
Knowledge-Based Control Systems
Summary

1. Introduction to fuzzy sets

In this summary, we will examine various knowledge-based control systems. One type of such systems is
based on fuzzy logic. We’ll examine the basics of fuzzy logic in this chapter. We’ll go more into depth
on it in subsequent chapters.

1.1 Basic properties and representations of fuzzy sets

1.1.1 Fuzzy sets

Let’s examine ordinary set theory. We have a domain X. Now examine a set A with objects xi ∈ X.
The membership function µA(x) is defined as

µA(x) =

{
1 iff x ∈ A,

0 iff x /∈ A.
(1.1.1)

So, an object x is either fully part of A or not at all part of A. We call such a set A a crisp set.

However, in fuzzy logic, things are different. Now an object x can also be partially in A. In other words,
µA(x) can take values between 0 and 1 as well. We call such a set A a fuzzy set. Also, the value of
µA(x) is called the membership degree or membership grade.

1.1.2 Properties of fuzzy sets

We can define various properties for fuzzy sets. The height of a fuzzy set hgt(A) is the supremum
(maximum) of the membership grades of A. So,

hgt(A) = sup
x∈X

µA(x). (1.1.2)

A fuzzy set A is normal if hgt(A) = 1. In other words, there is an x for which µA(x) = 1. Any set that
is not normal is called subnormal. Such a set A can be normalized using the normalization function
norm(A). It is defined such that, for all x ∈ X, we have

B = norm(A) ⇒ µB(x) =
µA(x)
hgt(A)

. (1.1.3)

The support of a set A is the crisp subset of A with nonzero membership grades. Similarly, the core of
a set A is the crisp subset of A with membership grade equal to one. So,

supp(A) = {x|µA(x) > 0} and core(A) = {x|µA(x) = 1}. (1.1.4)

The α-cut Aα of a set A is the crisp subset of A with membership grades of at least α. So,

Aα = α-cut(A) = {x|µA(x) ≥ α}. (1.1.5)

Note that core(A) = 1-cut(A). However, supp(A) = 0-cut(A) is not always true.

1

Let’s examine a set A. Its membership function µA(x) is called unimodal if it only has one global/local
maximum. The corresponding set A is then called convex. If however µA(x) is multimodel (has several
local maxima), then A is non-convex. Finally, the cardinality card(A) = |A| of a finite discrete set A
is the sum of the membership grades. Thus,

card(A) = |A| =
n∑

i=1

µA(xi). (1.1.6)

1.1.3 Representations of fuzzy sets

There are several ways to represent fuzzy sets. We will examine a few.

• Similarity-based representation – We use a (dis)similarity measure d(x, v) between two elements
x and v. An example of a membership function is now given by

µ(x) =
1

1 + d(x, v)
. (1.1.7)

• Trapezoidal membership function – We choose parameters a, b, c and d (a < b, c > d) such
that

µ(x) = max
(

0,min
(

x− a

b− a
, 1,

d− x

d− c

))
. (1.1.8)

If b = c, we obtain the triangular membership function.

• Piece-wise exponential membership function – We choose the position parameters cl and cr

(cl < cr) and the width parameters wl and wr (wl, wr > 0) such that

µ(x) =


exp

(
−
(

x−cl

2wl

)2
)

if x < cl,

exp
(
−
(

x−cr

2wr

)2
)

if x > cr,

1 otherwise.

(1.1.9)

• Singleton set – This is a special fuzzy set. For some chosen element x0, we have

µ(x) =

{
1 if x = x0,

0 otherwise.
(1.1.10)

• Universal set – This is another special fuzzy set. We simply have µ(x) = 1 for all x ∈ X.

• Point-wise representation – For every individual element x, we specify the value of µ(x). Two
different methods of notation are

A = {µA(x1)/x1, µA(x2)/x2, . . . , µA(xn)/xn} = µA(x1)/x1+µA(x2)/x2+. . .+µA(xn)/xn. (1.1.11)

1.2 Modifying fuzzy sets

1.2.1 Basic operations on fuzzy sets

Let’s examine a fuzzy set A. In ordinary set theory, we can do several things with sets. (Think of
complements, unions, intersections and such.) We can extend these ideas to fuzzy sets. First, let’s
examine the complement Ā of A. The common definition for Ā is that, for all x ∈ X, we have

µĀ(x) = 1− µA(x). (1.2.1)

2

To define the intersection C = A ∩ B between two sets A and B, we need a t-norm T (a, b) such that
µC(x) = T (µA(x), µB(x)) for all x ∈ X. Such a t-norm must satisfy the following conditions.

T (a, 1) = a, (1.2.2)
b ≤ c ⇒ T (a, b) ≤ T (a, c), (1.2.3)

T (a, b) = T (b, a), (1.2.4)
T (a, T (b, c)) = T (T (a, b), c). (1.2.5)

The most commonly used t-norms are the standard intersection (also known as the minimum) and
the algebraic product, which are respectively defined as

T (a, b) = min(a, b) and T (a, b) = ab. (1.2.6)

The minimum is the largest possible t-norm.

To define the union C = A ∪ B between two sets A and B, we need a t-conorm S(a, b) such that
µC(x) = S(µA(x), µB(x)) for all x ∈ X. Such a t-conorm must satisfy the following conditions.

S(a, 0) = a, (1.2.7)
b ≤ c ⇒ S(a, b) ≤ S(a, c), (1.2.8)

S(a, b) = S(b, a), (1.2.9)
S(a, S(b, c)) = S(S(a, b), c). (1.2.10)

The most commonly used t-conorms are the standard union (also known as the maximum) and the
algebraic sum, which are respectively defined as

S(a, b) = max(a, b) and S(a, b) = 1− (1− a)(1− b) = a + b− ab. (1.2.11)

The maximum is the smallest possible t-norm.

We can also change fuzzy sets by using hedges. Let’s suppose that the fuzzy set A indicates expensive
cars. If some element x (say, x = 10,000 euros) has a low membership degree, it is not expensive.
But if its membership degree is high, it is expensive. How can we find the set B that indicates very
expensive cars or the set C that indicates mildly expensive cars? There are two methods. We can use
shifted hedges: we shift the membership function along the domain. So, µB(x) = µA(x − 5, 000) and
µC(x) = µA(x + 3000). We can also use powered hedges: µB(x) = µA(x)2 and µC(x) =

√
µA(x).

1.2.2 Modifications of fuzzy sets

Let’s examine some domain X and another domain Y . We can define a fuzzy set A in X or in Y , but we
can also define it in X × Y . We then have to define µA(x, y) for every combination x ∈ X, y ∈ Y . The
same can be done for higher-dimensional spaces. Such spaces are known as Cartesian product spaces.

Let’s examine some Cartesian product spaces U , U1 and U2 with U1 ⊆ U ⊆ U1 × U2. (In other words,
U1 and U2 together encompass U , which in turn encompasses U1.) We also have some set A defined in
U . We can now find the projection of A onto U1 using

projU1
(A) =

{
sup
U2

µA(u)/u1|u1 ∈ U1

}
. (1.2.12)

In other words, for each set of parameters of U1, we browse through all combinations of the parameters
of U2 and look for the one with the highest value of µA(u)/u1.

Again, examine Cartesian product spaces U , U1 and U2 with U1 ⊆ U ⊆ U1×U2. But now, we have a set
A defined on U . We can find the cylindrical extension to U1 using

extU (A) = {µA(u1)/u|u ∈ U} . (1.2.13)

3

It is important to note that, with a projection, you go to a lower-dimensional space. This generally results
in a loss of data. However, with a cylindrical extension, you go to a higher-dimensional space. You now
do not lose data.

Let’s examine two fuzzy sets A1 and A2, defined on domains X1 and X2, respectively. We would like to
take the intersection between the two sets. But, because the two sets are defined on different domains,
we can’t do this using the normal definition. As a solution, we use cylindrical extensions. So,

A1 ×A2 = extX2(A1) ∩ extX1(A2) ⇒ µA1×A2(x1, x2) = T (µA1(x1), µA2(x2)). (1.2.14)

1.2.3 Fuzzy relations

A fuzzy relation R is a fuzzy set in the Cartesian product space X1 ×X2 × . . . ×Xn. This fuzzy set
has a membership function µR(x1, x2, . . . , xn) which gives a value between 0 and 1 (inclusive) for all
combinations of parameters x1, x2, . . . , xn.

Now let’s examine a fuzzy relation R in X × Y and a fuzzy set A in X. We can find a fuzzy set B in Y
through the composition of A and R:

B = A ◦R = projY (R ∩ extX×Y (A)) . (1.2.15)

We thus extend A to X × Y , intersect it with R, and then project the result on Y . It can be shown that
the membership function of B now satisfies

µB(y) = max
x

min(µA(x), µR(x, y)). (1.2.16)

4

2. Fuzzy models

We can use fuzzy logic to build fuzzy models. In this chapter, we examine how this works.

