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I Introduction

The course is based on “Analytical Mechanics with an introduction to dynamical systems” by
J.S.Torok, which can be used for background material and exercises.

Laws of Newton

(%
In the second law of Newton momentum is referred to as motion and equals 4 ~, such that

Y F= p——mv

F.=-F.
. The third law yields_’7 ~—/'. All motion is defined with respect to an inertial

= —0

Wz constant and

reference system, so

Relative motion
Zrel :xi+yj+ZI_c

Vg = Xi+ Y]+ zk

a, =Xi+jj+zk

True motion

The position in the xyz-frame with respect to the inertial reference frame can be found using:

Zp :nyz +Zrel
d__dr,. dr di, 4] dk
2p=—zp:i Selzg xitjjrzkex ey —+zo
dt dt dt d dt dt
= Qx + U + a)xyz —rel
From which may be concluded that =tetwx =, such that:
_d__
a, _EQ” =
= Qxyz +wx Vel WX 7_;rel + Qrel

= Exyz ta xtrel + WX (grel + wx Zrel ) + Erel + wx Z_]rel

= Exyz ta xtrcl + WX (Q)X Zrcl ) +2wx Dl + Erel

2wXv,, . . .
Where —=rel js referred to as the Coriolis-acceleration.

Fictious forces

ZF m( a,.+axr, +a)x(a)xr )+2wx2m)

Now ZE -, or My = ZE _Eﬁ”

| Example: double deck




II. Qualitative Analysis

Iy t
Work is defined as W = I F Ldr = I F Lfdt . In a conservative force field a potential can be defined

51 141

such that F = -1V = —a—V[ _a_V ] —a—VK and E=T +V =constant.
ox~ o0y~ 0z
Example
dv , . dv
S T—— =MX  MX + =
dx or dx
X mx+d—Vj = m>'<5(+d—v>'<:£(1m>'(2 +V(x)j 1 2 +V(X)
dx dx dt\ 2 or 2 =constant.

Kinetic energy

Kinetic energy is defined as dT = %V Wdmor T = %IV vdm.

WithV =V, + WX :

T :%J'(v0 + wxr) [y, + wx r)dm:%mvg +V, Da)XJ'rdm+%j(a)x r)wxr)dm

:lm\/g+1aflw
2 2

Inertia Tensor

XX Xy xz
The inertia tensor | =| =1, I, =1, | canbe defined for two specific cases: lo wrt a fixed point
1, —1, 1

1
and Ic wrt the mass center of a body. Now fixed point rotation yields T = Ea)T | ;wand general

motion T :lmvé +1a)TIGa).
2 2

Using principal axes such as symmetry axes gives a diagonal matrix.
For a xy-planar body |, =1, +I| and |, =1,=0.

For a body with at least three symmetry axes in the xy-plane: I,, =1, and |, =0.

vy

Virtual work




II1. Generalised coordinates

Example: Pendulum
s

%

I m

mé + mlgsinﬁ =0

6+ Igsiné? =0

which is conservative!

66 + 63 sing = 2(192 —gcosej =0
| dt\ 2 |

1p_ 9
I

This is however not expressed in the right coordinates and units and therefore can not be energy.

CcOSE =constant.

The generalised coordinates @1,92,...,&]} are defined as gi =q (Xi, Xpyeeir X, ,t) or
X =X @1,92 g ,t) with i =1...Nn and n is the number of degrees of freedom of the system.

Degrees of freedom

The number of degrees of freedom are the number of values that need to be fixed to determine the
state of the system. In general:

» 2D particle: n=2,

* 2D body: n=3,

* 3D particle: n=3,

* 3D body n=6.

N particles or bodies have N [N degrees of freedom.

Holonomic constraints are defined as f @1, q2 yeo .qn) or f @1, q2 yeo .C]n ,t)being constant, such that

Nyt =N

coord's

-Nn

constr's *

This way a body can be interpreted as a collection of particles with fixed relative distances.

Generalized velocities

When X =Xi@1,92..-.9n,t) ' Zaq
I
1 S,
=gmp i =3 ajkdidr + D Bidi +
Now 2 ; ;; k49 Z 395 or T =Ty + Ty + Tp, with

ajr = agk(a,t); B = Bi(a,t); v = 7(% t), such that T = T(a.é.t).

