
Reference Vehicle (1)

δ

[°]

-40.0

-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0

40.0

δ

[°]

-20.0

-10.0

0.0

10.0

20.0

30.0

OPERATONAL PARAMETER RANGES:

 δ_r

[0]

0.0

10.0

20.0

30.0

40.0

0.8 < M < 1.2

Μ

[-]

1.2

1.5

2.0

3.0

5.0

10.0

20.0

VELOCITY REGIMES :

SUPERSONIC 1 CM C 5

α

[0]

0.0

5.0

10.0

15.0

20.0

25.0

30.0

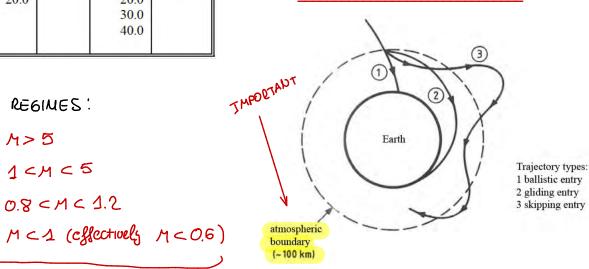
35.0

40.0

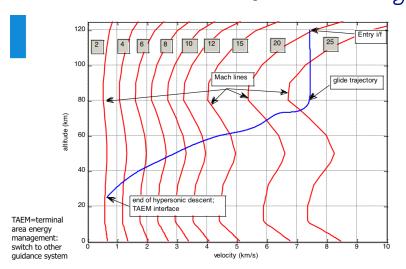
45.0

Mypersonic M>5

TEANSONIC

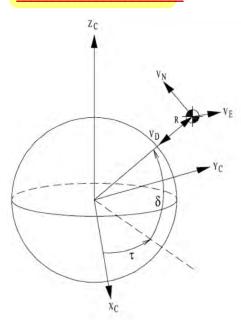

SUBSONIC

- Neglections for aerodynamic effects


- · No acroclasticity
- · Influence of R.N included in dras coefficient
- · No especial landing aerodynamics
- · No interference effects of the flaps due to hypersonic regime.
- · When B > 2°, B is simplified by Chearization.

Graphs	lor	pite	chins	MON	nents	with and
without	Jla	ps	as	a	foncti	on af
alpha	0	м	ach	are	siven	aswell.

ATHOSPUERE RE-ENTRY



This is how the spacecraft looks on reentry.

Banh maneuvers are used to increase crossrange and for constraint control.

NOU- LINEAR EOM:

TRANSLATIONAL MOTION

$$\dot{S} = \frac{V\omega}{R} \qquad \dot{T} = \frac{VE}{R \cdot \cos \delta} \qquad \dot{R} = -VD$$

$$\dot{V}\omega = \frac{F_{xE}}{M} - 2\Omega_{t} \cdot VE \cdot \sin \delta - \Omega_{t}^{2} \cdot R \cdot \sin \delta \cdot \cos \delta - \frac{Ve^{2} \tan \delta - V\omega \cdot VD}{R}$$

$$\dot{V}E = \frac{F_{yE}}{M} + 2\Omega_{t} \cdot (VD\cos \delta + V\omega \cdot \sin \delta) + \frac{VE}{R} \cdot (U\omega \cdot \tan \delta + VD)$$

$$\dot{V}D = \frac{F_{t}E}{M} - 2\Omega_{t} \cdot VE \cdot \cos \delta - \Omega_{t}^{2} \cdot R \cdot \cos^{2} \delta - \frac{VE^{2} + V\omega^{2}}{R}$$

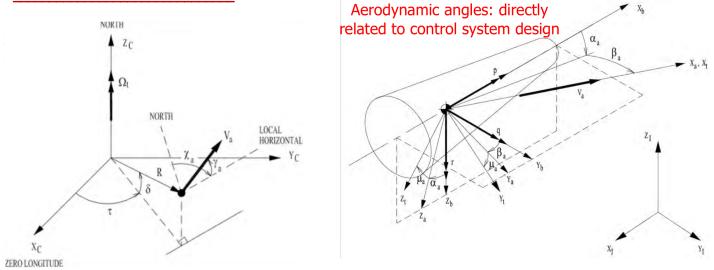
ROTATIONAL MOTION

$$\dot{p} = \frac{I_{zz}}{I^*} M_x + \frac{I_{xz}}{I^*} M_z + \frac{(I_{xx} - I_{yy} + I_{zz}) I_{xz}}{I^*} pq + \frac{(I_{yy} - I_{zz}) I_{zz} - I_{xz}^2}{I^*} qr$$
$$\dot{q} = \frac{M_y}{I_{yy}} + \frac{I_{xz}}{I_{yy}} \left(r^2 - p^2\right) + \frac{I_{zz} - I_{xx}}{I_{yy}} pr$$
$$\dot{r} = \frac{I_{xz}}{I^*} M_x + \frac{I_{xx}}{I^*} M_z + \frac{(I_{xx} - I_{yy}) I_{xx} + I_{xz}^2}{I^*} pq + \frac{(-I_{xx} + I_{yy} - I_{zz}) I_{xz}}{I^*} qr$$
with $I^* = I_{xx} I_{zz} - I_{xz}^2$.

$$\begin{split} \dot{\varphi} &= \tilde{p} + \sin \varphi \tan \theta \tilde{q} + \cos \varphi \tan \theta \tilde{r} \\ \dot{\theta} &= \cos \varphi \tilde{q} - \sin \varphi \tilde{r} \\ \dot{\psi} &= \frac{\sin \varphi}{\cos \theta} \tilde{q} + \frac{\cos \varphi}{\cos \theta} \tilde{r} \end{split}$$

 $\tilde{p} = p + c\theta s\psi \dot{\delta} - [c\delta c\psi c\theta + s\delta s\theta] (\dot{\tau} + \Omega_t)$ $\tilde{q} = q + (s\psi s\theta s\varphi + c\psi c\varphi)\dot{\delta} - [c\delta (c\psi s\theta s\varphi - s\psi c\varphi) - s\delta c\theta s\varphi] (\dot{\tau} + \Omega_t)$ $\tilde{r} = r + (s\psi c\varphi s\theta - c\psi s\varphi)\dot{\delta} - [c\delta (s\psi s\varphi + c\psi s\theta c\varphi) - s\delta c\theta c\varphi] (\dot{\tau} + \Omega_t)$

* two plans of mass symmetry.


