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Chapter 1

Basic Aerodynamics

1.1 Physical Units

Basic physical units:

length

1 in [inch] = 0.0254 m [metre]

1 ft [foot] = 0.3048 m

1 km [kilometre] = 1, 000 m

1 mi [mile] = 1, 609 m

1 nm [nautical mile] = 1, 852 m

mass 1 lb [pound] = 0.453592 kg [kilogram]

1 t [ton] = 1, 000 kg

time 1 h [hour] = 3, 600 s [seconds]

1
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Derived physical units:

force

1 N [Newton] = 1 kg m s−2

1 kp [kilopond] = 9.80665 kg m s−2 = 1 kg · g
1 kN [kilonewton] = 1, 000 kg m s−2

stress,

pressure

1 Pa [Pascal] = 1 N m−2 = 1 kg m−1 s−2

1 kPa [kilo Pascal] = 1, 000 Pa

1 MPa [mega Pascal] = 1, 000, 000 Pa

1 bar = 100, 000 Pa = 10 N cm−2

energy,

work 1 J [Joule] = 1 N m = 1 kg m2 s−2

power

1 W [Watt] = 1 J s−1 = 1 kg m2 s−3

1 kW [kilo Watt] = 1, 000 W

1 MW [mega Watt] = 1, 000, 000 W

1 bhp [brake horse power] = 745.7 W

1 PS [Pferdestärke] = 735.5 W = 75 kp m s−1

The quantity g = 9.80665 m s−2 denotes the gravitational acceleration of the earth.

For calculations involving angles we will need the relation

360 deg = 2π rad .
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1.2 The Standard Atmosphere

Generally, in the atmosphere of the earth, the pressure, the temperature and the

density of the air are functions of altitude. The variations of these quantities with

time and location are negligible and mostly due to weather conditions.

The altitude of an aircraft is typically determined by measuring the free stream

air pressure and subsequent calculation of the altitude. In order to ensure that

the pilots of any aeroplanes at the same time in the same location have consistent

altimeters the international community introduced the notion of the standard at-

mosphere, which relates the pressure, the temperature and the density of the air

uniquely to the altitude and ignores local variations.

The standard atmosphere is composed of layers with constant temperature gra-

dients, i. e. d T/ d h = const. in each layer:

troposphere : 0 − 11 km : T = 288.2 K − 71.5 K

11 km
h (1.1)

stratosphere : 11 km − 20 km : T = 216.7 K (1.2)

20 km− : T = 216.7 K +
K

km
h (1.3)

The equation for the perfect gas

p = ρ R T with R specific gas constant, Rair = 287 J (kg K)−1 , (1.4)

the hydrostatic equation

d p

d h
= − ρ g with gravity acceleration g = 9.81 m s−2 (1.5)

and the boundary condition p = p0 = 101, 325 N m−2 at h = 0 suffice to determine

the pressure p. Using (1.1) and (1.4) in (1.5) and solving the differential equation

for p renders

p = p0

(

1 − 71.5

288.2

h

11 km

)
g

R

11 km

71.5 K
. (1.6)

Similarly, (1.2), (1.4) and (1.5) give

p = p11 exp

(

− g

R

h − 11 km

216.7 K

)

, (1.7)
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where p11 = 22, 621 N m−2. The density ρ may then be calculated from (1.4). At

sea-level, the air density is obtained as ρ0 = 1.225 kg m−3.

Tables of the standard atmosphere are provided in most text books on air flight.

We also note the dependency of the speed of sound a on the temperature, i. e.

a =
√

γ R T with γ ratio of specific heats, γair ≈ 1.4 . (1.8)

 0
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]

troposphere

stratosphere

isothermal

region

at sea-level at 8000 m

density ρ0 = 1.225 kg m−3 0.526 kg m−3

pressure p0 = 101, 325 N m−2 35, 651 N m−2

speed of sound 340 m s−1 = 1, 225 km h−1 308 m s−1 = 1, 109 km h−1
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1.3 Mach Number

The dimensionless Mach number is defined in every point of the fluid flow field as

Ma =
v

a
, (1.9)

where v is the local flow velocity. In order to characterise the flight of an airplane

we introduce the freestream Mach number

Ma∞ =
v∞
a

, (1.10)

where v∞ corresponds to the true airspeed or free stream velocity. Importantly,

for Ma∞ < 0.3, the air flow can be assumed to be incompressible, whereas, for

Ma∞ > 1.0, we expect the occurrence of pressure shock waves.

Characterisation of flow:

0 0.3 0.8 1.2 5.0 Ma∞

subsonic (incompressible)

subsonic

transsonic

supersonic

hypersonic

In transsonic flow, we typically have local areas of the flow field where the flow is

subsonic and others where the flow is supersonic.
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1.4 Reynolds Number

The dimensionless Reynolds number is defined as

Re =
ρ v∞ h

µ
, (1.11)

where h is the characteristic length scale of the problem under consideration and µ

is the viscosity of the fluid medium. The Reynolds number describes the ratio of

the inertia forces to the viscous forces, both of which act on the fluid particles.

If the Reynolds number is small, then the fluid flow is typically laminar, i.e. the

streamlines are smooth and regular.

If the Reynolds number is large, then the fluid flow is likely to be turbulent in at

least some areas of the flow field, i.e. the streamlines break up and the fluid particles

move in a random irregular fashion. Turbulent fluid flow is always unsteady. In the

presence of turbulence, we are interested in average velocities and average properties

of the flow.

The critical Reynolds number Recrit, which is associated with the transition from

laminar to turbulent flow is extremely problem dependent. For the flow through a

circular pipe it is approximately 2300.
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1.5 Boundary Layer

The flow field around a submerged body can be divided into the boundary layer and

the region outside the boundary layer. The boundary layer is a thin region adjacent

to the surface of the solid body, where the fluid flow is dominated by viscous forces

(friction). Outside the boundary layer, the effect of the fluid viscosity is negligible

(potential flow).

In a boundary layer we often observe transition from laminar to turbulent flow.

Laminar boundary layers are thinner than turbulent ones. Skin friction is smaller

in laminar boundary layers than in turbulent ones.
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flow separation

laminar turbulent

average velocity

transition

boundary layer thickness

exact velocity

v∞
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1.6 Bernoulli Equation for Incompressible Flow

Consider a stream tube of infinitesimal thickness in steady inviscid fluid flow:

v + dv
dA dA + d2A

v

p dA

(p + dp)(dA + d2A)
in out

ds

streamline
fixed control volume

By definition mass transport along the tube is constant: ṁ = ρ dA v = const.

Conservation of momentum in flow direction renders

0 = p dA − (p + dp)(dA + d2A) + (ρ dA v) v − (ρ dA v) (v + dv).

Neglect of higher order terms gives the Euler equation

0 = dp + ρ v dv . (1.12)

Using ρ = const. and integrating along a streamline between points A and B we

obtain for incompressible fluid flow

0 =
∫ B

A
dp + ρ

∫ B

A
v dv = pB − pA +

1

2
ρ (v2

B − v2
A) .

The Bernoulli equation for incompressible flow follows as

pA +
1

2
ρ v2

A = pB +
1

2
ρ v2

B . (1.13)
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1.7 Pressure Distribution and Flow Separation

Consider the incompressible fluid flow around a sphere and assume attached flow.

The stream tubes passing over the surface of the sphere are longer and narrower

than the others. Those fluid particles, which travel from point A to B and then on

to C are first accelerated and then decelerated, i.e. v∞ = vA = vC < vB . It then

follows from (1.13), that these particles encounter first a drop and then an increase

of pressure, i.e. patmos = pA = pC > pB . At the same time, they have to work

against skin friction on the surface of the solid sphere. Between point B and C, both

the adverse pressure gradient and the skin friction slow down the particles.

Therefore, the attached flow pattern is only physically possible if the adverse

pressure gradient is sufficiently small. Otherwise, the particles are decelerated and

finally move in the opposite direction, which causes flow separation. Flow separation

creates a wake region dominated by vortices.

attached flow separated flow with vortices

A B C

pressure distribution
resulting pressure drag

The integral of the pressure over the surface of the solid sphere renders the force

which is exerted by the fluid flow on the submerged sphere. This force is denoted as

the pressure drag and must not be confused with the skin friction. For attached flow,

the pressure drag is zero. However, flow separation typically results in a pressure

drag which is significantly larger than skin friction drag. This is due to the failure

of the flow to recover the high pressure at the rear of the body.
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The flow in turbulent boundary layers possesses more kinematic energy than

laminar flow, and therefore has a greater potential to overcome adverse pressure

gradients. Thus, turbulent boundary layers are often created deliberately (dimples

on golf ball) in order to repress separation and consequently reduce the pressure

drag (despite the increase in friction drag the overall drag reduction is significant).

laminar boundary layer turbulent boundary layer

separation point separation point
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1.8 Airfoil Fundamentals

Geometry and Terminology

mean camber
chord line

max. camber

thickness

leading edge

trailing edge

angle of attack α

freestream
velocity v∞ chord c

The angle of attack α is defined as the angle between the freestream velocity and

the chord line. The latter corresponds to the straight line connecting the leading

and the trailing edges.

The NACA four digit code describes the airfoil geometry:

NACA 2 4 12
maximum thickness in percent of chord

location of maximum camber in tenth of chord

maximum camber in percent of chord

National Advisory Committee for Aeronautics (precursor to NASA)

Note that, besides this classical family of airfoils, there are several other series.

Modern airfoils, such as the supercritical airfoil, are typically designed with com-

plex computer analysis tools for specific requirements and feature very individual

geometries.
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Generation of Lift and Origin of Drag

We consider the airflow past an airfoil. For simplicity, we assume incompressibility

of the air (Ma∞ < 0.3).

A

B

C D

stagnation point
flow separation

The streamlines passing over the top of the airfoil are longer, the space between

them is narrower, than at the bottom. The air particles flowing over the airfoil

evidently need to accelerate more than those passing underneath, i. e.

vA = vC = v∞ < vD < vB . (1.14)

It then follows from (1.13) that

pA = pC = patmos > pD > pB . (1.15)

In the stagnation point, we have v = 0 and thus p > patmos . We obtain a qualitative

pressure distribution as displayed below.

pressure
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The integration of the pressure renders the lift force L (perpendicular to v∞), the

pressure drag force Dp (parallel to v∞) and the moment M . The moment M depends

on the choice of point A.

ADp

L

M

For subsonic flows, the total drag force acting on the airfoil includes the pressure

drag Dp and the skin friction drag Df due to the air viscosity, i. e.

D = Dp + Df . (1.16)

The effect of skin friction in lift direction is negligible. For transsonic and supersonic

flows, another drag component is observed, which arises from the formation of shock

waves, see Section 1.12.

For a given airfoil geometry, lift and drag forces depend on the angle of attack

α and the velocity v∞. Note that there exists a point A, such that M is the same

for all angles of attack α. This point is called the aerodynamic centre of the airfoil

and is of crucial importance in the design of aeroplanes.

Note also that lift can be generated with bodies of very primitive geometries as

shown below.
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Aerodynamic Coefficients

For the characterisation of airfoil geometries, we introduce coefficients which are

independent of the airfoil size and the velocity v∞

α

c

b

v∞
lift: Cl =

L

q∞ c b
(1.17)

drag: Cd =
D

q∞ c b
(1.18)

moment: Cm =
M

q∞ c2 b
(1.19)

The dynamic pressure q∞ in the stagnation point is obtained from (1.13)

patmos + 0 +
1

2
ρ v2

∞
= patmos + q∞ + 0 ⇒ q∞ =

1

2
ρ v2

∞
(1.20)

The aerodynamic coefficients Cl, Cd, Cm depend primarily on the angle of attack α.

In the range of very large velocities, they also depend on the Reynolds number Re

and the Mach number Ma.

For the design and study of airfoils, it is useful to introduce the drag coefficients

Cd,f and Cd,p, which relate to friction drag and pressure drag, respectively, i. e.

Cd,f =
Df

q∞ c b
, Cd,p =

Dp

q∞ c b
. (1.21)

Thus, with (1.16), we have for subsonic flow

Cd = Cd,f + Cd,p . (1.22)
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Airfoil Lift Curve

By measuring the lift force L for different angles of attack α (wind tunnel tests), we

can obtain the characteristic lift curve of a specific airfoil.

α
αL=0

Cl

Clα

1

increasing Re

cambered airfoil

symmetric airfoil

αstall

For reasonable angles of attack, we observe a linear relation between Cl and α. For

symmetric airfoils (zero camber), we clearly have zero lift at α = 0. The derivative

of Cl with respect to α is denoted as Clα.

A good approximation of Cl(α) may be written as

Cl(α) = Clα · (α − αL=0) . (1.23)
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The sudden drop of the lift coefficient at αstall is due to flow separation before the

trailing edge. This destroys the desired pressure distribution over the airfoil surface

and may lead to the complete loss of lift: We say “the airfoil stalls”.

An increase of the Reynolds number extends the turbulent boundary layer and

thereby represses undesired flow separation. This typically leads to larger Clmax.

flow separation

“stall”
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Airfoil Drag Polar

Similarly to the lift, we can measure the drag force for different angles of attack in a

wind tunnel experiment. The graph, which displays the drag coefficient Cd against

the lift coefficient Cl, is known as the drag polar of the airfoil.

Cl

Cd

increasing Re

cambered airfoil

symmetric airfoil

For interpretation, recall the linear relation between Cl and α. The pressure drag

or “separation drag” Cd,p is closely related to the airfoil thickness “seen” by the

coming flow and denoted by h in the diagram below. Therefore, Cd,p becomes larger

as α (and Cl) increase. The skin friction drag Cd,f is fairly independent of α and

dominates the drag associated with small α (small Cl).

Higher Reynolds numbers suppress flow separation and allow to achieve larger

lift coefficients with less pressure drag despite the increase in skin friction drag.

h

α
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Drag and Lift Coefficients of NACA 2412
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1.9 High Lift Systems

For certain manoeuvres, such as take-off and landing, very high lift systems are de-

sirable. However, we have seen in the drag polar, that high lift is typically associated

with large drag forces, which need to be overcome by engine thrust. Therefore, in

order not to jeopardise the cruising performance of the aeroplane, we desire high

lift systems that can be activated when needed, e. g. to allow short ground roll at

take-off. For that purpose, a variety of flaps have been developed.
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For most flap types, the increase of the lift coefficient is due to the increased camber

of the airfoil and the increased angle of attack with respect to the new chord line c′.