Example: Moving pendulum with spring(no gravity)




Determine X =S+|sin@and y =~ cosB, such that x=$+1cosf0and ¥y = | sin & 6 .
Now T =%m(>‘<2 + y2)=%m((s+l cosgdf +(l sinHé)Z):%m(l 267 + 21 €5COSH + & )awhich s

defined as T,.

Generalized momenta

oT
Furthermore the generalized momentum is defined as P, = —.
i
Example:
1 oT
T ==mX*; p=——=MX (linear momentum)
2 ox

Pendulum: T = %ml 292 . P, = % = ml?6? (angular momentum)

Generalized work

ndof O ndof O ndof 92
. . Z 8{1 B'Thdqj (S.’L‘i = Z a—t(yq]
Defining Fi = Figl + Fiyj + Fi ok with I =1 %% i=1 %I generalized and

ndof

oW =3 F, o1, = Z Q;0q; = Q- 6q
virtual work gives the generalized force Q via im

Example: Pendulum

r =lcosti +1sindj; F =mgi
or, = —1siné@6i +1 costbd |
O0W = —-mgl sin@ 8, such that Q = —mgl siné.

Q, - (F gn + Ry, gyz L F, gzl)
The generalized force can also be determined directly =1 9 9/ or for a
, oV
conservative system Q; = ———.
aq;

Example: Moving pendulum with spring(with gravity)
In handwritten notes!

IV. Lagrangian Dynamics

Fi=- d£t)i only if p =mF,

: 0% _ 0% _ 0%
Because X = =x(g,q)# f(t) it can be derived that =—, such that:
ol at ,zla X(aa) o, 9q,

Example: Rotating spring




. . . dor _oT _, . .
Finally, it can be said that ——— — —— = Q, with k all degrees of freedom. This gives a set of
dt g, 0q,
differential equations that describe the behaviour of the system, the equations of motion. This method
is faster than Newtonian mechanics.

Q can be found via Qj = —— for a conservative system and else via virtual work.
i

Example: Rotating spring

In practical cases of conservative systems the potential V is only a function of position, such that

6—Y:O
0d ,
doT oT _ oV

dtog, dg, aq,

dfadT _ov | _|oT _oV -0
dt{ ogq; aq, dq; 0q;

%(aiqj(T —v)j —(aiq(T —V)j =0

J

Defining the Lagrangian L=T-V this can be written as
dfaL |_a_g
dt{ oq; aq;

, dfoL) oL _ .
And for a non-conservative system —| — |——— = Qj
dt{ og; ) 0q;

V.

VI. Ignorables and constraints

When L = L(q) # L(Q) the general coordinate q is ignorable and Z—L =0, which yields i(ij =0

q dt{ aq;
or a—_=constant= Cq . The generalised momentum of q is the integral of motion, because
g
oL _oT-V _ 0T _
oq 09 oq

| Example: Satellite




n
The Rothian is defined as R= Z C{ — L and is equivalent to the Lagrangian without ignorables,

i=n-m+1
, OR_ oL OR_ oL , oR oR
because for non-ignorables: — = ———and — = ——, for ignorables: — =0and — =0. Now
0 99 dq dq oq oq
: . , d O0R OR
the Lagrangian equation for non-ignorables becomes: ——————=
dt g, dq,
In practice one can find the equations of motion by:
1. Setting up the Lagrangian
2. Determining the ignorable(s)
L .
3. Find integrals of motion: —— = qugn = G
ign
n
4. NowR= > Cqg-L.
i=n-m+1
. . dodR OR
5. Set up the Rothian equation: ——————=0
dt 9g, 0q,

Example: Satellite
1+2:

1 /. ALUL
The same way as in the previous example the Lagrangian L = E m(r 2-r 292) +——, such that @is the
r
ignorable coordinate.

3:
a—l‘.:erG:CH:H?: ng
e mr
4:
_ ~ _ Cg .2 2'2 km ng 1 2 2 92 km
R—CBH—L—CBF——m(r +r 0)—T—mr2——m re+r 27 |
2
ng_lmrz_k_m
2nmr 2 r
5:
oR ,
—=—mr
or
dR__ .
dt or

OR__2C,"  km

o 2mr® r?
2 2
doR_OR__ . Gl km_o . G Kk

dt of or mé merd r?




Jacobi energy integral

m-n R
The Jacobi energy integral is defined as h = R- Z 0, — , where the second term represents the
k1 00

non-ignorable coordinates.

