
Differential Equations Problems and
Solutions

1 The Laplace Transform

1.1 Question 1 - January 19, 2007 (4 points)

Use the Laplace transform to solve the initial value problem

d2y

dt2
+ 2

dy

dt
+ 4y = δ (t− π) , y(0) = 1,

dy

dt
(0) = 0. (1.1)

1.1 Solution

Taking the Laplace transform will give

L{y′′ + 2y′ + 4y} = L{δ (t− π)}, (1.2)
L{y′′}+ 2L{y′}+ 4L{y} = e−πs, (1.3)

s2F (s)− s + 2 (sF (s)− 1) + 4F (s) = e−πs, (1.4)
F (s)

(
s2 + 2s + 4

)
− (s + 2) = e−πs, (1.5)

Solving for F (s) will give

F (s) =
e−πs

s2 + 2s + 4
+

s + 2
s2 + 2s + 4

, (1.6)

F (s) =
s + 1

(s + 1)2 +
√

3
2 +

1√
3

√
3

(s + 1)2 +
√

3
2 +

e−πs

s2 + 2s + 4
. (1.7)

Now we split the equation up in three different parts, being

F (s)1 =
s + 1

(s + 1)2 +
√

3
2 , (1.8)

F (s)2 =
1√
3

√
3

(s + 1)2 +
√

3
2 , (1.9)

F (s)3 =
e−πs

s2 + 2s + 4
. (1.10)

We solve for them individually. The first two are relatively easy. The last one requires an extra step.

f(t)1 = e−t cos
√

3t, (1.11)

f(t)2 = e−t 1√
3

sin
√

3t, (1.12)

f(t)3 = L{e−πsH(s)} = uπ(t)h(t− π), (1.13)

h(t) = e−t 1√
3

sin
√

3t, (1.14)

f(t)3 = uπ(t)e−(t−π) 1√
3

sin
√

3(t− π). (1.15)
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Finally we add it all up to get

y = f(t) = f(t)1 + f(t)2 + f(t)3 = e−t cos
√

3t + e−t 1√
3

sin
√

3t + uπ(t)e−(t−π) 1√
3

sin
√

3(t− π). (1.16)

1.2 Question 1 - April 2, 2007 (6 points)

Use the Laplace transform to solve the initial value problem

y′ + 4y = sin 2t + δ (t− π) , y(0) = 1. (1.17)

1.2 Solution

Taking the Laplace transform will give

L{y′ + 4y} = L{sin 2t + δ (t− π)}, (1.18)

L{y′}+ 4L{y} =
2

s2 + 22
+ e−πs, (1.19)

sF (s)− 1 + 4F (s) =
2

s2 + 22
+ e−πs, (1.20)

F (s) (s + 4)− 1 =
2

s2 + 22
+ e−πs, (1.21)

Solving for F (s) will give

F (s) =
1

s + 4
+

2
(s2 + 4) (s + 4)

+
e−πs

s + 4
. (1.22)

The second part can be split up into multiple factors. These factors are (s2 + 4) and (s + 4). So we can
make two fractions out of them. The fraction (s2 + 4) has as highest power s2, so we will place as + b
above it. The fraction (s+4) has as highest power just s, so we will place c above it. We can now rewrite
the second part to

2
(s2 + 4) (s + 4)

=
as + b

s2 + 4
+

c

s + 4
=

(as + b)(s + 4)
(s2 + 4) (s + 4)

+
c(s2 + 4)

(s2 + 4) (s + 4)
=

as2 + bs + 4as + 4b + cs2 + 4c

(s2 + 4) (s + 4)
.

(1.23)
So now we know that

a + c = 0, (1.24)
b + 4a = 0, (1.25)

4b + 4c = 2. (1.26)

If we use this, and also rewrite the fraction to a more useful form, we will find

2
(s2 + 4) (s + 4)

= − 1
10

s

s2 + 22
+

1
5

2
s2 + 22

+
1
10

1
s + 4

. (1.27)

Now we can take the inverse Laplace transform of all the terms in the equation. This is simple for most
terms. Only the term e−πs/(s+4) is slightly difficult. The inverse Laplace transform of this one is found
by

L{F (s)} = L{e−πs/(s + 4)} = L{e−πsH(s)} = uπ(t)h(t− π), where h(t) = e−4t. (1.28)

So the solution is

y = f(t) = e−4t − 1
10

cos 2t +
1
5

sin 2t +
1
10

e−4t + uπ(t)e−4(t−π). (1.29)
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1.3 Question 1 - January 21, 2005 (7 points)

Use the Laplace Transform to solve

d2y

dt2
+ y = g(t), g(t) =

{
1
2 t if 0 ≤ t < 6
3 if 6 ≤ t

, y(0) = 0, y′(0) = 1. (1.30)

1.3 Solution

Note that we can write

g(t) =
1
2
t− u6(t)

(
1
2
t− 3

)
. (1.31)