The flap deflection is typically denoted as δf .

v∞

αα′

max camber
(max camber)’

c

c′

δf

plain flaps:

• The optimum flap chord ratio is approximately
cf

c
= 0.25.

• The optimum flap angle is approximately 60 deg.

• The maximum achievable increment in Clmax is approximately 0.9.

split flaps:

• The optimum flap chord ratio varies with the airfoil thickness: 0.3 <
cf

c
< 0.4.

• The optimum flap angle is approximately 70 deg.

• The maximum achievable increment in Clmax is approximately 0.9.

slotted flaps:

• The optimum flap chord ratio is approximately
cf

c
= 0.3.

• The optimum flap angle is approximately 40 deg for single slots and 70 deg

for double-slotted flaps.

• The maximum achievable increment in Clmax is approximately 1.5 for single

slots and 1.9 for double-slotted flaps.
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powered systems:

• Directed air jets blown through nozzles near the trailing edge can act as “vir-

tual” flaps.

• Distributed suction over the wing surface may be used to delay flow separation.

• Powered high lift systems have the capability to provide values of Clmax large

enough to achieve extremely short takeoff ground roll of the aircraft.

α

Cl

δf = 0

δf = 20 deg

δf = 40 deg

The effect of standard flaps on the slope Clα of the lift curve is typically negligible.

Introducing the flap effectiveness factor τ , which can be determined from wind

tunnel tests, the lift coefficient of an airfoil with a flap may be written as

Cl = Clα (α − αL=0 + τ δf) . (1.24)

The dependency of the flap effectiveness on the flap deflection δf is beyond the scope

of this course.
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Clmax

(1) airfoil only

(2) plain flap

(3) split flap

(4) leading edge slat

(5) single-slotted flap

(6) double-slotted flap

(7) double-slotted flap
combined with
leading edge slat

(8) like (7) with
boundary layer suction
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1.10 Finite Wings

Geometry and Terminology

leading edge

trailing edge

area S

root chord cr
tip chord ct

ΛLE

Λc/2

span b

mid-chord line

aspect ratio AR =
b2

S
(1.25)

taper ratio λ =
ct

cr

(1.26)

The angles ΛLE and Λc/2 or Λc/4 are known as sweep angles.

A wing with a large span b and small chord lengths has a large aspect ratio AR.

The imaginary wing with AR → ∞ is known as the “infinite wing”.

A rectangular wing “has no taper” (λ = 1); a delta wing has a taper ratio λ = 0.

Lift, drag and moment coefficients for the finite wing are denoted as CL, CD, CM to

avoid confusion with airfoil data Cl, Cd, Cm.
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Wing Tip Vortices and Induced Angle of Attack

A wing generates lift by creating a pressure difference between the upper and lower

surfaces. Wing tip vortices are generated as the high-pressure air on the lower wing

surface seeks the relatively lower pressure on the upper surface. These vortices

induce a downward component of velocity called downwash w.

v∞

wing tip vortices

wing tip vortex

downwash w

front view of wing

high pressure

low pressure

v∞
vlocalw

chord line

α

αi

αeff

The velocity vlocal “seen” by the wing consists of the superposition of the velocity

v∞ and the downwash w. It follows that the effective angle of attack αeff is related

to α and to the induced angle of attack αi by

αeff = α − αi . (1.27)
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Induced Drag

According to (1.27), the effective angle of attack αeff between the velocity vlocal and

the chord line of the wing section is smaller than α. Relating the direction of the

lift force to the effective freestream velocity vlocal corresponds to a rearward rotation

of the lift force by αi. However, we would like to continue to define the directions

of lift and drag forces L and D with respect to the original freestream velocity v∞.

Thus, we see that the tilted lift force L′ contributes a certain component of drag.

This drag is known as the induced drag Di.

v∞

vlocalw

chord line

α

αi

αi

αeff

L

L′

L1

D

D′

D1

Di

R

R1

The vectors L1, D1, R1 represent,

respectively, lift, drag and total

aerodynamic force of the infinite

wing (no downwash).

The angle αi is typically very small. Generally, we also have L >> D. Thus,

L′ = L , Di = αi L . (1.28)
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Under certain assumptions, such as incompressible flow, it can be derived that

αi =
CL

π eAR
, (1.29)

where e is the geometry dependent span efficiency factor. Typically, 0.9 < e < 1;

for an elliptic wing e = 1. Note that αi is obtained in radians.

Equation (1.29) reflects the following correlations:

• A large lift coefficient CL implies a large pressure difference between lower and

upper wing surfaces. This causes a strong downwash, which, turn produces a

large αi.

• The smaller the aspect ratio AR, i. e. the shorter the wing, the more dom-

inant are the wing vortices. This causes a strong downwash and leads to a

large αi.

Defining the induced drag coefficient as CD,i =
Di

q∞ S
(1.30)

and using (1.28), (1.29) and (1.17) for the finite wing, we obtain

CD,i =
CL

π eAR

L

q∞ S
=

C2
L

π eAR
. (1.31)

It follows for the total drag CD of a finite wing at subsonic speeds that

CD = Cd +
C2

L

π eAR
. (1.32)

The airfoil section drag or profile drag Cd accounts for skin friction and pressure

drag and is given by (1.22). Recall the dependency of Cd on the lift coefficient Cl

of the airfoil. However, the variation of Cd is typically significantly smaller than the

induced drag coefficient CD,i.

The most effective remedy for induced drag is the design of large aspect ratio wings.

Also the addition of vertical surfaces at the wing tips (“winglets”) reduces the

strength of the wing tip vortices and thereby decreases the induced drag.

Page 29 shows a qualitative representation of the drag polar of a finite wing.
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Lift of the Finite Wing

In Equation (1.28) we have L = L′ . Furthermore, we can write

L = q∞ S CL(α) , L′ = q∞ S Cl(αeff) . (1.33)

Thus, we obtain

CL(α) = Cl(αeff) . (1.34)

Using (1.23), (1.27) and (1.29), we can deduce

CL(α) = Cl(α − αi)

= Clα · (α − αi − αL=0)

= Clα ·
(

α − CL(α)

π eAR
− αL=0

)

. (1.35)

Rearranging (1.35) gives

CL(α) = CLα · (α − αL=0) with CLα =
Clα

1 +
Clα

π eAR

. (1.36)

For α = αL=0 no lift is generated, thus there are no wing tip vortices and conse-

quently, αL=0 is identical for the finite wing and the airfoil (“infinite wing”). From

(1.36) we understand that CLα < Clα .

It follows that CL(α) < Cl(α) , which is consistent with the original starting point

of the reduced effective angle of attack.
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Drag Polar and Lift Curve

CD

CL

decreasing AR

infinite wing

finite wings

α

Cl

CL

Clα
CLα

αL=0

infinite wing

finite wing

11
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Estimation of CL and CD for the Finite Wing

Given the lift curve and the drag polar of the NACA 2412 airfoil on pages 18 and

19 as well as the wing geometry properties AR = 10 and e = 0.95, estimate the lift

and drag coefficients CL and CD of the corresponding finite wing for the angle of

attack α = 4 deg with Re < 3 · 104.

Solution:

From the lift curve of the NACA 2412 airfoil we deduce

αL=0 = −2 deg and Clα = 0.1 deg−1 .

From (1.36) we get

CLα =
0.1 deg−1

1 +
0.1 180

π
π 0.95 10

= 0.839 deg−1

and

CL = 0.839 (4 − (−2)) = 0.503 .

With (1.34)

Cl(αeff) = CL(α) = 0.503 .

Thus, we get from the drag polar of the NACA 2412 airfoil that

Cd(Cl = 0.503) = 0.0065 .

Finally, we use (1.32) to obtain

CD,i =
0.5032

π 0.95 10
= 0.00849

CD = 0.0065 + 0.00849 = 0.0150 .

Note that even for this moderate angle of attack the induced drag coefficient CD,i is

larger than the profile drag coefficient Cd.
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1.11 Aircraft Aerodynamics

Preliminaries

The entire aeroplane consists of the wings, the tail, the fuselage and possibly other

components such as engine nacelles, stores, weapons.

We introduce the wing reference area S as illustrated.

S

The coefficients CL and CD for the total aeroplane must not be confused with those

for the wing. Let L and D denote the lift and drag forces acting on the entire

aeroplane, then

CL =
L

q∞ S
, CD =

D

q∞ S
. (1.37)

Using (1.20), (1.37) and (1.37), we can solve for the freestream velocity to obtain

v∞ =

√

2 L

ρS CL

. (1.38)

The slowest speed an aeroplane can fly in straight, level, unaccelerated flight is called

the stall speed vstall. In straight, level flight, we have L = W , where W is the weight

of the aeroplane. The minimum of v∞ is achieved with maximum CL. Therefore,

vstall =

√

2 W

ρS CLmax

. (1.39)
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Aircraft Drag Polar

The drag polar of an aeroplane can be obtained from wind-tunnel experiments

or flight tests. It can generally be approximated quite accurately by a quadratic

parabola. Therefore, there exists a factor ẽ, such that the drag polar for an aircraft

can be represented as

CD = CDmin +
(CL − CLmin(drag))

2

π ẽ AR
. (1.40)

Equation (1.40) accounts for the fact that

the minimum drag CDmin of a well designed

aeroplane is associated with a small positive

lift CLmin(drag) > 0; i. e. zero lift is usually

associated with a nose-down orientation of

the aircraft, which does not render minimum

drag.

CD

CDmin

CL

CLmin(drag)

A convenient approximation of the aircraft

drag polar (1.40), sufficiently accurate for

most calculations, is given by

CD = CD0 +
C2

L

π eAR
, (1.41)

where e denotes the Oswald efficiency factor

and must not be confused with the span ef-

ficiency factor. Always e ≤ 1 and for many

aircraft, e ≈ 0.8.

CD

CL

CD0
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In Equation (1.41), the constant CD0 is called zero lift drag coefficient or parasite

drag and includes zero lift pressure drag, skin friction and interference drag. In-

terference drag is generated when more than one body (e.g. stores on a wing) are

placed in the same flow field. The coefficient CD0 is a very important aerodynamic

characteristic of an aeroplane (see diagram on page 36).

The second term in (1.41) represents the drag due to lift. Thus, it includes the

induced drag on all lifting surfaces (mainly wings and horizontal tail) and the incre-

ment of the pressure drag when lift is generated. It is denoted as aircraft induced

drag CD,i, but must not be confused with the “pure” induced drag of the wing in

Equation (1.31)

CD,i =
C2

L

π eAR
. (1.42)
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Total Aircraft Drag Force

We are now in a position to express the total drag force acting on an aeroplane in

straight level unaccelerated flight as a function of the freestream velocity v∞. Using

(1.37) and (1.41), we can deduce

D = CD q∞ S =

(

CD0 +
C2

L

π eAR

)

q∞ S = CD0 S q∞ +
L2

π eAR S q∞
. (1.43)

With (1.20) and L = W from straight level unaccelerated flight, it follows that

D =
(

1

2
CD0 ρ S

)

v2
∞

+

(

2 W 2

π eAR ρS

)

1

v2
∞

. (1.44)

︸ ︷︷ ︸

parasite drag
︸ ︷︷ ︸

induced drag

Equation (1.44) describes how changes in altitude (ρ), load (W ) and configuration

(CD0, S, e, AR) affect an aircraft’s total drag.

Note that different points on the D-v∞ diagram are associated with different angles

of attack. As v∞ increases, α decreases.

D

v∞vstall

parasite drag

induced drag

total drag

stall limit
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At the drag minimum we have

d D

d v∞
= CD0 ρ S v∞ − 4 W 2

π eAR ρS

1

v3
∞

= 0 . (1.45)

Solving for CD0 and eliminating v∞ with (1.20), (1.37) and L = W gives

CD0 =
4 W 2

π eAR (ρ S)2

1

v4
∞

=
W 2

π eAR S2

1

q2
∞

=
C2

L

π eAR
. (1.46)

Recalling (1.42) it follows that in the drag minimum the induced drag is equal to

the parasite drag

D ⇒ MIN → CD0 = CD,i . (1.47)

With L = W we may write for straight, level and unaccelerated flight

D = W
D

L
= W

CD

CL

=
W

CL/CD

. (1.48)

Thus, the drag is inverse proportional to the lift over drag ratio. Consequently, the

minimum of drag must coincide with the maximum of CL/CD, which explains the

fundamental importance of (CL/CD)max (see diagram on page 36). To verify this,

we express the ratio CL/CD as a function of CL, i. e.

CL

CD

=
CL

CD0 +
C2

L

π eAR

, (1.49)

and equate the derivative with zero to obtain

d (CL/CD)

d CL

=
1

CD0 +
C2

L

π eAR

−
CL

2 CL

π eAR
(

CD0 +
C2

L

π eAR

)2 = 0 , (1.50)

which can be simplified to give the same result as (1.47), i. e.

L/D ⇒ MAX → CD0 = CD,i . (1.51)

Thus, when the total drag of an aircraft is minimal, the parasite and the induced

drag are equal and the lift over drag ratio is maximal.



36 Basic Aerodynamics – wgd

Historical Developments

16

17,18

16

17,18
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(1) SPAD XIII (2) Fokker D-VII (3) Curtiss JN-4

(4) Spirit of St. Louis (5) Lockheed Vega

(6) Douglas DC-3 (7) Boeing B-17

(8)Boeing B-29 (9)Mustang P-51 (10) Lockheed P-80



38 Basic Aerodynamics – wgd

(11) North American F-86
(12) Lockheed F-104

Starfighter

(13) McDonnell F-4

Phantom II

(14) Boeing B-52
(15) General Dynamics

F-111
(16) Cessna 172 Skyhawk

(17) Boeing B-747 (18) Airbus A-380
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1.12 Remarks on Trans-/Supersonic Flight

Airfoil Critical Mach Number and Wave Drag

Consider the two dimensional flow around an airfoil. The critical Mach number Macr

is defined as the smallest Mach number Ma∞, for which there is at least one point

of the flow field where the local Mach number is Ma = 1. Due to the larger velocity

differences in the flow field, the critical Mach number is larger for thick than for

thin airfoils.

