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PrefaceThis summary was written for the course WI1403-LR Linear Algebra, taught at the Delft Universityof Technology. All the material treated is taken from [D. Lay. Linear Algebra and Its Applications.Pearson, 4th edition, 2014.]Throughout the summary, references to chapters and sections can be found. These are labelledwith the aid of the symbol § and can be found in the aforementioned book, where exercises andmore explanations are given.
In case of any comments about the content of the summary, please do not hesitate to contactme at m.facchinelli@yahoo.it.
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1 | Linear Equations in Linear Algebra [§1]
1.1 | Equivalence of Notations
Theorem 1.1. Notations.The matrix equation

Ax = bthe vector equation
x1a1 + · · ·+ xnan = band the linear system [

a1 . . . an | b
]

all share the same solution set.
1.2 | Homogeneous Linear SystemsA homogeneous linear system is one of the type Ax = 0 , where A is a m×n matrix and 0 is thezero vector in Rm.The homogeneous equation

Ax = 0has a non trivial solution (i.e. not x = 0) if and only if the equation has at least one free variable.
1.3 | Nonhomogeneous Linear SystemsA nonhomogeneous linear system, as seen before, is of the form

Ax = b (1.1)To describe the solution set of such a system, consider the solution of the same system, but in thecase of b = 0. This specific system will give a solution of the type
x = tv (1.2)where t is the free variable. To get the solution of the system Ax = b, now one simply has to adda vector, p for instance, to equation (1.2). Hence, the solution for equation (1.1) is

x = tv + p (1.3)If equation (1.2) can be seen as a line passing through the origin and the vector v , then equation(1.3) becomes the eqaution of the line through p parallel to v . Thus the solution set of Ax = b
is a line through p parallel to the solution set of Ax = 0.
1.4 | Linear IndependenceA set of vectors is {v1, . . . , vp} in Rn is said to be linearly independent if the vector equation

x1v1 + · · ·+ xpvp = 0has only the trivial solution.The set {v1, . . . , vp} is said to be linearly dependent if there exist weights (or coefficients)
c1, . . . , cp, not all zero, such that

c1v1 + · · ·+ cpvp = 0

Theorem 1.2. Characterization of Linearly Dependent Sets.A set S = {v1, . . . , vp} of two or more vectors is linearly dependent if and only if at least oneof the vectors in S is a linear combination of the others. In fact, if S is linearly dependent and
v1 6= 0, then some v j (with j > 1) is a linear combination of the preceding vectors v1, . . . , v j−1.
Theorem 1.3. If a set containes more vectors that there are entries in each vector (or a matrix withmore columns than rows), then the set is linearly dependent. That is, any set S = {v1, . . . , vp}in Rn is linearly dependent if p > n.
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1.5 | Introduction to Linear TransformationsA matrix equation Ax = b can arise in linear algebra in a way that is not directely connectedwith linear combinations of vectors. This happens when we think of the matrix A as an object that“acts”as a vector x by multiplication to produce a new vector called Ax .A transformation (or function or mapping) T from Rn to Rm is a rule that assigns to eachvector x in Rn a vector T (x) in Rm. The set Rn is called the domain of T , and Rm is called the
codomain of T . The notation

T : Rn → Rm

indicates that the domain of T is Rn and the codomain is Rm. For x in Rn, the vector T (x) in Rmis called the image of x (under the action of T ). The set of all images T (x) is called the range of
T . For each x in Rn, T (x) is computed as Ax , where A is a m×n matrix. A matrix transformationis usually denoted by x 7→ Ax .
A transformation (or mapping) of T is linear if:(i) T (u + v ) = T (u) + T (v ) for all u, v in the domain of T ;(ii) T (cu) = cT (u) for all scalars c and all u in the domain of T .If T is a linear transformation, then

T (0) = 0and
T (cu + dv ) = cT (u) + dT (v )for all vectors u, v in the domain of T and all scalars c, d.

1.6 | The Matrix of a Linear TransformationEvery linear transformation from Rn to Rm is actually a matrix transformation x 7→ Ax . The keyto finding A is to observe that T is completely determined by what it does to the columns of the
n × n identity matrix In.The columns of

I2 = [ 1 00 1 ]
are e1 = [ 10 ] and e2 = [ 01 ]. If for a linear transformation T (e1) and T (e2) are given, x canbe rewritten as

x = [ x1
x2
] = x1

[ 10 ] + x2
[ 01 ] = x1e1 + x2e2 (1.4)

Since T is a linear transformation
T (x) = x1T (e1) + x2T (e2) (1.5)

The step from equation (1.4) to equation (1.5) explains why the knowledge of T (e1) and T (e2) issufficient to determine T (x) for any x .
Theorem 1.4. Let T : Rn → Rm be a linear transformation. Then there exists a unique matrix Asuch that

T (x) = Ax for all x in Rn

In fact, A is the m× n matrix whose jth column is the vector T (ej ), where ej is the jth column ofthe of the identity matrix in Rn:
A = [ T (e1) · · · T (en) ] (1.6)
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This matrix A in equation (1.6) is called the standard matrix for the linear transformation T .
A mapping T : Rn → Rm is said to be onto Rm if each b in Rm is the image of at least one x in Rn.
A mapping T : Rn → Rm is said to be one-to-one Rm if each b in Rm is the image of at
most one x in Rn.
Theorem 1.5. Let T : Rn → Rm be a linear transformation. Then T in one-to-one if and only ifthe equation T (x) = 0 has only the trivial solution.
Theorem 1.6. Let T : Rn → Rm be a linear trasformation and let A be the standard matrix for T .Then:(i) T maps Rn onto Rm if and only if the columns of A span Rm;(ii) T is one-to-one if and only if the columns of A are linearly independent.
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2 | Matrix Algebra [§2]
2.1 | Matrix OperationsIf A is an m×n matriz, then the scalar entry in the ith row and jth column of A is denoted by aijand is called the (i, j)-entry of A.The diagonal entries in an m × n matrix A = [aij ] are a11, . . . , aii and they form the main
diagonal of A. A diagonal matrix is a square n × n matrix whose nondiagonal entries are zero.Two examples are the n × n identity matrix, In, and the n × n zero matrix, 0n.Two matrices are equal if they have the same size and if their corresponding columns areequal.The sum A+B is the m×n matrix whose columns are the sums of the corresponding columnsin A and B.
If A is an m × n matrix, and B is an n × p matrix with columns b1, . . . ,bp, then the product
AB is the m× p matrix whose columns are Ab1, . . . , Abp. That is,

