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Preface

The goal of this summary is to offer a complete overview of all theorems and definitions
introduced in the chapters of Linear Algebra and its applications by David C. Lay that
are relevant to the Linear Algebra course at the faculty of Aerospace Engineering at Delft
University of Technology. All theorems and definitions have been taken over directly from
the book, whereas the accompanying explanation is sometimes formulated in my own words.

Linear Algebra might seem more abstract than the sequence of Calculus courses that are
also taken in the first year of the Bachelor of Aerospace Engineering. A great part of the
course consists of definitions and theorems that follow from these definitions. An analogy
might be of help to your understanding of the relevance of this course. Imagine visiting
a relative, who has told you about a collection of model airplanes that are stored in his
or her attic. The aerospace enthusiast you are, you insist on taking a look. Upon arrival
you are exposed to a complex, yet looking systematic, array of boxes and drawers. The
amount of boxes and drawers seems endless, yet your relative knows exactly which contain
the airplane models. Having bragged about your challenging studies, the relative refuses to
tell you exactly where they are and demands that you put in some effort yourself. However,
your relative explains you exactly how he has sorted the boxes and also tells you in which
box or drawer to look to discover the contents of several other boxes.

A rainy afternoon later, you have completely figured out the system behind the order of the
boxes, and find the airplane models in the first box you open. The relative hints at a friend
of his, whose father also collected aircraft models which are now stored in his basement.
Next Sunday you stand in the friend’s basement and to your surprise you figure out that he
has used the exact same ordering system as your relative! Within less than a minute you
have found the aircraft models and can leave and enjoy the rest of your day. During a family
dinner, the first relative has told your entire family about your passion about aerospace,
and multiple others approach you about useful stuff lying in their attics and basement. Ap-
parently, the ordering system has spread across your family and you never have to spend a
minute too long in a stale attic or basement again!

That is were the power of Linear Algebra lies: a systematic approach to mathematical op-
erations allowing for fast computation.

Enjoy and good luck with your studies.
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1Linear Equations in Linear Alge-
bra

1.1 Systems of linear equations

A linear equation is an equation that can be written in the form:

a1x1 + a2x2 + ...+ anxn = b

where b and the coefficients an may be real or complex. Note that the common equation
y = x + 1 describing a straight line intercepting the y-axis at the point (0, 1), is a simple
example of a linear equation of the form x2 − x1 = 1 where x2 = y and x1 = x.
A system of one or more linear equations involving the same variables is called a system of
linear equations. A solution of such a linear system is a list of numbers (s1, s2, ..., sn)
that satisfies all equations in the system when substituted for variables x1, x2, ..., xn. The
set of all solution lists is denoted as the solution set.

A simple example is finding the intersection of two lines, such as:

x2 = x1 + 1

x2 = 2x1

For consistency we write above equations in the form defined for a linear equation:

x2 − x1 = 1

x2 − 2x1 = 0

Solving gives one the solution set (1, 2). A solution can always be validated by substituting
the solution for the variables and find if the equation is satisfied.

To continue on our last example, we also know that besides an unique solution (i.e. the
intersection of two or more lines) there also exists the possibility of two ore more lines being
parallel or coincident, as shown in figure 1.1. We can extent this theory for a linear system
containing 2 variables to any linear system and state that

A system of linear equations has

1. no solution, or

2. exactly one unique solution, or

3. infinitely many solutions
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1.1. SYSTEMS OF LINEAR EQUATIONS

Figure 1.1: A linear system with no solution (a) and infinitely many solutions (b)

A linear system is said to be consistent if it has one or infinitely many solutions. If a
system does not have a solution it is inconsistent.

Matrix notation

It is convenient to record the essential information of a linear system in a rectangular array
called a matrix. Given the linear system:

x1 − 2x2 + x3 = 0

2x2 − 8x3 = 8

−4x1 + 5x2 + 9x3 = −9

We can record the coefficients of the system in a matrix as: 1 −2 1
0 2 −8
−4 5 9


Above matrix is denoted as the coefficient matrix. Adding the constants b from the linear
system as an additional column gives us the augmented matrix of the system: 1 −2 1 0

0 2 −8 8
−4 5 9 −9


It is of high importance to know said difference between a coefficient matrix and an aug-
mented matrix for later definitions and theorems.
The size of a matrix is denoted in the format m× n where m signifies the amount of rows
and n the amount of columns.

Solving a linear system

First we define the following 3 elementary row operations:

1. (Replacement) Replace a row by the sum of itself and the multiple of another row

2. (Interchange) Interchange two rows
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1.2. ROW REDUCTION AND ECHELON FORMS

3. (Scale) Scale all entries in a row by a nonzero constant

Two matrices are defined as row equivalent if a sequence of elementary row operations
transforms the one in to the other.

The following fact is of great importance in linear algebra:

If the augmented matrices of two linear systems are row equivalent, the two linear
systems have the same solution set.

This theorem grants one the advantage of greatly simplifying a linear system using ele-
mentary row operations before finding the solution of said system, as the elementary row
operations do not alter the solution set.

1.2 Row reduction and echelon forms

For the definitions that follow it is important to know the precise meaning of a nonzero
row or column in a matrix, that is a a row or column containing at least one nonzero
entry. The leftmost nonzero entry in a matrix row is called the leading entry.

A rectangular matrix is in the echelon form if it has the following three properties:

1. All nonzero rows are above any rows of all zeros

2. Each leading entry in a row is to the right of the column of the leading entry
of the row below it

3. All entries in a a column below a leading entry are zeros

DEFINITION


� ∗ ∗ ∗
0 � ∗ ∗
0 0 0 0
0 0 0 0


Above matrix is an example of a matrix in echelon form. Leading entries are symbolized by
� and may have any nonzero value whereas the positions ∗ may have any value, nonzero or
zero.

We can build upon the definition of the echelon form to arrive at the reduced
echelon form. In addition to the three properties introduced above, a matrix
must satisfy two other properties being:

1. The leading entry in each row is 1

2. All entries in the column of a leading entry are zero

DEFINITION
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1.2. ROW REDUCTION AND ECHELON FORMS

Extending the exemplary matrix to the reduced echelon form gives us:
1 0 ∗ ∗
0 1 ∗ ∗
0 0 0 0
0 0 0 0


Where ∗may be a zero or a nonzero entry. We also find that the following theorem must hold:

Uniqueness of the Reduced Echolon Form

Each matrix is row equivalent to only one reduced echelon matrix.

Theorem 1

Pivot positions

A pivot position of a matrix A is a location in A that corresponds to a leading 1 in the
reduced echelon form of A. A pivot column is a column containing a pivot position. A
square (�) denotes a pivot position in matrix 1.2.

Solutions of linear systems

A reduced echelon form of an augmented matrix of a linear system leads to an explicit
statement of the solution set of this system. For example, row reduction of the augmented
matrix of an arbitrary system has led to the equivalent unique reduced echelon form: 1 0 −5 1

0 1 1 4
0 0 0 0


There are three variables as the augmented matrix (i.e. including the constants b of the
linear equations) has four columns, hence the linear system associated with the reduced
echelon form above is:

x1 − 5x3 = 1

x2 + x3 = 4

0 = 0

The variables x1 and x2 corresponding to columns 1 and 2 of the augmented matrix are
called basic variables and are explicitly assigned to a set value by the free variables
which in this case is x3. As hinted earlier, a consistent system can be solved for the basic
variables in terms of the free variables and constants. Carrying out said operation for the
system above gives us: 

x1 = 1 + 5xx3

x2 = 4− x3
x3 is free
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1.3. VECTOR EQUATIONS

Parametric descriptions of solution sets

The form of the solution set in the previous equation is called a parametric representation
of a solution set. Solving a linear system amounts to finding the parametric representation
of the solution set or finding that it is empty (i.e. the system is inconsistent). The con-
vention is made that the free variables are always used as parameters in such a parametric
representation.

Existence and Uniqueness Questions

Using our the previously developed definitions we can introduce the following theorem:

Existence and Uniqueness Theorem

A linear system is consistent only if the rightmost column of the augmented matrix
is not a pivot column: the reduced echelon form of the of the augmented matrix
has no row of the form:

[0 ... 0 b] with b nonzero

If a linear system is indeed consistent it has either one unique solution, if there are
no free variables, or infinitely many solutions if there is one or more free variable.

Theorem 3

1.3 Vector equations

Vectors in R2

A matrix with only one column is referred to as a column vector or simply a vector. An
example is:

u =

[
u1
u2

]
where u1 and u2 are real numbers. The set of all vectors with two entries is denoted by R2.
(similar to the familiar x-y coordinate system)
The sum of two vectors such a u and v is obtained as:

u + v =

[
u1
u2

]
+

[
v1
v2

]
=

[
u1 + v1
u2 + v2

]
Given a real number c and a vector u, the scalar multiple of u by c is found by:

cu = c

[
u1
u2

]
=

[
cu1
cu2

]
The number c is called a scalar.
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1.3. VECTOR EQUATIONS

Figure 1.2: Geometrical representation of vectors in R2 as points and arrows

Vectors in Rn

We can extend the discussion on vectors in R2 to Rn. If n is a positive integer, Rn denotes
the collection of all ordered lists of n real numbers, usually referred to as n× 1 matrices:

u =


u1
u2

...
un


The vector whose entries are all zero is called the zero vector and is denoted by 0. The
addition and multiplication operations discussed for R2 can be extended to Rn.

Algebraic Properties of Rn

For all u,v in Rn and all scalars c and d:

(i) u + v = v + u

(ii) (u + v) + w = u + (v + w)

(iii) u + 0 = 0 + 0 = u

(iv) u + (−u) = −u + u = 0

(v) c(u + v) = cu + cv

(vi) (c+ d)u = cu + du

(vii) c(du) = cdu

(viii) 1u = u

Theorem

Linear combinations

Given vectors v1,v2, ...,vp and weights c1, c2, . . . , cp we can define the linear combination
y by:

y = c1v1 + c2v2 + ...+ cpvp

Note that we can reverse this situation and determine whether a vector y exists as a linear
combination of given vectors. Hence we would determine if there is a combination of weights
c1, c2, . . . , cp that leads to y. This would amount to us finding the solution of a n× (p+ 1)
matrix where n is the length of the vector and p denotes the amount of vectors available to
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1.4. THE MATRIX EQUATION AX = B

the linear combination. We arrive at the following fact:

A vector equation
x1a1 + x2a2 + ...+ xnan = b

has the same solution as the linear system whose augmented matrix is

[a1 a2 ... an b]

In other words, vector b can only be generated by a linear combination of a1,a2, ...,an
if there exists a solution to the linear system corresponding to the matrix above.

A question that often arises during the application of linear algebra is what part of Rn
can be spanned by all possible linear combinations of vectors v1,v2, ...,vp. The following
definition sheds light on this question:

If v1, ...,vp are in Rn then the set of all linear combinations of v1, ...,vp is denoted
as Span{v1, ...,vp} and is called the subset of Rn spanned by v1, ...,vp.That is,
Span{v1, ...,vp} is the collection of all vectors that can be written in the form:

c1v1 + c2v2 + ...+ cpvp

with c1, ..., cp scalars.

DEFINITION

Figure 1.3: Geometric interpretation of Span in R3

Let v be a nonzero vector in R3. Then Span{v} is the set of all scalar multiples of v, which
is the set of points on the line through 0 and v in R3. If we consider another vector u which
is not the zero vector or a multiple of v, Span{u,v} is a plane in R3 containing u, v and 0.

