrix : n\n”);
printf(“Input the number of iterations : niter\n”);
printf(“Input error tolerance : eps\n”);
scanf(“%d %d %e”, &n, &niter, &eps);
fprintf(fp,“n = %d, niter = %d, eps = %e\n”, n, niter, eps);
printf(“Input augmented matrix row-wise\n”);
fprintf(fp,“Elements of the augmented matrix\n”);
for (i = 1; i <= n; i++)

{ for (j = 1; j <= n; j++)
{ scanf(“%f”, &a[i][j]);

fprintf(fp,“%f ”, a[i][j]);
}

scanf(“%f”, &b[i]);
fprintf(fp,“ %f\n”, b[i]);

}
printf(“Input initial approx. to the solution vector\n”);
fprintf(fp,“Initial approx. to solution vector :\n”);
for (i = 1; i <= n; i++)

{ scanf(“%f”, &oldx[i]);
fprintf(fp,“%f ”, oldx[i]);

}
fprintf(fp,“\n”)
for (i = 1; i <= n; i++)

x[i] = oldx[i];

/*Compute the new values for x[i] */
for (ii = 1; ii <= niter; ii++)

{ for (i = 1; i <= n; i++)
{ sum = 0.0;

for (j = 1; j <= n; j++)
{ if((i - j) ! = 0)

sum = sum + a[i][j] * x[j];
}

x[i] = (b[i] - sum) / a[i][i];
}

big = fabs(x[1] - oldx[1]);
for (k = 2; k <= n; k++)
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{ c = fabs(x[k] - oldx[k]);
if(c > big)

big = c;
}

if(big <= eps)
goto l10;

for (l = 1; l <= n; l++)
oldx[1] = x[1];

}
printf(“ITERATIONS NOT SUFFICIENT\n”);
fprintf(fp,“ITERATIONS NOT SUFFICIENT\n”);
goto l20;

l10: fprintf(fp,“Number of iterations = %d\n”, ii);
fprintf(fp,“Solution vector\n”);
for(i = 1; i <= n; i++)

fprintf(fp,“ %f”, x[i]);
fprintf(fp,“\n”);
printf(“\nPLEASE SEE FILE ‘result’ FOR RESULTS\n\n”);

l20: return 0;
}

/********************************************************/
n = 4, niter = 30, eps = 1.000000e-06
Elements of the augmented matrix
3.000000 4.000000 2.000000 2.000000 6.000000
2.000000 5.000000 3.000000 1.000000 4.000000
2.000000 2.000000 6.000000 3.000000 3.000000
1.000000 2.000000 4.000000 6.000000 6.000000
Initial approx. to solution vector :
0.100000 0.100000 0.100000 0.100000
Number of iterations = 28
Solution vector

1.000000 0.500000 -0.500000 1.000000
/********************************************************/

PROGRAM 10

/* PROGRAM POWER METHOD
Program to find the largest eigen value in magnitude and the corresponding eigen vector of a
square matrix A of order n using power method. If the order of the matrix is greater than 10,
change the dimensions in float. */



8-\N-NUM\APPENDIX

Appendix 393

#include <stdio.h>
#include <math.h>

main()
{
float lambda[10], a[10][10], v[10], y[10], max, sum, eps;
float big, c;
int i, j, n, ii, niter, k, l;
FILE *fp;

fp = fopen(“result”,“w”);

/* Read the order of matrix A, number of iterations, coefficients of matrix A and the initial
vector c.*/

printf(“Input the order of matrix :n\n”);
printf(“Input number of iterations : niter\n”);
printf(“Input error tolerance : eps\n”);
scanf(“%d %d %e”, &n, &niter, &eps);
fprintf(fp,“Order of the matrix = %d\n”,n);
fprintf(fp,“Number of iterations = %d\n”, niter);
fprintf(fp,“Error tolerance = %e\n”, eps);
printf(“Input the coefficients of matrix row-wise\n”);
fprintf(fp,“Elements of the matrix\n”);
for (i = 1; i <= n; i++)

{ for (j = 1; j <= n; j++)
{ scanf(“%f”, &a[i][j]);

fprintf(fp,“ %f”, a[i][j]);
}

fprintf(fp,“\n”);
}

printf(“Input the elements of the approx. eigen vector\n”);
fprintf(fp,“Approx. eigen vector\n”);
for (i = 1; i <=n; i++)

{ scanf(“%f”, &v[i]);
fprintf(fp,“ %f”, v[i]);

}
fprintf(fp, “\n”);
for (ii = 1; ii <= niter; ii++)