AB = A [ b1 · · · bp ] = [ Ab1 · · · Abp ] (2.1)From equation (2.1) it is clear that each column of AB is a linear combination of the columns of
A using weights from the corresponding column of B.If the product AB is defined, then the entry in row i and column j of AB is the sum of theproducts of the corresponding entries from row i of A and column j of B. If (A)ij denotes the(i, j)-entry in AB, and A is an m× n matrix, then(AB)ij = ai1b1j + · · ·+ ainbnj

Warnings:(i) In general, AB 6= BA;(ii) The cancellation laws do not hold for matrix multiplication: i.e. if AB = AC , then it is nottrue in general that B = C ;(iii) If a product AB is the zero matrix, you cannot conclude in general that either A = 0 or B = 0.If A is an n × n matrix and if k is a positive integer, then Ak denotes the power k of the matrix
A. That is Ak denoted the product of k copies of A.Given an m × n matrix A, the transpose of A is the n × m matrix, denoted by AT , whosecolumns are formed from the corresponding rows of A. For instance, let A = [

a b
c d

], then ATis
AT = [ a c

b d

]
Note that the transpose of a product of matrices equals the product of their transposes in the
reverse order. Hence (AB)T = BTAT

2.2 | The Inverse of a MatrixAn n × n matrix A is said to be invertible if there is an n × n matrix C such that
AC = I and CA = Iwhere I = In, the n × n identity matrix. In this case, C is the inverse of A. In fact, C is uniquelydetermined by A. This unique inverse is denoted by A−1, so that

AA−1 = I and A−1A = IA matrix that is not invertible is sometimes called a singular matrix, and an invertible matrix iscalled a nonsingular matrix.
4



Theorem 2.1. Let A = [ a b
c d

]. If ad − bc 6= 0, then A is invertible and
A−1 = 1

ad − bc

[
d −b
−c a

]
If ad − bc = 0, then A is not invertible.The quantity ad − bc is called the determinant of A, and we writedetA = ad − bcIf A is an invertible n × n matrix, then for each b in Rn, the equation Ax = b has the uniquesolutions x = A−1b.
An elementary matrix is one that is obtained by performing a single elementary row opera-tion on an identity matrix.If an elementary row operation is performed on an m×n matrix A, the resulting matrix can bewritten as EA, where the m×m matrix E ia created by performing the same row operation on Im.
Theorem 2.2. An n × n matrix A is invertible if and only if A is row equivalent to In, and in thiscase, any sequence of elementary row operations that reduce A to In also transforms In into A−1.Applying theorem 2.2 to an invertible matrix A gives

A ∼ E1A ∼ · · · ∼ Ep(Ep−1 · · · E1A) = Inthen, the product Ep · · · E1 consists of the inverse of A. Hence
A−1 = Ep · · · E1If we place A and I side-by-side to form an augmented matrix [ A | I ], then row operations on thismatrix produce identical operations on A and I . Then, if A is row equivalent to I , [ A | I ] is rowequivalent to [ I | A−1 ]. Otherwise A does not have an inverse.

2.3 | Characterisation of Invertible Matrices
Theorem. The Invertible Matrix Theorem.Let A be a square matrix n×n. Then the following statements are equivalent. That is, for a given
A, the statements are either all true or all false (see appendix A).(i) A is an invertible matrix;(ii) A is row equivalent to the n × n identity matrix;(iii) A has n pivot points;(iv) The equation Ax = 0 has only the trivial solution;(v) The columns of A form a linearly independent set;(vi) The linear transformation x 7→ Ax is one-to-one;(vii) The equation Ax = b has at least one solution for each b in Rn;(viii) The columns of A span Rn;(ix) The linear transformation x 7→ Ax maps Rn onto Rn;(x) There is an n × n matrix C such that CA = I;(xi) There is an n × n matrix D such that AD = I;(xii) AT is an invertible matrix.
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A linear transformation T : Rn → Rn is said to be invertible if there exists a function S : Rn → Rnsuch that
S(T (x)) = x for all x in Rn

T (S(x)) = x for all x in RnHence, T is invertible if and only if its standard matrix A is invertible.
2.4 | Subspaces of Rn

A subspace of Rn is any set H ∈ Rn that has three proprieties:(i) 0 ∈ H;(ii) ∀ u, v ∈ H, (u + v ) ∈ H;(iii) ∀ u ∈ H and ∀ c ∈ R, (cu) ∈ H .In words, a subspace is closed under addition and scalar multiplication. Examples of subspacesare a plane or a line both through the origin.
The column space of a matrix A is the set ColA of all linear combinations of the columns of
A. If A = [ a1 · · · an

], with the columns in Rm, then ColA is the same as Span{a1, . . . ,an}.The column space of an m×n matrix is a subspace of Rm. Note that ColA equals Rm only whenthe columns of A span Rm.When a system of linear equations is written in the form Ax = b, the column space of A is theset of all b for which the system has a solution.
The null space of a matrix A is the set NulA of all solutions of the homogeneous equation
Ax = 0.
Theorem 2.3. The null space of an m× n matrix A is a subspace of Rn. Equivalently, the set ofall solutions of a system Ax = 0 of m homogeneous linear equations in n unknowns is a subspaceof Rn.Because a subspace typically contains an infinite number of vectors, some problems are handledbest by working with a small finite set of vectors that span the subspace. The smaller the set, the
better. The smallest possible spanning set must be linearly independent.
A basis for a subspace H of Rn is a linearly independent set in H that spans H .
The columns of an invertible n × n matrix form a basis for all of Rn, because they are lin-early independent and span Rn. One such matrix is the n × n identity matrix. Its columns aredenoted by e1, . . . , en:

e1 =
 1...0

 , . . . , en =
 0...1


The set {e1, . . . , en} is called the standard basis for Rn.
The standard procedure for writing the solution set of Ax = 0 in parametric vector form, ac-tually identifies a basis for NulA.Suppose you are given a 3× 5 matrix A and you are asked to compute the null space of suchmatrix:

A =
 a11 · · · a15... . . . ...
a31 · · · a35

 with solution x =
 x1...
x5

 = x2u + x3v + x5w
The general solution shows that NulA coincides with the set of all linear combinations of u, v and w .That is, {u, v ,w} generates NulA. So {u, v ,w} is a basis for NulA.
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Theorem 2.4. The pivot columns of a matrix A form a basis for the column space of A.Be careful to use pivot columns of A itself for the basis of ColA. The columns of an echelon form
AR are often not in the column space of A.
2.5 | Dimension and RankThe main reason for selecting a basis for a subspace H , is that each vector in H can be writtenin only one way as a linear combination of the basis vectors of H . To see why, suppose B =
{b1, . . . ,bp} is a basis for H , and suppose a vector x in H can be generated in two ways, say,

x = c1b1 + · · ·+ cpbp and x = d1b1 + · · ·+ dpbp

Then, subtracting gives
0 = (c1 − d1)b1 + · · ·+ (cp − dp)bpSince B is linearly independent, the weight in this last equation must all be zero. That is, cj = djfor 1 ≤ j ≤ p, which shows that the two representations are actually the same.Suppose the set B = {b1, . . . ,bp} is a basis for a subspace H . For each x in H , the

coordinates of x relative to the basis B are the weights c1, . . . , cp such that x = c1b1+· · ·+cpbp,and the vector in Rp

[x ]B =
 c1...
cp


is called the coordinate vector of x (relative to B ) or the B -coordinate vector of x . Hence
x = B [x ]B .The mapping x 7→ [x ]B , where B = {b1, . . . ,bp}, is a one-to-one correspondence between Hand Rp that preserves linear combinations. We call such a correspondence as isomorphism, andwe say that H is isomorphic to Rp.
The dimention of a nonzero subspace H , denoted by dimH , is the number of vectors in anybasis for H . The dimention of the zero subspace {0} is defined to be zero.
The rank of a matrix A, denoted by rankA, is the dimention of the column space of A.Since the pivot columns of A form a basis for ColA, the rank of A is just the number of pivotcolumns in A.
Theorem 2.5. The Rank Theorem.Since the nonpivot columns correspond to the free variables in Ax = 0, if a matrix A has n columns,then rankA+ dimNulA = n.
Theorem 2.6. The Basis Theorem.Let H be a p-dimentional (i.e. with dimH = p) subspace of Rn. Any linearly independent set ofexactly p elements in H is automatically a basis for H . Also, any set of p elements of H thatspans H is automatically a basis for H .
If A is an m×n matrix, each row of A has n entries and thus can be identified with a vector in Rn.The set of all linear combinations of the row vector is called the row space of A and is denotedby RowA, which is also a subspace of Rn. Since the rows of A are identified with the columns of
AT , we could also write ColAT in place of RowA.If two matrices A and B are row equivalent (A ∼ B), then their row spaces are the same. If Bis in echelon form, the nonzero rows of B form a basis for the row space of A as well as for thatof B.
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Theorem. The Invertible Matrix Theorem (Continued).Let A be an n × n matrix. Then the following statements are each equivalent to the statement Ais an invertible matrix (see appendix A).(xiii) The columns of A form a basis of Rn;(xiv) ColA = Rn;(xv) dimColA = n;(xvi) rankA = n;(xvii) NulA = {0};(xviii) dimNulA = 0.
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3 | Determinants [§3]
3.1 | Introduction to DeterminantsIf A is a 3× 3 matrix, we can write it as

A =  a11 a12 a13
a21 a22 a23
a31 a32 a33


then its determinant is given by

∆ = detA = |A| = a11 detA11 − a12 detA12 + a13 detA13
In general, for n ≥ 2, the determinant algorithm for an n × n matrix A = [aij ] is

|A| = detA = n∑
j=1 (−1)1+ja1j detA1j

It is useful to define the (i, j)-cofactor of a determinant A = [aij ]. The cofactor is
Cij = (−1)i+j detAij (3.1)

Then, detA = a11C11 + · · ·+ a1nC1nThis formula is called a cofactor expansion across the first row of A.
Theorem 3.1. In general, the determinant of an n × n matrix A can be computed by cofactorexpansion across any row or down any column. The expansion across the ith row using cofactoris

|A| = n∑
j=1 aijCij keeping i fixed

The cofactor expansion down the jth column is
|A| = n∑

i=1 aijCij keeping j fixed
Theorem 3.2. If A is a triangular matrix, the detA is the product of the entries on the maindiagonal of A.
3.2 | Proprieties of Determinants
Theorem 3.3. Row Operations.Let A be a square matrix.(i) If a multiple of one row of A is added to another row to produce a matrix B, then detA = detB;(ii) If two rows of A are interchanged to produce B, then detB = − detA;(iii) If one row of A is multiplied by k to produce B, then detB = k · detA.
Suppose a square matrix has been reduced to an echelon form U by row replacements and rowinterchanges. If there are r interchanges, then, as seen before,

detA = (−1)r detU
9



Since U is in echelon form (not the reduced echelon form), it is triangular,
U =


• ∗ ∗ ∗0 • ∗ ∗0 0 • ∗0 0 0 •


and so detU is the product of the diagonal entries u11, . . . , unn. If A is invertible, the entries uiiare all pivots. Otherwise, at least one unn is zero. Thus

detA = { (−1)r · (product of pivots in U) if A invertible0 if A not invertible
Theorem 3.4. A square matrix A is invertible if and only if detA 6= 0.
Theorem 3.5. If A is an n × n matrix, then detA = detAT .Because of theorem 3.5 each statement in theorem 3.3 is also true when the word row is replacedby the word column.
Theorem 3.6. If A and B are n × n matrices, then detAB = detA · detB.Suppose that the jth column of A is allowed to vary, and write