The drag divergence Mach number Madrag div of an airfoil is the smallest Mach num-

ber Ma∞, for which a shock wave is generated in the flow field. The sudden increase

of the drag as Ma∞ is increased beyond Madrag div is denoted as the wave drag. This

is partly due to the dissipative nature of the shock wave itself and partly due to

a significant increase of separation drag caused by the pressure discontinuity along

the shock wave. The shock wave pattern changes as the velocity is increased even

further. Shock waves also significantly affect the generation of lift.

Note that generally Macr < Madrag div < 1 . (1.52)

For Ma∞ > Madrag div, the drag coefficient for an airfoil becomes

Cd = Cd,f + Cd,p + Cd,wave . (1.53)

For the entire aeroplane, the effect of wave drag may be included in (1.41). Thus,

the discussions in the next chapters do not generally require to distinguish subsonic

or supersonic flight.
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Ma∞

Macr

Madrag div

1

Cd

Cd,f +Cd,p

v∞

v∞

v∞

v∞

Ma∞ < Macr

Macr < Ma∞ < Madrag div

Ma∞ > Madrag div

Ma∞ > 1

Ma>1

Ma>1

Ma>1

Ma<1

Ma<1

Ma<1

shock wave

shock wave

separated flow
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Sweep Angle

By sweeping the wings of a subsonic aircraft, the Mach numbers Macr and Madrag div

are increased, i. e. the onset of wave drag is delayed to higher velocities.

We typically obtain

Maairfoil
cr < Maswept wing

cr <
Maairfoil

cr

cos Λ
. (1.54)

Λ
v∞

v∞ cos Λ

However, note that sweeping the wing adversely affects the generation of lift. Due

to the different aerodynamic loading, wing sweep also requires stiffer and stronger

wing structures.

A reliable investigation of the behaviour of swept wings needs to be based on wind

tunnel experiments or on sophisticated computer analysis.
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Extreme Sweep and Delta Wings for Supersonic Speeds

In supersonic flight, the wave drag is reduced significantly if the sweep angle Λ is

chosen smaller than the Mach cone angle µ. The velocity component normal to the

leading edge is then subsonic. This tends to reduce the intensity and the complexity

of the shock wave pattern for the aircraft.

µ

v∞t
a t

delta wing

Mach cone

Ma

CD

drag coefficient

for a cone



Chapter 2

Aircraft Performance

2.1 Preliminaries

Some Geometry and Terminology

α

γ
Θ

φ

W

D

L

T

horizon

aircraft reference line

thrust

freestream v
∞

flight direction

pitch angle Θ

thrust angle φ

angle of attack α

flight path angle γ

engine thrust T
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Basic Equations of Motion

For simplicity, we regard the aircraft as a point mass m with two degrees of freedom

(horizontal and vertical translation).

Using Newton’s second law “force = mass × acceleration” and performing the sum-

mation of the forces parallel and perpendicular to the flight path, we obtain

m
d v∞
d t

= T cos(α + φ) − D − W sin γ (2.1)

m
v2
∞

r
= −T sin(α + φ) − L + W cos γ , (2.2)

where
d v∞
d t

is the acceleration of the aircraft in flight direction and
v2
∞

r
is the

acceleration due to the local curvature of the flight path (centripetal acceleration).

r

v∞

flight path
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Load Factor

We introduce the load factor n as the ratio of lift force over aeroplane weight, i. e.

n =
L

W
. (2.3)

We will see that in different flight manoeuvres the load factor takes different values.

At this stage, it is convenient to rewrite the expression (1.44) such that it holds, at

least approximately, for all flight manoeuvres. To this end, we use (2.3) in (1.43).

With (1.20), i. e. q∞ =
1

2
ρ v2

∞
, we then obtain

D =
(

1

2
CD0 ρ S

)

v2
∞

+

(

2 (nW )2

π eAR ρS

)

1

v2
∞

. (2.4)

We may also express the velocity v∞ in terms of nW rather than L. The expression

(1.38) may then be rewritten as

v∞ =

√

2 nW

ρS CL

. (2.5)
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2.2 Brief Introduction to Aeroplane Propulsion

Before we enter into the detailed discussion of aircraft performance, we ought to

have a basic understanding of aircraft propulsion systems. Clearly, we can expect

the qualitative and quantitative properties of the aircraft engines to have substantial

impact on the overall performance of the aeroplane. However, the detailed discussion

of aircraft engines is beyond the scope of this course.

The most commonly known types of propulsion systems include

• propeller with piston engine,

• turbojet engine,

• turbofan engine,

• turboprop engine,

• ramjet,

• rocket engine.

On the following pages we present some basic information on the piston propeller

and the gas turbine engines. The ramjet may be seen as a primitive turbojet engine

without any rotating components. The incoming air is compressed solely by the

high freestream velocity. Therefore, ramjets only work at very large speeds and are

rather impractical. Rocket engines were initially mounted on high speed aeroplanes,

but were quickly replaced by the more efficient jet engines.



wgd – Aircraft Performance 47

Propeller with Piston Engine

Until about 1940, the piston engine represented the only practical means of aero-

plane propulsion. It was sufficiently powerful and, at the same time, light enough

to be mounted on an aeroplane. It was continuously further developed, such that

several engine types are now available. The main differences include the different

types of cooling systems and different piston arrangements. However, as shown in

the diagram, the specific fuel consumption SFC is very similar for most engines. It

decreases slightly with the engine power. SFC denotes the weight (or mass!) of fuel

burnt per time unit to generate a certain amount of power. For piston engines, SFC

is nearly independent of the throttle setting, i. e.

SFC =
− dWfuel/dt

P
= const. (2.6)

In English units SFC (also known as brake specific fuel consumption BSFC) is

measured in [lb/(bhp h)]. In the SI system, we typically use [N/(kW h)]. With

g = 9.81 m s−2, we have

1
lb

bhp h
· g =

0.453592 · 9.81

0.7457

N

kW h
= 5.97

N

kW h
. (2.7)

A valid guess for any piston engine is SFC = 0.5 lb (bhp h)−1, which corresponds

to approximately

SFC = 3
N

kW h
. (2.8)

reciprocating
piston engine
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Mounted to the shaft of the piston engine is the propeller, which consists of a

number of blades. These blades have airfoil-like sections and are generally pitched

significantly. The pitch angle β denotes the angle between the section chord line and

the plane of rotation. The pitch of modern propellers changes with the radius. Many

propellers have variable pitch (pilot-controlled pitch), as opposed to fixed pitch.

The airflow around the propeller blades is extremely complicated, since it involves

induced flow velocities (similar to the finite wing) as well as rotational flow and

substantial interference phenomena. It is therefore evident that the engine power P

can not be transformed into propulsive power available PA without loss. We may

write

PA = η P , (2.9)

where η is the propeller efficiency factor. It can be shown with experiments that η

depends on the propeller geometry (parameter β for propellers with variable pitch)

and on the so-called dimensionless advance ratio J , which is defined as

J =
v∞
nD

, (2.10)

where n is the number of rotations per time unit and D is the propeller diameter.

The advance ratio corresponds to the ratio of the velocity with which the propeller

advances through the air over the tangential velocity of the blade tips in the plane

of rotation. The diagram below shows the typical efficiency for a propeller with

variable pitch.
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For the discussion of airplane performance we need the dependency of power avail-

able PA on the velocity v∞. Assuming variable pitch which is always adjusted to the

aeroplane speed v∞, we obtain the qualitative diagram displayed below. For rough

estimates of the airplane performance, we may approximate the power available di-

agram by the straight line PA = const. as shown. Note the drop of PA as the Mach

number Ma∞ = v∞/a leaves the incompressibility range.

PA

v∞

a

For piston propellers, the dependency of power available on altitude is approximated

fairly well by assuming that PA is proportional to the air density, i. e.

PA, alt =
ρalt

ρsea

PA, sea , (2.11)

where the subscripts “sea” and “alt” denote quantities at sea level and at some

higher altitude, respectively. We conclude from ρalt/ρsea < 1 that power available

decreases as the altitude is increased.
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Gas Turbine Engines

In 1903, the first gas turbine was constructed that was able to produce more power

than needed to run its own components. However, the first substantial working

gas turbine engine was constructed as late as 1937 and the first aeroplane with a

turbojet engine flew in 1939. The first operational jet fighter began service in 1942.

The first jet propelled passenger flight took place in 1952 and may be seen as the

beginning of mass travelling. Today most commercial and military aeroplanes em-

ploy gas turbine engines.

We distinguish the turbojet, the turbofan and the turboprop engines. The most

characteristic feature of a gas turbine is the continuous nature of the thermody-

namic processes in the gas turbine as opposed to the reciprocating engine.

turbojet engine: The three basic components of the turbojet engine are the com-

pressor, the burner and the gas turbine.

1 2 3 4 5

1 inlet diffuser

2 compressor

3 burner

4 turbine

5 exhaust nozzle

The compressor consists of a combination of rotating and stationary blades. In the

burner, the fuel is injected into the compressed air and the mixture is burnt, whereby

heat is generated and the volume of the gas mixture expands significantly. Typically

the ratio of air to fuel by weight is about 60/1. However, only approximately 25% of
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the air is used to support combustion. The remainder bypasses the fuel nozzles and

mixes downstream of the burner to cool the hot gases before they enter the turbine.

The mixed air, still very hot (about 1100◦C), passes through the turbine, which is

composed of rotating and stationary blades. The turbine extracts energy from the

moving gases, which is used to drive the compressor. In fact, nearly 75% of the

combustion energy is required by the compressor. The remaining 25% represent the

kinetic energy of the exhaust, which provides the thrust. The number of rotations

per minute of the turbine wheel is generally in the order of 10,000 rpm. Turbojet

engines can be designed to work at speeds far beyond the sound barrier.

A turbojet engine may be equipped with an afterburner, which relies on injecting

fuel into the extended exhaust nozzle (afterburner duct). Since only 25% or so of

the air is used to support combustion in the burner, there is sufficient oxygen in the

turbine exhaust mixture to support additional burning. The additional heat further

expands the exhaust and thereby increases the exhaust velocity. Afterburning can

more than double the thrust of a gas turbine engine, but at a proportionately greater

increase in fuel consumption.

turboprop engine: This engine may be regarded as a turbojet engine, which is

equipped with a modified gas turbine that extracts nearly all the energy from the

moving gases, leaving only a small residual thrust. This turbine drives not only the

compressor, but also provides the shaft power for the propeller. Alternatively the

compressor and the propeller may be driven by two sequential gas turbines as shown

below.

Due to the fact that turboprops basically represent propellers powered by a gas

engine, their use is limited to speeds far below the sound barrier. However, the de-

velopment of high speed turboprops is ongoing and they are already being employed

for Mach numbers much larger than the incompressibility limit of Ma∞ = 0.3.
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Like turbojets, turboprops may be equipped with afterburners. Note that turboshaft

engines, which work similarly to turboprops, are commonly used to drive the rotors

of modern helicopters.

turbofan engine: The turbofan engine may be regarded as a compromise between

the turbojet engine and the turboprop. The turbines drive the compressor and a

fan, but they do not absorb as much energy as in the turboprop, such that the

exhaust jet provides a major part of the thrust. The fan may be regarded as a

propeller with a large number of blades rotating inside a duct, which suppresses

radial airflow. Such a fan is capable of providing thrust at velocities in the whole

range of subsonic speeds. The ratio by weight of the air that passes through the

fan (secondary flow) to the air that passes through the gas engine (primary flow)

is called the bypass ratio BPR. Early turbofan engines had bypass ratios of around

1/1; the latest engines have ratios of up to 10/1. Turbofan engines are generally

quieter and much lighter and consume less fuel than turbojets. Since the 1970ies,

most commercial aircraft have been equipped with large BPR turbofans, allowing

for fuel efficient subsonic flight with most of the thrust being provided by the fan,

whereas a typical configuration for military aircraft is the low BPR turbofan with

afterburners.

high BPR turbofan with short ducts

low BPR turbofan with long ducts



wgd – Aircraft Performance 53

For turbojets and turbofans the fuel consumption is expressed in terms of thrust

specific fuel consumption TSFC. This expression denotes the weight of fuel burnt per

time unit to generate a certain amount of constant thrust. In English units, TSFC

is typically given in terms of mass rather than forces, i. e. [lb/(h lb)], whereas in

SI units we have [N/(h N)]. However, due to mass (or force) cancelling out of the

expression, the dimension of TSFC is always 1/time, and there is no need for unit

conversion. Independently of the throttle setting, the fuel burnt per unit of time

and thrust is nearly constant for turbojets and may be approximated as constant

for turbofans, i. e.

TSFC =
− dWfuel/dt

T
= const. (2.12)

The diagram below shows some representative values for TSFC. We note that TSFC

is lower for very strong engines than it is for smaller ones.
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For the study of airplane performance, we need to know the dependency of thrust

available TA on the flight velocity (v∞) and on the altitude (ρ). At constant altitude,

the thrust available of turbojets and turbofans typically decreases slightly as the

velocity increases. Depending on the air pressure, this decrease may amount to

30% or so. For rough estimates and for the qualitative understanding of the flight

mechanics of a specific aeroplane, it is sufficiently accurate to approximate the thrust

available by TA = const. at a given altitude. As the altitude is changed, TA is

proportional to the change of the air density, i. e.

TA, alt =
ρalt

ρsea

TA, sea , (2.13)

where the subscripts “sea” and “alt” denote quantities at sea level and at some

higher altitude, respectively. We conclude from ρalt/ρsea < 1 that thrust available

decreases as the altitude is increased.

TA

v∞
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2.3 Straight, Level and Unaccelerated Flight

Thrust Required

We will see that the study of the simplest of flight situations, i. e. straight, level

and unaccelerated flight, often abbreviated by “SLUF”, allows to draw a variety of

conclusions about the performance of the specific aeroplane under consideration.

