
Control of Discrete-Time Stochastic
Systems Summary

1. Probability theory

In this summary, we will be examining a lot of stochastic systems. Stochastic systems deal with proba-
bilities. So, let’s dive into the probability theory first.

1.1 The probability distribution function

1.1.1 Definition of the probability distribution function

Very important in probability theory is the probability distribution function (PDF) f(u). This
function has as limits f(−∞ = 0) and f(∞) = 1. It also increases: if u < v, then f(u) ≤ f(v). Finally,
PDFs are also right continuous. To find out what this means, we examine some discontinuity v in the
graph of f(u). Now let’s approach this point v from the right. The value which we get is f(u+). Right
continuous functions now must have f(u) = f(u+).

We can make a distinction between continuous and discrete PDFs. Continuous PDFs usually have a
continuous shape: the value of f(u) more or less gradually increases from 0 to 1. For continuous PDFs
we also have

f(u) =
∫ u

−∞
p(v) dv, where f(∞) =

∫ ∞

−∞
p(v) dv = 1. (1.1.1)

In the above equation, p(u) is the probability density function.

Discrete PDFs are rather different. The graph of f(u) now takes the shape of a staircase. The points
where f(u) jumps up are denoted by un.

f(u) =
∑

un<u

p(n), where f(∞) =
∑

p(n) = 1. (1.1.2)

Now, p(n) is called the probability frequency function.

1.1.2 Examples of probability distribution functions

Several examples of PDFs exist. We’ll examine a few now. The Bernoulli distribution has a discrete
PDF. Given the parameter q (satisfying 0 ≤ q ≤ 1), the distribution is defined by

p(1) = q and p(0) = 1− q. (1.1.3)

The Poisson distribution is discrete as well. Given the parameter λ (satisfying λ ∈ R+), it is defined
by

p(k) = λk e−λ

k!
. (1.1.4)

In this equation, we must have k ∈ N = {0, 1, . . .}.
The gamma distribution is continuous. Its parameters are λ and r and satisfy λ, r ∈ R+. The
distribution is defined by

p(v) =
vr−1

λr

e−
v
λ

Γ(r)
, where Γ(r) :=

∫ ∞

0

vr−1e−v dv. (1.1.5)
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The function Γ(r) is known as the gamma function. (By the way, the ‘:=’ means ‘is per definition’.)

However, the most important distribution is the Gaussian distribution, also known as the normal
distribution. This continuous distribution has as parameters a mean vector m and a variance matrix
Q. m satisfies m ∈ Rn while Q satisfies both Q ∈ Rn×n and Q = QT > 0. (With Q > 0 we mean that
Q is strictly positive definite, which in turn demands that xtQx > 0 for all vectors x. This, in turn,
demands that all eigenvectors of Q are positive.) The distribution is now defined by

p(v1, v2, . . . , vn) =
1√

(2π)n det(Q)
e−

1
2 (v−m)T Q−1(v−m). (1.1.6)

But why is this distribution so important? Well, let’s suppose that we have a number of independent
distributions. If we add these distributions up and normalize them, then the central limit theorem
claims that the resulting distribution will converge to a Gaussian distribution. The more distributions
are added up, the close the result will be a to a Gaussian distribution. And since many phenomena in real
life are the result of sums of distributions, we can use the Gaussian distribution to approximate them.

1.2 Measurable spaces and probability spaces

1.2.1 σ-algebras

Let’s examine a set Ω. A σ-algebra F on Ω is a collection of subsets of Ω, satisfying three important
rules.

1. If the set A is in F (A ∈ F ), then the complement Ac is also in F (Ac ∈ F ). (In other words, F is
closed with respect to complementation.)

2. Let’s examine a set of sets {A1, A2, . . . , An} such that all Ai are in F . Now let’s take the union of
all these sets. This union must now also be in F . In an equation, we have A1 ∪A2 ∪ . . . ∪An ∈ F .

3. The set Ω is in F . (And thus, due to rule 1, also the empty set ∅ is in F .)

Examples of σ-algebras include {∅,Ω} and {∅, A, Ac,Ω} for every set A ∈ Ω.

A tuple (Ω, F ), consisting of a set Ω and a σ-algebra F on Ω, is called a measurable space. A σ-algebra
G on Ω consisting of subsets of the σ-algebra F (thus satisfying G ⊆ F ) is called a sub-σ-algebra.

1.2.2 Probability measures

Suppose we have a measurable space (Ω, F ). Let’s examine a function P : F → R+. (In other words,
the function P takes as input elements of F and as output it gives elements of R+.) Also examine any
disjoint set of sets {A1, A2, . . . , An} such that all Ai are in F . (With disjoint, we mean that Ai and Aj

(with i 6= j) have no elements in common: Ai ∩Aj = ∅.) We now say that P is σ-additive if

P (A1 ∪A2 ∪ . . . ∪An) =
n∑

i=1

P (An). (1.2.1)

If we also have that P (Ω) = 1, then we say that P is a probability measure. We also say that the
triple (Ω, F, P ) is a probability space. Such a probability space has several interesting properties.

1. P (∅) = 0.
2. If A1 ⊆ A2, then P (A1) ≤ P (A2).
3. P (A1 ∪A2 ∪ . . . ∪An) ≤

∑n
i=1 P (Ai) for any combination of sets A1, . . . , An.

4. For any A ∈ F , we have 0 ≤ P (A) ≤ 1.
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1.3 Random variables

1.3.1 What is a random variable?

Let’s suppose we have some experiment, but we don’t know its outcome x yet. We can then define x as a
random variable. If some event ωi occurs, x will have the value x(ωi), whereas if some other event ωj

occurs, x will have the value x(ωj). The events ωi are part of the event space Ω. x is thus a function
from Ω to R (x : Ω → R).

A rather basic example of a random variable is the indicator function. The indicator function IA(ω)
of a subset A ∈ Ω is defined as

IA(ω) =

{
1, if ω ∈ A

0, if ω /∈ A.
(1.3.1)

A simple random variable is a finite linear combination of indicator functions of measurable sets. In
other words, if we have a certain combination of sets A1, . . . , An ∈ F , then the random variable

x =
n∑

i=1

ciIAi
(1.3.2)

is a simple random variable.

1.3.2 PDFs and σ-algebras of a random variable

Every random variable x has a PDF fx(u) attached to it. Generally speaking, the PDF fx(u) is the
probability that x(ω) < u. If we combine this with our knowledge on probability spaces, we find that

f(u) = P ({ω ∈ Ω|x(ω) ≤ u}) = P (A) with A = {ω ∈ Ω|x(ω) ≤ u}. (1.3.3)

What does the above equation mean? Well, we first look at all events ω ∈ Ω for which x(ω) ≤ u. We
denote the set of all these events by A. The value of f(u) now equals the value of the probability measure
P (A).

Let’s examine a random variable defined on the measurable space (Ω, F ). We denote the set of all possible
values of x by X. We now say that x takes values in the measurable space (X, G). Here, the set G has a
relationship with F . In fact, for every set A ∈ G, we have

x−1(A) := {ω ∈ Ω|x(ω) ∈ A} ∈ F. (1.3.4)

We can now also define x−1(G), according to

x−1(G) := {x−1(A)|∀A ∈ G}. (1.3.5)

Note that we now must have x−1(G) ⊆ F . However, it is not necessarily true that x−1(G) = F . But it
can be shown that x−1(G) is a σ-algebra. We define this σ-algebra as F x := F (x) := x−1(G). We say
that F x is the σ-algebra generated by x.

1.3.3 The characteristic function

Consider a random variable x with PDF fx(u). The expectation E[x] of this random variable can now
be found using

E[x] =
∫ ∞

−∞
vpx(v) dv (for continuous) and E[x] =

∑
vnpx(vn) (for discrete). (1.3.6)
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The function E[.] is called the expectation function. We use it to define the characteristic function
cx : Rn → C of a random variable x, according to

cx(u) = E[eiuT x] =
∫ ∞

−∞
eiuvp(v) dv. (1.3.7)

In the above equation, i =
√
−1 denotes the complex variable. The characteristic function is quite

convenient. If you have it, you can find the corresponding PDF, and vice versa.

1.3.4 Gaussian random variables

Previously, we have seen the PDF of a Gaussian distribution. Any random variable x : Ω → Rn with
such a PDF is called a Gaussian random variable with parameters m and Q. This is denoted by
x ∈ G(m,Q). The characteristic function of x has the form

cx(u) = E[eiuT x] = eiuT m− 1
2 uT Qu. (1.3.8)

Let’s examine several Gaussian random variables x1, . . . , xn. We can put them together in a vector
xT = [xT

1 . . . xT
n ]. If the new random vector x is also Gaussian (thus satisfying x ∈ G(m,Q) for some

m,Q), then we say that x1, . . . , xn are jointly Gaussian.

Gaussian random variables have several nice properties. Let’s examine a few.

• Every linear combination y = Ax + b of a Gaussian random variable is also a Gaussian random
variable. In fact, if x ∈ G(m,Q), then y ∈ G(Am + b, AQAT ).

• Let’s examine two jointly Gaussian random variables x and y. We now have[
x

y

]
∈ G

([
mx

my

]
,

[
Qx Qxy

QT
xy Qy

])
, where Qxy = E

[
(x−mx)(y −my)T

]
= QT

yx. (1.3.9)

If Qxy = 0, then F x and F y are independent, and vice versa. In other words, when Gaussian
random variables are uncorrelated, they are also independent, and vice versa.

• Independent Gaussian random variables are always jointly Gaussian. (The converse is of course not
always true.)

• If y ∈ G(m,Q) and S = ST , then E[yT Sy] = tr(SQ) + mT Sm. (The function tr(.) is the trace of
the matrix: the sum of the diagonal elements.)