$$\dot{P} = \frac{M_{x}}{I_{xx}} + \frac{I_{yy} - I_{zz}}{I_{xx}} q_{r}$$

$$\dot{q} = \frac{M_{y}}{I_{yy}} + \frac{I_{zz} - J_{xx}}{I_{yy}} p_{r}$$

$$\dot{r} = \frac{M_{z}}{I_{zz}} + \frac{I_{xx} - J_{yy}}{I_{zz}} pq$$

These equations are not for re-entry: NEXT PAGE

RE-ENTRY ANALYSIS

$$\dot{V} = -\frac{D}{m} + g \cdot \sin\gamma + \Omega t^{2} \cdot \operatorname{Rcos} \delta(\sin\gamma \cdot \cos\delta - \cos\gamma \cdot \sin\delta \cdot \cos\chi)$$

$$V\dot{\gamma} = \frac{d\cos\gamma}{m} - g \cdot \cos\gamma + 2\Omega t V \cdot \cos\delta \cdot \sin\chi + \frac{V^{2}}{R}\cos\gamma + \Omega t^{2} \cdot \operatorname{Rcos} \delta(\cos\gamma \cdot \cos\delta - \sin\gamma \cdot \cos\delta \cdot \cos\chi)$$

$$V\cos\gamma\dot{z} = \frac{d\sin\gamma}{m} + 2\Omega t V \cdot (\sin\delta \cdot \cos\gamma - \cos\delta \cdot \sin\gamma \cdot \cos\chi) + \frac{V^{2}}{R}\cos^{2}\gamma \tan\delta \cdot \sin\chi + \Omega t^{2} \cdot \cos\delta \cdot \sin\delta \cdot \sin\chi$$

$$\dot{R} = \dot{h} = V \sin\gamma \qquad \dot{t} = \frac{V \cdot \sin\chi \cdot \cos\gamma}{R \cdot \cos\delta} \qquad \dot{\delta} = \frac{V \cdot \cos\chi \cdot \cos\gamma}{R}$$

$$\dot{\gamma} = \pm 90^{\circ} \qquad Dywance equations for potational Motion Ale The SAME$$

KINEMATIC EQUATIONS

Coupling due to large angle of attack

 $\dot{\alpha}\cos\beta = -p\cos\alpha\sin\beta + q\cos\beta - r\sin\alpha\sin\beta + q\cos\beta + q^{2})$

$$+ \sin \mu \left[\dot{\chi} \cos \gamma - \dot{\delta} \sin \chi \sin \gamma + (\dot{\tau} + \Omega_t) \left(\cos \delta \cos \chi \sin \gamma - \sin \delta \cos \gamma \right) \right] + - \cos \mu \left[\dot{\gamma} - \dot{\delta} \cos \chi - (\dot{\tau} + \Omega_t) \cos \delta \sin \chi \right]$$

 $\dot{\beta} = p \sin \alpha - r \cos \alpha +$

 $+ \sin \mu \left[\dot{\gamma} - \delta \cos \chi - (\dot{\tau} + \Omega_t) \cos \delta \sin \chi \right] +$ $+ \cos \mu \left[\dot{\chi} \cos \gamma - \dot{\delta} \sin \chi \sin \gamma + (\dot{\tau} + \Omega_t) \left(\cos \delta \cos \chi \sin \gamma - \sin \delta \cos \gamma \right) \right]$

 $\dot{\mu} = -p\cos\alpha\cos\beta - q\sin\beta - r\sin\alpha\cos\beta +$ $+ \dot{\alpha}\sin\beta - \dot{\chi}\sin\gamma - \dot{\delta}\sin\chi\cos\gamma + (\dot{\tau} + \Omega_t)(\cos\delta\cos\chi\cos\gamma + \sin\delta\sin\gamma)$

Rotation of Earth $(\vec{\delta}, \tau)$ and local horizontal plane $(\vec{\gamma}, \chi)$

During bank neucosals, bank angle coverage of 120°, areales Carge induced angle of slideslip. This slideslip produces coupling with pitch notion.

SUMMARY:

For simulation of re-critics:

(INERTIAL) CARTESIAN components for position and velocity.

For analysis of re-entry:

Spherical components for translational Motion. Aerodynamic angles for attitude.

BEWARE:

Flight path angle (±90°), datitude (±90°) Slideslip angle (±90°)

darge angle of attach:

Coupling between roll-yaw Coupling between rudder - ailerons. LINEARIZATION:

ASSUMPTIONS : EOM

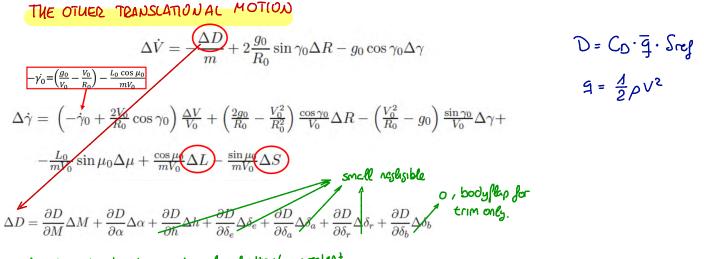
-Rt = O: Rotation of earth equals O. Because the vehicle is faster.

Jxz=0: Mass symmetric vehicle.

MOLE ASSUMPTIONS :

$$\begin{aligned} & \frac{1}{2} = -\frac{P}{m} - \frac{P \sin \gamma}{mV} & \frac{R = V \sin \gamma}{mV} & S = 0^{\circ} \text{ variable makes along equator} \\ & \frac{1}{2} = \frac{V}{R} \cos \gamma \tan \delta \sin \chi + \frac{(L \sin \mu + S \cos \mu)}{mV} & \frac{1}{2} = \frac{V \cos \gamma \sin \chi}{R \cos \delta} & \chi = 90^{\circ} \quad \dot{S} = 0 \\ & \tilde{S} = 0 \\ & \tilde{S$$

71.


$$\Delta \dot{R} = \sqrt{0} \cos \gamma_0 \Delta \gamma + \sin \gamma_0 \Delta V$$

METHOD 2

$$\dot{R} = V \sin y$$
 $\int = V \sin y$
 $\frac{\partial g}{\partial x_{1}} = \sin x$ $\frac{\partial f}{\partial y} = V_{0} \cos x$
 $\Delta \dot{R} = V_{0} \cos x_{0} \Delta \dot{y} + \sin x_{0} \Delta \dot{y}$

LINEARIZATION:

Central gravity field:
$$g_0 + \Delta g = \frac{\mu}{(R_0 + \Delta R)^2} = \frac{\mu}{R_0^2} \cdot \frac{1}{1 + 2\frac{\Delta e}{R_0}} \approx \frac{\mu}{R_0^2} (1 - 2\frac{\Delta e}{R_0})$$

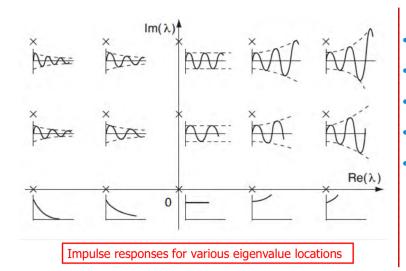
$$\Delta g = -2g_0 \frac{\Delta R}{R_0}$$

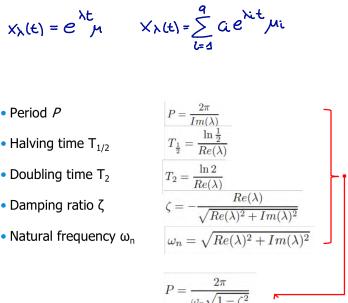
Variation due to Mach and angle of attach greatest.

b_{µe}

$$\Delta \mathcal{L} = \frac{\partial C_l}{\partial \beta} \bar{q}_0 S_{ref} b_{ref} \Delta \beta + \frac{\partial C_l}{\partial \delta_a} \bar{q}_0 S_{ref} b_{ref} \Delta \delta_d$$

FINAL STATE SPACE NODEL

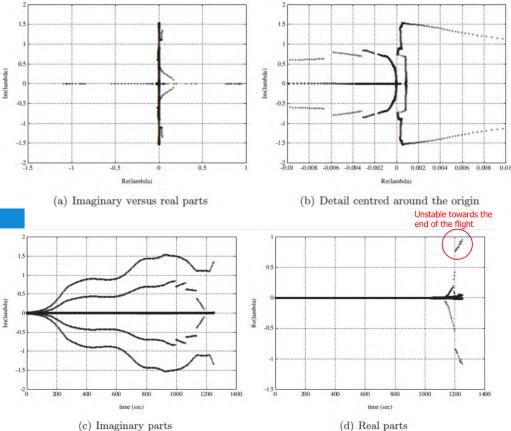

[a_{VV}	$a_{V\gamma}$	a_{VR}	a_{Yp}	a_{Vq}	a_{Vr}	$a_{V\alpha}$	axB	a_{μ}	1	(ΔV)
	$a_{\gamma V}$	$a_{\gamma\gamma}$	$a_{\gamma R}$	a_{1p}	$a_{\gamma q}$	arr	$a_{\gamma lpha}$	$a_{\gamma\beta}$	$a_{\gamma\mu}$		$\Delta\gamma$
	a_{RV}	$a_{R\gamma}$	a_{RR}	a_{Rp}	a_{Rq}	a_{Rr}	$a_{P\alpha}$	$a_{B\beta}$	$a_{D\mu}$		ΔR
	apv	apy	a_{pR}	a_{pp}	a_{pq}	q_{pr}	$a_{p\alpha}$	$a_{p\beta}$	$a_{p\mu}$		Δp
=	a_{qV}	agy	aR	a_{4p}	a 19	agr	$a_{q\alpha}$	$a_{_{1}\beta}$	$q_{q\mu}$		Δq
	av	ary	a_R	a_{p}	arg	arr	a_{α}	$a_{r\beta}$	a_{μ}		Δr
	$a_{\alpha V}$	$a_{\alpha\gamma}$	$a_{\alpha R}$	$a_{\alpha p}$	$a_{lpha q}$	aur	$a_{lpha lpha}$	ans	$a_{\alpha\mu}$		$\Delta \alpha$
	$a_{\beta V}$	$a_{\beta\gamma}$	$a_{\beta R}$	$a_{\beta p}$	$a_{\beta q}$	$a_{\beta r}$	$a_{\beta\alpha}$	$a_{\beta\beta}$	$a_{eta\mu}$		$\Delta \beta$
	$a_{\mu V}$	$a_{\mu\gamma}$	$a_{\mu R}$	$a_{\mu p}$	$a_{\mu q}$	$a_{\mu r}$	$a_{\mu lpha}$	$a_{\mu\beta}$	$a_{\mu\mu}$	1	$\Delta \mu$,
	b_{Ve} $b_{\gamma e}$ b_{Re}	b_{Va} $b_{\gamma a}$ b_{Ra}	$ \begin{array}{cccc} b_{Vr} & b_{Vr} \\ b_{\gamma r} & b_{Rr} \\ \end{array} $	$b_{\gamma x} = b_{\gamma x} = b_{Rx} = b_{Rx}$	$\begin{array}{ccc} Vy & b \\ b \\ \gamma y & b \\ PRy & b \end{array}$	$\frac{Vz}{\gamma z}$	($\Delta \delta_e \\ \Delta \delta_a$		1	$\langle \Delta \mu \rangle$
+	b_{Ve} $b_{\gamma e}$ b_{Re}	b_{Va} $b_{\gamma a}$	$b_{Vr} = b_{\gamma r} = b_{Rr} = b_{rr} = b_{rr}$	b_{Vx} b_{px} b	b_{Yy} $b_{\gamma y}$	$\left[\frac{Vz}{\gamma z} \right]$		$\Delta \delta_e$	$a_{\mu\mu}$	1	Δ μ,


 $b_{\mu z}$

 $b_{\mu r}$ $b_{\mu x}$ $b_{\mu y}$

 $\dot{x} = Ax + Bu$

$$A_{\mu} = \lambda_{\mu}$$
 $(A - \lambda I)_{\mu} = 0$ $|A - \lambda I| = 0$



These are dimensional parameters!

SUMMARY:

- Conventional aircraft has five different modes, i.e., two longitudinal and three lateral ones
- Longitudinal modes (pitching):
 - Short-period fast, periodic motion, usually well damped
 - Phugoid very slow oscillation, usually poorly damped
- Lateral modes (rolling):
 - Lateral oscillation (or Dutch roll) moderately to well-damped oscillation, yaw rotation induces large forces
 - Rolling convergence, strongly damped, aperiodic motion
 - Spiral mode, stable or unstable aperiodic motion with large time constant
- Longitudinal and lateral modes are decoupled

.....