By definition, we have
d v∞
d t

=
v2
∞

r
= 0 , and γ = 0 . (2.14)

Furthermore, we assume that φ + α is small; thus

sin(φ + α) ≈ 0 and cos(φ + α) ≈ 1 . (2.15)

Hence, (2.1) and (2.2) reduce to

T = D , L = W . (2.16)

We conclude that the lift required to sustain SLUF is equal to the weight of the

aeroplane. With (2.3) it follows that the load factor is unity, i. e. n = 1. The

thrust required to sustain SLUF is equal to the drag. Henceforth, we denote the

thrust required as TR.

With (2.16) and (1.48) it follows that TR =
W

CL/CD

. (2.17)

The thrust required is proportional to the inverse of the lift over drag ratio. The min-

imum thrust required is associated with the maximum lift over drag ratio. Equation

(2.17) demonstrates the fundamental importance of the aircraft drag polar, i. e. the

ratio CL/CD , for the choice of the aircraft weight and the aircraft engine.

Recalling (2.4) with n = 1, we note that TR depends on the aircraft weight (W ),

the aircraft configuration (CD0, S, e, AR), the flight altitude (ρ) and the flight

velocity (v∞), i. e.

TR = D =
(

1

2
CD0 ρ S

)

v2
∞

+

(

2 W 2

π eAR ρS

)

1

v2
∞

. (2.18)

︸ ︷︷ ︸

parasite drag
︸ ︷︷ ︸

induced drag
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Power Required and Power Available

Typically, thrust required and thrust available are compared in terms of power,

“power = force × velocity”, therefore,

PR = TR v∞ and PA = TA v∞ . (2.19)

Note that the minimum of power required PR does not coincide with the minimum

of thrust required TR. It can be shown that the velocity associated with the drag

minimum vmin TR
can be constructed from the tangent through the origin as illus-

trated.

With L = W , (1.38) and (2.17) we get from (2.19) that

PR = W
CD

CL

√

2 W

ρS CL

=

√

2 W 3

ρ S

CD

C
3/2
L

, (2.20)

It follows from (2.20) that the minimum power required is associated with the max-

imum of C
3/2
L /CD .

Power required can straightforwardly be expressed as a function of velocity by com-

bining (2.19) and (2.18), i. e.

PR =
(

1

2
CD0 ρ S

)

v3
∞

+

(

2 W 2

π eAR ρS

)

1

v∞
. (2.21)
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P

PA

PR

v∞

vstall

vmin

vmin PR

vmin TR

vmax

jet-propelled airplane

Note that flight at different velocities v∞ with vmin ≤ v∞ ≤ vmax is associated with

different angles of attack and different throttle settings. In order to reduce the flight

velocity the pilot generally has to increase the angle of attack and adjust the throttle

setting such that the power provided by the engine equals PR.
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Three Important Velocities

First we rearrange (1.42) to give CL =
√

π eAR CD,i . (2.22)

With TR = D , we conclude from (1.47), (1.51) and (2.22) that, for the minimum

of thrust required,

TR ⇒ MIN →







v∞ = vmin TR

CD,i = CD0

CL

CD

= (CL/CD)max

CL =
√

π eAR CD0 .

(2.23)

Using (2.21), we can derive for the minimum of power required that

dPR

dv∞
=

d(TR v∞)

dv∞
=

3

2
CD0 ρ S v2

∞
− 2 W 2

π eAR ρS

1

v2
∞

= 0 . (2.24)

It follows that

3 CD0 =

(

2 L

S ρ v2
∞

)2
1

π eAR
=

C2
L

π eAR
= CD,i . (2.25)

Recalling (2.20) and (2.22) we may summarise

PR ⇒ MIN →







v∞ = vmin PR

CD,i = 3 CD0

C
3/2
L

CD

=
(

C
3/2
L /CD

)

max

CL =
√

3 π eAR CD0 .

(2.26)
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Furthermore, we introduce the velocity v̂∞ , which renders a maximum of (C
1/2
L /CD) .

It is convenient to introduce v̂∞ at this stage, even though we will not need it before

the discussion of range and endurance in Section 2.7. With (1.41) the expression

(C
1/2
L /CD) may be written as a function of CL, i. e.

C
1/2
L

CD

(CL) =

√
CL

CD0 +
C2

L

π eAR

. (2.27)

At the maximum we have

d
(

C
1/2
L /CD

)

dCL

=
1

2
√

CL (CD0 + CD,i)
−

√
CL

(CD0 + CD,i)
2

2 CL

π eAR
= 0 . (2.28)

Resubstituting (1.42) into (2.28), we find CD0 = 3 CD,i . (2.29)

Thus, using (2.22), we can state that

for flight at v∞ = v̂∞ →







CD,i =
1

3
CD0

C
1/2
L

CD

=
(

C
1/2
L /CD

)

max

CL =

√
π

3
eAR CD0 .

(2.30)

The velocities vmin TR
, vmin PR

and v̂∞ can then be found by using n =
L

W
= 1 and

the expression for CL given in (2.23)4, (2.26)4, (2.30)3, respectively, in Equation (2.5).

We obtain vmin PR
< vmin TR

< v̂∞ . (2.31)

A graphical interpretation of the velocities is shown on the next page.
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vmin PR

vmin TR

v̂∞

v∞

v∞

PR

TR

tangent to graph
through origin

tangent to graph
through origin
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Effect of Altitude on Power Diagrams

Let the subscripts “sea” and “alt” denote quantities at sea level or at a higher

altitude, respectively. With (1.38) we can then relate the flight velocities valt and

vsea as follows

valt =

√

2 W

ρalt S CL

=

√

ρsea

ρalt

√

2 W

ρsea S CL

=

√

ρsea

ρalt

vsea . (2.32)

Similarly, equation (2.20) renders

PR, alt =

√

2 W 3

ρalt S

CD

C
3/2
L

=

√

ρsea

ρalt

√

2 W 3

ρsea S

CD

C
3/2
L

=

√

ρsea

ρalt

PR, sea . (2.33)

Thus, the graph for PR at a certain altitude is obtained from the graph at sea level

by scaling both axis with the factor
√

ρsea/ρalt > 1 .

For power available of the propeller-driven aeroplane, we recall from (2.11) that

PA, alt =
ρalt

ρsea

PA, sea . (2.34)

For the jet-propelled aeroplane a similar relation as given by (2.13) holds for thrust

available. Combining (2.13) and (2.19) renders (2.34). Thus, power available at a

specific altitude is generally obtained by scaling down power available at sea level

with ρalt/ρsea < 1 .

The qualitative diagrams on the next page illustrate that vmax changes significantly

with altitude. The interval [vmin, vmax] becomes smaller as the altitude increases.

Note however, that a higher altitude means larger velocities vmin PR
and vmin TR

.
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jet-propelled aeroplane

P

v∞

vmax,alt vmax,seavmin,altvmin,sea

PR,sea

PA,sea

PR,alt

PA,alt

propeller-driven aeroplane

P

v∞

vmax,alt vmax,seavmin,altvmin,sea

PR,sea

PA,sea

PR,alt

PA,alt
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2.4 Climbing Flight and Flight Envelope

We assume that φ + α is small; thus sin(φ + α) ≈ 0 and cos(φ + α) ≈ 1 . For

straight, unaccelerated climbing flight, (2.1) and (2.2) then reduce to

T = D + W sin γ , L = W cos γ . (2.35)

From (2.35)2, we obtain for the load factor

n =
L

W
= cos γ ≤ 1 . (2.36)

The rate of climb ROC is related to v∞ by

ROC = vclimb = v∞ sin γ . (2.37)

With (2.35), it follows that

ROC = v∞
T − D

W
. (2.38)

We recall that v∞ D = v∞ TR = PR. By replacing T v∞ with power available PA

we obtain the maximum rate of climb for a specific velocity v∞ and altitude, i. e.

ROC =
PA − PR

W
. (2.39)

The term PA − PR is identified as the excess power. The maximum climb rate is

calculated as

ROCmax =
(PA − PR)max

W
. (2.40)

Remark: It follows from (2.36) and (2.4) with PR = v∞ TR = v∞ D that PR depends

on γ. With ROC = v∞ sin γ and PR(v∞, γ) , the Equations (2.38) – (2.40)

are nonlinear in terms of v∞ and γ. For flight path angles γ < 20◦, we may use

n = cos γ ≈ 1 and ignore the dependency of PR on γ. This allows the straightforward

evaluation of γ for a given v∞. 2
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Hodograph for Climbing Flight

v∞

v∞

vmax ROC

ROCmax

P

(PA−PR)max

R
O
C

R
O
C

vhoriz

v∞

γ

γmax

hodograph

The maximum excess power (PA − PR)max and the associated freestream velocity

v∞ = vmax ROC can be obtained graphically by shifting the PA(v∞) curve as illus-

trated.

The hodograph is obtained from the ROC(v∞) diagram by exploiting

vhoriz = v∞ cos γ . (2.41)

Note that the maximum climb angle γmax is not associated with ROCmax and that

the hodograph changes with altitude.

At low velocities v∞, a propeller-driven airplane possesses a larger proportion of

excess power PA − PR than a jet-propelled aircraft. Consequently, ROC at low v∞

and the maximum climb angle γmax are typically larger for propeller-driven airplanes.
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How high can an airplane fly?

The effect of altitude on power required and power available is described by (2.33)

and (2.34), respectively. If h2 > h1 denote two different altitudes, such that

ρ2 < ρ1 , then PR is scaled with
√

ρ1/ρ2 > 1 , whereas PA is scaled with ρ2/ρ1 < 1 .

Thus, the excess power PA − PR decreases as the altitude increases.

Consequently, there is an altitude with PA − PR = 0 for exactly one velocity v∞, as

shown in the diagram below. There is no potential for further climb. This altitude

is called the absolute ceiling of the aircraft. At the absolute ceiling, straight, level

and unaccelerated flight can only be sustained for one specific velocity v∞.

P

(PA−PR)sea

v∞

vabs ceil

PR, seaPA, sea

PR, abs ceil

PA, abs ceil
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Service Ceiling

The so-called service ceiling for jet-propelled aeroplanes is defined by the altitude

which allows for a maximum climb rate ROCmax = 100 ft/min = 0.508 m/s. At this

altitude the velocities vmin and vmax still provide a margin for different flight ma-

noeuvres. Thus, it is, for example, possible to avoid collision with another aeroplane

by climbing to a higher altitude. The service ceiling is of substantial importance to

jet-propelled aeroplanes since the fuel efficiency increases with altitude as we will

show in Section 2.7.

absolute ceiling

service ceiling

altitude h

ROC

100 ft/min
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Time to Climb

For the calculation of the time ∆t required to climb from altitude h1 to altitude h2,

we need to express the rate of climb ROC as a function of altitude h. The graph

of ROC(h) is displayed qualitatively on the previous page. It may be approximated

with sufficient accuracy by one or more liner sections. We then have

ROC(h) = ROC1 − h − h1

h2 − h1

(ROC1 − ROC2) , (2.42)

where ROC1 and ROC2 denote the rates of climb at altitudes h1 and h2, respectively.

The time required to climb from altitude h1 to altitude h2 may then be obtained as

∆t =
∫ h2

h1

dh

ROC(h)
= a

∫ h2

h1

dh

b + h
, (2.43)

where a =
h2 − h1

ROC2 − ROC1

, b =
ROC1 h2 − ROC2 h1

ROC2 − ROC1

. (2.44)

The integration renders

∆t = a ln(b + h2) − a ln(b + h1) = a ln

(

b + h2

b + h1

)

, (2.45)

which becomes

∆t =
h2 − h1

ROC2 − ROC1

ln
(

ROC2

ROC1

)

. (2.46)

absolute ceiling

service ceiling

ROC

ROC1ROC2

hh

t

h1

h2

∆t
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Flight Envelope

The flight envelope is an important diagram for any aeroplane. It shows the flight

altitude displayed against the freestream velocity v∞ or Mach number Ma∞. We

obtain the flight envelope by evaluating vmin and vmax from the power required and

power available diagrams (see e. g. page 57) at different altitudes. Note that vmin

may be determined by the stall phenomena.

absolute ceiling

altitude h

v∞

stall

flight

envelope
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2.5 Gliding Flight

α

γΘ

W

D
L

horizon

flight directi
on

���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������

γ

H

R

v∞ vsink

Assuming straight, unaccelerated flight with T = 0, and taking into account the

orientation of γ, the equations (2.1) and (2.2) reduce to

L − W cos γ = 0 , D − W sin γ = 0 . (2.47)

It follows that
D

W
= sin γ , n =

L

W
= cos γ ≤ 1 , (2.48)

and thus, tan γ =
sin γ

cos γ
=

D

L
=

1

CL /CD

. (2.49)

Defining H and R as illustrated, it follows from (2.49) that

1

tan γ
=

R

H
=

L

D
=

CL

CD

. (2.50)

Thus, in order to minimise the glide angle γ and maximise the glide range R, the

airplane should be flown at L/D = (L/D)max = (CL/CD)max. We recall from (2.23),

that this is associated with the freestream velocity v∞ = vmin TR
= vmin D. In the

context of sailplanes, the expression 1/tan γ is also known as the glide number.
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With (2.19) and (2.49) it follows that

vsink = v∞ sin γ = v∞
D

W
=

PR

W
. (2.51)

Thus, the sink rate vsink is minimised by flying at the minimum of PR, i. e. with

velocity vmin PR
. Note that (2.26)2–(2.26)4 only hold for SLUF or small γ.

For some average air density (ignoring the dependency of PR on altitude), the max-

imum glide endurance can be obtained from the minimum sink rate as

Eglide, max =
H

vsink, min

=
H W

PR min

. (2.52)

For small angles γ (sailplane, gliders), an approximation of the gliding hodograph

may be obtained by evaluating (2.51) for a range of velocities v∞ and by using

vhoriz = v∞ cos γ ≈ v∞ . However, large angles γ require to resolve the dependency

of PR on γ in (2.51) and also in (2.52). The exact hodograph may be obtained

from evaluating vsink and vhoriz for a range of lift coefficients CL. It is important to

understand that the minimum glide angle (maximum range) is not associated with

the minimum sink rate.

vsink

vhoriz

v∞

vsink, min γ
γmin
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2.6 Take-Off and Landing
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During ground roll, we have for the angle of attack and the flight path angle that

α = γ = 0. Furthermore, the thrust angle φ is assumed to be small. With Newton’s

second law and summation of the forces parallel to the runway it follows that

m
d v∞
d t

= T − D − R , (2.53)

where m = W/g is the mass of the aeroplane.