1.4 Conditional expectation

1.4.1 Properties of conditional expectation

Let’s examine a measurable space (Ω, F ). Also examine a sub-σ-algebra G of F . We now define the
conditional expectation of x given G, denoted by E[x|G], as the random variable E[x|G] that is both
G measurable and satisfies

E[xIA] = E[E[x|G]IA] (1.4.1)

for every set A ∈ G. By the way, the random variable E[x|G](ω) is G measurable if

{ω ∈ Ω|E[x|G](ω) ≤ r} ∈ G for all r ∈ R. (1.4.2)

There are several properties of the conditional expectation. We will examine a few.
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• Let’s examine two random variables x and y that are integrable. (This means that E[|x|] and E[|y|]
are finite.) Also suppose that we can write y as

y =
n∑

k=1

ckIAk
, (1.4.3)

where A1, . . . , An is a finite partition of Ω. (In other words, the sets A1, . . . , An are disjoint, but
their union equals Ω.) It can now be shown that

E[x|F y] =
n∑

k=1

dkIAk
where dk =

E[xIAk
]

E[IAk
]

. (1.4.4)

• Let’s examine two jointly Gaussian random variables x and y. Assume that Qy > 0. We now have

E[x|F y] = mx + QxyQ−1
y (y −my), (1.4.5)

E[(x−E[x|F y])(x−E[x|F y])T |F y] = E[(x−E[x|F y])(x−E[x|F y])T ] = Qx−QxyQ−1
y QT

xy, (1.4.6)

E[eiuT x|F y] = eiuT E[x|F y]− 1
2 uT Q̃u for all u ∈ Rn, (1.4.7)

E[eiuT E[x|F y]] = eiuT mx− 1
2 uT QxyQ−1

y QT
xyu for all u ∈ Rn. (1.4.8)

In the above equations, we have used the definition Q̃ := Qx −QxyQ−1
y QT

xy.
• Conditional expectation is linear. So,

E[c1x1 + x2x2|G] = c1E[x1|G] + c2E[x2|G]. (1.4.9)

• If x ≤ y for all ω ∈ Ω, then E[x|G] ≤ E[y|G].
• If y is G measurable, then E[y|G] = y.
• If G1 ⊆ G2, then E[x|G1] = E[E[x|G2]|G1]. In particular, if we set G1 = {∅,Ω} and simply write

G2 = G, then this reduces to E[E[x|G]] = E[x].
• If F x and G are independent sub-σ-algebras (with respect to P ), then E[x|G] = E[x]. Also, F x

and G are independent if and only if for all u ∈ R, we have E[eiuT x|G] = E[eiuT x].

1.4.2 Independence and conditional independence

Let’s consider two σ-algebras F1 and F2. We say that F1 and F2 are independent if E[x1x2] = E[x1]E[x2]
for all x1, x2 : Ω → R for which F1 and F2 are σ-algebras, respectively.

We can extend this idea to conditional expectations. We say that F1 and F2 are conditionally inde-
pendent, given a sub-σ-algebra G, if

E[x1x2|G] = E[x1|G]E[x2|G] (1.4.10)

for all x1, x2 with the same conditions as stated earlier. We generally denote this conditional indepen-
dence by (F1, F2|G) ∈ CI. Conditional independence has several properties. In fact, the following four
statements are equivalent:

(F1, F2|G) ∈ CI, (F2, F1|G) ∈ CI, (F1 ∨G, F2 ∨G|G) ∈ CI, (1.4.11)

E[x1|F2 ∨G] = E[x1|G] for all x1 with F1 as σ-algebra. (1.4.12)

Also, if F1 and (F2 ∨G) are independent, then also (F1, F2|G) ∈ CI.

We can ask ourselves, when are Gaussian random variables conditionally independent? Well, let’s consider
Gaussian random variables x, y1 and y2 with Qx > 0. It can be shown that (F y1 , F y2 |F x) ∈ CI if and
only if

Qy1y2 = Qy1xQ−1
x Qxy2 . (1.4.13)
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2. Basics of stochastic systems

Stochastic systems are systems with stochastic processes: there is uncertainty. How do we deal with this
uncertainty? That is what we will look at in this chapter. To be more precise, we’ll examine the basics
of stochastic systems. How are they defined and written down?

2.1 Stochastic processes

2.1.1 Definitions of stochastic processes

Consider a probability space (Ω, F, P ) and a measurable space (X, G). Also, we have an index set T .
This index set usually denotes time. So, t ∈ T with either T = N or T = Z. (The system is discrete
in time.) A stochastic process is a function x : Ω × T → X. In other words, for all t, the parameter
x(., t) is a random variable. It is sometimes also denoted as xt or x(t). On the other hand, the function
x(ω, .) : T → X (for fixed ω) is called a sample path of the process x.

A stochastic process x is called a Gaussian process if every subset of random variables (xt1 , xt2 , . . . , xtm
)

(with ti ∈ T ) is jointly Gaussian. Similarly, two stochastic processes x and y are called jointly Gaus-
sian if every subset of random variable (xt1 , . . . , xtm , ys1 , . . . , ysn) is jointly Gaussian. Two independent
Gaussian processes are always jointly Gaussian.

An example of a stochastic process is a Gaussian white noise process vt ∈ G(0, V (t)). So, it is a
Gaussian process with mean 0 and variance matrix V (t). Here, V (t) satisfies V (t) = V (t)T ≥ 0 for all t.
Furthermore, all vt are independent with respect to each other.

2.1.2 Properties of stochastic processes

Let’s consider a stochastic process x. We define the mean of the process as mx(t) = E[x(t)]. Similarly, we
have the joint moment function or correlation function Cx(t, s) = E[x(t)x(s)T ] and the covariance
function

Wx(t, s) = E[(x(t)−mx(t))(x(s)−mx(s))T ]. (2.1.1)

The covariance function has as property that that W (t, s) = W (s, t)T for all s, t ∈ T . Also, W is positive
definite (W ≥ 0). For a function W : T × T → Rn×n this means that, for every set t1, . . . , tm and
constant vectors c1, . . . , cm, we have

m∑
i=1

m∑
j=1

cT
i W (ti, tj)cj ≥ 0. (2.1.2)

Let’s examine a subset (xt1 , xt2 , . . . , xtm) with ti ∈ T . We time-shift this subset by a time s such that also
ti +s ∈ T . Now also consider the subset (xt1+s, xt2+s, . . . , xtm+s). We say that the process is stationary
if these two subsets have the same joint distribution for all subsets ti and all time-shifts s.

The concept of time-reversibility is defined similarly. Now examine the subsets (xt1 , xt2 , . . . , xtm
) and

(xt−t1 , xt−t2 , . . . , xt−tm
) for some time t ∈ T . We say that the process is time-reversible if these two

subsets have the same joint distribution for all subsets ti and times t. Also, it can be shown that a
time-reversible process is always time-invariant. The converse doesn’t always hold.

2.1.3 Properties of Gaussian stochastic processes

Let’s examine a Gaussian process x on the time index T = Z. It can be shown that x is stationary if
m(t) = m(0) for all t ∈ T and if W (t, s) = W (t + u, s + u) for all t, s, u ∈ T . If this is the case, then
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we can define a new covariance function W1(t) = W (t, 0) = W (t + s, s). In other words, the covariance
function only depends on one argument. This new function is para-symmetric: W (t) = W (−t)T for
all t ∈ T .

Let’s examine a stationary Gaussian process x with zero mean. This process is also time-reversible if
W (t) = W (−t) or, equivalently, W (t) = W (t)T . This also implies that a scalar stationary Gaussian
process is always time-reversible.

2.2 Representing stochastic systems

2.2.1 Modeling a stochastic system

Let’s examine a stochastic system. This system has an output y(t), an input u(t) and a noise v(t).
We can usually control the input u(t). However, the noise v(t) is uncontrollable. In fact, it is assumed
to be Gaussian white noise. So, v(t) ∈ G(0, Qv(t)). We can now model the system with an ARMAX
representation, being

y(t) =
n∑

i=1

aiy(t− i) +
n∑

i=0

biu(t− i− k) +
n∑

i=0

civ(t− i). (2.2.1)

In the above equation, k is the input delay and t ∈ T . Also, we generally have c0 = 1. Do note that,
since the noise v(t) is a stochastic process, also the output y(t) will be a stochastic process.

Working with the above representation has disadvantages. Luckily, it can be rewritten to the state space
representation of stochastic systems, also known as the Gaussian system representation. This is

x(t + 1) = A(t)x(t) + B(t)u(t) + M(t)v(t), (2.2.2)
y(t) = C(t)x(t) + D(t)u(t) + N(t)v(t). (2.2.3)

Here, the stochastic process x(t) is the state of the system. It is assumed that x0 = x(t0) ∈ G(m0, Q0)
is known.

Sometimes, we assume that the system is stationary/time invariant. This means that the matrices
A, B, M , C, D, N and Qv don’t depend on time. This significantly simplifies the system.

2.2.2 Interconnecting systems

Let’s consider figure 2.1. In this figure, three Gaussian systems are connected. There are the control
system (1), the input noise (2) and the output noise (3). These three systems can be modeled by

x1(t + 1) = A1x1(t) + B1u1(t), y1(t) = C1x1(t) + D1u1(t), (2.2.4)
x2(t + 1) = A2x2(t) + B2u2(t), y2(t) = C2x2(t) + D2u2(t), (2.2.5)
x3(t + 1) = A3x3(t) + B3u3(t), y3(t) = C3x3(t) + D3u3(t). (2.2.6)

Also note that u1(t) = u(t) + y2(t) and y(t) = y1(t) + y3(t). It may seem complicated to deal with this
system. But luckily, we can write the whole system in state space form as well. If we are to do this, we
first ought to define

x =

x1

x2

x3

 and v =

[
v2

v3

]
. (2.2.7)
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Figure 2.1: The interconnection of Gaussian systems.