{ for (i = 1; i <= n; i++)
{ sum = 0.0;

for (k = 1; k <= n; k++)
sum = sum + a[i][k] * v[k];
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y[i] = sum;
}

for (i = 1; i <= n; i++)
lambda[i] = fabs(y[i] / v[i]);

/* Normalise the vector y. */
max = fabs(y[1]);
for (i = 2; i <= n; i++)

{ if(fabs(y[i] > max)
max = fabs(y[i]);

}
for (i = 1; i <= n; i++)

v[i] = y[i] / max;
big = 0.0;
for (j = 1; i <= n - 1; j++)
{

for (i = j + 1; i <= n; i++)
{

c = fabs(lambda[j] - lambda[i]);
if(big < c)

big = c;
}

}
if(big <= eps)

goto l1;
}
printf(“NUMBER OF ITERATIONS NOT SUFFICIENT\n”);
fprintf(fp,“NUMBER OF ITERATIONS NOT SUFFICIENT\n”);
goto l2;

l1: fprintf(fp,“Number of iterations = %d\n”, ii);
fprintf(fp,“Approx. to Eigen value = ”);
for (l = 1; l <= n; l++)

fprintf(fp,“ %f”, lambda[1]);
fprintf(fp,“\n”);
fprintf(fp,“Eigen-vector = ”);
for (l = 1; l <= n; l++)

fprintf(fp,“ %f”, v[1]);
fprintf(fp,“\n”);
printf(“\nPLEASE SEE FILE ‘result’ FOR RESULTS\n\n”);

l2: return 0;
}

/********************************************************/
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Order of the matrix = 3
Number of iterations = 20
Error tolerance = 1.000000e-04
Elements of the matrix

– 15.000000 4.000000 3.000000
10.000000 – 12.000000 6.000000
20.000000 – 4.000000 2.000000

Approx. eigen vector
1.000000 1.000000 1.000000

Number of iterations = 19
Approx. to Eigen value = 19.999981 20.000076 19.999981
Eigen-vector = – 1.000000 0.499998 1.000000
/********************************************************/

PROGRAM 11

/* PROGRAM : LAGRANGE METHOD
Programme for Lagrange interpolation. */

#include <stdio.h>
#include <math.h>

main()
{
float x[10], y[10], xin, yout, sum;
int n, i, j;
FILE *fp;

fp = fopen(“result”,“w”);

/* Read in data. */

printf(“Input number of points : n\n”);
scanf(“%d”, &n);
fprintf(fp,“Number of points = %d\n”, n);
printf(“Input the abscissas \n”);
fprintf(fp,“The abscissas are :\n”);
for (i = 1; i <= n; i++)

{ scanf(“%f”, &x[i]);
fprintf(fp,“%8.4f”, x[i]);

}
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fprintf(fp, “\n”);
printf(“Input the ordinates\n”);
fprintf(fp,“The ordinates are :\n”);
for (i = 1; i <= n; i++)

{ scanf(“%f”, &y[i]);
fprintf(fp,“%8.4f”, y[i]);

}
fprintf(fp,“\n”);

/* Read in x value for which y is desired. */

printf(“Input value of x for which y is required\n”);
scanf(“%f”, &xin);
fprintf(fp,“The value of x for which y is required is ”);
fprintf(fp,“%5.3f\n”, xin);

/* Compute the value of y. */

yout = 0.0;
for (i = 1; i <= n; i++)

{ sum = y[i];
for (j = 1; j <= n; j++)

{ if(i != j)
sum = sum * (xin - x[j]) / (x[i] - x[j]);

}
yout = yout + sum;

}
fprintf(fp,“Lagrange interpolation based on %d points\n”,n);
fprintf)fp,“At x = %5.3f, y = %8.5f\n”, xin, yout);
printf(“\nPLEASE SEE FILE ‘result’ FOR RESULTS\n”);
fclose(fp);
return 0;
}

/********************************************************/
Number of points = 6
The abscissas are :

0.0000 1.0000 2.0000 4.0000 5.0000 6.0000
The ordinates are :

1.0000 14.0000 15.0000 5.0000 6.0000 19.0000
The value of x for which y is required is 3.000
Lagrange interpolation based on 6 points
At x = 3.000, y = 10.00000
/********************************************************/
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PROGRAM 12

/* NEWTON-GREGORY INTERPOLATION
Program for interpolation in a uniformly spaced table using Newton-Gregory formula. */

#include <stdio.h>
#include <math.h>

main()
{
float y[10], d[10], xi, xf, x, h, fm, fj;
float yout, fnum, fden, x0, y0,u, ffx, ffxx;
int n, m, i, j, k;
FILE *fp;

fp = fopen(“result”,“w”);

