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1 Vectors and Co-ordinate Systems

2While the basics of vectors are described in the revision notes, here we will discuss
some of the more complex aspects of vectors, particularly those that are applied to the
subjects explored as part of this course.

1.1 Vectors

1.1.1 Scalars and Vectors
3There are quantities in physics that are determined uniquely by just one number. These

are called scalars. These include:

• Mass
• Temperature
• Speed

4There are others that need more than one number to be fully described: a magnitude
and a direction. For instance, in one dimensional motion, velocity has a certain mag-
nitude, which is the speed, but you also have to know which direction it goes. Examples
of vectors are:

• Displacement
• Velocity
• Acceleration
• Force

A vector has a length and a direction, and is normally represented graphically with
an arrow (−→). Its length indicates the magnitude. If you view a vector head on, it is
drawn as a dot within a circle (�), whereas viewing a vector from behind, it is drawn
as a cross within a circle (⊕).

1.1.2 Vector Notation
5Vector quantities are designated in boldface in text books (and in this text) and un-

derlined type or with an arrow over the letter in hand-written work. For example a, a
or −→a denotes an acceleration vector, with v, v or −→v signifying a velocity vector.

1.1.3 Vector Addition

Vector addition is given in more detail in the revision notes, but in summary there are
6
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essentially two methods: the triangle method of addition; and the parallelogram method
of addition. Both are shown in Figure 1.1 with (a) showing the triangular method of
addition, and (b) the parallelogram method. In both cases, A and B are displacement
vectors, and when added, A + B = R, the resultant vector R is the same.

A B

R

A

B
R

(a) (b)

Figure 1.1: Vector addition — graphical method

7 A negative vector is a vector with the same length (the same magnitude) put pointing
in the opposite direction. As such:

A + (−A) = 0

1.1.4 Vector Decomposition

We have seen that the sum of more than one vector can be described by one resultant
vector. Similarly, we can decompose one vector in to the sum of others.

8 Consider vector A in three-dimensional space as shown in Figure 1.2, which con-
nects the origin with point P.

x

y

z

P

Ax

Ay

Az

A

θ

φ

Figure 1.2: Vector A in three-dimensional space.

The projection of the vector on the x, y and z axes results in the numbers Ax, Ay
and Az. These values form the basis of the decomposition.
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1 Vectors and Co-ordinate Systems

Unit Vectors
9Unit vectors are special vectors that are always pointing in the direction of the three

axes and have a length of one. We denote the unit vectors as i for the x direction, j for
the y direction and k for the z direction. (You may also see these denoted as x̂, ŷ and
ẑ.) These unit vectors are shown in Figure 1.3.

x

y

z

P

Ax

Ay

Az

A

θ

φ

k

i
j

Figure 1.3: Vector A in three-dimensional space with unit vectors identified.

10We can now rewrite vector A in terms of the three components that we have:

A = Axi +Ayj +Azk

The three terms, Axi, Ayj and Azk are vectors with magnitudes Ax, Ay and Az lying
along the three axes x, y and z respectively. Vector A is identical to the sum of these
vectors.

Vector Magnitude and Direction

11The magnitude of vector A is:

|A| =
√
A2
x +A2

y +A2
z

The magnitude of a vector, by definition, is always positive.
The angles θ and ϕ can be determined from trigonometry. From inspection:

θ = cos−1
Az
|A|

ϕ = tan−1
Ay
Ax

12If we know the angles and the magnitude of A, then the values of Ax, Ay and Az can
be determined as below (again, from basic trigonometry):

Ax = |A| sin θ cosϕ Ay = |A| sin θ sinϕ Az = |A| cos θ

7
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Examples

1. Using A as defined earlier, we are given the following:

A = 3i− 5j + 6k

Determine the magnitude, θ and ϕ of vector A.

2. A small spacecraft is launched from a spaceship. The x, y and z -axes are defined
relative to the spaceship, with the origin 0 at the spaceship. Radar emitted and
received by the spaceship is used to track the small spacecraft. The parameters
defined earlier (θ, ϕ and A) are used in this example.
If the small spacecraft travels 3 km from the spaceship along θ = 70◦ , ϕ = 35◦ to
point P , give the position of the small space craft A in decomposed form.

1.1.5 Relative and Absolute Displacement

13 Consider the positions of two points A and B relative to a third point, O where O is the
origin of a co-ordinate system as shown in Figure 1.4.
The subscripts indicate the direction of the displacement:

8



1 Vectors and Co-ordinate Systems

O

A

B
rAO

rBO

rBA

Figure 1.4: Displacement of A and B relative to the origin, O

• rAO is the vector giving the displacement of A relative to O
• rBO is the vector giving the displacement of B relative to O
• rBA is the vector giving the displacement of B relative to A

As O is a fixed point (for example on the Earth’s surface) rAO and rBO are absolute
displacements, and the O subscript is often neglected resulting in rA and rB. The vector
rBA is conversely a relative displacement.

14Simple vector addition gives:
rB = rA + rAB

Rearranging rBA can be found by rearranging:

rBA = rB − rA

Decomposing these equations in three dimensions results in the following relationship:

(rBA)xi + (rBA)yj + (rBA)zk = [(rB)xi + (rB)yj + (rB)zk]−
[(rA)xi + (rA)yj + (rA)zk]

By grouping the i, j and k terms together, they can be treated individually:

(rBA)x = (rB)x − (rA)x

(rBA)y = (rB)y − (rA)y

(rBA)z = (rB)z − (rA)z

1.2 Vector Multiplication

15There are two ways to multiply vectors:
• Dot product (or scalar product)
• Cross product (or vector product)

1.2.1 Dot Product
16The Dot Product is represented by a dot between the vectors. For example:

A ·B

There are two methods of calculating the dot product: an analytical method and a
geometrical method.

9
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Dot Product: Analytical Method

17 In three dimensional space, this is defined as:

A ·B = AxBx +AyBy +AzBz

The resultant is a scalar — it no longer has a direction. The i coefficients are multiplied
together, the j coefficients are multiplied together and the k coefficients are multiplied
together.

Dot Product: Geometrical Method

An alternative way to find a dot product may be more convenient depending on what
you know. Let assume you know the length of A and B, and you know the angle
between the two, as shown in Figure 1.5(a).

18

A

B

α

A

B

α

|B|cos α

(a) (b)

Figure 1.5: Vector multiplication — dot product

By projecting vector B on to vector A , as shown in Figure 1.5(b), the length of the
projection is the magnitude of vector B multiplied by cosα. The dot product is then
defined as:

A ·B = |A||B| cosα

The two answers are completely identical. Depending on how the problem is presen-
ted, one method may be faster than the other.
Depending on the value for α, it can be seen that the dot product of two vectors can

be either negative or positive, or indeed equal to zero. As stated earlier, the magnitudes
of vectors A and B are always positive, so the sign of the dot product is determined
by the the cosine of α. If the vectors are perpendicular to each other, then the dot
product is zero. This will be revisited when we deal with the subject of work; we can
have negative and positive work, and work and energy deal with dot products.

Dot Product: Examples

19 As an example, suppose we have A and B. A and B are defined as:

10



1 Vectors and Co-ordinate Systems

A = 3i− 5j + 6k B = 2j

So, the dot product can be found by multiplying the i components together, the j
components together and the k components together. Since the i and k components of
B are zero, the dot product is simply:

A ·B = −5× 2 = −10

Another example: suppose we know that A = i and B = k. These vectors are the
unit vectors perpendicular to each other, and hence, the dot product of A and B is
zero.

1.2.2 Cross Product
20The cross product is represented by a cross between the two vectors:

A×B = C

Unlike the dot product, the resultant is a vector. Again, there are two methods to
determine the cross product.

Cross Product: Analytical Method

21The analytical method involves setting up a matrix and calculating its determinant:

A×B = C =

∣∣∣∣∣∣
i j k
Ax Ay Az
Bx By Bz

∣∣∣∣∣∣
Using Sarrus’ rule, we can see that the determinant is

C = (AyBz −AzBy)i + (AzBx −AxBz)j + (AxBy −AyBx)k

22So we can say:

AyBz −AzBy = Cx → The x component of C
AzBx −AxBz = Cy → The y component of C
AxBy −AyBx = Cz → The z component of C

So we can also write:

C = Cxi + Cyj + Czk

11
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A

B

α

Figure 1.6: Vector multiplication — cross product

Cross Product: Geometrical Method

Again, imagine two vectors set up as shown in Figure 1.6.
23 The cross product is defined as:

C = A×B = |A||B| sinα

24 It is clear to see that the cross product is zero if the angle is 0◦ or 180◦. Again, sinα
can be greater or less than zero, making the magnitude of C positive or negative. As
can be seen however, this equation only results in the magnitude.
To determine the direction of the cross product, we employ the right hand rule –

see section 1.3.
Going back to Figure 1.6, you take A, because it is first mentioned, and you rotate

A over the shortest possible angle to B. This is in the clockwise direction. Imagine
you had a cork screw, and you rotated it clockwise, the cork screw goes into the cork.
In this example, the direction of C is into the page, you will see the tail of the vector
represented by ⊕.

25 The direction of a cross product is always perpendicular to A and B. It can either
go out of the page or into the page.
Similarly, for B×A, the shortest possible angle between the two vectors requires you

to go in the anti-clockwise direction, so the direction of the resultant vector is out of
the page, so we see the head of the vector, represented by �. (Remember, if you turned
a corkscrew anti-clockwise, it would come out of the cork).
So we can say that:

A×B = −B×A

The cross product is therefore not commutative:

A×B 6= B×A

We will encounter cross products when we deal with torques and angular momentum.

12



1 Vectors and Co-ordinate Systems

1.3 Right-Handed Co-ordinate System

1.3.1 Special Features of Your Right Hand

26To use the right-hand rule, hold up the thumb, index and middle finger. If the index
finger represents A and the middle finger, which is perpendicular to the index finger,
represents B, then the direction of the cross product is the direction of the thumb. This
is shown in Figure 1.7.

A × B

A

B

Figure 1.7: Right hand rule when using cross product

27As an example, suppose we say that:

A = i and B = j

This means that:

Ax = 1 Ay = 0 Az = 0

Bx = 0 By = 1 Bz = 0

Clearly, these vectors are perpendicular to each other.
Determine:

A×B

We could apply the recipe given above in the section on Cross Product, but it is much
simpler to go to the co-ordinate axes we defined earlier (Figures 1.2 and 1.3), and shown
in Figure 1.8.

28Applying the right-hand-rule we can see that the direction of the resultant vector is
in the positive z direction. So:

A×B = k

It is no coincidence that the axes were set up in the way that they were. This
arrangement of axes is called the right-handed co-ordinate system, and will be
used throughout this course.