Rolling friction R is proportional to the normal force A+B = W−L acting between

the tires and the ground, i. e.

R = µR (W − L) , (2.54)

where typically µR ≈ 0.02 for take-off on a smooth runway, or µR ≈ 0.4 for landing

ground roll with the brakes deployed.

With (1.20), (1.37), (1.41), (2.53) and (2.54) the equations which the govern ground

roll of an aeroplane are
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m
d v

d t
= T − D − µR (W − L) (2.55)

L =
1

2
ρ v2

∞
S CL (2.56)

D =
1

2
ρ v2

∞
S

(

CD0 + φ
C2

L

π eAR

)

. (2.57)

Due to the vicinity of the wings to the ground, the wing tip vortices and consequently

the downwash and induced drag do not develop to the same extent as at a higher

altitude. This phenomena is termed the ground effect and is accounted for by the

dimensionless factor φ. A good approximation is

φ =
(16 h/b)2

1 + (16h/b)2
< 1 , (2.58)

where h is the height of the wings above the ground.

In order to calculate the ground roll distances required for take-off and landing, we

first consider
dv

dt
=

dv

ds

ds

dt
= v

dv

ds
=

1

2

d(v2)

ds
. (2.59)

Defining the force F by F = T − D − µR(W − L) , (2.60)

Equation (2.55) can be rewritten as F = m
dv∞
dt

=
m

2

d(v2
∞

)

ds
, (2.61)

which renders ds =
m

2 F
d(v2

∞
) . (2.62)

From integration we obtain the ground roll distance required to accelerate or decel-

erate from v1 to v2 as

s =
∫ v2

2

v2
1

m

2 F
d(v2

∞
) . (2.63)
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Take-Off Ground Roll

The smallest velocity v∞, with which flight can be sustained, is vstall. There-

fore, the ground roll distance required for acceleration before lift-off is minimal for

vLO = vstall . The quantity vLO denotes the lift-off velocity and the stalling velocity

vstall is given by (1.39). However, in order to provide a safety margin, it is common

practice to define

vLO = 1.2 vstall = 1.2

√

2 W

ρS CLmax

(2.64)

We note that care must be taken to determine the value of CL = CLmax
to be used in

(2.56), (2.57) and in (2.64). On the one hand, the angle of attack is restricted by the

horizontal orientation of the aeroplane during ground roll, which decreases CLmax
,

on the other hand, high lift systems such as flaps may be used to increase CLmax
.

Exact Solution: The thrust T usually varies with the velocity v∞. However,

particularly for jet-propelled aircraft, it is sufficiently accurate to assume T = const.

for constant altitude.

Thus, with (2.55) – (2.58) we obtain the lift-off ground roll distance sLO from (2.63)

by the following manipulations

sLO =
∫ v2

LO

0

d(v2
∞

)

a v2
∞

+ b
=

1

a
ln

a v2
LO + b

b
, (2.65)

where

a =

(

µR CL − CD0 −
φC2

L

π eAR

)

ρ S g

W
and b =

2 g

W
(T − µR W ) . (2.66)

If the thrust varies significantly as v∞ increases, then a numerical integration tech-

nique may be required.
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Approximation 1: A commonly employed approximation for sLO is based on the

assumption of constant acceleration with an average force Fav = const. Typically,

we choose Fav = F (v∞ = 0.7 vLO) . With (2.63) and (2.64) it then follows that

sLO ≈ 1.44 W 2

g ρ S CLmax [T − D − µR(W − L)]0.7vLO

. (2.67)

Approximation 2: If T is much larger than D + R , then (2.67) becomes

sLO ≈ 1.44 W 2

g ρ S CLmax T
. (2.68)

Despite this being a very rough approximation, it demonstrates that sLO is pro-

portional to W 2, rather than just W . Furthermore, if we recall from (2.19) and

(2.34) that thrust T is proportional to air density ρ, we find with (2.68) that the

lift-off ground roll sLO is inverse proportional to ρ2. Consequently, airports which

are located at higher altitudes require longer runways.

The dependency of sLO on the wing reference area S and the maximum lift coefficient

CLmax is evident.
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Landing Ground Roll

The typical touch-down velocity of an aeroplane is

vTD = 1.3 vstall = 1.3

√

2 W

ρS CLmax

, (2.69)

which provides an appropriate safety margin. Generally, the forces during landing

ground roll are described by (2.55) – (2.58). However, at touchdown, the thrust T

has usually been reduced to zero or it has been reversed. The rolling friction now

includes the effect of brakes such that µR ≈ 0.4, and the aerodynamic coefficients

CD0 and CL account for the application of spoilers or drag chutes.

Exact Solution: Assuming T = const. ≤ 0 , the landing ground roll distance is

obtained from (2.63) as

sL =
∫ 0

v2
TD

d(v2
∞

)

a v2
∞

+ b
=

1

a
ln

a v2
TD + b

b
, (2.70)

where the quantities a and b are defined as in (2.66).

Approximation: An approximation for sL is obtained analogously to (2.67) as

sL ≈ 1.69 W 2

g ρ S CLmax [−T + D + µR(W − L)]0.7vTD

. (2.71)

Recall that for landing T ≤ 0 .
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Variation of Forces During Ground Roll
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2.7 Range and Endurance

The maximum distance an aeroplane can traverse on a tank of fuel is denoted as

range R. The maximum time which an aeroplane can stay airborne on a tank of

fuel is denoted as endurance E.

Clearly, R and E are related to the fuel consumption of the aeroplane. According

to Section 2.2, fuel consumption for the propeller-driven aeroplane is given in terms

of fuel burnt per power and time (specific fuel consumption SFC = const.), whereas

for the jet-propelled aeroplane fuel consumption is given in terms of fuel burnt per

thrust and time (thrust specific fuel consumption TSFC = const.). Therefore, we

have to develop separate sets or formula for range and endurance for the two types

of aeroplanes.

In order to account for the changes of aeroplane weight as fuel is being burnt,

we define







Wf current weight of fuel,

W0 weight of aeroplane with full fuel load,

W1 weight of aeroplane without fuel.

The current total weight of the aeroplane may then be expressed as

W = W1 + Wf . (2.72)
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Propeller-Driven Aeroplane

From (2.6) we recall that

SFC =
− dWf / dt

P
≈ const. (2.73)

Furthermore, we assume a constant propeller efficiency η and use (2.9) to write

SFC =
− η dWf / dt

PA

≈ const. (2.74)

Rearranging gives

dt = − η

SFC PA

dWf . (2.75)

We obtain for the endurance

E =
∫ E

0
dt = −

∫ W1

W0

η

SFC PA

dWf (2.76)

It follows that maximum endurance E is achieved if the airplane is always flown

at vmin PR
with minimum power required PA = PR, min. Recalling (2.26), this is

associated with (C
3/2
L /CD)max.

Assuming straight level unaccelerated flight with a constant angle of attack, i. e.

PA = TA v∞ = TR v∞ = D v∞ , W = L ,
L

D
=

CL

CD

= const. (2.77)

we recall (2.5) for n = 1 , i. e. v∞ =

√

2 W

ρS CL

(2.78)

and obtain from (2.76)

E =
∫ W0

W1

(
η

SFC

1

D v∞

L

W

)

dW =
∫ W0

W1




η

SFC

C
3/2
L

CD

√

ρ S

2
W−

3
2



 dW , (2.79)

which renders the Breguet formula for the endurance of a propeller-driven airplane

flown at constant altitude, i. e. ρ = const., as

E =
η

SFC

C
3/2
L

CD

√

2 ρ S
(

W
−

1
2

1 − W
−

1
2

0

)

. (2.80)
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In order to calculate the range, we manipulate (2.75) and use (2.19) to obtain

ds = − ds

dt

η

SFC PA

dWf = − η

SFC PA / v∞
dWf = − η

SFC TA

dWf . (2.81)

Integration renders the range as

R =
∫ R

0
ds =

∫ W0

W1

η

SFC TA

dW . (2.82)

Thus, the range is maximised if the airplane is always flown at vmin TR
with minimum

thrust required TA = TR, min. According to (2.23), this corresponds to (CL/CD)max.

For SLUF, we have
TA

W

CL

CD

= 1 . Multiplication of the integrand in (2.82) with

this term gives

R =
∫ W0

W1

η

SFC

CL

CD

1

W
dW =

η

SFC

CL

CD

ln
W0

W1

. (2.83)

Note that the endurance E as given by (2.80) for the propeller-driven aeroplane

depends on the altitude (ρ), whereas maximum range R as given by (2.83) can be

achieved at any altitude. The endurance is a maximum at sea-level, where ρ is large.
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Jet-Propelled Aeroplane

With T = TA we obtain from (2.12) dt = − 1

TSFC TA

dWf . (2.84)

Integration renders the endurance as

E =
∫ E

0
dt = −

∫ W1

W0

1

TSFC TA

dWf . (2.85)

It follows that maximum endurance is achieved if the airplane is always flown at

vmin TR
with minimum thrust required TA = TR, min. Recalling (2.23), this is associ-

ated with (CL/CD)max.

Based on the assumptions of straight level unaccelerated flight and a constant angle

of attack we may multiply (2.85) with
TA

W

CL

CD

= 1 to obtain the Breguet formula

for the endurance of a jet-propelled aeroplane, i. e.

E =
∫ W0

W1

1

TSFC

CL

CD

dW

W
=

1

TSFC

CL

CD

ln
W0

W1

. (2.86)

Manipulating (2.84) and assuming SLUF with (2.78) and
TA

W

CL

CD

= 1 we may write

ds = − ds / dt

TSFC TA

dWf = − v∞
TSFC

CL

CD

dWf

W

= −
√

2

ρ S

1

TSFC

C
1/2
L

CD

dWf√
W

. (2.87)

Integration renders the range as

R =
∫ R

0
ds = −

∫ W1

W0

√

2

ρ S

1

TSFC

C
1/2
L

CD

dWf√
W

. (2.88)

Thus, for ρ = const. (constant altitude), the range is maximised if the airplane is

always flown at the velocity v̂∞ that renders maximum C
1/2
L /CD (see (2.30)). This

velocity can be obtained graphically from the thrust required over velocity diagram

by means of the tangent through the origin (analogously to vmin TR
in the power-

required diagram).
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Based on the assumption of SLUF, i. e. C
1/2
L /CD = const. , we can derive the

Breguet formula for the range of a jet-propelled airplane from (2.88) as

R =
1

TSFC

√

8

ρ S

C
1/2
L

CD

(√

W0 −
√

W1

)

, (2.89)

For the jet-propelled airplane the endurance as given by (2.86) is independent of the

altitude, whereas the range as given by (2.89) increases with altitude. Maximum

range can therefore be achieved when the airplane is flown near the absolute ceiling.

That is the reason for the introduction of the “service ceiling” as described on

page 66.

It is important to know that, in practice, for both propeller-driven and jet-propelled

aeroplanes, range and endurance depend significantly on the weather conditions,

the pilot skills, the climb to the cruising altitude etc. However, the Breguet formula

(2.80), (2.83), (2.86) and (2.89) provide acceptable approximations and valuable

insight into how range and endurance can be maximised.
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Range and Payload

The specifications of larger aeroplanes typically include the range–payload curve.

This is a graph which, for a particular mission profile, presents the effect of trading

payload for fuel on the range of an airplane.

The specific design of any aeroplane renders a certain maximum take-off weight,

which must not be exceeded by the total weight in order to ensure that the aero-

plane is fully operational. Consequently, if the payload is very heavy, the fuel tanks

can only be filled partially and the range is reduced significantly.

The range–payload diagram may also reflect structural limitations, i. e. the maxi-

mum load which can be supported by the airframe, and the limitation arising from

the capacity of the fuel tanks.

range R

p
ay

lo
ad

structural limit

fuel capacity

maximim take-off weight
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2.8 Turning Flight

Level Turn

θ

θ

R

W

L

FR

v∞

If the pilot increases the bank angle to θ > 0, then the lift force is tilted as illustrated.

Assuming that v∞ and L are controlled such that v∞ = const. and

L cos θ = W , (2.90)

then the aircraft performs a circular level turn. The load factor (2.3) associated with

a level turn is

n =
L

W
=

1

cos θ
≥ 1 . (2.91)

The component of lift directed towards the centre of the turn may be written as

FR =
√

L2 − W 2 = W
√

n2 − 1 . (2.92)

Using Newton’s second law and the radial acceleration v2
∞

/R gives

FR = m
v2
∞

R
. (2.93)

Combining (2.92), (2.93) and W = m g renders

R =
v2
∞

g
√

n2 − 1
. (2.94)

The angular velocity or turn rate is obtained as

ω =
v∞
R

=
g
√

n2 − 1

v∞
. (2.95)

Recall from (2.4) that the induced drag becomes larger as n increases. Thus, the

thrust required to sustain a level turn is larger than that for straight level unaccel-

erated flight.
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Pull-Up and Pull-Down

W

L

R W L

R

If the lift of an airplane, which is initially in straight, level flight, is suddenly in-

creased, the airplane will perform a pull-up manoeuvre. We obtain

FR = L − W = W (n − 1) . (2.96)

Similarly to (2.94) and (2.95) it follows that

R =
v2
∞

g (n − 1)
(2.97)

and

ω =
g (n − 1)

v∞
. (2.98)

If an airplane, which is initially in level flight, suddenly rolls into an inverted position,

it will perform a pull-down manoeuvre. Analogously to (2.96) – (2.98), we obtain

FR = L + W = W (n + 1) , (2.99)

R =
v2
∞

g (n + 1)
(2.100)

and

ω =
g (n + 1)

v∞
. (2.101)
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On the Manoeuvrability of an Aeroplane

For large n, we may argue that n ≈ n + 1 . The turn radii and turn rates for the

different manoeuvres as given by (2.94), (2.95), (2.97), (2.98) and (2.100), (2.101)

may then be approximated, respectively, by

R =
v2
∞

g n
and ω =

g n

v∞
. (2.102)

Using (2.5), this can be written as

R =
2 W

ρS CL g
and ω = g

√

ρ S CL n

2 W
. (2.103)

Hence, high manoeuvre performance (small minimum R, large maximum ω) is as-

sociated with large CLmax and nmax. Depending on the velocity v∞, the maximum

load factor nmax is determined by the maximum lift coefficient CLmax or by the

structural strength of the aircraft as described in the next Section.