A = [ a1 · · · aj−1 x aj+1 · · · an
]

Define a transformation T from Rn to R by
T (x) = det [ a1 · · · aj−1 x aj+1 · · · an

]
Then,

T (cx) = cT (x) for all scalars c and all x in Rn

T (u + v ) = T (u) + T (v ) for all u, v in Rn

3.3 | Cramer’s RuleFor any n×n matrix A and any b in Rn, let Ai(b) be the matrix obtained from A by replacing thecolumn i by the vector b.
Ai(b) = [ a1 · · · b · · · an

]
Theorem 3.7. Cramer’s Rule.Let A be an invertible n×n matrix. For any b in Rn, the unique solution x of Ax = b has entriesgiven by

xi = detAi(b)detA , i = 1, . . . , n
Cramer’s rule leads easily to a general formula for the inverse of an n × n matrix A. The jthcolumn of A−1 is a vector x that satisfies

Ax = ejwhere ej is the jth column of the identity matrix, and the ith entry of x is the (i, j)-entry of A−1.By Cramer’s rule, {(i, j)-entry of A−1} = xi = detAi(ej )detA (3.2)Then recalling the definition of cofactor of A, equation (3.1), detAi(ej ) can be written as the cofactorexpansion Cji detAi(ej ) = (−1)i+j detAji = CjiThus
A−1 = 1detA

 C11 · · · Cn1... . . . ...
C1n · · · Cnn

 (3.3)
The matrix of cofactors on the right side of (3.3) is called the adjugate of A, denoted by adjA.
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Theorem 3.8. An Inverse Formula.Let A be an invertible n × n matrix. Then
A−1 = 1detA adjA
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4 | Eigenvalues and Eigenvectors [§5]
4.1 | Eigenvectors and EigenvaluesAn eigenvecotr of an n × n matrix A is a nonzero vector x such that Ax = λx for some scalar λ.A scalar λ is called an eigenvalue of A if there is a nontrivial solution x of Ax = λx ; such an xis called an eigenvector corresponding to λ.A scalar λ is an eigenvalue of an n × n matrix A if and only if the equation(A − λI)x = 0 (4.1)has a non trivial solution. The set of all solutions of (4.1) is just the null space of the matrix
A−λI . So this set is a subspace of Rn and is called the eigenspace of A corresponding to λ. Theeigenspace consists of the zero vector and all the eigenvectors corresponding to λ.
Theorem 4.1. The eigenvalues of a triangular matrix are the entries on its main diagonal.Zero is an eigenvalue of A if and only if A is not invertible.
Theorem 4.2. If v1, . . . , v r are eigenvectors that correspond to distinct eigenvalues λ1, . . . , λr ofan n × n matrix A, then the set v1, . . . , v r is linearly independent.
Theorem. The Invertible Matrix Theorem (Continued).Let A be an n × n matrix. Then the following statements are each equivalent to the statement Ais an invertible matrix (see appendix A).(xix) The determinant of A is not zero;(xx) The number 0 is not an eigenvalue of A.
4.2 | The Characteristic EquationTo find the eigenvalues of an n × n matrix A, one has to find all scalars λ such that the matrixequation (4.1) (A − λI)x = 0has a nontrivial solution. By the Invertible Matrix Theorem (appendix A), this problem is equivalentto finding all λ such that the matrix A − λI is not invertible. Recalling that the determinant of asingular (not invertible) matrix is always zero, the following fact will result very useful for solvingexercises.A scalar λ is an eigenvalue of an n × n matrix A if and only if λ satisfies the characteristic
equation det(A − λI) = 0 (4.2)If A is an n × n matrix, then det(A − λI) is a polynomial of degree n called the characteristic
polynomial of A.The algebraic multiplicity of an eigenvalue λ is its multiplicity as a root of the characteristicequation.
4.3 | SimilarityIf A and B are n × n matrices, then A is similar to B if there is an invertible matrix P such that
P−1AP = B, or, equivalentely, A = PBP−1. Writing Q for P−1, we have Q−1BQ = A. So B isalso similar to A, and we say simply that A and B are similar. Changing A into P−1AP is calleda similarity transformation.
Theorem 4.3. If n × n matrices A and B are similar, then they have the same characteristicpolynomial and hence the same eigenvalues (with the same algebraic multiplicities).
Warnings:(i) Having the same eigenvalues does not mean being similar;(ii) Similarity is not the same a row equivalence; row operations on a matrix usually changes itseigenvalues.
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4.4 | DiagonalizationIn many cases, the eigenvalue-eigenvector information contained within a matrix A can be dis-played in a useful factorizartion of the form A = PDP−1 where D is a diagonal matrix.
A matrix A is said to be diagonalizable if A is similar to a diagonal matrix, that is if A = PDP−1for some invertible matrix P and some diagonal matrix D.
Theorem 4.4. The Diagonalization Theorem.An n × n matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.In fact, A = PDP−1, with D a diagonal matrix, if and only if the columns of P are n linearlyindependent eigenvectors of A. In this case, the diagonal entries of D are eigenvalues of A thatcorrespond, respectively, to the eigenvectors in P .In other words, A is diagonalizable if and only if there are enough eigenvectors to form a basis of
Rn. We call such basis an eigenvector basis of Rn.
Diagonalizing Matrices:To diagonalize A, an n × n matrix:
Step 1 Find the eigenvalues of A using equation (4.2).
Step 2 Find n linearly independent eigenvectors of A.
Step 3 Construct P from the vectors just found.
Step 4 Construct D from the corresponding eigenvalues.
Theorem 4.5. An n × n matrix with n distrinct eigenvalues is diagonalizable.
Notice that the statement in theorem 4.5 is not necessary.
Theorem 4.6. Let A be an n × n matrix whose distinct eigenvalues are λ1, . . . , λp.(i) For 1 ≤ k ≤ p, the dimention of the eigenspace for λk is less than or equal to the algebraicmultiplicity of the eigenvalue λk ;(ii) The matrix A is diagonalizable if and only if the sum of the dimensions of the eigenspacesequals n, and this happens if and only if (1) the characteristic polynomial factors completelyinto linear factors, and (2) the dimension of the eigenspace for each λk , the geometric mul-

