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Preface

This summary was written for the course WI1403-LR Linear Algebra, taught at the Delft University
of Technology. All the material treated is taken from [D. Lay. Linear Algebra and Its Applications.
Pearson, 4th edition, 2014

Throughout the summary, references to chapters and sections can be found. These are labelled
with the aid of the symbol § and can be found in the aforementioned book, where exercises and
more explanations are given.

In case of any comments about the content of the summary, please do not hesitate to contact
me atm.facchinelli@yahoo.it|

‘Matrices are Roman Catholic
Rows come before Columns!”

— Linear Algebra professor


m.facchinelli@yahoo.it

Changelog

This is version 1.0. Below are listed the changes applied to each version.

Version Date Changes

1.0 February 1, 2017 First version
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1 | Linear Equations in Linear Algebra [§1]

1.1 | Equivalence of Notations

Theorem 1.1. NOTATIONS.
The matrix equation
Ax =b

the vector equation
xja;+ -+ x,a,=b

and the linear system
[01 ... a, |b]

all share the same solution set.

1.2 | Homogeneous Linear Systems

A homogeneous linear system is one of the type Ax = 0, where A is a m x n matrix and 0 is the
zero vector in R™.
The homogeneous equation
Ax =0

has a non trivial solution (L.e. not x = 0) if and only if the equation has at least one free variable.
1.3 | Nonhomogeneous Linear Systems
A nonhomogeneous linear system, as seen before, is of the form

Ax=b (1.1)

To describe the solution set of such a system, consider the solution of the same system, but in the
case of b = 0. This specific system will give a solution of the type

X =tv (12)

where t is the free variable. To get the solution of the system Ax = b, now one simply has to add
a vector, p for instance, to equation (T.2). Hence, the solution for equation is

xX=tv+p (1.3)

If equation can be seen as a line passing through the origin and the vector v, then equation
becomes the eqaution of the line through p parallel to v. Thus the solution set of Ax = b
is a line through p parallel to the solution set of Ax = 0.

1.4 | Linear Independence
A set of vectors is {vq,..., vp} in R" is said to be linearly independent if the vector equation
xwi+-+xv, =0

has only the trivial solution.
The set {vq,..., vy} is said to be linearly dependent if there exist weights (or coefficients)
..., cp, not all zero, such that

avi+ -4y, =0

Theorem 1.2. CHARACTERIZATION OF LINEARLY DEPENDENT SETS.

AsetS={vq, ..., vy} of two or more vectors is linearly dependent if and only if at least one
of the vectors in S is a linear combination of the others. In fact, if S is linearly dependent and
vi # 0, then some v; (with j > 1) is a linear combination of the preceding vectors v, ..., Vi1

Theorem 1.3. If a set containes more vectors that there are entries in each vector (or a matrix with
more columns than rows), then the set is linearly dependent. That is, any set S = {vq,..., vp}
in R" is linearly dependent if p > n.



1.5 | Introduction to Linear Transformations

A matrix equation Ax = b can arise in linear algebra in a way that is not directely connected
with linear combinations of vectors. This happens when we think of the matrix A as an object that
‘acts”as a vector x by multiplication to produce a new vector called Ax.

A transformation (or function or mapping) T from R” to R™ is a rule that assigns to each
vector x in R"” a vector T(x) in R™. The set R” is called the domain of T, and R” is called the
codomain of 7. The notation

T -R" - R"
indicates that the domain of T is R"” and the codomain is R". For x in R”, the vector T(x) in R”
is called the image of x (under the action of T). The set of all images T(x) is called the range of
T.

For each x in R", T(x) is computed as Ax, where A is a m x n matrix. A matrix transformation
is usually denoted by x — Ax.

A transformation (or mapping) of T is linear if:
() T(u+v)=T(u)+ T(v) for all u, v in the domain of T;
(i) T(cu) = cT(u) for all scalars c and all u in the domain of 7.

If T is a linear transformation, then
T(0)=0

and
T(cu+dv)=cT(u)+dT(v)

for all vectors u, v in the domain of T and all scalars ¢, d.

1.6 | The Matrix of a Linear Transformation

Every linear transformation from R” to R” is actually a matrix transformation x — Ax. The key
to finding A is to observe that T is completely determined by what it does to the columns of the

n x n identity matrix /,.
10
2=[o 7]

The columns of
are ey = and e; = [ ] If for a linear transformation T(eq1) and T(e;) are given, x can

1 0
x—[i;]—x1[o]+xz[1]—)ﬁeq—i-xzez (1.4)

Since T is a linear transformation

1 0
0 1
be rewritten as

T'(x) =xiT(er) +x27(ez) (15)

The step from equation (T.4) to equation (T.5) explains why the knowledge of T(eq) and T(e;) is
sufficient to determine T (x) for any x.

Theorem 1.4. Let T : R” — R™ be a linear transformation. Then there exists a unique matrix A
such that
T(x) =Ax for all x in R"

In fact, A is the m x n matrix whose jth column is the vector T(ej), where e; is the jth column of
the of the identity matrix in R":

A:[ T(er) -+ T(ep) ] (1.6)



This matrix A in equation (T.6) is called the standard matrix for the linear transformation 7.
A mapping T : R” — R" is said to be onto R” if each b in R” is the image of at least one x in R".

A mapping T : R” — R" is said to be one-to-one R” if each b in R" is the image of at
most one x in R".

Theorem 1.5. Let T : R” — R” be a linear transformation. Then T in one-to-one if and only if
the equation 7(x) = 0 has only the trivial solution.

Theorem 1.6. Let 7 : R" — R™ be a linear trasformation and let A be the standard matrix for 7.
Then:

(i) T maps R"” onto R” if and only if the columns of A span R™;

(ity T is one-to-one if and only if the columns of A are linearly independent.



