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Introduction:

This document provides information on several methods used to solve differen-
tial equation. Note that not all topics of the TU-Delft Bsc differential course
are covered here, however the most basic ones that will provide you with the
basic necessary understanding on the nature of differential equations.

The aim of this document is not to provide you simply a set of rules to follow
for the exam, (for that you have already the other document in Aerostudents),
but actually help you to understand the given material. If you put a bit of
effort, you will be surprised how simple actually all the material is, and yet how
enjoyable it all becomes. This will help you to recall functions even after the
exam and broaden your horizon as an engineer.

Another useful source I would recommend for people studying differential equa-
tions is the online website: Paul‘s online notes. In fact, most of what I learned
was thanks to the author of this website.
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Chapter 1

Solving diff eq the standard
way:

This chapter you should already be familiarized with from previous math lec-
tures. I give in here a short but detailed review.

1.1 First order diff equations:

1.1.1 Separable differential equations:

These are probably the easiest differential equations to solve. The trick here is
that one is able to seperate the variables to each side. Lets use an example to
clarify.

Example 1: We have the following equation:

dy

dx
− 5y = 0 (1.1)

We can therefore easily rearrange the equation to:

dy

dx
= 5y (1.2)

Our aim now is to get all the y terms to one side, all the x terms to the other.
So:

1

5y
dy = 1dx (1.3)

This is now an equation we can integrate in order to eliminate the dy and dx
and finding out the unknown y:∫

1

5y
dy =

∫
dx (1.4)
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This solves to:
1

5
ln(y) = x (1.5)

ln(y) = 5x (1.6)

y = e5x (1.7)

1.1.2 Non separable differential equations:

The previous method only works for the simplest cases where we can actually
seperate the variables. However there are several non seperable first order dif-
ferential equations that can be solved with the following method:

We start with an equation of the following form:

dy

dt
+ a(t)y = g(t) (1.8)

Our aim here is to get rid of that annoying dt. How do we do this? We first
multiply it with an unknown function. So:

µ
dy

dt
+ µa(t)y = µg(t) (1.9)

What is the use of this? Well, if we assume that d
dt (µy) = µdydt + dµ

dt y due to the
product rule, we actually know that:

µa(t) =
dµ

dt
(1.10)

And this we can solve very easily, since it is a simple seperable equation! Yey!

1

µ
dµ = a(t)dt (1.11)∫

1

µ
dµ =

∫
a(t)dt (1.12)

ln(µ) =

∫
a(t)dt (1.13)

µ = e
∫
a(t)dt (1.14)

Now we can go back to our original equation and rewrite it as:

d

dt
(µy) = µg(t) (1.15)

Integrating we get:

µy =

∫
µg(t)dt (1.16)

Or else:

y =

∫
µg(t)dt

µ
(1.17)

Tadaa! And there we go, we have the solution. Note that this method can be
used with the cases of seperable equations.
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1.2 Second order differential equations:

1.2.1 Homogenous equations:

We start with an equation of the following form:

ay“ + by‘ + cy = 0 (1.18)

In order to solve this we are going to assume that y is going to be a solution
such that y = ert. Why this solution? The genious in this idea is that by
differentating this solution, the base never changes:

y = ert (1.19)

y‘ = rert (1.20)

y“ = r2ert (1.21)

We can use insert this phenomenon into our equation. 1 So:

a(r2ert) + b(rert) + c(ert) = 0 (1.22)

We can cancel out ert and end up with the simple polynomial:

ar2 + br + c = 0 (1.23)

We can now solve for r by using simply the polynomial rule:

−b±
√
b2 − 4ac

2a
= r1,2 (1.24)

There are now three possible cases for the results of r:

• Case 1: Both r are real and distinct. Therefore the solution is:

y = c1e
r1t + c2e

r2t (1.25)

• Case 2: Both r are real, but same (so only one r). Therefore the solution
is:

y = c1e
r1t + c2te

r2t (1.26)

• Case 3: Both r are complex in the form of λ± iµ. Therefore the solution
is:

y = c1e
λtcos(µt) + c2e

λtsin(µt) (1.27)

1This type of phenomenon is derived into several other techniques that will be shown later,
but they all come with the same idea.
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1.2.2 Non-homogenous equations:

In the non-homogenous case, like the equations below:

ay“ + by‘ + cy = g(t) (1.28)

We obtain a solution of the form y = yc + yp, where yc is the complementary
solution or the solution from the homogenous case, which we already know how
to solve, with the added term yp.