2.1 Types of fuzzy models

A static/dynamic systems which makes use of fuzzy sets is called a fuzzy system. Most common are
fuzzy systems defined by if-then rules. These are called rule-based systems, also known as fuzzy
models. An if-then rule generally takes the form of

If antecedent proposition then consequent proposition. (2.1.1)

The antecedent proposition is always a fuzzy proposition of the type ‘x is A’, where x is a linguistic
variable and A is a linguistic constant. (For example, it can be ‘if Temperature is high then) The
structure of the consequent proposition, however, depends on the model we use.

• In a linguistic fuzzy model, both the antecedent and the consequent are fuzzy propositions.
• The fuzzy relational model is an extension of the linguistic fuzzy model. Now, a fuzzy antecedent

can be coupled to multiple fuzzy propositions at the same time.
• In the Takagi-Sugeno (TS) fuzzy model, the consequent is a crisp function of the antecedent

variables.

2.2 The linguistic fuzzy model

2.2.1 Properties of the linguistic model

As we just saw, in a linguistic fuzzy model, relations take the form of

Ri : if x is Ai then y is Bi. (2.2.1)

A linguistic variable L (for example ‘Temperature’) is defined as a set L = (x,A, X, g,m). Here, x is
the base variable, having the same name as the linguistic variable. A is the set of linguistic terms
(for example ‘cold’, ’normal’ and ‘warm’). X is the domain of x (for example, [−273,∞)). Finally, g is a
syntactic rule for generating linguistic terms and m is a semantic rule that assigns to each linguistic
term its meaning. The latter two are in a way just formalities: we won’t consider them here.

It is often required that a linguistic term satisfies properties of coverage and semantic soundness. Cov-
erage means that each domain element x ∈ X is assigned to at least one fuzzy set Ai. (For example,
there isn’t a single temperature which is not either ‘cold’, ‘normal’ or ‘warm’.) A stronger requirement is
ε-coverage. This demands that each domain element x ∈ X is at least assigned to one fuzzy set Ai with
µAi(x) > ε. Next to this, semantic soundness relates to how well a system can distinguish between
different variables x. (For example, if a system can’t find the difference between a low temperature of 0◦

C and a low temperature of 5◦ C, then it is doesn’t have a lot of semantic soundness.)

2.2.2 Inference in the linguistic model

Inference in fuzzy rule-based systems is the process of deriving a fuzzy output set given the rules and
the inputs. Each rule Ri can be seen as a fuzzy relation R : (X × Y)→ [0, 1] such that

µr(x,y) = I(µA(x), µB(y)). (2.2.2)

5

The I operator can be either a fuzzy implication or a conjuction operator (t-norm). Fuzzy implication
is used when the rule has the form ‘A implies B’. Examples of fuzzy implications are the Lukasiewicz
implication and the Kleene-Diene implication, respectively defined as

I(µA(x), µB(y)) = min(1, 1− µA(x) + µB(y)) and I(µA(x), µB(y)) = max(1− µA(x), µB(y)).
(2.2.3)

Alternatively, conjunction is used is when A∧B. That is, when A and B simultaneously hold. Examples
of t-norms are the minimum (also often referred to as the Mamdani ‘implication’ and the Larsen
‘implication’, respectively defined as

I(µA(x), µB(y)) = min(µA(x), µB(y)) and I(µA(x), µB(y)) = µA(x) · µB(y). (2.2.4)

So how do we use this? Well, let’s suppose we have a rule if x is Ai then y is Bi and we also know that
x is A′, then we can find the set B′ satisfying y is B′ using

B′ = A′ ◦R. (2.2.5)

The question remains, what do we do if we have multiple rules/relations Ri? In that case we have to
join them somehow to some joined relation R. When dealing with implications, we do this using an
intersection, like

R =
K⋂

i=1

Ri meaning that µR(x,y) = min
1≤i≤K

µRi
(x,y). (2.2.6)

If, however, we are dealing with conjunction, then the aggregated relation R is the union of the individual
relations Ri. So,

R =
K⋃

i=1

Ri meaning that µR(x,y) = max
1≤i≤K

µRi
(x,y). (2.2.7)

Again, the output set B′ is found in the same way, by using B′ = A′ ◦R.

2.2.3 Max-min Mamdani inference

In the previous method of inference, we had to use relations R. When the domains X and Y get very
big, this will become rather complicated. But luckily, the relational calculus can be bypassed by using
max-min (Mamdani) inference. In Mamdany inference, we can find the output using

µB′(y) = max
1≤i≤K

(
max

X
(µA′(x) ∧ µAi(x)) ∧ µBi(y)

)
= max

1≤i≤K
(βi ∧ µBi(y)) . (2.2.8)

In this equation, we have defined the degree of fulfillment βi as

βi = max
X

(µA′(x) ∧ µAi
(x)) . (2.2.9)

Basically, this number is an indication of how much A′ and Ai are alike. A big advantage of the Mamdani
method is that it does not require discretization of the domain. It can thus work with analytically defined
membership functions.

2.2.4 Defuzzification

We now know how to find an output fuzzy set B′, based on fuzzy rules. But usually, we don’t want to
know that some parameter y belongs to a fuzzy set B′. Instead, we want to know a value y′. The process
of finding a value y′ from the knowledge that y is B′ is called defuzzification.

6

There are two commonly used defuzzification methods: the center of gravity method and the mean of
maxima method. In the center of gravity (COG) method, we calculate the y-coordinate of the center
of gravity of the fuzzy set B′. This is done according to

y′ = cog(B′) =

∑F
j=1 µB′(yj)yj∑F
j=1 µB′(yj)

=

∫
Y

µB′(y)y dy∫
Y

µB′(y)
. (2.2.10)

The first part of the above equation is used for discretized domains Y , whereas the second part is used
for continuous domains Y .

In the mean of maxima (MOM) method, we find all points where µB′(y) is at its maximum. We
then take the mean of all these points. In mathematical notation, we then have

y′ = mom(B′) = cog
({

y|µB′(y) = max
y∈Y

µB′(y)
})

. (2.2.11)

In a way, the MOM method selects the ‘most probable’ output. It is often used with inference based
on fuzzy implications. On the other hand, the COG method is usually used together with Mamdani
inference.

Finally, there is also a third defuzzification, called fuzzy-mean defuzzification. It is often used after
Mamdani inference, to avoid the integration step from the COG method. When applying this method,
first the consequent fuzzy sets Bj are found, using

µBj
(y) = (βi ∧ µBi

(y)) . (2.2.12)

Instead of first using µB′(y) = max µBj
(y) and then applying defuzzification, we now first apply defuzzi-

fication using bj = mom(Bj). Now, a crisp output y′ is obtained by taking the weighted average of bj .
So,

y′ =

∑M
j=1 ωjbj∑M
j=1 ωj

, where ωj = µB′(bj). (2.2.13)

The weight ωj is thus the maximum of the degrees of fulfilment βi over all rules Ri with consequent Bj .
In this way, an integration over the domain is avoided.

2.2.5 Rules with several inputs

Previously, we have considered multivariate membership functions µA(x). Sometimes, it may be conve-
nient to use univariante membership functions µA(x). But what do we do then if we still have multiple
variables x1, . . . , xn? In this case, we simply add them together in the antecedent. This gives us the
conjunctive form of the antecedant:

Ri : if x1 is Ai1 and . . . and xin is Ain then y is Bi. (2.2.14)

This is, in fact, a special case of our previous multivariate rules. In fact, if we use Ai = Ai1 × . . .×Ain,
and insert this into the normal multivariate rule, then we get exactly the same result. As such, the
possibilities of the conjunctive form are limited. Also, it is often necessary to define a lot of rules. For
every combination of x1, . . . , xn, a rule is necessary.

One way in which the number of rules can be reduced, is by using additional logical connectives, like
‘or’ and ‘not’. In this way, a rule can be defined like

Ri : if x1 is not Ai1 or xi2 is Ai2 then y is Bi. (2.2.15)

In this way, less rules are required than in the conjunctive form. Yet still, this method allows for fewer
possibilities than the multivariate rule form. So, the multivariate rule form is the most general form you
can use.

7

2.3 Other kinds of fuzzy models

2.3.1 The singleton model

A special case of the linguistic fuzzy model is the singleton model. It is obtained when the consequence
fuzzy sets Bi are singleton sets. In this case, we can write the rules as

Ri : if x is Ai then y is bi. (2.3.1)

For the singleton method, defuzzification simply means applying the fuzzy-mean method. So we have

y =
∑K

i=1 βibi∑K
i=1 βi

. (2.3.2)

We can also generalize the singleton model to a class of functions called the basis functions expansion.
We now have

y =
K∑

i=1

φi(x)bi. (2.3.3)

So, for the singleton model, φi(x) is simply the normalized degree of fulfillment of the rule antecedents.