Taking the Laplace transform now will give

L{y′′ + y} = L

{
1
2
t− u6(t)

(
1
2
t− 3

)}
, (1.32)

L{y′′}+ L{y} =
1

2s2
− 1

2s2
e−6s, (1.33)

s2F (s)− 1 + F (s) =
1

2s2
− 1

2s2
e−6s, (1.34)

F (s)
(
s2 + 1

)
− 1 =

1
2s2

− 1
2s2

e−6s, (1.35)

Solving for F (s) will give

F (s) =
1

s2 + 1
+

1
s2 (s2 + 1)

1− e−6s

2
. (1.36)

We can rewrite this to

F (s) =
1

s2 + 1
+
(

1
s2
− 1

s2 + 1

)
1− e−6s

2
, (1.37)

F (s) =
1
2

1
s2 + 1

+
1
2

1
s2
− 1

2
1
s2

e−6s +
1
2

1
s2 + 1

e−6s. (1.38)

Taking the inverse Laplace transform (we will leave the intermediate steps, as they have been shown in
previous problems) will give

y = f(t) =
1
2

sin t +
1
2
t− 1

2
u6(t) (t− 6) +

1
2
u6(t) sin (t− 6) . (1.39)
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2 Second Order Linear Differential Equations

2.1 Question 2 - January 19, 2007 (4 points)

Find (using the method of variation of parameters) the general solution of

d2y

dt2
+ 4

dy

dt
+ 4y =

e−2t

t2
. (2.1)

2.1 Solution

First we solve the characteristic equation r2 + 4r + 4 = 0. The only solution is r = −2. So we find that

y1 = e−2t, and y2 = te−2t. (2.2)

Taking a derivative gives
y′1 = −2e−2t, and y′2 = −2te−2t + e−2t. (2.3)

The Wronskian now becomes

W (t) =
∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣ = y1y
′
2 − y2y

′
1 = −2te−4t + e−4t + 2te−4t = e−4t. (2.4)

Now we can find u′1(t) and u′2(t). These are

u′1(t) = −y2(t)g(t)
W (t)

= −1
t
, and u′2(t) =

y1(t)g(t)
W (t)

=
1
t2

. (2.5)

The particular solution now is

Y (t) = y1(t)
∫ t

t0

u′1(s) ds + y2(t)
∫ t

t0

u′2(s) ds = e−2t ln
t0
t

+ te−2t

(
1
t0
− 1

t

)
. (2.6)

We may choose t0. It seems to be convenient to choose t0 = 1. So we get

Y (t) = e−2t (− ln t + t− 1) . (2.7)

Note that te−2t and −e−2t are also part of the general solution, so we may ignore them. Therefore
Y (t) = −e−2t ln t. This makes the general solution set

y(t) = y1(t) + y2(t) + Y (t) = e−2t + te−2t − e−2t ln t. (2.8)
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3 Systems of First Order Linear Differential Equations

3.1 Question 3 - January 19, 2007 (7 points)

Find the general solution of the system of differential equations

dx
dt

=
[
3 −1
3 −1

]
x +

[
2
0

]
. (3.1)

3.1 Solution

Let’s call the matrix A and the vector on the right g. The equation then becomes x′ = Ax + g. First
we need to find the general solution set of x′ = Ax. The matrix has as eigenvalues λ1 = 0 and λ2 = 2.
Corresponding eigenvectors are

ξ1 =
[
1
3

]
and ξ2 =

[
1
1

]
. (3.2)

The set of solutions now is x = c1e
λ1tξ1 + c2e

λ2tξ2. So we can assemble the fundamental matrix Ψ. We
will find

Ψ =
[
1 e2t

3 e2t

]
. (3.3)

Now let’s find the specific solution to the nonhomogeneous problem. We will use the method of variation
of parameters for that. First we need to find Ψ−1. This is

Ψ−1 =
[
− 1

2
1
2

3
2e−2t 1

2e−2t

]
. (3.4)

To find u(t) we will use

u(t) =
∫

Ψ−1gdt =
∫ [

−1
3e−2t

]
dt =

[
−t

− 3
2e−2t

]
. (3.5)

The specific solution can then be found using

x = Ψ(t)u(t) =
[
1 e2t

3 e2t

] [
−t

− 3
2e−2t

]
=
[
−t− 3

2
−3t− 3

2

]
. (3.6)

We can now assemble the general solution set to be

x = c1

[
1
3

]
+ c2

[
e2t

e2t

]
+
[
−t− 1
−3t

]
. (3.7)

Note that we have added 1/2 times the first solution to the specific solution, to make it a bit easier to
write.