2 | Matrix Algebra [§2]
2.1 | Matrix Operations

If Ais an m x n matriz, then the scalar entry in the ith row and jth column of A is denoted by a;;
and is called the (i, j)-entry of A.

The diagonal entries in an m x n matrix A = [aq} are daiq, ..., a;; and they form the main
diagonal of A. A diagonal matrix is a square n x n matrix whose nondiagonal entries are zero.
Two examples are the n x n identity matrix, /,, and the n x n zero matrix, 0,,.

Two matrices are equal if they have the same size and if their corresponding columns are
equal.

The sum A+ B is the m x n matrix whose columns are the sums of the corresponding columns
in Aand B.

If Alis an m x n matrix, and B is an n x p matrix with columns b, ..., b,, then the product
AB is the m x p matrix whose columns are Aby, ..., Ab,. That is,
AB=A[by - b, |=[Ab; --- Ab, | (2.1)

From equation (Z1) it is clear that each column of AB is a linear combination of the columns of
A using weights from the corresponding column of B.

If the product AB is defined, then the entry in row i and column j of AB is the sum of the
products of the corresponding entries from row i of A and column j of B. If (A); denotes the
(i, j)-entry in AB, and A is an m x n matrix, then

(AB)[/ = G,‘1b1/‘ + -+ Gmbn/
Warnings:
(i) In general, AB # BA;

(i) The cancellation laws do not hold for matrix multiplication: te. if AB = AC, then it is not
true in general that B = C;

(iit) If a product AB is the zero matrix, you cannot conclude in general that either A=0or B =0.

If Ais an n x n matrix and if k is a positive integer, then A% denotes the power k of the matrix
A. That is A* denoted the product of k copies of A
Given an m x n matrix A, the transpose of A is the n x m matrix, denoted by A’, whose

a b T
J ],thenA

columns are formed from the corresponding rows of A. For instance, let A = [

a ¢
Al =
Note that the transpose of a product of matrices equals the product of their transposes in the
reverse order. Hence

is

(AB)T = B AT
2.2 | The Inverse of a Matrix
An n x n matrix A is said to be invertible if there is an n x n matrix C such that
AC =/and CA=1

where | = [,, the n x n identity matrix. In this case, C is the inverse of A. In fact, C is uniquely
determined by A. This unique inverse is denoted by A~', so that

AA = land ATA =/

A matrix that is not invertible is sometimes called a sinqular matrix, and an invertible matrix is
called a nonsingular matrix.



b

Theorem 2.1. Let A= [ a
c d

]. If ad — bc # 0, then A is invertible and

1 d —b
Al= —
ad—bc[—C a ]

If ad — bc = 0, then A is not invertible.

The quantity ad — bc is called the determinant of A, and we write
detA = ad — bc

If Ais an invertible n x n matrix, then for each b in R”, the equation Ax = b has the unique
solutions x = A~"h.

An elementary matrix is one that is obtained by performing a single elementary row opera-
tlon on an identity matrix.

If an elementary row operation is performed on an m x n matrix A, the resulting matrix can be
written as £A, where the m x m matrix £ ia created by performing the same row operation on /.

Theorem 2.2. An n x n matrix A is invertible if and only if A is row equivalent to /,, and in this
case, any sequence of elementary row operations that reduce A to /, also transforms /, into A~".

Applying theorem [22] to an invertible matrix A gives
A~ EA~ - ~E)Epq---EA) =1,
then, the product £, - - - £1 consists of the inverse of A. Hence
A'=F, - E

If we place A and / side-by-side to form an augmented matrix [ A | /], then row operations on this
matrix produce identical operations on A and /. Then, if A is row equivalent to /, [ A | /] is row
equivalent to [ / | A= ]. Otherwise A does not have an inverse.

2.3 | Characterisation of Invertible Matrices

Theorem. THE INVERTIBLE MATRIX THEOREM.
Let A be a square matrix n x n. Then the following statements are equivalent. That is, for a given
A, the statements are either all true or all false (see appendix [A).

(i) A s an invertible matrix;
(i) A is row equivalent to the n x n identity matrix;
(iit) A has n pivot points;
(iv) The equation Ax = 0 has only the trivial solution;
(v) The columns of A form a linearly independent set;
(vi) The linear transformation x — Ax is one-to-one;
(vii) The equation Ax = b has at least one solution for each b in R”;
(viit) The columns of A span R";
(ix) The linear transformation x — Ax maps R” onto R";
(x) There is an n x n matrix C such that CA = /;
(x1) There is an n x n matrix D such that AD = /;

(xii) AT is an invertible matrix.



A linear transformation 7 : R” — R” is said to be invertible if there exists a function S : R” — R”
such that
S(T(x)) = x forall x in R"

T(S(x)) = x for all x in R”

Hence, T is invertible if and only if its standard matrix A is invertible.

2.4 | Subspaces of R”
A subspace of R" is any set H € R” that has three proprieties:

) 0eH,
(i) YuveH, (u+tv)eH,
(iit) Yue HandV ceR, (cu) e H.

In words, a subspace is closed under addition and scalar multiplication. Examples of subspaces
are a plane or a line both through the origin.

The column space of a matrix A is the set ColA of all linear combinations of the columns of
A

IfA= [ ay - a, ] with the columns in R™, then ColA is the same as Span{ay, . . ., a,}.
The column space of an m x n matrix is a subspace of R”. Note that ColA equals R" only when
the columns of A span R”.

When a system of linear equations is written in the form Ax = b, the column space of A is the
set of all b for which the system has a solution.

The null space of a matrix A is the set NulA of all solutions of the homogeneous equation
Ax = 0.

Theorem 2.3. The null space of an m x n matrix A is a subspace of R". Equivalently, the set of
all solutions of a system Ax = 0 of m homogeneous linear equations in n unknowns is a subspace
of R”.

Because a subspace typically contains an infinite number of vectors, some problems are handled
best by working with a small finite set of vectors that span the subspace. The smaller the set, the
better. The smallest possible spanning set must be linearly independent.