1.4 The matrix equation Ax = b

We can link the ideas developed in sections 1.1 and 1.2 on matrices and solution sets to the
theory on vectors from section 1.3 with the following definition:
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1.4. THE MATRIX EQUATION AX = B

If A is a m×n matrix, with columns a1,a2, ...,an and if x is in Rn then the product
of A and x, denoted as Ax, is the linear combination of the columns of A using the
corresponding entries in x as weights; that is,

Ax = [a1,a2, ...,an]


x1
x2

...
xn

 = x1a1 + x2a2 + ...+ xnan

DEFINITION

An equation of the form Ax = b is called a matrix equation*. Note that such a matrix
equation is only defined if the number of columns of A equals the number of entries of x.
Also note how we area able to write any system of linear equations or any vector equation
in the form Ax = b. We use the following theorem to link these concepts:

If A is a m × n matrix with columns a1, ...,an and b is in Rm, then the matrix
equation

Ax = b

has the same solution set as the vector equation

x1a1 + ...+ xnan = b

which has the same solution set as the system of linear equations whose augmented
matrix is

[a1 ... an b]

THEOREM 3

The power of the theorem above lies in the fact that we are now able to see a system of
linear equations in multiple ways: as a vector equation, a matrix equation and simply as
a linear system. Depending on the nature of the physical problem one would like to solve,
one can use any of the three views to approach the problem. Solving it will always amount
to finding the solution set to the augmented matrix.

Another theorem is introduced, composed of 4 logically equivalent statements:

Let A be a m× n matrix, then the following 4 statements are logically equivalent
(i.e. all true or false for matrix A):

1. For each b in Rm, the equation Ax = b has a solution

2. Each b is a linear combination of the columns of A

3. The columns of A span Rm

4. A has a pivot position in every row

THEOREM 4

PROOF Statements 1, 2 and 3 are equivalent due to the definition of Rm and the matrix
equation. Statement 4 requires some additional explanation. If a matrix A has a pivot
position in every row, we have excluded the possibility that the last column of the aug-
mented matrix of the linear system involving A has a pivot position (one row cannot have

10



1.5. SOLUTION SETS OF LINEAR SYSTEMS

2 pivot positions by its definition). If there would be a pivot position in the last column of
the augmented matrix of the system, we induce a possible inconsistency for certain vectors
b, meaning that the first three statements of above theorem are false: there are possible
vectors b that are in Rm but not in the span of the columns of A.

The following properties hold for the matrix-vector product Ax = b:

If A is a m× n matrix, u and v are vectors in Rn and c is a scalar:

a. A(u + v) = Au +Av

b. Ac(u) = c(Au)

THEOREM 5

1.5 Solution sets of linear systems

Homogeneous Linear Systems

A linear system is said to be homogeneous if it can be written in the form Ax = 0 where
A is a m×n matrix and 0 is the zero vector in Rm. Systems like these always have at least
one solution, namely x = 0, which is called the trivial solution. An important question
regarding these homogeneous linear systems is whether they have a nontrivial solution.
Following the theory developed in earlier sections we arrive at the following fact:

The homogeneous equation Ax = 0 only has a nontrivial solution of it has at least
one free variable.

If there is no free variable (i.e. the coefficient matrix has a pivot position in every column)
the solution x would always amount to 0 as the last column in the augmented matrix con-
sists entirely of zeros, which does not change during elementary row operations.

We can also note how every solution set of a homogeneous linear system can be written as
a parametric representation of n vectors where n is the amount of free variables. Lets give
an illustration with the following homogeneous system:

x1 − 3x2 − 2x3 = 0

Solving this system can be done without any matrix operations, the solution set is x1 =
3x2 + 2x3 .Rewriting this final solution as a vector gives us:

x =

 x1
x2
x3

 =

 3x2 + 2x3
x2
x3

 = x2

 3
1
0

+ x3

 2
0
1


Hence we can interpret the solution set as all possible linear combinations of two vectors.
The solution set is the span of the two vectors above.

11



1.6. LINEAR INDEPENDENCE

Parametric vector form

The representation of the solution set of above example is called the parametric vector
form. Such a solution the matrix equation Ax = 0 can be written as:

x = su + tv (s, t in R)

Solutions of nonhomogeneous systems

Suppose the equation Ax = b is consistent for some b, and let p be a solution.
Then the solution set of Ax = b is the set of all vectors of the form w = p + vp,
where vp is any solution of the homogeneous equation Ax = 0.

THEOREM 6

Figure 1.4: Geometrical interpretation of the solution set of equations Ax = b and Ax = 0

Why does this make sense? Let’s come up with an analogy. We have a big field of grass and
a brand-new autonomous electric car. The electric car is being tested and always drives the
same pattern, that is, for a specified moment in time it always goes in a certain direction.
The x and y position of the car with respect to one of the corners of the grass field are its
fixed variables, whereas the time t is its free variable: it is known how x and y vary with
t but t has to be specified! One of the companies’ employees observes the pattern the car
drives on board of a helicopter: after the car has reached the other end of the field he has
identified the pattern and knows how x and y vary with t.

Now, we would like to have the car reach the end of the field at the location of a pole, which
we can achieve by displacing the just observed pattern such that the pattern intersects with
the the pole at the other end of the field. Now each point in time satisfies the trajectory
leading up to the pole, and we have found our solution. Notice how this is similar? The
behaviour of the solution set does not change, the boundary condition and thus the positions
passed by the car do change!

1.6 Linear Independence

We shift the knowledge applied on homogeneous and nonhomogeneous equations of the form
Ax = b to that of vectors. We start with the following definition:
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1.6. LINEAR INDEPENDENCE

An indexed set of vectors {v1, ...,vp} in Rn is said to be linearly independent
if the vector equation:

x1v1 + ...+ xpvp = 0

has only the trivial solution. The set {v1, ...,vp} is said to be linearly dependent
if there exists weights c1, ..., cp, not all zero, such that:

c1v1 + ...+ cpvp = 0

DEFINITION

Using this theorem we can also find that:

The columns of matrix A are linearly independent only if the equation Ax = 0 has
only the trivial solution.

Sets of vectors

In case of a set of only two vectors we have that:

A set of two vectors {v1,v2} is linearly dependent if at least one of the vectors is a
multiple of the other. The set is linearly independent if and only if neither of the
vectors is a multiple of the other.

Figure 1.5: Geometric interpretation of linear dependence and independence of a set of two vectors.

We can extend to sets of more than two vectors by use of the following theorem on the
characteriziation of linearly dependent sets:

Characterization of Linearly Dependent Sets

An indexed set S = {v1, ...,vp} of more than two vectors is linearly dependent if
and only if at least one of the vectors in S is a linear combination of the others. In
fact, if S is linearly dependent and v1 6= 0 then some vj (with j > 1) is a linear
combination of the preceding vectors v1, ...,vj−1.

THEOREM 7

We also have theorems describing special cases of vector sets, for which the linear dependence
is automatic:
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1.7. INTRODUCTION TO LINEAR TRANSFORMATIONS

If a set contains more vectors than the number of entries in each vector, then the
set is linearly dependent. That is, any set {v1, ...,vp} is linearly dependent if p > n.

THEOREM 8

PROOF Say we have a matrix A = [v1 ... vp]. Then A is a n × p matrix. As p > n we
know that the coefficient matrix of A cannot have a pivot position in every column, thus
there must be free variables. Now we know that the equation Ax = 0 also has a nontrivial
solution, thus the set of vectors is linearly dependent.
The second special case is the following:

If a set S = {v1, ...,vp} in Rn contains the zero vector 0, then the set is linearly
dependent.

THEOREM 9

PROOF Note that if we assume that v1 = 0 we can write a linear combination as follows:

1v1 + 0v2 + ...+ 0vp = 0

As not all weights are zero, we have a nontrivial solution and the set is linearly dependent.

1.7 Introduction to Linear Transformations

A transformation (or function or mapping) T from Rn to Rm is a rule that assigns to
each vector x in Rn a vector T (x) in Rm. The set Rn is called the domain of T and the
set Rm is called the codomain of T . The notation T : Rn → Rm indicates that Rn is the
domain and Rm is the codomain of T . For x in Rn, the vector T (x) in Rm is called the
image of x. The set of all images T (x) is called the range of T .

Figure 1.6: Visualization of domain, codomain and range of a transformation

Matrix Transformations

For matrix transformations, T (x) is computed as Ax. Note that A is a m × n matrix:
the domain of T is thus Rn as the number of entries in x must be equal to the amount of
columns n. The codomain is Rm as the amount of entries (i.e. rows) in the columns of A is
m. The range of T is the set of all linear combinations of the columns of A.
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1.8. THE MATRIX OF A LINEAR TRANSFORMATION

Linear Transformations

Recall from section 1.4 the following two algebraic properties of the matrix equation:

A(u + v) = Au +Av and A(cu) = cAu

Which hold for u,v in Rn and c scalar. We arrive at the following definition for linear
transformations:

A transformation T is linear if:

• (i) T (u + v) = T (u) + T (v) for all u,v in the domain of T

• (ii) T (cu) = cT (u) for all scalars and u in the domain of T

DEFINITION

Note how every matrix transformation is a linear transformation by the algebraic properties
recalled from section 1.4. These two properties lead to the following useful facts:

If T is a linear transformation, then

T (0) = 0

and
T (cu + dv) = cT (u) + dT (v)

for all vectors u,v in the domain of T and all scalars c, d.

Extending this last property to linear combinations gives us:

T (c1v1 + ...+ cpvp) = cT (v1) + ...+ cpT (vp)

1.8 The Matrix of a Linear Transformation

The discussion that follows shows that every linear transformation from Rn to Rm is actually
a matrix transformation x 7→ Ax. We start with the following theorem:

Let T : Rn → Rm be a linear transformation, then there exists a unique matrix A
such that

T (x) = Ax for all x in Rn

In fact, A is the m × n matrix whose jth column is the vector T (ej), where ej is
the jth column of the identity matrix in Rn:

A = [T (e1) ... T (en)]

THEOREM 10

The matrix A is called the standard matrix for the linear transformation T . We now
know that every linear transformation is a matrix transformation, and vice versa. The term
linear transformation is mainly used when speaking of mapping methods, whereas the term
matrix transformation is a means of describing how such mapping is done.
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1.8. THE MATRIX OF A LINEAR TRANSFORMATION

Existence and Uniqueness Questions

The concept of linear transformations provides a new way of interpreting the existence and
uniqueness questions asked earlier. We begin with the following definition:

A mapping T : Rn → Rm is said to be onto Rm if each b in Rm is the image of
one or more x in Rn.

DEFINITION

Figure 1.7: Geometric interpretation of existence and uniqueness questions in linear transformations

Note how the previous definition is applicable if each vector b has at least one solution. For
the special case where each vector b has only one solution we have the definition:

A mapping T : Rn → Rm is said to be one-to-one if each b in Rm is the image of
only one x in Rn.

DEFINITION

Note that for above definition, T does not have to be onto Rm. This uniqueness question is
simple to answer with this theorem:

Let T : Rn → Rm be a linear transformation. Then T is one-to-one if and only if
the equation T (x) = 0 has only the trivial solution.

THEOREM 11

PROOF Assume that our transformation T is not one-to-one. Hence there are 2 distinct
vectors in Rn which have the same image b in Rm, lets call these vectors u and v. As
T (u) = T (v), we have that:

T (u− v) = T (u)− T (v) = 0

Hence T (x) = 0 has a nontrivial solution, excluding the possibility of T being one-to-one.
We can also state that:

Let T : Rn → Rm be a linear transformation and let A be the standard matrix or
T . Then:

a. T maps Rn onto Rm only if the columns of A span Rm.

b. T is one-to-one only if the columns of A are linearly independent.

THEOREM 12
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1.8. THE MATRIX OF A LINEAR TRANSFORMATION

PROOF

a. The columns of A span Rm if Ax = b has a solution for all b, hence every b has at
least one vector x for which T (x) = b

b. This theorem is just another notation of the theorem that T (x) = 0 only having the
trivial solution means that it is one-to-one. Linear independence of columns of A
suggests no nontrivial solution.
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2Matrix algebra

2.1 Matrix operations

Once again we refer to the definition of a matrix, allowing us to precisely define the matrix
operations that follow.