Now, by using the equations above, it can be derived that

x(t + 1) =

A1 B1C3 0
0 A2 0
0 0 A3

x(t) +

B1

0
0

u(t) +

B1N2 0
M2 0
0 M3

 v(t), (2.2.8)

y(t) =
[
C1 D1C2 C3

]
x(t) + D1u(t) +

[
D1N2 N3

]
v(t). (2.2.9)

2.2.3 Stochastic systems in literature

In the literature, you often find a representation of the form

x(t + 1) = A(t)x(t) + M1(t)r(t), y(t) = C(t)x(t) + N1(t)w(t). (2.2.10)

Here, r(t) and w(t) are independent white noise processes. This is, however, only a special case of our
previous representation. In fact, we can put the above representation into our own form, using

v(t) =

[
r(t)
w(t)

]
, M(t) =

[
M1(t) 0

]
and N(t) =

[
0 N1(t)

]
. (2.2.11)

Our new noise signal is now given by

v(t) ∈ G

(
0,

[
Qr(t) 0

0 Qw(t)

])
. (2.2.12)

2.2.4 Forward and backward representation

Previously, we have considered systems in the forward representation. It was written as

x(t + 1) = Afx(t) + Mvf (t) and y(t) = Cf (t)x(t) + Nvf (t). (2.2.13)

Though, if it is clear that we are using the forward representation, the superscript f is not written. If we
have Q(t) = E[x(t)x(t)T ] > 0, then it can be shown that

Af (t) = E[x(t + 1)x(t)T ]Q(t)−1, (2.2.14)
Cf (t) = E[y(t)x(t)T ]Q(t)−1, (2.2.15)

Qf
v (t) =

[
Q(t + 1) E[x(t + 1)y(t)T ]

E[y(t)x(t + 1)T ] E[y(t)y(t)T ]

]
−

[
Af (t)
Cf (t)

]
Q(t)−1

[
Af (t)T Cf (t)T

]
. (2.2.16)
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We also have M = [In 0] and N = [0 Ip]. However, we could also use the backward representation of the
system. It is then written as

x(t− 1) = Abx(t) + Mvb(t) and y(t− 1) = Cb(t)x(t) + Nvb(t). (2.2.17)

This time, the system matrices satisfy

Ab(t) = E[x(t− 1)x(t)T ]Q(t)−1, (2.2.18)
Cb(t) = E[y(t− 1)x(t)T ]Q(t)−1, (2.2.19)

Qb
v(t) =

[
Q(t− 1) E[x(t− 1)y(t)T ]

E[y(t)x(t− 1)T ] E[y(t)y(t)T ]

]
−

[
Ab(t)
Cb(t)

]
Q(t)−1

[
Ab(t)T Cb(t)T

]
. (2.2.20)

Based on the above equations, we can also find the relation between te forward and the backward
representations. It is given by

Af (t)Q(t) = Q(t + 1)Ab(t + 1)T , (2.2.21)
Ab(t)Q(t) = Q(t− 1)Af (t− 1)T , (2.2.22)

Cf (t)Q(t) = Cb(t + 1)Q(t + 1)Ab(t + 1)T + NQb
v(t + 1)MT , (2.2.23)

Cb(t)Q(t) = Cf (t− 1)Q(t− 1)Af (t− 1)T + NQf
v (t− 1)MT . (2.2.24)

(2.2.25)

If the system is stationary and the matrices are thus constant in time, then the above equations can be
simplified somewhat.
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3. Properties of stochastic systems

Previously, we have seen how stochastic systems are defined. Now we look at what properties such
systems can have.

3.1 Properties of Gaussian system representations

3.1.1 Definitions

Gaussian system representations have several properties. But before we can examine these properties,
we need to make some definitions. First, we define the state transition function Φ : T × T → Rn×n,
associated with A(t), recursively as the function

Φ(t, s) =


A(t)Φ(t− 1, s) if s < t,

I if s = t,

0 if s < t.

(3.1.1)

For time-invariant systems, this can be reduced to

Φ(t, s) =

{
At−s if s ≤ t,

0 if s > t.
(3.1.2)

Second, we define the following notations.

F x+
t = σ ({x(s),∀s > t}) , (3.1.3)

F
x(t)
t = σ ({x(s),∀s = t}) = σ({x(t)}), (3.1.4)

F x
t = F x−

t = σ ({x(s),∀s ≤ t}) . (3.1.5)

So, whereas F
x(t)
t is the σ-algebra generated by x(t), F x

t is the σ-algebra generated by all x(s) with s ≤ t.

We also have definitions for Gaussian processes and Markov processes. We’ll examine them.

• A Gaussian process is a process x(t) (with t ∈ T ) such that all finite linear combinations of x(t)
is normally distributed as well. Thus, any variable z = c1x(t1) + . . . + cnx(tn) is Gaussian.

• A Markov process is a process that satisfies the Markov property. This property requires that,
given the current state x(t) of a system, the future does not depend on the past. In an equation,
this property/requirement can be written as

E
[
eiuT x(t+1)|F x(t)

t

]
= E

[
eiuT x(t+1)|F x

t

]
. (3.1.6)

In other words, the distribution of x(t + 1) depends on the distribution of x(t). Knowing the
distribution of x(s) for s < t doesn’t influence this in any way.

• A process which is both a Gaussian process and a Markov process is called a Gauss-Markov
process.

3.1.2 Properties

Let’s examine a Gaussian system representation without any input u(t). This system representation now
has several properties. We’ll list a couple.
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1. For all t ∈ T , the σ-algebras F v+
t and (F x

t ∪ F y
t−1) are independent. In other words, there is

absolutely no relation between v(s) for s > t and either x(s) for s ≤ t or y(s) for s ≤ t − 1. Of
course, there is a link between v(t) and y(t), just as there is a link between v(t) and x(t + 1).

2. Let’s suppose that we know the state x(s) at some time s ∈ T . We can then find the state x(t) and
the output y(t) at some time t ∈ T , using

x(t) = Φ(t, s)x(s) +
t−1∑
u=s

Φ(t− 1, u)M(u)v(u), (3.1.7)

y(t) = C(t)

(
Φ(t, s)x(s) +

t−1∑
u=s

Φ(t− 1, u)M(u)v(u)

)
+ N(t)v(t). (3.1.8)

3. The process (x, y) is a jointly Gaussian process.
4. The state process x(t) is a Gauss-Markov process with x(t) ∈ G(mx(t), Q(t)). Here, we have

mx(t + 1) = A(t)mx(t) with mx(t0) = m0, (3.1.9)
Q(t + 1) = A(t)Q(t)A(t)T + M(t)Qv(t)M(t)T with Q(t0) = Q0, (3.1.10)
Wx(t, s) = E

[
(x(t)−mx(t))(x(s)−mx(s))T

]
= Φ(t, s)Q(s) (for t ≥ s).(3.1.11)

5. The output process y(t) is a Gaussian process with y(t) ∈ G(my(t), Qy(t)). Now we have

my(t) = C(t)my(t), (3.1.12)
Qy(t) = C(t)Q(t)C(t)T + N(t)Qv(t)N(t)T , (3.1.13)

Wy(t, s) =

{
Qy(t) = C(t)Q(t)C(t)T + N(t)Qv(t)N(t)T if s = t,

C(t)Φ(t, s)Q(s)C(s)T + C(t)Φ(t− 1, s)M(s)Qv(s)N(s)T if s < t.
(3.1.14)

3.2 Properties of time-invariant system representations

3.2.1 The impulse response function

Let’s examine a time-invariant system without any noise. So, we have

x(t + 1) = Ax(t) + Bu(t) and y(t) = Cx(t) + Du(t), (3.2.1)

with x(t0) = x0. The state and the output of the system can now be determined using

x(t) = At−t0x0 +
t−1∑
s=t0

At−1−sBu(s) and y(t) = CAt−t0x0 +
t−1∑
s=t0

CAt−1−sBu(s) + Du(t). (3.2.2)

We can also define the impulse response function H(t) according to

H(t) =

{
D, if t = 0,
CAt−1B, if t = 1, 2, . . . .

(3.2.3)

Now, if x0 = 0, we have

y(t) =
t∑

s=t0

H(t− s)u(s). (3.2.4)
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3.2.2 Controllability

An important concept for systems is the concept of controllability. We say that a system is controllable
if there is a time t1 ∈ T such that from every initial state x0 ∈ X, any final state x(t1) = x1 ∈ X can
be reached. With ‘can be reached’, we mean that there is an input u such that, if x(t0) = x0, we have
x(t1) = x1.

So how do we check if a system is controllable? For that, we can examine the controllability matrix,
defined as

conmat(A,B) =
[
B AB A2B . . . An−1B

]
. (3.2.5)

The system is controllable if and only if this controllability matrix is of full rank (i.e. it has rank n). In
this case, we say that the pair of matrices (A,B) is a controllable pair. (The controllability only depends
on the system matrices A and B, and not on C or D.) For discrete systems, it can be shown that if the
system is controllable, then any state x1 can be reached within a time t1 for any t1 satisfying t1− t0 ≥ n.

Now let’s examine the case where (A,B) is not controllable. In this case, there is a state-space transforma-
tion S (with det S 6= 0) such that x̄(t) = Sx(t). With respect to this new basis, the system representation
takes the so-called Kalman controllability form

x̄(t + 1) =

[
A11 A12

0 A22

]
x̄(t) +

[
B1

0

]
u(t) and y(t) =

[
C1 C2

]
x̄(t) + Du(t). (3.2.6)

In the above equation, (A11, B1) is a controllable pair. So, we have split up the system into a fully
controllable part and a fully uncontrollable part.