/* Read in starting value and last value of x, the step size and the y values. n gives the total
number of nodal points. */

printf(“Input the number of abscissas,\n”);
printf(“starting value of x,\n”);
printf(“last value of x and\n”);
printf(“the step size\n”);
scanf(“%d %f %f %f”, &n, &xi, &xf, &h);
fprintf(fp,“The number of abscissas = %d\n”, n);
fprintf(fp,“The starting value of x = %f\n”, xi);
fprintf(fp,“The last value of x = %f\n”, xf);
fprintf(fp,“The step size = %f\n”, h);
printf(“Input the ordinates\n”);
fprintf(fp,“The ordinates are :\n”);
for (i = 1; i <= n; i++)

{ scanf(“%f”, &y[i]);
fprintf(fp,“%f”, y[i]);

}
fprintf(fp,“\n”);

/* Read in value of x for which y is desired and m the degree of the polynomial to be used.
Maximum value of m is 15. */

printf(“Input x for which interpolation is required\n”);
printf(“and the degree of polynomial\n”);
scanf(“%f %d”, &x, &m);
fprintf(fp,“The value of x for which interpolation is ”);
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fprintf(fp,“required is %f\n”, x);
fprintf(fp,“The degree of polynomial = %d\n”, m);
fm = m + 1;
ffx = x - xi - fm * h / 2.0;
ffxx = xf - x - fm * h / 2.0;
if(ffx > 0.0)

{ if(ffxx <= 0.0)
j = n - m;

else
j = (x - xi) / h - fm / 2.0 + 2.0;

}
else

j = 1;
fj = j;
x0 = xi + (fj - 1.0) * h;
y0 = y[j];

/* Calculate required differences d[i] and y. */
for (i = 1; i <= m; i++)

{ d[i] = y[j+1] - y[j];
j = j + 1;

}
for (j = 2; j < = m; j++)

{ for (i = j; i <= m; i++)
{ k = m - i + j;

d[k] = d[k] - d[k-1];
}

}
u = (x - x0) / h;
yout = y0;
fnum = u;
fden = 1.0;
for (i = 1; i <= m; i++)

{ yout = yout + fnum/fden * d[i];
fnum = fnum * (u - i);
fden = fden * (i + 1);

}
fprintf(fp,“Newton-Gregory interpolation of degree %d\n”, m);
fprintf(fp,“At x = %7.5f, y = %7.5f\n”, x, yout);
printf(“\nPLEASE SEE FILE ‘result’ FOR RESULTS\n\n”);
fclose(fp);
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return 0;
}

/********************************************************/
The number of abscissas = 5
The starting valueof x = 0.100000
The last value of x = 0.500000
The step size = 0.100000
The ordinates are :
1.400000 1.560000 1.760000 2.000000 2.280000
The value of x for which interpolation is required is 0.250000
The degree of polynomial = 4
Newton-Gregory interpolation of degree 4
At x = 0.25000, y = 1.65500
/********************************************************/

PROGRAM 13

/* CUBIC SPLINE INTERPOLATION
Program for cubic spline interpolation for arbitrary set of points. The second derivatives at the
end points are assumed as zeros (natural spline). */

#include <stdio.h>
#include <math.h>

main()
{
float x[20], y[20], sdr[20], a[20], b[20], c[20], r[20];
float t, xx, dxm, dxp, del, f;
int n, i, j, nm1, nm2, k;
FILE *fp;

fp = fopen(“result”,“w”);

/* Read n the number of points, x and y values. */
printf(“Input number of points\n”);
scanf(“%d”, &n);
fprintf(fp,“Number of points = %d\n”, n);
printf(“Input abscissas\n”);
fprintf(fp,“The abscissas are :\n”);
for (i = 1; i <= n; i++)

{ scanf(“%f”, &x[i]);
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fprintf(fp,“%f”, x[i]);
}

fprintf(fp,“\n”);
printf(“Input ordinates\n”);
fprintf(fp,“The ordinates are :\n”);
for (i = 1; i <= n; i++)

{ scanf(“%f”, &y[i]);
fprintf(fp,“%f”, y[i]);

}
fprintf(fp,“\n”);

/* Read the value of x for which y is required. */
printf(“Input x for which interpolation is required\n”);
scanf(“%f”, &xx);
fprintf(fp,“The value of x for which interpolation ”);
fprintf(fp,“is required is %f\n”, xx);

/* Calculate second order derivatives needed in cubic spline interpolation. a, b and c are the
three diagonals of the tridiagonal system. r is the right hand side. */

nm2 = n - 2;
nm1 = n - 1;
sdr[1] = 0.0;
sdr[n] = 0.0;
c[1] = x[2] - x[1];
for (i = 2; i <= nm1; i++)