29

13



© Department of Engineering Design and Mathematics, UWE Bristol

z

x

y x

y

z

k

i
j

(a) (b)

Figure 1.8: Right-handed co-ordinate system

By definition, a right-handed co-ordinate system one in which:

i× j = k

So, when you are working on problems involving torques and angular momentum,
among others, it is essential that you draw yourself a set of right-handed co-ordinate
system where i× j = k. If you set up a system where i× j = −k, you will get incorrect
answers, and the cross product calculations will not work.

1.3.2 Particle Motion in 3-Dimensions
30 Now we come to the section where this vector theory is applied to dynamics. Let us

again revisit our co-ordinate system, with point P in three-dimensional space.

x

y

z

P

xt

yt

zt

rt

k

i
j

Figure 1.9: Point P in three-dimensional space

In Figure 1.9, the position of point P is defined as the vector rt. The subscript t
indicates that it is a vector that varies with time. Its position on each axis can be found
by decomposing the vector:

31
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1 Vectors and Co-ordinate Systems

rt = xti + ytj + ztk (1.1)

where xt, yt and zt are the projections of the vector rt on the three axes of the
right-handed co-ordinate system.

32We know that the velocity of a particle is the first derivative of its position, so we can
determine an equation for the velocity of vector rt:

vt =
drt
dt

= ẋti + ẏtj + żtk (1.2)

where we use the dot notation to represent the derivative with respect to time (see
the revision notes).
Likewise, knowing that acceleration is the first derivative of its velocity (the second

derivative of its position), the acceleration can be found:

at =
dvt
dt

= ẍti + ÿtj + z̈tk (1.3)

Equations 1.1, 1.2 and 1.3 completely describe the motion of point P. The first terms
in the equation describe the motion in the x direction, the second terms are the motion in
the y direction and the third terms are the motion in the z direction. In other words, the
three-dimensional motion has now been separated into three one-dimensional motions.
Choosing just the first terms describes the behaviour only along the x axis.
Why does this help? Well, most motions that we will be dealing with in this level 1

course will involve motion in one or two dimensions. An example is plotting the traject-
ory of a projectile—it is only necessary to analyse these problems in two dimensions.
The problems we face in dynamics can often be decomposed into x and y components,
each of which can be analysed separately, but only together describe the motion of a
particle.

Summary

Vectors
33Vectors are used to describe many quantities in physics that need a magnitude and a

direction to be fully described. These are denoted with boldface text A in textbooks,
or with an overhead arrow

−→
A in handwritten work.

34Vector decomposition is required to describe one vector as the sum of others. We use
a co-ordinate system with unit vectors to do this:

A = Axi +Ayj +Azk

35Magnitude and direction are given by:

15
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|A| =
√
A2
x +A2

y +A2
z

θ = cos−1
Az
|A|

ϕ = tan−1
Ay
Ax

Multiplication

Dot Product
36 The Dot Product is denoted as A ·B. This is equal to:

A ·B = AxBx +AyBy +AzBz

A ·B = |A||B| cosα

where α is the angle between vectors A and B. The resultant value is a scalar (it has
no direction).
The dot product is used when dealing with work and energy.

Cross Product
37 The Cross product is denoted as A×B. This is equal to:

A×B = (AyBz −AzBy)i + (AzBx −AxBz)j + (AxBy −AyBx)k

A×B = |A||B| sinα

where α is the angle between vectors A and B. The resultant value is a vector, whose
direction is perpendicular to A and B. If moving A to B requires a clockwise rotation,
the direction is into the page, and follows the right-hand or corkscrew rule.
The cross product is used when dealing with torques and angular momentum.

Right-Handed Co-ordinate System

38 The Right-Handed Co-ordinate System is used throughout this course. This co-ordinate
system is one in which:

i× j = k

To help remember the direction of the axis, the right hand can be used.
39 When using the right-handed co-ordinate system, the motion of a particle in 3-

dimensions can be described by three equations:

16



1 Vectors and Co-ordinate Systems

rt = xti + ytj + ztk

vt =
drt
dt

= ẋti + ẏtj + żtk

at =
dvt
dt

= ẍti + ÿtj + z̈tk

Each of these equations separate the 3-dimensional motion into three one-dimensional
motions by vector decomposition. Most problems in this course will be based in only
one or two dimensions, and only one set of terms will be required to solve motion in a
single dimension.

17
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Exercises

1. Two cars (A and B) are driven on a disused aerodrome. The x and y axes are
defined to be aligned with the East direction and the North direction respectively
and with the origin at the control tower. Note, this is a two dimension problem
so the z axis (and the vector k) is not needed. Use r as the position vector and
the angle θ as the angle of r measuring anti-clockwise from the x axis. Remember
vector r = rxi + ryj
Remember from the revision notes that in two dimensions the magnitude of a
vector is:

|r| =
√
r2x + r2y

and the direction is:
θ = tan−1

ry
rx

Draw vector diagrams and answer the following questions
a) i. Car A is driven 500m due east from the control tower. Write rA in rxi+ryj

form.
ii. Car B is driven 300m due west from the control tower. Write rB in

rxi + ryj form. What is rBA (the vector describing the position of car B
relative to car A).

b) i. Car A is driven 500m due east and the 300m due north from the control
tower. What is rA and rxi + ryj form? What is the magnitude and
direction of rA?

ii. If Car B is now driven 300m due north and 400m due west from the
control tower, what is rB in 4 form? What is the magnitude and direction
of rB? What is rBA in rxi + ryj form?

2. A small spacecraft is launched from a spaceship. The x, y and z -axes are defined
relative to the spaceship, with the origin 0 at the spaceship. Radar emitted and
received by the spaceship is used to track the small spacecraft. The parameters
defined earlier (θ, ϕ and A) are used in this example.
a) If the small spacecraft travels 3 km from the spaceship along θ = 70◦ , ϕ = 35◦

to point A, give the position of the small space craft rA in rA in rxi+ryj+rzk
form.

b) If the small craft travels 5 km from point A along θ = 120◦ and ϕ = 10◦ to
point B:
i. Give the position of B relative to A in rxi + ryj + rzk form.
ii. Find the absolute position of point B (the displacement relative to the

origin) of point B (rB). Express your answer in rxi + ryj + rzk form.

18



1 Vectors and Co-ordinate Systems

3. Dot and Cross Products. If:
• A = 3i + 2j− 3k
• B = i + 3j + 3k
• C = i
• D = j

Calculate:
a) A ·B
b) A ·C
c) C ·D
d) A×B
e) B×A
f) C×D
g) D×C

19
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2 Newton’s Laws and Free-Body Diagrams

2Newtonian mechanics forms the basis of this course. Here we will discuss Newton’s
Laws, and the use of Free Body Diagrams to represent the forces acting on a system.

2.1 Newton’s Laws
3Sir Isaac Newton (Figure 2.1) is considered by many to one

Figure 2.1: Newton

of the most influential people in human history, and his book
Principia published in 1687 is one of the most significant sci-
entific texts. In it, Newton describes universal gravitation and
of particular interest to us the three laws of motion which define
classical mechanics. This chapter we consider Newton’s laws of
motion and a method of applying them to engineering problems
involving dynamics.
It must be noted that Newtonian mechanics have now been

superseded by quantum mechanics for very small scales of time
and dimensions and by Einstein’s theory of relativity for relative
speeds approaching the speed of light. Despite this, for a wide
range of cases (and certainly for all cases dealt with in this course), Newtonian mechanics
is the method of choice.

2.1.1 Newton’s First Law
4The basis of Newton’s first law actually started earlier in the 17th century by Galileo

Galilei who also studied the motion of objects. He stated that:

A body at rest remains at rest and a body in motion continues to move at
a constant velocity in a straight line unless acted upon by an external force.

It is relatively simple to see that if something is at rest, and no external force is
applied to it, it will continue to remain at rest. But what Galileo discovered was that
if an object is travelling at a certain velocity, there is no force necessary to
keep it travelling at that velocity. There is no obvious terrestrial example of this,
so this was an important discovery. In the real world, drag or friction will eventually
bring most things to rest.

5Newton’s work continued from this and in his words, from Principia states:

Every body perseveres in its state of rest or in uniform motion in a right line
unless it is compelled to change that state by forces impressed upon it.
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It is important that this fundamental law does not hold in all reference frames, for
example in one that is being accelerated.
Imagine you are being accelerated (in a car, for example). Bystanders will see you be-

ing accelerated noticing your change in velocity, so according to the first law, there must
be an external force being applied. You can of course feel this accelerative force. Now
from your reference frame, you can see the bystanders coming towards you apparently
being accelerated in the opposite direction. But if the first law works, the bystanders
would feel an accelerative force, but of course, they do not. Therefore, the first law does
not work for your frame of reference.
Another example is in plane that is accelerating down the runway just before taking

off. If you left something on the floor of the plane, as the plane accelerates this object
which was formally at rest, slides down the floor of the plane to the back row, so it seems
that the object of rest is moving without a force acting on it, seemingly contradicting
Newton’s first law.
The first law only works in an intertial frame of reference, which is a reference frame

in which there are no accelerations of any kind. This is an impossible situation—as the
earth rotates about its axis, there is centripetal acceleration. The earth rotates about
the sun which also results in a centripetal acceleration, and the sun rotates around the
Milky Way which gives an additional centripetal acceleration and so on. So, for any
point in the universe, there is no inertial reference frame.
These centripetal accelerations, which can be measured or calculated, are very small

compared to gravitational acceleration. Therefore, in spite of these accelerations, we
accept that a point on Earth is an approximate inertial reference frame.

• Can Newton’s first law be proven? No, because it is impossible to be sure that
your reference frame is without any accelerations.

• Do we believe in Newton’s first law? Yes we do.
• Why? Because it is consistent within the uncertainties of the measurements of all

experiments that have been done.

2.1.2 Newton’s Second Law

Neglecting gravity for a moment, take the situation given in Figure 2.2.
6

x1
x2

pull
mass

Figure 2.2: Spring accelerating a mass

The term x1 is the relaxed length of the spring. If this spring is extended by a certain
amount to x2, we can imagine that there is a ‘pull’, indicated by the red arrow, applied
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2 Newton’s Laws and Free-Body Diagrams

at the end of the spring attempted to return the spring to its original length. If we
attach mass m1 to the end of the spring we can measure it’s acceleration, a1 when it
is released. If we then attach a different mass of m2 to the end of the spring, we can
measure this acceleration, a2. The ‘pull’ being applied by the spring is the same, and it
is an experimental fact that the product of these can be equated:

m1a1 = m2a2

This product, ma is called a force. (We will discuss the specifics around forces being
applied by a spring later in this course.)

7Newton’s second law states that:

A force action on a body gives it an acceleration which is in the direction of
the force and has a magnitude given by ma.

So, mathematically:

F = ma (2.1)

Equation 2.1 is the probably the most important law in all physics, and certainly one
of the most important in this course. The units of force are [kg · m/s2] which we call 1
Newton (N). Like the first law, the second law only holds in inertial reference frames.

• Can Newton’s second law be proven? No, because it is impossible to be sure that
your reference frame is without any accelerations.