3.2 Question 3 - April 2, 2007 (8 points)

Find the general solution of the system of differential equations (thereby expressing the General solution
of the corresponding homogeneous system in terms of real-valued functions)

dx
dt

=
[
−3 5
−1 1

]
x +

[
1
0

]
e−t. (3.8)

3.2 Solution

5



Let’s call the matrix A and the vector on the right g. The equation then becomes x′ = Ax + g. First
we need to find the general solution set of x′ = Ax. The matrix has as eigenvalues λ1 = −1 + i and
λ2 = −1− i. Corresponding eigenvectors are

ξ1 =
[
5
2

]
+
[
0
1

]
i = a + bi, and ξ2 =

[
5
2

]
−
[
0
1

]
i = a− bi. (3.9)

The two solutions needed for the general solution set now become

x1 = e−t

([
5
2

]
cos t−

[
0
1

]
sin t

)
, and x2 = e−t

([
5
2

]
sin t +

[
0
1

]
cos t

)
. (3.10)

Now we need to find a specific solution to the nonhomogeneous equation. Since there is an exponential
in g, the specific solution will also probably have an exponential in it. So we assume that the specific
solution will look like

x =
[
a
b

]
e−t. (3.11)

It’s easy to see that x′ = −x. Inserting x in the system of differential equations gives

−
[
a
b

]
e−t = x′ = Ax + g =

([
−3a + 5b
−a + b

]
+
[
1
0

])
e−t. (3.12)

Solving will give a = −2 and b = −1, so we know that the specific solution is

x = −
[
2
1

]
e−t. (3.13)

The general solution set therefore becomes

x = c1e
−t

([
5
2

]
cos t−

[
0
1

]
sin t

)
+ c2e

−t

([
5
2

]
sin t +

[
0
1

]
cos t

)
−
[
2
1

]
e−t (3.14)

3.3 Question 2 - January 21, 2005 (7 points)

Find the general solution of the system of equations (thereby expressing the general solution of the
corresponding homogeneous system in terms of real-valued functions)

dx
dt

=
[
2 −5
1 −2

]
x +

[
0
1

]
e−2t. (3.15)

3.3 Solution

Let’s call the matrix A and the vector on the right g. The equation then becomes x′ = Ax + g. First
we need to find the general solution set of x′ = Ax. The matrix has as eigenvalues λ1 = i and λ2 = −i.
Corresponding eigenvectors are

ξ1 =
[
5
2

]
+
[

0
−1

]
i = a + bi, and ξ2 =

[
5
2

]
−
[

0
−1

]
i = a− bi. (3.16)

The two solutions needed for the general solution set now become

x1 =
([

5
2

]
cos t−

[
0
−1

]
sin t

)
, and x2 =

([
5
2

]
sin t +

[
0
−1

]
cos t

)
. (3.17)

6



Now we need to find a specific solution to the nonhomogeneous equation. Since there is an exponential
in g, the specific solution will also probably have an exponential in it. So we assume that the specific
solution will look like

x =
[
a
b

]
e−2t. (3.18)

It’s easy to see that x′ = −2x. Inserting x in the system of differential equations gives

−2
[
a
b

]
e−2t = x′ = Ax + g =

([
2a− 5b
a− 2b

]
+
[
0
1

])
e−2t. (3.19)

Solving will give a = −1 and b = −4/5, so we know that the specific solution is

x = −
[

1
4/5

]
e−2t. (3.20)

The general solution set therefore becomes

x = c1

([
5
2

]
cos t−

[
0
−1

]
sin t

)
+ c2

([
5
2

]
sin t +

[
0
−1

]
cos t

)
−
[

1
4/5

]
e−2t (3.21)
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4 Stability of Systems of Differential Equations

4.1 Question 4 - January 19, 2007 (5 points)

Consider the system of nonlinear equations

dx

dt
= x− xy, (4.1)

dy

dt
= x2 + y2 + y. (4.2)

Determine type and (in-)stability of each critical point of this almost linear system (for the linearised
case as well as for the nonlinear case).

4.1 Solution

First we need to find the critical points. So we set x′ = 0 and y′ = 0 and solve for x and y. We find the
points (0, 0) and (0,−1). Now we define F (x, y) = x− xy and G(x, y) = x2 + y2 + y.

First examine point 1, being (0, 0). The Jacobian matrix now is

J =
[
Fx(0, 0) Fy(0, 0)
Gx(0, 0) Gy(0, 0)

]
=
[
1 0
0 1

]
. (4.3)

The eigenvalues of this matrix are λ1 = λ2 = 1. We have two the same eigenvalues, so we better determine
the eigenvectors as well. It turns out that every vector is an eigenvector. So it’s possible to choose two
eigenvectors that are linearly independent. The type of critical point in the linear system is therefore
a proper node. Since λ1 = λ2 > 0, the stability of the linear system is unstable. In the almost linear
system, the critical point is a node or a spiral point. The stability is still unstable.

Now let’s examine the other critical point. The Jacobian matrix now becomes

J =
[
Fx(0,−1) Fy(0,−1)
Gx(0,−1) Gy(0,−1)

]
=
[
2 0
0 −1

]
. (4.4)

The eigenvalues are now λ1 = 2 and λ2 = −1. The critical point is therefore an unstable saddle point,
both in the linear as in the almost linear system.