3.2.3 Observability

A concept very similar to controllability is observability. Let’s say that we don’t know the state x(t) of
a system, but we do know the system matrices A, B, C and D. We say that the system is observable if
there is a time t1 such that, after t1, we can always uniquely determine the state x of the system.

To find whether a system is observable, we can examine the observability matrix, defined as

obsm(A,C) =



C

CA

CA2

...
CAn−1

 . (3.2.7)

The pair (A,C) is controllable if the above matrix is of full rank. If a discrete system is controllable,
then it can be shown that the state x can always be uniquely determined within a time t1 − t0 ≥ n.

Just like with controllability, we can split a system also up in an observable part and an unobservable
part. This time, we find that

x̄(t + 1) =

[
A11 0
A21 A22

]
x̄(t) +

[
B1

B2

]
u(t) and y(t) =

[
C1 0

]
x̄(t) + Du(t). (3.2.8)

Now, (A11, C1) is an observable pair.

12



We can also split up a system in both controllable and observable parts. We then find that

x̄(t + 1) =


A11 0 A13 0
A21 A22 A23 A24

0 0 A33 0
0 0 A43 A44

 x̄(t) +


B1

B2

0
0

u(t), (3.2.9)

y(t) =
[
C1 0 C3 0

]
x̄(t) + Du(t). (3.2.10)

3.2.4 Stabilizability and detectability

The concepts of stabilizability and detectability are similar to controllability and observability, respec-
tively. To test on stabilizability (i.e. whether a pair (A,B) is stabilizable), we can split up the system
as in equation (3.2.6). If the noncontrollable part A22 is exponentially stable, then the pair (A,B) is
stabilizable. Otherwise it is not. (With exponentially stable, we mean that the set of eigenvalues of
A, denoted by spec(A), falls within the unit circle, denoted by Do. Thus, spec(A) ⊂ Do.)

Alternatively, also the Hautus test can be used. Examine the matrix[
(sI −A) B

]
. (3.2.11)

If the above matrix has rank n for all unstable eigenvalues λ ∈ spec(A), then the pair (A,B) is stabilizable.
Otherwise it is not.

The test for detectability is similar. The pair (A,C) is detectable if and only if the nonobservable part
A22 in equation (3.2.8) is stable. Alternatively, the Hautus test can again be used. Now examine the
matrix [

(sI −A)
C

]
. (3.2.12)

If the above matrix has rank n for all unstable eigenvalues λ ∈ spec(A), then the pair (A,B) is detectable.
Otherwise it is not.

3.2.5 Invariant measures

Let’s consider an exponentially stable time-invariant Gaussian system. So, the matrices A, B, C, D and
Qv are constant in time. It can now be shown that there is an invariant measure x(t) = G(0, Qx).
In other words, its distribution Qx is constant. The corresponding stationary output is denoted by
y(t) = G(0, Qy). The matrices Qx and Qy and also Qxy have to be found by solving

Qx = AQxAT + MQvMT , (3.2.13)
Qy = CQxCT + NQvNT , (3.2.14)

Qxy = AQxCT + MQvNT . (3.2.15)

The equation for Qx is known as the Lyapunov equation. If A is exponentially stable, then it always
has a unique solution Qx = QT

x ≥ 0. We’ll give the Lyapunov equation a closer look in a moment. But
first, we mention that the covariance functions are given by

Wx(t) = AtQx, (3.2.16)

Wy(t) =

{
CAt−1

(
AQxCT + MQvNT

)
if t > 0,

Qy if t = 0,
(3.2.17)

Wxy(t) = CAtQx. (3.2.18)
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Let’s suppose that we have some process x(t) which is not equal to the invariant measure. If the system
is exponentially stable, then it can be shown that x(t) will always converge to the invariant measure. So,
limt→∞ Q(t) = Qx, with Qx the solution to the above equation.

3.2.6 The Lyapunov equation

The equation
Q = AQAT + MQvMT (3.2.19)

is known as the Lyapunov equation. It should be solved for Q. Mostly, numerical methods are
employed here, like the Matlab function dlyap. But this equation is also subject to a few theories. Let’s
suppose that there is some G satisfying GGT = MQvMT . If (A,G) is stabilizable and if there is some
Q = QT ≥ 0 satisfying the Lyapunov equation, then A is exponentially stable.

Next to this, consider the following three statements. When two of these statements hold, then the third
must hold as well. (Or equivalently, when one doesn’t hold, then at least one of the others doesn’t hold
either.)

• A is an exponentially stable matrix. (So, spec(A) ⊂ Do.)
• (A,G) is a reachable pair. (Reachable is another word for controllable.)
• Q is positive definite. (So, Q > 0.)

14



4. Stochastic realizations

In this chapter, we’re going to examine stochastic realizations. What are they? How can we find them?
And how can we be sure that they are minimal?

4.1 Basic ideas of stochastic realizations

4.1.1 The weak Gaussian stochastic realization problem

Let’s suppose that we’re looking at some actual process. From it, we derive some output z(t). After
perhaps some filtering, we can derive the average za and the covariance Ŵ (t) of the data, according to

za =
1
t1

t1∑
s=1

z(t) and Ŵ (t) =
1

t1 − t

t1−t∑
s=1

(zt+s − za)(zs − za)T . (4.1.1)

Now the question arises, can we find a time-invariant Gaussian system such that the output y of this
system equals the considered process z? If there is, then we call such a system realization of the
considered process. But if there is such a system, then the question also arises, is it minimal? (A
realization is called minimal if there is no other realization with a smaller dimension.) And can we find
all minimal realizations? This problem is actually known as the weak Gaussian stochastic realization
problem. And a solution is known as a weak Gaussian stochastic realization.

4.1.2 Stochastic observability

When considering minimality of realizations, we will need the concepts of stochastic observability and
stochastic reconstructibility. So we will consider those here. Let’s examine a time-invariant Gaussian
system. Suppose that we know the conditional distributions

(
{y(t), y(t + 1), . . . , y(t + t1)}|F x(t)

)
of the

future outputs. (So basically, we have experimental data on the output of the system.) If we can derive
the distribution of x(t) from this, then we call the system stochastically observable.

There is a relatively easy way to determine whether a system is stochastically observable. Let’s assume
that our time-invariant system is exponentially stable. Also assume that there is some G such that
GGT = MQvMT and that (Af , G) is a reachable pair. (Reachable is another word for supportable or
controllable.) Then the system is stochastically observable if and only if (Af , Cf ) is an observable pair.

4.1.3 Stochastic reconstructibility

Stochastic reconstructibility (also sometimes called stochastic coobservability is similar to stochastic
observability. Again examine a time-invariant Gaussian system. But now suppose that we know the
conditional distributions

(
{y(t), y(t− 1), . . . , y(t− t1)}|F x(t)

)
of the past outputs. If we can derive the

distribution of x(t) from this, then we call the system stochastically reconstructible.

Again, there is a way to check stochastic reconstructibility. Let’s assume that our time-invariant system
is exponentially stable. Also assume that there is some G such that GGT = MQvMT and that (Ab, G) is
a reachable pair. Then the system is stochastically reconstructible if and only if (Ab, Cb) is an observable
pair.

So, stochastic observability means that, given a series of conditional output distributions, you can find
the distribution of the initial state. On the other hand, stochastic reconstructibility means that, given
a series of conditional output distributions, you can find the distribution of the final state. Often, when
a system is stochastically observable, it is also stochastically reconstructible and vice versa. But this is
definitely not always the case.
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4.2 Dissipative systems

Another relevant topic to the subject of stochastic realizations is the topic of dissipative systems. Let’s
consider a system of the form

x(t + 1) = Fx(t) + Gu(t) and y(t) = Hx(t) + Ju(t), (4.2.1)

where we assume that J = JT and thus that u(t) and y(t) are of the same size p. The matrices F , G, H
and J (and their sizes) are the linear system parameters (LSP) corresponding to this system. We’ll
use this system when discussing dissipative systems.

4.2.1 Positive definite functions

Let’s define U as a set of inputs to the system above, according to

U =

u : T → Rp| ||u|| =
√∑

s∈T

u(s)T u(s) < ∞

 . (4.2.2)

Now consider a function W : T × T → Rp×p. (It will be similar to the covariance function.) We say that
W is stationary if W (t, s) = W (t− s, 0) for all s, t ∈ T . In this case, we simply write W (t, 0) = W1(t).
Also, W is called parasymmetric if W (t, s) = W (s, t)T . For stationary functions this is equivalent to
W (t) = W (−t)T . And we say that W is finite-dimensional if there are linear system parameters such
that

W (t) =


HF t−1G if t > 0,

2J if t = 0,

GT (FT )−t−1HT if t < 0.

(4.2.3)

Now let’s define the operator W according to

(W(u))(t) =
t−1∑

s=−∞
W (t, s)u(s) +

1
2
W (t, t)u(t). (4.2.4)

We say that W is a positive definite operator and W is a positive definite function if for any
u ∈ U we have

uT Wu =
∑
s∈T

∑
t∈T

u(t)T W (t, s)u(s) ≥ 0. (4.2.5)

Similarly, W and W are called strictly positive definite if uT Wu > 0 for all nonzero u ∈ U.

4.2.2 Supply rates and storage functions

Let’s again consider the system of the form of equation (4.2.1). We define the supply rate as

h(u(t), y(t)) = h(t) = u(t)T y(t) =
1
2

[
u(t)
y(t)

]T

Js

[
u(t)
y(t)

]
, with Js =

[
0 Ip

Ip 0

]
. (4.2.6)

The system is called dissipative if there is a storage function S(x(t)) such that for all s, t ∈ T and for
all inputs u ∈ U we have

S(x(t)) ≤ S(x(s)) +
t−1∑
τ=s

h(u(τ), y(τ)). (4.2.7)
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Basically, S can be seen as the ‘energy’ in the system and h as the ‘energy supply rate’. So for dissipative
systems, energy is lost.