From previous years the method of Undetermined coefficients was used. This
method however limits itself to simple cases such as a polynomial and is even
then rather lengthy. Since it has already been covered before, and in my opin-
ion its far more tidious than the alternative, I will jump ahead and explain the
second method, the Variation of parameters.

Variation of parameters:

For an equation of the form:

ay“ + by‘ + cy = g(t) (1.29)

We already know that the solution to yc is of the form:

yc = c1y1 + c2y2 (1.30)

Therefore, lets assume that the particular solution is of the similar form:

yp = u1y1 + u2y2 (1.31)

Where we have the two unknowns, u1 and u2. Thus we will need two equations
in order to solve them. One simple thing to do is differentiate this equation,
which we can then plug into our differential equation:

yp‘ = u1‘y1 + u1y1‘ + u2‘y2 + u2y2‘ (1.32)

To simplify our lives we are going to assume that the derivatives of u1 and u2
are going to be such that:

u1‘y1 + u2‘y2 = 0 (1.33)

Therefore, we write again:

yp‘ = u1y1‘ + u2y2‘ (1.34)

and differentiate again:

yp“ = u1y1“ + u1‘y1‘ + u2y2“ + u2‘y2‘ (1.35)

Inserting these into our differential equation we obtain:

a(u1y1“+u1‘y1‘+u2y2“+u2‘y2‘)+b(u1y1‘+u2y2‘)+c(u1y1+u2y2) = g(t) (1.36)
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Dont get too scared of this long equation. You will see in a moment how simple
it all actually is. We can rearrange our equation the following (nicenice) way:

a(u1‘y1‘ + u2‘y2‘) + u1(ay“ + by‘ + cy) + u2(ay“ + by‘ + cy) = g(t) (1.37)

Observe! We already know that ay“ + by‘ + cy = 0! Therefore our equation
really is:

a(u1‘y1‘ + u2‘y2‘) = g(t) (1.38)

or:

(u1‘y1‘ + u2‘y2‘) =
g(t)

a
(1.39)

In the case where a = 1, we can write this equation to:

u1‘y1‘ + u2‘y2‘ = g(t) (1.40)

Therefore we end up with the two equations:

•
u1‘y1 + u2‘y2 = 0 (1.41)

•
u1‘y1‘ + u2‘y2‘ = g(t) (1.42)

Just solve them! I usually like to use Linear Algebra for this, so it would all
look like: [

y1 y2
y1‘ y2‘

] [
u1‘
u2‘

]
=

[
0
g(t)

]
(1.43)

You may also notice how the first matrix is actually the identical to a Wronskian
matrix. What you see in the books is usually the rearrangement of the same
equations above, but with the Wronskian included... Really though, why make
your life any harder?

Now that you know u1‘ and u2‘, we integrate them. Thus we can state that:

yp =
[
y1 y2

] ∫ [u1‘
u2‘

]
dt (1.44)

With today’s calculators (such as the TI-nspire) this method becomes even more
of a breeze. All you need to know to solve these problems is equation 1.43 and
1.44.
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Chapter 2

Laplace transform:

Laplace transform is a wonderful way to solve differential equations. Its magic
really lies that it ”transforms” the nasty equation with differentials to a simple
algebraic equation in the laplace space.

This is extremely useful! (and you will be learning more about this in Systems
and Control.) Imagine you have to superimpose and add several differential
equations to create a ”super-system”. With laplace this all becomes an alge-
braic equation and you can go ahead and work in the laplace space up until the
very end without ever the need to solve the equations except at the end.

For now though we shall only focus on how to solve differential equations by
converting them into the Laplace space and then converting them back to ”our”
space. (Totally sounds like Star Trek.)Note that there are many more trans-
form out there such as the Fourier transform (not Fourier series!) that are very
commonly used. Lets start!

2.0.1 Laplace transform definition:

The definition of the laplace transform is as following:

L[f(t)] =

∫ ∞
0

e−stf(t)dt (2.1)

where the function in terms of t is converted to a function in terms of s.