tiplicity, equals the algebraic multiplicity of λk ;(iii) If A is diagonalizable and Bk is a basis for the eigenspace corresponding to λk for each k ,then the total collection of vectors in the set B1, . . . , Bp forms an eigenvector basis for Rn.
4.5 | Eigenvectors and Linear TransformationsLet V be an n-dimentional vector space, let W be an m-dimensional vector space, and let T beany linear transformation from V to W . To associate a matrix with T , choose bases B and C for
V and W , respectively.Given any x in V , the coordinate vector [x ]B is in Rn and the coordinate vector of its image,[T (x)]C , is in Rm.The connection between [x ]B and [T (x)]C can be found in the following way. Let {b1, . . . ,bn}be the basis B for V . If x = r1b1 + · · ·+ rnbn, then

[x ]B =
 r1...
rn


and

T (x) = T (r1b1 + · · ·+ rnbn) = r1T (b1) + · · ·+ rnT (bn) (4.3)
13



because T is linear. Since the coordinate mapping from W to Rm is linear, equation (4.3) leadsto: [T (x)]C = r1[T (b1)]C + · · ·+ rn[T (bn)]C (4.4)Since C-coordinate vectors are in Rm, the vector equation (4.4) can be written as a matrix equation,namely [T (x)]C = M [x ]B (4.5)where
M = [ [T (b1)] · · · [T (bn)] ] (4.6)The matrix M is a matrix representation of T , called the matrix for T relative to the bases B and

C. Equation (4.5) says that the action of T on x may be viewed as left-multiplication by M .
In the common case where W is the same as V and the basis C is the same as B , the ma-trix M in equation (4.6) is called the matrix for T relative to B , or simply the B -matrix for T , andis denoted by [T ]B .The B -matrix for T : V → V satisfies

[T (x)]B = [T ]B [x ]B for all x is V
Theorem 4.7. Diagonal Matrix Representation.Suppose A = PDP−1, where D is a diagonal n × n matrix. If B is the basis for Rn formed fromthe columns of P , then D is the B -matrix for the transformation x 7→ Ax .
4.6 | Complex EigenvaluesA complex scalar λ satisfies det(A − λI) = 0 if and only if there is a nonzero vector x in Cn suchthat Ax = λx . We call λ a complex eigenvalue and x a complex eigenvector corresponding to λ.
The complex conjugate of a complex vector x in Cn is the vector x in Cn whose entries arethe complex conjugates of the entries in x . The real and imaginary parts of a complex vector xare the vectors <x and =x formed from the real and imaginary parts of the entries of x .
Let A be an n × n matrix whose entries are real. Then Ax = Ax = Ax . If λ is an eigenvalue of Aand x is a corresponding eigenvector in Cn, then

Ax = Ax = λx = λx

Hence λ is also an eigenvalue of A, with x a corresponding eigenvector. This shows that, when Ais real, its complex eigenvalues occur in conjugate pairs.
Theorem 4.8. Let A be a real 2× 2 matrix with a complex eigenvalue λ = a− bi (b 6= 0) and anassociated eigenvector v in C2. Then

A = PCP−1, where P = [ <v =v
] and C = [ a −b

b a

]

In theorem 4.8, the matrix P provides a change of variable. The action of A amounts to a changeof variables (P), followed by a rotation (C ) and then a return to the original variable (P−1).The matrix C in theorem 4.8 can also be written as
C = [ r 00 r

] [ cosφ − sinφsinφ cosφ ]
where r is given by √a2 + b2 and φ represents the rotation.
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4.7 | Application to Differential EquationsIn many applied problems, several quantities are varying continuously in time, and they are relatedby a system of differential equations:
x ′1 = a11x1 + · · ·+ a1nxn...
x ′n = an1x1 + · · ·+ annxn

Here x1, . . . , xn are differentiable functions of t , with derivatives x ′1, . . . , x ′n, and the aij are con-stants. The crucial feature of this system is that it is linear. To see this, write the system as amatrix differential equation
x ′(t) = Ax(t) (4.7)where

x(t) =
 x1(t)...
xn(t)

 x ′(t) =
 x ′1(t)...
x ′n(t)

 A =
 a11 · · · a1n... . . . ...
an1 · · · ann


A solution of equation (4.7) is a vector valued function that satisfies (4.7) for all t in some intervalof real numbers.Equation (4.7) is linear because both differentiation of functions and multiplication of vectorsby a matrix are linear transformations.
For the general solution of equation (4.7), a solution might be a linear combination of functions ofthe form

x(t) = veλt (4.8)for some scalar λ and some fixed nonzero vector v . Observe that
x ′(t) = λveλt
Ax(t) = Aveλt

}
λveλt = Aveλt

Since eλt is never zero, x ′(t) will equal Ax(t) if and only if λv = Av , that is, if and only if λ isan eigenvalue of A and v is a corresponding eigenvector. Thus each eigenvalue-eigenvector pairprovides a solution (4.8) of x ′ = Ax . Such solutions are sometimes called eigenfunctions of thedifferential equation.
For any dynamical system described by x ′(t) = Ax with A an n × n matrix with n linearlyindependent eigenvectors (i.e. with A diagonalizable), a solution can be found in the followingway.Suppose the eigenfunctions for A are

v1eλ1t , . . . , vneλnt

with v1, . . . , vn linearly independent eigenvectors. Let P = [
v1 · · · vn

], and let D be thediagonal matrix with entries λ1, . . . , λn so that A = PDP−1. Now make a change of variable,defining a new function y by
y(t) = P−1x(t) or, equivalentely x(t) = Py(t)

The equation x(t) = Py(t) says that y(t) is the coordinate vector of x(t) relative to the eigenvectorbasis. Substitution of Py for x in the equation x ′ = Ax gives
d
dt (Py) = A(Py) = (PDP−1)Py = PDy (4.9)
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Since P is a constant matrix, the left side of equation (4.9) is Py′. Left-multiply both sides of(4.9) by P−1 and obtain y′ = Dy, or y′1(t)...
y′n(t)

 =
 λ1 · · · 0... . . . ...0 · · · λn


 y1(t)...
yn(t)


The change of variables from x to y has decoupled the system of differential equations. Since
y′1 = λ1y1, we have y1(t) = c1eλ1t , with similar formulas for y2, . . . , yn. Thus

y(t) =
 c1eλ1t...
cneλnt


the general solution x is

x(t) = Py(t) = [ v1 · · · vn
]

y(t) =
= c1v1eλ1t + · · ·+ cnvneλnt (4.10)Equation (4.10) is known as the eigenfunction expansion.