According to (2.103), high manoeuvre performance is also associated with a low

wing loading W/S . However, the wing loading is typically determined by factors

other than manoeuvring, such as payload, range and maximum velocity. As a result

wing loadings for light general aviation aircraft are relatively low, but those for high

performance military aircraft are relatively large.

airplane W/S [ kg m−2]

Wright Flyer (1903) 7

Spitfire (1936) 137

sailplane DG-1000 35

Cessna Skyhawk 69

Boeing 747 350 - 700

Airbus A-380 300 - 700

Eurofighter Typhoon 311

General Dynamics F-16 430
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2.9 V–n Diagram

In the V − n diagram, we display the maximum admissible value of the load factor

nmax against the freestream velocity v∞.

From (2.5) it follows for the stall limit that

nmax =
ρ S v2

∞
CLmax

2 W
. (2.104)

The load factor nmax is also subject to structural limitations of the aeroplane. A

major limitation arises from the strength of the joints between light lift producing

parts (wings) and the bulky heavy parts (fuselage) of the airplane.

The velocity v∞ is also subject to structural limitations. These may be due to

aeroelastic instabilities, temperature effects, excessive dynamic pressure, etc.

manoeuvre point

flight envelope

v∞

nmax

stall limit

structural limit

v∗

∞

n1

−n2

Recalling (2.103), we identify the manoeuvre point where CL and n are maximal

and render the highest manoeuvre performance possible. The velocity v∗

∞
is called

the corner velocity.

The area with all admissible pairs (n, v∞) is denoted as the flight envelope.
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Clearly, the V −n diagram is an interface between the disciplines of flight mechanics

and airframe design. It represents many of the load cases which the airframe has

to withstand. The values for n1 and n2 as defined in the diagram are specified by

the airworthiness authorities for particular aircraft. Typical load factors laid down

in the British Civil Airworthiness Requirements (BCAR) are shown in the table.

aeroplane type

normal semi-aerobatic aerobatic

n1 2.1 +
24, 000 lb

W + 10, 000 lb
4.5 6.0

n2 1.0 1.8 3.0

For military aeroplanes, the value of n1 is of the order of 10 and larger.
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Effects of Weight and Altitude on the V–n Diagram

nmax

nmax

v∞

v∞increasing W

increasing altitude,

decreasing ρ

The effects of W and ρ on the stall limit are evident from (2.104).

Often, the structural limit arises from a maximum admissible lift force Lmax = const.

or maximum admissible difference force (L − W )max = const., beyond which the

airframe fails. It then follows from L = nW that the structural limit nmax decreases

as W increases.

The maximum admissible velocity typically increases as ρ decreases. This may, for

example, be due to the decrease of the dynamic pressure.
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2.10 Energy Method for Accelerated Flight

Modern high performance aeroplanes are capable of highly accelerated climbs. Such

manoeuvres can be analysed with the energy method.

First, we consider the specific total aircraft energy He, which is the sum of the poten-

tial and the kinetic energies of the aeroplane divided by the aeroplane weight, i. e.

He =
(

m g h +
1

2
m v2

∞

)
1

W
. (2.105)

With W = m g , we may write

He = h +
v2
∞

2 g
. (2.106)

We can then draw isolines of He in the altitude over velocity diagram, which are

independent of the specific aeroplane under consideration, i. e. all aeroplanes flying

at altitude h with velocity v∞ have the same energy level He.

Next, we recall (2.1) whereby we assume that φ + α is small, i. e.

m
d v∞
d t

= T − D − W sin γ . (2.107)

Rearranging with W = m g gives

v∞ T − v∞ D

W
= v∞ sin γ +

v∞
g

dv∞
dt

. (2.108)

We recognise the term on the left hand side as the ratio of the excess power over the

aeroplane weight. This ratio is known as the specific excess power Ps. Furthermore,

we recall from (2.37) that we have for the rate of climb ROC

ROC =
dh

dt
= v∞ sin γ . (2.109)

We may then write (2.108) as

Ps =
dh

dt
+

v∞
g

dv∞
dt

. (2.110)

From the comparison of (2.106) and (2.110), we note that the specific excess power

equals the time derivative of the energy level, i. e.

Ps =
dHe

dt
. (2.111)
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Ps Diagram

The conclusion of (2.111) is that an aeroplane can change its energy state by the

application of excess power. It is therefore essential to know how much excess

power is available to the aeroplane, when it is flying with velocity v∞ at altitude

h. For this purpose, we draw contour lines of Ps in the h–v∞ system. The contour

line with Ps = 0 describes the flight envelope similar to the diagram on page 68.

In the same diagram, we may plot contour lines of the energy level he. Typical

Ps diagrams for a subsonic and a supersonic aeroplane are displayed below. Note

that, due to Equation (2.4) for drag (thrust required), the contour lines for Ps de-

pend on the aeroplane configuration and on the load factor. The irregular shape of

the Ps contour lines for the supersonic aeroplane is due to the effect of the maximum

drag associated with Mach numbers near Ma∞ = 1 (compare Section 1.12).

zooms and dives: The pilot does not need to apply any excess power in order to

change from one state (v1, h1) on a contour line of He to another state (v2, h2) on the

same contour line. Such “zooms” (h2 > h1) and “dives” (h2 < h1) basically mean

trading kinetic energy for potential energy or vice versa. Note, however, that these

manoeuvres affect the specific excess power available to the pilot, since the thrust

required and thrust available change with the velocity and altitude.

minimum time to climb: The Ps diagrams may be used to determine the min-

imum time required to climb to the maximum energy height. In fact, for fighter

aircraft, it is advantageous to have a higher energy level than the adversary. Rear-

ranging (2.111) gives

dt =
dHe

Ps

, (2.112)

which we integrate to obtain

∆t =
∫ ∆t

0
dt =

∫ He, 2

He, 1

1

Ps

dHe . (2.113)

Thus, ∆t is minimised by using Ps, max on each energy level. This is represented in

the h–v∞ system by the trajectory that connects the maxima of Ps on each energy

level. In the diagram for the supersonic aeroplane, note the characteristic constant-

energy dive to accelerate through the drag-divergence region near Ma∞ = 1 .
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subsonic aeroplane

supersonic aeroplane
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construction of Ps contour lines



Chapter 3

Static Stability and Control

3.1 Static and Dynamic Stability

The analysis of the static stability of an aeroplane is concerned with the forces or

moments acting on the aeroplane, which arise from disturbances such as wind gusts

or temporary deflections of the control surfaces. The direction or orientation of these

forces and moments should be such that the aeroplane is returned (at least initially)

towards stable flight. The specific aeroplane configuration under consideration is

then said to be “statically” stable. For unstable configurations, disturbances cause

moments and forces which take the aeroplane further away from stable flight and,

in the worst case, cause the loss of control.

It is important to understand that static stability is necessary, but not sufficient for

stable flight. Only the additional consideration of dynamic stability ensures that a

specific aeroplane configuration is really stable. Dynamic stability is concerned with

the motion of the aeroplane following a disturbance. An aeroplane may be statically

stable and dynamically unstable as illustrated in the diagrams below.

We distinguish three different states of static stability. A configuration may be

stable, i. e. small disturbances cause forces which return the system into stable

equilibrium. The state of the configuration may be neutral, i. e. disturbances do

not cause any forces or moments, or it may be unstable, i. e. disturbances cause

forces which remove the system further away from equilibrium.

93
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3.2 Aircraft Rotations and Control Surfaces

pitch

roll

yaw

x

y

z

U

V

W

N , R

M , Q

L, P

CG

The rotations of the aeroplane with respect to the axis of a coordinate system that

moves with the aeroplane as shown are known as pitch, roll and yaw. The associ-

ated angular velocities are denoted by Q, P and R, respectively. These rotational

velocities are due to moments M , L and N as shown. The translational velocities

along the axis are denoted by U , V and W .

aileron

flap

elevator

rudder

horizontal stabiliser

vertical stabiliser

Flaps are high-lift systems (compare Section 1.9), whereas ailerons, elevators and

rudder are the conventional control surfaces.
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L

M

N

By deflecting the control surfaces during flight the pilot can generate the moments

L, M or N .
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3.3 Longitudinal Static Stability

Longitudinal stability is concerned with the relation between the pitching moment

M and the corresponding angular displacements. We define the pitching moment

with respect to the centre of gravity CG of the aeroplane as

M = q∞ S c̄ CM , (3.1)

where c̄ denotes the mean chord line.

Furthermore, for convenience, we introduce the absolute angle of attack αa as

αa = α − αL=0 . (3.2)

α αa

αL=0

CLCL

By means of wind tunnel tests, or by an analysis along the lines of the following

pages, the pitching moment coefficient CM can be represented as a function of the

absolute angle of attack αa. In the range of small αa, this function is typically linear

and shows one angle αa for which CM disappears. By definition, an increase of αa

corresponds to a nose-up rotation of the aeroplane with respect to the freestream

velocity. For a stable configuration, that should generate a nose-down pitching mo-

ment, which returns the aeroplane to the undisturbed flight. Therefore, we conclude

that a requirement for positive longitudinal stability is that the derivative dCM/dαa

be negative, i. e.

for longitudinal stability:
dCM

dαa

< 0 . (3.3)

Steady and stable flight clearly requires CM = 0 . We say that for CM = 0 the

aeroplane is trimmed. The associated absolute angle of attack αe is known as the

angle of trim. With (3.3), it follows from CM = 0 for some positive αe that

for longitudinal stability: CM(αa = 0) > 0 . (3.4)
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CM

CM

αa

αa

dCM

dαa

> 0

dCM

dαa

< 0

αe

nose-up

pitching

moment

nose-down

pitching

moment

nose-up

displacement
nose-down

displacement

stable

unstable

point of trim

On the following pages, we derive an expression for CM in terms of parameters which

describe the configuration of the aeroplane. First, we will account for the contribu-

tion of the wings and the fuselage to the pitching moment, and second, we will study

the contribution of the horizontal tail. The objective is to translate the conditions

(3.3) and (3.4) for longitudinal stability into practical design requirements.
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Contribution of Wings and Body to the Pitching Moment

zero lift line

v∞

Dwb

Lwb

Mac,wb z

c̄
h c̄

hac,wb c̄

αwb

ACwbCG

The “body” of the aeroplane includes the fuselage and the engine nacelles. We

then introduce the aerodynamic centre of wing & body ACwb. Analogously to the

aerodynamic centre of the airfoil as discussed in Section 1.8, this is the point with

respect to which the aerodynamic moment Mac,wb is independent of the angle of

attack. The angle αwb denotes the absolute angle of attack for the wing & body

combination. The quantities h and hac,wb are dimensionless parameters and c̄ denotes

the mean zero-lift chord also known as the aerodynamic chord. Note that h defines

the location of the centre of gravity CG of the entire aeroplane.

The pitching moment of the wing & body combination with respect to the centre of

gravity may then be written as

Mcg,wb = Mac,wb + c̄ Lwb cos αwb (h − hac,wb) + z Lwb sin αwb

− z Dwb cos αwb + c̄ Dwb sin αwb (h − hac,wb) , (3.5)

which we may divide by S q∞ c̄ to obtain

CMcg,wb
= CMac,wb

+ (h − hac,wb) CLwb
cos αwb +

z

c̄
CLwb

sin αwb

− z

c̄
CDwb

cos αwb + (h − hac,wb) CDwb
sin αwb . (3.6)
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Generally, the ratio z/c̄ is negligible and the angle of attack is small. With

z

c̄
≈ 0 , sin αwb ≈ 0 , cos αwb ≈ 1 , (3.7)

we may rewrite (3.6) as

CMcg,wb
= CMac,wb

+ (h − hac,wb) CLwb
. (3.8)

Using CLwb
= CLwbα αwb , with CLwbα =

dCLwb

dαwb

, (3.9)

we obtain

CMcg,wb
= CMac,wb

+ (h − hac,wb) CLwbα αwb . (3.10)

The location of the aerodynamic centre as defined by hac,wb and the parameters

CMac,wb
and CLwb

are usually determined by wind tunnel tests. Note that, for a wing

with positive camber, the moment coefficient CMac,wb
is generally negative.
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Contribution of the Tail to the Pitching Moment

v∞

v′

ε

it

αt

αwb−ε

Dt

Lt

lt

h c̄

ht c̄

zt

ACwb

CG

zero-lift line (tail)

zero-lift line (wing & body)

Generally, the aerodynamic moment Mac,t of the tail plane is negligible due to zero

camber or due to the relatively small size of the tail. The angle it between the

zero-lift lines of the wing & body combination and the horizontal tail is known as

the tail incidence angle. The angle ε accounts for the downwash caused by the wing

tip vortices. Due to the location of the tail plane behind the wings, this effect may

be very pronounced and must not be neglected. The contribution of the tail to the

moment Mcg,t with respect to the centre of gravity is then obtained as

Mcg,t = − lt Lt cos(αwb − ε) − zt Lt sin(αwb − ε)

− lt Dt sin(αwb − ε) + zt Dt cos(αwb − ε) . (3.11)

Division by q∞ S c̄ gives

CMcg,t
= − lt St

c̄ S
CLt

cos(αwb − ε) − zt St

c̄ S
CLt

sin(αwb − ε)

− lt St

c̄ S
CDt

sin(αwb − ε) +
zt St

c̄ S
CDt

cos(αwb − ε) . (3.12)
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With
zt

c̄
≈ 0 , sin(αwb − ε) ≈ 0 , cos(αwb − ε) ≈ 1 , (3.13)

it follows that CMcg,t
= − lt

c̄

St

S
CLt

. (3.14)

The factor multiplying CLt
in (3.14), which quantifies the effect of the tail, is known

as the horizontal tail volume VH, i. e.