A basis for a subspace H of R” is a linearly independent set in H that spans H.
The columns of an invertible n x n matrix form a basis for all of R”, because they are lin-

early independent and span R”. One such matrix is the n x n identity matrix. Its columns are
denoted by e, ..., e,

1 0
er=1| 1 |,... e=]":
0 1
The set {eq, ..., ey} is called the standard basis for R".

The standard procedure for writing the solution set of Ax = 0 in parametric vector form, ac-
tually identifies a basis for NulA.
Suppose you are given a 3 x 5 matrix A and you are asked to compute the null space of such
matrix:
apn - ags X1
A= : : with solution x = : = XU + X3V + xsw
asy -+ d3xs X5

The general solution shows that NulA coincides with the set of all linear combinations of u, v and w.
That is, {u, v, w} generates NulA. So {u, v, w} is a basis for NulA.



Theorem 2.4. The pivot columns of a matrix A form a basis for the column space of A.

Be careful to use pivot columns of A itself for the basis of ColA. The columns of an echelon form
Ag are often not in the column space of A.

2.5 | Dimension and Rank

The main reason for selecting a basis for a subspace H, is that each vector in H can be written
in only one way as a linear combination of the basis vectors of H. To see why, suppose B =
{b1,..., b,} is a basis for H, and suppose a vector x in H can be generated in two ways, say,

x=acabi+--+cb, and x=dib1 + - - +d,b,

Then, subtracting gives
0= (cr—di)b1+- +(c, —dp)b,

Since B is linearly independent, the weight in this last equation must all be zero. That is, ¢; = d;
for 1 < j < p, which shows that the two representations are actually the same.

Suppose the set B = {by,..., b,} is a basis for a subspace H. For each x in H, the
coordinates of x relative to the basis B are the weights ¢1, .. ., ¢p such that x = c1by+- - -+, by,
and the vector in R”

is called the coordinate vector of x (relative to ) or the B-coordinate vector of x. Hence
x = Bixp.

The mapping x +— [x]g, where B = {b4, ..., b,}, is a one-to-one correspondence between H
and RP that preserves linear combinations. We call such a correspondence as isomorphism, and
we say that H is isomorphic to RP.

The dimention of a nonzero subspace H, denoted by dimH, is the number of vectors in any
basis for H. The dimention of the zero subspace {0} is defined to be zero.

The rank of a matrix A, denoted by rankA, is the dimention of the column space of A.
Since the pivot columns of A form a basis for ColA, the rank of A is just the number of pivot
columns in A.

Theorem 2.5. THE RANK THEOREM.

Since the nonpivot columns correspond to the free variables in Ax = 0, if a matrix A has n columns,
then rankA + dimNulA = n.

Theorem 2.6. THE Basis THEOREM.

Let H be a p-dimentional (i.e. with dimH = p) subspace of R". Any linearly independent set of
exactly p elements in H is automatically a basis for H. Also, any set of p elements of H that
spans H is automatically a basis for H.

If Ais an m x n matrix, each row of A has n entries and thus can be identified with a vector in R".
The set of all linear combinations of the row vector is called the row space of A and is denoted
by RowA, which is also a subspace of R”. Since the rows of A are identified with the columns of
AT, we could also write ColA” in place of RowA.

If two matrices A and B are row equivalent (A ~ B), then their row spaces are the same. If B
is in echelon form, the nonzero rows of B form a basis for the row space of A as well as for that
of B.



Theorem. THE INVERTIBLE MATRIX THEOREM (CONTINUED).
Let A be an n x n matrix. Then the following statements are each equivalent to the statement A
is an invertible matrix (see appendix [A).

(xiii) The columns of A form a basis of R”;
(xtv) ColA =R";

(xv) dimColA = n;

(xvi) rankA = n;

(xvit) NulA = {0},

(xviit) dimNulA = 0.



3 | Determinants [§3]

3.1 | Introduction to Determinants

If Ails a3 x 3 matrix, we can write it as

ay ap a3
A= axn axn ax3
aszy a2 as3

then its determinant is given by
A =detA= |A| = a1 det Aj1 — app det A + a3 det Ags

In general, for n > 2, the determinant algorithm for an n x n matrix A = [a;;] is
Al = detA=% (=1)""ay; det Ay,
j=1

It is useful to define the (i, j)-cofactor of a determinant A = [a;;]. The cofactor is
Then,
detA=a11Cq+ -+ a,Gy

This formula is called a cofactor expansion across the first row of A.

Theorem 3.1. In general, the determinant of an n x n matrix A can be computed by cofactor
expansion across any row or down any column. The expansion across the ith row using cofactor

is
n

Al = Z a;;Cj; keeping i fixed
j=1

The cofactor expansion down the jth column is
|A| = Z a;Gj keeping j fixed
i=1

Theorem 3.2. If A is a triangular matrix, the detA is the product of the entries on the main
diagonal of A.

3.2 | Proprieties of Determinants

Theorem 3.3. Row OPERATIONS.
Let A be a square matrix.

() Ifa multiple of one row of A is added to another row to produce a matrix B, then det A = det B;
(it) If two rows of A are interchanged to produce B, then det B = — det A;

(iit) If one row of A is multiplied by k to produce B, then det B = k - det A.

Suppose a square matrix has been reduced to an echelon form U by row replacements and row
interchanges. If there are r interchanges, then, as seen before,

detA = (—1)" det U



Since U is in echelon form (not the reduced echelon form), it is triangular,

o x *x %
0 e x =x
U=10 0 o «
0 0 0 e

and so det U is the product of the diagonal entries u1q, ..., unn. If Alis invertible, the entries uy;

are all pivots. Otherwise, at least one u,, is zero. Thus

det A — (=1)" - (product of pivots in U)  if A invertible
=10 if A not invertible

Theorem 3.4. A square matrix A is invertible if and only if detA # 0.