In case a real matrix A has a pair of complex eigenvalues λ and λ, with associated eigenvec-tors v and v , two solutions of x ′ = Ax are
x1(t) = veλt and x2(t) = veλt

where it can be shown that x2(t) = x1(t). This two solutions will obvioulsy involve complexnumbers.For a real matrix A with an eigenvalue λ = a + bi, a corresponding eigenvector v and acomplex solution x1(t) = veλt of x ′ = Ax , two real solutions of the same x ′ = Ax are given by
y1(t) = <x1(t) = [ (<v ) cosbt − (=v ) sinbt ] eat
y2(t) = =x1(t) = [ (<v ) sinbt + (=v ) cosbt ] eatHence, the general solution is

x(t) = c1y1(t) + c2y2(t)
4.8 | Trajectories of EigenfunctionsWhen the matrix A in x ′(t) = Ax(t) is 2 × 2, algebraic calculations can be supplemented by ageometric description of a system’s evolution. We can plot the graph of the two eigenfunctions
x1(t) and x2(t) as a description of what happens to the system as t → ∞. The graph of a singlesolution x1(t) is called a trajectory of the dynamical system.The origin of the graph of a dynamical system may be:(i) an attractor, or sink,(ii) a repeller, or source, or(iii) a saddle point.The origin is called an attractor of the dynamical system when all trajectories tend toward 0. Thisoccurs whenever both eigenvalues are negative:

λ1 < 0 and λ2 < 0
The direction of greatest attraction is along the line through 0 and the eigenfunction correspondingto the smaller eigenvalue.
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The origin is called a repeller of the dynamical system when trajectories tend away from 0.This occurs whenever both eigenvalues are positive:
λ1 > 0 and λ2 > 0

The direction of greatest repulsion is the line though 0 and the eigenfunction corresponding tothe eigenvalue of larger magnitude.The origin is called a saddle point of the dynamical system when some trajectories approachthe origin at first and then change direction and move away from the origin. This occurs wheneverone eigenvalue is positive and the other is negative:
λ1 < 0 and λ2 > 0

The direction of greatest attraction is determined by the eigenfunction for the eigenvalue of smallermagnitude. The direction of greatest repulsion is determined by the eigenfunction for the eigen-value of greater magnitude.
In case the matrix A has complex eigenvalues given by λ = a ± bi, the origin may be a spi-
ral point. The rotation is caused by the sine and cosine functions that arise from a complexeigenvalue. When the real part of the complex eigenvalue is positive (a > 0), the trajectoriesspiral outward. When the real part of the complex eigenvalue is negative (a < 0), the trajectoriesspiral inward.If the real part of the eigenvalue is zero (a = 0), the trajectories form ellipses around theorigin.
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5 | Orthogonality and Least Squares [§6]
5.1 | Inner Product and OrthogonalityIf u and v are vectors in Rn

uT v = vTu = u · vis called the inner product or dot product. If
u =

 u1...
un

 and v =
 v1...
vn


the inner product of u and v is

u1v1 + · · ·+ unvnThe length or norm of v is the nonnegative scalar ||v || defined by
||v || = √v · v = √v21 + · · ·+ v2

n and ||v ||2 = v · v

A vector whose length is 1 is called a unit vector. If we divide a nonzero vector v by its length,we obtain a unit vector u. This process is sometimes called normalising.
For u and v in Rn, the distance between u and v , written as dist(u, v ), is the length of thevector u− v . That is, dist(u, v ) = u− vTwo vectors u and v are orthogonal (to each other) if u · v = 0.
Theorem 5.1. The Pythagorean Theorem.Two vectors u and v are orthogonal if and only if ||u + v ||2 = ||u||2 + ||v ||2.
If a vector z is orthogonal to every vector in a subspace W of Rn, then z is said to be orthogonal
to W . The set of all vectors z that are orthogonal to W is called the orthogonal complement of
W and is denoted by W⊥.A vector x is in W⊥ if and only if x is orthogonal to every vector is a set that spans W .Moreover, W⊥ is a subspace of Rn.
Theorem 5.2. Let A be an m×n matrix. The orthogonal complement of the row space of A is thenull space of A, and the orthogonal complement of the column space of A is the null space of AT :

(RowA)⊥ = NulA and (ColA)⊥ = NulAT
For u and v in either R2 or R3, the inner product of the two vectors can be written as

u · v = ||u|| ||v || cosθ
5.2 | Orthogonal SetsA set of vectors {u1, . . . ,up} in Rn is said to be an orthogonal set if each pair of distinct vectorfrom the set is orthogonal, that is, if ui · uj = 0 whenever i 6= j .
Theorem 5.3. If S = {u1, . . . ,up} is an orthogonal set of nonzero vectors in Rn, then S is linearlyindependent and hence is a basis for the subspace spanned by S .An orthogonal basis for a subspace W of Rn is a basis for W that is also an orthogonal set.
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Theorem 5.4. Let {u1, . . . ,up} be an orthogonal basis for a subspace W of Rn. For each y in
W , the weights in the linear combination

y = c1u1 + · · ·+ cpup

are given by
cj = y · uj

uj · uj
(j = 1, . . . , p)