CHECK EXAMPLE OF PENDULUM ON DECTURE AS: To analyze a eigenmotion: select time points and evaluate the eigenvalues and eigenmotion of state A matrix.

	short-period *) oscillation	phugoid		lateral oscillation	aperiodic	roll mode	height mode		former sh oscill	ort-period ation	periodic pitch/roll mode	lateral oscillation	pitch/roll divergence	spiral	mode
λ _i Re	-0.7302·10 ⁻⁷		25.10-4	0.8677-10 ⁻³	-0.1735·10 ⁻²	-0.7925-10 ⁻¹⁸	-0.8402-10	λ _j Re	-0.5078	0.3695	-0.0157	0.0229	0.0814	-0.2892-10 ⁻³	0.9450-10-14
P (s)	±0.7415·10 ⁻² 847.3		12·10 ⁻²	±0.0168 373.8				P (s)			±0.7035-10 ⁻² 893.1	±1.113 5.6		-	-
T _{1/2} (s)	0.949·10 ⁷	-17	7,220.6	-798.9	399.4	0.875·10 ¹⁸	8,250.0	T _{1/2} (s)	1.4	-1.9	44.3	-30.3	-8.5	2,396.8	-0.734·10 ¹⁴
ζ (-) ω _n (rad/s)	0.985·10 ⁻⁵ 0.742·10 ⁻²		-0.033 21.10 ⁻²	-0.052 0.017	•			ζ (-) ω _n (rad/s)	•	•	0.912	-0.021		•	
μ,	z 0 (°)	z	0 (°)	z θ (°)	z	z	z	μ,	z	z	z θ (°)	z θ (°)	Z	Z	z
Δν	0.0129 10.7 0.9637·10 ⁻⁶ 331.7	0.1271.10 ⁻² 0.1632.10 ⁻⁶	288.9 18.1	0.1134-10 ⁻¹⁵ 6.2 0.4382-10 ⁻²⁰ 325.8	0.1678-10 ⁻¹⁶ 0.3441-10 ⁻²⁰	0.2112-10 ⁻¹⁵ 0.6882-10 ⁻²¹	0.6573·10 ⁻³ 0.1351 10 ⁻⁷	ΔV Δγ Δβ	0.6721 0.4118·10 ⁻³	0.5181 0.2972-10 ⁻³	0.1758·10 ⁻² 9.3 0.1598·10 ⁻⁴ 14.0	0.0256 284.8 0.1027-10 ⁻² 17.9	0.1215 0.6490·10 ⁻⁴	0.3228·10 ⁻⁴ 0.2695·10 ⁻⁶	0.3896·10 ⁻⁵ 0.3286·10 ⁻⁹
Δ <i>R</i> Δ <i>p</i> Δ <i>q</i>	1.0000 63.3 0.8551.10 ⁻¹⁹ 277.7 0.1678.10 ⁻³ 6.1	0.2260-10 ⁻²³ 0.1804-10 ⁻⁹	287.7 291.9 300.2	0.2211-10 ⁻¹⁴ 51.1 0.0206 287.8 0.3156-10 ⁻¹⁷ 318.3	0.1475·10 ⁻¹³ 0.2144·10 ⁻² 0.4950·10 ⁻¹⁹	0.3129-10 ⁻¹² 0.8153-10 ⁻³ 0.4129-10 ⁻¹⁹	1.0000 0.1007-10 ⁻²² 0.2798-10 ⁻⁹	Δp Δq	1.0000 0.2036·10 ⁻⁴ 0.3447·10 ⁻²	1.0000 0.1595·10 ⁻⁴ 0.1822·10 ⁻²	1.0000 349.9 0.4226·10 ⁻⁶ 48.5 0.1025·10 ⁻⁶ 278.8	1.0000 286.9 0.0808 19.2 0.7476·10 ⁻⁴ 278.2	1.0000 0.3478-10 ⁻⁵ 0.2963-10 ⁻⁴	1.0000 0.3717·10 ⁻⁸ 0.6599·10 ⁻⁸	1.0000 0.5878·10 ⁻⁹ 0.2753·10 ⁻⁸
Δτ Δα Δβ	0.9334-10 ⁻²⁰ 291.6 0.0226 276.1 0.1940-10 ⁻¹⁷ 21.6	0.2444.10-22	0.4 281.9 272.3	0.1542·10 ⁻² 287.8 0.3891·10 ⁻¹⁶ 345.0 0.7277 20.8	0.1606·10 ⁻³ 0.3712·10 ⁻¹⁶ 0.7814·10 ⁻²	0.9716·10 ⁻³ 0.1735·10 ⁻¹⁶ 0.1235·10 ⁻¹⁵	0.8683·10 ⁻²³ 0.1527·10 ⁻⁷ 0.2045·10 ⁻²²	Δr Δα Δβ Δμ	0.3419 10 ⁻⁵ 0.7534 10 ⁻² 0.1604 10 ⁻⁵ 0.2726 10 ⁻⁴	0.2680·10 ⁻⁵ 0.4372·10 ⁻² 0.9150·10 ⁻⁶ 0.7653·10 ⁻⁴	0.7098·10 ⁻⁷ 48.5 0.3333·10 ⁻⁵ 9.5 0.1125·10 ⁻⁸ 72.7 0.1671·10 ⁻⁴ 48.9	0.0136 19.2 0.4170·10 ⁻³ 16.0 0.0140 290.4 0.0722 288.1	0.5842-10 ⁻⁶ 0.2428-10 ⁻³ 0.4397-10 ⁻⁷ 0.4241-10 ⁻⁴	0.6244·10 ⁻⁹ 0.6126·10 ⁻⁷ 0.1669·10 ⁻¹² 0.3279·10 ⁻⁶	0.1219·10 ⁻⁸ 0.7396·10 ⁻⁸ 0.7179·10 ⁻²¹ 0.2092·10 ⁻⁶
Δμ	0.2609-10 ⁻¹⁷ 11.3	0.5346-10 ²¹	-	1.0000 11.7	1.0000	1.0000	0.9654.10 ^{.20}				t=	2746 s			
Diffe	nater Ci	n els	enn	nodes con	nparea	e) fo	aircro	ft are	due	To M	l large u	elocity o	nd (R	jean	ე <i>.</i>
	Sfiort de	eiod:	loi	nser perio	nd, ba	oorly i	дстре) due	to la	ow a	tmosphee				
				e to airc	raft		At 22	196 s	short f	senod	splits {	change du	relac		
	+ aer	odynan	nic	force + c	Jampin	S	+ tin	10. + 10	Pluence	or b	anh. L ^a	strongy and	JJ		
P	N 200 10 :	୧୦୯୩	slo	ሠር (1ከ	грел					0					
	Puscon: even slower (1 hr penod) unstable (poorly damped) + time + damping														
	when	banh	ch	anses fro	m O	to non	0 // c	ουρίης	betwo	een t	le symmetr	nc and o	symme:	tac.	
0	dategall Oscillation: Unstable, but similar														
	Unstat	see b	ut	stable at	some	time	(S96 s`)							
	+ time	e - pe	٥٥٦)		@ 39	6s //	wuplng	; betwe	ien Cat	oal and Co	nsitudinal	motion.		
F	PERIODIC	lou .	Moi	။ကာ :											
	Changes	@ 396	s	to perio	odic	roll m	otion	with s	imall a	ouplins	60 d.				
	When t	starts	ban	hins, he	usht <u>k</u>	ecome.	s domi	nant.							
	Next the point: 1 break up into two aperiodic roll modes 2. stable periodic roll mode														
				modes (ur											
CONCLUSIONS:															
									. .	0		1.1.	NSC, 00-	tom	cture
(Similar t	o airc	rcf	ł					Cont	rol M	ecesary a	yue tto (0