Example 1: Lets convert the function f(t) = 1 to the laplace space:∫ ∞
0

e−st1dt (2.2)

∫ ∞
0

e−stdt (2.3)
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[
−1

s
e−st]∞0 (2.4)

−1

s
∗ 0− −1

s
∗ 1 =

1

s
(2.5)

In a similar manner the laplace table (which you are going to have in the exam)
is created. Additionally the derivatives of a function y can be expressed by
using integration by parts. I wont show the integration here but just the result
of them:

y => L[y] (2.6)

y‘ => sL[y]− y(0) (2.7)

y“ => s2L[y]− sy(0)− y‘(0) (2.8)

As you can see a nice trend appears, which we can make use of for even big-
ger differential equations. Notice also how the laplace transform directly uses
the initial conditions! There is no need to plug them in afterwards unlike the
previous method learned so far.

2.0.2 Laplace transform applied:

One very important note: You will need to know how to solve partial fractions
in order to complete most exercises given to you that involve laplace.
Lets have an example to see how one would solve a differential equation with
laplace.

Example 2: Solve the following equation with laplace:

y“ + 3y‘ + 2y = 0 (2.9)

with I.C. y(0) = 1 and y‘(0) = 2.

Lets apply the laplace transform:

(s2L[y]− sy(0)− y‘(0)) + 3(sL[y]− y(0)) + 2L[y] = 0 (2.10)

Inserting the I.C. we have:

(s2L[y]− s− 2) + 3(sL[y]− 1) + 2L[y] = 0 (2.11)

s2L[y]− s− 2 + 3sL[y]− 3 + 2L[y] = 0 (2.12)

L[y](s2 + 3s+ 2) = s+ 5 (2.13)

L[y] =
s+ 5

s2 + 3s+ 2
(2.14)

Tadaa! Wasnt that easy?! For this you already get half of the points! And in
practical terms, you could now already go ahead and design a whole system for
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an airplane with this transform! Lets not get out of hand though, we need now
to convert this equation back.

Unfortunately this part may be a bit trickier, but we have a good friend with
us, the laplace table. What we essentially try to do is to fit our laplace equation
into an equation that resembles one of the equations in the laplace table. If we
mananage that, we can convert back. So lets do that:

s+ 5

s2 + 3s+ 2
=

s+ 5

(s+ 2)(s+ 1)
=

A

(s+ 2)
+

B

s+ 1
(2.15)

Therefore:

s+ 5 =
A(s+ 2)(s+ 1)

(s+ 2)
+
B(s+ 2)(s+ 1)

s+ 1
(2.16)

s+ 5 = A(s+ 1) +B(s+ 2) (2.17)

One way of solving this equation is to use the fact that at s=-1, we cancel out
all A-terms, thus being able to find B (and same thing vice versa). There are
some other ways to solve this last bit, but I let that for you to review. Thus we
can write our laplace expression as:

L[y] =
−3

s+ 2
+

4

s+ 1
(2.18)

Using the laplace table, we can convert easily to:

y[t] = −3e−2t + 4e−3t (2.19)

And voilá! We are done!

Remember to look also into special functions such as step functions or impulse
functions. The real power of laplace comes in here, where one can actually go
ahead and solve all these functions! Just remember, the laplace table is your
friend.
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Chapter 3

Systems of diff eq:

Similar to laplace, you will be seeing systems of differential equations many
many many more times. Reason for this is that you can describe a whole sys-
tem by a set of matrices. So in Systems and Control, you will be seeing this
again.

I therefore highly recommend you that you learn how to convert a differen-
tial equation into a system of differential equations. However, during this exam
you wont need to know how to do that as you will be given the system with the
request to solve it.