Theorem 3.5. If Ais an n x n matrix, then det A = det A",

Because of theorem @ each statement in theorem |3:5| is also true when the word row is replaced
by the word column.

Theorem 3.6. If A and B are n x n matrices, then det AB = det A - det B.
Suppose that the jth column of A is allowed to vary, and write
A:[ ar - @i X @i o ]
Define a transformation 7 from R” to R by
T(x)=det[ a1 - aj.1 x @iy - a, ]

Then,
T(ex) = cT(x) for all scalars ¢ and all x in R"

Twu+v)=Tw)+T(v) forall u,vinR”

3.3 | Cramer’s Rule

For any n x n matrix A and any b in R”, let A;(b) be the matrix obtained from A by replacing the
column i by the vector b.

Theorem 3.7. CRAMER'S RULE.

Let A be an invertible n x n matrix. For any b in R”, the unique solution x of Ax = b has entries
given by

det A;(b) A

Xi= oo =Tycee,

Cramer’s rule leads easily to a general formula for the inverse of an n x n matrix A. The jth
column of A~ is a vector x that satisfies

AX=6']'

where e; is the jth column of the identity matrix, and the ith entry of x is the (i, j)-entry of A~
By Cramer’s rule,
det Ai(ej)
_— fA,1 VI A
{(i, j)-entry o F=x Y
Then recalling the definition of cofactor of A, equation (37), det A;(e;) can be written as the cofactor
expansion Cj;

(3.2)

detA[(ej) = (—1)i+/ detA/-[ = C/'[

Thus
Gy - Gy
1 1 . .

" detA

SRR (3-3)
C1n T Cnn
The matrix of cofactors on the right side of (33) is called the adjugate of A, denoted by adjA.

10



Theorem 3.8. AN INVERSE FORMULA.
Let A be an invertible n x n matrix. Then

_ 1 .
ARl = i adjA

11



4 | Eigenvalues and Eigenvectors [§5]

4.1 | Eigenvectors and Eigenvalues

An eigenvecotr of an n x n matrix A is a nonzero vector x such that Ax = Ax for some scalar A.
A scalar A is called an eigenvalue of A if there is a nontrivial solution x of Ax = Ax; such an x
is called an eigenvector corresponding to A.

A scalar A is an eigenvalue of an n x n matrix A if and only if the equation

(A—Ax =0 (4.1)

has a non trivial solution. The set of all solutions of (@.1) is just the null space of the matrix
A— Al So this set is a subspace of R" and is called the eigenspace of A corresponding to A. The
eigenspace consists of the zero vector and all the eigenvectors corresponding to A.

Theorem 4.1. The eigenvalues of a triangular matrix are the entries on its main diagonal.
Zero is an eigenvalue of A if and only if A is not invertible.

Theorem 4.2. If vq,.. ., v, are eigenvectors that correspond to distinct eigenvalues Ay, .. ., A, of
an n x n matrix A, then the set vq, ..., v, is linearly independent.

Theorem. THE INVERTIBLE MATRIX THEOREM (CONTINUED).
Let A be an n x n matrix. Then the following statements are each equivalent to the statement A
is an invertible matrix (see appendix [A).

(xix) The determinant of A is not zero;
(xx) The number 0 is not an eigenvalue of A.

4.2 | The Characteristic Equation

To find the eigenvalues of an n x n matrix A, one has to find all scalars A such that the matrix
equation (4.7)
A=Ax=0
has a nontrivial solution. By the Invertible Matrix Theorem (appendix[A), this problem is equivalent
to finding all A such that the matrix A — Al is not invertible. Recalling that the determinant of a
singular (not invertible) matrix is always zero, the following fact will result very useful for solving
exercises.
A scalar A is an eigenvalue of an n x n matrix A if and only if A satisfies the characteristic
equation
det(A—Al) =0 (4.2)
If A'is an n x n matrix, then det(A — Al) is a polynomial of degree n called the characteristic
polynomial of A
The algebraic multiplicity of an eigenvalue A is its multiplicity as a root of the characteristic
equation.

4.3 | Similarity

If Aand B are n x n matrices, then A is similar to B if there is an invertible matrix P such that
P~'AP = B, or, equivalentely, A = PBP~'. Writing Q for P~', we have Q" 'BQ = A So B is
also similar to A, and we say simply that A and B are similar. Changing A into P~'AP is called
a similarity transformation.

Theorem 4.3. If n x n matrices A and B are similar, then they have the same characteristic
polynomial and hence the same eigenvalues (with the same algebraic multiplicities).

Warnings:
(i) Having the same eigenvalues does not mean being similar;

(it) Similarity is not the same a row equivalence; row operations on a matrix usually changes its
eigenvalues.

12



4.4 | Diagonalization

In many cases, the eigenvalue-eigenvector information contained within a matrix A can be dis-
played in a useful factorizartion of the form A = PDP~" where D is a diagonal matrix.

A matrix A is said to be diagonalizable if A is similar to a diagonal matrix, that is if A= PDP~"
for some invertible matrix P and some diagonal matrix D.

Theorem 4.4. THE DIAGONALIZATION THEOREM.
An n x n matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

In fact, A= PDP~" with D a diagonal matrix, if and only if the columns of P are n linearly
independent eigenvectors of A. In this case, the diagonal entries of D are eigenvalues of A that
correspond, respectively, to the eigenvectors in P.

In other words, A is diagonalizable if and only if there are enough eigenvectors to form a basis of
R". We call such basis an eigenvector basis of R".

Diagonalizing Matrices:
To diagonalize A, an n x n matrix:

Step 1 Find the eigenvalues of A using equation (4.2).
Step 2 Find n linearly independent eigenvectors of A.
Step 3 Construct P from the vectors just found.

Step 4 Construct D from the corresponding eigenvalues.

Theorem 4.5. An n x n matrix with n distrinct eigenvalues is diagonalizable.