Coupling between asymptotical and synctrical.

Slover with no atmosphere

Control necessary due to oscillatory nature. Not distinguishable eigenmodes in open-loop convertion.

OTHER (ASES: APOLLO

HYPEEDOLIC ENTRY VELOCITY

- Axisymmetric (= rotational symmetric) vehicle
- Asymmetry introduced by shift of centre of mass
 - z_{cg} = -0.137 m
 - As a result: hypersonic trim angle of attack α = -24.5°
 - Lift-to-drag ratio L/D \approx 0.3 (without shift: L/D = 0): large aerodynamic loads (up to 6g)
- Only one plane of mass symmetry, $I_{xz} \neq 0$ (full set of Euler equations needed!)

(Stronger) coupling between symmetric and asymmetric motion

entry interface

lateral oscillatio

Mach < 3

-0.04

-0.02

0

0.02

longitudinal oscillatio

height modes

- $I_{xx} = 5618 \text{ kg m}^2$, $I_{yy} = I_{zz} = 4455 \text{ kg m}^2$ $I_{xy} = I_{yz} = 0.0 \text{ kg m}^2$ and $I_{xz} = 1752 \text{ kg m}^2$

 $a_{pp} = I_{p_1} q_0$

- $a_{pq} = I_{p_1} p_0 + I_{p_2} r_0$
 - $a_{pr} = I_{p_2} q_0$
- $a_{qp} = -2\frac{I_{xz}}{I_{xx}}p_0 + \frac{I_{zz} I_{xx}}{I_{xx}}q_0$ $a_{qr} = \frac{I_{zz} - I_{xx}}{I_{uu}} p_0 + 2\frac{I_{xz}}{I_{uu}} r_0$

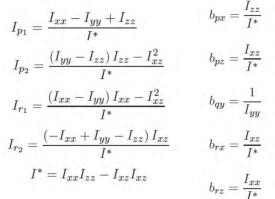
 $a_{rp} = I_{r}, q_0$

 $a_{rq} = I_{r_1} p_0 + I_{r_2} r_0$

 $a_{rr} = I_{r_2}q_0$

30

20


10

-10

-20

-30

imaginary part eigenvalues

(Strong) coupling between X and Z axis: more difficult for controller

- The 5 eigenmodes can not be found.
- · donsitudinal and lateral oscillation show coupling.
- · + time + high frequency oscillations
- · Apenodic height modes
- · All eigenmodes are stable
- · Very short periods

• Lateral bank/height modes:

- For t<100 s there are two very slow aperiodic modes (one stable and one unstable), driven by bank angle and height
- The modes change in "pure" height modes
- Even though the amplitude half time reduces, the unstable motion remains slow. $T1/_{2min} = 268$ s for the stable mode.
- Height/velocity modes:
 - For t<150 s: unstable height oscillation and stable aperiodic height mode, both slow. Height oscillation becomes stable at t \approx 150 s
 - The height oscillation breaks up in a stable height/velocity mode ($T\frac{1}{2}$ = 55 s), and a stable height mode ($T\frac{1}{2}$ = 550 s)
 - The height/velocity mode becomes "well" damped towards end of the flight ($T\frac{1}{2} = 5 s$)
 - The stable height mode becomes unstable (t=150 s) but remains slow

-0.14 Longitudinal oscillation:

-0.12

· Marginally (at entry interface) to reasonably damped motion

decreasing Mach number

- At entry interface, motion is driven by inertia only with P = 885 s
- · Due to strongly increasing dynamic pressure, the frequency of oscillations increases, until P = 0.4 s (!) between t = 200 and 250 s

-0.08 -0.06 real part eigenvalues

- Strong (inertial) coupling with lateral motion for t < 100 s
- Coupling with altitude (t<100 s) and velocity (t>50 s) due to non-zero nominal bank angle
- Lateral oscillation:
 - · Coupling between the symmetric and asymmetric motion, as well as a coupling with translational motion
 - Slightly worse damped than the longitudinal oscillation
 - Overall, slightly shorter period ($P_{min} \approx 0.3$ s)

- · All coeficients are a function of M, d, B.
- At=0 · S=0, S=0, X=90°

To this case here are some differences with the previous A, B matrices:

Extra tems due to Ix2 Some accodynamic dervatives are O. No acodynamic control surfaces

FORMULA SUEET

Tor F:

Clp is cause by Dol between he wings? Thus Fey by Wire, reversible? FALSE Vins of conventional airplane, neschive (Gp) Teve Fast aircraft, Earth non-rotating ? False Unstable spiral preflect over unstable D.R.? True 'Phusoid, pitch the and airspeed very? Facse Most pilots, in pleasant to fly if Dre 20 The A more negative Clp leads to more dumped Dutch roll ! False Newtons laws notion only valid for inertial R.F. True When aircraft dynamically ustable must be FALSE statically unstable: Positive deflections of control surfaces cause True diversed E.O.H describe exactly motion of Arcest: False regative roll, pitch and you . Cyp of an aircraft, mostly produced by wing: Facse Contribution of Jusekse to CNB is destabilizing True Crick is used to account for time delay of E hit Cze and Cxx have a significant effect on Talse True he horizontal tail. S.P.M and P.M: Whis at most equal or less than he undownped True Shifting the xcs find will decrease the required Faise $\omega_{\rm N}=\omega_0\cdot\sqrt{1-5^2}$ control forces: increases longi. stability grequong always ass han 1 $\omega_n < \omega_0$