3.1 Solving sys:

3.1.1 homogenous sys:

The system of diff.eg. is going to consist of matrices and look as follows:

x‘ = Ax (3.1)

Similarly to chapter one, we are going to assume a solution y = ~veλt. (Where ~v
is going to be the eigenvector and λ the eigenvalue of the matrix A.)
Plugging that into our differential equation, we get:

~vλeλt = A~veλt (3.2)

Cancelling terms we get to the well known expression:

(A− λ)~v = 0 (3.3)

Since we are dealing with matrices, we cant just differentiate A− λ. However if
we rewrite our expression as the following:

(A− λI)~v = 0 (3.4)
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Since we assume that the vector ~v is non-zero, the matrix expressed inside the
brackets will become singular. This can be seen here:

A = λI (3.5)

There is no way one can take the inverse of one matrix, thus defining singularity.
From Linear Algebra we know that this phenomenon occurs only when:

det(A− λI) = 0 (3.6)

Thus we can use this property to find the eigenvalues λ and solve our system.
The solution for an nth order differential equation would be of the form:

x = c1 ~v1e
λ1t + c2 ~v1e

λ2t...cn ~vne
λnt (3.7)

Just like in chapter one, there are three cases to consider and depending on the
values of lambda the solution will be a bit different.

• Case 1: Both λ are real and distinct. In this case the solution is just of
the same form as above:

x = c1 ~v1e
λ1t + c2 ~v1e

λ2t (3.8)

• Case 2: There is only one real λ. This of course is a bit of a problem
for us, because we require for a 2nd order differential equation at least a
2 term solution. So what we do is to use the basic equation from before
to create a second term:

(A− λI)~v = 0 (3.9)

(A− λI)~η = ~v (3.10)

• Case 3: The λ‘s are complex. Most of the people will usually try to
remember that the equation is formed in terms of cosine and sines, however
all that really happens is the same as in the first case, but we continue by
using de Moivres law:

eiαt = cos(αt) + i sin(αt) (3.11)

If you have done an exercise involving complex eigenvalues, you will have
noticed that the imaginary part is turned real. The reason why the imag-
inary part disappears in the solution is because of the following simple
reason: Lets assume that the solution for the equation x‘ = Ax is:

x = u+ iv (3.12)

since we know that x‘ − Ax = 0, we can insert our solution into our
equation:

u‘ + iv‘−A(u+ iv) = 0 (3.13)
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Rewrite this:
u‘−Au+ i(v‘−Av) = 0 (3.14)

In order for this solution to be indeed zero, both the u terms and the v
terms must be zero and thus are a solution:

u‘−Au = 0 (3.15)

v‘−Av = 0 (3.16)

Therefore in the solution we can convert the imaginary part to the real
part, since this equivalent with the solution.

3.1.2 non-homogenous sys:

Lets move on to the non homogenous systems. These would be of the form:

x‘ = Ax+ g(t) (3.17)

Just like in chapter one, we already know how to solve the homogenous case.
This would solve for us here as the complementary solution. To this one, we
still require the particular solution.

x = xc + xp (3.18)

In the following I will be showing the method of Variation of parameters as I
believe that it is far easier and shorter than the other methods shown in this
course, such as the method Undetermined coefficients.

We make the assumption that the particular solution is formed from the com-
plementary solution with an according transformation. That would like this:

xp = Xv (3.19)

(where X is a matrix formed from the complementary solutions and v is a
transformation vector.) If we plug that into our differential equation, we get:

X‘v +Xv‘ = AXv + g(t) (3.20)

where we can assume that AX = X‘. Thus cancelling terms we end up with:

X‘v +Xv‘ = X‘v + g(t) (3.21)

Xv‘ = g(t) (3.22)

Our job now is to find v. So lets get to it; its quite straight forward:

v‘ = X−1g(t) (3.23)

v =

∫
X−1g(t)dt (3.24)
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Therefore we can rewrite equation 3.19 as:

X

∫
X−1g(t)dt = xp (3.25)

And that is it! We have found an expression for xp and thus are able to complete
our solution! Easy, wasnt it?

3.2 Analyzing sys:

Another great thing about systems of differential equations is that with their
solution, we can make a phase plot, which will describe how our system behaves.
How cool is that? You can actually observe whether your system is stable or
not, and how it interacts.

Unfortunately, for this course most people just memorize the table of stabil-
ities presented by the teacher. Not only do these people forget that table once
the exam is over, but they have little idea of what is actually going on!

I hope in the following to show you how easy it actually is to determine how the
differential equation behaves and that you do not need to learn a whole freaking
table with weird numbers and symbols for your exam. Lets take a look at how
the solution of a system is represented onto the phase plot.