CMcg,t
= −VH CLt

, and VH =
lt
c̄

St

S
. (3.15)

It is important to understand that VH is not a purely geometrical parameter, but

it depends on the location of the centre of gravity h. For the sake of clarity, we

therefore rewrite (3.14) as

CMcg,t
= − (ht − h)

St

S
CLt

. (3.16)

The angle of attack αt may be expressed as

αt = αwb − ε − it . (3.17)

Due to the linear relations between angle of attack and lift coefficient (1.23) and

between lift coefficient and induced angle of attack (1.29), we can assume a linear

variation of ε with the absolute angle of attack αwb, i. e.

ε = εα αwb , (3.18)

where εα = dε/dα can be determined by means of wind tunnel tests. The lift

coefficient CLt
can then be expressed as

CLt
= CLtα αwb = CLtα

(

(1 − εα) αwb − it
)

, (3.19)

and (3.16) becomes

CMcg,t
= − (ht − h)

St

S
CLtα

(

(1 − εα) αwb − it
)

. (3.20)

Note that due to the orientation of a positive tail incidence it the term CLtα it cor-

responds to a tail lift force which is directed downwards, whereas the term CLtα αwb

with αwb > 0 is associated with a tail lift force that is directed upwards.
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The Total Pitching Moment

The total pitching moment coefficient CMcg
is obtained from adding up the contri-

butions of the wing & body and the tail.

CMcg
= CMcg,wb

+ CMcg,t
. (3.21)

The expressions (3.10) and (3.20) for CMcg,wb
and CMcg,t

, respectively, involve the ab-

solute angle of attack of the wing & body combination αwb. Based on the negligible

influence of the tail on the orientation of the zero-lift line of the entire aeroplane, we

may replace αwb by the absolute angle of attack of the entire aeroplane αa. Hence-

forth, for the sake of notational brevity, we also omit the subscript “cg”. Using

(3.10), (3.20) and αwb = αa we may rewrite (3.21) as

CM = CMac,wb
+ (h − hac,wb) CLwbα αa − (ht − h)

St

S
CLtα

(

(1 − εα) αa − it
)

,

or shorter,

CM = CM 0 + CM α αa , (3.22)

with

CM 0 = CMac,wb
+ (ht − h)

St

S
CLtα it (3.23)

CM α = (h − hac,wb) CLwbα − (ht − h)
St

S
CLtα (1 − εα) . (3.24)

The Equations (3.22) – (3.24) express the pitching moment coefficient in terms of

the location of the centre of gravity and in terms of some aerodynamic coefficients.

We now recall the requirement (3.4) for longitudinal stability and consider an aero-

plane subjected to airflow at an absolute angle of attack equal to zero. The pitching

moment coefficient then reduces to CM 0. The condition (3.4) then requires that

CM 0 > 0. For positively cambered wings we have CMac,wb
< 0. Thus, it follows

from (3.23) that we can ensure that CM 0 > 0 by providing a sufficiently large pos-

itive tail incidence it (and tail volume). It is important to understand that this

corresponds to a tail lift force which is directed downwards.

We conclude from (3.24) that the requirement (3.3), i. e. CM α < 0 , can be satisfied

simply by providing sufficient tail volume.
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Total Lift, Neutral Point and Static Margin

As a preliminary, we begin this subsection by considering the total lift of the aero-

plane. Adding the contributions of wing & body and tail, we may write

L = q S
(

CLwb
+

St

S
CLt

)

= q S
(

CLwbα αa +
St

S
CLtα αt

)

= q S
((

CLwbα +
St

S
CLtα (1 − εα)

)

αa − St

S
CLtα it

)

, (3.25)

where we have used (3.17) to eliminate αt. The total lift coefficient may then be

expressed as

CL = CL0 + CLα αa (3.26)

with CL0 = − St

S
CLtα it , CLα = CLwbα +

St

S
CLtα (1 − εα) . (3.27)

Analogously to the airfoil or the wing & body combination, there exists a location

with respect to which the total pitching moment of the aeroplane is independent of

the angle of attack. This point corresponds to the aerodynamic centre of the entire

aeroplane and it is known as the neutral point NP. Its location is denoted by the

parameter hn, such that hn c̄ is the distance between the leading edge of the wing

and the neutral point. In (3.22) – (3.24), the parameter h denotes the location of

the point of reference for the pitching moment. Therefore, hn can be calculated by

equating CM α in (3.24) to zero and by replacing h with hn. We obtain

0 = (hn − hac,wb) CLwbα − (ht − hn)
St

S
CLtα (1 − εα) , (3.28)

which renders

hn =
hac,wb CLwbα + ht

St

S
CLtα (1 − εα)

CLwbα +
St

S
CLtα (1 − εα)

. (3.29)

With (3.27)2 we can rewrite (3.29) as

hn =
1

CLα

(

hac,wb CLwbα + ht
St

S
CLtα (1 − εα)

)

. (3.30)
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In some textbooks, the difference between the lift slopes CLα and CLwbα is neglected

(the effect of the tail is small). If we also ignore the dependency of the tail volume

VH on h, i. e. h << ht and VH ≈ ht St/S (see (3.15) and diagram on page 101),

then we may rewrite (3.30) as

hn = hac,wb + VH
CLtα

CLα

(1 − εα) . (3.31)

Based on the expression for CLα in (3.27)2 we can also rewrite (3.24) as

CM α = h CLα −
(

hac,wb CLwbα + ht
St

S
CLtα (1 − εα)

)

, (3.32)

Using (3.30) to simplify (3.32) renders

CM α = (h − hn) CLα . (3.33)

This important result states that the slope CM α of the moment curve is equal to the

slope of the lift curve CLα multiplied by the dimensionless distance of the centre of

gravity behind the neutral point. According to (3.3), for static stability, CM α must

be negative. Therefore, for a statically stable aeroplane the centre of gravity must

be located ahead of the neutral point.

The quantity hn − h is known as the static margin SM, which must be positive to

ensure static stability. Adequate static stability is achieved if the static margin is

at least 5%.

CM

αa

hn − h < 0 (unstable)

hn − h = 0 (neutral)

hn − h > 0 (stable)
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W

W

W

L

M0

M0

M0

trimmed flight

equilibrium

nose-up perturbation

→ increased lift

→ nose-down moment

nose-down perturbation

→ decreased lift

→ nose-up moment

hn − h (static margin)

centre of gravity CG

neutral point NP
(aerodynamic centre
of entire aeroplane)
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Special Configurations

T-tail configuration: In a classically configured aeroplane, the horizontal tail is

much smaller than the wings and therefore relatively close to the fuselage. Typically,

a significant part of the tail is located inside the boundary layer of the fuselage. Due

to skin friction, the airflow inside this boundary layer is slower than further away

from the fuselage. This effect can be accounted for by introducing the tail efficiency

factor η, i. e.

qt = η q∞ with η ≤ 1 , (3.34)

where qt is the dynamic pressure at the leading edge of the tail surface. For the

T-tail configuration, we have η = 1. In these notes, we assume for simplicity that

always η = 1 .

Canard configuration: It follows from (3.23) that CM 0 is positive only if the tail

generates a lift force which is directed downwards. This may seem impractical with

respect to the total lift, i. e. the lift of the wings has to counterbalance not only the

weight but also the downward lift of the tail. Therefore, on some aeroplanes, the

horizontal stabilisers are located ahead of the wings. Such horizontal stabilisers are

known as Canard surfaces. The Canard surfaces generate upward lift which causes

a positive pitching moment increment equivalent to the moment generated by the

downward lift of a horizontal tail. Thus, the Canard surfaces stabilise the aeroplane

and at the same time contribute to the total aeroplane lift.

A significant disadvantage of a Canard configuration is that the airflow over the

wings is disturbed by the wake of the Canard surfaces. This adversely affects the

generation of lift of the wings.
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3.4 Longitudinal Control

Consider an aeroplane in trimmed configuration at straight level and unaccelerated

flight. In order to fly faster, the pilot needs to increase the throttle setting and

to reduce the angle of attack. In order to fly more slowly, he must reduce the

throttle setting and increase the angle of attack. According to (3.22) the pitching

moment depends exclusively on the aeroplane geometry and on the absolute angle

of attack αa. Therefore, the variation of αa will lead to the loss of trim, unless the

aeroplane geometry is changed to achieve trim for the new angle of attack. Two

different strategies are available:

• shifting the centre of gravity.

Clearly this is impractical for complex aeroplanes. However, for simply con-

figured sailplanes or gliders without control surfaces this is a viable strategy.

It is discussed in more detail on the next page.

• adjusting the tail plane configuration.

By adjusting the lift of the horizontal tail plane the total pitching moment may

be reduced to zero such that the aeroplane is trimmed again. We distinguish

different tail plane configurations, such as the all moveable tail, the horizontal

stabiliser-elevator configuration or the stabilator, which are discussed on the

following pages.
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Shifting the Centre of Gravity

In order to study the effect of shifting the centre of gravity on the CM – αa diagram,

we first assume

h << ht → ht − h

ht

≈ 1 → ht − h ≈ ht . (3.35)

It then follows from (3.22) – (3.24) that shifting the centre of gravity forward results

in a smaller angle of trim αe, whereas a backward shift increases αe.

CM

αa

αe

shift forward shift backward
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All-Movable Tail

In this configuration, the tail incidence it can be controlled by the pilot. In order to

express the tail incidence associated with trim in terms of the total lift coefficient

CL (which easily relates to the freestream velocity by (2.5)) we note that (3.22) and

(3.26) may be written, respectively, as

CM = CMac,wb
+ CM i it + CM α αa (3.36)

CL = CLi it + CLα αa , (3.37)

where

CM i = (ht − h)
St

S
CLtα (3.38)

CLi = − St

S
CLtα . (3.39)

Using (3.37) to eliminate αa in (3.36), we obtain

it = − CMac,wb
CLα + CM α CL

CLα CM i − CM α CLi

. (3.40)

CM

αa

αe

decrease it increase it
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Tail with Elevators

ihs

δe

αt

zero lift line wing & body

Recalling the discussion of flaps in Section 1.9, we conclude from (1.24)

CLt
= CLtα (αt + τ δe) , (3.41)

where τ is the effectiveness factor of the elevator flap. Setting the right hand side of

(3.41) to zero, we find the angle αt, L=0 = − τ δe , which renders zero lift and therefore

defines the orientation of the zero lift line of the tail. The sum of αt, L=0 and the

incidence ihs of the fixed horizontal stabiliser corresponds to the tail incidence it

in (3.36) and (3.37), which describes the zero lift line of the total tail, i. e.

it = ihs − τ δe . (3.42)

We may now use (3.42) in (3.36) and (3.37) to replace it. Next, we eliminate αa, set

CM to zero and solve the resulting equation for δe. We obtain

δe = − CMac,wb
CLα + CM α CL

CLα CM δ − CM α CLδ

+
ihs

τ
, (3.43)

which defines the elevator deflection, that renders trimmed flight for a given total

lift coefficient CL. The new expressions in (3.43) are defined as

CM δ = − τ CM i = − τ (ht − h)
St

S
CLtα (3.44)

CLδ = − τ CLi = τ
St

S
CLtα . (3.45)
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Stabilator

− ihs

δe

The stabilator configuration may be regarded as a horizontal stabiliser with an

elevator, whereby the incidence ihs of the stabiliser is variable. Furthermore, the

elevator is linked to the fuselage as shown in the diagram. The elevator deflection

is thus dependent on the incidence ihs, i. e.

δe = ke ihs + δ0 , (3.46)

where ke is the linkage factor. Using (3.46) in (3.42), we obtain

it = ihs (1 − τ ke) − τ δ0 . (3.47)

Following the same procedure as for the fixed stabiliser-elevator configuration, we

use (3.47) in (3.36) and (3.37) to replace it. We eliminate αa, set CM to zero and

solve the resulting equation for ihs. We thus obtain

ihs = − CMac,wb
CLα + CM α CL

CLα CM i − CM α CLi

1

1 − τ ke

+
τ δ0

1 − τ ke

, (3.48)

which defines the stabiliser incidence, that renders trimmed flight for a given total

lift coefficient CL.

The linkage factor ke is independent of aerodynamics and depends only on the

mechanical linkage of the elevator to the fuselage. It follows from (3.48) that a

negative ke increases the tail effectiveness in the sense of requiring smaller variations

of ihs to trim the aeroplane for a different velocity (angle of attack).
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3.5 Stick-Free Longitudinal Static Stability

In large aeroplanes, hydraulic systems are commonly used to hold the moveable con-

trol surfaces in the desired position. However, small light aircraft, older ones as well

as modern ones, are equipped with simple mechanical gear systems, which the pilot

has to operate by means of sticks or wheels. These systems must be designed such

that, for each point within the flight envelope (V − n diagram), the forces and mo-

ments to be applied by the pilot lie within acceptable limits. It is the gear systems

which can give proper “feel” to the pilot. “Elevator-down”, for example, should be

associated with a push-forward of the stick (decrease angle of attack, accelerate),

whereas “elevator-up” should be achieved by a pull-back of the stick (increase angle

of attack, decelerate).

H

− δe

We have seen that the elevator angle of trim or the tail incidence of trim (moveable

tails, stabilators) vary with the flight velocity. A mechanical gear system would

therefore require that the pilot permanently holds on to the stick and exerts a force

to keep it in the right position associated with trim for the desired velocity. This is

clearly very impractical. Therefore, we will, in the following, consider what happens

when the stick is left free, i. e. when the elevator is “floating”.
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Tail with Elevators

For the horizontal stabiliser-elevator configuration, the elevator hinge moment H

may be expressed as

H =
1

2
ρ v2

∞
Se c̄e CH , (3.49)

where Se and c̄e denote, respectively, the surface area of the elevator and the mean

chord of the elevator. For symmetrical sections, the hinge moment coefficient CH

depends only on the angle of attack and on the elevator deflection and may be

written as

CH = CHα αt + CHδ δe . (3.50)

The coefficients CHα and CHδ correspond to the derivatives of CH and are constant.