A special type of storage function is the available storage S−(x). Before we define it, we first define
the set U(t0, x0, t1, x1) as

U(t0, x0, t1, x1) = {u ∈ U|if x(t0) = x0 and u is applied as input, then x(t1) = x1} . (4.2.8)

Now, the available storage S−(x) is defined as

S−(x) = sup
t>0,u∈U(0,x,t,.)

(
−

t−1∑
τ=0

h(τ)

)
. (4.2.9)

Basically, the available storage can be seen as the maximum amount of energy that can be extracted
from a system without initial supply/energy. It can now be shown that the system is dissipative if and
only if the available storage is finite. (So if for all x ∈ Rn we have S−(x) > ∞.) Also, if the system is
dissipative, then S−(x) ≥ 0 is a storage function. And every other storage function S(x) will be at least
as big. So, 0 ≤ S−(x) ≤ S(x).

Similarly, we can define the required supply S+(x) as

S+(x) = inf
t<0,u∈U(t,.,0,x)

( −1∑
τ=t

h(τ)

)
. (4.2.10)

(Just like the supremum can be seen as an upper bound, the infimum is like a lower bound.) The required
supply S+(x) can be seen as the minimum supply that is necessary at a negative time t to bring the
system to state x at τ = 0 with zero supply. If the system is dissipative and controllable, then S+(x)
exists, is finite, and we have S(x) ≤ S+(x) for all other storage functions S(x).

4.2.3 Characterizing linear dissipative systems

Consider the system of equation (4.2.1). Its dual system is defined as

x(t + 1) = FT x(t) + HT u(t) and y(t) = GT x(t) + Ju(t). (4.2.11)

For the system and its dual system, given the linear system parameters H, G, H and J , we can define
the matrices

Vlsp(Q) =

[
Q− FT QF HT − FT QG

H −GT QF 2J −GT QG

]
and Vlsdp(Q) =

[
Q− FQFT G− FQHT

GT −HQFT 2J −HQHT

]
.

(4.2.12)
These matrices play an important role with supply rates. In fact, if Q = QT , we have

1
2
x(t)T Qx(t)− 1

2
x(s)T Qx(s)−

t−1∑
τ=s

h(τ) = −
t−1∑
τ=s

1
2

[
u(t)
y(t)

]T

Vlsp(Q)

[
u(t)
y(t)

]
. (4.2.13)

If Vlsp(Q) is positive definite, then the right side of the equation is negative or zero. This means that
1
2xT Qx is a storage function. So we would like to know for which Q the matrix Vlsp(Q) is positive definite.
We thus define the sets Qlsp and Qlsdp as

Qlsp =
{
Q ∈ Rn×n|Q = QT ≥ 0 and Vlsp(Q) ≥ 0

}
, (4.2.14)

Qlsdp =
{
Q ∈ Rn×n|Q = QT ≥ 0 and Vlsdp(Q) ≥ 0

}
. (4.2.15)

If we now assume that (F,G) is controllable and (F,H) is observable, then the following three statements
are equivalent.
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• The system is dissipative.
• W is a positive definite function.
• There exists a Q ∈ Qlsp.

Also, S(x) = 1
2xT Qx with Q = QT ≥ 0 is a storage function if and only if Q ∈ Qlsp. We can also define

Q− and Q+ as the minimal and maximal solutions of the algebraic Riccati equation

D(Q) =
(
Q− FT QF

)
−
(
HT − FT QG

) (
2J −GT QG

)−1 (
H −GT QF

)
= 0. (4.2.16)

(It can be noted that D(Q) is the Schur complement of the matrix Vlsp(Q).) Now it can be shown that
for any Q ∈ Qlsp we have Q− ≤ Q ≤ Q+. Next to this, we also have

S−(x) =
1
2
xT Q−x and S+(x) =

1
2
xT Q+x. (4.2.17)

4.3 Stochastic realizations

4.3.1 The covariance realization

Now we can finally get back to stochastic realizations. Let’s suppose we have some output signal with
covariance matrix W (t) with W (0) > 0 but limt→∞ W (t) = 0. Is there a weak Gaussian stochastic
realization of the following form?

x(t + 1) = Ax(t) + Mv(t) and y(t) = Cx(t) + Nv(t). (4.3.1)

Well, it can be shown that such a realization exists if and only if the Hankel matrix HW associated with
W satisfies rank(HW ) < ∞. Here, the Hankel matrix HW (k1, k2) and rank(HW ) are defined as

HW =


W (1) W (2) · · · W (k2)

W (2)
. . . . . .

...
...

. . . . . . W (k1 + k2 − 2)
W (k1) · · · W (k1 + k2 − 2) W (k1 + k2 − 1)

 , (4.3.2)

rank(HW ) = sup
k1,k2∈Z

rank(HW (k1, k2)). (4.3.3)

In this case, there exist linear system parameters F , G, H and J such that

W (t) =


HF t−1G if t > 0,

2J if t = 0,

GT (FT )−t−1HT if t < 0.

(4.3.4)

(Algorithms for finding F , G, H and J exist, but we will not discuss them here.) A system with the
above form will be called a covariance realization of the covariance function W . We should also select
a Q ∈ Qldsp. The matrices A, B, M , N and Qv are now given by A = F , C = H, M = [In 0], N = [0 Ip]
and Qv = Vlsdp(Q). This gives us the well-known Gaussian system representation

x(t + 1) = Ax(t) + Mv(t) and y(t) = Cx(t) + Nv(t). (4.3.5)
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4.3.2 Properties of Gaussian system representation

Let’s examine a Gaussian system representation of the form of equation (4.3.5). In this equation A has
size n×n, M has size n×m, C has size p×n and N has size p×m. The representation can have several
properties.

• The representation is regular if rank(NV NT ) = p.
• The representation is square if it is regular and m = p. It is non-square if it regular and m > p.
• Assume that spec(A) ⊂ Do. The representation is supported on the full state space if x(t) ∈

G(0, Q) with Q = QT > 0. Here, Q is the solution of the Lyapunov equation Q = AQAT +MV MT .
• The representation is an output-based stochastic realization of its output process if rank(V ) =

rank(V NV T ). An output-based stochastic realization is sometimes also called an internal stochas-
tic realization.

• The representation is a Kalman realization of the associated output process if the system is
regular, output-based and satisfies spec(A) ⊂ Do and spec(A−KC) ⊂ Do.

4.3.3 Minimal stochastic realizations

We have noted before that a realization is called minimal if there is no other realization with a smaller
state. It can be shown that a realization is minimal if and only if it is stochastically observable, it is
stochastically reconstructible and the support of the state process equals the state space. This latter
condition is equivalent to Q > 0.

Minimal realizations are, however, not unique. Let’s take a nonsingular matrix S. We now replace A by
SAS−1, C by CS−1 and M by SM . (N and Qv are just left the same.) This gives us a completely new
stochastic realization.

There is also another way to find other stochastic realizations. This time, we don’t change A, C and M ,
but we change Qv instead. To do this, we simply take another Q ∈ Qlsdp. And, by choosing specific Q,
we can also vary the properties of the realization we get. For example, if we take Q− ∈ Qlsdp, then we
acquire the Kalman realization. As was mentioned before, this realization is regular, output-based and
satisfies spec(A) ⊂ Do and spec(A−KC) ⊂ Do. Furthermore, the realization can be written as

x(t + 1) = Ax(t) + Kw(t) and y(t) = Cx(t) + w(t), (4.3.6)

with w(t) ∈ G(0,W ) and W = WT > 0.
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5. Stochastic control

In this chapter, we’re going to examine how we can control a system using stochastic control. First, we
examine some basic principles of stochastic control. After that, we’ll look at an example of a field where
stochastic control theory can often be applied: statistical decision problems.

5.1 Basic principles of stochastic control

5.1.1 Information structures

Let’s examine the system

x(t + 1) = Ax(t) + Bu(t) + Mv(t), (5.1.1)
y(t) = Cx(t) + Du(t) + Nv(t). (5.1.2)

We can now use the input u(t) to control the system. To control the system, we need information.
But luckily, information is available. We say that, at every time t ∈ T , the σ-algebra Gt specifies the
available information. The family of all such σ-algebras Gt, being {Gt, t ∈ T}, is called the information
structure.

There are different types of information structures. The type depends on which data is available.

• The past-output information structure is
{
F y−

t−1, t ∈ T
}
. So, we have all previous outputs

available as data. (But the states x are not available.)
• The current output information structure is

{
F y(t), t ∈ T

}
. So, only the current output is

available.
• The past-state information structure is

{
F x−

t , t ∈ T
}
. So, all previous states are available.

• The Markov information structure (also called the current state information structure)
is
{
F x(t), t ∈ T

}
. So, only the current state is available.

5.1.2 Control laws

Based on the information structure, we can make a control law. A control law (also called control
policy) is a measurable mapping from the available data to the input space U . How the control law is
called depends on the information structure that is used. We will examine the most important control
laws now.

• The past-output control law uses the past-output information structure. So, for every t ∈ T ,
gt is a measurable map gt : Y t → U . This implies that we can also see g itself as a mapping
g : T × Y t → U .

• The output control law uses the current output information structure. So we now have g :
T × Y → U .

• The past-state control law uses the past-state information structure. So now g : T ×Xt+1 → U .
• The Markov control law uses the Markov information structure. So now g : T × X → U . We

denote the set of all possible Markov control laws by GM .
• The stationary Markov control law also uses the Markov information structure. But now the

control law g does not depend on time. So, g : X → U .