Table with coefficients:

Coefficient	Sign	Change		
$C_{Y_{eta}}$	-	+		
$C_{l_{\beta}}$	-	+		
$C_{n_{\beta}}$	+	+		
C_{Y_p}	-	+		
C_{l_p}	-	+		
C_{n_p}	-	-		
C_{Y_r}	+	+		
C_{l_r}	+	+		
C_{n_r}	-	+		
$C_{Y_{\delta_r}}$	+	+		
$C_{l_{\delta_r}}$	+	+		
$egin{array}{c c} & C_{Y_eta} & \ \hline C_{l_eta} & \ \hline C_{R_eta} & \ \hline C_{P} & \ \hline C_{I_p} & \ \hline C_{P} & \ \hline C_{P} & \ \hline C_{I_r} & \ \hline C_{I_r} & \ \hline C_{Y_{\delta_r}} & \ \hline C_{I_{\delta_r}} & \ \hline C_{I_{\delta_r}} & \ \hline C_{I_{\delta_r}} & \ \hline C_{n_{\delta_r}} & \ \hline C_{n_{\delta_r}} & \ \hline \end{array}$	-	+		

AXIS TRAUSFORMATIONS:

$$Tc' = Ty \left(S + \frac{n}{2} \right) \cdot \frac{R}{2} + s \text{ only added}$$

to S

[™]×c′

X_C (τ =0 ')

AXIS TRANSFORMATIONS:

Explain how
$$\alpha, \beta$$
 and μ are obtained. Given lbt, let and Teb
Tbt = $\beta(\alpha, \beta, \Lambda)$ Tbt = $\overline{Tg}(\kappa) \cdot \overline{Tg}(-\beta) \cdot \overline{Tx}(-\Lambda)$ from transformations
Tbt = Teb⁻¹. Tet
Tx \rightarrow Bets call it like this
Tbt= $\begin{bmatrix} c\kappa \cdot c\rho & -c\kappa \cdot s\beta \cdot c\mu - s\alpha \cdot s\mu & +c\alpha \cdot s\beta \cdot s\mu & -s\alpha \cdot c\mu \end{bmatrix} \xrightarrow{to} \int Ind \alpha, \beta, \mu$
Tbt= $\begin{bmatrix} c\kappa \cdot c\rho & -c\kappa \cdot s\beta \cdot c\mu - s\alpha \cdot s\mu & +c\alpha \cdot s\beta \cdot s\mu & -s\alpha \cdot c\mu \end{bmatrix} \xrightarrow{to} \int Ind \alpha, \beta, \mu$
Tbt= $\begin{bmatrix} s(\kappa) - c\mu \cdot s\beta \cdot c\mu - s\alpha \cdot s\mu & +c\alpha \cdot s\beta \cdot s\mu & -s\alpha \cdot c\mu \end{bmatrix} \xrightarrow{to} \int Ind \alpha, \beta, \mu$
Tbt= $\begin{bmatrix} s(\kappa) - c\mu \cdot s\beta \cdot c\mu - s\alpha \cdot s\mu & +s\alpha \cdot s\beta \cdot s\mu & -s\alpha \cdot c\mu \end{bmatrix} \xrightarrow{to} \int Ind \alpha, \beta, \mu$
 $\frac{sn(\kappa) \cdot cos(\beta)}{s\kappa \cdot c\mu} = fan(\kappa) = \frac{Tx}{Tx}(\beta, \beta)$ $\alpha = arcton\left(\frac{Tx}{a, 2}\right)$ Some for the others.

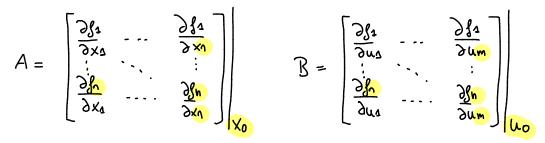
STARTING FROM:

arrive to:

$$M \cdot \frac{\partial Uc}{\partial t} = F_{ext}^{c} \qquad M \cdot \frac{\partial V}{\partial t} = -D - mg \cdot sin \gamma$$

$$F_{ext}^{T} = \begin{bmatrix} -D - mg \cdot sin \gamma \\ L - mg \cdot cos \gamma \end{bmatrix} \qquad M \cdot V \cdot \frac{\partial \gamma}{\partial t} = L - m \cdot g \cdot cos \gamma \cdot \left(1 - \frac{V^{2}}{Vc^{2}}\right)$$

$$\frac{\partial Vc}{\partial t} = \frac{\partial}{\partial t} \left(Vx_{T}^{T}\right) = \frac{\partial V}{\partial t} x_{T}^{T} + V \cdot \frac{\partial x_{T}^{T}}{\partial t}$$


Explain the following terms: Is not corrolis, drassing acceleration

-2m RCI × VC : Corrolis acceleration, due to the motion of the object in a rotating frame -M.RCI × rCm : Apparent centripetal acceleration due to the ansular motion of the mounts frame.

Now to transform
$$\frac{\partial Vc^{c}}{\partial t}$$
 into E frame:
Differenciating Merr regular components, applying We chain rule and then
finding expressions for the time derivatives of the unit vectors

LINEARIZATION:

Find A and B: IMPORTANT, ALL VARIABLES AFTER DIFFERENTIATION X0

Indicate state variables: for the control variables read the assumptions $\Delta x = \begin{bmatrix} \Delta V, \Delta \alpha, \Delta g, \Delta p, \Delta r, \Delta p, \dots \end{bmatrix}^{T} \qquad \Delta u = \begin{bmatrix} \Delta \alpha, \Delta Mr, \varepsilon, \Delta Mr, g \end{bmatrix}$ $L = \overline{q} \cdot S \cdot C_{L} \longrightarrow \Delta V, \Delta \alpha$ $D = \overline{q} \cdot S \cdot C_{D}$ $Mx = \mathcal{L} + Mr, x \qquad \mathcal{L} = C_{P} \cdot \overline{g} \cdot Sef \cdot dref \longrightarrow \Delta V, \Delta \alpha, \Delta \beta$ $Mz = \mathcal{N} + Mr, z \qquad \mathcal{N} = C_{N} \cdot \overline{g} \cdot Sref \cdot dref \longrightarrow \Delta V, \Delta \alpha, \Delta \beta$