As you are aware, a solution consists of eigenvectors and eigenvalues. Kinda
like this:

x = c1 ~v1e
λ1t + c2 ~v1e

λ2t (3.26)

Now, lets focus only on the first term of the solution. There are several cases
that could appear:

• Case 1: The λ is real and positive. Just look at the equation! What
happens as t grows bigger? Exactly! They scale the eigenvector to bigger
values, so away from the origin!

• Case 2: The λ is negative. Again, looking at the equation, you can now
recognize how the eigenvector is scaled smaller as t grows, so it would
move toward the origin.

• Case 3: The λ is complex. In this case we have a sin and cos term in our
equation. That means that as t grows bigger, each eigenvector is scaled
periodically! This is what causes complex solutions to spiral around the
origin, because as one periodic shift grows smaller for one eigenvalue, the
other one increases.

Now a solution can be a combination of any of these three cases. The table
essentially shows you all the names for each possible combination. What is
more important though, now you are able to draw a phase plot without needing
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a table. Sure, you might need the table to remember how the case was called,
but that is all.
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Chapter 4

Power series:

This might be one of the most intimidating ways to solve a differential equation,
and yet it is incredibly simple. It might be useful for you if you take a short
review on how to manipulate series, but the example below should clarify those
issues.

Example 1: Lets solve the following equation for x0 = 0:

y“ + xy = 0 (4.1)

In order to solve this equation we assume y is a solution to a power series. Why?
For same reason as in chapter one, and that is that the derivates never change
base. Below the series and its derivatives:

y =

∞∑
n=0

an(x− x0)n (4.2)

y‘ =

∞∑
n=1

nan(x− x0)n−1 (4.3)

y“ =

∞∑
n=2

n(n− 1)an(x− x0)n−2 (4.4)

Notice where the series starts! Also, since we are taking x0 = 0, we can take
out the x0 term. So what are we waiting for? Lets just plug in these equations
into our original differential equation. That would give the following result:

∞∑
n=2

n(n− 1)anx
n−2 + x

∞∑
n=0

anx
n = 0 (4.5)

First thing we wanna do is to insert the x on the second term into the sum
series.

x

∞∑
n=0

anx
n (4.6)
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∞∑
n=0

anx
n+1 (4.7)

So all together:
∞∑
n=2

n(n− 1)anx
n−2 +

∞∑
n=0

anx
n+1 = 0 (4.8)

Now though, what we have to get to is to have for both sums the same power
term, so that we can join them together later on. Lets make the common term
xn. Then for the first term we have to convert:

∞∑
n=2

n(n− 1)anx
n−2 (4.9)

we insert the dummy variable: i = n− 2, or n = i+ 2:

∞∑
i=0

(i+ 2)(i+ 1)ai+2x
i (4.10)

and then rewrite i to n:

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n (4.11)

Now we have managed to get the power term into xn for the first term. Lets do
the same thing for the second term:

∞∑
n=0

anx
n+1 (4.12)

we insert the dummy variable: i = n+ 1, or n = i− 1:

∞∑
i=1

ai−1x
i (4.13)

and convert again:
∞∑
n=1

an−1x
n (4.14)

Therefore our equation becomes:

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n +

∞∑
n=1

an−1x
n = 0 (4.15)

Good job! Now we have both sums with the same power term! The last thing
we have to do before being able to join both sums is to make sure both sums
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start at the same integer. We can do this easily by taking out the first number
from the first term series:

2a2 +

∞∑
n=1

(n+ 2)(n+ 1)an+2x
n +

∞∑
n=1

an−1x
n = 0 (4.16)

2a2 +

∞∑
n=1

[(n+ 2)(n+ 1)an+2 + an−1]xn = 0 (4.17)

Since this equation is true for all n-integers, we know that for n = 0:

2a2 = 0 (4.18)

so we know that a2 = 0, and for the rest of n, we need:

(n+ 2)(n+ 1)an+2 + an−1 = 0 (4.19)

Which we can rewrite as:

an+2 =
−an−1

(n+ 2)(n+ 1)
(4.20)

Plugging in then a few more integers, we may be able to observe a trend:

• n = 1:

a3 =
−a0

(3)(2)
(4.21)

• n = 2:

a4 =
−a1

(4)(3)
(4.22)

• n = 3:

a5 =
−a2

(5)(4)
(4.23)

but since a2 = 0, a5 = 0.