{ c[i] = x[i+1] - x[i];
a[i] = c[i-1];
b[i] = 2.0 * (a[i] + c[i]);
r[i] = 6.0*((y[i+1]-y[i]/c[i]-(y[i]-y[i-1]/c[i-1]);

}

/* Solve the tridiagonal system. */
for (i = 3; i <= nm1; i++)

{ t = a[i] / b[i-1];
b[i] = b[i] - t * c[i-1];
r[i] = r[i] - t * r[i-1];

}
sdr[nm1] = r[nm1] / b[nm1];
for (i = 2; i <= nm2; i++)

{ k = n - i;
sdr[k] = (r[k] - c[k] * sdr[ k + 1]) / b[k];

}
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/* Calculate the corresponding value of y. Find the proper interval. */
for (i = 1; i <= nm1; i++)

{ j = i;
if(xx <= x[i + 1])

goto l1;
}

l1: dxm = xx - x[j];
dxp = x[j + 1] - xx;
del = x[j + 1] - x[j];
f = sdr[j] * dxp * (dxp * dxp / del - del)/6.0;
f = f + sdr[j + 1] * dxm * (dxm * dxm / del - del) / 6.0;
f = f + y[j] * dxp / del + y[j + 1] * dxm / del;
fprintf(fp,“At x = %6.4f, interpolated value using”, xx);
fprintf(fp,“%d points is y = %8.4f\n”, n, f);
printf(“\nPLEASE SEE FILE ‘result’ FOR RESULTS\n\n”);
fclose (fp);
return 0;
}

/********************************************************/
Number of points = 5
The abscissas are :
0.000000 1.000000 2.000000 3.000000 4.000000
The ordinates are :
1.000000 2.000000 33.000000 244.000000 1025.000000
The value of x for which interpolation is required is 1.750000
At x = 1.7500, interpolated value using 5 points is y = 21.1819
/********************************************************/

PROGRAM 14

/* TRAPEZOIDAL RULE OF INTEGRATION
Program to evaluate the integral of f(x) between the limits a to be using Trapezoidal rule of
integration based on n subintervals or n+1 nodal points. The values of a, b and n are to be read
and the integrand is written as a function subprogram. The program is tested for
f(x) = 1 / (1 + x). */

#include <stdio.h>
#include <math.h>
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float f();

main()
{
float a, b, h, sum, x, trap;
int n, i, m;
FILE *fp;

fp = fopen(“result”,“w”);

printf(“Input limits a & b and no. of subintervals n\n”);
scanf(“%f %f %d”, &a, &b, &n);
fprintf(fp,“Limits are a = %f, b = %f\n”, a, b);
fprintf(fp,“Number of subintervals = %d\n”, n);
h = (b - a) / n;
sum = 0.0;
m = n - 1;
for (i = 1; i <= m; i++)

{ x = a + i * h;
sum = sum + f(x);

}
trap = h * (f(a) + 2.0 * sum + f(b)) / 2.0;
fprintf(fp,“Value of integral with %d ”, n);
fprintf(fp,“Subintervals = %14.6e\n”, trap);
printf(“\nPLEASE SEE FILE ‘result’ FOR RESULTS\n\n”);
return 0;
}

/********************************************************/
float f(x)

float x;
{ float fun;

fun = 1.0 / (1.0 + x);
return(fun);

}
/********************************************************/
Limits are a = 0.000000, b = 1.000000
Number of subintervals = 8
Value of integral with 8 subintervals = 6.941218e-01
/********************************************************/
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PROGRAM 15

/* SIMPSON RULE OF INTEGRATION
Program to evaluate the integral of f(x) between the limits a to b using Simpsons rule of inte-
gration based on 2n subintervals or 2n+1 nodal points. The values of a, b and n are to be read
and the integrand is written as a function subprogram. The program is tested for
f(x) = 1 / (1 + x). */

#include <stdio.h>
#include <math.h>

float f();

main()
{
float a, b, h, x, sum, sum1, sum2, simp;
int n, i, n1, n2;
FILE *fp;

fp = fopen(“result”,“w”);

printf(“Input limits a & b and half the no. of ”);
printf(“subintervals n\n”);
scanf(“%f %f %d”, &a, &b, &n);
fprintf(fp,“The limits are a = %f, b = %f\n”, a, b);
h = (b - a) / (2.0 * n);
sum = f(a) + f(b);
sum1 = 0.0;
n1 = 2 * n - 1;
for (i = 1; i <= n1; i = i+2)

{ x = a + i * h;
sum1 = sum1 + f(x);

}
n2 = 2 * n - 2;
sum2 = 0.0;
for (i = 2; i <= n2; i = i+2)

{ x = a + i * h;
sum2 = sum2 + f(x);