Let’s suppose that we use a control law g. For example, we use the Markov control law. The resulting
control system parameters are then written with the superscript g. So, we have

xg(t + 1) = Axg(t) + Bug(t) + Mv(t), (5.1.3)
yg(t) = Cxg(t) + Dug(t) + Nv(t). (5.1.4)
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In this equation, we have ug(t) = g(t, xg(t)). The above system representation is called a closed-loop
stochastic control system.

5.1.3 Control objectives

The question remains, which control law do we use? We usually choose a control law such that control
objectives are met. A control objective is a property of the closed-loop control system which we should
strive to attain. Examples of control objectives are

• Making the system stable.
• Suppressing noise.
• Optimizing a performance measure. For example, we might want to choose g such that a cost

function J is minimized. The cost function j can then have a form like

J = E

[
t1∑

t=0

(c1x(t) + c2u(t))

]
. (5.1.5)

• Making the system robust. Robustness means that, even when deviations are applied in the model,
the system still has a satisfactory performance.

The stochastic control problem is now defined as the problem of finding a control law g such that
the control objectives are satisfied as well as possible. Solving this problem consists of two steps. First,
in control synthesis, possible control laws g need to be generated. Then, in control design, the best
of these control laws g needs to be chosen. In practice, this often means that the numerical parameters
of the control law need to be chosen.

5.2 Statistical decision problems

5.2.1 Statistical decision problems

Statistical decision problems are often good examples of stochastic control problems. Let’s suppose
that we have x money. We can invest this in 2 investment opportunities. (It works the same when there
are more investment opportunities.) The two investment opportunities return y1 = r1x1 and y2 = r2x2,
respectively, where r1 and r2 are random variables and x1 and x2 are the amount of money invested in
r1 and r2, respectively. The total return which you get is thus y = y1 + y2. The question now is how to
invest x. Which fraction u should we invest in r1 and which fraction (1− u) should we invest in r2?

To solve this problem, we need a utility function U(y). This utility function is a measure of how ‘happy’
you are with a return y. For most normal people, this is a concave function. (That is, d2U/dy2 < 0.
Initially, people are very happy when they get more money. But, as people get richer, the extra happiness
decreases if they get more money.) Of course, y is a random variable as well. So, we need to select u
such that the expected utility E[U(y)] is maximized.

5.2.2 An example

Let’s demonstrate the above procedure with an example. Let’s say that opportunity 1 is a ‘sure’ invest-
ment opportunity: r1 is always 1.5. On the other hand, opportunity 2 is a ‘risky’ investment opportunity:
there is a chance of 50% that r2 = 3, but also a chance of 50% that r2 = 1. We also define the utility
function as U(y) = 6y − y2. We now have

y = r1x1 + r2x2 = r1ux + r2(1− u)x. (5.2.1)
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We should thus maximize

E[U(y)] = E
[
6(r1ux + r2(1− u)x)− (r1ux + r2(1− u)x)2

]
. (5.2.2)

Using the data given for r1 and r2 gives

E[U(y)] =
1
2
(
6(1.5ux + (1− u)x)− (1.5ux + (1− u)x)2

)
+

1
2
(
6(1.5ux + 3(1− u)x)− (1.5ux + 3(1− u)x)2

)
.

(5.2.3)
We can find the maximum of this equation by differentiating for u. This then shows that the maximum
occurs at u = 2/5.

5.2.3 Risk

Risk plays an important role in statistical decision problems. We say that a decision makes with a utility
function U(y) is risk averse if E[U(y)] < U(E[y]). That is, he prefers the certain pay-off U(E[y]) above
the uncertain pay-off E[U(y)]. Similarly, the decision maker is risk preferring if E[U(y)] > U(E[y])
and risk neutral if E[U(y)] = U(E[y]).

We can also define the index of absolute risk aversion r(y). Assuming that U is twice differentiable,
it is defined as

r(y) = −U ′′(y)
U ′(y)

. (5.2.4)

The index r(E[y]) is roughly proportional to the amount of money one would pay to avoid risks. Thus,
if r(E[y]) > 0, then the person would pay to avoid risks and is thus risk averse. Similarly, if r(E[y]) < 0,
the person would pay to have risks and is thus risk preferring.
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6. Dynamic programming

The most important method to find the optimal control law for a recursive state-observed system is
dynamic programming. In this chapter, we’ll look at how it works. In the first part, we look at finite
horizons. That is, time is limited. In the second part, we examine what to do if time can run on
indefinitely.

6.1 Dynamic programming on a finite horizon

6.1.1 The problem and the cost function

Let’s consider a recursive state-observed stochastic system, described by

x(t + 1) = f(t, x(t), u(t), v(t)). (6.1.1)

We assume that the time horizon is finite. So, T = {0, . . . , t1}. To control this system, we use the input
u(t). This input is given by the control law g, according to

ug(t) = g(t, xg(t), xg(t− 1), . . . , xg(t0)). (6.1.2)

The resulting state of the system is denoted by xg(t).

The question arises: which input u(t) should we select? Our goal is to control the system in such a way
that a cost function J(g) is minimized. An example of such a cost function is

J(g) = Eg

[
t1−1∑
s=0

b(s, xg(s), ug(s)) + b1(xg(t1))

]
. (6.1.3)

Here, the Eg operator means the expectation, given that the control law g is used. Also, b1 is the
terminal cost and b is the current cost. We thus need to find the optimal control law g∗, such that
J∗ = J(g∗) = infg∈G J(g). (Note that G is the set of all possible control laws g.) To find g∗, a helpful
function is the conditional cost-to-go J(g, t) at time t. It is defined as

J(g, t) = Eg

[
t1−1∑
s=t

b(s, xg(s), ug(s)) + b1(xg(t1))|F xg

t

]
. (6.1.4)

It is interesting to note that we have J(g) = Eg[J(g, t0)].

6.1.2 The dynamic programming procedure

To find g∗, we make use of a value function V (t, xg(t)). This value function satisfies V (t, xg(t)) ≤ J(g, t).
In fact, if we use the optimal control law g = g∗, then we have an equality. In other words, we have

J∗ = J(g∗) = Eg∗ [J(g∗, t0)] = Eg∗ [V (t0, x0)]. (6.1.5)

But how do we find V ? The value function is generally derived by backward recursion. First, we define
V at time t = t1. So, V (t1, x) = b1(x) for all x ∈ X. We then find V recursively using

V (t, x) = inf
u∈U

(b(t, x, u) + E[V (t + 1, f(t, x, u, v(t)))|F x,u]) . (6.1.6)

The above equation is known as the dynamic programming equation. Once we have the value
function, we can find the optimal control law g∗. We simply select the u for which the above relation is
minimized. This value of u is denoted by u∗. We thus have

g∗(t, x) = u∗ = arg inf
u∈U

(b(t, x, u) + E[V (t + 1, f(t, x, u, v(t)))|F x,u]) . (6.1.7)
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It can now be shown that the value function must satisfy V (t1, xg∗(t1)) = b1(xg∗(t1)) and

V (t, xg∗(t1)) = b(t, xg∗(t), g∗(t, xg∗(t))) + Eg∗

[
V (t + 1, f(t, xg∗(t), g∗(t, xg∗(t)), v(t)))|F xg∗

t

]
. (6.1.8)

Note that in the above dynamic programming (DP) procedure, we don’t directly try to find g∗

from the set G. Instead, we simply find the optimal value of u∗ from the set U at every time-step. This
is generally much easier.

6.1.3 Linear quadratic-Gaussian stochastic control

Let’s consider a special case of the above problem. First of all, we examine a Gaussian stochastic control
system

x(t + 1) = A(t)x(t) + B(t)u(t) + M(t)v(t). (6.1.9)

Also, we use the quadratic cost function

J(g) = Eg

t1−1∑
s=t

[
x(s)
u(s)

]T

L(s)

[
x(s)
u(s)

]
+ x(t1)T Q1x(t1)

 , with L(t) =

[
Q(t) S(t)
S(t)T R(t)

]
(6.1.10)

and with Q1 being the terminal cost. Also, we have L(t) = L(t)T ≥ 0 and R(t) > 0. For this case, we
can derive an analytic expression for g∗(t). First we define P (t + 1) = Q1. Now we recursively define

H11(t) = A(t)T P (t + 1)A(t) + Q(t), (6.1.11)
H12(t) = A(t)T P (t + 1)B(t) + S(t), (6.1.12)
H22(t) = B(t)T P (t + 1)B(t) + R(t), (6.1.13)

F (t) = −H−1
22 (t)HT

12(t), (6.1.14)
P (t) = H11(t)−H12(t)H−1

22 (t)HT
12(t). (6.1.15)

In this way, the above matrices can be determined for every time t. The optimal control law g∗(t, x) can
now be found using

g∗(t, x) = F (t)x. (6.1.16)

The corresponding value function and optimal cost function can be found using

V (t, x) = xT P (t)x + r(t), (6.1.17)
r(t) = r(t + 1) + trace(M(t)T P (t + 1)M(t)V (t), (6.1.18)
J∗ = Eg

[
xT

0 P (t0)x0

]
+ r(t0). (6.1.19)

6.2 Dynamic programming on an infinite horizon

6.2.1 Cost functions

This time, we consider the case where we have an infinite horizon. So, T = N = {0, 1, . . .}. For
the infinite-horizon case, variations in the system dynamics are often negligible. So we assume that the
system is time-invariant, implying that

x(t + 1) = f(t, x(t), u(t), v(t)). (6.2.1)

The problem with infinite-horizon problems is that the cost function J(g) often becomes infinite. To
solve this problem, we have to use a different cost function. An example of such a cost function is the
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discounted cost function, being

Jd(g) = Eg

[ ∞∑
s=0

rsb(xg(s), ug(s))

]
, (6.2.2)

where r is the discount rate. With this cost function, costs that occur in the future are weighted less.
Another option for a cost function is the average cost function. This is defined as

Jav(g) = lim
t→∞

(
1
t
Eg

[
t−1∑
s=0

b(xg(s), ug(s))

])
. (6.2.3)

Which cost function is the most suitable depends on the problem. In the rest of this chapter, we will
mainly consider the discounted cost function.