• n = 4:

a6 =
−a3

(6)(5)
=

a0
(6)(5)(3)(2)

(4.24)

• n = 5:

a7 =
−a4

(7)(6)
=

a1
(7)(6)(4)(3)

(4.25)

As you can see, a pattern has arised. Therefore our solution is a set of the sum
of all these terms. In the exam and in practice its fine if you write down the
first terms, however if you can, try to describe the solution as a pattern. In this
case the patterns would be:

a3n = 0 (4.26)

18



a3n+1 =
a1

(3n)(3n+ 1)
(4.27)

a3n+2 =
a0

(3n− 1)(3n)
(4.28)

Now that all this has been done, we remember how the solution of this differ-
ential equation was:

y =

∞∑
n=0

anx
n (4.29)

which expanded for n integers is:

y = a0 + a1x+ a2x
2 + a3x

3...anx
n (4.30)

Inserting the patterns that we have just found:

y = a3(n=0) + a3(n=0)+1x+ a3(n=0)+2x
2 + a3(n=1)x

3... (4.31)

y = a1[1 +

∞∑
n=1

x3n+1

(3n)(3n+ 1)
] + a0[1 +

∞∑
n=1

x3n

(3n− 1)(3n)
] (4.32)

And there you go! It might take some time and require good attention, but if
done carefully, it should not be ”out of this world!” neither.
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Chapter 5

Fourier Series:

5.0.1 Exploring Fourier series:

This is quite a nice chapter. Although this method does not provide you with
a way to solve a differential equation, the results of a differential equation may
appear as an expression in terms of cos and/or sin, so a Fourier series.

In other words, Fourier series occur many times in the world of engineering,
and the beauty of them is that it can describe what otherwise would be a set of
step functions to simply a (periodic) function.

What is a Fourier series? Really, its only the superposition of periodic functions.
Most often we make use of cos and sin functions, (which are really the same
function shifted by 90 degrees), but you could apply other periodic functions if
you like to make your life harder. Point is, by taking several of the cos and/or
sin functions we are able to create periodic other more complicated functions
that usually can only be described for example by step functions.

Keeping that in mind, the actual Fourier series takes an obvious form of:

f(x) =
a0
2

+

∞∑
n=1

ancos(
nπx

L
) +

∞∑
n=1

bnsin(
nπx

L
) (5.1)

Now, before we jump right into finding the constants a0, an and bn with the
integral forms presented to you in class, lets just take a look at the equation.

The first term, a0/2, clearly is the average of the function. Just like in
a linear function y = mx+ c, the c is responsible for shifting the given equation
up or down. Same thing with the a0/2: It shifts the equation up or down. Since
we are dealing with periodic functions, it states where the function average lies.
For a normal cosine function f(x) = cos(x), the average would be zero.
In most cases therefore, you dont even need to compute the integral to find a0.
Its simply the double of the average of the given curve.
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Next, we have the constants an and bn, which affect the amplitude of each
cosine or sine term. However, in most cases we can determine whether a func-
tion is even or odd. A simple example for each case: cosine functions are even,
sine functions are odd. The definition for even or odd functions can also be
expressed as:

even : f(x) = f(−x) (5.2)

odd : f(x) = −f(−x) (5.3)

What is the use of this? In some cases you will be provided with a function
that is either odd or even. Thus you can describe it either fully only with cosine
terms or sine terms. You therefore have even less work to do and only need to
determine the an or bn.

5.0.2 Finding the series constants:

So now that we have understood what the fourier series are all about, we can
go ahead and try to find the needed constants.

Once again, lets start with the general expression and try to find a0, an and bn:

f(x) =
a0
2

+

∞∑
n=1

ancos(
nπx

L
) +

∞∑
n=1

bnsin(
nπx

L
) (5.4)

• Finding a0: So we need to find a0. How do we do this? Well, notice
that if we integrate the equation from the start of a period to the end of
a period, so from -L to L, the cosine and sine terms all become zero. We
end up thus with the following scenario:∫ L

−L
f(x)dx =

a0
2

∫ L

−L
dx+ 0 + 0 (5.5)

∫ L

−L
f(x)dx =

a0
2

(2L) (5.6)

Rearranging to a0:

a0 =
1

L

∫ L

−L
f(x)dx (5.7)