• Do we believe in Newton’s second law? Yes we do.
• Why? Because it is consistent within the uncertainties of the measurements of all

experiments that have been done.

Gravitational Force

8If dealing with the gravitational force of an object, the acceleration in Newton’s second
law is the gravitational acceleration, g = 9.81 m/s2. The gravitational force can there-
fore be written:

Fg = mg (2.2)

which is always directed downwards.
We can see that the gravitation force due to the earth on a particular mass is linearly

proportional with the mass. If the mass is 10 times larger, then the force due to gravity
goes up by a factor of 10.
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2.1.3 Newton’s Third Law
9 Newton’s third law states that:

If one object exerts a force on another, the other exerts the same in opposite
direction on the one.

This can be usefully summarised as:

action = −reaction

where the minus sign indicates that it opposes.
So, if you are sitting down, you are applying a force on the seat due to gravity, and

at the same time, the seat is applying a force with the same magnitude on you. This
opposing forces is often termed a contact force.
Let’s look at a simple example. We have two masses, m1 = 5 kg and m2 = 15 kg, as

shown in Figure 2.3. There is a force, F which has a magnitude of 20Newtons. Again,
we neglect gravity.

10

m1 m2F

Figure 2.3: 3rd Law Example

Newton’s second law states:

F = ma = (m1 +m2)a

a =
m1 +m2

F
=

5 + 15

20
= 1 m/s2

While the system accelerates at 1 m/s2, m1 is applying a force to m2, otherwise
m2 would not move. If you single out m2 and draw the forces being applied on it
(Figure 2.4(a)), we have force the m1 exerts on m2, which we call F12.

11

m2F12
F21m1F

(a) (b)

Figure 2.4: Forces applied to m2 (a) and m1 (b)
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2 Newton’s Laws and Free-Body Diagrams

For m2, Newton’s second law states that:

F12 = m2a = (15)(1) = 15 N

Now, drawing the same sort of figure for m1, which experiences the initial force F
and it must experience a contact force from m2. If m1 is pushing on m2, then m2 must
be pushing on m1. We call this force F21. We know that m1 is being accelerated.

12For m2 Newton’s second law states that:

F + F21 = m1a → F21 = m1a− F = (5)(1)− 20 = −15N

which is equal and opposite to F12. The mass m1 is pushing on m2 with 15N, and m2

is pushing back on m1 with 15N. This is consistent with Newton’s 3rd law.
Was this simple example a proof? No.
• Can Newton’s third law be proven? No.
• Do we believe in Newton’s third law? Yes we do.
• Why? Because it is consistent within the uncertainties of the measurements of all

experiments that have been done.

2.2 Free-Body Diagrams

2.2.1 Particles and Rigid Bodies

13In mechanics, real bodies (e.g. planets, cars, planes, tables, crates etc.) are represented
or modelled using certain idealisations which simplify application of the relevant theory.
We refer to only two such models: particles and rigid bodies.

Particle

A particle has a mass but a size or shape that can be neglected. For example, the size
of an aircraft is insignificant when compared to the size of the earth and therefore the
aircraft can be modelled as a particle when studying its three-dimensional motion in
space.

Rigid Body

A rigid body represents the next level of sophistication after the particle. A rigid
body is a collection of particles which has a size or shape but this size or shape cannot
change. In other words, when a body is modelled as a rigid body, we assume that any
deformations (changes in shape) are relatively small and can be neglected. For example,
the actual deformations occurring in most structures and machines are relatively small
so that the rigid body assumption is suitable in most cases.
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2.2.2 Equation of Motion for a Particle

14 When a system of forces acts on a particle, the Newton’s second law may be written in
the form: ∑

F = ma (2.3)

where
∑

F is the sum of all the external forces acting on the particle.
Successful application of equation 2.3 requires a complete specification of all the known

and unknown external forces that act on the object. The best way to account for these
is to draw the object’s Free-Body Diagram: a sketch of the object free from its
surroundings shown all the external forces that act on it.
In dynamics problems, since the resultant of these external forces produces the vector

ma, this can be indicated in the free-body diagram. Alternatively a separate Kinetic
Diagram is often used to represent graphically the magnitude and direction of the
vector ma. In other words:

Free-Body Diagram = Kinetic Diagram

which is equivalent to equation 2.3.

2.2.3 Equations of Motion for a Rigid Body

15 Since rigid bodies have a definite size or shape, their motion is governed by both trans-
lational and rotational quantities. The translational equation of motion for the centre
of mass of a rigid body is basically equation∑

F = maG (2.4)

where maG is the body’s mass multiplied by the acceleration of its mass centre G.
The rotational equation of motion for a rigid body is given by:∑

MG = IGα (2.5)

which states that the sum of the applied couple moments and moments of all the
external forces computed about a body’s mass centre G is equal to the product of the
moment of inertia of the body about an axis passing through G (often referred to as
IG) and the body’s angular acceleration, α.
Alternatively, equation 2.5 can be re-written in the more general form as:∑

MP =
∑

(Mk)P (2.6)

Here,
∑

MP represents the sum of the applied couple moments and the external mo-
ments taken about a general point P and

∑
(Mk)P represents the sum of the kinetic

moments about P, in other words, the sum of IGα and the moments generated by the
components of the vectors maG about the point P .
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2 Newton’s Laws and Free-Body Diagrams

When applying the equations of motion, one should always draw a free-body diagram
in order to account for the terms involved in

∑
F,
∑

MG and
∑

MP . The kinetic
diagram is also useful in that it accounts graphically for the acceleration components
of maG and the term IGα and it is especially convenient when used to determine the
components of maG and the moment terms in

∑
(Mk)P .

2.2.4 Friction
16The force of friction between an object and a surface is related to the application of

Newton’s Third Law. For an object that is in contact with a surface, the object is
subject to the force of gravity on the object following the equation:

Fg = mg

which is directed downwards. As Newton’s 3rd law states, for the object to remain
at rest, an equal but opposite force is applied by the surface to the object. This is
known as the normal force or normal reaction force, often denoted as N or R and
is perpendicular to the friction surface, even if the gravitational force is not acting
perpendicular to the surface.
The friction force is defined as the friction coefficient, denoted by the Greek letter mu

µk multiplied by this normal reaction:

Ff = µkN (2.7)

The coefficient of friction µk has no units.
The subscript k indicates this the coefficient of kinetic or dynamic friction, as this is

the coefficient relating to the object actually moving relative to the surface.
The other coefficient of friction µs is known as the static friction coefficient, which is

the friction associated with acceleration from rest to motion. The equation is the same
as equation 2.7 with µk replaced by µs

There are few points to remember about friction:
• Friction force always opposes motion
• Friction is independent of contact area
• Dynamic friction is less than static friction

2.2.5 Drawing a Free Body Diagram

17The following steps should be followed for drawing a free-body diagram.
1. Select a coordinate system
2. Identify the object you wish to analyse and draw its outline shape
3. Draw all external forces and couple moments* acting on the object and label them.

These will include:
a) Applied loadings
b) Reactions occurring at points of contact with other bodies
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c) The weight of the body (applied at the body’s centre of gravity, G)
d) Frictional forces
e) Indicate the necessary dimensions in order to calculate the moments*

4. The direction of force having a unknown magnitude can be assumed. (Remember,
the magnitude of a vector is always positive, so if the solution yields a negative
result, the minus sign indicates that the vector’s sense is opposite to that which
was originally assumed.)

5. The direction of the acceleration of the body’s mass centre, aG should be estab-
lished and either identified on a kinetic diagram or in the coordinate axes.

The items marked with an asterisk are not necessary if dealing with an object modelled
as a particle.

2.2.6 Free-Body Diagram Example: Particle

The 50 kg crate shown in Figure 2.5 rests on a horizontal plane for which the coefficient
of friction is µk = 0.3. The crate is subjected to a towing fore of magnitude 400N and
moves to the right without tipping over. Draw the free-body and kinetic diagrams of
the crate.

P = 400 N

30°

Figure 2.5: Particle Example

So, following the steps above, the following is the free-body and kinetic diagram of
the crate.
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2 Newton’s Laws and Free-Body Diagrams

We will study how to apply the laws of motion defined above to determine the normal
force N and the acceleration of the crate a in the next lecture.

2.2.7 Free-Body Diagram Example: Rigid Body

The equations of motion 2.4, 2.5 (or 2.6) are used to determine the unknown forces,
moments and acceleration components acting on an object (modelled as a rigid body)
subjected to an unbalanced system of forces and moments. The first step in doing this
again to draw the free-body diagram of the object to identify all of the external forces
and moments acting on it. The procedure for drawing a free-body diagram for a rigid
body is much the same as that for a particle with the main difference being that now,
because the object a size or shape, it can support also eternal couple moments and
moments of external forces.
This example also involves a 50 kg crate. A force of P = 600 N is applied to the crate

as shown in Figure 2.6. The coefficient of kinetic friction, µk = 0.2.

1 m

1 m
P

0.8 m

Figure 2.6: Rigid Body Example

So, following the steps above, the following is the free-body and kinetic diagram of
the crate.

Again, we will study how to apply the laws of motion defined above to determine the
normal force N and the acceleration of the crate a in the next lecture.
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Summary

Newton’s Laws

Newton’s First Law
18 Newton’s First Law:

Every body perseveres in its state of rest or in uniform motion in a right line
unless it is compelled to change that sate by forces impressed upon it.

This is only valid for inertial frames of reference. Earth is an approximate inertial
frame of reference. Despite being unproven, we believe it because it is consistent within
the uncertainties of any measurements we take.

Newton’s Second Law
19 Newton’s Second Law:

A force action on a body gives it an acceleration which is in the direction of
the force and has a magnitude given by ma.

So, mathematically:

F = ma

This is only valid for inertial frames of reference. Earth is an approximate inertial
frame of reference. Despite being unproven, we believe it because it is consistent within
the uncertainties of any measurements we take.
If dealing with gravity, we replace a with g. The gravitational force can be written:

Fg = mg

which is always directed downwards.

Newton’s Third Law
20 Newton’s Third Law:

If one object exerts a force on another, the other exerts the same in opposite
direction on the one.

This can be usefully summarised as:

action = −reaction

where the minus sign indicates that it opposes.
Despite being unproven, we believe it because it is consistent within the uncertainties

of any measurements we take.
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2 Newton’s Laws and Free-Body Diagrams

Free-Body Diagrams

Particles and Rigid Bodies

21• A Particle has a mass but no size or shape. Particles cannot have couple moments
applied to them. We only use a rectangular coordinate system with particles.

• A Rigid Body has mass and a size or shape. Rigid Bodies can experience couple
moments applied to them by forces that are not directed at their mass centres, G.
We can use a rectangular co-ordinate system or if motion is rotational, then we can
use a curvilinear co-ordinate system.

Equations of Motion for a Particle

22Newton’s second law is: ∑
F = ma

The left hand side of the equation is drawn as the free-body diagram, with the right hand
side being the kinetic diagram.