If the elevator is floating, then the hinge moment is zero and (3.50) may be solved

for δe to give

δe = − CHα

CHδ

αt . (3.51)

Using (3.51) in (3.41) renders

C ′

Lt
= CLtα

(

1 − τ
CHα

CHδ

)

αt , (3.52)

where C ′

Lt
denotes the stick-free tail lift coefficient. The factor

Fe = 1 − τ
CHα

CHδ

(3.53)

is known as the free elevator factor and, for the configuration under consideration,

Fe < 1 . Thus, the floating elevator basically renders a new, smaller slope of the

tail lift curve

C ′

Ltα = CLtα Fe < CLtα . (3.54)

If we use C ′

Ltα rather than CLtα and repeat the derivation of the location of the

neutral point along the lines of Section 3.3, then we obtain the location of the

stick-free neutral point h′

n as

h′

n =
hac,wb CLwbα + ht

St

S
CLtα Fe (1 − εα)

CLwbα +
St

S
CLtα Fe (1 − εα)

. (3.55)
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Following the simplifying assumptions which lead to (3.31), we may write

h′

n = hac,wb + FeVH
CLtα

CLα

(1 − εα) . (3.56)

We may then formulate the criteria for stick-free longitudinal static stability

CM
′

α = (h − h′

n) CL
′

α < 0 , (3.57)

where h′

n − h is the stick-free static margin. We conclude from (3.56) that, for

Fe < 1, this is smaller than the stick-fixed static margin. Therefore, the longitudinal

stability of an aeroplane with an elevator tail degrades as the stick is freed.
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Stabilator and Stick-Free Trim

For the stabilator tail, we introduce a hinge moment coefficient CH similar to the

one for the elevator in (3.50),

CH = CHα αt + CHδ δe . (3.58)

For the calculation of the free elevator factor Fe of the stabilator tail, we have to

work with the absolute angle of attack αa of the entire aeroplane since αt is measured

with respect to ihs and ihs is variable. With αwb ≈ αa and it = ihs the equation

(3.17) for the tail angle of attack can be written as

αt = αa (1 − εα) − ihs . (3.59)

Also, we recall (3.41) and (3.46), i. e.

CLt
= CLtα (αt + τ δe) (3.60)

δe = ke ihs + δ0 . (3.61)

Setting CH equal to zero and eliminating αt, δe and ihs renders, after some lengthy

manipulation,

C ′

Lt
= CLtα

(

(1 − εα)

(

1 − (1 − τ ke) CHα

CHα − CHδ ke

)

αa +
τ CHα − CHδ

CHα − CHδ ke

δ0

)

. (3.62)

Thus, we obtain for the stick-free case

∂ C ′

Lt

∂ αa

= CLtα (1 − εα)

(

1 − (1 − τ ke) CHα

CHα − CHδ ke

)

. (3.63)

The comparison with
∂ CLt

∂ αa

= CLtα (1 − εα) (3.64)

for the stick-fixed case renders the free elevator factor Fe for the stabilator tail as

Fe = 1 − (1 − τ ke) CHα

CHα − CHδ ke

. (3.65)
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It is a straightforward exercise to show that (3.55) – (3.57) also hold for the aeroplane

with a stabilator tail. In most stabilator configurations, we find that ke and CHδ are

negative whereas CHα is always positive. Provided that CHα < CHδ ke , we therefore

get Fe > 1 . Consequently, the longitudinal stability is improved by freeing the stick!

The linkage of the stabilator tail to the fuselage (ke and δ0) can be designed such

that the aeroplane, flown with a free stick, always trims itself whenever the flight

velocity is changed. For different locations of the centre of gravity, trim can be

achieved by moving the attachment point of the link to the fuselage.
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3.6 Directional Static Stability and Control

β
x

y

v∞

vside

N

We define the sideslip angle β as illustrated. Furthermore, we introduce the yawing

moment coefficient CN by writing

N = q∞ S b CN . (3.66)

For static stability, a perturbation β must generate a restoring positive yawing

moment N . Therefore, directional static stability requires that

∂ CN

∂β
= CN β > 0 . (3.67)
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v∞

N

−β

δr

Lv

lv

ACv

CG

In the following we neglect the contribution

of the wings & body to the yawing moment.

The moment N is then generated by the lift

force Lv of the vertical tail and we may write

N = − lv Lv . (3.68)

With

Lv = q∞ Sv CLv
(3.69)

and

CLv
= CLvα (−β + τ δr) (3.70)

we obtain

N = lv q∞ Sv CLvα (β − τ δr) . (3.71)

The comparison with (3.66) renders

CN =
lv
b

Sv

S
CLvα (β − τ δr) . (3.72)

Note that the first two terms in (3.72) are known as the vertical tail volume

VV =
lv
b

Sv

S
. (3.73)

We may then define the constant coefficients

CN β =
lv
b

Sv

S
CLvα (3.74)

and

CN δ = − lv
b

Sv

S
CLvα τ . (3.75)

It follows from (3.67) that the desired amount of directional stability can be achieved

by choosing a sufficiently large tail volume VV .
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3.7 Lateral Control L

W

θ

yz

δL

δR

δa = δL + δR

v∞

The aeroplane can be rolled, i. e. the bank angle θ can be controlled, by deflecting

the ailerons as illustrated. The aileron deflection δa is defined as the angle between

the left and the right ailerons. The diagram shows positive aileron deflection (left

aileron up, right aileron down).

The rolling moment L (not to be confused with the lift force!) may be expressed as

L = q∞ S b Cl , (3.76)

where Cl (lower case “l” to avoid confusion with lift coefficient) denotes the rolling

moment coefficient. Since the ailerons represent the only direct mechanism to control

roll, we have

Cl = Clδ δa . (3.77)

Note that for δa = 0 the rolling moment disappears. Thus, a perturbation θ 6= 0

generates neither a restoring nor a diverging rolling moment. The lateral static

stability is neutral (be, however, aware of the dihedral effect discussed on page 127).
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Adverse Yaw

kness

less lift

less drag

more lift

more drag

v∞

Due to the effect of the aileron deflections on induced drag, a positive antisymmet-

ric aileron deflection, which is intended to initiate a level left turn, generates an

undesired positive yawing moment forcing the nose to the right. This phenomena is

known as adverse yaw.

Adverse yaw can be reduced by applying asymmetric aileron deflection, such that

the upward deflection on one side is larger than the downward deflection on the other

(typically twice as big). This can be achieved by appropriately designed mechani-

cal gearing systems and reduces the drag differential significantly. The parameter

δa controlled by the pilot corresponds to the angle between the left and the right

aileron and is not affected by the mechanical linkage.
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Aileron Reversal

ercen

δ

k, AC

α

v∞

Consider a symmetric airfoil, supported in the aerodynamic centre by a rotational

spring, with a flap. This experimental set-up is representative of the section of a

wing near the wing tip. The stiffness of the spring corresponds to the torsional

stiffness of the wing. If the spring (the wing) is rigid, then the positive deflection of

the flap will generate lift. In the following we study the situation with k < ∞.

Due to the symmetry of the airfoil the pitching moment coefficient Cm is nonzero

only for δ 6= 0, i. e.

Cm = Cm0 + Cmα α + Cmδ δ (3.78)

with Cm0 = 0 , Cmα = 0 , Cmδ < 0 . (3.79)

The rotational displacement of the spring is equal to the angle of attack α. The

internal moment of the structure must be in equilibrium with the aerodynamic

loading. Rotational equilibrium formulated with respect to the support point may

be written as

k α = q∞ c2 Cmδ δ . (3.80)

Solving (3.80) for α gives α =
q∞ c2 Cmδ

k
δ . (3.81)

Using this in the expression for the lift coefficient (1.24) renders

Cl = Clα (α + τ δ) = Clα

(

q∞ c2 Cmδ

k
+ τ

)

δ . (3.82)
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From (3.82) we conclude that, due to Cmδ < 0, there is a critical dynamic pressure

q∞, for which the sign of the lift turns from positive to negative. This phenomena

is known as aileron reversal. Due to warping of the wing, a positive deflection of

the flap (or aileron) at high flight velocities causes a reduction of lift rather than an

increase. In order to delay aileron reversal to higher velocities, we need to provide

more structural stiffness to the wing (increase k), which typically leads to a larger

aeroplane weight.
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3.8 Coupling Effects

In this section, we briefly discuss some coupling effects between lateral and di-

rectional stability and control. Generally, longitudinal motion in the xz–plane is

independent of lateral and directional motion. The latter are, however, very closely

coupled such that we often speak of lateral-directional stability and control.

Coordinated Turn

A level turn is initiated by aileron deflection which rolls the aeroplane into the desired

bank angle (compare Section 2.8). However, the roll primarily causes sideslip β and

does not directly ensure that the aeroplane turns its nose into the desired direction.

The yaw needed to coordinate the turn is, at least partly, provided by the vertical

stabiliser, i. e. by CN β > 0 (see (3.67)). However, specifically in the presence

of adverse yaw, the vertical stabiliser may not generate sufficient yaw. A certain

rudder deflection is then required to achieve a coordinated turn, such that the x–axis

is always tangential to the flight path. In a coordinated turn the yaw rate and the

bank angle are consistent, such that the gravity experienced by the pilot and the

passengers is always perpendicular to the wings, i. e. they do not feel subjected to

any forces to the right or to the left.
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Asymmetric Engine Failure

Consider a twin engine aeroplane with one

engine suddenly failing. The pilot has to

trim the aeroplane with only one engine

and then try to reach the nearest airport.
T

D

Lv

N

ye

Rotational equilibrium in the xy–plane requires

TR ye + N = 0 . (3.83)

For trimmed controllable flight the sideslip has to vanish (or at least be very small),

such that β = 0 . Recalling TR = q∞ S CD and using (3.71) in (3.83) then gives

CD ye − lv
Sv

S
CLvα τ δr = 0 . (3.84)

Solving for δr and using VV =
lv
b

Sv

S
renders

δr =
CD ye

VV CLvα τ b
, (3.85)

which is the rudder deflection needed to balance the asymmetric thrust. Note that

(3.85) is important for the design of vertical tail and rudder, since the vertical tail

volume VV must be large enough to keep δr in the linear range, i. e. to avoid stall

at the vertical tail.
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L

W

Lv

−θ

It remains to balance the sideways lift force generated by the rudder deflection. This

can be done by rolling the aeroplane such that a component of weight is used to

counterbalance the sideways lift Lv. Assuming that θ is small we may write

− W θ = Lv . (3.86)

Using (3.85) and L = W for small θ we obtain

θ = − Lv

L
= − q∞ Sv CLvα τ δr

q∞ S CL

= − CD

CL

ye

lv
. (3.87)

minimum control speed: A sudden asymmetric engine failure will result in a

sudden yawing moment. This is accompanied by a rolling moment due to the lift

differential on the two wings, which results from the different airspeeds of the wings.

The pilot needs to react quickly with the appropriate rudder and aileron deflections.

This requires the control surfaces to be sufficiently effective at the current flight ve-

locity. Recalling that rudder and aileron lift forces are proportional to q∞, it follows

that there exists a minimum velocity below which control of the aeroplane can not

be recovered.

Similarly, the equations (3.85) and (3.87) suggest that there is a maximum drag

coefficient CD beyond which the rudder deflection δr and the bank angle θ become

impractical. Recalling that the (induced) drag increases as the velocity decreases,

we conclude that this renders a minimum flight velocity for which asymmetric thrust

can be counterbalanced by rudder deflection and roll.

The minimum velocity for which controlled trimmed flight can be recovered and

maintained is known as the minimum control speed vMC. It represents a critical

design factor. Engine failures at smaller flight velocities usually result in fatal acci-

dents.
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Rolling Moment with Sideslip – Dihedral

Generally, it follows from positive sideslip (sideslip to the right) that the lift force

generated by the right wing is larger than the one generated by the left wing and

vice versa. The lift force differential then causes a rolling moment, which rolls the

aeroplane towards the direction opposite to the sideslip. This phenomena is known

as the dihedral effect and may be expressed as

Clβ < 0 . (3.88)

Generally, a value of Clβ slightly smaller than zero is desirable for the handling of

the aeroplane. If Clβ is positive or |Clβ| is too large, then the aeroplane becomes

difficult to fly.

Now consider a positive rolling perturbation, i. e. the aeroplane is suddenly banked

by the angle θ. Consequently, the lift force is tilted to the right and causes positive

sideslip. Due to (3.88) a negative restoring rolling moment is generated. Thus, the

dihedral effect may be seen as providing static stability with respect to perturba-

tions of the bank angle.

The parameter Clβ is determined mainly by the dihedral angle Γ. For each wing, the

sideslip velocity may be decomposed into components parallel and perpendicular

to the wing surface as illustrated. Depending on its orientation, the perpendicular

component displaces the freestream velocity v∞ such that the angle of attack de-

creases or increases. Therefore, we conclude that the larger Γ is chosen, the more

lift is generated on the wing facing the sideslip wind, and consequently the larger is

the resulting rolling moment.

In the presence of wing sweep, the component of the sideslip parallel to the wing

surface has a similar effect as is illustrated below. However, we recall that the pri-

mary design criteria for wing sweep is the drag divergence at high flight velocities.

Finally, the dihedral effect depends significantly on the placement of the wings on

the fuselage. In fact, some aeroplanes with high wings (and/or large wing sweep)

have a negative dihedral angle Γ in order to avoid an excessive dihedral effect.
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Γβv∞
Γβv∞

βv∞

βv∞

βv∞

βv∞

ΓΓ

increase angle of attack

∆α = +β Γ

decrease angle of attack

∆α = −β Γ

v∞ cos(Λ − β)

> v∞ cos(Λ + β)

v∞ cos(Λ + β)

Λ

v∞
v∞

low wing

→ less dihedral

high wing

→ more dihedral
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Other Coupling Effects

rolling moment with rudder deflection: In a classically configured aeroplane,

the vertical tail with the rudder is situated at some distance above the centre of

gravity of the aeroplane. Consequently, any horizontal lift force of the vertical tail

and rudder generates a rolling moment with respect to the centre of gravity.

rolling moment with yaw rate: While the aeroplane is yawing in the positive

direction, the left wing experiences a larger freestream velocity than the right wing.

This lift force difference results in a positive rolling moment. Vice versa, a negative

yaw rate produces a negative rolling moment.

yawing moment with roll rate: While the aeroplane is rolling, the freestream

velocities on the two wings are displaced by a component vertical to the wing.

Consequently, the lift force is tilted forward on one wing and backwards on the

other. This results in a yawing moment.

There exist other, more complicated coupling effects, which are beyond the scope of

these notes.