• Finding an: Again we will try to ”filter” the term we are interested in.
If we multiply the whole equation with a cosine and then integrate it,
we observe how the first term and the last term dissapears. In case it
is unclear why last term dissapears after integrating it, just graph the
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function and you will see that the integral across a whole period is zero.
Thus we end up with:∫ L

−L
f(x)cos(x)dx =

∫ L

−L
ancos(

nπx

L
)cos(

mπx

L
)dx (5.8)

The integral to a double cosine (or sine) function has the following possible
solutions:

(m 6= n) = 0 (5.9)

(m = n = 0) = 2L (5.10)

(m = n 6= 0) = L (5.11)

Since our series (and that is the actual reason) starts at n = 1, the integral
solution for the double cosine is L. Therefore we can write:∫ L

−L
f(x)cos(

mπx

L
)dx = anL (5.12)

Rearrange it to an:

an =
1

L

∫ L

−L
f(x)cos(

mπx

L
)dx (5.13)

• Finding bn: This is the same thing we did with an, just using sines
instead. The solution would finally be:

bn =
1

L

∫ L

−L
f(x)sin(

mπx

L
)dx (5.14)

And there you go, that is all the magic to Fourier series. Just like with
the power series, mind your work: be careful and organized, and then
everything should come out smoothly.

Also, if you are up to some fun, I would recommend to you to actually
graph a Fourier series. You can do that easily with a graphical calculator
by inserting the first few terms of the Fourier series. It really helps to
visualize what all this equations are actually doing.
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Chapter 6

Partial differential
equations:

Partial differential equations are a further step into making differential equa-
tions even more complicated. Instead of having only one dimension to worry
about (such as f(t) is a function of time), we include a second one (such as
g(x,t), a function of both position and time).

Another important difference of these equations is that to describe them to
a certain situation, we make use of boundary conditions. (Before the differ-
ential equations only required initial conditions, here we require some more
constraints.) Depending on how the boundary conditions are set, we may call a
differential equation homogenous (if they are equal to zero) or non-homogenous
(if they are non-zero).

6.0.1 Separation of variables:

In order to explain this method, lets just directly go over an example:

Example 1: Solve the heat equation:

ut = kuxx (6.1)

with initial and boundary conditions: u(x, 0) = f(x) ; u(0, t) = 0 and u(L, t) =
0.

As you can see this equation is homogenous. Thus we may proceed with using
the seperation of variables. We will assume that:

u = X(x)T (t) (6.2)

Why we choose this is mainly because it works. We can check that by computing
whether the determinant of the Wronskian for the solution is non-zero. If it is,
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we are cool. Anyways, lets just keep working and insert our expression into our
differential equation:

XT ‘ = kX“T (6.3)

We can rearrange now all X terms to one side, T terms to the other:

X

kX“
=

T

T ‘
(6.4)

Now this is a condition that is always true, thus we can express these ratios as
a constant:

X

kX“
=

T

T ‘
= −λ (6.5)

The minus is more there for ”comfort” for the continuation of the calculations
we require.
Thus we end up with the two equations to solve:

X + λkX“ = 0 (6.6)

T + λT ‘ = 0 (6.7)

Now in order to solve this and find a general solution, we require to check how
λ affects the solution. It may be that if λ is negative, there is no solution,
whereas if it is positive there is. We dont know, so we need to check that. We
shall pick the X-equation, mainly because we can then make use of the boundary
conditions.

• Case 1: λ > 0: In that case, we can just use the rules from the first
chapter to realize that the solution will be of the form:

λkr2 + 1 = 0 (6.8)

r = ±
√
−1

λk
(6.9)

Since λ is positive:

r = ±i
√

1

λk
(6.10)

So the solution would be:

X(x) = c1cos(

√
1

λk
x) + sin(

√
1

λk
x) (6.11)

Applying the second boundary condition:

X(0) = 0 = c1cos(0) + sin(0) (6.12)

c1 = 0 (6.13)
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Applying now the third condition:

X(L) = 0 = c1cos(

√
1

λk
L) + sin(

√
1

λk
L) (6.14)

but we know that c1 is zero, so:

X(L) = 0 = sin(

√
1

λk
L) (6.15)

arcsin(0) =

√
1

λk
L (6.16)

Knowing that the sine function is zero at 0, π, 2π, 3π...nπ we can rewrite
our last expression as:

nπ =

√
1

λk
L (6.17)

Rearranging for λ, we have:

k(
nπ

L
)2 =

1

λ
(6.18)

and the solution would be:

X(x) = sin(

√
(
nπ

L
)2x) (6.19)

X(x) = sin(
nπx

L
) (6.20)

Notice how this is a Fourier series expression. (Told you they would come
up.)