4.2 Question 4 - April 2, 2007 (5 points)

Consider the system of nonlinear equations

dx

dt
= (1 + x) sin y, (4.5)

dy

dt
= 1− x− cos y. (4.6)

Points (0, 0) en (2, π) are critical points. Determine type and (in-)stability of these two points of the
given almost linear system (for the linearized case as well as for the nonlinear case).

4.2 Solution

The critical points are given. So we only need to examine their types. First examine the point (0, 0). We
define F (x, y) = (1 + x) sin y and G(x, y) = 1− x− cos y. The Jacobian matrix now is

J =
[
Fx(0, 0) Fy(0, 0)
Gx(0, 0) Gy(0, 0)

]
=
[

0 1
−1 0

]
. (4.7)
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The corresponding eigenvalues are λ1 = i and λ2 = −i. So the critical point in the linear system is a
center. Centers are always stable. In the almost linear system, the critical point is a center or a spiral
point. The stability is indeterminate.

Now let’s examine the critical point (2, π).The Jacobian matrix now is

J =
[
Fx(2, π) Fy(2, π)
Gx(2, π) Gy(2, π)

]
=
[

0 −3
−1 0

]
. (4.8)

The corresponding eigenvalues are λ1 =
√

3 and λ2 = −
√

3. So the critical point is an unstable saddle
point, both in the linear system as in the almost linear system.

4.3 Question 3 - April 4, 2005 (6 points)

Consider the system of nonlinear equations

dx

dt
= x + x2 + y2, (4.9)

dy

dt
= y − xy. (4.10)

Determine type and (in-)stability of each critical point of this almost linear system (linearized case and
nonlinear case).

4.3 Solution

The critical points are (0, 0) and (−1, 0). Let’s look at (0, 0) first. We can find the Jacobian matrix to be

J =
[
Fx(0, 0) Fy(0, 0)
Gx(0, 0) Gy(0, 0)

]
=
[
1 0
0 1

]
. (4.11)

Eigenvalues are λ1 = λ2 = 1. Eigenvectors are linearly independent, so we are dealing with an unstable
proper node in the linear system. In the almost linear system we have an unstable node or spiral point.

For the point (−1, 0) we can find the Jacobian matrix to be

J =
[
Fx(−1, 0) Fy(−1, 0)
Gx(−1, 0) Gy(−1, 0)

]
=
[
−1 0
0 2

]
. (4.12)

Corresponding eigenvalues are λ1 = 2 and λ2 = −1. So we are dealing with an unstable saddle point,
both in the linear system as in the almost linear system.
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5 Eigenfunctions

5.1 Question 6 - January 19, 2007 (7 points)

Determine the normalised eigenfunctions (assume that all eigenvalues are real) of the following problem:

y′′ + λy = 0, y′(0) = 0, y′(1) = 0. (5.1)

5.1 Solution

We consider the cases λ < 0, λ = 0 and λ > 0. First assume λ < 0. If we define µ =
√
−λ, we find the

general solution set to be
y = c1e

µt + c2e
−µt. (5.2)

Differentiating gives
y′ = µc1e

µt − µc2e
−µt. (5.3)

The first boundary condition implies that c1 = c2. If we then use the second boundary conditions, we
find that

y′(1) = µc1

(
eµ − e−µ

)
= 0. (5.4)

Since µ 6= 0 we know that c1 = 0. The solution therefore is y = 0, which is the trivial solution. There
are no non-trivial solutions for λ < 0.

Now let’s consider λ = 0. In this case the differential equations becomes y′′ = 0 with as solution
y = c1t + c2. From both boundary conditions we find that c1 = 0 and c2 is undetermined. So we have a
non-trivial solution, being y = c, with c 6= 0 a constant.

Now let’s consider λ > 0. If we define µ =
√

λ we will find as general solution set

y = c1 sinµt + c2 cos µt. (5.5)

Differentiating gives
y′ = µc1 cos µt− µc2 sinµt. (5.6)

The first boundary condition implies c1 = 0. The second boundary conditions implies that

y′(1) = −µc2 sinµ = 0. (5.7)

This is only true if c2 = 0 or µ = nπ, with n an integer. Since c2 = 0 gives the trivial solution, we know
that µ = nπ and thus λ =

√
nπ. The eigenfunctions are therefore yn(t) = c cos nπt, corresponding to

λn = n2π2.

Now we need to normalize the eigenfunctions. We do this by using∫ 1

0

y2
n(t)dt = 1. (5.8)

For y0(t) we simply find that c = 1 and so y0(t) = 1. For yn(t) with n ≥ 1 we find that∫ 1

0

y2
n(t)dt = c2

∫ 1

0

cos2 nπt =
1
2
c2 = 1. (5.9)

So evidently c =
√

2. The normalized eigenfunctions therefore are

y0(t) = 1, and yn(t) =
√

2 cos nπt, for n ≥ 1. (5.10)
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6 Power Series

6.1 Question 6 - January 21, 2005 (5 points)

Solve the following initial value problem by means of a power series expansion near x0 = 0

dy

dx
+ xy = 1, y(0) = 0. (6.1)

(You may stop after three non-zero terms.)