Some denuctues: $\begin{array}{c|c}
\text{Sin}(\alpha) \longrightarrow \cos(\alpha) \\
\text{cos}(\alpha) \longrightarrow -\sin(\alpha) \\
\text{tan}(\alpha) \longrightarrow \frac{4}{\cos^2 \alpha} \\
\end{array} = \frac{\sin(\alpha)}{\cos^2(\alpha)} \\
\begin{array}{c}
\frac{1}{2} = \frac{\sin(\alpha)}{\cos^2(\alpha)} \\
\frac{1}{2} = \frac{-2x}{x^4} = -\frac{2}{x^3} \\
\frac{1}{2} = \frac{2}{x^3} \\
\frac{1}{2} \\
\frac{1}{2$

Example

$$\dot{V} = -\frac{D}{m} - g \cdot \sin \gamma$$
First identify variables: $D = g \cdot S \cdot Co$ where $g = \frac{3}{2} \rho V^2$
In these two, ΔV , $\Delta \alpha$ are variables.
Co alonges with ΔV and $\Delta \alpha$ while g alonges with V .
 $\Delta \dot{V} = \frac{\partial \dot{V}}{\partial V}|_{0} \Delta V + \frac{\partial \dot{V}}{\partial \alpha}|_{0} \Delta \alpha + \frac{\partial \dot{V}}{\partial \gamma}|_{0} \Delta \gamma$

$$\frac{\partial \dot{V}}{\partial \lambda}|_{0} = -\frac{g \cdot S}{m} \cdot \frac{Co}{\partial \alpha} \qquad \frac{\partial \dot{V}}{\partial V}|_{0} = -\frac{d}{m} \cdot \frac{\partial g}{\partial V} \cdot S \cdot Co - \frac{d}{m} \cdot g_{0} \cdot S \cdot \frac{Co}{\partial V}$$
These two as densed as above in Scient.

1. Start with equations of motion. And remove the coefficients nestected by assumptions.

2. Derive the characteristic equation.

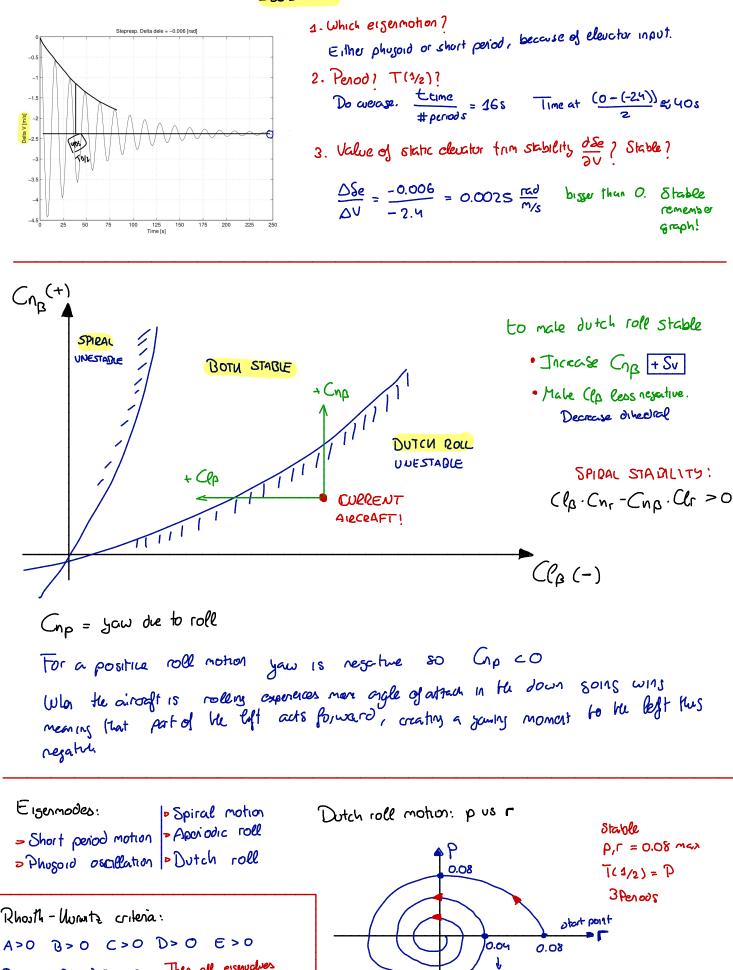
Jg here is Dc or Db, substitude here by
$$\lambda$$

Else, add on he diagonals $-\lambda$
 $\lambda = \xi_c + \eta_c \lambda$
 $A = \dots \lambda^2 \quad B = \dots \lambda \quad C = \dots$
Jg ξ_c is negative the motion is stable $\rightarrow Jg \quad \frac{-B}{2A} < O$ he motion is stable
 $Jg \quad \xi_c$ is positive. He motion is unstable $Jg \quad B^2 - 4Ac < O$ the motion is periodic
 $\downarrow = you$ need a complex eigenvalue.

3. Formulas on eigenvalues: and $\frac{1}{V}$ when they give the values on the problem.

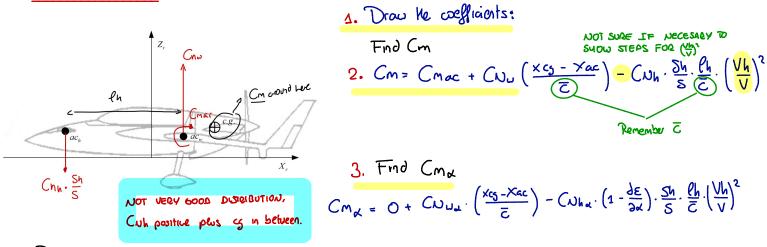
some variants:

Add flight control system: $Se = leg \cdot \frac{g\overline{c}}{V}$ add it into the main matrix because of $\frac{g\overline{c}}{V}$ Also make sure that coefficients of Se are also moved.


FROM ASSUMETEIC EQUATION OF MOTION TO STATIONALLY STRAIGHT FLIGHT

$$\begin{bmatrix} Cy_{p} + (Cy_{p} - 2\mu_{b})Db & CL & fr \\ 0 & -\frac{1}{2}Bb & fr \\ Cl_{p} & 0 & Cl_{p} - \frac{1}{2}\mu_{b}b \\ Cl_{p} & 0 &$$

variables.