Figure 2.1: Matrix notation

If A is an m× n matrix, then the scalar entry in the ith row and jth column is denoted as
aij and is is referred to as the (i, j)-entry of A. The diagonal entries in an m×n matrix A
are a11, a22, a33, ... and they form the main diagonal of A. A diagonal matrix is a n×n,
thus square, matrix whose nondiagonal entries are zero. An m×n matrix whose entries are
all zero is called the zero matrix and is written as 0.

Sums and scalar multiples

We can extend the arithmetic used for vectors to matrices. We first define two matrices to
be equal if they are of the same size and their corresponding columns are equal (i.e. all
entries are the same). If A and B are m × n matrices, then their sum is computed as the
sum of the corresponding columns, which are simply vectors! For example, let A and B be
2× 2 matrices, then the sum is:

A+B =

[
a11 a12
a21 a22

]
+

[
b11 b12
b21 b22

]
=

[
a11 + b11 a12 + b12
a21 + b21 a22 + b22

]
More general, we have the following algebraic properties of matrix addition:

18



2.1. MATRIX OPERATIONS

Let A,B and C be matrices of the same size and let r and s be scalars:

a. A+B = B +A

b. (A+B) + C = A+ (B + C)

c. A+ 0 = A

d. r(A+B) = rA+ rB

e. (r + s)A = rA+ sA

f. r(sA) = (rs)A

THEOREM 1

Matrix multiplication

When a matrix B multiplies a vector x, the result is a vector Bx, if this vector is in turn
multiplied by a matrix A the result is the vector A(Bx). It is essentially a composition of
two mapping procedures. We would like to represent this process as one multiplication of
the vector x with a given matrix so that:

A(Bx) = (AB)x

Figure 2.2: Matrix multiplication

As shown in figure 2.2. We can easily find an answer to this question, if we assume A to be
a m× n matrix, B a n× p matrix and x in Rp. Then:

B(x) = x1b1 + ...+ xpbp

By the linearity of the matrix transformation by A:

A(Bx) = x1Ab1 + ...+ xpAbp

Note however that the vectorA(bx) is simply a linear combination of the vectorsAb1, ..., Abp
using the entries of x as weights. In turn, Ab1 is simply a linear combination of the columns
of matrix A using the entries of b1 as weights! Now it becomes simple to define the follow-
ing:

If A is an m × n matrix and if B is an n × p matrix with columns b1, ...,bp then
the product AB is the m× p matrix whose columns are Ab1, ..., Abp. That is:

AB = A[b1 ... bp] = [Ab1 ... Abp]

DEFINITION

Note how 2.1 is now true for all x using above definition. We can say that: matrix multi-
plication corresponds to composition of linear transformations.
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2.1. MATRIX OPERATIONS

It is important to have some intuition and knowledge about above definition. However, in
practice it is convenient to use the following computation rule:

If the product AB is defined, then the entry in row i and column j of AB is the
sum of the products of the corresponding entries in row i of matrix A and column
j in matrix B. Let A be an m× n matrix, then:

(AB)ij = ai1b1j + ai2b2j + ...+ ainbmj

Properties of matrix multiplication

For the following properties it is important to recall that Im denotes the m × m identity
matrix and Imx = x for all x in Rm.

Let A be an m ×m matrix and let B and C be matrices of appropriate sizes for
the products and sums defined:

a. A(BC) = (AB)C (associative law of multiplication)

b. A(B + C) = AB +AC (left distributive law)

c. (B + C)A = BA+ CA (right distributive law)

d. r(AB) = (rA)B = A(rB) for any scalar r

e. ImA = A = AIn (identity for matrix multiplication)

THEOREM 2

Note how properties b and c might be confusing. The importance of these definitions is
that BA and AB are usually not the same, as BA uses the columns of B to form a linear
combination with columns of A as weights. The product AB however uses the columns of
A to form a linear combination with columns of B as weights. If AB = BA, we say that A
and B commute with each other.

Powers of a Matrix

If A is an n × n matrix and k is a positive integer, then Ak denotes the the product of k
copies of A:

Ak = A...A︸ ︷︷ ︸
k

20



2.2. THE INVERSE OF A MATRIX

The Transpose of a Matrix

Let A be an m × n matrix, then the transpose of A is the n ×m matrix, denoted by AT ,
whose columns are formed from the corresponding rows of A. If

A =

[
a b
c d

]
Then the transpose of A is:

AT =

[
a c
b d

]

Let A and B denote matrices of size appropriate for the following operations, then:

a. (AT )T = A

b. (A+B)T = AT +BT

c. For any scalar r, (rA)T = rAT

d. (AB)T = BTAT

THEOREM 3

2.2 The Inverse of a Matrix

Recall that the multiplicative inverse of a number such as 4 is 1
4 or 4−1. This inverse satisfies

the equations:

5
1

5
= 1 55−1 = 1

Note how both equations are needed if we offer a generalization for a matrix inverse, as
matrix multiplication is not commutative (i.e. in general AB 6= BA). The matrices involved
in this generalization must be square.
An n× n matrix A is said to be invertible if there exists a n× n matrix C such that:

AC = I CA = I

Where I denotes the n×n identity matrix. In this case C is an inverse of A. Such an inverse
is unique and is commonly denoted as A−1. A matrix that is not invertible is commonly
called a singular matrix, and an invertible matrix is called a nonsingular matrix.

Let A =

[
a b
c d

]
. If ad− bc 6= 0, then A is invertible and:

A−1 =
1

ad− bc

[
d −b
−c a

]
If ad− bc = 0, A is not invertible.

THEOREM 4
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2.2. THE INVERSE OF A MATRIX

The quantity ad− bc is referred to as the determinant of a matrix, and we write:

detA = ad− bc

The definition of the inverse of a matrix also allows us to find solutions to a matrix equation
in another way, namely:

If A is an invertible n× n matrix, then for each b in Rn, the equation Ax = b has
the unique solution x = A−1b

THEOREM 5

This theorem is easily proved by multiplying the matrix equation Ax = b with A−1. The
next theorem provides three useful facts about invertible matrices.

a. If A is an invertible matrix, then A−1 is invertible and:

(A−1)−1 = A

b. If A and B are invertible n × n matrices, then so is AB, and the inverse of
AB is the product of the inverses of A and B in reverse order. That is:

(AB)−1 = B−1A−1

c. If A is an invertible matrix, then so is AT , and the inverse of AT is the
transpose of A−1. That is:

(AT )−1 = (A−1)T

THEOREM 6

Elementary Matrices

An elementary matrix is one that can be obtained by performing a single elementary row
operation on an identity matrix.

If an elementary row operation is performed on an m× n matrix A, the resulting
matrix can be written as EA, where the m×m matrix E is created by performing
the same elementary row operation on the identity matrix Im.

Since row operations are reversible, for each elementary matrix E, that is produced by a row
operation on I,there must be a reverse row operation changing E back to I. This reverse
row operation can be represented by another elementary matrix F such that FE = I and
EF = I.

Each elementary matrix E is invertible. The inverse of E is the elementary matrix
of the same type that transforms E into I.

The following theorem is another way to visualize the inverse of a matrix:
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2.2. THE INVERSE OF A MATRIX

An n × n matrix A is invertible if and only if A is row equivalent to In, and in
this case, any sequence of elementary row operations that reduces A to In also
transforms In into A−1.

THEOREM 7

The exact proof of this theorem is omitted here for brevity. It relies mainly on the insight
that any elementary row operation can be represented as an elementary matrix E which al-
ways has an inverse. AsA is essentially (Ep...E1)I then there exists a sequence of matrix mul-
tiplications (Ep...E1)−1 which transforms I into A. Thus A is (Ep...E1)−1I = (Ep...E1)−1

and is thus the inverse of an invertible matrix, meaning that it is invertible itself. From
this theorem it is easy to create the following algorithm for finding the inverse of a matrix
A:

Row reduce the augmented matrix [A I]. If A is row equivalent to I, then [A I]
is row equivalent to [I A−1]. Otherwise A does not have an inverse.
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2.3. CHARACTERIZATIONS OF INVERTIBLE MATRICES

2.3 Characterizations of Invertible Matri-
ces

In this section we relate the theory developed in chapter 1 to systems of n linear equa-
tions with n unknowns and thus square matrices. The main result is given in the next
theorem.

The Invertible Matrix Theorem

Let A be a square n × n matrix. Then the following statements are equivalent.
That is, for a given A, they are either all true or all false.

a. A is an invertible matrix.

b. A is row equivalent to the n× n identity matrix.

c. A has n pivot positions.

d. The equation Ax = 0 has only the trivial solution.

e. The columns of A form a linearly independent set.

f. The linear transformation x 7→ Ax is one-to one.

g. The equation Ax = b has at least one solution for every b in Rn.

h. The columns of A span Rn.

i. The linear transformation x 7→ Ax maps Rn onto Rn.

j. There is an n× n matrix C such that CA = I.

k. There is an n× n matrix D such that AD = I.

l. AT is an invertible matrix.

THEOREM 8

This theorem is named the invertible matrix theorem and its power lies in the fact that
the negation of one statement allows one to include that the matrix is singular (i.e. not
invertible) and thus all above statements are false for this matrix.

Invertible Linear Transformations

Recall that any matrix multiplication corresponds to the composition of linear mappings.
When a matrix A is invertible, the equation A−1Ax = x can be viewed as a statement about
linear transformations as seen in figure 2.3.
A linear transformation T : Rn → Rn is said to be invertible if there exists a function
S : Rn → Rn such that:

S(T (x)) = x for all x in Rn

T (S(x)) = x for all x in Rn
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2.4. SUBSPACES OF RN

Figure 2.3: Illustration of how multiplication by A−1 transforms Ax back to x.

The next theorem shows that if such an S exists, it is unique and a linear transformation.
We call S the inverse of T and denote it as T−1.

Let T : Rn → Rn be a linear transformation and let A be the standard matrix
of T . Then T is invertible if and only if A is invertible. In that case, the lin-
ear transformation S(x) = A−1x is the unique function satisfying the previous 2
equations.

THEOREM 9

2.4 Subspaces of Rn

We start with the following definition:

A subspace of Rn is any set H in Rn that has three properties:

a. The zero vector is in H.

b. For each u and v in H, the sum u + v is in H.

c. For each u in H and scalar c, the vector cu is in H.

DEFINITION

We can say that a subspace is closed by addition and scalar multiplication. A standard
visualization of such a subspace in R3 is a plane through the origin. In this case Span{v1,v2}
is H.
Note how Rn is also a subspace as it satisfies all three properties defined above. Another
special example is the subspace only containing the zero vector in Rn. This set is called the
zero subspace .

Column Space and Null Space of a Matrix

We can relate subspaces to matrices as follows:

The column space of the matrix A is the set Col A of all linear combinations of
the columns of A.

DEFINITION

When a system of linear equations is written in the form Ax = b, the column space of A is
the set of all b for which the system has a solution (which is another way of writing above
definition). Another definition is:
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2.4. SUBSPACES OF RN

Figure 2.4: A subspace H as Span{v1,v2}

The null space of a matrix A is the set Nul A of all solutions of the homogeneous
equation Ax = 0.

THEOREM 12

When A has n columns, the solutions of the equation Ax = 0 belong to Rn, such that Nul
A is a subspace of Rn. Hence:

The null space of an m× n matrix A is a subspace of Rn. Equivalently, the set of
all solutions of a system Ax = 0 of m homogeneous linear equations in n unknowns
is a subspace of Rn.

DEFINITION

We can easily test if a vector is in Nul A by checking whether Av = 0. This is an implicit
definition of Nul A as a condition must be checked every time. In contrast, Col A is defined
explicitly as we can make a linear combination of the columns of A and find a vector b in
Col A. To create an explicit description of Nul A, we must write the solution of Ax = 0 in
parametric vector form.

Basis for a subspace

A subspace of Rn typically contains infinitely many vectors. Hence it is sometimes more
convenient to work with a ’smaller’ part of a subspace, that consists of a finite number of
vectors that span the subset. We can show that the smallest possible set of a subspace must
be linearly independent.