2.3.2 The fuzzy relational model

The fuzzy relational model is an expansion of the linguistic model. In the linguistic model, y always
belonged to a certain linguistic term. (e.g. we had y is Fast.) In the relational model, y can also partly
belong to multiple linguistic terms. So, an example of a rule might be

if x1 is Low and x2 is High then y is Cold (0.9), y is Normal (0.2), y is Warm (0.0). (2.3.4)

Let’s denote the set of linguistic terms of antecedent variable xj by Aj . The set of all combinations of
linguistic variables x1, . . . , xn is now denoted by A = A1 × . . .×An. Similarly, we can denote the set of
linguistic terms of consequent variable y by B. The fuzzy relational model can now be seen as a fuzzy
relation

R : A× B → [0, 1]. (2.3.5)

The relation R can be represented by a matrix. The elements rij of this matrix now equal the numbers
denoted in parantheses in the rules.

It is important to note the difference between the matrix R for the linguistic model and the matrix R for
the relational model. In the linguistic model, R denoted the degree of association between elements from
X and Y (that is, from the input and the output space). However, in the relational model R denotes the
association between the linguistic terms of the input and the output.

So how does inference work in the relational model? Well, we first compute the degree of fulfillment of
the rules. This still goes according to

βi = µAi1(x1) ∧ . . . ∧ µAin(xn). (2.3.6)

Now, we can find the degree ωj to which y belongs to class Bj . This is done using ω = β ◦ R or,
equivalently,

ωj = max
1≤i≤K

(βi ∧ rij) . (2.3.7)

Finally, we need to find the defuzzified output y. For that, we simply take the weighted mean of the
classes Bj . So,

y =

∑M
j=1 ωjbj∑M
j=1 ωj

. (2.3.8)

8

Here, bj = cog(Bj) is the centroid of Bj .

The main advantage of the relational model is that the input-output model can be fine-tuned without
changing the consequent fuzzy sets. Instead, you can simply adjust the values of rij in the rules of the
fuzzy system.

2.3.3 The Takagi-Sugeno model

The Takagi-Sugeno (TS) model uses crisp functions as consequents. Basically, a rule has the form

Ri : if x is Ai then y = fi(x). (2.3.9)

If the function fi(x) has an affine form (so fi(x) = ai
T x + bi), then the model is called an affine TS

model. To apply inference with the Takagi-Sugeno model, we simply use the fulfillment degrees. So,

y =
∑K

i=1 βiyi∑K
i=1 βi

=
∑K

i=1 βifi(x)∑K
i=1 βi

=
∑K

i=1 βi

(
ai

T x + bi

)∑K
i=1 βi

. (2.3.10)

2.3.4 Dynamic fuzzy systems

Let’s examine a time-invariant system. We can model such a system using

x(k + 1) = f(x(k),u(k)), (2.3.11)

where x(k) is the state, u(k) is the input and f is the state transition function. We can use a fuzzy
model to approximate f . However, it is usually hard to do this, since we can’t always measure the state x.
So instead, we usually use a fuzzy model to approximate the output y of the system. In the dynamic
TS model this is done according to rules of the form

if y(k) is Ai1 and y(k − 1) is Ai2 and . . . and y(k − ny + 1) is Ainy
(2.3.12)

and u(k) is Bi1 and u(k − 1) is Bi2 and . . . and u(k − nu + 1) is Binu
(2.3.13)

then y(k + 1) =
ny∑
j=1

aijy(k − j + 1) +
nu∑
j=1

biju(k − j + 1) + ci. (2.3.14)

The values of nu and ny (i.e. how far we look back in time for the input/output) depend on the order of
the dynamic system.

9

3. Fuzzy clustering

Let’s suppose that we have a lot of object, and we’ve made some measurements of these objects. Can
we now divide these objects into groups called clusters? And if so, how do we do this using fuzzy logic?
That is what this chapter is about.

3.1 Types of clustering

3.1.1 The data set

Let’s suppose that we have N objects (e.g. pieces of fruit). Of each of these objects, we make n
measurements (e.g. size, weight, etcetera). These measurements are also called features or attributes.
The set of measurements of one object, zk = [z1k, . . . , znk]T , is called a sample, a pattern or simply an
object. We can also put all measurements in a matrix. We then get the data matrix Z = [z1 . . . zN].

To divide objects into clusters, we often make use of (dis)similarity measures. One well-known example
of a dissimilarity measure is the Euclidian distance ||zj − zi||, but we’ll consider more later. Based on
the similarity measures, objects are divided into clusters. How exactly this can be done will be discussed
later in this chapter.

3.1.2 Hard clustering

There is an important distinction between hard clustering and fuzzy clustering. In hard clustering we
make a hard partition of the data set Z. In other words, we divide them into c ≥ 2 clusters (with c
assumed known). With a partition, we mean that

c⋃
i=1

Ai = Z and Ai ∩Aj = ∅ for all i 6= j. (3.1.1)

Also, none of the sets Ai may be empty.

To indicate a partitioning, we make use of membership functions µik. If µik = 1, then object i is in
cluster k. Alternatively, if µik = 0, then object i is not in cluster k. Based on the membership functions,
we can assemble the partition matrix U, of which µik are the elements. Finally, there is the rule that

c∑
i=1

µik = 1. (3.1.2)

In other words, every object is only part of one cluster. Thus, every column of U has only a single 1.
The set of all hard clusterings U that can be obtained with hard clustering is now denoted as Mhc.

3.1.3 Fuzzy clustering

Hard clustering has a downside. When an object roughly falls between two clusters Ai and Aj , it has to
be put into one of these clusters. Also, outliers have to be put in some cluster. This is undesirable. But
it can be fixed by fuzzy clustering.

In fuzzy clustering, we make a fuzzy partition of the data. Now, the membership function µik can
be any value between 0 and 1. This means that an object zk can be for 0.2 part in Ai and for 0.8 part
in Aj . However, requirement (3.1.2) still applies. So, the sum of the membership functions still has to
be 1. The set of all fuzzy partitions that can be formed in this way is denoted by Mfc.

10

Fuzzy partitioning again has a downside. When we have an outlier in the data (being an object that
doesn’t really belong to any cluster), we still have to assign it to clusters. That is, the sum of its
membership functions still must equal one. In possibilistic partitioning, this requirement (3.1.2) is
relaxed. Instead, it is only required that for every object we have µik > 0 for some cluster Ak. The set
of all possibilistic partitions that can be formed in this way is denoted by Mpc.

3.2 The fuzzy c-means clustering method

3.2.1 The goal of the fuzzy c-means clustering method

Given a data set Z, how do we find a good fuzzy clustering U ∈Mfc? For that, we have to use a clustering
algorithm. One of the most-used algorithms is fuzzy c-means clustering which we will examine in this
part. In the fuzzy c-means clustering method, we try to minimize the cost function called the fuzzy
c-means functional, being

J(U,V|Z) =
c∑

i=1

N∑
k=1

(µik)m||zk − vi||2A. (3.2.1)

In this equation, V = [v1, . . . ,vc] is a vector of cluster prototypes (centers) and m is a constant. Also,
we have

D2
ikA = ||zk − vi||2A = (zk − vi)T A(zk − vi). (3.2.2)

3.2.2 The fuzzy c-means clustering algorithm

So how do we minimize the cost function? Well, we start by taking a random partition matrix U(0) ∈Mfc.
We then continue doing the following steps.

1. We compute the weighted means of the clusters using

vi
(l) =

∑N
k=1

(
µ

(l−1)
ik

)m

zk∑N
k=1

(
µ

(l−1)
ik

)m . (3.2.3)

2. We compute the distances D2
ikA using D2

ikA = ||zk − vi
(l)||2A.

3. We update the partition matrix U. For all objects k, we define the new measurement functions µ
(l)
ik

as
µ

(l)
ik =

1∑c
j=1

(
DikA

DjkA

) 2
m−1

. (3.2.4)

However, a problem occurs if D2
ikA = 0. (This can occur if zk = v(l)

i for some k, i or if A is a
singular matrix.) Let’s suppose that there are q clusters Ai for which D2

ikA = 0. We then simply
give all these clusters a membership degree of µ

(l)
ik = 1/q. All the other clusters (with D2

ikA > 0)
get a membership function of µ

(l)
ik = 0.

We repeat the above iteration until the partition matrix U doesn’t really change anymore. That is, until
||U(l) −U(l−1)|| < ε for some norm ||.|| and for some defined ε. (Often ε = 0.01 or ε = 0.001 works well
enough, depending on the trade-off between run-time and accuracy.)

11

3.2.3 Properties of the fuzzy c-means clustering method

There are several important things to know about fuzzy c-means clustering. First of all, it converges to
a local minimum. (This depends on the initialization of U.) So, to make sure that a good clustering is
obtained, the algorithm needs to be run several times for different initializations U.