}
simp = h * (sum + 4.0 * sum1 + 2.0 * sum2) / 3.0;
fprintf(fp,“Value of integral with ”);
fprintf(fp,“%d Subintervals = %14.6e\n”, 2 * n, simp);
printf(“\nPLEASE SEE FILE ‘result’ FOR RESULTS\n\n”);
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return 0;
}

/********************************************************/
float f(x)

float x;
{ float fun;

fun = 1.0 / (1.0 + x);
return(fun);

}
/********************************************************/
The limits are a = 0.000000, b = 1.000000
Value of integral with 8 subintervals = 6.931545e-01
/********************************************************/

PROGRAM 16

/* ROMBERG INTEGRATION
Program to evaluate the integral of f(x) between the limits a and b using Romberg integration
based on Trapezoidal rule. Values of a, b and desired accuracy are to be read and the integrand
is written as a function subprogram. Array r gives Romberg table. n gives number of extrapo-
lations. The program is tested for f(x) = 1 / (1 + x). */

#include <stdio.h>
#include <math.h>

float f();

main()
{
float r[15][15], a, b, h, jj, kk, x, diff, eps;
int n, i, j, k, m, l, ii;
int x1, x2;
FILE *fp;

fp = fopen(“result”,“w”);

printf(“Input limits a & b, \n”);
printf(“the maximum no. of extrapolations n and\n”);
printf(“the error tolerance eps\n”);
scanf(“%f %f %d %E”, &a, &b, &n, &eps);
fprintf(fp,“The limits are : a = %f, b = %f\n”, a, b);
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fprintf(fp,“The maximum number of extrapolations = %d\n”, n);
fprintf(fp,“The error tolerance = %11.4e\n”,eps);
i = 1;
h = b - a;
r[1][1] = 0.5 * h * (f(a) + f(b));
for (ii = 1; ii <= n; ii++)

{ h = h/2.0;
x2 = 1;

for (x1 = 1; x1 <= (ii - 1); x1++)
x2 = x2 * 2;

j = x2;
i = i + 1;
r[i][1] = 0.5 * r[I - 1][1];
for (k = 1; k <= j; k++)

{ x = a + (2.0 * k - 1.0) * h;
r[i][1] = r[i][1] + h * f(x);

}
for (k = 2; k <= i; k++)

{
x2 = 1;

for (x1 = 1; x1 <= (k - 1); x1++)
x2 = x2 * 4;

jj = x2 * r[i][k - 1] - r[i - 1][k - 1];
kk = x2 - 1;
r[i][k] = jj/kk;

}
diff = fabs(r[i][i] - r[i][i - 1]);
if(diff <= eps)
{ fprintf(fp,“Romberg table after %d ”, i - 1);

fprintf(fp,“extrapolations\n”);
for (l = 1; l <= i; l++)
{ for (m = 1; m <= l; m++)

fprintf(fp,“%10.6f ”, r[l][m]);
fprintf(fp,“\n”);

}
goto l2;

}
}

printf(“Number of extrapolations are not sufficient\n”);
fprintf(fp,“Number of extrapolations are not sufficient\n”);
goto l1;
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l2: printf(“\nPLEASE SEE FILE ‘result’ FOR RESULTS\n\n”);
l1: return 0;

}
/********************************************************/
float f(x)

float x;
{ float fun;

fun = 1.0 / (1.0 + x);
return(fun);

}
/********************************************************/
The limits are : a = 0.000000, b = 1.000000
The maximum number of extrapolations = 5
The error tolerance = 1.0000e-06
ROMBERG TABLE AFTER 3 EXTRAPOLATIONS

0.750000
0.708333 0.694444
0.697024 0.693254 0.693175
0.694122 0.693155 0.693148 0.693147

/********************************************************/

PROGRAM 17

/* EULER METHOD FOR SOLVING FIRST ORDER INITIAL VALUE PROBLEM
Program to solve an IVP, dy/dx = f(x,y), y(x0) = y0, using Euler method. The initial values x0,
y0, the final value xf and the step size are to be read. f(x,y) is written as a function subprogram.