A basis for a subspace H in Rn is a linearly independent set in H that spans H.DEFINITION

A great example of such a smaller part of a subset is that of the n × n identity matrix
which forms the basis of Rn. Its columns are denoted as [e1, ..., en]. We like to call the set
{e1, ..., en} the standard basis for Rn.
The base of the subspace Nul A is easily found by solving the matrix equation Ax = 0 in
parametric vector form.
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2.4. SUBSPACES OF RN

The base of a subspace Col A is however, more complex to find. Let’s start with the following
matrix B:

B =


1 0 −3 5 0
0 1 2 −1 0
0 0 0 0 1
0 0 0 0 0


Note how B is in the reduced echolon form. Also note that if we denote the columns of
B as vectors that: b3 = −3b1 + 2b2 and b4 = 5b1 + −b2. As we are able to express
all columns of B in terms of 3 vectors b1,b2,b3, we can express any linear combination of
the columns of B as a linear combination of 3 vectors! Hence we have found a basis to Col B.

We can extend above discussion to the general matrix A. Note how the linear dependence
relationship between the columns of A and its reduced echolon form B do not change, as
both are the set of solutions to Ax = 0 and Bx = 0, which share a solution set. This brings
us to the following theorem:

The pivot columns of a matrix A form the basis for the column space of A.THEOREM 13

The Row Space

If A is an m × n matrix, each row of A has n entries and thus can be seen as a vector in
Rn. The set of all linear combinations of the row vectors of A is called the row space and
is denoted by Row A. This also implies that Row A is a subspace of Rn. Since each row of
A is a column in AT , we could also write Col AT .

Note however, that we cannot find the basis of the row space of A by simply finding the
pivot columns of A: row reduction of A changes the linear dependence relationships between
the rows of A. However, we can make us of the following theorem:

If two matrices A and B are row equivalent, then their row spaces are the same. If
B is in echelon form, the nonzero rows of B form a basis for the row space of A as
well for that of B.

THEOREM 14

PROOF If B is obtained by row operations on A, than the rows of B are linear combinations
of the rows of A. Thus, any linear combination of the rows of B is actually also a linear
combination of the rows of A, meaning that Row B is in Row A. Also, as row operations
are reversible, the rows of A are linear combinations of the rows of B: Row A is also in Row
B. That means the row spaces are the same. Then, if B is in echelon form, the nonzero
rows of B cannot be a linear combination of those below it. Thus the nonzero rows of B
form the basis of both Row A as Row B.
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2.5. DIMENSION AND RANK

2.5 Dimension and Rank

Coordinate Systems

The main reason for our definition of a subspace H is that each vector in H can be written in
only one way as the linear combination of the basis vectors. Suppose we have the subspace
B = {b1, ...,bp} , and a vector x which can be generated in two ways:

x = c1b1 + ...+ cpbp and x = d1b1 + ...+ dpbp (2.1)

Then subtracting gives:

0 = x− x = (c1 − d1)b1 + ...+ (cp − dp)bp (2.2)

And since B is linearly independent, all weights must be zero. That is, cj = dj for 1 ≤ j ≤ p.
Hence both representations are the same.

Suppose the set B = {b1, ...,bp} is a basis for the subspace H. For each x in H,
the coordinates of x relative to basis B are the weights c1, ..., cp such that
x = c1b1 + ...+ cpbp, and the vector in Rp

[x]B =

 c1
...
cp

 (2.3)

is called the coordinate vector of x (relative to B) or the B-coordinate vector
of x.

DEFINITION

Figure 2.5: A coordinate system of a subspace H in R3

Figure 2.5 illustrates how such a basis B determines a coordinate system of subspace H.
Note how the grid on the plane in the figure makes H ’look’ like R2 while each vector is
still in R3. We can see this as a mapping x 7→ [x]B, which is one-to-one between H and
R2 and preserves linear combinations. We call such a correspondence isomorphism, and say
that H is isomorphic to R2. In general, if B = {b1, ...,bp} is basis for H, then the mapping
x 7→ [x]B is a one-to-one correspondence that makes H look and act like Rp.
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2.5. DIMENSION AND RANK

The Dimension of a Subspace

The dimension of a nonzero subspace H, denoted by dim H, is the number of
vectors in any basis of H. The dimension of the zero subspace {0} is defined to be
zero.

DEFINITION

This makes sense, as in R3, a plane through 0 will be two-dimensional and a line through 0
is one-dimensional.

The rank of a matrix A, denoted by rank A, is the dimension of the column space
of A.

DEFINITION

Since the pivot columns form the basis for Col A, the number of pivot columns is simply
the rank of matrix A.
We find the following useful connection between the dimensions of Nul A and Col A:

The Rank Theorem

If matrix A has n columns, then dim A + dim Nul A = n

THEOREM 15

The following theorem will be important in the applications of Linear Algebra:

The Basis Theorem

Let H be a p-dimensional subspace of Rn. Any linearly independent set of exactly
p elements in H is automatically a basis for H. Also, any set of p elements that
spans H is automatically a basis for H.

THEOREM 16

Recall the definition of the basis of a subspace: it is a set of vectors that both spans the
subspace and is linearly independent. Let us take R3 as a subspace. If we would like to
compose a set of 4 vectors, for which we know that they together span the subspace, we
would already know that the coefficient matrix of the systems composed of these 4 vectors
cannot contain a pivot position in every column, thus has a nontrivial solution to Ax = 0
and thus is linearly dependent. It does not satisfy the requirements of a subspace. However,
removing the vector that is a linear combination of other vectors out of the set gives us a
set of 3 elements and a set that spans the subspace, and corollary is linearly independent as
there are no free variables ! The key to this theorem is that you cannot have one without
other, always ending up a basis consisting of p elements for a p-dimensional subspace.

Rank and the Invertible Matrix Theorem

We can use the developed definitions on rank and dimensions to extend upon the Invertible
Matrix Theorem introduced earlier:
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2.5. DIMENSION AND RANK

The Invertible Matrix Theorem (continued)

Let A be an n × n matrix. Then the following statements are each equivalent to
the statement that A is an invertible matrix.

m. The columns of A form a basis of Rn

n. Col A = Rn

o. dim Col A = n

p. rank A = n

q. Nul A = {0}

r. dim Nul A = 0

THEOREM

PROOF The first statement (m) is easy to prove. By, the basis theorem, any set of n
vectors (i.e. the columns of A) that are linearly independent serves as a basis for Rn. The
columns of A are linearly independent by multiple previous statements of the Invertible
Matrix Theorem: one is that an invertible matrix only has the trivial solution to Ax = 0
as there are no free variables. Hence, the columns are linearly independent and satisfy the
basis theorem. Statement (n) is another way of stating statement (m). Statements (o) and
(p) are equivalent and are a consequence of (m) and (n). Statement (q) and statement (r)
are equivalent and follow from the rank theorem.
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3Determinants

3.1 Introduction to Determinants

Recall from section 2.2 that a 2×2 matrix is invertible if and only if its determinant is
nonzero. To extend this useful fact to larger matrices, we must define the determinant for
an n× n matrix.
Consider 3 × 3 matrix A = [aij ] with a11 6= 0. By use of the appropriate elementary row
operations it is always possible to find that:

A =

 a11 a12 a13
a21 a22 a23
a31 a23 a33

 ∼
 a11 a12 a13

0 a11a22 − a12a21 a13a23 − a13a21
0 0 a11∆



where

∆ = a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31

Since A must be invertible, it must be row equivalent to the 3×3 identity matrix and hence
∆ must be nonzero. We call ∆ the determinant of the 3× 3 matrix A. We can also group
the terms and write:

∆ = a11 · det

[
a22 a23
a32 a33

]
− a12 · det

[
a21 a23
a31 a33

]
+ a13 · det

[
a21 a22
a31 a32

]
Note how the determinant of the smaller 2× 2 matrices is computed as discussed in section
2.2. For brevity we can also write:

∆ = a11 · detA11 − a12 · detA12 + a13 · detA13

Where Aij can be obtained by deleting the ith row and the jth column of matrix A. We
can extend the example above to a more general definition of the determinant of an n×n
matrix.

For n ≥ 2, the determinant of an n × n matrix A = [aij ], is the sum of n terms
of the form ±a1jdetA1j , with plus and minus signs alternating, where the entries
a11, a12, ..., a1n are from the first row of A. In symbols,

detA = a11detA11 − a12detA12 + ....+ (−1)1+na1ndetA1n

=

n∑
j=1

(−1)1+ja1jdetAij

DEFINITION
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3.2. PROPERTIES OF DETERMINANTS

If we define the (i, j)-cofactor of A to be the number Cij given by

Cij = (−1)i+jdetAij

Then
detA = a11C11 + a12C12 + ...+ a1nC1n

Which is called the cofactor expansion across the first row of A. The following theorem
builds upon this definition.

The determinant of an n × n matrix A can be computed by a cofactor expansion
across any row or down any column. The expansion across the ith row using the
cofactor definition is

detA = ai1Ci1 + ai2Ci2 + ...+ ainCin

The cofactor expansion down the jth column is

detA = AijC1j + a2jC2j + ...+ anjCnj

THEOREM 1

Above theorem is very useful for computing the determinant of a matrix containing many
zeros. By choice of the row or column with the least nonzero entries the computation of the
determined can be shortened.

If A is a triangular matrix, then det A is the product of the entries on the main
diagonal of A.

THEOREM 2


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1


In case of a triangular matrix, such as the simple example above, a cofactor expansion
across the first column leads to another triangular 3× 3 matrix whose determinant can be
computed by a cofactor expansion across its first column, leading to a 2×2 matrix etc. The
result is always the product of the main diagonal’s entries.

3.2 Properties of Determinants

Row Operations

Let A be a square matrix.

a. If a multiple of one row of A is added to another row to produce a matrix B,
then det B = det A.

b. If two rows of A are interchanged to produce B, then det B = −det A.

c. If one row of A is multiplied by k to produce B, then det B = k·det A.

THEOREM 3
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3.2. PROPERTIES OF DETERMINANTS

Suppose square matrix A has been reduced to an echelon form U by row replacements and
row interchanges. If we denote the number of interchanges as r, then by use of theorem 3
we find that:

detA = (−1)rdetU

Since U is in echelon form, it must be triangular, and thus det U is simply the product of
its diagonal entries u11, ..., unn. If A is indeed invertible, all diagonal entries of U must be
nonzero. Otherwise, at least one entry is zero and the product is also zero. Thus for the
determinant of A:

A =

(−1)r ·

(
product of

pivots in U

)
if A is invertible

0 if A not invertible

Above generalization allows us to conclude that:

A square matrix A is invertible if and only if det A 6= 0.THEOREM 4

Column Operations

Recall from section 2.8 the discussion on row spaces and the accompanying operations on
the columns of a matrix, analogous to row operations. We can show the following:

If A is an n× n matrix, then det AT= detA.THEOREM 5

Above theorem is simple to prove. For an n × n matrix A, the cofactor of a1j equals the
cofactor of ai1 in AT . Hence the cofactor expansion along the first row of A equals that
along the first column of AT , and thus their determinants are equal.

Determinants and Matrix Products

The following theorem on the multiplicative property of determinants shall proof to be useful
later on.

Multiplicative Property

If A and B are n× n matrices, then det AB = (detA)(detB).

THEOREM 6

A Linearity Property of the Determinant Function

For an n × n matrix A, we can consider detA as a function of the n column vectors in A.
We can show that if all columns in A except for one are held fixed, then detA is a linear
function of this one vector variable. Suppose that we chose the jth column of A to vary,
then:

A = [a1 ...aj−1 x aj+1 ... an]
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3.3. CRAMER’S RULE, VOLUME AND LINEAR TRANSFORMATIONS

Define the transformation T from Rn to R by:

T (x) = det[a1 ...aj−1 x aj+1 ... an]

Then we can prove that,

T (cx) = cT (x) for all scalars c and all x in Rn

T (u + v) = T (u) + T (v) for all u,v in Rn

And thus is a linear transformation.