It is also important to set the parameters of the algorithm right. The most important one is the number
of clusters c. Sometimes, this is obvious. But often it is not. To test whether a clustering has the right
number of clusters, you can look at a validity measure like the Xie-Beni index

ξ(U,V|Z) =
∑c

i=1

∑N
k=1(µik)m||zk − vi||2

c ·mini 6=j (||vi − vj||)
. (3.2.5)

The upper side of the fraction can be seen as the ‘average distance within the cluster’, while the bottom
side is an indication of the ‘distance between clusters’. A small index is positive. So, if we simply run
the algorithm for different numbers of clusters c, then we can select the solution with the smallest index.

Another important parameter is the fuzziness parameter m. If m = 1, then we wind up with a hard
clustering. However, if m → ∞, we wind up with a very fuzzy clustering µik = 1

c for all i, k. Usually,
m = 2 offers a good compromise, though this number can be varied during subsequent runs of the
algorithm.

The norm-inducing matrix mainly determines the shapes of the clusters. If A = I, then we are using
a Euclidian norm. The shape of the clusters will be circular. Alternatives are the diagonal norm and
the Mahalanobis norm, which respectively use

A =


1

σ2
1

0 · · · 0

0 1
σ2
2
· · · 0

...
...

. . .
...

0 0 · · · 1
σ2

n

 and A = R−1 =

(
1
N

N∑
k=1

(zk − z̄)(zk − z̄)T

)−1

. (3.2.6)

Here, the parameters σ2
i are the variances of the matrix Z in direction i. Both the diagonal norm and the

Mahalanobis norm will result in clusters with ellipsoidal shapes. However, the fundamental difference is
that, with the diagonal norm, the axes of the ellipses are aligned with the main axes. When using the
Mahalanobis norm, the axes are arbitrary.

3.2.4 An extension of the fuzzy c-means method

The downside with using a single matrix A is that all clusters will have the same shape and orienta-
tion. When there are clusters with different shapes, this will be undesirable. The Gustafson-Kessel
algorithm is an extension of the fuzzy c-means method which gets rid of this downside.

The main idea is that, instead of using the same matrix A all the time, we use a different matrix Ai to
calculate the norm D2

ikAi
. Now, also an optimum for the matrix Ai needs to be found. This does give

rise to a problem though. If we minimize the cost function J right away, then the matrices Ai simply
go to zero. We thus need to constrain them in some way. Usually, det(Ai) = |Ai| = ρi is used as a
constraint. Here the choice of values for ρi depends on earlier experience. If this experience is lacking,
ρi = 1 is simply chosen.

So how can this be implemented in the algorithm? Well, we simply replace step 2 by the following. We
first calculate the fuzzy covariance matrix Fi for all clusters i using

Fi =

∑N
k=1

(
µ

(l−1)
ik

)m

(zk − vi)(zk − vi)T∑N
k=1

(
µ

(l−1)
ik

)m . (3.2.7)

12

Now, the improved value of Ai can be found using

Ai = (ρi det(Fi))
1
n Fi

−1. (3.2.8)

This matrix Ai is then used to compute the distance norm D2
ikAi

after which the algorithm proceeds as
normal.

The matrices Fi are quite important. In fact, the shapes of the clusters depend on them. The main axes
of the ellipses are denoted by the eigenvectors φij of Fi. The sizes of the ellipses in these directions are
proportional to

√
λij , with λij the eigenvalue corresponding to the eigenvector φij.

13

4. Building fuzzy systems and controllers

A fuzzy system is a system that makes use of fuzzy logic. In this chapter, we’re going to examine how
to build such a system. We also look at the working principles of fuzzy controllers.

4.1 Construction of fuzzy systems

4.1.1 Basic fuzzy system construction

When building a fuzzy system, the first thing that needs to be defined is the structure of the system.
This structure consists of the following parts.

• The number and type of input and output variables.
• The structure of the rules. That is, the kind of fuzzy model that is used.
• The number of linguistic variables and the number and type of membership functions for

each variable. (E.g. whether triangular or trapezoidal membership functions are used.)
• The type of inference mechanism that is used.
• The defuzzification method.

Once the structure has been set up, the available knowledge should be formulated as a set of ‘if-then’
rules. This then results in a fuzzy system. But it’s not done yet. Based on available test data, the
parameters of the system can be fine-tuned. (With parameters, we mainly mean the parameters of the
membership functions, like the position of the top at the triangular membership function and such. But
in some models, the if-then rules also have parameters.) Finally, the system needs to be evaluated. If it
does not meet the expectations, then a new system should be created with a somewhat different structure.

4.1.2 The least-squares estimation of consequents

Let’s suppose that we are using an affine Takani-Sugeno model. So we have a set of K rules with
consequents of the form y = ai

T x + bi. We need to set these parameters ai and bi. This can be
done by using a set of N input-output data pairs (xi, yi). We can put these pairs into an input matrix
X = [x1, . . . ,xN]T and an output vector y = [y1, . . . , yN]T . Now, because the models are linear, we can
use the least-squares method to find optimal values for ai and bi.

First, let’s define the matrix Γi as the N×N diagonal matrix having the normalized membership degrees
γi(xj) on its diagonal. We also append the matrix X with a column of ones to get Xe = [X 1]. Now,
define the matrix X′ as

X′ =
[
Γ1Xe Γ2Xe . . . ΓKXe

]
. (4.1.1)

The consequent parameters, which need to be found, are put into one big vector, being

θ =
[
a1

T b1 a2
T b2 . . . aK

T bK

]
. (4.1.2)

The least-squares equation which we want to solve is y ≈ X′θ. The solution for θ is thus given by

θ =
(
(X′)T X′)−1

(X′)T y. (4.1.3)

This trick can also be used for the singleton model. But now we simply omit ai and set Xe = 1.

14

4.1.3 Defining linguistic terms and membership functions

It is often difficult to choose which linguistic terms to use and which membership functions to give them.
In template-based modeling, we use a simple technique. We simply define a set of K linguistic terms
Ai. The membership functions of Ai are now distributed such that the whole interval of possible inputs
x is covered. Every membership function Ai then gets its own if-then rule.

The question remains how to distribute the membership functions. If no knowledge on the system is
present, the functions are distributed evenly over the interval. The big downside of the template-based
modeling now is that the number K of linguistic terms may grow very fast.

Another way to define rules is by using fuzzy clustering. We simply take N samples of data and divide
them over K fuzzy sets Ai using a fuzzy clustering technique. Now we can define K rules; one for each
fuzzy cluster Ai. When also the Takagi-Sugeno model is applied, we will get rules like

if x is Ai then y = aix + bi. (4.1.4)

4.1.4 Applying fuzzy system construction to systems

Let’s suppose that we have some system in which the output y(t + 1) can be modeled as

y(t + 1) = f(y(t), y(t− 1), u(t), u(t− 1)). (4.1.5)

Such a model is called a second-order NARX model. In the above equation, y(t + 1) is called the
regressand, while y(t), y(t − 1), u(t) and u(t − 1) are the regressors. We can define the regressor
matrix X and the regressand vector y up to time Nd as

X =


y(2) y(1) u(2) u(1)
y(3) y(2) u(3) u(2)

...
...

...
...

y(Nd − 1) y(Nd − 2) u(Nd − 1) u(Nd − 2)

 and y =


y(3)
y(4)

...
y(Nd)

 . (4.1.6)

Now we can construct our fuzzy system in one of the normal ways. So we see that fuzzy systems can also
be used to approximate system dynamics.

Sometimes we can help the fuzzy system a bit. Let’s suppose that we have some system y = f(x). We
also know, thanks to physical insights, that the output y is roughly proportional to x2. In this case,
it might be better to use x2 as input instead of x. (Fuzzy systems are better at approximating linear
functions than they are at approximating quadratic functions.) So, by simply changing the input of the
system, the performance will most likely increase. This trick of using physical insights to give the system
an easier job is called semi-mechanistic modeling.

4.2 Construction of fuzzy controllers

4.2.1 Why use fuzzy controllers?

In convential control theory, we use mathematical models to design a controller. However, if it is hard to
obtain a model, or if the system is highly nonlinear, this approach doesn’t work so well. Luckily, fuzzy
models can be used to approximate nonlinear functions. So, we can make a fuzzy controller! A fuzzy
controller is a controller that contains a mapping that has been defined using if-then rules.

In the world of control systems, a lot of systems are nonlinear. So, the demand for nonlinear control
methods is big. Such methods need to have several properties. First of all, it would be nice if they don’t

15

need too many input variables to obtain good results. Also, the method needs to be able to deal with
nonlinearities well, it should have a good learning/training rate, it should not be too computationally
intensive, and several more criteria need to be met. Fuzzy logic is a method that performs quite well on
these criteria.

4.2.2 The Mamdani controller

Several types of fuzzy controllers exist. One important example is the Mamdani controller. It is
usually used as a feedback controller.

As input, the Mamdani controller generally receives the error signal e. This error signal is then processed
by dynamic pre-filters. These pre-filters often scale the data, for example to put it on the normalized
interval [−1, 1]. Also, dynamic filtering is often applied, where quantities like ė and

∫
e are derived.