Example: Satellite

With the Rothian as defined in the previous example, the Jacobi energy integral
oR,_CP 1 ., km_ ., C? 3 ., km

h=R-—r=—f -—mf’~——-mr’=—2 -,
o  2mr® 2 r w2 r

Steady motion

- o o o dfaL) R _
A motion is steady (constant in time) when all ¢, =0and P, = a E =0, such that a =0.
k k

Example: Satellite

r=0

d(dL . (Speed and acceleration both are zero)
pp=—|—|=mi"=0

dt\ or
oR
= O
or
. , - G, .
t = Omeans that r is constant and thus that @ = > =constant, more specific:

mr
2 2 2p\?

OR_ 2C2 km km_cz2 _(m*6) . . [k
— =zt —5= 3= 3 =mréor 8= -3 -
or 2mre r re mr mr r

Raleigh dissipation function
For a non-conservative system dissipative forces like F, = —C,X, F, =—C Yand F, =—C,Z may play

a role. Those can be taken into account via the Raleigh dissipation function:

1, . . . oD
= 5 (CXX2 + ny2 + CZZZ) .Now Q= —?, such that via virtual work the Lagrangian equation for
q

d ( oL j oL D _ .
k number of freedom becomes: —| — |— +—=Q,.
dt\od, ) 0q, 0q




Lagrange multipliers

For a system with n variables ({ q... qn} ), m constraints ( f ]- (C]1 .. qn) =0) introduce reaction forces

of of of
R=A0f (=41 [— — —j for the 3D-case) perpendicular to f . The Lagrangian multiplier A is

ox o9y o0z
an extra unknown and can be used to model contact between two flexible bodies.
. . . dfoL) oL _& . o,
Via virtual work the Lagrangian equation now becomes: —| — |[——— =) A i
oG, ) 0dq = 0q,

dt

Example: Pendulum (with gravity)

1 4. :
From earlier problems it is known that L = E m(r 2y 292) +mgr cos@ (no ignorables!)

The constraint in this caset =| or f (r) =r-|=0.
d(a) oo

“dtlor ) or or
d(aLj oL _ . of

2 S| & -2 8
dt\oé) 06 06

3. f(r)=0

1. mi —nmré? -mgcosd = A
. 2mre@+mr?6+mgr sind= 0
.r=1=0

L N

Equation 3 yields r=1, =0 and [ =0, such that:
1. -ml&*—mgcosf = A

2. m28+mgl sin@ = Oor 6?+|gsin6?= 0.

VII. Dynamic systems

A first order differential equation can describe a dynamical system like: XxX=F (X,t) with X(O) =X%-
X is an equilibrium point when F (X* ,t) = 0. The stability of X can be judged on by a phase
diagram.

By definition X is stable if and only if [J& > OD5(€) >0 |HX0 -X H <= HX t)- X H <& or the

solution x(t) is always inside the area of the initial condition xo around an equilibrium point X .
This represents the effect of a small deviation in initial condition.

Example: pendulum (with gravity)

6 +IgSin9 = Qis a second order differential equation, which can be converted to a first order d.e. via f=w.

Then W= —%Siﬂ@, such that X = [9 a)]T . The system is in equilibrium when X = 0or when 6=0and

=0, which is the fact for @ = £K7Tor when the pendulum is vertical.




Linear dynamic systems
When the function F is strictly linear the system can be described by X = AXwith A constant. The
equilibrium point(s) can once more be found because of X =10.
This yields a solution X(t) = Z k ce™ with Ac=AcC. The solution is stable when:
« A URand A <0,
- ADOCand Re(4)< 0,

e or combinations of those.

Example: Trolley with horizontal spring

I : : k
X+— X =0, which can be converted to a 1 order d.e. with X =Yand Yy =——X.
m m

y

-/ 1 K K
X = S
k :/]2+£:00r/1 == —£=ii 5and { }:cle\/;+cze \/;,thissolutionisstable
-—— =A m V m \'m y

m
because both Eigen values are complex with a zero real part.

X
In an equilibrium point { }=O, which yields x*=0.77??

Linearization

Non-linear dynamic systems can be linearized about equilibrium points by a Taylor expansion:

F(x)=F () +0F (%) (x—X,)

Example: pendulum (with gravity)
=w
w= —%sin@

This systems equilibrium points are 0,0 (1) and 77,0 (II).

Linearization about point I gives:

F(x)=0

DF(XO): & 6X2 = =
oF, OF, —I—gcosé? 0 _|g 0
ox, 0%, %




g g =A° +|g =0 A=+i \/|§, such that A is complex with Re(A) = O thus equilibrium point
I}

I is stable.

Linearization about equilibrium point 1I gives:

01| % Y re-m|° Yre-n
2N —lgcosﬁ 0 {w—o} lg o{ w}
x=%
-A 1
g ) =22 _|g =0 A= i\/lg, such that A is real with one of A >0, thus the equilibrium point I1 is
I
unstable.

In general the stability of any system can be checked by:
1. Setting up the 2nd order differential equation (equation of motion) by one of the methods from
previous chapters (in general via the Lagrangian equation)
Deriving the 1st order system of differential equations
Finding the equilibrium points
Linearizing about those points

SUN S

Analysing the Eigen values.

Example: vertical rod with springand force acting on it
Example: satellite
Elaborations of this example can be found in handwritten notes.

VIII Stability of conservative systems

Sometimes it is hard to set up the Lagrangian equation (kinetic and/or potential energy). Because in a

conservative system the applied forces Q = _0_ and in an equilibrium position  =0and (=0,
ov
a— =0.

Dg=g

Around a maximum of V(q), Q is opposite to the disturbance in q and around a minimum Q is in the
same direction. This means that:

oV

When >0, V(q*) is a minimum and therefore stable.

<0, V(q*) is a maximum and therefore unstable.

a=q

| Example: Pendulum without gravity




V =-mgl cos@;%—v =mglsind=0- €= kﬂ;g—z\g =mgl cosf, which is
q q

> Qand thus stable for@ = +77,+377,+ 517, ..
< 0and thus unstable for 8 =0,+277,+ 417, ..

Example: Bar in triangle

Stability of Lagrangian systems

When all applied forces can be expressed in terms of the generalised potential V,the same procedure
can be used as for conservative systems.

Because the Jacobian energy integral becomes h =T, =T, +V =constant and for equilibrium all =0
(such that T,=0) =T, +V = h=constant.

The effective potential is defined as Vg =V —T;and the equilibrium condition becomes:

vV,
G—Eﬁ =0. Again for a minimum of V the system is stable and for a minimum of V it is unstable.
q
| Examples

IX. Dynamics of rotating bodies: Gemist

X. Lagrangian dynamics

The equations of motion of a solid body are based on its angular velocity, therefore rotational
transformations are needed. Because this transformation of coordinate systems depends on sequence,
the rotation angles about coordinate axes are no suitable general coordinates.

Euler angles
The transformation from X,Y,Z to x,y,z can be performed via the Euler angles @ about the Z-axis,

Babout the X’ axis and {/ about the z axis. There angular velocities are respectively W, = oK,
W, = QQ and @), = K, with @ =precession, @=nutation and {{ =spin. These vectors do obviously

not form an orthogonal basis: W= Wyt taw),.

The actual transformation can be done via matrices or by projection. The latter case yields:
w, =6cogy +¢ sind cog
W, =—@siny + ¢ sind sirny

w, =y +¢cosf
I, 0 Of
_1
NowT—E(a)x w, a)z) 0 I, 0]y,
0 0 I,|\w,




Rotation symmetric bodies

For a body that is rotation symmetric about the z-axis I.=Is (axial moment of inertia) and L=ly=I
1 . : 2
(transverse moment of inertia), such that T = 2 ( I (¢2 sin® @+ 92) +1g (¢ coy +(/I) ) , such

that{/ and @ are ignorable coordinates.

doT aT , , T , , .
Because — —— ——— = Ofor non ignorable coordinates and — = Cq for ignorable coordinates, this
dt 0g dqg 0
results in three expressions. For steady motion 0=0= 0, which yields SiN@=0 or
po Y
(Is—1)cos8

symmetric body.

, the relation between precession and spin for steady motion of an rotation

When Ig<I, 1 =14>0, then: @ >0 - ¢/ > Oevv. Rotation about the Z-axis (spin) causes motion of

the Z-axis itself (precession) in the same direction, this effect is called direct precession.
When Ig>1, 1 =14 <0, then: @ >0 - < Oevv. Rotation about the Z-axis (spin) causes motion of

the Z-axis itself (precession) in the opposite direction, this effect is called retrograde precession.