3.3 Cramer’s rule, Volume and Linear Trans-
formations

Cramer’s Rule

Let A be an n × n matrix and b any vector in Rn, then Ai(b) is the matrix obtained by
replacing the ith column in A by vector b.

Ai(b) = [a1 ... b ... an]

Cramer’s Rule

Let A be an invertible n × n matrix. For any b in Rn, the unique solution x of
Ax = b has entries given by

xi =
detAi(b)

detA
, i = 1, 2, ..., n

THEOREM 7

Denote the columns of A by a1, ...,an and the columns of the n × n identity matrix I by
e1, ..., en. If Ax = b, the definition of matrix multiplication shows that

A · Ii(x) = A[e1 .... x en] = [Ae1 ...x .... ...Aen] = [a1 ... b ... an] = Ai(b)

The use of above computation becomes clear when we use the multiplicative property of
determinants and find that:

(detA)(detIi(x)) = detAi(b)

The second determinant on the left is simply xi, as cofactor expansion along the ith row
always leads to the multiplication of xi and another identity matrix of size (n− 1)× (n− 1)
and thus is equal to xi. Hence (detA) · xi = detAi(b), proving above theorem.

A Formula for A−1

By use of Cramer’s rule we can easily find a general formula for the inverse of an n × n
matrix A. Note how the jth column of A−1 is vector x that satisfies

Ax = ej
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3.3. CRAMER’S RULE, VOLUME AND LINEAR TRANSFORMATIONS

where ej is the jth column of the identity matrix, and the ith entry of x is the (i, j)-entry
of A−1. By Cramer’s rule,

{
(i, j)− entry ofA−1} = xi =

detAi(ej)

detA

Recall from previous sections that Aji denotes the submatrix of A formed by deleting row
j and column I. A cofactor expansion down column i of AI(ej) shows that

detAi(ej) = (−1)i+jdetAji = Cji

where Cji is a cofactor of A. We can then find that the (i, j)-entry of A−1 is the cofactor
Cji divided by detA. Thus

A−1 =
1

detA


C11 C21 ... Cn1
C12 C22 ... Cn2

...
...

...
C1n C2n ... Cnn


The matrix on the right side of above equation is called the adjugant of A, denoted by adj
A. Above derivation can then be simply stated as:

An Inverse Formula

Let A be an invertible n× n matrix, then: A−1 = 1
detAadjA

THEOREM 8

Determinants as Area or Volume

We can now go on and give geometric interpretations of the determinant of a matrix.

If A is a 2× 2 matrix, the area of the parallelogram determined by the columns of
A is |detA|. If A is a 3× 3 matrix, the volume of the parallelepiped determined by
the columns of A is |detA|.

THEOREM 9

PROOF Recall that row interchanges and addition of the multiple of one row to the other
do not change the absolute value of the determinant. These two operations suffice to change
any matrix A into a diagonal matrix, such that the determinant is simply the product of
the diagonal entries and thus the area or volume of the shape defined by the columns of A.

We can also show that column operations do not change the parallelogram or parallelepiped
at all. The proof is simple and is geometrically intuitive, thus omitted for brevity:

Let a1 and a2 be nonzero vectors. Then for any scalar c the area of the parallelo-
gram determined by a1 and a2 equals the area of the parallelogram determined by
a1 and a2 + ca1

THEOREM 10
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3.3. CRAMER’S RULE, VOLUME AND LINEAR TRANSFORMATIONS

Linear Transformations

Determinants can be used to describe an important geometric property of linear transfor-
mations in the plane and in R3. If T is a linear transformation and the set S is the domain
of T , let T (S) denote the set of images of points in S.

Let T : R2 7→ R2 be the linear transformation determined by a 2× 2 matrix A. If
S is a parallelogram in R2, then

{area of T (S)} = |detA| · {area of S}

If T is determined by a 3× 3 matrix A, and if S is a paralellepiped in R3, then

{volume of T (S)} = |detA| · {volume of S}

THEOREM 11

PROOF For our proof, we consider a transformation T determined by 2× 2 matrix A. The
set S bounded by a parallelogram at the origin in R2 has the form:

S = {s1b1 + s2b2 : 0 ≤ s1 ≤ 1, 0 ≤ s2 ≤ 1}

As the transformation T is linear as it is a matrix transformation we know that every point
in the set T (S) is of the form:

T (s1b1 + s2b2) = s1T (b1) + s2T (b2) = s1Ab1 + s2Ab2

It follows that the set T (S) is bounded by the parallelogram determined by the columns of
[Ab1 Ab2], which can be written as AB where B = [b1 b2]. Then we find that:

{area of T (S)} = |detAB| = |detA| · |detB| = |detA| · {area of S}

And above theorem is proven. Note how any translation of the set S by a vector p simply
results in the translation of T (S) by T (p) and is thus not influential on the size of the
resulting set.
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4Orthogonality and Least Squares

4.1 Inner Product, Length, and Orthogo-
nality

We can extend the well-known geometrical concepts of length, distance and perpendicularity
for R2 and R3 to that of Rn.

The Inner Product

The inner product of two vectors u and v in Rn is written as:

[u1 u2 ... un]


v1
v2
...
vn

 = u1v1 + u2v2 + ...+ unvn

DEFINITION

Note how this is simply a matrix multiplication of the form uTv. Using this fact we can
easily deduce the following properties:

Let u,v and w be vectors in Rn and c be scalar, then

a. u · v=v · u

b. (u + v) ·w = u ·w + v ·w

c. (cu) · v = c(u · v) = u · (cv)

d. u · u ≥ 0, andu · u = 0 if and only if u = 0

THEOREM 1

Properties (b) and (c) can be combined several times to produce the following useful fact
with regards to linear combinations:

(c1u1 + ...+ cpup) ·w = c1(u1 ·w) + ...+ cp(up ·w)

The Length of a Vector

If v is in Rn then the square root of v · v is defined as it is never negative.
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4.1. INNER PRODUCT, LENGTH, AND ORTHOGONALITY

The length (or norm) of v is n the nonnegative scalar ‖v‖ defined by

‖v‖ =
√

v · v =
√
v21 + v22 + ...+ v2n, and ‖v‖2 = v · v

DEFINITION

Note how this coincides with the standard notion of length in R2 and R3.

A vector whose length is 1 is called a unit vector. If we divide a nonzero vector v by its
own length - that is multiply by 1/‖v‖ - we obtain a unit vector u because the length of u
is equal to ‖v‖(1/‖v‖) . The process of creating u from v is often called normalizing v.

Distance in Rn

For u and v in Rn, the distance between u and v, written as dist(u,v), is the
length of the vector u− v. That is,

dist(u,v) = ‖u− v‖

DEFINITION

Above definition coincides with the usual formulas for the Eucledian distance between points
in R2 and R3.

Orthogonal Vectors

Note how the vectors in figure 4.1 can only be perpendicular if the distance from u to v is
the same as the distance from u to −v. Note how this is the same as asking the square of

Figure 4.1: Two perpendicular vectors u and v

the distances to be the same. Using this fact it is possible to rewrite this equality as:

‖u− v‖2 = ‖u− (−v)‖2

‖u‖2 + ‖v‖2 − 2u · v = ‖u‖2 + ‖v‖2 + 2u · v
−u · v = u · v

Which can only be satisfied if u · v = 0, bringing us to the following definition:
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4.1. INNER PRODUCT, LENGTH, AND ORTHOGONALITY

Two vectors u and v in Rn are orthogonal (to each other) if u · v = 0.DEFINITION

By the derivation above we also arrive at the following (familiar) theorem:

The Pythagorean Theorem

Two vectors u and v are orthogonal if and only if ‖u + v)‖2 = ‖u‖2 + ‖v‖2

THEOREM 2

Orthogonal Complements

If a vector z is orthogonal to every vector in a subspace W of Rn, then z is said to be
orthogonal toW . The set of all vectors z that are orthogonal toW is called the orthogonal
complement of W and is denoted by W⊥. We introduce the following two facts about
W⊥.

Figure 4.2: Illustration of vector z orthogonal to subspace W

1. A vector x is in W⊥ if and only if x is orthogonal to every vector in a set
that spans W .

2. W⊥ is a subspace of Rn.

1. Every vector in W can be written as a linear combination of vectors in basis of W ,
note how weights of linear combination do not affect whether the linear combination
and vector x are orthogonal as the outcome is always zero due to the orthogonality of
the basis vectors in x.

2. Inner products and thus the question of orthogonality is only defined for vectors with
the same amount of entries. Hence any orthogonal vector x must be in the same Rn
as the vectors in W .

Let A be an m × n matrix. The orthogonal complement of the row space of A is
the null space of A, and the orthogonal complement of the column space of A is
the null space of AT :

(Row A)⊥ = Nul A and (Col A)⊥ = Nul AT

THEOREM 3
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4.2. ORTHOGONAL SETS

The row-column rule for computing Ax shows that if x is in Nul A, then x is orthogonal to
each row of A (if we treat each row as a vector in Rn). Since the rows of A span the row
space, x is orthogonal to Row A. This statement also holds for AT and hence the null space
of AT is the orthogonal complement to Col A as Row AT = Col A.

4.2 Orthogonal Sets

Figure 4.3: Orthogonal set in R3

A set of vectors {u1, ...,up} in Rn is said to be an orthogonal set if each pair of distinct
vectors from the set is orthogonal, that is, if ui · uj = 0 whenever i 6= j. An orthogonal set
is shown in figure 4.3.

If S = {u1, ...,up} is an orthogonal set of nonzero vectors in Rn, then S is linearly
independent and hence is a basis for the subspace spanned by S.

THEOREM 4

Albeit we can argue about the geometrical intuition of above theorem (all vectors are or-
thogonal and hence can be seen as a separate orthogonal coordinate system with the set’s
vectors as basis vectors), we can proof it mathematically. If there is a nontrivial solution
such that 0 = c1u1 + ... + cpup for some weights c1, ..., cp not all zero, then the following
must hold:

0 = 0 · u1 = (c1u1 + ...+ cpup) · u1 = c1(u1 · u1)

because u1 is orthogonal to all vectors in the set S all other terms cancel. As u1 is nonzero,
c1 must be zero. We can repeat above logic for all vectors in S and find that all weights must
be zero, meaning that there is no nontrivial solution and the set is linearly independent.
We now arrive at the following definition

An orthogonal basis for a subspace W of Rn is a basis for W that is also an
orthogonal set.

DEFINITION

Now we can find why an orthogonal basis to a subspace W is convenient:
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4.2. ORTHOGONAL SETS

Let {u1, ...,up} be an orthogonal basis for a subspace W of Rn. For each y in W ,
the weights in the linear combination

y = c1u1 + ...+ cpup

are given by

cj =
y · uj
uj · uj

(j = 1, ..., p)

THEOREM 5

PROOF As in the preceding proof of the linear independence of an orthogonal set, we find
that:

y · u = (c1u1 + ...+ cpup) · u1 = c1(u1 · u1)

Since u1 · u1 is nonzero, the equation can be solved for c1. Geometrically speaking, we are
finding that part of vector y that lies on the line L formed by cu1 and then dividing this part
of y by the length of the vector u1 to find the scalar weight c. Note how this computation is
more convenient than solving a system of linear combinations as used in previous chapters
to find the weights of a given linear combination.