Other pre-filtering methods can be applied as well. The resulting parameters are then fed into the part
of the fuzzy controller known as the static map. The output of the static map is then fed to dynamic
post-filters. These filters can again scale the data and/or apply dynamic filtering.

Let’s take a closer look at the static map. It is important to define it properly. So, we’re going to look
at the individual steps needed to design the static map.

• First, the necessary inputs and outputs need to be selected. For conventional linear controllers, it
can be advantageous to use integral or derivative gains. Similarly, for fuzzy logic, it can sometimes
be advantageous to also use parameters like ė,

∫
e and/or others as inputs. However, things can

get complicated if too many input variables are used. If this is the case, then it may be worthwhile
to split up the system into several subsystems and let the output from one subsystem be the input
to the other.
• Second, the number of linguistic terms for every input variable needs to be set. If too few terms

are used, then the fuzzy system doesn’t have a lot of flexibility – it can’t approximate all kinds of
functions. However, if too many linguistic terms are used, the rule base will become rather big.
• For every linguistic term, a membership function needs to be selected. For computational

reasons, triangular and trapezoidal functions are usually preferred to bell-shaped functions.
• A very important step is to design the rule-base. This is generally done based on the knowledge

of an expert. Also, a model of the system may be used.
• Finally, the fuzzy controller needs to be tuned. This step is just as important as the tuning of the

gains in a conventional PID controller. The tuning of a fuzzy controller can be difficult because
sometimes, by changing only one variable, the whole system changes. But luckily, the effects of
changing parameters in a fuzzy controller are usually quite localized.

4.2.3 The Takagi-Sugeno controller and supervisory control

The Takagi-Sugeno fuzzy controller is somewhat similar to gain scheduling. Rules now take the form

if e is Low then u = aie + bi (4.2.1)

or something similar. Each rule is valid for only a small region of the controller’s input space. So, every
region of the controller’s input space more or less has its own control law. The general controller then
simply interpolates between these control laws.

Something entirely different is the supervisory controller: it is a secondary controller. It augments an
existing (conventional) controller. To do this, the supervisory controller usually defines certain parameters
of the existing controller. For example, it may define the proportional and derivative gains Kp and Kd of
a conventional PID controller, based on the current state of the system. Rules can thus take the form of

if process output is High then reduce Kp Slightly and increase Kd Moderately. (4.2.2)

16

5. Artificial neural networks

Artificial neural networks (ANNs) are imitations of biological neural networks, like our brains. They
can be very adept at approximating nonlinear functions, even when only few training data is available.
How they do this, and how they can be trained, will be examined in this chapter.

5.1 The structure of a neural network

5.1.1 The neuron

The basic building block of an ANN is a neuron. A neuron has several inputs xi. Each of these inputs is
multiplied by a weight wi and then added up. Often, a bias b is added as well. The result is the neuron’s
activation z. So,

z =
p∑

i=1

wixi = wT x or z =
p∑

i=1

wixi + b =
[
wT b

] [x
1

]
. (5.1.1)

From the above equation, it can be seen that adding a bias b works the same as adding an additional
input with weight b and value 1. So, we will simply use z = wT x in the remainer of this chapter.

Once the neuron’s activation z has been obtained, it is fed into the activation function σ(z). This
function returns a value on the interval [−1, 1] (or alternatively sometimes on the interval [0, 1]). Which
activation function is used depends on the ANN designer’s choice. Common activation functions are the
threshold function and the sigmoidal function, respectively defined as

σ(z) =

{
0 for z < 0
1 for z ≥ 0

and σ(z) =
1

1 + exp(−sz)
. (5.1.2)

The parameter s determines how ‘steep’ the sigmoid function is. If s → ∞, then the threshold function
is again obtained. But often s = 1 is simply chosen. The output of the activation is then the output of
the neuron.

5.1.2 Neural network architecture

An artificial neural network consists of interconnected neurons. (That is, the output of one neuron is fed
as input to the next neuron.) The neurons are usually assembled in layers. In a feedforward network,
the neurons of every layer are connected to the next layers. On the other hand, in recurrent networks,
neurons are also connected to previous layers as some sort of ‘feedback mechanism’. We will mainly
consider feedforward networks though, because they are relatively simple.

ANNs always have an input layer (at the start) and an output layer (at the end). Often, there are
also hidden layers in between. Most of the times, only one hidden layer is used. The reason is that
multiple hidden layers make the neural network computationally quite complex. Also, one hidden layer
is already capable of approximating any continuous function. That is, as long as there is a sufficient
number of hidden neurons in it.

Choosing the right number of hidden neurons in the hidden layer is very important, but also very difficult.
If you use too few neurons, then the neural network can’t approximate the desired output function well
enough. If, however, you use too many neurons, then overtraining can occur: the system only works on
the few test samples that have been provided, but is useless for any other input. Generally, the number of
hidden neurons primarily depends on the number of training samples (more training samples implies that
more neurons can be used) and the complexity of the output function (more complex output functions
often require more neurons).

17

5.1.3 Finding the output of a neural network

Let’s suppose that we have an ANN with 1 hidden layer. Given an input xi, how do we find the output
yi of this network?.

Well, we start with the input xi. The input layer doesn’t really do anything with this input. It only
passes it on to every neuron of the hidden layer. The activation of one hidden neuron j can then be found
using zj = wh

j

T
x. But we usually have multiple (N) input samples xi and multiple (p) hidden neurons

j. So, we can define

X =


x1

T

x2
T

...
xN

T

 , Wh =


wh

1
T

wh
2

T

...
wh

p
T

 and Z =


z11 z12 · · · z1p

z21 z22 · · · z2p

...
...

. . .
...

zN1 zN2 · · · zNp

 . (5.1.3)

The element zij of Z thus denotes the activation of hidden neuron j to input sample xi. Now we can
simply find the hidden layer activation Z, the hidden layer output V and the system output Y using

Z = XWh, V = σ(Z) and Y = σ(VWo). (5.1.4)

Here, we have Y =
[
y1 y2 · · · yN

]T
. Also, the output layer weights Wo are defined similarly as

the hidden layer weights Wh.

5.2 Training neural networks

Before ANNs work, they need to be trained. That is, their weights (and biases) need to be set such
that certain inputs give certain outputs. So, let’s suppose that we have a set of inputs X with desired
outputs D. How do we find the right weights? Several techniques exist. One of the simplest is the
backpropagation technique. Let’s examine it.

5.2.1 Backpropagation – the output layer

First, we randomly initialize the neural network. We then take an input x and find the resulting output
y. We compare this with the desired output d and calculate the error e = d − y. Our goal now is to
minimize the cost function

J =
1
2

∑
l

e2
l . (5.2.1)

First, let’s focus on minimizing the contribution of the output layer. For simplicity, we assume that the
output layer has no activation function. So, we simply have yl =

∑
j wo

jlvj . We now adjust the weights
of the output layer using the update rule

wo
jl(n + 1) = wo

jl(n)− α(n)
∂J

∂wo
jl

. (5.2.2)

Here, α(n) is the learning rate. To find the Jacobian ∂J/∂wo
jl, we can use the chain rule. So,

∂J

∂wo
jl

=
∂J

∂el

∂el

∂yl

∂yl

∂wo
jl

. (5.2.3)

18

These three partial derivatives are all relatively easy to find. We have

∂J

∂el
= el,

∂el

∂yl
= −1 and

∂yl

∂wo
jl

= vj . (5.2.4)

Thus, the update rule for the output layer weights becomes

wo
jl(n + 1) = wo

jl(n) + α(n)vjel. (5.2.5)

5.2.2 Backpropagation – the hidden layer

A similar principle is applied when adjusting the weights for the hidden layer. But now the Jacobian is
given by

∂J

∂wh
ij

=
∂J

∂vj

∂vj

∂zj

∂zj

∂wh
ij

. (5.2.6)

Finding the partial derivatives now is a bit more difficult. But, after some computation, we can find that

∂J

∂vj
=
∑

l

(
∂J

∂el

∂el

∂yl

∂yl

∂vj

)
=
∑

l

−elw
o
jl,

∂vj

∂zj
= σ′j(zj) and

∂zj

∂wh
ij

= xi. (5.2.7)

These data result in the update law for hidden neuron weights, being

wh
ij(n + 1) = wh

ij(n) + α(n)xiσ
′
j(zj)

∑
l

elw
o
jl. (5.2.8)

By using this equation, the weights of the hidden layer are adjusted.

When using the backpropagation technique, you usually use a set of N test samples (xi,di) to adjust
the weights. The presentation of the whole training set to the system is called an epoch. Multiple
epochs are necessary before the backpropagation algorithm converges to a minimum. However, since
backpropagation is a gradient descent method, it is quite likely that the resulting minimum is a local
minimum. This is a significant downside of the backpropagation method.