Notice that the statement in theorem [45]is not necessary.
Theorem 4.6. Let A be an n x n matrix whose distinct eigenvalues are Aq, ..., Ap.

(i) For 1 < k < p, the dimention of the eigenspace for A¢ is less than or equal to the algebraic
multiplicity of the eigenvalue Ag;

(it) The matrix A is diagonalizable if and only if the sum of the dimensions of the eigenspaces
equals n, and this happens if and only if (1) the characteristic polynomial factors completely
into linear factors, and (2) the dimension of the eigenspace for each Ay, the geometric mul-
tiplicity, equals the algebraic multiplicity of A;

(iit) If A is diagonalizable and By is a basis for the eigenspace corresponding to Ax for each k,
then the total collection of vectors in the set 3, .. ., B, forms an eigenvector basis for R".

4.5 | Eigenvectors and Linear Transformations

Let V' be an n-dimentional vector space, let W be an m-dimensional vector space, and let T be
any linear transformation from V' to W. To associate a matrix with T, choose bases B and C for
V and W, respectively.

Given any x in V, the coordinate vector [x]g is in R" and the coordinate vector of its image,
[T(x), is in R™.

The connection between [x]|z and [T (x)]c can be found in the following way. Let {b1, ..., b,}
be the basis B for V. If x = rib1 + -+ r,b,, then

M

X]p =

I'n

and
T(x)=T(rib1+ -+ raby)=rT(b1)+ -+ r,T(by) (4.3)
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because T is linear. Since the coordinate mapping from W to R™ is linear, equation (43) leads
to:
[TXe = nilT(b1)le + - - + ra[ T(bn)ke (4.4)

Since C-coordinate vectors are in R”, the vector equation (4.4) can be written as a matrix equation,
namely
[T(X)e = Mix]s (45)

where
M=[[T(by)] - [T(ba)] ] (4.6)

The matrix M is a matrix representation of T, called the matrix for T relative to the bases 3 and
C.
Equation (&5) says that the action of T on x may be viewed as left-multiplication by M.

In the common case where W is the same as V and the basis C is the same as B, the ma-
trix M in equation (40) is called the matrix for T relative to B, or simply the B-matrix for 7, and
is denoted by [T]s.

The B-matrix for T : V — V satisfies

[T(x)s =[T]8[x]8 for all x is V

Theorem 4.7. DIAGONAL MATRIX REPRESENTATION.
Suppose A = PDP~", where D is a diagonal n x n matrix. If B is the basis for R” formed from
the columns of P, then D is the B-matrix for the transformation x — Ax.

4.6 | Complex Eigenvalues

A complex scalar A satisfies det(A — Al) = 0 if and only if there is a nonzero vector x in C" such
that Ax = Ax. We call A a complex eigenvalue and x a complex eigenvector corresponding to A.

The complex conjugate of a complex vector x in C” is the vector X in C” whose entries are
the complex conjugates of the entries in x. The real and imaginary parts of a complex vector x
are the vectors Rx and &x formed from the real and imaginary parts of the entries of x.

Let A be an n x n matrix whose entries are real. Then Ax = AX = Ax. If A is an eigenvalue of A
and x is a corresponding eigenvector in C”, then

AX = Ax = Ix = AX

Hence A is also an eigenvalue of A, with X a corresponding eigenvector. This shows that, when A
is real, its complex eigenvalues occur in conjugate pairs.

Theorem 4.8. Let A be a real 2 x 2 matrix with a complex eigenvalue A = a — bi (b + 0) and an
associated eigenvector v in C?. Then

A:PCP’W,WhereP:[Rv %v]andC—[a _b]
b a

In theorem [4.8] the matrix P provides a change of variable. The action of A amounts to a change
of variables (P), followed by a rotation (C) and then a return to the original variable (P~").
The matrix C in theorem [48] can also be written as

[r 0][cosg0 —s'm<p]
C = :
0 r sing  cos ¢

where r is given by Va2 4+ b? and ¢ represents the rotation.
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4.7 | Application to Differential Equations

In many applied problems, several quantities are varying continuously in time, and they are related
by a system of differential equations:

Xp=anxi+ -+ anx,

X//7 =amX1 + -+ AppXp

Here x1,..., x, are differentiable functions of t, with derivatives x], ..., x;, and the a;; are con-
stants. The crucial feature of this system is that it is linear. To see this, write the system as a
matrix differential equation

X (t) = Ax(t) (4.7)
where
x1(t) x1(t) apn o a
x(t) = E xX'(t) = E A= S
X”(t) X,/,(t) ap1 -+ dpp

A solution of equation (47) is a vector valued function that satisfies (&.7) for all ¢ in some interval
of real numbers.

Equation (7) is linear because both differentiation of functions and multiplication of vectors
by a matrix are linear transformations.

For the general solution of equation (#.7), a solution might be a linear combination of functions of
the form
x(t) = ve' (4.8)

for some scalar A and some fixed nonzero vector v. Observe that

xX'(t) = Avelt

Mo 2t
Ax(f) — Avert ]»)\ve = Ave

Since e’ is never zero, x'(t) will equal Ax(t) if and only if Av = Av, that is, if and only if A is

an eigenvalue of A and v is a corresponding eigenvector. Thus each eigenvalue-eigenvector pair
provides a solution (48) of x = Ax. Such solutions are sometimes called eigenfunctions of the
differential equation.

For any dynamical system described by x’(t) = Ax with A an n x n matrix with n linearly
independent eigenvectors (i.e. with A diagonalizable), a solution can be found in the following
way.