6.2.2 The transition measure

For simplicity, we will consider the case where the input space U and the state space X are both finite.
We also assume that we can only use Markov control laws ug(t) = g(t, xg(t)). In this case, we can write
the system dynamics in a completely different form. We don’t use the function f anymore. Instead, we
denote the chance that x(t + 1) = i, given that x(t) = j and u(t) = u, by

P (i, j, u) = P (x(t + 1) = i|x(t) = j, u(t) = u). (6.2.4)

Here, P is the transition measure. We can also use this transition measure for conditional expectation.
We then get

Eg

[
V (t + 1, xg(t + 1))|F xg(t)

]
=
∑

x1∈X

V (t + 1, x1)P (x1, x
g(t), ug(t)). (6.2.5)

6.2.3 The forwardly defined value function

For the problem we are considering, the backwardly defined cost-to-go function W (t, x) is defined as
W (t1, x) = 0 and

W (t, x) = min
u∈U

(
rtb(x, u) +

∑
x1∈X

W (t + 1, x1)P (x1, x, u)

)
. (6.2.6)

However, in our case, there is no ending time t1. So we would better consider the forwardly defined value
function V (t, x). It is defined as V (0, x) = 0 and

V (t, x) = min
u∈U

(
b(x, u) + r

∑
x1∈X

V (t− 1, x1)P (x1, x, u)

)
. (6.2.7)

It can be noted that we have V (t, x) = rt−t1W (t1− t, x). As time t goes to infinity, it can be shown that
V (t, x) converges. In fact, if we write V (∞, x) = V (x), then we have

V (x) = DP (V )(x) = min
u∈U

(
b(x, u) + r

∑
x1∈X

V (x1)P (x1, x, u)

)
. (6.2.8)

The above relation has a unique solution for the function V (x). And it can also be shown that the
resulting value function V (x) minimizes the discounted cost function. So,

V (x0) = inf
g∈G

Eg

[ ∞∑
s=0

rsb(xg(s), ug(s))|F x0

]
. (6.2.9)
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Once we have the value function V (x), the optimal control law can be found using

g∗(x) = arg min
u∈U

(
b(x, u) + r

∑
x1∈X

V (x1)P (x1, x, u)

)
. (6.2.10)

Note that this control law does not depend on time t. So, it is a stationary control law.

6.2.4 Algorithms for finding the value function

The question remains, how can we find V (x)? There are multiple methods. The first one we consider
is value iteration. In this method, we make use of a function h(m,x) which is similar to V (t, x). We
initialize h(0, x) = 0 for all x. We then keep on updating h(t, x), according to

h(m + 1, x) = min
u∈U

(
b(x, u) + r

∑
x1∈X

h(m,x1)P (x1, x, u)

)
. (6.2.11)

We know that, as m →∞, then V (x) = h(m,x). The downside of this method is that we need infinitely
many computations before convergence occurs.

The method of policy improvement solves the above problem. Before we discuss this algorithm, we
make some definitions though. Let’s suppose that the state space X has n elements x1, . . . xn. We define
the vectors V and b(g) as

V =


V (x1)
V (x2)

...
V (xn)

 and b(g) =


b(x1, g(x1))
b(x2, g(x2))

...
b(xn, g(xn))

 . (6.2.12)

Also, let’s define the matrix P (g) as the matrix with elements Pij(g) = P (xj , xi, g(xi)). In other words,
if we are in a state xi and use an input g(xi), then the ith row gives us the chances that we reach a state
xj in the next time step, with j the column number. (Note that the sum of the elements in every row of
P (g) is 1.) We now need to find a control policy g such that

V (g) = DP (V (g)) = b(g) + rP (g)V (g). (6.2.13)

To do this, we first take a random control law g0 and solve the equation V (g0) = b(g0)+ rP (g0)V (g0) for
V (g0). (Note that this simply is a linear equation.) We then derive a new control law gm which satisfies

b(gm) + rP (gm)V (gm−1) = min
g∈G

(b(g) + rP (g)V (gm−1)) . (6.2.14)

Note that the set of possible control laws G has a finite size, because the state space X and the input
space U are finite. So the above relation can be solved in finite time. Once we have the new control law
gm, we can also update our value function V (gm) by solving

V (gm) = b(gm) + rP (gm)V (gm). (6.2.15)

This algorithm continues as long as improvements are made to the policy. That is, as long as

min
g∈G

(b(g) + rP (g)V (gm−1)) < V (gm1). (6.2.16)

If the above condition does not hold anymore, then the algorithm has converged to the optimal policy
(or one of the optimal policies, in case there are multiple ones). This optimal policy is then simply given
by g∗ = gm.
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7. Kalman filters

Kalman filters are very good at finding the state x of a system. But what kinds of Kalman filters are
there? How do they work? And what are their properties? That’s what this chapter is about.

7.1 The time-varying Kalman filter

7.1.1 The Kalman filtering problem

Let’s suppose that we are observing some stochastic process y. Based on this process, we should estimate
another stochastic process z. In other words, we need to determine z(t) given F y

t−1. A special case of this
problem is the Kalman filtering problem. Now z (or x) equals the state of some system with output
y. In other words, given the system

x(t + 1) = A(t)x(t) + M(t)v(t), x(t0) = x0 ∈ G(m0, Q0)m (7.1.1)
y(t) = C(t)x(t) + N(t)v(t), v(t) ∈ G(0, Qv(t)), (7.1.2)

we need to determine the conditional distribution of x(t) given F y
t−1.

7.1.2 The time-varying Kalman filter

To solve this problem, we can use a time-varying Kalman filter. However, this only works if
N(t)Qv(t)N(t)T > 0. (If this is not the case, then we can split up the system. The condition then
holds for the first part of the system, while the second part is not affected by the noise.) In this case, the
distribution of x(t)|F y

t−1 is Gaussian and is specified by the characteristic function

E[exp(iwT x(t))|F y
t−1] = exp(iwT x̂(t)− 1

2
wT Qf (t)w), ∀w ∈ Rn. (7.1.3)

In the above equation, we call x̂ the conditional mean process and Qf the conditional variance
process.

But how do we find x̂ and Qf? For that, we can use the recursively defined equations

x̂(t + 1) = A(t)x̂(t) + K(t)[y(t)− C(t)x̂(t)], x̂(t0) = E[x0] = m0, (7.1.4)
H11(t) = A(t)Qf (t)A(t)T + M(t)Qv(t)M(t)T , (7.1.5)
H12(t) = A(t)Qf (t)C(t)T + M(t)Qv(t)N(t)T , (7.1.6)
H22(t) = C(t)Qf (t)C(t)T + N(t)Qv(t)N(t)T , (7.1.7)

K(t) = H12(t)H−1
22 (t), (7.1.8)

Qf (t + 1) = H11(t)−H12(t)H−1
22 (t)H12(t)T , Qf (t0) = Q0. (7.1.9)

If we use the above relations, then we have

x̂(t) = E[x(t)|F y
t−1] and Qf (t) = E[(x(t)− x̂(t))(x(t)− x̂(t))T |F y

t−1]. (7.1.10)

7.1.3 Related process

When applying the Kalman filter, we can define the innovation process v̄(t) as v̄(t) = y(t)−C(t)x̂(t).
Now v̄(t) is a Gaussian white noise process, with

v̄(t) ∈ G(0, Qv̄(t)), Qv̄(t) = H22(t) = C(t)Qf (t)C(t)T + N(t)Qv(t)N(t)T . (7.1.11)
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Given this white noise process, the output y(t) can be determined. In other words, we have F y
t = F v̄

t .

Next to this, the error process e(t) is defined as e(t) = x(t)− x̂(t). Its recursive equation is

e(t + 1) = (A(t)−K(t)C(t))e(t) + (M(t)−K(t)N(t))v(t). (7.1.12)

7.2 The time-invariant Kalman filter

7.2.1 The Filter algebraic Ricatti equation

Previously, we considered the case where the state space matrices depended on time. Now let’s assume
that A, C, M , N and Qv are constant in time. In this case, the time-varying Kalman filter may converge
to a time-invariant Kalman filter. To see when this happens, we first make some assumptions.

• Assume that NQvNT > 0.
• Define F and G such that

F = A−MQvNT (NQvNT )−1C, (7.2.1)
GGT = MQvMT −MQvNT (NQvNT )−1(MQvNT )T . (7.2.2)

Assume that (F,G) is a stabilizable pair.
• Assume that (A,C) is a detectable pair.

Let’s define the function f(Q) as

f(Qf ) = AQfAT +MQvMT−(AQfCT +MQvNT )(CQfCT +NQvNT )−1(AQfCT +MQvNT )T . (7.2.3)

The above assumptions now imply that there exists a unique solution Qf = QT
f ≥ 0 to the Filter

algebraic Riccati equation Qf = F (Qf ). This solution Qf is actually the limit limt→∞ Qf (t) of the
time-varying Kalman filter. Also, if (F,G) is controllable as well, then we have Qf = QT

f > 0.