5.2.3 The radial basis function network

An other type of neural network is the radial basis function network (RBFN). This network has
a hidden layer. However, the neurons in this hidden layer don’t have weights. Also, there is no real
activation function. Instead, a radial basis function (RBF) φi(r) is used. A common RBF is the
Gaussian function

φi(r) = exp
(
− r2

ρ2
i

)
, where r = ||x− ci||. (5.2.9)

The output layer does have weights, but it does not have an activation function. The output of an output
node is thus given by

yj =
n∑

i=1

wijφi (||x− ci||) . (5.2.10)

If we put the outputs of the RBFs in a row vector V = [φ1(r) . . . φn(r)], then the output equation
reduces to y = Vw. This is a linear equation. So, if we have a set of known inputs x with desired
outputs d, then we can use the least-squares theorem to find w. To do this, we simply have to find V
and apply

w =
(
VT V

)−1
VT d. (5.2.11)

In this way, the weights of the network can be trained. However, training the values of ci and ρi is
not possible in this way, since the output y doesn’t linearly depend on these parameters. Instead, more
complicated nonlinear optimization methods need to be applied.

19

6. Control using knowledge-based models

Previously, we have examined a lot of knowledge-based models. Now it is time to look at how we can
control systems with them. First, we investigate the working principle of inverse control. After that, we
also look at other types of knowledge-based control.

6.1 Inverse control

6.1.1 Basics of inverse control

Let’s examine a system. For simplicity, we will examine a single-input single-output (SISO) system.
This system can be described by a model of the system

y(k + 1) = f(x(k), u(k)). (6.1.1)

Let’s suppose that we know the function f and that we can find an inverse function f−1 such that

u(k) = f−1(x(k), y(k + 1)). (6.1.2)

Now let’s say that we want to reach a desired state r(k+1). Then we simply replace y(k+1) by r(k+1)
in the inverse function. The resulting value of u(k) will be the input that makes sure that r(k + 1) is
reached. This method of controlling a system is called inverse control.

There are various ways in which we can implement inverse control. Which one we use depends on whether
we know the state x. In open-loop feedback control we use the output of the system to determine x.
This state is then inserted into the inverse function f−1 to find the required input u(k).

However, sometimes we can’t use the output y(k) of the system to find the state x. In this case, open-
loop feedforward control is an alternative. Now we use the model f of the system to keep track of
x(k). This method has as a downside that the error between the model and the actual system can grow
over time. So, an accurate model needs to be available.

The question remains how you can find the inverse f−1. This is mostly done using numerical methods.
In these methods, you try to minimize an objective function like

J(u(k)) = (r(k + 1)− f(x(k), u(k)))2. (6.1.3)

For some models, the inverse f−1 can be computed analytically. Let’s examine a few of such cases.

6.1.2 The inverse of an affine TS fuzzy model

Let’s examine an affine TS fuzzy model in which the rules do not contain the input u(k) in the antecedent.
Instead, u(k) only occurs in the consequent. So, the K rules will have the form

Ri : if x(k) is Xi then y(k + 1) = ai
T x(k) + biu(k) + ci. (6.1.4)

To find the actual value of y(k+1) we have to know the degree of fulfillment βi(x(k)) or the corresponding
normalized degree of fulfillment λi(x(k)). If we do, then we can find y(k + 1) using

y(k + 1) =
∑K

i=1 βi(x(k))
(
ai

T x(k) + biu(k) + ci

)∑K
i=1 βi(x(k))

=
K∑

i=1

λi(x(k))
(
ai

T x(k) + biu(k) + ci

)
. (6.1.5)

It can be noted that this equation is linear in u(k). So, it can easily be solved for u(k). If we also replace
the output y(k + 1) by the desired output r(k + 1), we will find that

u(k) =
r(k + 1)−

∑K
i=1 λi(x(k))

(
ai

T x(k) + ci

)∑K
i=1 λi(x(k))bi

. (6.1.6)

20

This is the inverse function f−1 of the system model f .

6.1.3 The inverse of a singleton model

We now examine a similar case: the singleton model. However, there is an important difference. The
input u(k) now isn’t in the consequent anymore, but in the antecedent. So, the rules have the form

Rij : if x(k) is Xi and u(k) is Uj then y(k + 1) = cij . (6.1.7)

The problem now is that the degree of fulfillment βij(k) of rule ij at time k not only depends on the
(known) state x(k), but on the (to-be-determined) input u(k) as well. Luckily, this can be solved, if we
use the product t-norm operator. We then have

βij(k) = µXi(x(k)) · µBj (u(k)). (6.1.8)

We also assume that the antecedent membership functions µBj (u(k)) form a partition. That is,

N∑
j=1

µBj
(u(k)) = 1. (6.1.9)

If this is the case, and if the state x(k) is known, then we can simplify the rule base. To do this, we first
define

cj(k) =
M∑
i=1

λi(x(k)) · cij . (6.1.10)

The rules can now be simplified to

Rj : if u(k) is Uj then y(k + 1) = cj . (6.1.11)

The main trick to invert the singleton model is to invert the rule base. There is just one problem: cj(k)
is not a fuzzy set. As a solution, we use the fuzzy sets Cj(k). All rules are thus rewritten as

Rj : if r(k + 1) is Cj(k) then u(k) = Uj . (6.1.12)

The fuzzy sets Cj(k) are defined as to have triangular membership functions. Also, all membership
functions add up to one. So,

µCj(k)(r) =


max

(
0,min

(
1, c2−r

c2−c1

))
if j = 1,

max
(
0,min

(
r−cj−1
cj−cj−1

,
cj+1−r
cj+1−cj

))
if 1 < j < N,

max
(
0,min

(
r−cN−1

cN−cN−1
, 1
))

if j = N.

(6.1.13)

In the above equation, N is the number of fuzzy sets Uj corresponding to the input u(k). By the way,
sometimes it may occur that a rule base is not invertible. In this case, you first need to split up the rule
base into invertible parts, and afterwards connect them again. However, we won’t go any further into
detail on that here.

6.1.4 Other types of inverse control

Some models have an input delay nd. The system model is then given by y(k +1) = f(x(k), u(k−nd)).
We cannot invert this function directly, since u(k) can’t affect y(k+1). The first output which is affected
by u(k) is y(k + nd + 1). We thus use as inverse function

u(k) = f−1(r(k + nd + 1),x(k + nd)). (6.1.14)

21

The only problem is finding x(k + nd). Luckily, it does not depend on u(k) or any of the later inputs.
And all the previous inputs u(m) with m < k are already known. So, x(k + nd) can simply be predicted
using our known model.

Another problem occurs when the system is subject to (output) noise. This causes the system output
y(k) to be a bit unreliable. In this case, internal model control (IMC) offers a solution. When IMC
is applied, we use a model of the system without noise. This system predicts the output ym(k) of the
system without noise. The difference y(k)−ym(k) is then used to change the desired input r(k +1), such
that it is more accurately reached. In this way, the effects of the noise are significantly reduced.

6.2 Other types of knowledge-based control

6.2.1 Model-based predictive control

Let’s suppose that we have a system, of which we have a model f . We now need to decide on a series
of Hc inputs u. Based on these inputs, the following Hp predicted outputs ŷ are determined. (To find
all these outputs, we usually assume that, after a time k + Hc, the input u stays constant.) How do we
decide on these inputs?

Usually, the inputs u are chosen such that a cost function is minimized. This cost function usually looks
like

J =
Hp∑
i=1

||r(k + i)− ŷ(k + i)||2Pi
+

Hc∑
i=1

||∆u(k + i− 1)||2Qi
. (6.2.1)

The first parts adds a ‘penalty’ if the output deviates from the desired output. The second part adds a
penalty if the input changes a lot. (That is, if the control effort is high.) The matrices Pi and Qi should
be chosen such that the right parts of the input and the output are prioritized/penalized.

When a set of Hc inputs has been decided in this way, only the first of these inputs u(k) is executed. The
resulting output y(k + 1) is then examined. Based on this data, a new series of inputs u is determined,
after which again only the first one is executed. This is called the receding horizon principle.

You may think that the receding horizon principle is silly: why determine a whole set of future input
values, when only the first one of them is executed? The reason behind this is that possibilities for future
inputs are also taken into account. If, on the other hand, you only look at the input u(k + 1) at time
k + 1, it might occur that you select an input u with very good short-term effects, but which does put
the system into trouble after that.

6.2.2 Adaptive control

Sometimes, we encounter a process of which the behavior changes over time. A controller with fixed
parameters won’t work anymore. Instead, adaptive control is required.

We can make a distinction between indirect and direct adaptive control. In indirect adaptive control,
we use a model of the system which is continuously adapted. (For example, by comparing the predicted
output ym of the model by the actual output y of the system.) This model is then used to determine the
controller parameters. (For example, the model can be inverted at every time step to find the controller.)
On the other hand, in direct adaptive control, we don’t use a model. We then simply directly adapt
the controller parameters.