*/

#include <stdio.h>
#include <math.h>

float f();

main()
{
float x0, y0, h, xf, x, y;
int i, iter;
FILE *fp;

fp = fopen(“result”,“w”);
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printf(“Input initial point x0, initial value y0,\n”);
printf(“step size h and final value xf\n”);
scanf(“%f %f %%f”, &x0, &y0, &h, &xf);
fprintf(fp, “Initial point x0 = %f, initial ”, x0);
fprintf(fp),“value y0 = %f\n”, y0);
fprintf(fp,“Step size = %f\n”, h);
fprintf(fp,“Final value = %f\n”,xf);
iter = (xf - x0) / h + 1;
for (i = 1; i <= iter; i++)

{ y = y0 + h * f(x0,y0);
x = x0 + h;
if(x < xf)

{ x0 = x;
y0 = y;

}
}

fprintf(fp,“At x = %6.4f, y = %12.6e\n”,x, y);
printf(“\nPLEASE SEE FILE ‘result’ FOR RESULTS\n\n”);
fclose(fp);
return 0;
}

/********************************************************/
float f(x, y)

float x, y;
{ float fun;

fun = -2.0 * x * y * y;
return(fun);

}
/********************************************************/
Initial point x0 = 0.000000, initial value y0 = 1.000000
Step size = 0.100000
Final value = 1.000000
At x = 1.0000, y = 5.036419e-01
/********************************************************/

PROGRAM 18

/* RUNGE-KUTTA CLASSICAL FOURTH ORDER METHOD
Program to solve the IVP, dy/dx = f(x,y), y(x0) = y0 using the classical Runge-Kutta fourth
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order method with steps h and h/2 and also computes the estimate of the truncation error.
Input parameters are: initial point, initial value, number of intervals and the step length h:
Solutions with h, h/2 and the estimate of truncation error are available as output. The right
hand side f(x,y) is computed as a function subprogram. */

#include <stdio.h>
#include <math.h>

float f();

main()
{
float u[20], v[40], x0, y0, h, k1, k2, k3, k4;
float h1, v1, te, x1, u1;
int n, i, m, nn, ij;
FILE *fp;

fp = fopen(“result”,“w”);

printf(“Input initial point x0, initial value y0,\n”);
printf(“number of intervals n and step size h\n”);
scanf(“%f %f %d %f”, &x0, &y0, &n, &h);
fprintf(fp,“Initial point x0 = %f, initial ”, x0);
fprintf(fp,“value y0 = %f\n”, y0);
fprintf(fp,“Number of intervals = %d,\n”, n);
x1 = x0;
for (m = 1; m <= 2; m++)

{ if(m == 1)
{ nn = n;

u(0) = y0;
}

else
{ nn = 2 * n;

h = h / 2.0;
v[0] = y0;

}
for (i = 1; i <= nn; i++)

{ if(m == 1)
{ u1 = u[i-1];

h1 = h / 2.0;
k1 = h * f(x0, u1);
k2 = h * f(x0 + h1, u1 + 0.5 * k1);
k3 = h * f(x0 + h1, u1 + 0.5 * k2);



8-\N-NUM\APPENDIX

Appendix 409

k4 = h * f(x0 + h, u1 + k3);
u[i] = u1 + (k1 + 2.0 * (k2 + k3) + k4)/6.0;
x0 = x0 + h;

}
else

{ v1 = v[i-1];
h1 = h / 2.0;
k1 = h * f(x1, v1);
k2 = h * f(x1 + h1, v1 + 0.5 * k1);
k3 = h * f(x1 + h1, v1 + 0.5 * k2);
k4 = h * f(x1 + h, v1 + k3);
v[i] = v1 + (k1 + 2.0 * (k2 + k3) + k4)/6.0;
x1 = x1 + h;

}
}

}
te = 16.0 * (v[nn] - u[n]) / 15.0;
fprintf(fp,“Step = %4.2f\n”, 2.0*h);
fprintf(fp,“Solution at nodal points\n”);
for (i = 1; i <= n; i++)

fprintf(fp,“%11.7f”, u[i]);
fprintf(fp,“\n”);
fprintf(fp,“Step = %4.2f\n”, h);
fprintf(fp,“Solution at nodal points\n”);
for (i = 1; i <= 2 * n; i++)

{
if(i == n + 1)

fprintf(fp,“\n”);
fprintf(fp,“%11.7f”, v[i]);

}
fprintf(fp,“\n”);
fprintf(fp,“Estimate of truncation error at ”);
fprintf(fp,“xf = %12.5e\n”,te);
printf(“\nPLEASE SEE FILE ‘result’ FOR RESULTS\n\n”);
return 0;
}

/********************************************************/
float f(x, y)

float x, y;
{ float fun;

fun = - 2.0 * x * y * y;
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return(fun);
}

/********************************************************/
Initial point x0 = 0.000000, initial value y0 = 1.000000
Number of intervals = 5,
Step = 0.10
Solution at nodal points

0.9900990 0.9615382 0.9174306 0.8620682 0.7999992
Step = 0.05
Solution at nodal points

0.9975063 0.9900990 0.9779951 0.9615384 0.9411764
0.9174311 0.8908685 0.8620689 0.8316008 0.8000000