An Orthogonal Projection

Given a nonzero vector u in Rn, consider the problem of decomposing a vector y in Rn into
the sum of two vectors, one a multiple of u and the other orthogonal to u. We wish to write

y = ŷ + z

Where ŷ = αu for some scalar α and z is some vector orthogonal to u. See figure 4.4.
Given any scalar α we know that z = y− αu to satisfy the above equation. Then y− y’ is

Figure 4.4: Orthogonal projection of vector y on line spanned by vector u

orthogonal to u if and only if

0 = (y− αu) · u = y · u− (αu) · u = y · u− α(u · u)

That is, the decomposition of y is satisfied with z orthogonal to u if and only if α = y·u
u·u

and ŷ = y·u
u·uu. The vector ŷ is called the orthogonal projection of y onto u and the

vector z is called the component of y orthogonal to u. The geometrical interpretation
of finding the weights of a linear combination as explained in the previous section is once
again applicable here.
If c is any nonzero scalar and if u is replaced by cu in the definition of ŷ then the orthogonal
projection ŷ does not change. We can say that the projection is determined by subspace L
spanned by u. Sometimes ŷ is denoted by projLy and is called the orthogonal projection
of y onto L.
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4.3. ORTHOGONAL PROJECTIONS

Orthonormal Sets

A set {u1, ...,up} is an orthonormal set if it is an orthogonal set of unit vectors. If W is
the subspace spanned by such a set, then {u1, ...,up} is an orthonormal basis for W .

An m× n matrix U has orthonormal columns if and only if UTU = I.THEOREM 6

PROOF Let us suppose that U has three columns where each is a vector in Rm. Or,
U = [u1 u2 u3]. Then we can compute:

UTU =

 uT1
uT2
uT3

 [u1 u2 u3] =

 uT1 u1 uT1 u2 uT1 u3

uT2 u1 uT2 u2 uT2 u3

uT3 u1 uT3 u2 uT3 u3


The entries in the matrix on the right are all scalars resulting from inner products using the
transpose notation. The columns of U are orthogonal if and only if

uT1 u2 = uT2 u1 = 0, uT1 u3 = uT3 u1 = 0, uT2 u3 = uT3 u2 = 0

And the columns of U all have unit length, as required by the definition of orthonormal
columns, if and only if

uT1 u1 = 1, uT2 u2 = 1, uT3 u3 = 1

And hence the theorem is proved. More over, we find that

Let U be an m × n matrix with orthonormal columns, and let x and y be in Rn.
Then

a. ‖Ux‖ = ‖x‖

b. (Ux) · (Uy) = x · y

c. (Ux) · (Uy) = 0 if and only if x · y = 0

THEOREM 7

Above theorems are particularly useful when applied to square matrices. An orthogonal
matrix is a square invertible matrix U such that U−1 = UT : it has orthonormal columns.
More on these type of matrices will follow.

4.3 Orthogonal Projections

This section covers the analogue to the orthogonal projection of a point in R2 onto a line
through the origin for that in Rn. Given a vector y and a subspace W in Rn there is a
vector ŷ in W such that ŷ is the unique vector in W for which y − ŷ is orthogonal to W ,
and ŷ is the unique vector in W closest to y.
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4.3. ORTHOGONAL PROJECTIONS

Figure 4.5: Geometric interpretation of orthogonal projection of y onto subspace W .

The Orthogonal Decomposition Theorem

Let W be a subspace of Rn. Then each y in Rn can be written uniquely in the
form

y = ŷ + z

where ŷ is in W and z is in W⊥. In fact, if {u1, ...,up} is any orthogonal basis of
W , then

ŷ =
y · u1

u1 · u1
u1 + ...+

y · up
up · up

up

and z = y− ŷ.

THEOREM 8

The vector ŷ in above theorem is called the orthogonal projection of y onto W and is
often written as projWy.

Properties of Orthogonal Projections

The Best Approximation Theorem

Let W be a subspace of Rn, let y be any vector in Rn, and let ŷ be the orthogonal
projection of y onto W . Then ŷ is the closest point in W to y, in the sense that

‖y− ŷ‖ < ‖y− v‖

for all v in W distinct from ŷ.

THEOREM 9

The vector ŷ in above theorem is called the best approximation to y by elements of W .

If the basis to subspace W is an orthonormal set:

If {u1, ...,up} is an orthonormal basis for a subspace W of Rn then

projWy = (y · u1)u1 + (y · u2)u2 + ...+ (y · up)up

if U = [u1 u2 ... up], then

projWy = UUTy for all y in Rn

THEOREM 10
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4.4. THE GRAM-SCHMIDT PROCESS

PROOF The first equation follows directly from the orthogonal decomposition theorem as
uj · uj = 1 for any vector uj in an orthonormal set. The second equation is another way of
writing the first. Note how the first equation indicates that projWy is essentially a linear
combination of the vectors in the orthonormal basis with weights y ·uj . The equation UTy
results in a vector containing the result of all inner products of y with the rows of UT , and
hence the columns of U . Thus, if this resulting vector is used to form a linear combination
with the columns of U , we arrive back at the first equation.

4.4 The Gram-Schmidt Process

The Gram-Schmidt Process

Given a basis {x1, ...,xp} for a nonzero subspace W of Rn, define

v1 = x1

v2 = x2 −
x2 · v1

v1 · v1
v1

v2 = x3 −
x2 · v1

v1 · v1
v1 −

x3 · v2

v2 · v2
v2

...

vp = xp −
xp · v1

v1 · v1
v1 −

xp · v2

v2 · v2
v2 − ...−

xp · vp−1
vp−1 · vp−1

vp−1

Then {v1, ...,vp} is an orthogonal basis for W . In addition

Span{v1, ...,vk} = Span{x1, ...,xk} for 1 ≤ k ≤ p

THEOREM 11

Suppose for some k < p we have constructed v1, ...,vk so that {v1, ...,vk} is an orthogonal
basis for Wk (note that this always possible as we start out with v1 = x1). If we define the
next vector to be added to the orthogonal set as:

vk+1 = xk+1 − projWk
xk+1

By the orthogonal decomposition theorem we konw that vk+1 is orthogonal to Wk. We also
know that projWk

xk+1 is in Wk and is thus also in Wk. Now we know that vk+1 is in Wk+1

as the addition of two vectors in a given subspace always leads to another vector in that
subspace (i.e. closed by addition and subtraction). We have now proven that v1, ...,vk+1 is
an orthogonal set of nonzero vectors (making them all linearly independent) in the (k+ 1)-
dimensional subspace Wk+1. By the basis theorem it follows that this set is a basis, and
thus an orthogonal basis to Wk+1.

Note how we can use the Gram-Schmidt process to find an orthonormal basis by normalizing
the orthogonal basis resulting from the algorithm.
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4.5. LEAST-SQUARES PROBLEMS

4.5 Least-Squares Problems

When a solution for an equation Ax = b is demanded, yet the system is consistent (i.e. no
solution exists), the best one can do is to find an x that makes Ax as close as possible to
b. The general least-squares problem is to find an x that makes ‖b−Ax‖ as small as
possible.

Figure 4.6: Vector b is closer to Ax̂ than to Ax for all other x

If A is m× n and b is in Rm, a least-squares solution of Ax = b is an x̂ in Rn
such that

‖b−Ax̂‖ ≤ ‖b−Ax‖

for all x in Rn

DEFINITION

Solution of the General Least-Squares Problem

We can apply the best approximation theorem to the subspace Col A in order to find an
approximation to the vector b. Let

b̂ = projColAb

Because b̂ is in the column space of A, there must be an x̂ in Rn such that:

Ax̂ = b̂

Hence if a vector x̂ in Rn satisfies above equation, it is a least-squares solution to Ax = b.
See figure 4.7 for a geometrical interpretation. Note that by the Orthogonal Decomposition
Theorem the projection b̂ has the property that b− b̂ is orthogonal to the column space of
A. Then, if we use the fact that aj ·u = aTj u, where aj is a column of A, we can state that:

AT (b−Ax̂) = 0

Which is simply matrix notation for the fact that the vector b − b̂ is orthogonal to the
column space of A. Above equation also brings us to the fact that:

ATAx̂ = ATb

For every least-squares solution to Ax = b. Above matrix equation represents a system
called the normal equations for Ax = b.
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4.6. APPLICATIONS TO LINEAR MODELS

Figure 4.7: A least squares solution

The set of least-squares solutions of Ax = b coincides with the nonempty set of
solutions of the normal equations ATAx = ATb.

THEOREM 13

Solving the augmented matrix of the normal equations leads to a general expression of the
set of least-squares solutions.

The next theorem gives useful criteria for determining when there is only one or more least-
squares solution of Ax = b (note that the projection of b on Col A is always unique).

Let A be an m× n matrix. The following statements are logically equivalent:

a. The equation Ax = b has a unique least-squares solution for each b in Rm.

b. The columns of A are linearly independent.

c. The matrix ATA is invertible.

When these statements are true, the unique least-squares solution x̂ is given by

x̂ = (ATA)−1ATb

THEOREM 14

PROOF If statement (b) is true, we know that there are no free variables in any equation
Ax = v and there is one unique solution for every v in Col A, hence also for the least-squares
solution of Ax = b and thus statement (a) is true. Statement (c) follows from the fact that
there is an unique solution x̂ = (ATA)−1ATb.
If a least-squares solution x̂ is used to produce an approximation Ax̂ to b, the distance
between Ax̂ and b is called the least-squares error of this approximation.

4.6 Applications to Linear Models

In this section, we denote the matrix equation Ax = b as Xβ = y and refer to X as the
design matrix, β as the parameter vector, and y as the observation vector.
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4.6. APPLICATIONS TO LINEAR MODELS

Least-squares Lines

The simplest relation between two variables x and y is the linear equation y = β0 + β1x.
Experimental data often produce points (x1, y1), ..., (xn, yn) that, when graphed, seem to lie
close to a line. We would like to find parameters β0 and β1 that make the line as close as
possible to the measured data. Suppose we have chosen a combination of β0 and β1. Then
for each data point (xi, yi) there is a corresponding point (xi, β0 +β1xi) on the line with the
same x-coordinate. We call yi the observed value of y and β0 + β1xi the predicted value of
y. The difference between the two is called a residual. The least-squares line is the line

Figure 4.8: Line fit to experimental data.

y = β0 + β1x that minimizes the sum of the squares of the residuals. It is also called a line
of regression of y on x, because any error is assumed to be only in the y-coordinates.
The coeficients β0, β1 of the line are called regression coefficients. Note how, if all data
points were satisfied by our choice of regression coefficients that the equation:

β0 + β1xi = yj

would be satisfied for 1 ≤ i ≤ n. We can write this system of linear equations as:

Xβ = y, where X =


1 x1
1 x2
...

...
1 xn

 , β =

[
β0
β1

]
, y =


y1
y2
...
yn


Note how computing the least-squares solution of Xβ = y is equivalent to finding the line
that determines the least-squares line in figure 4.8. Common practice is to compute the
average x̄ of the original x-values and form a new variable x∗ = x − x̄∗. This is referred
to as the mean-deviation form. In this case, the columns of design matrix X will be
orthogonal and simplify the computation of the least-squares solutions.

The General Linear Model

It is also possible to fit data points with something other than a straight line. The matrix
equation used for the linear model is still Xβ = y but the form of X may change. Also, a
residual vector ε is introduced and defined as ε = y−Xβ such that

y = Xβ + ε
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4.6. APPLICATIONS TO LINEAR MODELS

A data fit by curves has the general form

y = β0f0(x) + β1f1(x) + ...+ βnfn(x)

Which can be extended to the familiar matrix equation Xβ = y. Note that fi(x) may be
any function of x, and is still used in a linear model as the coefficients βi are unknown.
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5Eigenvalues and Eigenvectors

5.1 Eigenvectors and Eigenvalues

Figure 5.1: Note how u is an eigenvector of A as Au = −4u. Vector v is not an eigenvector

An eigenvector of an n× n matrix A is the nonzero vector x such that Ax = λx
for some scalar λ. A scalar λ is called an eigenvalue of A if there is a nontrivial
solution x of Ax = λx; such an x is called an eigenvector corresponding to λ.

DEFINITION

Note that we can also say that an eigenvector must satisfy:

Ax− λx = 0

For x 6= 0. Hence:
(A− λI)x = 0

Must be satisfied. Thus the set of all eigenvectors for a given λ and matrix A is the null
space of A− λI. This subspace of Rn is denoted as the eigenspace.