22

7. Reinforcement learning

In this chapter, we discuss the technique called reinforcement learning. First, we examine the basic
principles. Then we look at how it is applied when a model of the environment is present. Next, we
examine what to do when a model of the environment is missing. Finally, we look at how we can apply
reinforcement learning to control problems.

7.1 Basics of reinforcement learning

7.1.1 Definitions in reinforcement learning

In reinforcement learning (RL), there is an agent and an environment. The agent has a certain
state sk ∈ S. During every step, the agent needs to choose one of the possible actions ak ∈ A. He then
reaches a new state sk+1. By doing this, he gets an immediate reward rk ∈ R from the environment.

The goal of the agent now is to maximize the total reward Rk. This total reward is a function of all
future rewards. Often, the sum is used. So, Rk = rk+1 + rk+2 + Another often-used function is

Rk = rk+1 + γrk+2 + γ2rk+3 + . . . =
∞∑

n=0

γnrk+n+1. (7.1.1)

The parameter γ, which satisfies 0 ≤ γ ≤ 1, is called the discount rate. We will use the latter total
reward function in the remainder of this chapter.

The whole point of reinforcement learning is to find the optimal policy. A policy is a mapping: for
every state s, it maps which action a is chosen by the agent in that state. If we can write a = π(s), then
we deal with a deterministic policy: for every state s, always the same action a is chosen. However,
we can also deal with a stochastic policy. In this case, Π(s, a) denotes the probability that in state s
action a is chosen by the agent.

7.1.2 The environment

Let’s suppose that the agent is in some state sk and chooses action ak. Also, all the previous states and
actions sk−1, ak−1, sk−2, ak−2, . . . are known. In a stochastic environment, it is uncertain in which
state sk+1 the agent winds up in. The probability that the agent reaches state sk+1 with reward rk+1 is
denoted by

P (sk+1, rk+1|sk, ak, sk−1, ak−1, sk−2, ak−2, . . .) . (7.1.2)

However, usually we assume that the system has the Markov property. This means that the state
and reward at time k + 1 only depends on the state and action at time k. Thus, the above probability
is simply written as P (sk+1, rk+1|sk, ak). An RL task which satisfies this property is called a Markov
decision process (MDP).

Let’s discuss some more notations. We denote the chance that the agent winds up in state s′, given that
he now is in state s and chooses action a, by

Pa
ss′ = P (sk+1 = s′|sk = s, ak = a) . (7.1.3)

This function is called the state transition probability function. Similarly, we can define the ex-
pected reward as

Ra
ss′ = E {rk+1|sk = s, ak = a, sk+1 = s′} . (7.1.4)

Here, we do have assumed that the agent always knows in which state he is. If the agent can’t always
observe in which state he is in, then we are dealing with a partially observable MDP (POMDP). We
won’t deal with POMDP problems though.

23

7.1.3 The value function

Let’s suppose that we have an agent that is in some state s. This agent also has a policy π. The value
function V π(s) now is the expected total reward Rk when the policy π is used. So,

V π(s) = Eπ {Rk|sk = s} = Eπ

{ ∞∑
n=0

γnrk+n+1|sk = s

}
. (7.1.5)

By the way, Eπ is the expectation operator, given that the agent follows the policy π. In a similar way, we
can define the action-value function Qπ(s, a) as the expected total reward Rk when an agent chooses
action a in state s and follows policy π afterwards. So,

Qπ(s, a) = Eπ {Rk|sk = s, ak = a} = Eπ

{ ∞∑
n=0

γnrk+n+1|sk = s, ak = a

}
. (7.1.6)

When applying RL, we always use either V or Q, never both. However, sometimes V is convenient to
use and sometimes Q. So, in this summary, we will treat them both.

The goal of reinforcement learning is to find an optimal policy π∗. This optimal policy π∗ is the policy
π which maximizes the value function V π or, alternatively, Qπ. How this policy can be found depends
on the type of problem.

7.2 Model based RL

7.2.1 The Bellman optimality equation

Sometimes we have an exact model of the environment. Solution techniques to find the optimal policy
are now known as dynamic programming.

Let’s suppose that we are in a state s and choose an action a. If we do this, then there is a chance Pa
ss′

that we wind up in state s′. In this state, our expected reward will be the sum of our immediate reward
Ra

ss′ , and of the expected total reward of future states γV ∗(s′). (Note that a discount rate has to be
added.) Based on this, we can find the expected total reward of choosing action a. Of course, we want
to choose the action a which maximizes the expected total reward. This logic results in the recursively
defined Bellman optimality equation

V ∗(s) = max
a

∑
s′

Pa
ss′ (Ra

ss′ + γV ∗(s′)) . (7.2.1)

A similar equation can be derived for Q. We then get

Q∗(s, a) =
∑
s′

Pa
ss′

(
Ra

ss′ + γ max
a′

Q∗(s′, a′)
)

. (7.2.2)

Solving for the value function can be quite difficult though. So we’ll treat that in the next paragraph
separately.

You may wonder, when we have the value function V ∗ (or Q∗), how do we find the optimal policy?
Well, in this case the optimal policy is the so-called greedy policy. We simply take the action a which
maximizes the value function. So,

π(s) = arg max
a∈A

∑
s′

Pa
ss′ (Ra

ss′ + γV π(s)) or π(s) = arg max
a∈A

Q∗(s, a). (7.2.3)

24

7.2.2 Finding the optimal value function

There are two often-used methods to find the optimal value function. One of them is policy iteration.
We start with a certain initialization V0(s) of the value function and with a certain policy π. We then
simply iterate.

During every step, there is a policy evaluation and a policy improvement step. In the policy
evaluation step, we use the policy to update the value function. This is done according to

Vn+1(s) = Eπ {rk+1 + γVn(sk+1)} =
∑
s′

Pa
ss′ (Ra

ss′ + γVn(s′)) , with a = π(s). (7.2.4)

In the policy improvement step, we improve our policy. In fact, as policy the greedy policy π is used,
corresponding to the value function Vn+1(s). These steps are then iterated until a stopping criterion is
met. For example, the policy π hasn’t changed for several consecutive iterations, or the difference in the
value function V (s) is below a certain threshold ε.

A similar method is the value iteration method. In this method, no policy is computed anymore.
Instead, the value function is updated directly using

Vn+1(s) = max
a

E {rk+1 + γVn(sk+1)|sk = s, ak = a} = max
a

∑
s′

Pa
ss′ (Ra

ss′ + γVn(s′)) . (7.2.5)

7.3 Model free RL

7.3.1 Temporal difference methods

It may occur that we don’t have any model of our environment. In this case, the agent simply needs to
explore it. There are several ways to do this. But most of the methods do use a value function. Among
these methods are the temporal difference (TD) methods.

Let’s suppose that we are in some state sk. We then go to a state sk+1 in which we receive a reward
rk+1. We use this reward to update V (sk). This kind of makes sense: if rk+1 is big, then V (sk) should
have been big as well, while if rk+1 is small, then V (sk) should have been small as well. The equation
that is used is

V (sk)← (1−αk)V (sk)+αk (rk+1 + γV (sk+1)) = V (sk)+αk (rk+1 + γV (sk+1)− V (sk)) = V (sk)+αkδk.
(7.3.1)

In the above equation, αk is the learning rate at time k. Also, δk = rk+1 + γV (sk+1) − V (sk) is the
TD-error.

You might be wondering, why do we use rk+1 to only update sk. Can’t we use rk+1 to update
sk−1, sk−2, . . . as well? Well, we can. The question just is: how much should we update them? For
this, we define the eligibility trace ek(s). This eligibility trace can be seen as the ‘strength’ of the
relation between the reward rk+1 and the state s. If, for example, s = sk−1, then there is a relatively
strong relation between s and rk+1. So, ek(s) should be big. On the other hand, if s = sk−20, then ek(s)
should be small. So, we can define ek(s) as

ek(s) =

{
γλek−1(s) if s 6= sk,

1 if s = sk.
(7.3.2)

The parameter λ is called the trace-decay parameter. (γ is still the discount rate.) Based on this
eligibility trace, we can update V (s). The change in V (s) (denoted as ∆V (s)) is now given by

∆V (s) = αδkek(s). (7.3.3)

25

7.3.2 Q-learning and SARSA

Another model free RL method is Q-learning. It is a so-called off-policy method: it doesn’t use a policy
while learning. Instead, it simply uses the action-value function Q(s, a) to learn. To start, we give the
function Q(s, a) initial values. We then update it using

Q(sk, ak)→ Q(sk, ak) + α
(
rk+1 + γ max

a
Q(sk+1, a)−Q(sk, ak)

)
. (7.3.4)

How does this work? Well, let’s suppose that we want to update Q(sk, ak). We then start in state sk,
choose action ak, which brings us in state sk+1 with immediate reward rk+1. The new value Q(sk, ak)
then depends on the old value, the immediate reward rk+1 which we received and the maximum expected
future reward Q(sk+1, a) which we expect to be able to get. However, to make sure that the algorithm
converges, we do have to visit all state-action pairs (sk, ak) continually.