• Case 2: λ = 0: We already know that:

r = ±i
√

1

λk
(6.21)

Since λ is zero, we have r = 0. This would give us only the trivial solution1,
thus for this case we have no (non-trivial) solution.

• Case 3: λ < 0: In that case we would have:

r = ±
√

1

λk
(6.22)

This would give us the following solution:

X(x) = c1e
√

1
λkx + c2e

−
√

1
λkx (6.23)

1trivial solution means that a solution is equal to zero.
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Applying the second condition, we can see that 0 = c1 + c2, and therefore
c1 = −c2.

Applying the third condition, we have:

X(x) = 0 = −c2e
√

1
λkL + c2e

−
√

1
λkL (6.24)

So:
c2e
√

1
λkL = c2e

−
√

1
λkL (6.25)

Since this is NOT true unless L = 0 as well, there is no solution. Thus
the only solution is when λ was positive!

So now that we know the solution to the first equation, written in x-terms, we
move on to the second equation, now with the known λ:

T + λT ‘ = 0 (6.26)

We shall just not yet plug in λ to prevent a huge mess. This equation is a
simple first order (even seperable!) differential equation. Thus we know that
the solution is:

T (t) = c1e
− 1
λ t (6.27)

Now inserting λ:

T (t) = c1e
−k(nπL )2t (6.28)

Remembering that we said that:

u(x, t) = X(x)T (t) (6.29)

We can include now both of our found solutions:

u(x, t) = c1sin(
nπx

L
)e−k(

nπ
L )2t (6.30)

Notice that for different n-values, the constant c1 would also change. So a better
way of writing it is:

u(x, t) =

∞∑
n=1

Ansin(
nπx

L
)e−k(

nπ
L )2t (6.31)

And there you go. A long road, but we are done! How to find An is just like
what we had done in the chapter of fourier series.
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6.0.2 Limiting the equation:

So what happens when we have a non homogenous equation? If you think about
it, in the least of the cases, we actually end up with a homogenous case. Take
for example the heat equation for a rod: The temperature at the end of the rods
is most of the times not zero.

Instead the boundary and initial conditions would look more like this in re-
ality:
u(x, 0) = f(x) ; u(0, t) = T1 and u(L, t) = T2.

So lets try to solve the same heat equation as last time, but with these new
boundary conditions:

Example 2: Solve the heat equation:

ut = kuxx (6.32)

Unlike last time, we are not able to use separation of variables, as this method
only works for homogeneous cases. Similarly to previous cases, we are able to
find a solution for the homogeneous case, but still have to find the particular
solution.

However we notice that as time progresses, and there is no source term, the
system described by the heat equation will arrive to an equilibrium point. In
mathematical words:

lim
t→∞

u(x, t) = uE(x) (6.33)

Using this assumption, our differential equation would convert to:

0 = k(uE)xx (6.34)

and the boundary conditions would change to: uE(0) = T1 and uE(L) = T2.

What we are dealing with now is of course a very simple second order ho-
mogeneous differential equation. (Not even partial!) By integrating it twice, we
solve it to:

k[c1x+ c2] = 0 (6.35)

or simply:
c1x+ c2 = 0 (6.36)

and including the boundary conditions, we end up with the following equation:

T2 − T1
L

x+ T1 = 0 (6.37)

and this is the particular solution! You might have seen the definition:

v(x, t) = u(x, t)− uE (6.38)
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which is then rearranged to:

u(x, t) = v(x, t) + uE (6.39)

What does all that mean? Well, v(x, t) is the solution for the homogenous case,
so the complementary solution, and uE is the particular solution. Thus the
solution to our problem here is:

u(x, t) = (
∑

Ansin(
nπx

L
)e−k(

nπ
L )2t) + (

T2 − T1
L

x+ T1) (6.40)
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