6.1 Solution

We will use a power series. So we first write down

y =
∞∑

n=0

an(x− x0)n, (6.2)

y′ =
∞∑

n=0

an+1(n + 1)(x− x0)n. (6.3)

This makes the differential equation

∞∑
n=0

an+1(n + 1)xn + x
∞∑

n=0

anxn = 1, (6.4)

∞∑
n=0

an+1(n + 1)xn +
∞∑

n=0

anxn+1 = 1, (6.5)

∞∑
n=0

an+1(n + 1)xn +
∞∑

n=1

an−1x
n = 1, (6.6)

a1 +
∞∑

n=1

an+1(n + 1)xn +
∞∑

n=1

an−1x
n = 1, (6.7)

a1 +
∞∑

n=1

(an+1(n + 1) + an−1) xn = 1. (6.8)

Equating coefficients on both sides gives a1 = 1. We also find the recurrence relation

an+1 = − an−1

n + 1
. (6.9)

From the boundary condition we also find that a0 = 0. So we have a2k = 0 for every integer k. We can
also find a3 = −1/3, a5 = 1/15, a7 = −1/105 and so on. This makes the power series

y = x− 1
3
x3 +

1
15

x5 − 1
105

x7 + . . . . (6.10)

6.2 Question 6 - January 10, 2003 (6 points) (adjusted)

Find the general solution of the following differential equation by means of a power series expansion about
the point x0 = 0

x2 d2y

dx2
+ 4x

dy

dx
+ xy = 0, x > 0. (6.11)
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[You may stop after some non-zero terms].

6.2 Solution

We will use a power series. So we first write down

y =
∞∑

n=0

an(x− x0)n, (6.12)

y′ =
∞∑

n=0

an+1(n + 1)(x− x0)n, (6.13)

y′′ =
∞∑

n=0

an+2(n + 2)(n + 1)(x− x0)n. (6.14)

Notice that since x > 0 we can remove one factor x from the differential equation. If you don’t do this,
the equations below will differ slightly, but the final answer will be the same. Now we can find that the
differential equation is

x
∞∑

n=0

an+2(n + 2)(n + 1)xn + 4
∞∑

n=0

an+1(n + 1)xn +
∞∑

n=0

anxn = 0, (6.15)

∞∑
n=0

an+2(n + 2)(n + 1)xn+1 +
∞∑

n=0

4an+1(n + 1)xn +
∞∑

n=0

anxn = 0, (6.16)

∞∑
n=1

an+1(n + 1)nxn +
∞∑

n=0

4an+1(n + 1)xn +
∞∑

n=0

anxn = 0, (6.17)

4a1 + a0 +
∞∑

n=1

an+1(n + 1)nxn +
∞∑

n=1

4an+1(n + 1)xn +
∞∑

n=1

anxn = 0, (6.18)

4a1 + a0 +
∞∑

n=1

(an+1(n + 1)n + 4an+1(n + 1) + an)xn = 0. (6.19)

So we find that a1 = − 1
4a0. We can also determine the recurrence relation

an+1 = − an

(n + 1)(n + 4)
. (6.20)

So we can determine the first couple of coefficients. These are a1 = − 1
4a0, a2 = 1

40a0, a3 = − 1
720a0 and

so on. The power series therefore is

y = a0

(
1− 1

4
x +

1
40

x2 − 1
720

x3 + . . .

)
. (6.21)

6.3 Question 6 - April 2, 2007 (6 points)

Find the general solution of the following differential equation by means of a power series expansion about
the point x0 = 1

d2y

dx2
− (x− 1)2y = 0. (6.22)

[You may stop after some non-zero terms].

6.3 Solution

12



We will use a power series. So we first write down

y =
∞∑

n=0

an(x− x0)n, (6.23)

y′ =
∞∑

n=0

an+1(n + 1)(x− x0)n, (6.24)

y′′ =
∞∑

n=0

an+2(n + 2)(n + 1)(x− x0)n. (6.25)

This makes the differential equation

∞∑
n=0

an+2(n + 2)(n + 1)(x− 1)n − (x− 1)2
∞∑

n=0

an(x− 1)n = 0, (6.26)

∞∑
n=0

an+2(n + 2)(n + 1)(x− 1)n −
∞∑

n=0

an(x− 1)n+2 = 0, (6.27)

∞∑
n=0

an+2(n + 2)(n + 1)(x− 1)n −
∞∑

n=2

an−2(x− 1)n = 0, (6.28)

2a2 + 6a3(x− 1) +
∞∑

n=2

an+2(n + 2)(n + 1)(x− 1)n −
∞∑

n=2

an−2(x− 1)n = 0, (6.29)