Estimate of truncation error at xf = 7.62939e-07
/********************************************************/

PROGRAM 19

/* MILNE’S METHOD FOR SOLVING FIRST ORDER IVP
Program to solve an IVP, dy/dx = f(x,y), y(x0) = y0, using Milne-Simpson method. The initial
values x0, y0, the final value xf and the step size h are to be read. Starting values are calcu-
lated using classical fourth order Runge-Kutta method. Adams-Bashforth method of third or-
der is used as a predictor and Milne-Simpson method is iterated till
abs(yold - ynew) <= err where err is error tolerance. */

#include <stdio.h>
#include <math.h>

float f();

main()
{
float x[21], y[21], k1, k2, k3, k4, x0, y0;
float h, f0, f1, f2, f3, x1, y1, p, yold, eps;
int n, i, miter, iter, niter, m;
FILE *fp;

fp = fopen(“result”,“w”);

printf(“Input initial point x0, initial value y0\n”);
printf(“number of steps m, step size h,\n”);
printf(“error tolerance eps\n”);
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scanf(“%f %f %d %f %E”, &x0, &y0, &m, &h, &eps);
fprintf(fp,“Initial point = %f\n”, x0);
fprintf(fp,“Initial value = %f\n”, y0);
fprintf(fp, “Error tolerance = %e\n”, eps);
printf(“Input maximum number of iterations per step\n”);
scanf(“%d”, &niter);
fprintf(fp,“Maximum number of Milne iterations = ”);
fprintf(fp,“%d\n”, niter);
x[0] = x0;
y[0] = y0;
for (i = 1; i <= 2; i++)

{ x1 = x[i - 1];
y1 = y[i - 1];
k1 = h * f(x1 , y1);
k2 = h * f(x1 + 0.5 * h, y1 + 0.5 * k1);
k3 = h * f(x1 + 0.5 * h, y1 + 0.5 * k2);
k4 = h * f(x1 + h, y1 + k3);
y[i] = y1 + (k1 + 2.0 * k2 + 2.0 * k3 + k4) / 6.0;
x[i] = x1 + h;

}
miter = 0;
for (i = 3; i <= m; i++)

{ iter = 0;
x1 = x[i - 1];
y1 = y[i - 1];
f0 = f(x[i - 3], y[i - 3]);
f1 = f(x[i - 2], y[i - 2]);
f2 = f(x1, y1);
y[i] = y1 + h * (23.0 * f2 - 16.0 * f1 + 5.0 * f0) / 12.0;
x[i] = x1 + h;
p = y[i - 2] + h * (4.0 * f2 + f1) / 3.0;

l2: yold = y[i];
iter = iter + 1;
miter = miter + 1;
f3 = f(x[i], yold);
y[i] = p + h * f3 / 3.0;
if((fabs(yold - y[i]) - eps) <= 0)

goto l3;
if (iter > niter)

{
printf(“Iteration bound is not sufficient”);
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fprintf(fp,“Iteration bound is not sufficient”);
goto l1;
}

goto l2;
l3: printf(“ ”);

}
fprintf(fp,“Step = %6.4f\n”, h);
fprintf(fp,“Total number of Milne correctors used = ”);
fprintf(fp,“%d\n”, miter);
fprintf(fp,“Solution at nodal points\n”);
for (i = 1; i <= m; i++)

{
fprintf(fp,“%11.7f”, y[i]);
if(i == 5)

fprintf(fp,“\n”);
}

printf(“\nPLEASE SEE FILE ‘result’ FOR RESULTS\n\n”);
l1: fclose(fp);

return 0;
}

/********************************************************/
float f(x, y)

float x, y;
{ float fun;

fun = - 2.0 *x *y *y;
return(fun);

}
/********************************************************/
Initial point = 0.000000
Initial value = 1.000000
Error tolerance = 1.000000e-06
Maximum number of Milne iterations = 5
Step = 0.1000
Total number of Milne correctors used = 28
Solution at nodal points

0.9900990 0.9615382 0.9174208 0.8620606 0.7999858
0.7352871 0.6711303 0.6097542 0.5524795 0.5000020

/********************************************************/
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PROGRAM 20

/* SHOOTING METHOD FOR SOLVING SECOND ORDER LINEAR BVP
Program to solve the linear two point boundary value problem
u” = p[x](du/dx) + q[x]u + r[x] = G(x, u, du/dx), u[a] = s1, u[b] = s2, by shooting method using the
super-position principle. The intial value problem is solved by the fourth order Runge-Kutta
method for 2x2 system. It requires two approximations of the slope of the solution curve at the
starting point of integration. The linear function G is given as a function subprogram. */