Suppose the eigenfunctions for A are

Vq et L, v, et
with vq, ..., v, linearly independent eigenvectors. Let P = [ vy -+ v, | and let D be the
diagonal matrix with entries Ay, ..., A, so that A = PDP~'. Now make a change of variable,

defining a new function y by
y(t) = P 'x(t)  or, equivalentely  x(t) = Py(t)

The equation x(t) = Py(t) says that y(t) is the coordinate vector of x(t) relative to the eigenvector
basis. Substitution of Py for x in the equation x’ = Ax gives

%(Pg) = A(Py) = (PDP~"\Py = PDy (4.9)

15



Since P is a constant matrix, the left side of equation (#9) is Py’. Left-multiply both sides of
(#9) by P~ and obtain y’ = Dy, or

Y5 (1) Ao 0 ya(t)

yn(0) 0 - A Ynl(t)

The change of variables from x to y has decoupled the system of differential equations. Since

Y} = Ay1, we have yi(t) = cre™!, with similar formulas for yo, ..., y,. Thus
et
y(t) = ‘
cpett
the general solution x is
x(t)=Pylt)=[ vi - vy Jy(t)=
=il o v et (4.10)

Equation (410) is known as the eigenfunction expansion.

In case a real matrix A has a pair of complex eigenvalues A and A, with associated eigenvec-
tors v and v, two solutions of x’ = Ax are

At At

x1(t) = ve and  xo(t) =ve

where it can be shown that x2(t) = xi(t). This two solutions will obvioulsy involve complex
numbers.

For a real matrix A with an eigenvalue A = a@ + bi, a corresponding eigenvector v and a
complex solution x1(t) = ve’’ of x’ = Ax, two real solutions of the same x’ = Ax are given by

y(t) =Rx1(t) = [ Rv) cos bt — (Jv)sin bt e

yo(t) = Sx1(t) = [ Rv) sin bt + (Iv) cos bt |e"

Hence, the general solution is
x(t) = c1y,(t) + c2y,(t)

4.8 | Trajectories of Eigenfunctions

When the matrix A in x'(t) = Ax(t) is 2 x 2, algebraic calculations can be supplemented by a
geometric description of a system's evolution. We can plot the graph of the two eigenfunctions
x1(t) and x»(t) as a description of what happens to the system as t — oo. The graph of a single
solution x1(t) is called a trajectory of the dynamical system.

The origin of the graph of a dynamical system may be:

(i) an attractor, or sink,
(it) a repeller, or source, or
(iii) a saddle point.

The origin is called an attractor of the dynamical system when all trajectories tend toward 0. This
occurs whenever both eigenvalues are negative:

A <0 and A <0

The direction of greatest attraction is along the line through 0 and the eigenfunction corresponding
to the smaller eigenvalue.
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The origin is called a repeller of the dynamical system when trajectories tend away from 0.
This occurs whenever both eigenvalues are positive:

A >0 and A >0

The direction of greatest repulsion is the line though 0 and the eigenfunction corresponding to
the eigenvalue of larger magnitude.

The origin is called a saddle point of the dynamical system when some trajectories approach
the origin at first and then change direction and move away from the origin. This occurs whenever
one eigenvalue is positive and the other is negative:

A <0 and A >0

The direction of greatest attraction is determined by the eigenfunction for the eigenvalue of smaller
magnitude. The direction of greatest repulsion is determined by the eigenfunction for the eigen-
value of greater magnitude.

In case the matrix A has complex eigenvalues given by A = a + bi, the origin may be a spi-
ral point. The rotation is caused by the sine and cosine functions that arise from a complex
eigenvalue. When the real part of the complex eigenvalue is positive (a > 0), the trajectories
spiral outward. When the real part of the complex eigenvalue is negative (a < 0), the trajectories
spiral inward.

If the real part of the eigenvalue is zero (a = 0), the trajectories form ellipses around the
origin.
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5 | Orthogonality and Least Squares [§6]
5.1 | Inner Product and Orthogonality

If u and v are vectors in R”

is called the inner product or dot product. If

us Vi
u= : and v =

ul7 VI7

the inner product of u and v is
uvi+ -+ upvy

The length or norm of v is the nonnegative scalar ||v|| defined by

Wl = Vv =3/ + 403 and [V =v-v

A vector whose length is 1 is called a unit vector. If we divide a nonzero vector v by its length,
we obtain a unit vector u. This process is sometimes called normalising.

For u and v in R", the distance between u and v, written as dist(u, v), is the length of the
vector u — v. That is,
dist(u,v) =u—v

Two vectors u and v are orthogonal (to each other) if u-v = 0.

Theorem 5.1. THE PYTHAGOREAN THEOREM.
Two vectors u and v are orthogonal if and only if ||u + v||? = [|u]|? + ||v]]*.

If a vector z is orthogonal to every vector in a subspace W of R”, then z is said to be orthogonal
to W. The set of all vectors z that are orthogonal to W is called the orthogonal complement of
W and is denoted by W+,

A vector x is in W' if and only if x is orthogonal to every vector is a set that spans W.
Moreover, W+ is a subspace of R”.

Theorem 5.2. Let A be an m x n matrix. The orthogonal complement of the row space of A is the
null space of A and the orthogonal complement of the column space of A is the null space of A

(RowA)t = NulA and (ColA)t = NulA”
For u and v in either R? or R3, the inner product of the two vectors can be written as
u-v=|ul|l ||v]|cos 9

5.2 | Orthogonal Sets

A set of vectors {u1, .. ., up} in R” is said to be an orthogonal set if each pair of distinct vector
from the set is orthogonal, that is, if u; - u; = 0 whenever i # j.

Theorem5.3. If S = {uy, ..., u,} is an orthogonal set of nonzero vectors in R”, then S is linearly
independent and hence is a basis for the subspace spanned by S.