If also eligibility traces are used, then the above equation turns into

Q(s, a)← Q(s, a) + αδkek(s, a), where δk = rk+1 + γ max
a′

Q(sk+1, a
′)−Q(sk, ak). (7.3.5)

Another method, which is somewhat similar to Q-learning, is the SARSA method. But contrary to
Q-learning, SARSA is an on-policy method. That is, it does require a policy π or Π. This time, we
update Q(sk, ak) using

Q(sk, ak)→ Q(sk, ak) + α (rk+1 + γQ(sk+1, ak+1)−Q(sk, ak)) . (7.3.6)

The action ak+1 follows from the policy. So, ak+1 = π(sk+1) or, alternatively, the chance that an action
a is chosen to be ak+1 is Π(s, a).

7.3.3 Exploration

Previously, we saw that, to apply Q-learning, we need to examine all possible state-action combinations
(sk, ak). But what do we do if the agent can’t choose which state he is in? (That is, if he can only
just ‘walk’ around?) In this case, it would be bad to stick to our policy. Instead, we need to explore.
And although most of the times an explorative action gives a lower reward than the action we would
otherwise choose, sometimes it may give a higher reward. And this will result in a better eventual
outcome.

There are several ways to explore. However, we will only consider one group of methods, called undi-
rected exploration. It simply means that there is a chance that you select a random action. For
example, when following an ε-greedy policy, there is a chance ε that you select a random action. In
the other cases, you simply follow a normal greedy policy and thus choose the action with the highest
Q(s, a) value.

Another type of undirected exploration is Max-Boltzmann exploration (also called soft-max explo-
ration). Now, the chance that we choose an action a is given by

P (a|s) =
eQ(s,a)/τ∑
a′ e

Q(s,a′)/τ
. (7.3.7)

The parameter τ is a variable that determines how much you explore. If τ =∞, you select actions fully
randomly (as if ε = 1). But if τ = 0, you are back to the greedy policy.

We could also use optimistic initial values. What this means is that we initialize Q(s, a) (or alter-
natively, V (s)) with very high values. We then follow a greedy policy with a normal updating method
for Q. So, when you try an action a, the Q(s, a) value will very likely decrease. So the next time you
arrive at state s, you will choose a different action. Only when a Q(s, a) value stops to decrease, will you

26

continue to follow the same action. And of course, the first action a for which Q(s, a) stops to decrease
is quite likely the best action.

A very interesting question to ask is: how much should you explore? This is called the exploration vs.
exploitation dilemma. Initially, you should explore quite a bit. But as time progresses, and you are
bound to have found some good sets of actions, you should exploit. Thus, when applying an ε-greedy
policy or a Max-Boltzmann policy, the value of ε or τ should decrease over time.

7.4 Application of RL to control systems

Let’s suppose that we have some system which we want to control. How can we use RL for this? The
first problem which we run into is that in RL, all states and actions are discrete. But in most control
problems, the states x are continuous. The first step in applying RL is thus the quantization of state
variables.

The second step which you need to do is define the action set A. (That is, the set of all possible
actions.) An example of an action might be ‘a1 = apply maximum negative input’ and ‘a2 = apply
maximum positive input’. But more difficult control laws can also be used, like ‘a1 = use fuzzy controller
number 1’ and ‘a2 = use fuzzy controller number 2’ or something similar.

The third step is to define the reward function. What states do we want to reach? (Give these a
high reward.) And what states do we definitely want to avoid? (Give those a low reward.) Important
when defining the reward function is the rule: ‘you should only tell the agent what it should do, and not
how.’ If you do this, then the RL algorithm might just come up with a very surprising but very effective
solution.

Finally, the results of the algorithm should be examined. Does the resulted policy control the system
sufficiently? If not, what went wrong? Can you fix it by doing the previous steps in a different way?

27

8. Swarm intelligence

In swarm intelligence, we deal with swarms: large groups of N individuals. (Think of flocks of birds
or schools of fish.) Each individual has its own behavior and goals. And although the behavior of each
individual might be simple, the whole swarm often behaves itself in a complicated yet effective way. This
phenomenon is called emergence.

Using swarm intelligence has several advantages. All the individuals, called agents, can be produced in
series. This saves costs. Also, the swarm is robust: if one agent fails, the swarm still functions. Finally,
the swarm is easily scalable: you simply add more agents.

In this chapter, we’ll examine three methods that use swarm intelligence. Let’s start off by examining
particle swarm optimization.

8.1 Particle swarm optimization

A particular application of swarm intelligence is particle swarm optimization (PSO). In PSO, we want
to find the value x which minimizes a function f(x). To do this, we create an n-dimensional search space,
with n the size of the vector x. In it, we put N particles. Every particle i has a (randomly initialized)
position θi(k) and a velocity vi(k) at time k. At every time step, the position of each particle is updated
using

θi(k + 1) = θi(k) + vi(k). (8.1.1)

Also, the velocity is updated. This is done using

vi(k + 1) = w(k)vi(k) + c1r1(k) (θi,pbest(k)− θi(k)) + c2r2(k) (θi,lbest(k)− θ(k)) . (8.1.2)

Let’s walk through the terms in this equation. The first term is the momentum term. It causes
particles to keep on going in the same direction as they currently are moving. The goal of this is to
prevent particles from converging to a local minimum too quickly. By giving them momentum, they
search the entire search space. Thus, the constant w(k) is initially relatively big. (That is, almost equal
to 1.) But as the algorithm proceeds, the constant is reduced.

The second term in the above equation is the cognitive component. The parameter θi,pbest(k) is the
personal best position: the best position (with lowest f(θ)) which particle i has found so far. This
term thus causes the particle to be pulled back to its personal best. c1 is a constant and r1(k) is a random
variable, often uniformly distributed in the interval [0, 1].

The third term, called the social component, is similar to the cognitive component. However, this time
the particle compares its position to the global best position θi,lbest(k): the best position found by all
particles together so far. The rest of the term works similarly.

When applying PSO, the particles start at random positions. Initially, they all move across the whole
search space. But as time progresses, they should converge to minima of the function. When the algorithm
is stopped, the actual solution is simply equal to θi,lbest(k): the best position found by all particles so
far.

8.2 Artificial potential fields

Another way to search a space is by using an approach with artificial potential fields. The basic idea
is that we have several particles with position xi. We now want to find the minimum for the function
σ(x). We then simply let each particle ‘flow down’. This is done by applying a force on every particle of

ui = −∇xσ(xi). (8.2.1)

28

Next to this, we also don’t want particles to come closer together. It’s no use if multiple particles search
exactly the same space. To ensure that they don’t, we use artificial potential fields. Every particle has a
potential field around it, which repels other particles. This gives an additional force

ui,apf =
M∑

j=1,j 6=i

gj(xi − xj). (8.2.2)

To shorten notation, we usually write yij = xi − xj. Examples of functions gj(yij) are

g(yij) = −yij

(
a− b exp

(
−||yij ||2

c

))
. (8.2.3)

Next to this, obstacles might also be added. Just like particles, these obstacles do not move. They only
repel other particles. Obstacles are useful if we want to restrict the search parameters to certain values.

8.3 Ant colony optimization

Ant colony optimization is a method to find the shortest path to a certain destination. Let’s suppose
that we have a graph. On a node i in this graph is an ant. This ant needs to select which arc he is going
to walk on. The chance that he select an arc j at time k is given by

pij(k) =
(τij(k))α (ηij)

β∑
l (τil(k))α (ηil)

β
. (8.3.1)

In this equation, τij(k) denotes the pheromone level of the arc at time k. ηij is a (constant) heuristic;
for example the inverse of the length of the arc.

But we don’t have one ant. We have Na ants. Every ant chooses its arc at time step k in this way. After
every ant has walked along its arc, the pheromone levels are updated. This is done using

τij(k + 1) = (1− ρ)τij(k) +
Na∑
a=1

∆τij,a(k). (8.3.2)

Here, ρ is the pheromone decay rate. Also, we have

∆τij,a(k) =

{
F (sa) if arc (i, j) is used by ant a,

0 otherwise.
(8.3.3)

Here, F (sa) is the fitness function of the node s at which ant a is. It can be seen as the amount of
food at this node. What happens now is that arcs that lead to food sources (i.e. high fitness functions)
get relatively high pheromone levels. So, they will be selected relatively often in the future as well. If,
however, a path to a food source is found that is faster, then the ants will start to travel along that path
more. And because it takes less time to walk along this path, more pheromone can be dropped along it.
This route will thus become more preferable. In this way, the ants will find the fastest routes between
food sources.

Extensions of the ant colony optimization method are also possible. For example, it can be combined
with fuzzy logic. Now, an ant can be for a part in one node, and for another part in another node. And,
although this can be a very interesting method, we won’t go into depth on it here.

29