Dynamic stability:

$\Delta Se = -0.006$

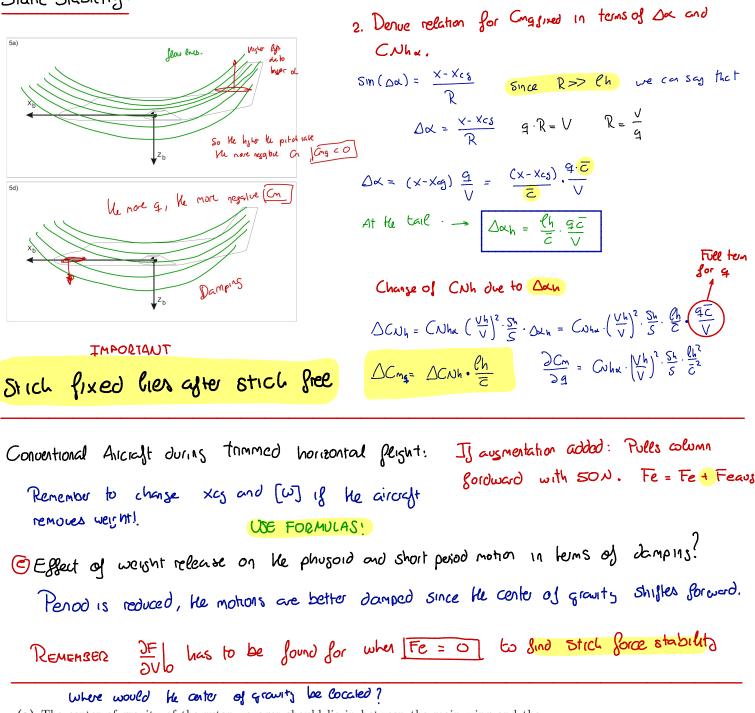
BCD - AD² - B²E > 0 Then all eigenvalues are regative. Stability! Both spiral and dutch stable if this nappens: BCD --- < 0 - Oily spiral stability.

T(1/2) for a positive you we have a positive roll! Static Stability:

4. Denue Xnfix

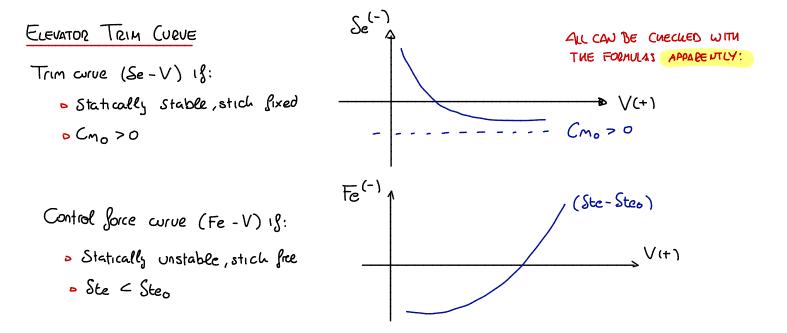
In here, start with this equation:

$$CN = CNw - CNh \cdot \frac{Sh}{S} \cdot \left(\frac{Vh}{V}\right)^2 \longrightarrow Moltiply by \left(\frac{Xnfix - Xw}{C}\right)$$
$$CNx = CNw_x - CNh_x \cdot \left(1 - \frac{\partial E}{\partial x}\right) \cdot \frac{Sh}{S} \cdot \left(\frac{Vh}{V}\right)^2$$

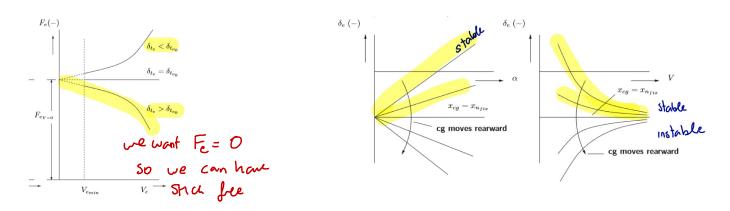

$$(2) CN_{\kappa} \cdot \frac{\chi_{n}g_{1\kappa} - \chi_{\omega}}{\overline{c}} = CN\omega_{\kappa} \cdot \left(\frac{\chi_{n}g_{1\kappa} - \chi_{\omega}}{\overline{c}}\right) - CNh_{\kappa} \cdot \left(1 - \frac{d\varepsilon}{d\omega}\right) \left(\frac{\chi_{n}g_{1\kappa} - \chi_{\omega}}{\overline{c}}\right) \cdot \frac{Sh}{S} \cdot \left(\frac{Vh}{V}\right)^{2}$$

$$O = C \mathcal{N}_{W_{\mathcal{A}}} \left(\frac{X_{n} f_{\mathcal{K}} - X_{\mathcal{V}}}{\overline{c}} \right) - C \mathcal{N}_{h_{\mathcal{A}}} \cdot \left(1 - \frac{\partial \varepsilon}{\partial \varkappa} \right) \left(\frac{X_{n} f_{\mathcal{X}} - X_{h}}{\overline{c}} \right) \cdot \frac{Sh}{S} \cdot \left(\frac{V_{h}}{V} \right)^{2}$$

$$(\underline{a} - \underline{a}) : \{h = \chi_{\omega} - \chi_{h}\}$$


$$\frac{XnJix - Xw}{\overline{c}} = \frac{CNh\alpha}{CN\alpha} \cdot \left(1 - \frac{d\varepsilon}{d\alpha}\right) \cdot \frac{Sh}{S} \cdot \left(\frac{Vh}{V}\right)^2 \cdot \frac{\ell h}{\overline{c}}$$

Static Stability:



- (a) The center of gravity of the rutan voyager should lie in between the main wing and the canard. In this way, the both the canard and the main wing can generate positive lift, which increases the efficiency of the aircraft.
- (b) The neutral point of the Rutan voyager lies aft of the center of mass/gravity.
- (c) The advantage of having a canard instead of a horizontal stabilizer is:
 - A canard uses positive lift to counteract the negative moment generated by the main wing while a horizontal stabilizer in a large part of the flight envelope uses negative lift. Therefore the performance will increase when using a canard.
 - Due to a higher efficiency of producing lift, the overall drag component becomes less in magnitude.
 - A canard operates in cleaner air since it is in front of the main wing. This means that the control surfaces become more efficient.
- (d) The pilots of the Voyager had to constantly trim the aircraft because the mass fraction of its fuel was very high. As fuel is burned, the position of the center of gravity changes. Static stability can be lost if the center of gravity moves behind the center of pressure. The pilots must prevent this by pumping fuel from tank to tank, thereby ensuring that the c.g. stays in front of the center of pressure.

Remember, change of trim due to c5. moved in floort.

VARIANTS:

