2.1  p=p/RT=(12)101x 10%) /(287)(300)

p=141kg/m’

v=1/p=1/141=0.71 m*/kg

2.2 Mean kinetic energy of each atom =

% kT =~;— (138 x 1072)(500) = 1.035x 1077

One kg-mole, which has a mass of 4 kg, has 6.02 x 10% atoms Hence 1 kg has 41 (6.02 x

10%%) = 1.505 x 10%® atoms

Total internal energy = (energy per atom)(number of atoms)

= (1035 x 107°)(1.505 x 10%) =[1 558 x 10° §

23 p=bo__ 26 gy iue
RT  (1716)(460+59) ft

Volume of the room = (20)(15)(8) = 2400 ft’

Total mass in the room = (2400)(0.00237) = 5 688 slug

Weight = (5.688)(32.2)=|183 Ib

b _ 2116 000274 slug

2.4 p= 3
RT (1716)(460-10) ft

Since the volume of the room is the same, we can simply compare densities between the

two problems.



Ap=000274 - 0.00237 = 0 00037528
ft

Ap 000037

% change = —— 500537 x {100) =}15 6% increase

2.5  First, calculate the density from the known mass and volume,

p = 1500/900 = 1 67 Ib/R*
In consistent units, p = 1 67/32.2 = 0 052 slug/f>  Also, T = 70F = 70 + 460 = 530R.
Hence,

p=pRT = (0 52)(1716)(530)

p = 47290 Ib/ft

or  p=47290/2116 = 22.3 atm

2.6 p=pRT
(np={np+ {nR+{(nT
Differentiating with respect to time,

tdp_1dp 1dT
pdt pdt Tdt

dt  pdt Tdt

dp de dT
, —=RI-EZ+pR~-= 1
R da P M

At the instant there is 1000 Iby, of air in the tank, the density is

p = 1000/900 = 1 11 Ib/ft’



p=111/32.2= 00345 slug/ft’
Also, in consistent units, is is given that
T =50+460=510R
and that

ar_ 1F/min = 1R/min = 0 0167R/sec

dt
From the given pumping rate, and the fact that the volume of the tank is 900 ft’, we also
have

_‘_13._05 Ib_ /sec

= 0.000556 1b,/(f*)(sec

dt 900 fi? (#)(sec)
0.00055

C(’i_‘t’ _ Wﬁ = 173 x 10° slug/(f)(sec)

Thus, from equation (1) above,

%‘% = (1716)(510)(1.73 x 10°%) + (0 0345)(1716)(0 0167)
=15 1+099 =16.1 Ib/(f*)(sec) = ol
| 2116

=[0.0076 atm/sec

2.7 In consistent units,
T=-10+273 =263K
Thus,

p=p/RT = (1 7 x 10%/(287)(263

p =[0.225 kg/m’




2.8 p=p/RT=05x 10°/(287)(240) = 0 726 kg/m’

v=1/p =1/0 726 = |1.38 m’/kg

2.9
lf dx
y rd
f-—f% ///// /J
///.} [P}'
| > 4
X=0 : X=5 F-,

F, = Force due to pressure = r pdx = '[3 {2116 - 10x) dx

=[2116x - 5x%] = 6303 Ib perpendicular to wall

J'S 90

[}

3
F. = Force due to shear stress = _[ 7 dx =

Q

dx

(x+ 9)%

1

=[180 (x +9)2]? =623 5 - 540 = 83.5 Ib tangential to wall
e f-::, =855 /4

PSR

Magnitude of the resultant aerodynamic force =

R = J(6303)° +(835)? ={6303.6 b




0 = Aic Tan (683.5 ) =!0.76°i

303

210 V= %Vm sin &

Minimum velocity occurs when sin 6 = 0, i ¢ when 6 = 0° and 180°.

Voin = Ol at 6 = 0° and 180°% ie, at its most forward and rearward points

Maximum velocity occurs when sin® = 1, i.e. when 6 =90° Hence

D T

Vi = —z— 85)(1) =[127 5 mph| at 6 = 90°,

i, the entire rim of the sphere in a plane perpendicular to the fieestream direction.

2.11  The mass of air displaced is
M = (2.2)(0 002377) = 5.23 x 10° shug
The weight of this air is
W =(523x10°)(322)=01681b
This is the lifting force on the balloon due to the outside air. However, the helium inside
the balloon has weight, acting in the downward direction The weight of the helium is less

than that of air by the ratio of the molecular weights
W, =(0168)—— = 00233 Ib
e 288

Hence, the maximum weight that can be lifted by the balloon is

0168-00233=}0.1451b




3.1  An examination of the standard temperature distribution through the atmosphere
given in Figure 3.3 of the text shows that both 12 km and 18 km are in the same constant
temperature region Hence, the equations that apply are Egs. (3 9) and (3 10) in the text.
Since we are in the same isothermal region with therefore the same base values of p and p,

these equations can be wiitten as

Py _ Py
P2

= g~ (@/RI)(h;~hy)

where points 1 and 2 are any two arbitrary points in the region. Hence, with g, = 9.8
m/sec” and R = 287 joule/kgK, and letting points 1 and 2 correspond to 12 km and 18 km
altitudes respectively,

28 (6000)

P2 _ P2 _ e'(zsv)(:ns 66) — 03884
P Py

Hence:

p2 = (0 3884)(1.9399 x 10*) =]7.53 x 10° N/m?

p2 = (0.3884)(3 1194 x 107") ={0.121 kg/m’

and of course

I, =]216.66K

These answers check the results listed in Appendix A of the text within round-off error.

3.2 From Appendix A of the text, we see immediately that p = 2.65 x 10" N/m?

corresponds to 10,000 m, or 10 km, in the standard atmosphere Hence,

I pressure altitude = 10 km

The outside air density is



_ p _ 26510

= 20— =0 419 kg/m’
RT (287)(220)

From Appendix A, this value of p corresponds to 9.88 km in the standard atmosphere.

Hence,

density altitude = 9.88 km

3.3 At 35,000 fi, from Appendix B, we find that p = 4.99 x 10% =[499 Ib/R%,

3.4  From Appendix B in the text,
33,500 ft corresponds to p = 535 89 Ib/ft?

32,000 ft corresponds to p = 8 2704 x 10™* slug/ft®

Hence,
_ P _ 5.:5.8?4 3713 R
PR (82704 x 107 K1716)
h-h
3.5 | GI:ooz: _he
h h

From Eq (3 6), the above equation becomes

1_[1‘ +h0)
-

hg=002r1=002 (6357 x 10%

hg
r

=002

:'1—1—

hg=127x10°m=|127 km




3.6 T=15-00065h=15-00065(5000)=-175C=2555K

a= d -=-00065

~

.
=

FromEq (3.12)

—go/aR —(9 8)/(—0 0065%(287)
p T] ( 255.5)
P, (Tl 288

p=0533p;=0533(101x10%)=

5.38 x 10* N/m?

P g
3.7 fn =- —=(h-h
o RT( )
1 p 1
h-hy=- —RT n == =~ —— (4157)(150) £n 05
g . 249

Letting h; = O (the surface)

h=17,358 m=|17.358 km

3.8

A standard altitude of 25,000 ft falls within the first gradient region in the standard

atmosphere. Hence, the variation of pressure and temperature are given by:

_E
P (lj aR
3 T,
and

T=L+a(h-h1)

Differentiating Eq (1) with respect to time:

(1

)



1dp_ (_LJ —;%(_i) L&-ar 3)

p, dt \T, AR dt
Differentiating Eq (2) with respect to time:

dT dh
—— g — 4
dt dt @

Substitute Eq (4) into (3)

A eni(8) &) dh
dt p(T) (R) T dt )

In Eq. (5), db/dt is the rate-of-climb, given by dh/dt = 500 fi/sec. Also, in the first
gradient region, the lapse rate can be calculated from the tabulations in Appendix B. For
example, take 0 ft and 10,000 fi, we find

-'T . o
T, -1, _48304-51869 _ o ..°R
h,—h,  10,000-0 fi

Also from Appendix B, p; = 2116.2 Ib/fi® at sea level, and T = 429 64 °R at 25,000 ft.
Thus,

g 322

aR  (-000357)(1716)

Hence, from Eq (5)

‘:J_lt’ — —(21162)(518 69)%% (%) (429.64)*°(500)
) 1717 L0
dt ft° sec

3.9  From the hydrostatic equation, Eq. (3 2) or (3.3),




The upward speed of the elevator is dh/dt, which is

dh _ dp/dt
dt -pg,

At sea level, p = 1225 kg/m’ Also, a one-percent change in presure per minute starting

from sea level is

(3]—{::- (101 x 10°)(0 01) =- 1 01 x 10* N/m? per minute

Hence

dh _ -101 x 10°
dt  (1225)98)

:|_84. I meter per minute

3.10  From Appendix B;
At 35,500 ft: p =535 89 Ib/R?
At 34,000 fl: p =523 47 Ib/fY?

For a pressure of 530 Ib/ft’, the pressure altitude is

33737 ft

53589530 ) _
5358952347

33,500 + 500 (

The density at the altitude at which the airplane is flying is

p= ——P—: 530 :7919X10'4S]Ug/ﬁ3
RT  (1716)(390)
From Appendix B:

10



At 33,000 ft: p =7 9656 x 10 stug/®
At 33,500 fi: p = 7 8165 x 10”* slug/ft®

Hence, the density altitude is

79656 — 7.919]
796567816

33,000 + 500 ( ={33,156 ft

4.1 A1V; = Asz

Let points 1 and 2 denote the inlet and exit conditions respectively Then,

A 1
Vo=V | b= [—)=1.25ﬂ/
2 1 (Az] (5) 4 S¢C

4.2  From Bernoulli’s equation,

2

o VoM
plp2p3p2

p2-p1= % (V- V)

In consistent units,

62.4 .
= 924 _ | o4 slug/ft
P= 372 g

- Hence,

pa-pr = 1—2—‘1 [(5) - (1 25)7]

Dy - p1 =097 (23 4) = 22.7 I/t

11
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4.3  From Appendix A; at 3000m altitude,
p1 =701 x 10° N/m?
p = 0909 kg/m’

From Bernoulli’s equation,

p2=p1t g (Vi*-V5)

p, =701 x10*+ [60% - 707

0.909
2

p:=701x10"- 0059 x 10* =6.95 x 10* N/m?

4.4  From Bermoulli’s equation,
P P
1 +Evf =p, +EV22

Also from the incompressible continuity equation
VQ = Vl (Al/Az)

Combining,

202 =0+ 20 1A,

V, = _2(p, - p;)
p[(A1 /ALY —~1}

At standard sea level, p = 0 002377 slug/fi® Hence,

2(80) > =| 67 ft/sec
(002377)[(4)% 1]

12



Note that also V; = 67 [%) = 46 mi/h (This is approximately the landing speed of

World War I vintage aircraft)

1
4.5 p1+-%pV2=p3+—pV2

2
V2= 2(p; — 1)) + V42 (1)
£
Al
A1 Vl = A3 V3, or V3 = A_Vi (2)

3

Substitute (2) into (1)

2
V2 = 2(ps _Pl)_l_[_&_) V2

1

P A,
o, Vi= |—2PsTP) 3)
()
o A,
Also,
A] V] = Az Vz
A
or,  Vo- [Aj v @

Substitute (3) into (4)

2(p;—py)

]

A
V]=—1
AZ

13



V.= ;_5 [2(1.00~1.02) x 1205
3
\/ 1225 [l_@ }

VYV, =1102.22 m/sec

Note: It takes a pressure difference of only 0.02 atm to produce such a high velocity.

46 V=130 mph=130 (%) =190.7 fi/sec

1 1
p1+5 PV12“‘P2+*2- p V3’

2
Vai=Z (pi-po) + V{2
P

y,2 = 217609-17500) (1907)?
00020482

V. =216.8 fi/sec

4.7  From Bernoulli’s equation,
Pi-p2= g (V2'- Vi)

And fiom the incompressible continuity equation,
V, =V, (AVA)

Combining:
_ P 2 2
PL-p2= Vit [(AVAY) - 1]

Hence, the maximum pressure difference will occur when simultaneously:

14



1. Vi is maximum
2 pis maximumi.e sea level

The design maximum velocity is 90 m/sec, and p = 1.225 kg/m’ at sea level Hence,

Pi-p2= -1% (90)? [(1.3)? - 1]=|3423 N/m®

Please note: In reality the airplane will most likely exceed 90 m/sec in a dive, so the

airspeed indicator should be designed for a maximum velocity somewhat above 90 m/sec.

4.8 The isentropic relations are

r
(o) -3
Po  \P% T,

Hence,

T (B

From the equation of state:

p, _ (10)101x10%)
RT,  (287)(300)

=11.73 kg/m’

Po=

Thus,

1

1
_(p. ) | (1)17
=p, | 2=l =1173 | —
PP [p] 10

o

It

2.26 kg/m’

As a check on the results, apply the equation of state at the exit.
pe = pc RTe?

101 x 10° = (2.26)(287)(155)

15



101x10°=101x10° Tt checks!

4.9  Since the velocity is essentially zero in the reservoir, the energy equation written

between the reservoir and the exit is

h, = h, + Ve
C2
or, VJZ=2(h-h) (1)

However, h = ¢,T Thus Eq. (1) becomes

Vi =2¢,(To-To)

Vi=2¢,T, (1 -}J @)

0

However, the flow is isentropic, hence

7=

T, (p.)” |
. [p] 6

Substitute (3} into (1)

Ve= |2 ¢, 1_[}3&] )]

This is the desired result Note from Eq. (4) that V, increases as T, increases, and as Pe/Po

decreases Equation (4) is a useful formula for rocket engine performance analysis

4.10  The flow velocity is certainly large enough that the flow must be treated as

compressible. From the energy equation,

16



V2 V?
T+ —Y=c¢, Ty =+ 1
G 1y 5 p 42 D ()

At a standard altitude of 5 km, from Appendix A,
p1=54x 10" N/m?
I,=2557K
Also, for air, ¢, = 1005 joule/(kg)(K). Hence, from Eq. (1) above,

Vl2 — sz

2(:p

T2:T1+

(270)* - (330)*
2(1005)

T,=2557+

T,=2557-179=2378K

Since the flow is also isentropic,

y—1

Py _ [&]T
P T,

¥- 14

T, )7 2378\ 741
= l =54x10° (___.,_-_]
P2 =P [T] X\ 2557

1

p2 =[4.19 x 10* N/m®

Please note: This problem and problem 4 3 ask the same question However, the flow
velocities in the present problem require a compressible analysis. Make certain to examine
the solutions of both problems 4.10 and 4.3 in order to contrast compressible versus

incompressible analyses

17



4.11 From the energy equation

V2
¢ To=c, To+ =
2

or, Ir.=T,- Ve
2¢c,
2
T.=1000 - 1500 = 812 5R
2(6000)

In the reservoir, the density is

po= Lo _DQUO _ 506 0/
RT,  (1716)(1000)

From the isentropic relation,

p. _(Te]ﬁ
pe \T,

. 1
812.5Jm

. =0 0086 (— =0 0051 slug/f>
P 1000 ¢

From the continuity equation,

m = p.AV,
Thus, A.= m
PV,

In consistent units,

1’;1 = L 0 047 slug/sec.

322

Hence,

18



_om 0047 |
oV, (00051)1500)

Ae 0.0061 f*

4.12 'V, =1500 mph=1500 [%) = 2200 ft/sec

Vi V72
CT,+—+C, T, —=*
pRIT Ty 2T,

V=2 C,(Ty - To) + V2

V)2 = 2 (6000)(389.99 - 793.32) + (2200)

V5, =6.3 fi/sec

Note: This is a very small velocity compared to the initial freestream velocity of 2200
fi/sec At the point in question, the velocity is very near zero, and hence the point is

nearly a stagnation point.

4,13 At the inlet, the mass flow of air is

-

M = pAV = (3.6391 x 10")(20)(2200) = 16.0/slug/sec

M et = (0 05)(16 01) = 0 8 slug/sec

Total mass flow at exit = 16 01 + 0 8 =|16.81 slug/sec

4.14 From problem 4.11,
V.= 1500 fi/sec

T, =812 5R

19



Hence,

2. = RT, = J(14)(1716)(8125)

= 1397 ft/sec

\% 1500
ThUS, Mc"—-' — = 59—;:
a ‘ .

€

Note that the nozzle of problem 4 11 is just barely supersonic.

4.15 From Appendix A,
I, =216.66K

Hence,

2= ST

= J(14X(287)(21666) =295 m/sec

Thus, M, = & = @ =0.847
a 205

()

4.16 At standard sea level, T, = 518 69R

2, = [RT = ,/(14)(1716)(518 69) = 1116 fi/sec

Ve =M, a, = (3)(1116) = 3348 fi/sec

Since 60 mi/hr - 88 fi/sec , then

V., = 3348 (60/88) ={ 2283 mi/h

4,17 V =2200 ft/sec

20



a= IRT = J(14)(1716)(389.99) =967.94 fisec

M=~ 2200 5y
a 96794

4,18 The test section density is

5
= J)__:M: 1173 kg/m3
RT (287)(300)

p
Since the flow is low speed, consider it to be incompressible, i e., with the above density

throughout.
_ P2 2
Pi-p=7 Vo' [1 - (AYAY)] (1)

In terms of the manometer reading,
p1 - p2 = 0Ah | 2
where @ = 1.33 x 10° N/m’ for mercury.

Thus, combining Eqs (1) and (2),

Ah= 2 V21 - (AYAY
2w

_ 1173
(2)(133 x 10°

Ah= 0028m =[2.8 cm]

) (80)2 [1 - (1/20)%]

419  V,=200 mph =300 (2—2—] =293 3 ft/sec

21



1 1
(@ Pt DV12=P2+5 PV

A1 V= AV,

A,
V= A_ Vv

0.002377 [4)2 2
cpy= 2y P8 ] 9933
P1~pP2 5 { 20 j, ( )

pi - p2 =] 98.15 Ib/f?

1 - 1
(b) P1+“2“DV12:D3+EPV33

. A,
A1V1=A2V2 . Vl‘_‘ =

V,

A2V2=A3V3 : V3: + Vg

: 2 2
1 A, A, 5
cpi= L 2l (2] |y
P1 - Da 5 p}j[Aj (A!J} 2

0.002377 [4)2 (4)2 2
cpym 2 A L2 933
P1 = Ps 2 {:18 50) | @933)

pi - ps =| 0.959 Ib/ft?

22



Note: By the addition of a diffuser, the required pressure difference was reduced by an
order of magnitude Since it costs money to produce a pressure difference (say by running
compresors or vacuum purnps), then a diffuser, the purpose of which is to improve the

aerodynamic efficiency, allows the wind tunnel to be operated more economically.

4,20 In the test section

P 28 00233 slug®
RT  (1716)(70 + 460)

p:

The flow velocity is low enough so that incompressible flow can be assumed Hence,

from Bernoulli’s equation,
= -} l Vz
Po=p+ o0
Do =2116+ % (0.00233) [150 (88/60)]°

(Remember that 88 fi/sec = 60 mi/h)

po=2116 + % (0.00233)(220)*

po = |2172 Ib/ft?

421 The altimeter meaasures pressure altitude. Thus, from Appendix B, p = 1572
Ib/ft>. The air density is then

p 1572

= fm= 2= 00183 slug/ft’
RT (1716)500)

p

Hence, from Bernoulli’s equation,

23




v - [Hp.—P) _\/2(1650—1572)
e 0 000183

Viwe = 292 fi/sec

The equivalent airspeed is

v = |2, -p)_ ‘/2(16504572)
) p. 0002377

Ve = 1256 ft/sec

4.22  The altimeter measures pressure altitude. Thus, from Appendix A, p = 7 95 x 10*

N/m? Hence,

p _ 795 x 10

= = 0989 kg/m’
PTRT T (2873(280) g/m

The relation between V., and V, is

Vh'uejve = \/;57;

Hence,

Vime = 50 4/(1225)/0989 =|56 m/sec

4.23  In the test section,

a= IRT = J(14)(287)(270) = 329 m/sec

M =V/a=250/329 = 0 760

.
Po - (1+—”2LI 2)"" =[1+02 (07601 % = 1 47

24



Hence,

po=147p=147 (101 x 10°) =l 1.48 x 10° N/m’

4.24 p=194x 10" N/m’® from Appendix A

2'_-_-_!_
N (E&j r .2 [2.96 x 104)0286—1
: P 14-1|\194 x 10°

y—1
M2=0642
M, ={ 0.801

i

425 Po_ (1+7’—_'1M2)" 1
p 2

Po 114020657 °=1328
p

P, _2339
1328 1328

p= = 1761 I/R?

From Appendix B, this pressure corresponds to a pressure altitude, hence altimeter

reading of 15000 ft.

4.26 At standard sea level,

I =351869R

% =1 Jrl’z;lm2 =1+02(096)=1.184

T,=1184T =1184 (518 69)

25



To =614 3R = 154 3F

4.27 a; = 4/RT, =/(14)(287)(220) = 297 m/sec

M1 = V]/al = 596/197=20

The flow is supersonic Hence, the Rayleigh Pitot tube formula must be used.

. i
Po, _ (}f +1)2M?) H[l—y +27Mf]
p, |4y MI-2(y-1) y+1

P, { (24)*(2)° ]”[1—1.4”(1.4)(2)2]

P, 4(14)(2)* —2(04) 24
Por _ 564
P

p1 =265 x 10* N/m” from Appendix A.

Hence,

p,, =564 (2.65x 10%) =[ 1.49 x 10° N/m?

2
4.28 q=~g— pV2=% [E)pvz=%p[~£—]v’2=%py—2—
J4% P a

Hence:

' 2
=4 pM
lq 2}"

4.29 qw:% Po M2 =0 7 po M..2

26
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Use Appendix A to obtain the values of p., corresponding to the given values of h.

Then use Eq. (1) above to calculate qe.

h(km) 60 50 40 30 20
Pu(N/m?) 256 879 299 8 119x10° 553x10°
M 17 95 55 3 1

Ge(NM?)  52x10° 56x10° 63x 10° 75x%10° 39x 10°

Note that q., progressively increases as the shuttle penetrates deeper into the atmosphere,
that it peaks at a slightly supersonic Mach number, and then decreases as the shuttle

completes its entry.

4.30 Recall that total pressure is defined as that pressure that would exist if the flow
were slowed isentropically to zero velocity. This is a definition; it applies to all flows --
subsonic or supersonic. Hence, Eq. (4.74) applies, no matter whether the flow is subsonic

Of' SUPETSonic.

p y=1,.Y)"0"
22 (1 + Mi) =[1+02 Q7" =7824

P., 2

Hence:

Po=7 824 p, =7 824 (2116) =| 1 656 x 10° %

Note that the above value is not the pressure at a stagnation point at the nose of a blunt
body, because in slowing to zero velocity, the flow has to go through a shock wave, which

is non-isentropic. The stagnation pressure at the nose of a body in a Mach 2 stream is the

27




total pressure behind a normal shock wave, which is lower than the total pressure of the

fieestream, as calculated above. This stagnation pressure at the nose of a blunt body is

givenby Eq (4 79)

P,

_ .

P

Hence,

P,, =5 639 p,=5639 (2116)=| 1 193 x 10

(P+*M2) -y e2m2]
4y M -2(y 1) ¥ +1

(24)2(2)° ]’ ‘”"4[ 114 +2(14)(2)?

} =5639
| 4(14)(2)* —2(04) 24

4 1b
re)

If Bernoulli’s equation is used, the following wrong result for total pressure is obtained.

4

1
po=pw+qw=poo+5 pr2=pm+E P M.,

Po=2116+07(2116) (2)’ = 0.804 x 10* F{:’?

Compated to the correct result of 1 656 x 10* I , this leads to an ervor 51%.
ftZ

431 Peo [1+1’—2_—1M2]H

P,

e

pe=5(101x10°)[1+02(3)**

Pe =

137 x 10* N/m?

Te
TD

[1 + ”T*lng ; =[1+0203)7"

28



T, = (500)(0.357) = {178.6K

p, _ 137 x 10° _
RT, (287)(1786)

e

P = 0.267 kg/m’

4.32

M. =5{(02)"* - 1]1=2.92

M.,=171
) : Hr-D)
[fiej 1 _ 2 (1 + 1= JMZ
At Meh }/ +1 y -

A, 2_ 1 2416
(_ j - T [(0.833)(1 +0.2 (1 71)")]

= =[ 135

—rir-1)
,ﬂ.,:z’z___P_Mz :%-MZ{HZ—Z_}-MZ} =07 M (1 +02M%)**
P,
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M M’ @/Po
0 0 0
02 004 0027
0.4 0.16 0.100
06 036 0198
08 064 0204
10 1.0 0310
12 1.44 0416
14 196 0431
1.6 256 0.422
18 324 0395
20 400 0358
R o - _ .
R - _._..{;}‘.‘.?._.»—
R = b dEE
_ .__._‘._-.9"2...- .
-G +
a—— __.._,..__ g“"’ : o - + I + n

___g_-_,Qw.m OZ Q-i‘ Ouﬁ Q&‘ [O /2 AF Le /L8 4"‘0

e M- e

Note that the dynamic pressure increases with Mach number for M < 1.4 but decreases
with Mach number for M > 14 Le, in an isentropic nozzle expansion, there is a peak

local dynamic pressure which occurs at M= 14
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4,34  First, calculate the value of the Reynolds number

- L (I o
The dynamic pressure is

Qo= % p V.= % (1.225)(200)? = 2 45 x 10* N/m®
Hence,

6, = 2 526) =00024m =} 0.24 cm

JRe, 41 x 10

and

= 1328 1328 — 000021

- JRe, Jalx 107
The skin friction drag on one side of the plate is:

D= qw S¢r = (2 45 x 106%(3)(17 5)(0 00021)

D¢ = 270N
The total skin friction drag, accounting for both the top and the bottom of the plate is

twice this value, namely

Total Dy = ]540N

037L _  037(3)

= =0.033m={3.3 cm
(Re, )°* (41 x 107)"?

435 8=

From problem 4 24, we find

33
6turl:-ulﬁanl/alaminar= @' =113.75

31



The turbulent boundary layer is more than an order of magnitude thicker than the laminar
boundary layer.

Co= 0.074 _ 0.074 - 00022

" (Re, )7 (41 x 107)°2

The skin friction drag on one side is then
Dy = . Scr=(2/45 x 10%)(3)(17 5)(0 0022)
Dy=2830N

The total, accounting for both top and bottom is

Total D = |5660N

From problem 4 24, we find

(Dflut-ulcm ) / (D T— ) = “5564—6(? = 1-6-5-

The turbulent skin fiiction drag is an order of magnitude larger than the laminar value.

436 R, :M
Mo
6 -5
% = Re, ( g ): (10°)(1.789 x 107%)
“\ o, V., (1225)(200)

Xa=T73%10%m

i * vo:) ~ 200 ‘r’)‘?l/S'ec:
Tk | camwar Frow A

T - — -

TURBULENF frpw 5
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The turbulent drag that would exist over the first 73 x 10%m of chord length from the
leading edge (area A) is

D, = 0074 S, (on one side)

0074

N TE (245 x 10%(7 3 x 10717 .5)

D, =146N  (on one side)

From problem 4 25, the turbulent drag on one side, assuming both areas A and B to be
turbulent, is 2830N  Hence, the turbulent drag on area B alone is:

D, =2830- 146 - 2684N  (turbulent)

The laminar drag on area A is

13
D :—iq S

H
* (Recr)os N

1328

4 -2
£, = W (245 x 10 )(73 x 10 )(175)
D; =42N  (laminar)
Hence, the skin friction drag on one side, assuming area A to be laminar and area B to be

turbuient is

Dy= D, (laminar) + D, (turbulent)

D¢=42 + 2684 =2726N

The total drag, accounting for both sides, is

Total Dy =] 5452N
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Note: By comparing the results of this problem with those of problem 425, we see that
the flow over the wing is mostly turbulent, which is usually the case for real airplanes in

flight.

4.37  The relation between changes in pressure and velocity at a point in an inviscid flow
is given by the Euler equation, Eq. (4 8)
dp=-pVdV

Letting s denote distance along the streamline through the point, Eq. (4 8) can be written

as
by
ds ds
dv/V
or, dp _ b V2 ( )
ds ds
(dv/V) "
(a) ——==( 02 per millimeter
8
Hence,
d_p= - (1 1)(100Y%(0 02)= 220 iz per millimeter
ds m
(b) j—px - (1.1)(1000)%(0 02) = 22,000 - per millimeter
8 m

Conclusion: At a point in a high-speed flow, it i'equires a much larger pressure gradient to
achieve a given percentage change in velocity than for a low speed flow, everything else

being equal
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4.38 We use the fact that total pressure is constant in an isentropic flow. From Eq.

(4 74) applied in the freestream.

xr
- ~1
P _ (1 +»Z--—1—Mw2) TS [1+020 7P =1387

Pe 4

From Eq (4 74) applied at the point on the wing,

4

Po _ [1 +”T”I-MZJ”'1 = [1+02 (L1 P =2135
p

Hence,

(p.) .(p. 1.387)
= || Bt/ B =[—-—— =065
P [[pm] (p”p”’ 2135/ Po

At a standard altitude of 3 km, from Appendix A, p, = 70121 x 10* N/m* Hence,

p=(065)(7 0121 x 10*) =|4.555 x 10* N/'m®

4.39 This problem is simply asking what is the equivalent airspeed, as discussed in

Section 4 12. Hence,

12 32
V.=V (-ﬁj = (800) (;‘232: d 11?)_3] =| 535.8 ft.sec
) X

8

4.40 (a) From Eq. (4 88)

r+l

2 — 6
- -1
(Ac] L2 [IJ IMJJ "= -1-5-{—?‘“[14-02 (10)2]} = 287x10°
AJ  M]ly+1V 0 2 (10)* |24

1

Hence:
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Ae
A

=287 x 10° =[535.9

(b) From Eq. (4 87)

V4

LER (1 +7’T_1-Mj) "= [1+02 (105 = 4.244 x 10*
P.

At a standard altitude of 55 km, p = 48 373 N/m* Hence

Po = (4.244 x 10")(48 373) =2 053 x 10° N/m? = [20.3 atm

(c) FromEq (4 85)

Lo 7 2M2 140201072221
T, 2

At a standard altitude of 55 km, T = 275 78 K Hence,

I,=27578(21)={5791 K

Examining the above results, we note that:

1 The required expansion ratio of 535 9 is huge, but is readily manufactured.

2 The required reservoir pressure of 20 3 atm is large, but can be handled by
proper design of the reservoir chamber.

3 The required reservoir temperature of 5791 K is tremendously large, especially
when you remember that the surface temperature of the sun is about 6000 K For a
continuous flow hypersonic tunnel, such high reservoir tempertures can not be handled. In
piactice, a reservoir temperature of about half this value or less is employed, with the

sacrifice made that “true temperature” simulation in the test stream is not obtained.

4.41 The speed of sound in the test stream is
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2.= [y RT, =/(14)(287)(27578 = 3329 m/sec

Hence,

Ve=M, a.= 10 (332.9) =3329 m/sec

4.42 (a) FromEq 4 88, for M, =20
?:i.l

2 6
- -t
(Ae) = 12 2 (1+” IMj) "= 12{1[“02(20)2]} = 2.365 x 10°
A M|y +1 2 (20)* (24

t

Hence:

P

¢

=| 15,377

>

{b) From Eq (4 85)

-1
;_0 - (1 +‘Z/—-§—1Me2j = [1+(02)(20)*T" = 001235

2

Hence,
T, =(5791)0 01235)=715K
2.= \Jy R T, =/(14)(287)(715) = 169.5 m/sec
Ve =M, a, = 20 (169 .5) =} 3390 m/sec
Comments:

1. To obtain Mach 20, i e, to double the Mach number in this case, the expansion
ratio must be increased by a factor of 15,377/535.9 =28 7 High hypersonic Mach
numbers demand wind tunnels with very large exit-to-throat ratios. In practice,

this is usually obtained by designing the nozzle with a small throat area
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2 Of particular interest is that the exit velocity is increased by a very small

amount, namely by only 61 m/sec, although the exit Mach number has been
doubled The higher Mach number of 20 is achieved not by a large increase in exit
velocity by rather by a large decrease in the speed of sound at the exit. This is
characteristic of most conventional hypersonic wind tunnels -- the higher Mach
numbers are not associated with corresponding increaseé in the test section flow

velocities

5.1 Assume the moment is governed by
M =f{(Va, P, S, Hay 20)
More specifically:
M=ZV, p.,’ $¢a, u.
Equating the dimensions of mass, m, length, ¢, and time t, and considering Z

dimensionless,

e CINGIEI)

l=b+{f (Formass)

2=a-3b+2d+e-f (Forlength)
-2 =-a-e-f (for time)

Solving a, b, and d in terms of e and f,
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and. 2=2-e-f-3+3f+2d+e-f

k)

or 0=3+f+2d

d:ﬁ

Hence,

M=Z V2 p, 82 a_° u.f

e f
=7 VwZ - Sslfz [:a;@_) ( Heo )
b Vo) \Vop8"

Note that S'? is a characteristic length; denote it by the chord, ¢

e f
M=, V2ScZ [_] [L_]
V. V.PC

o0 w.

However, a/V, = 1/M.,,

1
VoPot Re

_He

and
Let
[ f
z [_,}._] (L) -2
M,/ \Re 2
where ¢, is the moment coefficient Then, as was to be derived, we have
M= l V. ce
5 Po Ve m

or, M=q,SccCp

5.2  Fiom Appendix D, at 5° angle of attack,
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c, =067

C =-0025

(Note: Two sets of lift and moment coefficient data are given for the NACA 1412 airfoil -
- with and without flap deflection. Make certain to read the code propetly, and use only

the unflapped data, as given above Also, note that the scale for C,,, 18 different than that

for ¢, -- be careful in reading the data )

With regard to cy, first check the Reynolds number,

PoVaC _ (0002377)(100)(3)

Re= Z
He (37373 x 107")

Re=19x10°

In the airfoil data, the closest Re is 3 x 10° Use cq4 for this value.
¢y =0007 (for c, =067)

The dynamic pressure is

Q. = % PV, = % (0.002377)(100)2 = 11.9 Ib/f? ’

The area per unit spanis S = 1(c) = (1)(3) =3 ft*

Hence, per unit span,

L=qsS ¢, = (11.9)(3)(0.67)=|23.9 1

D =q., S ca= (11 9}3)(0.007) ={0.25 Ib

Mys=quSc ¢, =(11.9)3)3)-0025) = -2.68 fr.Ib
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33 PeT ;{, - (25;7)}23225)) = 161 kg/m’
From Appendix D,

c, =098

Cro,y = -0 012

Checking the Reynolds number, using the viscosity coefficient from the curve given in
Chapter 4,

i, = 182x10° kg/msec at T =303K,

PVl _ (1157)(42)(03) _

8 x 10°
i 182 x 107

Re=

This Reynolds number is considerably less than the lowest value of 3 x 10® for which data
is given for the NACA 23012 aiifoil in Appendix D. Hence, we can use this data only to
give an educated guess; use

ca ~ 0 01, which is about 10 percent higher than the value of 0 009 given for Re =3 x 10
The dynamic pressure is

4, =P,V =5 (1161)42)= 1024 N/

The area per unit span is $ = (1)(0.3) = 0.3 m” Hence,

L=q.$ c, = (1024)(0 3)(0 98) =[301N]

D =q. § ca = (1024)(0.3)(0 01) =[3.07N |

Mus = Qo S € Cu = (1024)(0 3)(0.3)(-0.012) ={ -1.1Nm

5.4  From the previous problem, q,= 1020 N/m’

41




L=qgsS ¢,

Hence,

e = L
*q.8

The wing area S = (2)(0.3) = 0 6 m®
Hence,

c, = __200 =033
{1024)(0.6)

From Appendix D, the angle of attack which cotresponds to this lift coefficient is

o=2°

5.5  From Appendix D, at o = 4°,

¢, =04

88

Also, V_=120 (—J =176 fi/sec
60

0 =3P, V." = (0.002377)(176 =36 8 o/

L=q.S8 ¢,

gL __25 T3
Q.0 (368)(04)

560 L=q.Sc¢,

D=qnScy
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Hence,

L_9-5¢ _¢
D q.S¢ ¢

We must tabulate the values of ¢,/cq for various angles of attack,

maximum occurs. For example, from Appendix D, at oo = 0°,

and find where the

c, =0.25
cy = 0.006
Hence
-]I;- = z—: = %5-6- =417
A tabulation follows
o Q° 1° 2° 3° 4° 5° 6° 7° 8° 9°
C, 025 035 045 055 065 075 085 095 105 115

Cy 0006 0.006 0006 00065 0.0072 00075 0.008 00085 0.0095 0 0105

S 417 583 75 846 903 100 106 112
Cy

111 110

From the above tabulation,

(—-L—l) =112
D

max

5.7 At sea level

P = 1 225 kg/m®
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Hence,

Po =101 x 10° N/m?

4o =3PV, = % (1225)(50)* = 1531 Nim?

‘From the definition of pressure coefficient,

P—p, _ (095-101) x 10° _
€ 1531

-3.91

C =

5.8

The speed is low enough that incompressible flow can be assumed From

Bernoulli’s equation,

Since

1 1
p+_p Vw —p“o+_mpcovco _p‘x’+q°°
2 2
1 1
_ V2 - V2
p-p,_J= 2PV 3P
C,= =1-2—
qow qoo _pwvz

2 2
Cpo=1- (i) :1—(9-%j =1-127={-027
V. 55

3.9 The flow is low speed, hence assumed to be incompressible From problem 5 8,
2 2
C]) - ]. - [’LJ = ] e (E) =] '0.485
v, 160
5.10  The speed of sound is
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8 = RT, = /(14)(1716)(510) =1107 ft/sec

Hence,

vV, 700

= 0= =063
M. 1107

a

oy

In problem 59, the pressure coefficient at the given point was calculated as -0.485.
However, the conditions of problem 5.9 were low speed, hence we identify

C, =-0485

Po
At the new, higher free stream velocity, the pressure coefficient must be corrected for

compressibility Using the Prandtl-Glauert Rule, the high speed pressure coefficient is

C _
O . ..+ B wyY
JI-M_7 {1-(063)°

5.11 The formula derived in problem 5 8, namely

V 2
szl-(v—w] .

utilized Bernoulli’s equation in the derivation Hence, it is not valid for compressible flow

In the present problem, check the Mach number.

a,= IRT, =/(14)(1716)(505) = 1101 fi /sec

M= 180 = 0708
1101

The flow is clearly compressible! To obtain the pressure coefficient, first calculate p.

from the equation of state.
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P, _ 2116
RT, (1716)(505)

o

= 0.00244 slug/f’

P =

To find the pressure at the point on the wing where V = 850 fifsec, first find the

temperature from the energy equation

2 2
T+ Xv—chTw+V;

2 _ 2
T=Tm+—--v“’ v
2c

P

The specific heat at constant pressure for air is

R__ (4716 _ o filb
y—1 (14-1) slug R

G =

Hence,

780° — 8502
2(6006)

T =505+

= 505 -9 5=495 SR

Assuming isentropic flow

.

(L)
p \T,

35
p=(2116) (igé‘g) = 1980 Ib/R?
505
From the definition of G,
C=P~Po_ PP, _  1980-2116
p_ — ==
e %pwvj %(000244)(780)2
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5.12 A velocity of 100 fi/sec is low speed. Hence, the desired pressure coefficient is a

low speed value, C, .

C
C,,= ____P_z
1-M,,

From problem 5 11,

C
C,=-0183 and M, = 0708 Thus, 0.183 = 2o

J1-(0708)2

C,. = (-0.183)(0 706) =[-0.129

5.13  Recall that the airfoil data in Appendix D is for low speeds. Hence, at o = 4°, ¢,

=0.58

Thus, from the Prandtl-Glauert rule,

C
¢, = I3 _ 058 To097
J1-M.? {1-(08)?

5.14  The lift coefficient measured is the high speed value, c,. Its low speed counterpart

is ¢, , where

Hence,

¢, =(085) JI=(07)* =0607
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For this value, the low speed data in Appendix D yield

o

a=2

S.15  First, obtain a curve of C,, versus M,, from

2 (240 -DM)""
Cp,cr = -1
y+1

Some values are tabulated below fory=14
M, 04 05 06 0.7 0.3 09 10
Coer -366 -213 -129 -0779 -0435 -0188 0

Now, obtain the variation of the minimum pressure coefficient, C,, with M, where C,.=-

0.90 From the Prandtl-Glauert rule,

C
Cp___ Po -
1-M

w0

—-0.90

J1-M,?

Some tabulated values are;

C =

M, 04 05 06 07 08 09
Co -098 -104 -1125 -126 -15 -206

A plot of the two curves is given on the next page.
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From the intersection point,

M, =} 0.62

5.16 The curve of C,; versus M, has already been obtained in the previous problem; it
is a universal curve, and hence can be used for this and all other problems. We simply

have to obtain the variation of C, with M,, from the Prandtl-Glauert rule, as follows:

c C. _ -065

M oMy

M, 04 05 06 07 08 09
G, -071 075 -081 -091 -108 -149

The results are plotted below.
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_2‘0..

_-/;oq.-

o =\ ™ t t t + t +
. 0¢ as oe o7 o8 a? Lo
From the point of intersection,

M., =10.68

Please note that, comparing problems 5.15 and 5 .16, the critical Mach number for a given
airfoil is somewhaj dependent on angle of attack for the simple reason that the value of the
minimum pressure coefficient is a function of angle of attack When a critical Mach
number is stated for a given airfoil in the literature, it is usually for a small (cruising) angle

of attack

5.17 Mach angle = 11 = arc sin (1/M)

p=arc sin (1/2)=|30°
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5.18

LN A A A A A A i S A

it = Sin’! [ij = Sin™ (i) =23 6"
M 25

d=N/Tanp = 10km | 22.9km
0436

5.19 At 36,000 ft, fiom Appendix B,
T =390 5°R
Po=T71x 10™ slug/f®

Hence,

a0 = IRT, =J(14)(1716)(3905) = 969 ft/sec

Vo = 8, M,, = (969)(2 2) = 2132 fi/sec

Q. =~ p. V. :% (7.1 x 10%)(2132)* = 1614 Ib/fi?

5 P

In level flight, the airplane’s lift must balance its weight, hence
L=W=16,000I1b

From the definition of lift coefficient,

CL = L/g. S = 16,000/(1614)(210) = 0 047
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Assume that all the lift is derived from the wings (this is not really true because the
fuselage and horizontal tail also contribute to the airplane lift) Moreover, assume the

wings can be approximated by a thin flat plate. Hence, the lift coefficient is given

approximately by
¢, = 4o
M, -1

Solve for a,

o= i—cl M o1= %(o 047)22)" -1

o = 0 023 radians (or 1 2 degrees)
The wave drag coefficient is approximated by

4o 4(0.023)°

Cp, = = = 000108
D, \/sz _1 \/(2 2)2 -1

Hence,

Dy =g, S Cp_=(1614)(210)(0 00108)

D, =366 1b

520 (a) At 50,000 ft, p, =3 6391 x 10™ slug/f® and T,, = 390°R  Hence,

s = \JRT, =J(14)(1716)(390) = 968 ft/sec
and V= a, M, =(968)(22)=2130 fi/sec
The viscosity coefficient at T, = 390°R = 216.7K can be estimated from an extrapolation

of the straight line given in Fig 4 30. The slope of this line is
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-5
du _ (212-154) x 10 —58 x 10°° kg
dT (350-250) (m)(sec)(K)

Extrapolating from the sea level value of g = 1 7894 x 107 kg/(m)(sec), we have at T, =
216 7K

1,=17894x10°-(58%x10%) (288-2167)

o= 137 x 10”° kg/(m)(sec)
Converting to english engineering units, using the information in Chapter 4, we have

_5 ]
o= ﬁ_ﬁjlx—m_s.(37373 X 10_7__Slll_g)=2‘86 x 107 218
17894 x 10 ft sec ft sec

Finally, we can calculate the Reynolds number for the flat plate:

-4
Re, = LaYak _ 36391 x 10 (21_?;0)(202) 5475108
Heo 286 x 10
Thus, from Eq (4 .100) reduced by 20 percent
C=08) 27 _ (08— 29 ____ 000106
(Re, ) (574 x 10%)

The wave drag coefficient is estimated from

where a = i =0035 rad
573

Thus,

4(0.035)°

Caw ™= W

Total drag coefficient = 0 0025 + (2){(0.00106) =| 0.00462

= 00025
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Note: In the above, Cy is multiplied by two, because Eq. (4 100) applied to only one side
of the flat plate. In flight, both the top and bottom of the plate will experience skin
friction, hence that total skin friction coefficient is 2(0 00106) = 0 00212,

(b) If o is increased to 5 degrees, where o = 5/57.3 - 0.00873 rad, then

_ 4(0.0873)°

T 2y o1

Total drag coefficient = 0 01556 + 2(0.00106) ={0.0177

=001556

(¢) In case (a) where the angle of attack is 2 degrees, the wave drag coefficient
(0.0025) and the skin friction drag coefﬁciént acting on both sides of the plate (2 x
0 00106 = 0 00212) are about the same However, in case (b) where the angle of attack is
higher, the wave drag coefficient (0 0177) is about eight times the total skin fiiction
coefficient.  This is because, as o increases, the strength of the leading edge shock

increases rapidly In this case, wave drag dominates the overall drag for the plate.

521 V.=251 km/h= (251]‘—“‘]( th )(IOOOm) = 69.7 m/sec
h /\3600sec 1km

P =1 225 kg/m’

o = %pw V2= %(1 225)(69 7)* = 2976 N/m®
oL 9800 oo
1.S  (2976)(162)
2 2
Cp, =t =020 _ 607804

' eAR  m(062)(731)
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Di=q.$ Cp, = (2976)(16.2)(0 002894) = ]139.5 N

522 V.=855 km/h=2375 m/sec

o= %pm V2= %(1 225)(23 75)* = 345 N/m’
L 9800
CL-: = =1
1.8 (345)(162)
c,’ 5)°
S )

T RAR  m(062)(731)

Di=q. S Cp, = (345)(16.2)(0 215) 5| 1202 N

Note: The induced drag at low speeds, such as near stalling velocity, is considerably
~ larger than at high speeds, near maximum velocity Compare the results of problems 5 20

and 521

5.23  First, obtain the infinite wing lift slope. From Appendix D for a NACA 65-210

airfoil,
C,=105ato=8°
C,=0atog-=-15°

Hence,
A, = Elg% = 0 11 per degree

The lift slope for the finite wing is
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a, 0.11

2T T3 ., L5701 0076 per degree

7 ¢,AR 7 {9)(5)

1+

Ato =6

Cr. = a(a - ag-0) = (0 076) [6 - (-1 5)] ={ 0.57

The total drag coefficient is

2

2
o _ (0004y+ O3
AR

o=t 7 (09)0)

Cp=0004+0023={0.027

524 q,= %pw V' = —;-(o 002377)(100)* = 11 9 Ib/fY®

ata=10°,L=1791b Hence

L 179
9.8 (11915

C=

ata=-2",L=0 Hencegy-p=-2°

a= ¢, __10-0 _ 0083 per degree
da [10-(-2)]

This is the finite wing lift slope

= __%__.ao—
573 a,
1+
T eAR
Solve for 'ao
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_a___ 0083
& 573a | 573(0083)

TTeAR 7 (095)(6)

a, = 0.11 per degree

525 Atoa=-1° thelift is zero Hence, the total drag is simply the profile drag

2

Co=cq+t =¢a+0=cy

e
1

Qw—z

P Vied = % (0 002377)(130)* = 20.1 Ib/R?

Thus, at & = cip-0 = -1°

_ D _ 0181 _
q.S (2015

Cd

At o = 2°, assume that ¢q has not materially changed, i.e, the “drag bucket” of the profile
drag curve (see Appendix D) extends at least from -1° to 2°, where c4 is essentially

constant. Thus, at o = 2°,

Ci= = -0166

1.8 (201)15)
o= 2= 2 000763

1.8 (201)(19)

However:
C 2
C = + L
P meAR
2
000763 = 0 006 + 0168 _ o6 4+ 200146
7 e(6) e
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e=[0.90

To obtain the lift slope of the airfoil (infinite wing), first calculate the finite wing lift slope.

0166-0
__ (0166-0)

= 0 055 per degree
[2-(-2)]

a _ 0.055
573 a 1 37.3(0055)

7 eAR 7z (09)(6)

Qo =

a, =] 0.068 per degree

526 Vo= |2V _ 2(7780)
p.SC._ \(1225(166)(21)

Vaan =] 19.1 m/sec = 68.7 km/hl

527 (@) a= S = 0087 radians
573

¢, =2rma=2n(0087)=10.548

(b) Using the Prandtl-Glauert rule,

C
6p = e =28 T5767
JI-M2 1= (07)?
(c) FromEq (5 50)
da___ 4(0087) ==

o WM -1 @ -

5.28 For V,, =21 8 fi/sec at sea level
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4o = P V= (0 002377)(21 87 = 0.565 b/

1 ounce= 1/16 1b = 0.0625 Ib.

L _ 00625 To—

C= = S
1.8 (0565)(1)

For a flat plate airfoil

c,=2na=2mn(3/57.3)={0.329

The difference between the higher value predicted by thin airfoil theory and the lower
value measured by Cayley is due to the low aspect ratio of Cayley’s test wing, and viscous

effects at low Reynolds number

5.29 From Eqs. (5.1) and (5 2), writtten in coefficient form
CL=Cyncosa~Cysina
Cp=Cysina+Cacosa

Hence:

€1 =0.8 cos 6° - 0.06 sin 6° = 07956 - 0 00627 =]0.789

Cp=0.8 sin & + 0.06 cos o = 0.0836 +0.0597 =[0.1433

Note: At the relatively small angles of attack associated with normal airplane flight, Gy

and Cy are essentially the same value, as shown in this example.

5.30 First solve for the angle of attack and the profile drag coefficient, which stay the

same in this problem.
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a, a

gr=ad=
1+573 a_/(x €,AR)

o, o= L[1+573a/me AR)]

o

- %% (14573 (0 11)/[x (0 9)(7)]} =4 2°

'The profile drag can be obtained as follows

= C, _ 0.35 = 0012
(C,/Cy) 29
2
Co=cg+ CL
e
2 2
o1, Cd=CD- CL =0012- ﬂ""200062
meAR 7 (9X7)

Increasing the aspect ratio at the same angle of attack increases C; and reduces Cp For
AR = 10, we have

a, a

CL.Z o=
1+573 a_ /(7 e,AR)

(0.11)(4.2)

= = 03778
1+573 (011)/ [z (09)(10)]

-

2 2
Co=cg+ CL =0.062_w
meAR 7 (9)(10)

=00062 +0.005048 =0 112

Hence, the new value of L/D is

— = — 5337
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