Equations of Motion for a Rigid Body

23For rigid bodies, we have Newton’s second law being applied to the mass centre:∑
F = maG

where aG is the acceleration of its mass centre, G.
The rotational equation of motion is given by:∑

MG = IGα

where IG is the moment of inertia about an axis passing through the mass centre, G,
and α is the bodies angular acceleration.

An alternative form can be written:∑
MP =

∑
(Mk)P

where
∑

MP is the sum of the applied couple moments and the external moment take
about a general point P and

∑
(Mk)P represents the sum of the kinetic moments about

P.

Friction
24The kinetic friction coefficient is represented by µk and the static friction coefficient is

represented by µs. In general, µs > µk.
The force required to overcome friction is given by:

Ff = µkN

where N is the normal force, which is generally the opposing reaction force against
gravity, mg.
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Drawing a Free-Body Diagram

25 Essentially, the main rules are:
1. Establish an appropriate coordinate system
2. Isolate the object or body of interest
3. Draw all the forces being applied to the object
4. If the object is a rigid body (the forces are not applied to the mass centre),

remember to identify the dimensions involved
5. Establish the direction of the object acceleration a.

32



2 Newton’s Laws and Free-Body Diagrams

Exercises

Draw the Free-Body diagram and kinetic diagram for the following bodies. Remember
to separate the body from its surroundings and include all the forces applied by the
outside world to the body. Include coordinates.

Particles

1. Sled being pulled down slope. Neglect air resistance but there is friction between
surface and sled.

2. Man lifting bar bells:

3. Two blocks: Pulling force applied to block A. There is friction between the blocks.

4. Truck pulling crate:

5. Pendulum falling due to gravity. Neglect air resistance.
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40°2 m

6. Draw free-body and kinetic diagrams for both block and wedge. There is friction
between the wedge and the ground and between the wedge and the block.

2.2.8 Rigid Bodies

7. Draw the free-body diagram and kinetic diagrams for the garage door with centre
of gravity, G, if man pushes on it at C with a horizontal force with magnitude F.
There are rollers at A and B.

8. The jet has a centre of gravity at G. Initially at take off the engines provide a total
thrust force of 2T + T ′. Neglect the mass of the wheels, and due to low velocity,
neglect any lift caused by the wings. There are two wing wheels at B and one
nose wheel at A.
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2 Newton’s Laws and Free-Body Diagrams

9. The top truck has a centre of gravity G. It is tied to the transporter using a chain
DE. The transporter is accelerating. Draw Free-Body and Kinetic diagrams of the
top truck.

10. The drop gate at the end of the trailer has a centre of gravity G, and is supported
by the cable AB and hinge at C. The truck begins to accelerate. Draw the free-
body and kinetic diagrams of the drop gate.

11. The two blocks A and B have masses such that mB > mA. The pulley has a
mass. Regaring the pulley and two block as a single system, draw the free-body
and kinetic diagrams of this system. Neglect the mass of the cord joining the
masses, and no slipping occurs on the pulley.
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3 Applying Newton’s Laws

2Following on from Chapter 2 on Newton’s Laws and Free-Body Diagrams, we now focus
on applying these concepts to analyse and solve dynamics problems. We will use the
examples explored in Chapter 2 to illustrate the process involved in solving these types
of problems.

3.1 Solving Problems: Particle Motion

3.1.1 Free-Body Diagram

3From last week’s lecture, we now know the process to build up a free-body diagram for
a problem where the body is modelled as a particle. The equation of motion that we
apply for particle motion is:

∑
F = ma

which states the sum of the external forces acting on the system is equal to the total
mass m of the particles multiplied by the acceleration a of the particle.

4You will also remember that the first step of producing a free-body diagram was to
identify an appropriate coordinate system. Often, for these problems, a rectangular
coordinate system with x and y axes is suitable. These axes could also be identified
using the unit vectors discussed in chapter 1, i, j and k. The two sets of axes shown in
Figure 3.1 are equivalent: one uses the standard cartesian coordinates x and y, while
the other is a right-handed coordinate system identified with the unit vectors. We will
demonstrate how to solve these problems using the unit vector coordinate system.

x

y j

ik

Figure 3.1: Suitable coordinate axes for particle motion problems
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3.1.2 Equations of Motion: Component Form

5 Once the Free-Body diagram has been determined, we apply the equations of motion in
their scalar component form. The equation of motion :∑

F = ma (3.1)

can be broken into two equations: one representing the i axis, and one representing the
j axis: ∑

Fxi = maxi and
∑

Fyj = mayj (3.2)

In some reference texts, you may see these equations written without the unit vectors
i and j as such: ∑

Fx = max and
∑

Fy = may (3.3)

Either set of equations 3.2 or 3.3 will yield the same results, and your choice will
depend on the problem you are given. The main point is that we deal with horizontal
and vertical motion separately.
We make the assumption that the components are positive if they are directed along

a positive axis and negative if they are directed along a negative axis.
If there is friction involved, remember that a friction force always opposes motion

relative to the surface it contacts.
Perhaps this is best illustrated with an example.

3.1.3 Particle Motion: Example

We shall return to the crate example first shown in the last lecture:
6 The 50 kg crate shown in Figure 3.2 rests on a horizontal plane for which the coefficient

of friction is µk = 0.3. The crate is subjected to a towing fore of magnitude 400N and
moves to the right without tipping over. Draw the free-body and kinetic diagrams of
the crate.

P = 400 N

30°

Figure 3.2: Particle Example

7 By applying the process, we resulted in a free-body diagram and kinetic diagram that
looked something like that shown in Figure 3.3:

8
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P

30°

mg

N

Ff

ma=
j

ik

Figure 3.3: Particle Example — Free-Body Diagram

Equating the free-body diagram and its corresponding diagram (applying equation
3.1): ∑

F = ma = P +mg + N + Ff (3.4)

9We can see that every force in the free-body diagram lies either along the i or j axes
except the applied force, P. As such, in order to apply the equations in 3.2, we need
to decompose P into its component parts, Px and Py:

P = Pxi + Pyj
Px = |P| cos 30◦ = 400 cos 30◦ = 346.4N
Py = |P| sin 30◦ = 400 sin 30◦ = 200N
∴ P = 346.4i + 200jN

10Decomposing 3.4 into component forms (equation 3.2) we have:

∑
Fxi = maxi = Pxi− Ffxi (3.5)∑
Fyj = mayj = Pyj−mgj +Nyj (3.6)

Note the signs in equations 3.5 and 3.6 — the terms that are in the same direction
as the axes are positive, and those that are in the opposite direction (for example, mg
and Ffx) are negative.
Note that the vectors mg and N have no horizontal component, therefore do not

feature in equation 3.5, and correspondingly, the friction force Ff has no vertical com-
ponent, therefore does not feature in equation 3.6.
The sharp-eyed among you will have noticed that there are three unknowns but only

two equations. In equation 3.5, we know Px but we do not know Ffx nor ax, and in
equation 3.6, we know Py, but not Ny. We, do however, have another equation relating
two of our unknowns:

11
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Ffx = µkNy (3.7)

12 Since the vertical motion of the crate is zero, we can say that ay = 0, so we can solve
equation 3.6:

0 = Pyj−mgj +Nyj
Nyj = mgj− Pyj = [(50)(9.81)− 200] j = 290.5jN

13 Applying equation 3.7:

Ffx = µkNy = (0.3)(290.5) = 87.15N

Plugging these into equation 3.5, we can determine the acceleration of the crate:

maxi = Pxi− Ffxi

axi =

[
Px − Ffx

m

]
i =

[
346.4− 87.15

50

]
= 5.19i m/s2

So, the acceleration of the crate is 5.19m/s2 to the right (along the i axis).
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3 Applying Newton’s Laws

3.1.4 Another Example: VTOL Aircraft

14The mass of a VTOL (vertical take off and landing) aircraft is 4000 kg. Its engines exert
a force FF and the force due to air resistance is FR. Calculate the acceleration for
FF = 11000i + 51000jN; FR = −1000i− 1000jN
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3.2 Solving Problems: Rigid Body Motion

15 For rigid bodies, there were two equations of motion that we need to consider: one
relating to translational motion (equation 2.4) and one relating to rotation (equation
2.5 or 2.6). These are reproduced below:∑

F = maG
∑

MG = IGα

These equations are used to determine unknown forces, moments and acceleration
components acting on an object modelled as a rigid body subjected to an unbalanced
system of forces and moments.

3.2.1 Rigid Body: Example

We again return to the example given last week.
16 This example also involves a 50 kg crate. A force of P = 600 N is applied to the

crateas shown in Figure 3.4. The coefficient of kinetic friction, µk = 0.2.

1 m

1 m
P

0.8 m

Figure 3.4: Rigid Body Example

The first step in doing this again to draw the free-body diagram of the object to
identify all of the external forces and moments acting on it. This was done as part of
an example in the last lecture, and should have resulted in the following drawing shown
in Figure 3.5.

17

P

mg

0.5 m

0.3 m
G

O

0.5 m

N

Ff
x

j

ik

maG=

Figure 3.5: Rigid Body Example — Free-Body Diagram

18
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Here, since the force P can cause the crate to either slide or top tip over, we model the
crate as a rigid body. This model allows us to account for the effects of moments arising
from P and any other external forces. We begin by assuming that the crate slides. Note
that the normal force N acts at point O, a distance x (where 0 < x ≤ 0.5m) from the
crate’s centre line. The reason for this is that the line of action does not necessarily pass
through the mass centre G (x = 0) since N must counteract the tendency for tipping
caused by P about the mass centre, G.
To find the acceleration of the crate, we can apply the equation for translational

motion and decompose in to the i and j components:
19∑

F = maG = P +mg + N + Ff∑
Fxi = maxi = Pxi− Ffxi → maxi = Pxi− µkNyi (3.8)∑
Fyj = mayj = −mgj +Nyj (3.9)

20Again, there is no motion in the j direction, so ay = 0, so we can calculate Ny from
equation 3.9:

0 = −mgj +Nyj → Nyj = mgj = (50)(9.81)j = 490.5jN

21Plugging this into equation 3.8, we can calculate the acceleration:

maxi = Pxi− µkNyi

axi =

[
Px − µkNy

m

]
i =

[
600− (0.2)(490.5)

50

]
i = 10im/s2

So the acceleration of the block is 10m/s2.
22The question is, are we correct to assume that the crate does not tip? To check this,

we should calculate x and if this is within the range 0 < x ≤ 5m, then this assumption
is correct. To determine x, we should use the moment equation. In terms of the signs,
we take all clock-wise moments are positive (you can use the opposite, as the answers
will come out the same, but be consistent!). For a non-tipping crate, α = 0.

23

�
∑

MG = Igα = Px(0.3m) + Ffx(0.5m)−Ny(x) = 0

Ny(x) = Px(0.3m) + µkNy(0.5m)

(490.5)x = 600(0.3) + (0.2)(490.5)(0.5)

x =
600(0.3) + (0.2)(490.5)(0.5)

490.5
= 0.467m

Since 0.467 < 0.5m, we were correct to assume the crate does not tip.
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3.2.2 Another Example: Bottle on a Conveyor Belt

24 A bottle is on a supermarket conveyor belt. The bottle has a mass of 1 kg and its radius
is 5 cm. If the belt has an initial acceleration of 1m/s2, does the bottle topple when the
belt is turned on?
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3 Applying Newton’s Laws

Summary

The main points in this section involve applying the equations of motion defined in
section 2 to the free-body and kinetic diagrams also defined in section 2. The points to
remember are:

25• Remember to decompose the equations of translational motion (i.e. Newton’s second
law) in to i and j directions (or x and y directions).

• Make sure your signs make sense with your coordinate system.
• A friction force opposes motion.
• When computing moments, remember to identify your positive direction, and be

consistent with it.
• Lastly, if you are asked to find velocities and position, use the standard constant

acceleration equations (see the revision notes).
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Exercises

1. A crane is lifting a crate of mass 20 kg with an upward acceleration of 6 m/s2 by
means of a single cable. What is the tension in the cable? (Ans: 316 N)

2. A caravan of mass 750 kg is towed along a level road by a car of mass 950 kg, the
two bar being rigid. The car engine exerts a force, i.e. a tractive effort, of 2.5 kN,
and there is no resistance to motion. Calculate the resulting acceleration of the
car and caravan and the tensile force in the tow bar. (Ans: 1.471m/s2; 1103N)

3. A man of mass 68 kg stands on the floor of a lift. If j is upwards calculate, stating
any assumptions, the reaction force exerted by the floor on the man when:
a) The lift accelerating upwards at a rate of 1.6m/s2.
b) The lift is moving at a constant velocity of 2m/s.
c) The lift’s upward velocity is decelerating at a rate of 1.8m/s2.
d) The lift is accelerating downwards at 1.6m/s2.

(Ans: 775.9jN; 667.1jN; 544.7jN; 558.3jN)
4. The mass of a VTOL aircraft is 4000 kg. Its engines exert a force FF for t seconds.

The force due to air resistance is FR. Calculate the change in velocity of the
aircraft for:
a) FF = 62000jN;FR = −2000jN; t = 2 s.
b) FF = 11000i + 51000jN;FR = −1000i− 1000jN; t = 3 s.
c) FF = 7500i + 36000jN;FR = −500i− 1000jN; t = 2 s.

(Assume right-handed coordinates, with i horizontal and j upwards.) (Ans: 10.38jm/s;
7.5i + 8.1jm/s; 3.5i + 2.1jm/s)

5. An aircraft has a mass of 5000 kg and experiences the following forces whilst in
flight:
Horizontal thrust FT : 6× 103N Vertical lift FL: 54× 103N
Horizontal drag FDH : 1.5× 103N Vertical drag FDV : 0.5× 103N

Assuming right-handed coordinates, with i horizontal and j upwards, calculate for
the aircraft:
a) Its acceleration in i-j component form.
b) Its acceleration as a magnitude and angle from the horizontal.
c) Its change in velocity after 2 seconds in i-j component form.

(Ans: 0.9i + 0.89j m/s2; 1.266 m/s2 at 44.7◦; 1.8i + 1.78j m/s)
6. An aircraft has a mass of 3000 kg and experiences the following forces whilst in

flight:
Horizontal thrust FT : 4× 103N Vertical lift FL: 30× 103N
Horizontal drag FDH : 1.25× 103N Vertical drag FDV : 0.4× 103N

Assuming right-handed coordinates, with i horizontal and j upwards, calculate for
the aircraft:
a) Its acceleration in i-j component form.
b) Its acceleration as a magnitude and angle from the horizontal.
c) Its change in velocity after 2 seconds in i-j component form.
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3 Applying Newton’s Laws

(Ans: 0.917i + 0.0567j m/s2; 0.9188 m/s2 at 3.54◦; 1.834i + 0.1134j m/s)
7. An aircraft has a mass of 8800 kg and experiences the following forces whilst in

flight:
Horizontal thrust FT : 9.9× 103N Vertical lift FL: 89.1× 103N
Horizontal drag FDH : 2.475× 103N Vertical drag FDV : 1.2× 103N

Assuming right-handed coordinates, with i horizontal and j upwards, calculate for
the aircraft:
a) Its acceleration in i-j component form.
b) Its acceleration as a magnitude and angle from the horizontal.
c) Its change in velocity after 2 seconds in i-j component form.

(Ans: 0.844i + 0.178j m/s2; 0.863 m/s2 at 11.9◦; 8.44i + 1.78j m/s)
8. Determine the magnitude of the acceleration of the 100 kg mass for each of the

cases illustrated. The mass and friction of the pulleys are negligible. Hint: Take
care to draw accurate free-body diagrams.

(Ans: 4.89 m/s2; 1.96 m/s2)
9. The frame shown is given a steady horizontal acceleration a = 2g. Determine the

magnitude of the reaction force between the sphere, which weighs 10N, and the
vertical surface.

(Ans: 17.32N)
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10. The crate shown has a mass of 15 kg and is being pulled up a plane at 30° by a
cord parallel to the plane. Calculate the magnitude of the tension necessary to
give the crate an acceleration parallel to the plane of 5m/s2. The coefficient of
friction is 0.3.

(Ans: 186.7N)
11. The electric train shown consists of three coaches A, B and C of mass 35 t, 45 t

and 35 t respectively. It is travelling at 60 km/h when the brakes are applied to
coaches A and B, giving a braking force on each of these coaches of 25 kN, but no
braking force on C. Calculate the magnitude of the force in each coupling.

(Ans: 9.78 kN and 15.21 kN compression)
12. A 200 kg crate rests on a 100 kg cart; the coefficient of friction between the crate

and cart is 0.25. If the crate is not to slip with respect to the cart, calculate:
a) The maximum allowable magnitude of the force P which may be applied to

the cart.
b) The corresponding acceleration of the cart.

(Ans: 735N, 2.45 m/s2)
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3 Applying Newton’s Laws

13. The collar A has a mass of 10 kg and slides on a vertical shaft. The spring is
uncompressed when the collar is in the dotted position. Determine the initial
acceleration magnitude of the collar when it is released from rest in the position
illustrated. The coefficient of friction between the collar and the shaft is 0.2, and
the stiffness of the spring is 2500N/m. Note: the pull force provided by the spring
is F = kx, where x is the extension from the spring’s natural length and k is the
stiffness of the spring.

(Ans: 24.2 m/s2)
14. The wedge A is free slide without vertical friction on the fixed horizontal surface,

and friction may also be neglected between the plunger B and its guides, which
constrain the plunger to slide at right angles to the face of the wedge. Between the
plunger and the wedge the coefficient of friction is 0.3. The mass of the wedge is
40 kg and that of the plunger 60 kg. The system is released from rest. Determine
the magnitude of the acceleration of the wedge if the wedge angle is 20 degrees.
Hint: the plunger is accelerating as well as the wedge.

(Ans: 2.59m/s2)
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15. The two blocks A and B have mass mA and mB respectively, where mB > mA.
The pulley can be treated as a disk of mass M . Regarding the pulley and two
blocks as a single system, formulate the appropriate equation of motion which,
which when solved, will lead to the acceleration of block A. Neglect the mass of
the cord and any slipping on the pulley. (Hint: we want an equation made up the
variables given, not a numerical answer). Note that the moment of inertia of a
solid pulley is:

IG =
1

2
Mr2

(Ans: a =
α

r
=

g(mB −mA)(
1

2
M +mB +mA

)), direction ↑.
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4 Non-Uniform Acceleration

2

3
So far, we have only dealt with constant acceleration problems. What about when accel-
eration varies? A simple example would be a car accelerating. The aerodynamic resistive
forces created by an object moving through air is given by the following equation:

Faero =
1

2
ρCdAV

2

where:
• ρ is the density of air (a constant)
• Cd the drag coefficient (a constant)
• A the frontal area of the car (a constant)
• V the vehicle’s velocity (not a constant)

4As you can see, the aerodynamic force is proportional with the square of the speed,
so as the speed rises, the force resisting motion increases with the square of velocity.
With a constant tractive force, Ft from the engine, the acceleration will therefore be
non-constant, and Newton’s second law will have the form (in the horizontal direction):

max = Ftx − Faero,x = Ftx −BV 2
x

where B = 1
2ρCdA. The acceleration a is clearly non-constant.

Note: For the following analysis, we make the assumption that the motion of a
particle is along a straight line. This means that the motion is one-dimensional, so for
these sections, we deal with the scalar quantities of displacement, velocity and acceler-
ation.

4.1 Expressions For Velocity and Acceleration

4.1.1 Instantaneous Velocity

5If we use x as the symbol for displacement, then the instantaneous velocity is the rate
of change of displacement with respect to time:

v =
dx
dt

= ẋ

using dot notation, as reviewed in the revision notes.
Now that we have this relationship, we can determine that the change in displacement

is:

v =
dx
dt

→
∫

dx =

∫
v dt → x2 − x1 =

∫
v dt
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4.1.2 Instantaneous Acceleration
6 Similarly, theinstantaneous acceleration is the rate of change of velocity with respect to

time:

a =
dv
dt

= v̇

This can be continued:

a = v̇ =
d
dt
v =

d
dt

dx
dt

=
d2x
dt2

= ẍ

7 Similarly, this relationship reveals the change in velocity :

a =
dv
dt

→
∫

dv =

∫
a dt → v2 − v1 =

∫
a dt

The other relationship we can determine to do with acceleration andvelocity is the
following, requiring a little bit of algebraic manipulation:

a =
dv
dt

=
dv
dt

dx
dx

=
dx
dt

dv
dx

= v
dv
dx

4.2 Graphical and Numerical Methods

4.2.1 Plotting Velocity against Time

8 Figure 4.1 shows a velocity-time profile of a particle undergoing non-uniform acceleration
in a straight line.

v

t
0

Figure 4.1: Particle undergoing non-uniform acceleration

As can be seen, the slope of the curve (dv
dt ) varies with time, indicating that the ac-

celeration is non-constant. To determine the instantaneous acceleration at any point
along this line would involve calculating the derivative of the function that represents
this line. However, for such a case, it would be difficult or impossible to fit a single
analytical function to the curve shown in Figure 4.1.
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4 Non-Uniform Acceleration

Mathematical differentiation of such a velocity-time graph (to determine acceleration)
is defined as:

lim
δt→0

change in v
change in t

= lim
δt→0

δv

δt

Thus, differentiation involves consideration of changes that take place in an time
interval that approaches zero.

9Since we do not have a function, an approximation of the derivative can be made
by a simple graphical or numerical method that involves splitting the curve in to small
sections of time (say 1 second, for example), and assuming that the line between each
time step is a straight, representingconstant acceleration. The curve shown in Figure 4.1
is converted into the Figure 4.2, with each section during one time step a straight line.
(This is the method computers and calculators often use to evaluate functions, although
the splitting is often a much greater resolution, providing a more accurate answer. Your
calculator may have a button indicated [

∫
dx] which can perform this function.)

v

t0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Value for i

time step, δt

Figure 4.2: Particle undergoing non-uniform acceleration split into discrete time steps

10The rate of acceleration is then assumed to remain constant at its average value during
the time step δt, where

δt = ti−1 − ti

Hence the constant acceleration formulae may be applied within each time step δt.

4.2.2 Acceleration
11Since the acceleration is constant for each time step, δt, the approximate value for

acceleration between ti−1 and ti is the change in velocity, vi − vi−1 divided by the time
step:

ai =
change in velocity

time step
=
vi − vi−1

δt

Note that the average velocity or acceleration values are the actual values occurring
half-way through the time interval when linear variation of velocity or acceleration with
time are being considered.
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4.2.3 Displacement

The approximate additional displacement δxi occurring between ti−1 and ti is given
by the average velocity between ti−1 and ti multiplied by the time step, δt. (This will
result in the area of each of the segments, and the sum of the area will be the total
displacement.)

δxi = average velocity× timestep =
vi + vi−1

2
δt

The approximate overall displacement is simply the sum of the additional displace-
ment for each time step. Hence:

Approximate overall displacementx =

n∑
i=1

δxi

Remember, since the integral of acceleration is velocity, the area for each segment
under a acceleration time graph will be the velocity value for that segment. Similarly,
the area under an the complete velocity-time graph will be the total displacement.

4.2.4 Example

As an example, let us assume that we wish to find the acceleration, a, the average
velocity v and the additional displacement x2 − x1 for the second time step, where
i = 2.
Time time step δt = t2 − t1
The rate of acceleration is assumed to remain constant at its average value during the

time step.
13 The average acceleration

a =
change in velocity
change in time

=
v2 − v1
t2 − t1

The average velocity:

vav =
v1 + v2

2

[
=

displacement
time interval

=
x2 − x1
t2 − t1

]

The additional displacement:

(x2 − x1) = average velocity× time =
1

2
(v1 + v2)(t2 − t1)
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4 Non-Uniform Acceleration

4.3 Solution by Integration

4.3.1 Differentiation and Integration

14Conversely to the above section, if you have knowledge of the function of acceleration
versus time or velocity versus time, we can use differentiation and integrationto determ-
ine the necessary information about the motion of a particle.
Remember that:

x = displacement =

∫
v dt

v =
dx
dt

= ẋ =

∫
a dt

a =
d2x
dt2

= ẍ

Differentiation and integration tables can be found in the revision notes.

4.3.2 Functions of Acceleration

This section uses the equations detailed above to develop the various forms in which
problems could be presented. Here, we say x = x0, v = v0 and t = 0 designated at the
beginning of the interval.
In each of the following cases when the acceleration varies according to some functional

relationship, the ability to solve the equations by direct mathematical integration will
depend on the form of the function. In cases where the integration is excessively awkward
or difficult, integration by graphical or numerical methods may be used. Alternatively,
if the problem does not prohibit it, a computer based method may be used to evaluate
the function.

Acceleration as a function of time

Here:
a = f(t)

Therefore, we can say:

a = f(t) =
dv
dt

→
∫ t

0
f(t) dt =

∫ v

v0

dv

Integrating results in:

v − v0 =

∫ t

0
f(t) dt

which gives us an equation of v as a function of time, t.
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We can then do the following to get position:

v =
dx

dt
→

∫ t

0
v dt =

∫ x

x0

dx

Integrating:

x− x0 =

∫ t

0
v dt

Acceleration as a function of velocity

Here:
a = f(v)

Therefore, we can say:

f(v) =
dv
dt

→
∫ v

v0

1

f(v)
dv =

∫ t

0
dt = t

which gives t as a function of v. Rearranging to solve for v as a function of t, we can
then use:

v =
dx
dt

to determine x.
Alternatively, we know that:

a = v
dv
dx

= f(v) →
∫ v

v0

v

f(v)
dv =

∫ x

x0

dx

Integrating:

x− x0 =

∫ v

v0

v

f(v)
dv

which is also a function of x in terms of v, without explicit reference to time, t.

Acceleration as a function of displacement

Here:
a = f(x)

We know that:
a = v

dv
dx

= f(t) →
∫ x

x0

f(x) dx =

∫ v

v0

v dv

Integrating:

v2 − v20 = 2

∫ x

x0

f(x) dx

which gives us v as a function of x. If we call this function g(x). We can then use the
definition of velocity to gain an equation for time, t:

v =
dx

dt
= g(x) →

∫ x

x0

1

g(x)
dx =

∫ t

0
dt = t
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4 Non-Uniform Acceleration

4.3.3 Example

15The linear acceleration a of an electric vehicle starting from rest is given by a = 2−0.1t,
for t < 5 s. Find the time taken for the vehicle to reach 5m/s and the distance travelled
in that time.
The acceleration is not constant so the constant acceleration formulae cannot be used.

Summary

Solution by Graphical and Numerical Methods

16
• Split continuous graph in small sections
• Acceleration = constant for each section
• Apply standard formulae for each section

Remember, since the integral of acceleration is velocity, the area for each segment
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under a acceleration time graph will be the velocity value for that segment. Similarly,
the area under an the complete velocity-time graph will be the total displacement.

Solution by Integration

17
• Suitable if you have knowledge of function
• If you have a as a function of t : integrate to get v. Integrate again to get x.
• If you have a as a function of v : integrate to get t as a function of v. Rearrange to

get v as a function of t, then integrate to get x.
• If you have a as a function of x: Integrate to gain v as a function of x, then use

the definition of velocity to gain t.
• If you have v as a function of t : differentiate to get a.
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4 Non-Uniform Acceleration

Exercises

Graphical and Numerical Methods

1. The following table gives the speed of a train at intervals of 1 minute.
t (min) 0 1 2 3 4 5 6 7 8 9 10
v (m/s) 0 5 15 20 30 33 33 27 20 7 0

Sketch the graph of velocity against time and hence determine the distance trav-
elled and the average speed.
(Ans: 11400m, 19m/s)

2. A car starts from rest with an acceleration that increases uniformly from zero to
3m/s2 over a time period of 10 s. The acceleration of the car remains constant at
3m/s2 for 7 s. The acceleration then reduces to zero instantaneously, after which
it decreases uniformly from zero to -6m/s2 in a time period of 12 s.
Draw the graph of acceleration against time, and hence construct the graphs of
velocity against time and displacement against time. From the grpahs, determine:
a) The maximum velocity.
b) The total distance travelled.

(Ans: 36m/s; 515.5m)
3. A motorcycle accelerates in a straight line from rest for a time period of 18 s, the

acceleration varying with time as shown in the table, which gives values of its
acceleration every 2 s.
Using numerical integration, complete the table, and hence determine for the
motorcycle at the end of the period of acceleration:
a) its approximate velocity.
b) its approximate total displacement from its starting point.

Time (s) Acceleration (m/s2) Velocity (m/s) Displacement (m)
0 5.4 0 0
2 4.4
4 3.5
6 2.7
8 2.0
10 1.4
12 0.9
14 0.5
16 0.2
18 0

(Ans: 36.6m/s; 473.4m)
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4. A car is raced from a standing start in a straight line. Its velocity is recorded every
second. Using numerical differentiation and integration, complete the table and
hence determine its displacement at t = 10 s and its acceleration at t = 9.5m/s.

Time (s) Displacement (m) Velocity (m/s) Acceleration (m/s2)
0 0 0 —

— 4.5
1 4.5 —

—
2 8.75 —

—
3 12.75 —

—
4 16.50 —

—
5 20.00 —

—
6 23.25 —

—
7 26.25 —

—
8 29.00 —

—
9 31.50 —

—
10 33.75 —

(Ans: 189.375m; 2.25m/s2)
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4 Non-Uniform Acceleration

5. The displacement of a moving body was recorded on each frame of a motion picture
film, using a cine-camera with a shutter speed of 20 frames/s. The displacements
from the initial body position were determined from each successive frame and are
given in the table below.
Using numerical differentiation, complete the table and hence determine:
a) The approximate velocity when the displacement is 2.925m.
b) The approximate acceleration when the displacement is 2.425m.
Frame Time (s) Displacement (m) Velocity (m/s) Acceleration (m/s2)

1 0 0 — —
—

2 0.125 —
—

3 0.375 —
—

4 0.925 —
—

5 1.575 —
—

6 2.425 —
—

7 3.425 — —
(Ans: 20m/s; 60m/s2)

Integration Method

6. A vehicle starts from rest with a linear acceleration given by a = 4− 0.5t, where
a is in m/s2 and t is the time elapsed from the start in seconds. Calculate, using
integration for parts (c) and (d):
a) the initial acceleration.
b) the time taken for the acceleration to reduce to zero.
c) the distance travelled up to the instant when the acceleration is zero.
d) the time which elapses before the vehicle comes to rest again.

(Ans: (a) 4m/s2; (b) 8 s; (c) 85.3m; (d) 16 s)
7. The linear acceleration of a body is given by a = 10 − 3(t)

1
2 , where a is in m/s2

and t is the time elapsed from the start in seconds. If the body is initially at rest,
calculate by integration:
a) the time which elapses before the body comes to rest again.
b) the distance travelled in this time.

(Ans: (a) 25 s; (b) 625m)
8. A motor car starts from rest with a linear acceleration given by a = 4−0.04x, where

a is in m/s2 and x is the distance travelled from the start in metres. Calculate,
using integration for part (c):
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a) the initial acceleration.
b) the distance travelled by the car from the start to the point at which its

acceleration is zero.
c) the velocity at the instant when the acceleration is zero. (Use a = v dv

dx)
(Ans: (a) 4m/s2; (b) 100m; (c) 20m/s)

9. An aircraft lands on a straight runway with a touchdown speed of 50m/s. The
brakes are then applied causing a deceleration which is proportional to the velocity
of the plane, given by a = -0.03v, where a is in m/s2 and v is in m/s.
Calculate by integration:
a) the time required for the plane to reduce its velocity to 5m/s; Use a = dv/dt,

and note that
∫

1
v dv = ln v. [76.75s]

b) the distance travelled during that time period. (Use a = v dv
dx) [1500m]

(Ans: (a) 76.75 s; (b) 1500m)
10. It is proposed that an electric vehicle is to have a regenerative braking system

which when applied gives the vehicle a velocity of:

v = ue
−t
τ

where u is the velocity before braking starts, t is the time and τ is a time constant
for the system. Obtain an expression for the displacement x of the vehicle as a
function of the time, and sketch the graph of displacement against time. Briefly
discuss the practical implications of such a braking system.
Note!

∫
ekt dt = ekt

k + C

(Ans: x = uτ(1− e
−1
τ ))
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5 Momentum and Force Impulse

25.1 Momentum

5.1.1 Definition
3Momentum is a measure of the quantity of motion possessed by a body, and is defined

as p:

p = mv (5.1)

Momentum is a vector, having both magnitude and direction, and its units are
[kgm/s].

4There is a relationship between Newton’s Second Law and momentum. Newton’s
Second Law states that:

F = ma

With some substitution, we can see that the force is the rate of change of mo-
mentum:

F = ma = m
dv
dt

=
dmv

dt
=

dp
dt

(5.2)

This means that:
• if particle changes its momentum, a force must have acted upon it
• if a force acts on a particle, it will change its momentum
From this relationship, we can see that:∫

F dt =

∫
dp → Ft = p

which means that the units of momentum could also be the units of force (N) times
the units of time (s), so you may see the units of momentum expressed as [Ns]. [Ns] is
equivalent to [kgm/s].

5.1.2 Internal and External Forces
5Imagine we have large number of particles which are interacting with each other. The

interaction could be gravitational, or electrical, it doesn’t matter. Such a system could
be a star cluster. These are shown in Figure 5.1.

6We pick two of these arbitrarily, and call them mi and mj . These are exposed to the
external forces acting on the system, Fi,ext and Fj,ext, as shown in Figure 5.2(a).

7
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Figure 5.1: A cluster of particles

mi

mj

Fj,ext

Fi,ext

mi

mj

Fj,ext

Fi,ext

Fij

Fji

(a) (b)

Figure 5.2: A cluster of particles — External (a) and Internal (b) forces

But as we stated, they are interacting with each other, either attracting or repelling,
so in addition to these external forces, there are internal forcesbetween the two particles,
Fij and Fji, where

Fij = −Fji

as they are equal and opposite, following Newton’s Third Law. These are shown in
Figure 5.2(b).

8 If these were the only two forces, then the net forces on i would be Fi,net and the
net forces on j will be Fj,net, as shown in Figure 5.3. Obviously, since there are many
particles, and there are interactions between them all, these net forces will be different
that those indicated in the diagram, but they would still be the sum of the external
forces and all the internal forces.

mi

mj

Fj,ext

Fi,ext

Fij

Fji
Fi,net

Fj,net

Figure 5.3: A cluster of particles — Net forces

9
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5 Momentum and Force Impulse

What is the total momentum of these particles? This is the sum of the individual
momenta.

ptot = p1 + p2 + · · ·+ pi + · · ·

Taking the derivative of this:

dptot
dt

= F1,net + F2,net + · · ·+ Fi,net + · · · = Ftot

where Ftot is the total force on the entire system.
10Now comes the special part: due to Newton’s third law, all these internal forces cancel

each other out: for example Fji cancels out Fij if you look at the system as a whole,
and the same goes for all the other interactions that are happening between all the
individual particles.

mi

mj

Fj,ext

Fi,ext

Figure 5.4: A cluster of particles — Total forces

So the total force on the system is simply the total external force.

dptot
dt

= Ftot = Ftot,ext

11This results in a key conclusion: if the total external forces of the system as a whole
are zero, then the momentum of the system cannot change, and is therefore conserved.
This is known as the conservation of momentum. If Ftot,ext = 0

dptot
dt

= 0

It doesn’t matter how many particles you have, and they could collide with each other,
or explode, but it does not matter — these are all internal forces, and if they are not
affected by external forces, the momentum of the entire system does not change. If the
net sum of the total external forces is zero, momentum is conserved.
The principle of conservation of momentum is usefully demonstrated when studying

collisions.
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5.2 Conservation of Momentum
12 We study three types of collisions in dynamics: inelastic collisions (where colliding

objects stick together), elastic collisions (where colliding objects bounce apart), and
superelastic collisions. The difference between these different types of collisions is ex-
plained by an understanding of the change in kinetic energy in a system, so this will be
discussed first.

5.2.1 Kinetic Energy

13 Taking Newton’s second law in one dimension results in:

F = ma → Fx = max

The discussion of instantaneous acceleration in chapter 4 resulted in the following
equation for acceleration (again in one dimension)

ax = v
dvx
dx

Substituting this into Newton’s second law, rearranging and integrating results in the
following:

Fx = mv
dv
dx∫

Fx dx = m

∫
v dv =

1

2
mv2x1 −

1

2
mv2x0

14 Similar expressions can be derived for the other two dimensions, and in the general
vector form:

Change in kinetic energy =
1

2
mv2

1 −
1

2
mv2

0 (5.3)

Energy is often expressed with the term U , and kinetic energy has the subscript
k. Hence, kinetic energy is Uk. The units of energy are [kgm2/s2], which are more
commonly known as Joules (J).

15 Energy will be discussed in more detail in the next lecture, but we accept for now that
there are many forms of energy; kinetic energy (Uk) is one form, gravitational potential
energy (Up) is another, heat (or internal energy) yet another, and all energy follows the
law of conservation of energy, which, neglecting any work given or taken from a system
follows the energy balance equation:

energy in state 1 = energy in state 2 (5.4)

If we put all the non-kinetic energies together, we can rewrite the energy balance
equation:
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Uk1 +Q = Uk2 (5.5)

where Q represents the change in the other forms of energy and determines the type
of collision undertaken:

16
• If Q < 0, kinetic energy has been lost in the system (normally as heat) and results

in a completely inelastic collision
• If Q = 0, kinetic energy is conserved, and results in a completely elastic collision
• If Q > 0, kinetic energy has been gained in the system (as a result of an explosion,

or a spring, for example), and results in a superelastic collision

We will discuss each of these individually.

5.2.2 Collisions

Inelastic Collisions
17Consider two bodies having massesm1 andm2 as shown in Figure 5.5, withm1 travelling

at initial velocity u1, and m2 travelling at initial velocity u2.

m1 m2

u1 u2

Figure 5.5: Two masses

18We are dealing with an inelastic collision so we imagine that these masses are covered
with glue, such that when colliding, they stick together, resulting in an inelastic collision
as shown in Figure 5.6.

m1 m2

v

Figure 5.6: Two masses — Inelastic collision

19Just before the impact, the masses had the momentum (dealing in one dimension, we
only need to deal with the scalar values of velocity and momentum):

pbefore = m1u1 +m2u2

Just after the impact, the momentum has changed to:

pafter = (m1 +m2)v

20Conservation of momentum indicates that, in the absence of external forces:
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pbefore = pafter

m1v1 +m2v2 = (m1 +m2)v (5.6)

So, if we know the initial condition and the masses, then v can be found from equation
5.6:

m1u1 +m2u2 = (m1 +m2)v → v =
m1u1 +m2u2
m1 +m2

(5.7)

21 Taking the following values:
• m1 = 1 kg, u1 = 5m/s
• m2 = 2 kg, u2 = 3m/s

we can calculate v from equation 5.7:

v =
m1u1 +m2u2
m1 +m2

=
(1)(5) + (2)(3)

(1) + (2)
= 3.67m/s

Now let us compare the kinetic energy at the beginning and the kinetic energy at the
end:

22

Uk,before =
1

2
m1u

2
1 +

1

2
m2u

2
2 =

1

2
(1)(5)2 +

1

2
(2)(3)2 = 21.5 J

Uk,after =
1

2
(m1 +m2)v

2 =
1

2
(3)(3.67)2 = 20.2 J

As you can see, some energy was lost in the collision. Although the actual amount of
energy lost was small, it is possible to set up an inelastic collision in which all kinetic
energy is lost: imagine two equal masses, travelling towards each other at equal but
opposite velocities. The total momentum of the system before the collision is zero
(remember, momentum is a vector, so the opposing velocities cancel each other out),
but the system does have kinetic energy. After the collision, the masses stick together,
but have zero velocity, meaning zero kinetic energy.
So energy is always lost in an inelastic collision.

Elastic Collisions
23 In a completely elastic collision, the masses do not stick together, but ‘bounce’ off each

other. A completely perfect elastic collision does conserve kinetic energy as well as
momentum.
Again, we take massesm1 andm2 as shown in Figure 5.7 travelling at initial velocities

u1 and u2.
24 This time, when the masses collide, they do not stick together, and leave collision

with velocities of v1 and v2 respectively as shown in Figure 5.8.
25 Just before the impact, the masses had the momentum:

pbefore = m1u1 +m2u2
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m1 m2

u1 u2

Figure 5.7: Two masses before an elastic collision

m1 m2
v1 v2

Figure 5.8: Two masses after an elastic collision

Just after the impact, the momentum is now:

pafter = m1v1 +m2v2

26Conservation of momentum means that these two equations can be equated:

pbefore = pafter

m1u1 +m2u2 = m1v1 +m2v2 (5.8)

Notice that we have two unknowns, v1 and v2, so if we are to solve this, we need
another equation. As we know that kinetic energy is conserved in a perfectly elastic
collision, we can say that:

Uk,before = Uk,after
1

2
m1u

2
1 +

1

2
m2u

2
2 =

1

2
m1v

2
1 +

1

2
m2v

2
2 (5.9)

27Now we have two equations (equation 5.8 and 5.9) to solve the two unknowns, v1 and
v2. Determining v1 and v2 requires quite a bit of longwinded and error-prone algebraic
manipulation, which is not shown here, but to save you from calculating them yourselves,
the results come out to be:

v1 =
m1 −m2

m1 +m2
u1 +

2m2

m1 +m2
u2 (5.10)

v2 =
m2 −m1

m1 +m2
u2 +

2m1

m1 +m2
u1 (5.11)

28Taking the same initial conditions:
• m1 = 1 kg, u1 = 5m/s
• m2 = 2 kg, u2 = 3m/s
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and using equations 5.10 and 5.11 v1 and v2 can be determined:

v1 =
m1 −m2

m1 +m2
u1 +

2m2

m1 +m2
u2

v1 =
1− 2

3
5 +

4

3
3 = 2.33m/s

v2 =
m2 −m1

m1 +m2
u2 +

2m1

m1 +m2
u1

v2 =
2− 1

3
3 +

2

3
5 = 4.33m/s

Inserting these results into equation 5.8 confirms the
conservation of momentum.
An example of such an collision are snooker balls.

These collisions are very close to a perfectly elastic col-
lision (there is a very slight loss of energy which we can
hear as sound when the two balls collide).
Another example of the principles of conservation of

momentum and energy in action can be seen with a
Newton’s cradle.

Superelastic Collisions

29 A superelastic collision is where the kinetic energy after the ‘collision’ is greater than
the kinetic energy to start with. An example of this could be two masses, m1 and m2

that are directly next to each other to start with, and have no velocity, as shown in
Figure 5.9(a).

m1 m2 m1 m2

(a) (b)

Figure 5.9: Superelastic collision

30 An explosive charge between them is set off (Figure 5.9(b)), at which point the masses
move apart, with speeds v1 and v2, as shown in Figure 5.10.

m1 m2
v1 v2

Figure 5.10: Superelastic collision

31
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Again, the conservation of momentum applies:

pbefore = pafter

0 = m1v1 −m2v2 → m1

m2
=
v2
v1

(5.12)

(Notice the minus sign, as the masses are going in opposite directions.)
The only thing we can tell from equation 5.12 is the ratio of the velocities. The larger

mass will have the lower speed.
The kinetic energy has clearly increased. Where has this kinetic energy come from?

The answer is the potential chemical energy stored in the exlosive. Despite this, mo-
mentum has remained constant. This explosion is simply an internal force, and as we
discussed earlier, momentum does not care about internal forces.

5.3 Force Impulse

As was commented on in Section 5.1.2, in the absence of any external forces on the
system as whole, momentum is conserved. But what can be said about external forces
that are applied to a system—what happens to the momentum and how can we quantify
the change? For this, we use the term Impulse.

5.3.1 The Impulse of a Force

32The impulse of a force is defined as the product of the force and the time for which it
acts:

Force Impulse = force× time

It is clear that small forces applied for a long time have the same impulse as large
forces applied briefly.
It is quite common for the applied force to vary with respect to time, so force impulse

is the integral of the force with respect to time:

Force Impulse =

∫
F dt =

∫
dp =

∫
dmv (5.13)

which we can say because:

F =
dp
dt

In certain cases, the mass can vary with respect to time; a particular example is rocket
that uses up fuel as it flies. On the other hand, if we assume that the mass remains
constant, then equation 5.13 becomes:

Force Impulse =

∫
F dt = m

∫
dv = m(v2 − v1) = p2 − p1
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So:

Force Impulse = ∆p = change in momentum

Note that taking the integral of force with respect to time is the same as calculating
the area under the curve on a graph of forces against time, as shown in Figure 5.11.

Time

Force

t1 t2

Area = force impulse = Δp

Figure 5.11: Graph of Force against time — Area = ∆p

5.3.2 Constant Force
34 The impulse of a constant force, equation 5.13 becomes:

F

∫
dt = m(v2 − v1) → F(t2 − t1) = m(v2 − v1)

Therefore, for a constant force:

Force impulse = F∆t = m∆v = ∆p

where ∆t = t2 − t1 and ∆v = v2 − v1

5.3.3 Impulsive Force

An impulsive force is a force that acts for a very short time, as time approaches zero.
This type of impulse is often idealised so that the change in momentum produces by
the forces happens with no change in time, which can be represented as a step change
in momentum, which is physically impossible.
You may reasonably think that the force impulse as ∆t approaches zero to be zero,

but there are notable exceptions, such as a hammer blow, when impulse forces generated
are very large.
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5.3.4 Example: Force Impulse

35A golf ball of mass 95 gm is struck by a club and reaches a speed of 185mph. If the
contact between the club and the ball lasts 0.46ms, calculate the magnitude of the
average fore exerted by the club on the ball, and also the magnitude of the acceleration
experienced by the ball.
To solve this, we should first find the velocity of the golf ball on the tee, then in the

air:

v1 = 0 v2 = 185
���miles

���hour
× 1609.33 m

1���miles
×

���hour

3600 seconds
= 82.7 m/s

36So the force impulse:

F∆t = m(v2 − v1) → F =
m(v2 − v1)

∆t

F =
(0.095)(82.7)

0.46× 10−3
= 17.08 kN

To calculate the acceleration, we can either use Newton’s second law:

F = ma → a =
F

m
=

17.08

0.095
= 179800 m/s2

or use the constant acceleration equation from basic linear motion:

a =
v2 − v1

∆t
=

82.7

0.46× 10−3
179800 m/s2

Summary

Momentum
37Momentum is defined as:

p = mv

which is a vector. Its units are [kgm/s] or alternatively [Ns].
Momentum and force are related by:

F =
dp
dt

38The total change in momentum on a system as a whole is the sum of the external
forces on the system as a whole. The internal forces are not considered by momentum.
If there are no external forces, then there is no change in momentum, and this principles
is known as:

The Conservation of Momentum
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Collisions
39 In every collision, momentum is conserved. Energy may or may not be.

Three types of collisions are dealt with:

• Inelastic collision where kinetic energy is lost (the masses stick together)
• Elastic collision where kinetic energy is also conserved (the masses bounce off each

other)
• Superelastic collision where kinetic energy is gained (a mass is separated by a

potential energy, for example a spring or an explosion)

Inelastic Collision

For an inelastic collision, the final velocity is given by:

v =
m1u1 +m2u2

m1 +m2

where v is the final velocity, and u represents initial velocities.

Elastic Collision

For an elastic collision, the final velocities of the two masses, m1 and m2 are given by
the following equations:

v1 =
m1 −m2

m1 +m2
u1 +

2m2

m1 +m2
u2

v2 =
m2 −m1

m1 +m2
u2 +

2m1

m1 +m2
u1

Superelastic Collision

In a superelastic ‘collision’, the final velocities cannot be determined analytically, as
there are two unknowns but only one equation (unless the increase in kinetic energy is
given). What can be determined is that the ratio of the masses is inversely proportional
to the ratio of velocities — the higher the mass, the lower the velocity:

m1

m2
=
v2
v1

Force Impulse

40 The force impulse is defined as the force multiplied by the time for which it acts. It was
shown that the force impulse is equivalent to the change in momentum:∫

F dt = ∆p

and is the area under a Force-Time graph.
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If the force is constant, the following relationship applies:

F∆t = m∆v = ∆p

An impulsive forces is a type of impulse that occurs as the time approaches zero. This
represents a step change in momentum.
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Momentum and Force Impulse: Exercises

1. A golf ball of mass 100 gm is struck by a club and reaches a speed of 200mph. The
collision between the club and the ball lasts 0.5ms. Given that 1mile = 1609.33m:

a) Calculate the magnitude of the average force exerted by the club on the ball
(and vice-versa) during the collision.

b) Calculate the magnitude of the acceleration experienced by the ball

(Ans: (a) 17.9 kN; (b) 179000m/s2)
2. A car (A) is stationary on level ground with its handbrake off. A second car (B)

collides with the back of the car A at 5imph. The mass of each car is 750 kg.
Ignore rolling resistance, etc. Calculate the momentum p and Uk of each car
before and after the collision and comment on whether p and Uk are conserved for
the following cases, after collision.

a) Car A 2.5imph; Car B 2.5imph
b) Car A 4imph; Car B 1imph
c) Car A 5imph; Car B 0imph

(Ans: Before for all cases: A: 1676..4i kgm/s 1873.5 J; B: 0i kgm/s 0 J; (a)
838.2i kgm/s, 468.4 J; 838.2i kgm/s 468.4 J; (b) 1341.1i kgm/s, 1199 J; 335.28i
kgm/s, 74.94 J; (c) 1676.4i kgm/s, 1874 J; 0i kgm/s, 0 J)

3. A golf ball of mass 120 gm is struck by a club which imparts a speed of 270 km/h
to the ball, the collision between the club and the ball lasting 0.6ms. Calculate
for the ball during the collision:

a) Its change in momentum.
b) The impulse of the force acting.
c) The average force acting, calculate from the force impulse.
d) The acceleration.
e) The average force acting, calculated directly from Newton’s Second Law.

(Ans: 9 kgm/s; 9 Ns; 15 kN; 125 m/s2; 15 kN)
4. A car (A) is stationary on level ground with its handbrake off. A second car (B)

collides with the back of the car A at 7.2 km/h. The mass of each car is 900 kg.
Ignore rolling resistance, etc. Calculate the momentum p and Uk of each car before
and after the collision and comment on whether p and Uk are conserved for the
following cases, after collision.

a) Car A 3.6 km/h; Car B 3.6 km/h
b) Car A 5.4 km/h; Car B 1.8 km/h
c) Car A 7.2 km/h; Car B at rest
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Answers Before After Comments
A B A B

(a) Momentum 0 1800 900 900 Conserved
Uk 0 1800 450 450 Loss = 900

(b) Momentum 0 1800 1350 450 Conserved
Uk 0 1800 1012.5 112.5 Loss = 675

(c) Momentum 0 1800 1800 0 Conserved
Uk 0 1800 1800 0 Conserved

5. Two trucks, A and B, have masses of 30 and 50 tonnes respectively. Initially A is
at rest and B is travelling at 24 km/h. Calculate the loss of kinetic energy if:
a) The trucks lock together on impact
b) The trucks travel on separately after impact with truck A having a velocity

of 10 km/h
(Ans: 414 kJ; 369 kJ)

6. A ballistic pendulum consists of a block of wood of mass 5 kg suspended on a wire
4 m long. A bullet of mass 40 gm is fired into the block and causes it to swing
through an angle of 70◦. Determine the velocity of the bullet just before it hits
the block. (Ans: 905.4 m/s)

7. A pile driver of mass 275 kg falls 0.9 m on to a pile of mass 450 kg. Assuming the
driver and pile remain in contact after impact, and that the pile moves 150 mm
into the ground, calculate, allowing for gravity after impact:
a) The velocity of the driver just before impact.
b) The kinetic energy of the driver just before impact.
c) The common velocity of the driver and pile just after impact.
d) The kinetic energy of the driver plus pile just after impact.
e) The loss in kinetic energy during impact.
f) The average resisting force exerted by the ground on the pile as the pile

penetrates the ground.
(Ans: 4.2 m/s; 2430 J; 1.592 m/s; 920 J, 1510 J; 13250 J)

8. A pile-driver of mass 700 kg falling 0.2 m is used to drive a pile of mass 500 kg
into the ground. Assuming there is no rebound, find the common velocity of the
driver and pile at the end of the blow and the loss of kinetic energy that occurs
during the impact. If the resistance of the ground is constant, find its value if the
pile is driven 75 mmm into the ground. (Ans: 1.155 m/s; 572 J; 22440 N)

9. A stationary truck of total mass 9000 kg is set in motion by the action of a shunting
locomotive which hits it with a force impulse of 30 kNs. The truck travels freely
along a level track against a rolling resistance of 65 N/tonne, for a period of 15 s,
when it collides with a second truck of mass 12000 kg which is moving at 0.6 m/s
in the same direction as the first truck. The trucks lock together on impact, and
the move on together.
Determine their common speed immediately after impact, and the loss of kinetic
energy at impact. (Ans: 1.353 m/s; 7940 J)

10. The spring buffers on a truck engage with similar buffers on a second truck which
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the first catches up and collides with on a straight horizontal track. The first truck
has a mass of 8 tonnes and its initial velocity is 3 m/s. The second truck has a
mass of 12 tonnes and an initial velocity of 1 m/s in the same direction as the
first.
Determine:
a) The common velocity of the trucks at the instant during the impact when the

springs are just fully compressed and the trucks are thus moving together.
b) The maximum amount of strain energy stored in the springs during impact.
c) The velocity of each truck on separating if only one half of the energy stored

in the springs during their compression in the initial part of the collision is
returned to the trucks as the springs expand again. This part involves the
solution of a pair of simulations equations and a quadratic equation.

(Ans: (a) 1.8 m/s; (b) 9600 J; (c) 0.95m/s; 2.366 m/s)
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