2a2 + 6a3(x− 1) +
∞∑

n=2

(an+2(n + 2)(n + 1)− an−2) (x− 1)n = 0. (6.30)

Equating coefficients on both sides, we find that a2 = 0 and a3 = 0. We also find the recurrence relation

an+2 =
an−2

(n + 2)(n + 1)
. (6.31)

Using this, we can determine that a4 = a0/12, a8 = a4/56 = a0/672, a5 = a1/20, a9 = a5/72 = a1/1440,
a10 = a6 = a2 = 0, a11 = a7 = a3 = 0 and so on. The power series therefore is

y = a0 + a1(x− 1)1 +
1
12

a0(x− 1)4 +
1
20

a1(x− 1)5 +
1

672
a0(x− 1)8 +

1
1440

a1(x− 1)9 + . . . . (6.32)

13



7 Fourier Series

7.1 Question 5b - January 19, 2007 (3 points)

Find the Fourier series of the function (first, sketch its graph!) given by

g(x + 2) = g(x), g(x) = x for 0 ≤ x < 1, g(x) = 0 for 1 ≤ x < 2. (7.1)

7.1 Solution

We know that the solution will have the form

f(x) =
a0

2
+

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
. (7.2)

The period T = 2 so we know that L = T/2 = 1. First we find a0. This will be

a0 =
1
L

∫ L

−L

f(x) cos 0 dx =
∫ 1

−1

f(x) dx =
∫ 0

−1

0 dx +
∫ 1

0

x dx =
1
2
. (7.3)

Then we will look at the a-coefficients. These are given by

an =
1
L

∫ L

−L

f(x) cos
nπx

L
dx, (7.4)

an =
∫ 0

−1

0 cos nπx dx +
∫ 1

0

x cos nπx dx, (7.5)

an =
[
x

sinnπx

nπ

]1
0

−
∫ 1

0

sinnπx

nπ
dx, (7.6)

an = (0− 0)−
[
−cos nπx

n2π2

]1
0
, (7.7)

an =
−1 + cos nπ

n2π2
. (7.8)

Note that we have used integration by parts. Now let’s look at the b-coefficients. We find

bn =
1
L

∫ L

−L

f(x) sin
nπx

L
dx, (7.9)

bn =
∫ 0

−1

0 sinnπx dx +
∫ 1

0

x sinnπx dx, (7.10)

bn =
[
−x

cos nπx

nπ

]1
0
−
∫ 1

0

−cos nπx

nπ
dx, (7.11)

bn =
(
−cos nπ

nπ
+ 0
)

+ (0− 0) , (7.12)

bn = −cos nπ

nπ
. (7.13)

So the Fourier series becomes

f(x) =
1
4

+
∞∑

n=1

(
−1 + cos nπ

n2π2
cos nπx− cos nπ

nπ
sinnπx

)
. (7.14)

14



7.2 Question 5 - April 4, 2005 (2 points)

Find the Fourier series of the function (at first, sketch its graph!) given by

f(x) = |x|, −1 ≤ x < 1, f(x + 2) = f(x). (7.15)

7.2 Solution

We know that the solution will have the form

f(x) =
a0

2
+

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
. (7.16)

The period T = 2 so we know that L = T/2 = 1. First we find a0. This will be

a0 =
1
L

∫ L

−L

f(x) cos 0 dx =
∫ 1

−1

f(x) dx =
∫ 0

−1

−x dx +
∫ 1

0

x dx =
1
2

+
1
2

= 1. (7.17)

Then we will look at the a-coefficients. These are given by

an =
1
L

∫ L

−L

f(x) cos
nπx

L
dx, (7.18)

an =
∫ 0

−1

−x cos nπx dx +
∫ 1

0

x cos nπx dx, (7.19)

an =

([
−x

sinnπx

nπ

]0
−1

−
∫ 0

−1

− sinnπx

nπ
dx

)
+

([
x

sinnπx

nπ

]1
0

−
∫ 1

0

sinnπx

nπ
dx

)
, (7.20)

an = (0− 0)−
[cos nπx

n2π2

]0
−1

+ (0− 0)−
[
−cos nπx

n2π2

]1
0
, (7.21)

an = 2
−1 + cos nπ

n2π2
. (7.22)

Note that we have used integration by parts. Now let’s look at the b-coefficients. We find

bn =
1
L

∫ L

−L

f(x) sin
nπx

L
dx, (7.23)

bn =
∫ 0

−1

−x sinnπx dx +
∫ 1

0

x sinnπx dx, (7.24)

bn =
([

x
cos nπx

nπ

]0
−1
−
∫ 0

−1

cos nπx

nπ
dx

)
+
([
−x

cos nπx

nπ

]1
0
−
∫ 1

0

−cos nπx

nπ
dx

)
, (7.25)

bn =
(cos nπ

nπ
+ 0
)

+ (0− 0) +
(
−cos nπ

nπ
+ 0
)

+ (0− 0) , (7.26)

bn = 0. (7.27)

So the Fourier series becomes

f(x) =
1
2

+ 2
∞∑

n=1

(
−1 + cos nπ

n2π2
cos nπx

)
. (7.28)
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8 Fourier Series Applications

8.1 Question 5a - January 19, 2007 (5 points)

Find a formal solution (using the method of separation of variables) u(x, t) of the initial-boundary value
heat conduction problem

1
α2

ut = uxx, u(0, t) = 0, ux(l, t) = 0, u(x, 0) = f(x). (8.1)

8.1 Solution

We assume that u(x, t) = X(x)T (t). This separates the problem into the two differential equations

X ′′ + λX = 0, T ′ + α2λT = 0. (8.2)

Let’s look for the eigenvalues of the first differential equation. First consider λ < 0. Let’s define µ =
√
−λ.

Now the solution becomes X(x) = c1e
µx + c2e

−µx. We know that 0 = u(0, t) = X(0)T (t). Since T (t) = 0
isn’t true in general, we know that X(0) = 0. This implies that c2 = −c1. From 0 = ux(l, t) = X ′(l)T (t)
we find that X ′(l) = 0. From this follows that c1µ

(
eµl + e−µl

)
= 0. We Since µ > 0 and eµl + e−µl > 0,

we have c1 = 0 and thus also c2 = 0. So there are no non-trivial solutions for λ < 0.

Let’s consider λ = 0 now. We find the function X(x) = c1x + c2. From X(0) = 0 follows that c2 = 0.
From X ′(l) = 0 follows that c1 = 0. So we only find the trivial solution.

Now let’s consider λ > 0. Let’s redefine µ =
√

λ. The solution now is X(x) = c1 cos µx + c2 sinµx. From
X(0) = 0 follows that c1 = 0. From X ′(l) = 0 follows that

µn =
n− 1/2

l
π ⇒ λn =

(
n− 1/2

l
π

)2

. (8.3)

The corresponding eigenfunction is
Xn(x) = sin µnx. (8.4)

Using λn and the second differential equation, we will find

Tn(t) = e−α2µ2
nt. (8.5)

Thus the solution becomes

u(x, t) =
∞∑

n=1

cnun(x, t) =
∞∑

n=1

cnXn(x)Tn(t) =
∞∑

n=1

cn sin (µnx) e−α2µ2
nt. (8.6)

The coefficients then need to be found. For that, we use the initial condition, stating that

f(x) = u(x, 0) =
∞∑

n=1

cn sin (µnx) . (8.7)

We recognize a sine series in the equation above. So the coefficients cn correspond to the coefficients bn

in the Fourier series, for which we have an equation. This is

cn =
2
l

∫ l

0

f(x) sin (µnx) dx. (8.8)
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8.2 Question 4 - January 9, 2004 (7 points)

Find a formal solution (using the method of separation of variables) u(x, t) to the initial-boundary value
heat conduction problem

ut = uxx, ux(0, t) = 0, ux(l, t) = 0, u(x, 0) = f(x). (8.9)

8.2 Solution

We assume that u(x, t) = X(x)T (t). This separates the problem into the two differential equations

X ′′ + λX = 0, T ′ + λT = 0. (8.10)

Let’s look for the eigenvalues of the first differential equation. First consider λ < 0. Let’s define µ =
√
−λ.

Now the solution becomes X(x) = c1e
µx+c2e

−µx. We know that 0 = ux(0, t) = X ′(0)T (t). Since T (t) = 0
isn’t true in general, we know that X ′(0) = 0. This implies that c2 = c1. From 0 = ux(l, t) = X ′(l)T (t)
we find that X ′(l) = 0. From this follows that c1µ

(
eµl − e−µl

)
= 0. We know that µ > 0. Also

eµl − e−µl = 0 if µl = 0, which isn’t possible since l > 0. So we have c1 = 0 and thus also c2 = 0. So
there are no non-trivial solutions for λ < 0.

Let’s consider λ = 0 now. We find the function X(x) = c1x + c2. From X ′(0) = 0 follows that c1 = 0.
From X ′(l) = 0 follows that c1 = 0 as well. So we find one solution, being X0(x) = c0, where c0 is a
constant. The corresponding Tn function (for λ = 0) is Tn(t) = 1. So u0(x, t) = X0(x)T0(t) = c0.