Given a nonzero vector u in Rn, consider the problem of decomposing a vector y in Rn into thesum of two vectors, one a multiple of u and the other orthogonal to u. We wish to write
y = ŷ + z (5.1)

where ŷ = αu for some scalar α and z is some vector orthogonal to u. Let z = y − αu. Then
y− ŷ is orthogonal to u if and only if

0 = (y− αu) · u = y · u− (αu) · u = y · u− α(u · u)
That is, equation (5.1) is satisfied if and only if α = y·u

u·u and ŷ = y·u
u·u u. The vector ŷ is called the

orthogonal projection of y onto u, and the vector z is called the component of y orthogonal to
u. Sometimes ŷ is denoted by projLy and is called the orthogonal projection of y onto L. Thatis

ŷ = projLy = y · u
u · uu

Theorem 5.4 decomposes each y in Span{u1, . . . ,up} into the sum of p projections onto one-dimensional subspaces that are mutually orthogonal.
A set {u1, . . . ,up} is an orthonormal set if it is an orthogonal set of unit vectors. If W isthe subspace spanned by such a set, then {u1, . . . ,up} is an orthonormal basis for W .
Theorem 5.5. An m× n matrix U has orthonormal columns if and only if UTU = I .
An orthogonal matrix is a square invertible matrix U such that U−1 = UT .
The reflection of a vector y ∈ Rn in L = Span{u}, where u 6= 0 ∈ Rn, is the point reflLydefined by reflLy = 2 · projLy− y

5.3 | Orthogonal Projections
Theorem 5.6. The Orthogonal Decomposition Theorem.Let W be a subspace of Rn. Then each y in Rn can be written uniquely in the form

y = ŷ + z (5.2)
where ŷ is in W and z is in W⊥. In fact, if {u1, . . . ,up} is any orthogonal basis of W , then

ŷ = y · u1
u1 · u1 · u1 + · · ·+ y · up

up · up
· up

and z = y− ŷ.
The vector ŷ in (5.2) is called the orthogonal projection of y onto W and is often written as projWy.
If {u1, . . . ,up} is an orthogonal basis for W and if y happens to be in W , then projWy = y.
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Theorem 5.7. The Best Approximation Theorem.Let W be a subspace of Rn, let y be any vector in Rn, and let ŷ be the orthogonal projection of
y onto W . Then ŷ is the closest point in W to y, in the sense that

||y− ŷ|| < ||y− v ||

for all v in W distinct from ŷ.The vector ŷ in theorem 5.7 is called the best approximation to y by elements of W .
Theorem 5.8. If {u1, . . . ,up} is an orthonormal basis for a subspace W of Rn, then

projWy = (y · u1)u1 + · · ·+ (y · up)up
If U = [ u1 · · · up

], then
projWy = UUTy for all y in Rn

Suppose U is an n × p matrix with orthonormal columns, and let W be the column space of U .Then
UTUx = Ipx = x for all x in Rp

UUTy = projWy for all y in Rn

If U is an n × n matrix with orthonormal columns, then U is orthogonal, the columns space W isall of Rn and UUTy = Iy = y for all y ∈ Rn.
5.4 | The Gram-Schmidt ProcessThe Gram-Schmidt process is a simple algorithm for producing an orthogonal or orthonormalbasis for any nonzero subspace of Rn. Considering a basis {s1, . . . , sp}, when the Gram-Schmidtprocess is applied, on any vector of the basis sk with 1 < k ≤ p, the components of the vectors
s1, . . . , sk−1 parallel to sk are removed from sk . In this way only the perpendicular part of skstays in the basis, making it orthogonal. The following theorem explains this process.
Theorem 5.9. The Gram-Schmidt Process.Given a basis {x1, . . . , xp} for a nonzero subspace W of Rn, define

v1 = x1
v2 = x2 − x2 · v1

v1 · v1 v1
...

vp = xp −
xp · v1
v1 · v1 v1 − · · · − xp · vp−1

vp−1 · vp−1 vp−1
Then {v1, . . . , vp} is an orthogonal basis for W . In addition

Span{v1, . . . , vk} = Span{x1, . . . , xk} for 1 ≤ k ≤ pAn orthonormal basis is constructed easily from an orthogonal basis {v1, . . . , vp}: simply normalizeall the vk .
Theorem 5.10. The QR Factorization.If A is an m × n matrix with linearly independent columns, then A can be factored as A = QR ,where Q is an m×n matrix whose columns form an orthonormal basis for ColA and R is an n×nupper triagular invertible matrix with positive entries on its diagonal.
To find R , observe that QTQ = I , because the columns fo Q are orthonormal. Hence

R = QTA
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5.5 | Least-square ProblemsWhen a solution to a linear system Ax = b is demanded and none exists, the best one can do isto find an x that makes Ax as close as possible to b.Think of Ax as an approximation to b. The smaller the distance between b and Ax , given by
||b− Ax||, the better the approximation. The general least-squares problem is to find an x thatmakes ||b− Ax|| as small as possible.If A is m× n and b is in Rm, a least-square solution of Ax = b is an x̂ in Rn such that

||b− Ax̂|| ≤ ||b− Ax||

for all x in Rn.The most important aspect of the least-square problem is that no matter what x we select, thevector Ax will necessarely be in the column space, ColA. So we can seek an x that makes Ax theclosest point in ColA to b.
Given A and b, let

b̂ = projColAbBecause b̂ is in the column space of A, the equation Ax = b̂ is consistent, and there is an x̂ in
Rn such that

Ax̂ = b̂ (5.3)Since b̂ is the closest point in ColA to b, a vector x̂ is a least-squares solution of Ax = b if andonly if x̂ satisfies equation (5.3).
Each least-squares solution of Ax = b satisfies the equation