7.2.2 The time-invariant Kalman filter

Let’s define the matrices K(Qf ) and A(Qf ) as

K(Qf ) = (AQfCT + MQvNT )(CQfCT + NQvNT )−1, (7.2.4)
A(Qf ) = A−K(Qf )C. (7.2.5)

It can be shown that spec(A(Qf )) ⊂ Do. The time-invariant Kalman filter is now given by

x̄(t + 1) = Ax̄(t) + K(y(t)− Cx̄(t)). (7.2.6)

It is important to note that we don’t denote this filter by x̂(t). This is because generally x̄ 6= E[x(t)|F y
t−1].

But if this is the case, then why would we use the time-invariant Kalman filter, and not the time-varying
Kalman filter.

The answer is that a filter with a time-varying matrix K (like the time-varying Kalman filter) is quite
complicated. A filter with a constant matrix K is a lot simpler. And it can be shown that the time-
invariant Kalman filter is better than any other filter with a constant matrix K. With ‘better’ we mean
that the variance of the error e(t) = x(t)− x̄(t) of the Kalman filter is always better (or just as good) as
any other filter.
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8. Control using partial observations

Sometimes we may need to control a system of which we don’t know the state. This sounds like a
completely impossible problem. But, by using the output of the system as well as possible, it is still
possible to do this. How it works is explained below.

8.1 Information states and the separation principle

Consider a stochastic control system of the form

x(t + 1) = f(t, x(t), u(t), v(t)), (8.1.1)
y(t) = h(t, x(t), u(t), v(t)). (8.1.2)

Our task now is to find a control law g which minimizes a cost function like

J(g) = Eg

[
t1−1∑
s=0

b(s, xg(s), ug(s)) + b1(xg(t1))

]
. (8.1.3)

To determine the control law g, we need information. We can summarize this information in a so-called
information state. An example of an information state is

z(t) = [y(t− 1), . . . , y(0), u(t− 1), . . . , u(0)]T . (8.1.4)

There is just one problem: this information state grows with time. An information state which does not
grow with time is generally more convenient to use.

The information state is descibed by its recursive relation

z(t + 1) = f1(t, z(t), y(t), u(t)). (8.1.5)

We say that an information state is a sufficient information state for the state given past outputs
and inputs if it provides sufficient information about the state x of the system. To be more precise, if

E[exp(iwT x(t))|F y
t−1 ∨ Fu

t−1] = E[exp(iwT x(t))|F z(t) ∨ Fu(t−1)]. (8.1.6)

We now say that a control law h1 is a separated control law if it uses a sufficient information state z.
That is, if

u(t) = h1(t, z(t), y(t)). (8.1.7)

The set of all separated control laws g is denoted by Gs ⊂ G. An optimal stochastic control problem is
said to have the separation property if the optimal control law is a separated control law.

It is nice if a problem has the separation property, because separated control laws are relatively easy to
find. In fact, sometimes we only search for separated control laws, even when we are not dealing with
an optimal stochastic control problem. This means that we do not find the most optimal control law,
but we do find a control law close to the optimal one in a relatively easy way. This principle is calle the
separation principle.

8.2 Control of partially observed systems

8.2.1 The problem statement

Consider the system

x(t + 1) = A(t)x(t) + B(t)u(t) + M(t)v(t), (8.2.1)
y(t) = C(t)x(t) + D(t)u(t) + N(t)v(t). (8.2.2)
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Now also suppose that we don’t know the state x of the system. But our goal is to come up with a control
law g which minimizes a cost function J(g). How do we do this?

It turns out that this problem has a very special property. We have

F y,g
t ∨ Fu,g

t = F y,0
t ∨ Fu,0

t . (8.2.3)

In this equation F y,0
t is the σ-algebra obtained if we use the control law u = 0. In other words, it does

not matter which control law we use, we always get the same information from the system.

So what does this mean? It means that we can simply use a Kalman filter to estimate the state. And
this works for every control law g which we might use. We then get a state estimate x̂g(t). The Kalman
filter used is

x̂g(t + 1) = A(t)x̂g(t) + B(t)ug(t) + K(t) (y(t)− C(t)x̂g(t)−D(t)ug(t)) , (8.2.4)
I11(t) = A(t)Qf (t)A(t)T + M(t)Qv(t)M(t)T , (8.2.5)
I12(t) = A(t)Qf (t)C(t)T + M(t)Qv(t)N(t)T , (8.2.6)
I22(t) = C(t)Qf (t)C(t)T + N(t)Qv(t)N(t)T , (8.2.7)

Qf (t + 1) = I11(t)− I12(t)I−1
22 (t)I12(t)T , (8.2.8)

K(t) = I12(t)I−1
22 (t). (8.2.9)

Now all that is left to do is find a good control law g. And for that, we can simply use the state estimate
x̂.

8.2.2 Finding the value function

In this problem, we are using Gaussian stochastic parameters. So, given the mean m and the variance
Q, these Gaussian parameters have a PDF of

G(w;m,Q) =
1√

2π det(Q)
exp

(
−1

2
(m− w)T Q−1(m− w)

)
, (8.2.10)

where w is the variable of the PDF. We need to use this function to find the value function V (t, x) for
our problem. This function is defined recursively. At the final time t1, it can be found using

V (t1, x) =
∫

X

b1(w)G(w;x, Q(t1)) dw. (8.2.11)

The subscript X means we integrate over the entire state space X. To find the value function at earlier
times, we use the recursive relation

V (t, x) = inf
u∈U

(∫
X

b(t, w, u)G(w;x, Q(t)) dw +
∫

X

V (t + 1, w)G(w;A(t)x + B(t)u, Qu(t + 1))
)

.

(8.2.12)
The parameter Qu(t) is the variance matrix obtained at time t + 1 if we choose an input u. Now, for
every control law g ∈ G, we have V (t, x̂g(t)) ≤ J(g, t).

The question remains, how do we find the optimal control law? Given that we are in a time t and an
estimated state x̂, we simply need to select the input u which minimizes the above relation. If, for all
x ∈ X, there is an input u∗ ∈ U which minimizes the above relation, then the map h1(t, x) = u∗ forms
the optimal control law.
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8.3 Special cost functions

8.3.1 The quadratic cost function

Let’s examine some special cases. In fact, let’s examine the quadratic cost function

J(g) = Eg

t1−1∑
s=0

[
xg(s)
ug(s)

]T

L(s)

[
xg(s)
ug(s)

]
+ xg(t1)T L1x

g(t1)

 . (8.3.1)

Here, the matrix L(t) can be split up according to

L(t) =

[
L11(s) L12(s)
L12(s)T L22(s)

]
, (8.3.2)

where it is assumed that L(t) = L(t)T ≥ 0 and L22(t) = L22(t)T > 0. The optimal control law is now
given by

u(t) = F (t)x̂(t), (8.3.3)

where x̂(t) is given by the Kalman filter as defined in equation (8.2.4). The matrix F (t) is recursively
defined as

H11(t) = AT (t)Qc(t)A(t) + L11(t), (8.3.4)
H12(t) = AT (t)Qc(t)B(t) + L12(t), (8.3.5)
H22(t) = BT (t)Qc(t)B(t) + L22(t), (8.3.6)

Qc(t + 1) = H11(t)−H12(t)H−1
22 (t)H12(t)T , (8.3.7)

F (t) = −H−1
22 (t)HT

12(t). (8.3.8)

This solution can be proven using the value function. This function is given by

V (t, x) = xT P (t)x + r(x). (8.3.9)

Here, the function r(x) is recursively defined such that r(t1) = tr(L1Q(t1)) and

r(t) = r(t + 1) + tr(L11Q(t) + Q(t + 1)P (t + 1)) + tr(K(t)I22(t)K(t)T P (t + 1)). (8.3.10)

By the way, tr(.) is the trace function, being the sum of the diagonal elements of the matrix.

8.3.2 Infinite horizon cost functions

Let’s examine a time-invariant system. Previously, there always was some final time t1. What happens
if t1 = ∞? In this case, our cost function will become infinite, which is not convenient. So we need a
different cost function. Options are the discounted quadratic cost function and the infinite-horizon
average quadratic cost function, respectively defined as

Jdc(g) = Eg

 ∞∑
s=0

rs

[
xg(s)
ug(s)

]T

L

[
xg(s)
ug(s)

] , (8.3.11)

Jav(g) = lim
t→∞

1
t
Eg

[xg(s)
ug(s)

]T

L

[
xg(s)
ug(s)

] . (8.3.12)

Another cost function is the minimum variance cost function. It is used when one wants to minimize
the variance of the state. This cost function is defined as

Jmv(g) = lim
t→∞

1
t
Eg

[
t−1∑
s=0

xg(s)T Lxg(s)

]
. (8.3.13)
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8.3.3 Solving the infinite horizon problem

In literature, a certain procedure is often used to solve this problem. However, there is no proof yet that
this procedure actually minimizes the cost functions. But we will discuss it anyway.

The idea is that we simply take the limit case of t →∞ of the previous problem. In this case, Q satisfies
the algebraic Riccati equation of Kalman filtering

Q = AQAT + MV MT − (AQCT + MV NT )(CQCT + NV NT )−1(AQCT + MV NT )T . (8.3.14)

The matrix P satisfies the algebraic Riccati equation of control

P = AT PA + L11 − (AT PB + L12)(BT PB + L22)−1(AT PB + L12)T . (8.3.15)

Using Q and P , we can find the matrices K and F , according to

K = (AQCT + MV NT )(CQCT + NV NT )−1, (8.3.16)
F = (BT PB + L22)(AT PB + L12)T . (8.3.17)

It can now be shown that we have

spec (A−KC) ⊂ Do, spec (A + BF ) ⊂ Do and spec

(
A BF

KC A + BF −KC

)
⊂ Do.

(8.3.18)
The control law which supposedly minimizes the infinite horizon cost functions is

u(t) = Fz(t), with z(t + 1) = Az(t) + Bu(t) + K(y(t)− Cz(t)−Du(t)). (8.3.19)
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