Now let’s consider λ > 0. Let’s redefine µ =
√

λ. The solution now is X(x) = c1 cos µx + c2 sinµx. From
X ′(0) = 0 follows that c2 = 0. From X ′(l) = 0 follows that

µn =
n

l
π ⇒ λn =

(n

l
π
)2

. (8.11)

The corresponding eigenfunction is
Xn(x) = cn cos µnx. (8.12)

Using λn and the second differential equation, we will find

Tn(t) = e−µ2
nt. (8.13)

We can now also find that for n ≥ 1

un(x, t) = X(x)T (t) = cn cos (µnx) e−µ2
nt. (8.14)

Thus the solution becomes

u(x, t) = u0(x, t) +
∞∑

n=1

un(x, t) = c0 +
∞∑

n=1

cn cos (µnx) e−µ2
nt. (8.15)

The coefficients then need to be found. For that, we use the initial condition, stating that

f(x) = u(x, 0) = c0 +
∞∑

n=1

cn cos (µnx) . (8.16)

We recognize a cosine series in the equation above. So the coefficients cn correspond to the coefficients
an in the Fourier series, for which we have an equation. Also note that a0 6= c0. In fact,

c0 =
1
2
a0 =

1
2

2
l

∫ l

0

f(x)dx. (8.17)

We can do the same for cn and find

cn =
2
l

∫ l

0

f(x) cos (µnx) dx. (8.18)
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8.3 Question 4 - April 4, 2005 (7 points)

Find a formal solution u(x, y) of the potential equation

uxx + uyy = 0 in the rectangle 0 < x < a, 0 < y < b, (8.19)

that satisfies the boundary conditions

u(0, y) = 0, u(a, y) = 0, 0 < y < b, (8.20)

uy(x, 0) = 0, u(x, b) = g(x), 0 < x < a. (8.21)

8.3 Solution

We first assume that u(x, y) can be written as

u(x, y) = X(x)Y (y). (8.22)

Inserting this in the differential equation gives

X ′′Y + XY ′′ = 0. (8.23)

The boundary condition with the unknown function g(x) is given for constant y and varying x. So,
according to the problem solving guide, we should rewrite this such that we get the familiar eigenfunction
equation for X. So we will have

X ′′

X
= −Y ′′

Y
= −λ, (8.24)

from which follows that
X ′′ + λX = 0. (8.25)

And then of course we also have an equation for Y , being

Y ′′ − λY = 0. (8.26)

Now let’s transform the boundary conditions. From u(0, y) = 0 follows X(0) = 0. From u(a, y) = 0
follows X(a) = 0. Finally, from uy(x, 0) = 0 follows Y ′(0) = 0.

Now it’s time to find the eigenfunctions Xn. First consider λ < 0. We define µ =
√
−λ. The general

solution becomes
X(x) = c1e

µx + c2e
−µx. (8.27)

From X(0) = 0 follows c1 = −c2. Combining this fact with X(a) = 0 results in c1 (eµa − e−µa). The
term inside the brackets is only zero if µa = 0. This isn’t possible, since µ > 0 and a > 0. So we have
c1 = 0 and thus also c2 = 0. There are therefore no non-trivial solutions.

Now let’s consider λ = 0. We get as general solution

X(x) = c1x + c2. (8.28)

From X(0) = 0 follows that c2 = 0. Also, from X(a) = 0 follows that c1 = 0. So we once more have no
non-trivial solutions.

Now let’s consider λ > 0. We define µ =
√

λ (thus having λ = µ2). The general solution now is

X(x) = c1 sinµx + c2 cos µx. (8.29)

From X(0) = 0 follows that c2 = 0. From X(a) = 0 follows that

c1 sinµa = 0 ⇒ µn =
nπ

a
. (8.30)
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The corresponding eigenfunction becomes

Xn(x) = sin µnx. (8.31)

Note that we have ignored the constant here, since every constant multiple of an eigenfunction is auto-
matically also an eigenfunction.

Now that we have determined Xn(x), let’s look for Yn(y). We know that the eigenvalue λn = µ2
n, so we

need to solve the differential equation
Y ′′ − µ2

nY = 0. (8.32)

The general solution is
Y (y) = c1e

µny + c2e
−µny, (8.33)

with as derivative
Y ′(y) = c1µneµny − c2µneµny. (8.34)

From Y ′(0) = 0 follows that c1 = c2 (since µ 6= 0). So we have as function Yn

Yn(y) = eµny + e−µny = cosh µny. (8.35)

Note that we have once more ignored the constant. We have also used the definition of the hyperbolic
cosine here to write it a bit shorter. (This is not obligatory to do though. Using the exponentials is fine
as well. It just costs you some extra ink.)

So the general solution to our problem now becomes

u(x, t) =
∞∑

n=1

cnXn(x)Yn(y) =
∞∑

n=1

cn cosh (µny) sin (µnx) =
∞∑

n=1

cn cosh
(nπ

a
y
)

sin
(nπ

a
x
)

. (8.36)

We still need to find an expression for the constants cn. We have one remaining condition for that. We
know that

u(x, b) =
∞∑

n=1

cn cosh (µnb) sin (µnx) = g(x). (8.37)

This looks just like a sine series on the interval [0, a]. So we finally write

cn cosh (µnb) =
2
a

∫ a

0

g(x) sin (µnx) dx. (8.38)

We now rewrite this equation slightly, and insert the value for µn, to find

cn =
2

a cosh (µnb)

∫ a

0

g(x) sin
(nπ

a
x
)

dx. (8.39)

And we’re done!
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