The eigenvalues of a triangular matrix are the entries on its main diagonal.THEOREM 1

PROOF Consider the case of a 3× 3 matrix A. If A is upper triangular, then:

A− λI =

 a11 a12 a13
0 a22 a23
0 0 a33

−
 λ 0 0

0 λ 0
0 0 λ

 =

 a11 − λ a12 a13
0 a22 − λ a23
0 0 a33 − λ


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5.2. THE CHARACTERISTIC EQUATION

Note that if A would have eigenvalues, then A − λI must have one or more free variables
as otherwise the equation would only be satisfied for the zero vector. Hence, one of the
diagonal entries of A − λI must be zero (i.e. the matrix does not have a pivot position
in every column). Thus, for each diagonal entry of A, there exists an eigenvalue λ and
accompanying eigenvectors.

If v1, ...,vr are eigenvectors that correspond to distinct eigenvalues λ1, ..., λr of an
n× n matrix A, then the set {v1, ...,vr} is linearly independent.

THEOREM 2

Eigenvectors and Difference Equations

A first-order difference equation is of the form:

xk+1 = Axk (k = 0, 1, 2, ...)

If A is n× n, then this a recursive (i.e. depending on the preceding term) description of a
sequence {xk} in Rn. We define a solution to be an explicit description of {xk} which does
not depend directly on A or the preceding terms in the sequence other than the original
term x0. The simplest way to such a solution is

xk = λkx0

Where x0 is an eigenvector and λ is its corresponding eigenvalue. Note that this holds since

Axk = A(λkx0) = λk(Ax0) = λk(λx0) = λk+1x0 = xk+1

This way of forming a solution makes sense, as we find an eigenvector with respective
eigenvalue λ such that Ax0 = λx0 which is also in the respective eigenspace as it is simply
a multiple of x0 ! Hence we can once again use scalar multiplication by λ to represent Ax,
which may continue infinitely.

5.2 The Characteristic Equation

We start this section with an extension of the Invertible Matrix Theorem. The use of this
extension will become evident soon after.

The Invertible Matrix Theorem (continued)

Let A be an n× n matrix. Then A is invertible if and only if:

a. The number 0 is not an eigenvalue of A.

b. The determinant of A is not zero.

THEOREM

The Characteristic Equation

The following scalar equation allows one to directly find the eigenvalues of a square matrix
A.
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5.3. DIAGONALIZATION

A scalar λ is an eigenvalue of an n × n matrix A if and only if λ satisfies the
characteristic equation

det(A− λI) = 0

This makes sense, since a determinant equal to zero indicates that the matrix is not invert-
ible which indicates that it does contain free variables, which means that there are nontrivial
solutions to (A− λI)x = 0) and hence means that λ is an eigenvalue of A.

The n-degree polynomial in λ resulting from the computation of the determinant of an n×n
matrix is called the characteristic polynomial of A. The eigenvalues of A are the roots
of this polynomial. The multiplicity of an eigenvalue λ is its multiplicity as a root of the
characteristic equation (i.e. how many times the scalar occurs as root).

Similarity

If A and B are n × n matrices, then A is similar to B if there is an invertible matrix P
such that P−1AP = B, or, equivalently, A = PBP−1. We can also write Q = P−1 and
thus Q−1BQ = A. Then A and B are similar. If we change A into P−1AP it is called a
similarity transformation.

I

f n × n matrices A and B are similar, then they have the same characteristic
polynomial and hence the same eigenvalues (with the same multiplicities).

THEOREM 4

PROOF If B = P−1AP , then

B − λI = P−1AP − λP−1P = P−1(AP − λP ) = P−1(A− λI)P

Then using the multiplicative property of determinants:

det(B − λI) = det[P−1(A− λI)P ] = det(P−1) · det(A− λI) · det(P )

Since det(P−1) · det(P ) = det(P−1P ) = det(I) = 1, we see that det(B − λI) = det(A− λI)
and hence they have the same characteristic polynomial.

5.3 Diagonalization

This section discusses the useful concept of a diagonal matrix. If we have such a diagonal
matrix D

D =

[
d11 0
0 d22

]

with d11 and d22 nonzero, we have that:

Dk =

[
dk11 0
0 dk22

]
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5.3. DIAGONALIZATION

If we recall from section 5.2 that a matrix A similar to D can be written as A = PDP−1

with P invertible, then we can easily find an expression to the k-th power of A. We call
such a matrix A that is similar to a diagonal matrix, diagonalizable.

The Diagonalization Theorem

An n × n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors. In fact, A = PDP−1, with D a diagonal matrix, if and only if the
columns of P are n linearly independent eigenvectors of A. In this case, the diagonal
entries of D are eigenvalues of A that correspond, repsectively, to the eigenvectors
in P .

THEOREM 5

In other words, A is diagonaliziable if and only if there are enough eigenvectors to form a
basis of Rn. We call such a basis an eigenvector basis of Rn.

PROOF If P is an n × n matrix with columns v1, ...,vn, and if D is any diagonal matrix
with diagonal entries λ1, ..., λn, then

AP = A[v1 v2 ... vn] = [Av1 Av2 ... Avn]

and

PD = P


λ1 0 ... 0
0 λ2 ... 0
...

...
...

0 0 ... λn

 = [λ1v1 λ2v2 ... λnvn]

Now suppose that A is indeed diagonalizable and A = PDP−1. Then right-multipliying
this equality with matrix P gives that AP = PD, implying that:

[Av1 Av2 ... Avn] = [λ1v1 λ2v2 ... λnvn]

If we equate columns we find that:
Avj = λjvj

for 1 ≤ j ≤ n. As P is invertible, all columns are linearly independent and thus are nonzero.
Hence, the equation above implies that λ1, λ2, ..., λn are indeed eigenvalues with correspond-
ing eigenvectors v1,v2, ...,vn, which proves the theorem above.

The following theorem is a more brief condition than the previous theorem to see if a matrix
is indeed diagonalizable.

An n× n matrix with n distinct eigenvalues is diagonalizable.THEOREM 6

PROOF Let λ1, ..., λn be distinct eigenvalues of a n × n matrix A, then v1, ...,vn are the
corresponding eigenvectors. By theorem 2 in section 5.1, these eigenvectors are linearly
independent, hence there exists an invertible matrix P composed of n eigenvectors thus
satisfying the requirement for A to be diagonalizable.
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5.3. DIAGONALIZATION

Matrices Whose Eigenvalues Are Not Distinct

When A is diagonalizable but has fewer than n distinct eigenvalues and thus fewer than n
linearly independent eigenvectors to construct matrix P , it is still possible to build P in a
way that makes P automatically invertible.

Let A be an n× n matrix whose distinct eigenvalues are λ1, ..., λp.

a. For 1 ≤ k ≤ p, the dimension of the eigenspace for λk is less than or equal to
the multiplicity of the eigenvalue λk.

b. The matrix A is diagonalizable if and only if the sum of the dimensions of
the eigenspaces equals n, and this happens if and only if (i) the characteristic
polynomial factors completely into linear factors and (ii) the dimension of
the eigenspace for each λk equals the multiplicity of λk.

c. If A is diagonalizable and Bk is a basis for th eigenspace corresponding to λk
for each K, then the total collection of vectors in the sets b1, ...,Bp forms an
eigenvector basis for Rn.

THEOREM 7

Note how (b) and (c) follow from (a), it basically states that certain distinct eigenvalues
may have a basis consisting of more than one eigenvectors (which are linearly independent)
which thus can be used to form the invertible matrix P , if the total amount of linearly
independent eigenvectors is n or greater.

Linear Transformations on Rn

Sometimes, it is more convenient to represent a transformation T : Rn → Rn with respect to
a different coordinate system in Rn. Note how we can represent a linear transformation as
x 7→ Ax. We would like to find a manner in which we can represent a linear transformation
of a vector u defined relative to a basis B in Rn that is represented as u 7→ Du.

Diagonal Matrix Representation

Suppose A = PDP−1, where D is a diagonal n × n matrix. If B is the basis for
Rn formed from the columns of P , then D is the B-matrix for the transformation
x 7→ Ax.

THEOREM 8

PROOF Denote the columns ofP by b1, ...,bn, so that B = {b1, ...,bn} and P = [b1, ...,bn].
In this case, we can represent the coordinate transformation relative to basis B as:

P [x]B = x and [x]B = P−1x

Note how this makes sense as P [x]B is a linear combination of the columns of P , which is
basis B, with weights of coordinate vector [x]B, which is relative to basis B and thus results
in the ’original’ vector x.
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If T (x) = Ax for x in Rn, then

[T ]B = [[T (b1)]B ... ...[T (bn)]B]]

= [[Ab1]B, ... [Abn]B]

= [P−1Ab1 ... P−1Abn]

= P−1A[b1 ... bn]

= P−1AP

Since A = PDP−1, we have [T ]B = P−1AP = D, which proves above theorem.

5.4 Complex Eigenvalues

Since the characteristic equation of an n× n matrix involves a polynomial of degree n, the
equation always has exactly n roots, counting multiplicities, provided that possibly complex
roots are included. The key is to let A also act on the space Cn of n-tuples of complex
numbers.

The matrix eigenvalue-eigenvector theory already developed for Rn applies equally well to
Cn. So a complex scalar λ if and only if there is a nonzero vector x in Cn such that Ax = x.

Real and Imaginary parts of Vectors

The complex conjugate of a complex vector x in Cn is the vector x̄ in Cn whose entries are
the complex conjugates of the entries in x. The real and imaginary parts of a complex
vector x are the vectors Re x and Im x in Rn formed from the real and imaginary parts of
the entries of x

For example, if x =

 3− i
i

2 + 5i

 =

 3
0
2

+ i

 −1
1
5

, then

Re x =

 3
0
2

 , Im x =

 −1
1
5

 , and x̄ =

 3
0
2

− i
 −1

1
5

 =

 3 + i
−i

2− 5i


If B is an m × n matrix with possibly complex entries, then B̄ denotes the matrix whose
entries are the complex conjugates of the entries in B. Properties of conjugates for complex
numbers carry over to complex matrix algebra:

rx = r̄x̄, Bx = B̄x̄, BC = B̄C̄, and rB = r̄B̄
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5.5. APPLICATIONS TO DIFFERENTIAL EQUATIONS

Eigenvalues and Eigenvectors of a Real matrix That Acts
on Cn

Let A be an n×n matrix whose entries are real. Then Ax = Āx̄ = Ax̄. If λ is an eigenvalue
of A and x is a corresponding eigenvector in Cn, then

Ax̄ = Ax = λx = λ̄x̄

Hence λ̄ is also an eigenvalue of A, with x̄ a corresponding eigenvector. This shows that
when A is real, its complex eigenvalues occur in conjugate pairs. A complex eigenvalue
refers to an eigenvalue of the form λ = a+ bi, with b 6= 0.

If C =

[
a −b
b a

]
where a and b are real and not both zero, then the eigenvalues of C are

5.5 Applications to Differential Equations

In many applied problems, several quantities are varying continuously in time, and they are
related by a system of differential equations:

x′1 = a11x1 + ...+ a1nxn

...

x′n = an1x1 + ...+ annxn

Where x1, ..., xn are differentiable functions of t, with derivatives x′1, ..., x
′
n and constants

aij . The crucial feature of the system above is that it is indeed linear. In order to see this
we write the system in matrix notation and find:

x′(t) = Ax(t)

where

x(t) =

 x1(t)
...

xn(t)

 , x′(t) =

 x′1(t)
...

x′n(t)

 , and A =

 a11 ... a1n
...