#include <stdio.h>
#include <math.h>

float f();
float g();

main()
{
float u[50], v[50], w[50], k[3][5], h, a, b, ya, yb, va;
float x0, x1, x2, u1, v1, c1, c2, app1, app2;
int n, i, j, ij;
FILE *fp;

fp = fopen(“result”,“w”);

printf(“Input end points of interval of integration ”);
printf(“a & b,\nvalues at boundary points ya & yb,\n”);
printf(“two approximations to the slope app1 & app2,\n”);
printf(“number of intervals n\n”);
scanf(“%f %f %f %f %f %f”, &a, &b, &ya, &yb, &app1, &app2);
scanf(“%d”, &n);
fprintf(fp,“End points are a = %4.2f, b = %4.2f\n”, a, b);
fprintf(fp,“Values at boundary points are ya = %4.2f”, ya);
fprintf(fp,“,yb = %4.2f\n”,yb);
fprintf(fp,“Two approximations to the slope are:\n”);
fprintf(fp,“app1 = %f, app2 = %f\n”, app1, app2);
fprintf(fp,“Number of intervals = %d\n”, n);
h = (b - a) / n;
u[0] = ya;
v[0] = app1;
x0 = a;
for (j = 1; j <= n; j++)

{ x1 = x0 + h / 2.0;
x2 = x0 + h;
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u1 = u[j-1];
v1 = v[j-1];
for (i = 1; i <= 2; i++)

k[i][1] = h * f(i, x0, u1, v1);
for (i = 1; i <= 2; i++)

k[i][2] = h * f(i, x1, u1 + 0.5 * k[1][1], v1 + 0.5 * k[2][1]);
for (i = 1; i <= 2; i++)

k[i][3] = h * f(i, x1, u1 + 0.5 * k[1][2], v1 + 0.5 * k[2][2]);
for (i = 1; i <= 2; i++)

k[i][4] = h * f(i, x2, u1 + k[1][3], v1 + k[2][3]);
u[j] = u1 + (k[1][1] + 2.0 * (k[1][2] + k[1][3]) + k[1][4]) / 6.0;
v[j] = v1 + (k[2][1] + 2.0 * (k[2][2] + k[2][3] + k[2][4]) / 6.0;
x0 = x0 + h;

}
w(0) = ya;
v[0] = app2;
x0 = a;
for (j = 1; j <= n; j++)

{ x1 = x0 + h / 2.0;
x2 = x0 + h;
u1 = w[j - 1];
v1 = v[j - 1];
for (i = 1; i <= 2; i++)

k[i][1] = h * f(i, x0, u1, v1);
for (i = 1; i <= 2; i++)

k[i][2] = h * f(i, x1, u1 + 0.5 * k[1][1], v1 + 0.5 * k[2][1]);
for (i = 1; i <= 2; i++)

k[i][3] = h * f(i, x1, u1 + 0.5 * k[1][2], v1 + 0.5 * k[2][2]);
for (i = 1; i <= 2; i++)

k[i][4] = h * f(i, x2, u1 + k[1][3], v1 + k[2][3]);
w[j] = u1 + (k[1][1] + 2.0 * (k[1][2] + k[1][3]) + k[1][4]) / 6.0;
v[j] = v1 + (k[2][1] + 2.0 * (k[2][2] + k[2][3]) + k[2][4]) / 6.0;
x0 = x0 + h;

}
c2 = (yb - u[n])/(w[n] - u[n]);
c1 = 1.0 - c2;
for (i = 1; i <= n; i++)

u[i] = c1 * u[i] + c2 * w[i];
fprintf(fp,“Step h = %6.2f\n”, h);
fprintf(fp,“Solution at nodal points\n”);
for (i = 1; i <= n - 1; i++)



8-\N-NUM\APPENDIX

Appendix 415

fprintf(fp,“%12.5e ”, u[i]);
fprintf(fp,“\n”);
printf(“\nPLEASE SEE FILE ‘result’ FOR RESULTS\n\n”);
return 0;
}

/********************************************************/
float f(i, x, z1, z2)

float x, z1, z2;
int i;

{ float fun;
if(i == 1)

fun = z2;
else

fun = g(x, z1, z2);
return(fun);

}
/********************************************************/
float g(xx, zz1, zz2)

float xx, zz1, zz2;
{ float fung;

fung = zz1 + xx;
return(fung);

}
/********************************************************/
End points are a = 0.00, b = 1.00
Values at boundary points are ya = 0.00, yb = 0.00
Two approximations to the slope are:
app1 = 0.100000, app2 = 0.200000
Number of intervals = 5
Step h = 0.20
Solution at nodal points
-2.86791e-02 -5.04826e-02 -5.82589e-02 -4.42937e-02
/********************************************************/
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