Rotation non-symmetric bodies

M, =L@ - (1,-1,)ww,
In general for an arbitrary rotating body: M, =1 @, = ( I, -1 X) W, .
M, =1,@,-(1,-1,) 8w,
-1
-y 'z
Without applying any forces (M, =M =M, = 0), this yields _X |
. ) - zl X a)za)x
y
I, =1,
W 0 Ly
This can be rewritten as the linear dynamic system: { X} = * { k } , with its
y I z— l X 0 y
Z
ly
y I, =1,
- w,
I ‘ [, =1, =
eigenvalues via - * =A%~ ( - T)|( = (IJZZ . For stability A should be
zI X wz - Xy
y

purely imaginary, such that (ly—lz)(lz— |X)<O: I, >1,,1,0r I, <I,,l,, the rotation axis should

y
have the largest or smallest moment of inertia.



XI. Functionals

A functional makes a real value from a function, in contrary to a function that makes a real value of a
real value. Finding the function (extremal) that maximizes or minimizes a functional is called calculus
of variations.

X,
Example: The length of an arbitrary path between position a and b S, = J- 1+ y'(X)>dX, which is a

Xa
functional. Minimalizing this one finds the shortest path y(x).
ds
The travel time between position a and b of a particle influenced by gravity can be described by dt =—,
\"
1+y'(x
v=1/2gh =/2gy (X) , such that t,, J' Ly 09"
29y(><

For a function f(x) the extremum X can be found by f '(X*) = 0. Then for a minimum

f (X* +dx) > f(X), for every dx.
This way the extremal y (X) can be determined by variation of y(x). Y(X) = y (X) + £n(X), with the
arbitrary funct10n/7(X) . For now /7(Xa) —/7(Xb) =0.

Defining the functional | (y) , 'Y isaminimum of I when | (y* + é’l]) > | (y* ) for any 77(X) .

Now | (y* +€/]) =1 (é’) for a given /7(X) . The extremal can be found for% I (E) =0.

Euler-Lagrange equation

X
Because x is integrated, y* is the anwer and /7(X) is fixed. | (y) = .[ F (X, A% ')dX can be written as

Xa

I (y* +£/7)=TF(X, y +£/7,y*+£/7')dx= 1(g).

*a
chaln rule’? %
d IaFay aFade J-a_F,7+a_F,7,dX
de 5 dy 0 0y' o0& ady oy’
artial integration ooox%
partalinteg Ia—FUdX {GFO} _.[ia_l:ﬂdx
5, Oy oy | dxoy
%(oF d 6Fj (OF} oF
=] naxF —= | RG) = = | ROG)
Xa(6y dx ay' ay . oy .
Xy
J-(aF —ia—FjﬂdX Ofor all/}.
Loy dxoy’
oOF doF _
The fundamental lemma now yields — ———— =0, which is called the Euler-Lagrange equation.
dy dxoy'

| Example: sa, ta, min resistance




XII. Variational operator

Now Y(X) = y* (X)+en(x) = y* (X)+ 5)7 (X) , where O is the variational operator.
This yields | (Yy+0Y) =1(y) + 9l , such that y is an extremal when Ol =0.

Ol is the difference in shape of function y and thus the variation of a function, comparable to the
differential dx, which is the variation of a x-value.

% chain rule®s
81 = [ F(xy,y)ox = j(‘(’f sy+9F 5y ]dx
5% 5, Loy oy
partial mtegratlor?(b %
= ja—dedx+—5y jia—Féydx
oy .

Xa Xa

%, ;
= [[ L - L sy 21 gypy ™ -
’ oy " dx ay oy . ay'|,
for every OY, such that OF _doF _ =0

dy dxoay’
OY(X,) = Omeans that Y(X,) has a fixed value Y,, which is called an essential boundary condition.
Non-fixed boundaries lead to natural boundary conditions:

Y(X) =Y, 0Y(x)=0
y(%,)=? 0y(,)#0

®(OF d oF oF
j Sydx +—
s\ gy dx ay oy'

Syxy =0

oy (X, )—6—5 5}@(;5:0 =Ofor every OY(X,) yields the

X

a

%o

=0.

natural boundary condition —

%

Example: Shortest distance

X
S, = J' 1+ y?dx

Xa

oF vy
ay' «/1+
OF| _  y'(%)

; - Yy'(%)=0
oy, 1+yix)?