...
an1 ... ann


A solution of equation 5.5 is a vector-valued function that satisfies the equation for all t in
some intervfal of real numbers, such as t ≥ 0. Th equation is linear because both differenti-
ation of a function and multiplication of vectors by a matrix are linear transformations. If
u and v are both solutions of x′ = Ax, then cu + dv is also a solution because

(cu + dv)′ = cu′ + cv′

= cAu + dAv = A(cu + dv)
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5.5. APPLICATIONS TO DIFFERENTIAL EQUATIONS

Note that the zero function is a trivial solution of x′ = Ax. It can be shown that there
always exists what is called a fundamental set of solutions to 5.5. If A is n × n, then
there are n linearly independent functions in a fundamental set, and each solution of 5.5 is
a unique linear combination of these n functions. If a vector x0 is specified, then the initial
value problem is to construct the function x such that x′ = Ax and x(0) = x0. When A
is diagonal, the solution of such a system of differential equations is simple, consider:[

x′1(t)
x′2(t)

]
=

[
3 0
0 −5

] [
x1(t)
x2(t)

]
Which represents the system

x′1(t) = 3x1(t)

x′2(t) = −5x2(t)

The system is said to be decoupled as each derivative only depends on its own initial function.
The solution to the system is[

x1(t)
x2(t)

]
=

[
c1e

3t

c2e
−5t

]
= c1

[
1
0

]
e3t + c2

[
0
1

]
e−5t

Which suggests that for the general equation x′ = Ax, a solution might be a linear combi-
nation of functions of the form

x(t) = veλt

for some scalar λ and some fixed nonzero vector v. Observe that, by this suggested solution
we have that

x′(t) = λveλt

Ax(t) = Aveλt

As eλt is never zero, x′(t) will equal Ax(t) if and only if λv = Av, that is, if and only if λ is
an eigenvalue of A and v is a corresponding eigenvector. Thus each eigenvalue-eigenvector
pair provides a solution of x′ = Ax.

Figure 5.2: Origin functioning as a saddle point on the left and as an attractor on the right

Note that if we have two solutions to a system x′(t) = Ax(t), namely x1 and x2, that any
linear combination of these is also a solution of the system by the linearity of differentiation
and matrix transformation. Note that the behavior of the solution depends on the exponent
λ. If all exponents are negative, the origin functions as an attractor as for large values of
t the solution x(t) will approach zero, which is opposite to the behavior of a solution with
only positive exponents. If one exponent is negative and the other is positive, the origin
functions as a saddle point. Both are shown in figure 5.2.
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Decoupling a Dynamical System

The following discussion shows that the method treated in the previous section produces
a fundamental set of solutions for any dynamical system described by x′ = Ax when A is
n × n and has n linearly independent eigenvectors (i.e. A is diagonalizable). Suppose the
eigenfunctions for A are

v1e
λ1t, ...,vne

λnt

With v1, ...,vn linearly independent eigenvectors. Let P = [v1...vn] and let D be the
diagonal matrix with entries λ1, ..., λn so that A = PDP−1. Now make a change of variable,
defining a new function y by

y(t) = P−1x(t) or, equivalently, x(t) = Py(t)

Note how y(t) is the coordinate vector of x(t) relative to the eigenvector basis. If we
substitute Py in x′ = Ax

d

dt
(Py) = A(Py) = (PDP−1)Py = PDy

Since P is a constant matrix, the left side is differentiated to Py′, hence if we left multiply
both equations with P−1 we have that y′ = Dy, or

y′1(t)
y′2(t)

...
y′n(t)

 =


λ1 0 ... 0

0 λ2
...

...
. . . 0

0 ... 0 λn



y1(t)
y2(t)

...
yn(t)


By change of variable from x to y we have decoupled the system of differential equations.
Now the solution is simply:

y(t) =

 c1e
λ1t

...
cne

λnt

 , where

 c1
...
cn

 = y0 = P−1x0

To obtain the general solution x of the original system

x(t) = Py(t) = [v1 ... vn]y(t)

= c1v1e
λ1t + ...+ cnvne

λnt

Complex Eigenvalues

First recall that the complex eigenvalues of a real matrix always come in conjugate pairs.
Then, we have that two solutions of x′ = Ax are

x1(t) = veλt and x2(t) = veλt

Note that above eigenfunctions are complex, and that most applications require real eigen-
functions. Fortunately, the real and imaginary parts of x1 are real solutions of x′ = Ax,
because they are linear combinations of the solutions above:

Re(veλt) =
1

2
[x1(t) + x1(t)], Im(veλt) =

1

2i
[x1(t)− x1(t)]
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5.5. APPLICATIONS TO DIFFERENTIAL EQUATIONS

So let us find an expression for the real and imaginary parts of x1. Recall that it is possible,
by the use of Maclaurin series, to show that

eλt = e(a+bi)t = eat · eibt = eat(cos bt+ i sin bt)

By use of this fact the two real solutions of x′ = Ax are

y1(t) = Re x1(t) = [(Re v)cos bt− (Im v)sin bt]eat

y2(t) = Im x1(t) = [(Re v)sin bt+ (Im v)cos bt]eat

Moreover, it can be shown that y1(t) and y2(t) are linearly independent functions (when
b 6= 0).

58



6Symmetric Matrices and Quadratic
Forms

6.1 Diagonalization of Symmetric Matrices

A symmetric matrix is a matrix A such that AT = A, which means that A must be square.
Note that its main diagonal entries may be arbitrary, whereas other entries occur in pairs
on opposite sides of the main diagonal.

A =

 a b c
b d e
c e f

 = AT

If A is symmetric, then any two eigenvectors from different eigenspaces are orthog-
onal.

THEOREM 1

Proof Let v1 and v2 be eigenvectors that correspond to distinct eigenvalues, say, λ1 and λ2.
To show that v1 · v2 = 0, compute

λv1 · v2 = (λ1v1)Tv2 = (Av1)Tv2

= (vT1 A
T )v2 = vT1 (Av2)

= vT1 (λ2v2)

= λ2v
T
1 v2 = λ2v1 · v2

Hence (λ1 − λ2)v1 · v2 = 0. But λ1 − λ2 6= 0, so v1 · v2 = 0.
An n× n matrix A is said to be orthogonally diagonalizable if is an orthogonal matrix
P (with P−1 = PT ) and a diagonal matrix D such that

A = PDPT = PDP−1

The diagonalization of above requires n linearly independent orthonormal eigenvectors.
When is this possible? If A is orthogonally diagonalizable, then

AT = (PDPT )T = PTTDTPT = PDPT = A

Thus it is possible if A is symmetric. We can then reason the following:

An n × n matrix A is orthogonally diagonalizable if and only if A is a symmetric
matrix.

THEOREM 2
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The Spectral Theorem

The set of eigenvalues of a matrix A is sometimes called the spectrum of A, and the following
description fo the eigenvalues is called a spectral theorem.

The Spectral Theorem for Symmetric Matrices

An n× n symmetric matrix A has the following properties:

a. A has n real eigenvalues, counting multiplicities.

b. The dimension of the eigenspace for each eigenvalue λ equals the multiplicity
of λ as a root of the characteristic equation.

c. The eigenspaces are mutually orthogonal, in the sense that eigenvectors cor-
responding to different eigenvalues are orthogonal.

d. A is orthogonally diagonalizable.

THEOREM 3

PROOF Property (a) can be proven by the fact that any vector x in Cn satisfies that
q = xTAx is real, hence λ must be real as xTAx = xλx and xTx is real. Part (c) is
Theorem 1. Statement (b) follows from (d).

Spectral Decomposition

Suppose A = PDP−1, where the columns of P are orthonormal eigenvectors u1, ...,un of
A and the corresponding eigenvalues λ1, ..., λn are in the diagonal matrix D. Then, since
P−1 = PT ,

A = PDPT = [u1 ... u2]

 λ1 0
. . .

0 λn


 uT1

...
uTn


= [λ1u1 ... nun]

 uT1
...

uT2


Then we can represent A as follows:

A = λ1u!u
T
1 + λ2u2u

T
2 + ...+ λnunuTn

This representation of A is called a spectral decomposition of A because it breaks up A
into terms determined by the spectrum (i.e. eigenvalues) of A. Note how every term is an
n× n matrix of rank 1. Why? Each column of matrix λjuju

T
j is a multiple of uj .

6.2 Quadratic Forms

A quadratic form on Rn is a function Q defined on Rn whose value at a vector x in Rn can
be computed by an expression of the form Q(x) = xTAx, where A is an n × n symmetric
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6.2. QUADRATIC FORMS

matrix. The matrix A is called the matrix of the quadratic form. Note how the simplest
example of a nonzero quadratic form is the inner product Q(x) = xT Ix = ‖x‖2.

Change of Variable in a Quadratic Form

If x represents a variable vector in Rn, then a change of variable is an equation of the
form

x = Py, or equivalently, y = P−1x

where P is an invertible matrix and y is a new variable vector in Rn. Here y is the coordinate
vector of x relative to the basis of Rn determined by the columns of P .
If the change of variable is made in a quadratic form xTAx, then

Figure 6.1: Change of variable in xTAx

xTAx = (Py)TA(Py) = yTPTAPy = yT (PTAP )y

and the new matrix of the quadratic form is PTAP . Since A is symmetric, Theorem 2
guarantees that there is an orthogonal matrix P such that PTAP is a diagonal matrix D,
and we can write the quadratic form as yTDy. Why would we do this? By ensuring that
the matrix of the quadratic form is diagonal, we avoid cross-product terms. Hence we have
the following theorem:

The Principal Axes Theorem

Let A be an n × n symmetric matrix. Then there is an orthogonal change of
variable, x = Py that transforms the quadratic form xTAx into a quadratic form
yTDy with no cross-product term.

THEOREM 4

The columns of P in the theorem are called the principal axes of the quadratic form xTAx.
The vector y is the coordinate vector of x relative to the orthonormal basis of Rn given by
these principal axes.

A Geometric View of Principal Axes

Suppose Q(x) = xTAx, where A is an invertible 2 × 2 symmetric matrix, and let c be a
constant. It can be shown that the set of all x in R2 that satisfy

xTAx = c
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either corresponds to an ellipse (or circle), a hyperbola, two intersecting lines, or a single
point, or contains no points at all. If A is a diagonal matrix, the graph is in standard position
as in figure 6.2. If A is not diagonal, the graph is rotated out of standard position as cross-

Figure 6.2: An ellipse and hyperbola in standard position

product terms are introduced. Finding the principal axes (determined by the eigenvectors
of A) amounts to finding a new coordinate system with respect to which the graph is in
standard position, as shown in figure 6.3.

Figure 6.3: An ellipse and hyperbola not in standard position

Classifying Quadratic Forms

When A is an n × n matrix, the quadratic form Q(x) = xTAx is a real-valued function
with domain Rn. Figure 6.4 shows four quadratic forms with domain R2, where the points
(x1, x2, z) with z = Q(x) are plotted.

Figure 6.4: Graphs of quadratic forms. Classifications: (a) positive definite, (b) positive semidefi-
nite, (c) indefinite, (d) negative definite
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6.2. QUADRATIC FORMS

A quadratic form Q is:

a. positive definite if Q(x) > 0 for all x 6= 0,

b. negative definite if Q(x) < 0 for all x 6= 0,

c. indefinite if Q(x) assumes both positive and negative values.

DEFINITION

In addition to this definition, Q is said to be positive semidefinite if Q(x) ≥ 0 for all x,
and to be negative semidefinite if Q(x) ≤ 0 for all x. Note how both (a) and (b) in figure
6.4 are positive semidefinite, but the form in (a) is also positive definite.

Quadratic Forms and Eigenvalues

Let A be an n× n symmetric matrix. Then a quadratic form xTAx is:

a. positive definite if and only if the eigenvalues of A are all positive,

b. negative definite if and only if the eigenvalues of A are all negative, or

c. indefinite if and only if A has both positive and negative eigenvalues.

THEOREM 5

PROOF By the Principal Axes Theorem, there exists an orthogonal change of variable
x = Py such that

Q(x) = xTAx = yTDy = λ1y
2
1 + λ2y

2
2 + ...+ λny

2
n

where λ1, ..., λn are the eigenvalues of A.
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