An orthogonal basis for a subspace W of R” is a basis for W that is also an orthogonal set.
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Theorem 5.4. Let {uy, ..., u,} be an orthogonal basis for a subspace W of R”. For each y in
W, the weights in the linear combination

y=acug+---+cpup

are given by

=24

Iy u
Wy - &

Given a nonzero vector u in R”, consider the problem of decomposing a vector y in R” into the
sum of two vectors, one a multiple of u and the other orthogonal to u. We wish to write

y=0+z (5.1)

where § = au for some scalar a and z is some vector orthogonal to u. Let z = y — au. Then
y — § is orthogonal to u if and only if

O=y—oau) - u=y-u—(ou)-u=y-u—alu-u)

That is, equation (5.7) is satisfied if and only if o = = and § = =u. The vector § is called the
orthogonal projection of y onto v, and the vector z is called the component of y orthogonal to
u.

Sometimes § is denoted by proj, y and is called the orthogonal projection of y onto L. That
is

s _y-u
g =projy = — u

Theorem decomposes each y in Span{u, ..., up} into the sum of p projections onto one-
dimensional subspaces that are mutually orthogonal.

A set {u,..., up} is an orthonormal set if it is an orthogonal set of unit vectors. If W is
the subspace spanned by such a set, then {uy, ..., u,} is an orthonormal basis for V.

Theorem 5.5. An m x n matrix U has orthonormal columns if and only if UTU = /.

An orthogonal matrix is a square invertible matrix U such that U~" = U

The reflection of a vector y € R” in L = Span{u}, where u # 0 € R”, is the point refl;y
defined by

reflly =2 - proj,y — y
5.3 | Orthogonal Projections

Theorem 5.6. THE ORTHOGONAL DECOMPOSITION THEOREM.
Let W be a subspace of R”. Then each y in R" can be written uniquely in the form

y=9-+z (5.2)
where § is in W and z is in W™, In fact, if {uq,. .., up} is any orthogonal basis of W, then
g 40 R LT
y_u1-u1 up + +up-up up

and z=y —§.
The vector § in is called the orthogonal projection of y onto W and is often written as proj,, y.

If {uq,..., u,} is an orthogonal basis for W and if y happens to be in W, then proj,, y = y.
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Theorem 5.7. THE BEST APPROXIMATION THEOREM.
Let W be a subspace of R”, let y be any vector in R", and let § be the orthogonal projection of
y onto W. Then § is the closest point in W to y, in the sense that

ly = all <lly —vll
for all v in W distinct from §.
The vector § in theorem [5.7]is called the best approximation to y by elements of W.

Theorem 5.8. If {uy, ..., up} is an orthonormal basis for a subspace W of R”, then

projyy = (y - urur + -+ (y - up)u,

IfU:[ ui Uy ],then

projyy = UU"y  for all y in R”

Suppose U is an n x p matrix with orthonormal columns, and let W be the column space of U.
Then
U'Uux = Ibx=x forall x in RP

UUTy = projyy  forall y in R”

If U is an n x n matrix with orthonormal columns, then U is orthogonal, the columns space W is
all of R and UUTy = Iy = y for all y € R".

5.4 | The Gram-Schmidt Process

The Gram-Schmidt process is a simple algorithm for producing an orthogonal or orthonormal

basis for any nonzero subspace of R". Considering a basis {s1, ..., sp}, when the Gram-Schmidt
process is applied, on any vector of the basis s; with 1 < k < p, the components of the vectors
S1,..., Sk—1 parallel to s, are removed from si. In this way only the perpendicular part of si

stays in the basis, making it orthogonal. The following theorem explains this process.

Theorem 5.9. THE GRAM-SCHMIDT PROCESS.

Given a basis {x1, ..., xp} for a nonzero subspace W of R”, define
Vi = X4
X2 - Vq
V) = X2 — Vi
vi-Vq
Xp - V1 Xp - Vp—
vy=xy— 2y X
ViV Vp—1 - Vp-1
Then {vq,..., v, } is an orthogonal basis for W. In addition

Span{vy, ..., vi} = Span{xq, ..., X} for 1< k<p

An orthonormal basis is constructed easily from an orthogonal basis {v1, .. ., vp}: simply normalize
all the vy.

Theorem 5.10. THE QR FACTORIZATION.

If Ais an m x n matrix with linearly independent columns, then A can be factored as A = OR,
where Q is an m x n matrix whose columns form an orthonormal basis for ColA and R is an n x n
upper triagular invertible matrix with positive entries on its diagonal.

To find R, observe that QT O = /, because the columns fo Q are orthonormal. Hence

R=0"A
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5.5 | Least-square Problems

When a solution to a linear system Ax = b is demanded and none exists, the best one can do is
to find an x that makes Ax as close as possible to b.

Think of Ax as an approximation to b. The smaller the distance between b and Ax, given by
[|b — Ax||, the better the approximation. The general least-squares problem is to find an x that
makes ||b — Ax|| as small as possible.

If Ais m x n and b is in R™, a least-square solution of Ax = b is an X in R” such that

|1b — A%[| < ||b — Ax]]

for all x in R".

The most important aspect of the least-square problem is that no matter what x we select, the
vector Ax will necessarely be in the column space, ColA. So we can seek an x that makes Ax the
closest point in ColA to b.

Given A and b, let X
b = projcyub

Because b is in the column space of A, the equation Ax = b is consistent, and there is an % in
R" such that
A =b (5.3)

Since b is the closest point in ColA to b, a vector X is a least-squares solution of Ax = b if and
only if & satisfies equation (53).

Each least-squares solution of Ax = b satisfies the equation
ATAx = ATb (5.4)

The matrix equation (5.4) represents a system of equations called the normal equations for Ax = b.
A solution of (54) is often denoted by X.

Theorem 5.11. The set of least-squares solutions of Ax = b coincides with the nonempty set of
solutions of the normal equations A’ Ax = A’ b.

Theorem 5.12. Let A be an m x n matrix. The following statements are logically equivalent:
(i) The equation Ax = b has a unique least-squares solution for each b in R";
(it) The columns of A are linearly independent;
(iii) The matrix AT A is invertible.
When these statements are true, the least-squares solution x is given by
x=(ATA'ATh

When a least-squares solution X is used to produce A% as an approximation to b, the distance
from b to A%, ||b — b|| = ||b — A%||, is called the least-squares error of this approximation.