In part X1 it is shown that Euler-Lagrange equation yields a straight line and the natural boundary condition
now yields the slope being 0.

Generalisation

It can be shown that in general for F(X,Y,Y",... ,y‘”’ )the Euler-Lagrange equation

oF . d OF _
becomesa—y+z_1:( ) 0 ay(i) =




The function y can also depend on more variables. For example Y = Y(X,t), such
ty X,

that | () =” F(Xt,Y,Y,,Y, )dxdt, with y, —?andyt _%
t, X,

Now
th %
ol = ”{OF +—5yx+g—F5yxjdxdt
y

partial mtegrauor{b Xb

—5ydxdt+ —5y dt - ia—Fé'ydxdt
J I I I I3

j —5y dx tfxf——yaydxdt
_BW%(9F 9 OF 4 oF voF _|°
_”(ay oy EWJJ dxdt+j—5yxadt+x[a—mdytadx 0

oF 0 oF _00F .
for every OY, yields — = 0 and boundary conditions.

oy o ayX ot ayt

Example: F(X,t,U,,U,,U,, )can be found in sample problems on Blackboard.

XIII. Hamilton’s principle
For a path in space I = (t), the force working along this path is F(r) =mf’
and OW = F [dr = mi"[Dr . (Note: vector notation is dropped)

Use%(mr' ) = i’ B +my (Bt = v’ B +%m§(r‘ 1) :éW+%mé'(v2) = OW + T

or mf Dﬁr

jawm‘r

reg,)=r, o(r,)=0 b
- yields | OW +JT =0.
rt,)=r, o(,)=0 {[

For conservative forces Q = _?3_\(; and OW =Qoq = —z—\é 0Qq =-0V , such that

Defining the essential boundary conditions

t, t t
[(oT-0ov)dt=[5(T-V)dt=[dLdt=0
ty ty ty
t
Now for | () = j Ldt, which is defined as action, Ol = Qgives the minimum for the motion of a
ta

Lagrangian system. This is called Hamilton’s principle.

Example: beam with distributed properties




ty
For dissipative forces Ol = j oL+ z Q™dqdt =0, where Q™d¢g, = OW™ is virtual work.

ta
In statics the system is steady in time and T =0, such that &V =0, which is called the principle of
stationary potential energy.

Example: Aero-elasticity/wing

XIV. Ritz method

Earlier solutions of the Euler-Lagrange equations and natural boundary conditions were mainly
differential equations; therefore an approximation can be used, called Ritz-method.

Assume an approximate solution as a linear combination of a finite number of linearly independent

n
functions: Y(X) = z ah (X). The coefficients & are the degrees of freedom and the functions h (X) the
i=1

n
coordinate- or shape functions. Translate the boundary conditions to Z ah (Xa) =Y,and
i=1
n

Y.ah (%)= Y-

i=1

Example:
1

Try to find the solution of | (Yy) = j y* + y'dx, with y(0)=y(@)=1
0

h(X) =L h,(x) = x;hy(x) = X2
y=ah+ah,+ah,=a+px+yx’

|(9) = [+ = ax=] (a+ Bx+ ) + (527" dx=0(a.5.9)

The functional now became a function and has a minimum when all partial derivatives are zero:

aﬁ:o;aﬁzo;aﬁ: 0.
da 9B oy

The boundary conditions are Y(0)=a +0+ 0=1- a = land )7(1) —a+f+y=1- pF=-y.
1

Now | (V) =I(1+,6’x—,6’x2)2+(,5’—2,6’x)2 dx = 1+%,8+;_é,82 =0 ()
0

ob 1 22 -5 . .
—==+—LF=0- (= E , such that the approximate solution becomes

o 3 30
5 5
V=a+Bx+yx’=1-—x+—x°
y P px 11 11
sinh(x)+ sinh(t x )

This is only 0.05% of w.r.t. the real solution Y(X) = -
sinh(1)




Ritz method is commonly used in computerized computational mechanics like finite element method,
using non-continuous shape functions are chosen.

The choice of shape functions is rather arbitrarily, as long as they are linear independent:
{\_/1,...,yn} is linear independent = aV,+...+aVv,=0=a=...=a,=0

For computational reasons polynomials should be chosen.

| Example: Dynamics of a beam