ATAx = ATb (5.4)
The matrix equation (5.4) represents a system of equations called the normal equations for Ax = b.A solution of (5.4) is often denoted by x̂ .
Theorem 5.11. The set of least-squares solutions of Ax = b coincides with the nonempty set ofsolutions of the normal equations ATAx = ATb.
Theorem 5.12. Let A be an m× n matrix. The following statements are logically equivalent:(i) The equation Ax = b has a unique least-squares solution for each b in Rm;(ii) The columns of A are linearly independent;(iii) The matrix ATA is invertible.When these statements are true, the least-squares solution x̂ is given by

x̂ = (ATA)−1ATb

When a least-squares solution x̂ is used to produce Ax̂ as an approximation to b, the distancefrom b to Ax̂ , ||b− b̂|| = ||b− Ax̂||, is called the least-squares error of this approximation.
Theorem 5.13. Given an m×n matrix A with linearly independent columns, let A = QR be a QRfactorization of A, as in theorem 5.10. Then, for each b in Rm, the equation Ax = b has a uniqueleast-squares solution, given by

x̂ = R−1QTb
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6 | Symmetric Matrices [§7]
6.1 | Diagonalization of Symmetric MatricesA symmetric matrix is a matrix A such that AT = A. Such a matrix is necessarily square. Its maindiagonal entries may be arbitrary, but its other entries occur in pairs.
Theorem 6.1. If A is symmetric, then any two eigenvectors from different eigenspaces are orthog-onal.An n× n matrix A is said to be orthogonally diagonalizable if there are an orthogonal matrix P(with P−1 = PT ) and a diagonal matrix D such that

A = PDPT = PDP−1 (6.1)Such a diagonalization requires n linearly independent and orthonormal eigenvectors. If A isorthogonally diagonalizable as in (6.1), then
AT = (PDPT )T = PDPT = AThus A is symmetric. Note that the diagonal entries of D are the eigenvalues λ1, . . . , λn.

Theorem 6.2. An n × n matrix A is orthogonally diagonalizable if and only if A is a symmetricmatrix.The set of eigenvalues of a matrix A is sometimes called the spectrum of A, and the followingdescription of the eigenvalues is called a spectral theorem.
Theorem 6.3. The Spectral Theorem for Symmetric Matrices.An n × n symmetric matrix A has the following proprieties:(i) A has n real eigenvalues, counting algebraic multiplicities;(ii) The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a rootof the characteristic equation;(iii) The eigenspaces are mutually orthogonal;(iv) A is orthogonally diagonalizable.Using the definition of orthogonal diagonalization given by equation (6.1) we can rewrite a matrix
A as

A = λ1u1uT1 + · · ·+ λnunuTn (6.2)This representation of A is called spectral decomposition of A because it breaks up A into piecesdetermined by the spectrum of A. Each term in equation (6.2) is an n × n matrix of rank 1.Furthermore, each matrix ujuTj is a projection matrix in the sense that for each x in Rn, the vector(ujuTj )x is the orthogonal projection of x onto the subspace spanned by uj .
6.2 | Quadratic FormsA quadratic form on Rn is a function Q defined on Rn whose value at a vector x in Rn can becomputed by an expression of the form Q(x) = xTAx , where A is an n × n symmetric matrix. Thematrix A is called the matrix of the quadratic form.
If x represents a variable vector in Rn, then a change of variable is an equation of the form

x = Py or equivalentely, y = P−1x (6.3)where P is an invertible matrix and y is a new variable vector in Rn.If the change of variable (6.3) is made in a quadratic form xTAx , then
xTAx = yT (PTAP)y (6.4)and the new quadratic form is PTAP . Since A is symmetric, by theorem 6.2, there is an orthogonalmatrix P such that PTAP is a diagonal matrix D, and the quadratic form in (6.4) becomes yTDy.
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Theorem 6.4. The Principal Axes Theorem.Let A be an n×n symmetric matrix. Then there is an orthogonal change of variable x = Py, thattransforms the quadratic form from xTAx into a quadratic form yTDy with no cross-product term.
The columns of P in theorem 6.4 are called the principal axes of the quadratic form xTAx . Thevector y is the coordinate vector of x relative to the orthonormal basis of Rn given by theseprincipal axes.
Suppose Q(x) = xTAx where A is an invertible 2 × 2 symmetric matrix, and let c be a con-stant. The set of all x in R2 that satisfy

xTAx = c

either corresponds to an ellipse, a hyperbola, two intersecting lines, a single point or contains nopoints at all. If A is a diagonal matrix, the graph is in standard position, otherwise, if A is notdiagonal, the graph is rotated out of strandard position.
When A is an n × n matrix, the quadratic form Q(x) = xTAx is a real-valued function withdomain Rn.A quadratic form Q is:(i) positive definite if Q(x) > 0 for all x 6= 0,(ii) negative definite if Q(x) < 0 for all x 6= 0,(iii) indefinite if Q(x) assumes both positive and negative values.Also Q is said to be positive semidefinite if Q(x) ≥ 0 for all x , and to be negative semidefinite if
Q(x) ≤ 0 for all x .
Theorem 6.5. Quadratic Forms and Eigenvalues.Let A be an n × n symmetric matrix. Then a quadratic form xTAx is:(i) positive definite if and only if the eigenvalues of A are all positive,(ii) negative definite if and only if the eigenvalues of A are all negative, or(iii) indefinite if and only if A has both positive and negative eigenvalues.
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A | Invertible Matrix Theorem
Theorem. The Invertible Matrix Theorem.Let A be a square matrix n×n. Then the following statements are equivalent. That is, for a given
A, the statements are either all true or all false.(i) A is an invertible matrix;(ii) A is row equivalent to the n × n identity matrix;(iii) A has n pivot points;(iv) The equation Ax = 0 has only the trivial solution;(v) The columns of A form a linearly independent set;(vi) The linear transformation x 7→ Ax is one-to-one;(vii) The equation Ax = b has at least one solution for each b in Rn;(viii) The columns of A span Rn;(ix) The linear transformation x 7→ Ax maps Rn onto Rn;(x) There is an n × n matrix C such that CA = I;(xi) There is an n × n matrix D such that AD = I;(xii) AT is an invertible matrix;(xiii) The columns of A form a basis of Rn;(xiv) ColA = Rn;(xv) dimColA = n;(xvi) rankA = n;(xvii) NulA = {0};(xviii) dimNulA = 0;(xix) The determinant of A is not zero;(xx) The number 0 is not an eigenvalue of A.
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