Theorem 5.13. Given an m x n matrix A with linearly independent columns, let A = QR be a QR
factorization of A, as in theorem [5.10] Then, for each b in R™, the equation Ax = b has a unique
least-squares solution, given by

x=R"'0b
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6 | Symmetric Matrices [§7]

6.1 | Diagonalization of Symmetric Matrices

A symmetric matrix is a matrix A such that AT = A Such a matrix is necessarily square. Its main
diagonal entries may be arbitrary, but its other entries occur in pairs.

Theorem 6.1. If A is symmetric, then any two eigenvectors from different eigenspaces are orthog-
onal.

An n x n matrix A is said to be orthogonally diagonalizable if there are an orthogonal matrix P
(with P~" = PT) and a diagonal matrix D such that

A= PDP" = PDP~’ (6.1)

Such a diagonalization requires n linearly independent and orthonormal eigenvectors. If A is
orthogonally diagonalizable as in (6.7), then

Al = (PDPT)T = PDP" = A
Thus A is symmetric. Note that the diagonal entries of D are the eigenvalues Ay, .. ., An.

Theorem 6.2. An n x n matrix A is orthogonally diagonalizable if and only if A is a symmetric
matrix.

The set of eigenvalues of a matrix A is sometimes called the spectrum of A, and the following
description of the eigenvalues is called a spectral theorem.

Theorem 6.3. THE SPECTRAL THEOREM FOR SYMMETRIC MATRICES.
An n x n symmetric matrix A has the following proprieties:

(i) A has n real eigenvalues, counting algebraic multiplicities;

(it) The dimension of the eigenspace for each eigenvalue A equals the multiplicity of A as a root
of the characteristic equation;

(iit) The eigenspaces are mutually orthogonal;

(iv) A is orthogonally diagonalizable.

Using the definition of orthogonal diagonalization given by equation we can rewrite a matrix
A as
A= huu] +- + du,u) (6.2)

This representation of A is called spectral decomposition of A because it breaks up A into pieces
determined by the spectrum of A. Each term in equation (6.2) is an n x n matrix of rank 1.

Furthermore, each matrix u/-u/-T is a projection matrix in the sense that for each x in R", the vector
(ujujT)x is the orthogonal projection of x onto the subspace spanned by u;.

6.2 | Quadratic Forms

A quadratic form on R" is a function Q defined on R” whose value at a vector x in R” can be
computed by an expression of the form Q(x) = x” Ax, where A is an n x n symmetric matrix. The
matrix A is called the matrix of the quadratic form.
If x represents a variable vector in R”, then a change of variable is an equation of the form

x =Py or equivalentely, y =P 'x (6.3)

where P is an invertible matrix and y is a new variable vector in R".
If the change of variable (6:3) is made in a quadratic form x” Ax, then

x"Ax = y"(PTAP)y (6.4)

and the new quadratic form is PTAP. Since A is symmetric, by theorem there is an orthogonal
matrix P such that P AP is a diagonal matrix D, and the quadratic form in (6:4) becomes y' Dy.
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Theorem 6.4. THE PRINCIPAL AXES THEOREM.
Let A be an n x n symmetric matrix. Then there is an orthogonal change of variable x = Py, that
transforms the quadratic form from x” Ax into a quadratic form y' Dy with no cross-product term.

The columns of P in theorem are called the principal axes of the quadratic form x” Ax. The
vector y is the coordinate vector of x relative to the orthonormal basis of R” given by these
principal axes.

Suppose Q(x) = x' Ax where A is an invertible 2 x 2 symmetric matrix, and let ¢ be a con-
stant. The set of all x in R? that satisfy

x"Ax = ¢

either corresponds to an ellipse, a hyperbola, two intersecting lines, a single point or contains no
points at all. If A is a diagonal matrix, the graph is in standard position, otherwise, if A is not
diagonal, the graph is rotated out of strandard position.

When A is an n x n matrix, the quadratic form Q(x) = x"Ax is a real-valued function with
domain R".
A quadratic form Q is:

(i) positive definite if Q(x) > 0 for all x # 0,
(it) negative definite if O(x) < O for all x + 0,
(iii) indefinite if Q(x) assumes both positive and negative values.

Also Q is said to be positive semidefinite if Q(x) > 0 for all x, and to be negative semidefinite if
Q(x) < 0 for all x.

Theorem 6.5. QUADRATIC FORMS AND EIGENVALUES.
Let A be an n x n symmetric matrix. Then a quadratic form x’ Ax is:

(i) positive definite if and only if the eigenvalues of A are all positive,
(it) negative definite if and only if the eigenvalues of A are all negative, or

(iit) indefinite if and only if A has both positive and negative eigenvalues.
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A | Invertible Matrix Theorem

Theorem. THE INVERTIBLE MATRIX THEOREM.
Let A be a square matrix n x n. Then the following statements are equivalent. That is, for a given
A, the statements are either all true or all false.

(i) A s an invertible matrix;
(i) A is row equivalent to the n x n identity matrix;
(iit) A has n pivot points;
(iv) The equation Ax = 0 has only the trivial solution;
(v) The columns of A form a linearly independent set;
(vi) The linear transformation x — Ax is one-to-one;
(vii) The equation Ax = b has at least one solution for each b in R”;
(viit) The columns of A span R";
(ix) The linear transformation x — Ax maps R” onto R";
(x) There is an n x n matrix C such that CA = /;
(xt) There is an n x n matrix D such that AD = /;
(xii) AT is an invertible matrix;
(xiii) The columns of A form a basis of R”;
(xtv) ColA =R";
(xv) dimColA = n;
(xvi) rankA = n;
(xvii) NulA = {0};
(xviit) dimNulA = 0;
(xix) The determinant of A is not zero;

(xx) The number 0 is not an eigenvalue of A.
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