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LINEAR ALGEBRA

LECTURE 1.  PREPARATION SYSTEMS  OF  LINEAR EQUARONS

Lincoeguahon

5×  + y =  2 -

{
Cox - 3y+4z=| →

56%+52×2=+24×3
 = ,

} the scalars  are the coefficients of the  equator

↳
system of linear  equations .

no  solution nfnle  solutions

• - one  solution

° Theorem : A linear  system always has  too  cone  or  nfnetely many solutions
.

°  consistent :  at least  one  solution

•  inconsistent : no  solutions

o Degorithm for  solving a linear  system .

Replace the system by  an  equivalent  system  easier to  solve .

Each being an  operation of one of the follow ins types :

1
.

One  equation  is  replaced by tie  sum of itself and  a  multiple of another  equation .

2
. Two  equations  are  Interchanged

3 One  equation  is  multiplied by a  nor  cero  constant .
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LECTURE 1

The augmented matrix :

X ,  +  5×2  +3×3  =  1

am  txznsx .  . s } - ft,
!ftp.i~l.fi?a3lMx.wftgEe3stItg~fb5sIHI

- X ,  i  Xz  t  3  xs  =  I

Row  REDUCTION : EXAMPLE  1

g
focus  on  second  and third block

.
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Staircase
°  " °  Possibility of choice

@0  012 ] it  is  not  possible
.

EXAMPLE  2
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ECHELOR FORM

Definition : s rectangular  matrix is  in  echelon form  If it has the following three properties :

1
. Del  nonzero  rows  are  above  any rows of all  Zeros .

2 ' Each leading  entry of a  row ( pivot ) is  in  a  warn to the  right of the leading entry of the  row  above  it
.

3 . All  atnes  In a  column below  a leading entry are  Zoos
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Solution TECHNIQUE

^
.  Use elementary row  operations to  obtain  echelon form of tie  augmented  matrix

2. Determine  if the  system is  consistent

3. Use backward substitution  on the Grew  system of the  echelon form to  obtain the solutions

Definition :

D matrix  in  reduced echelon form  if it has the following three  properties :

1
.

 It  is  in  echelon form
2.  The leading entry in  each  nonzero  row  is  1

Definition :

1. The basic  variables of a linear  system  are the variables  corresponding to pivot  columns

2.  The free  variables of a linear  system  one the variables that have no  pivot  on the  corresponding  column
.

3
.

 The  solution  is
found by expressing each  basic  variable  as  a function of the free  variables .

Row  equivalent :  exists  a  sequence of row  operations that transforms  one  matrix 10  another
.

Both have the same  solution
.

PRE LEONRE 2 VECTORS  AND LINEAR COMBINATIONS

Vectors  in IR
"

a  vector  v.with  I components is  written  as  v -
|✓g¥n|

Definition :

The set of all vectors  with n  components is  called R "

° Equality and the  zero  vectors :

Two  vectors  w  and v  in R
"

are  equal if all  components  are  equal v ,  =w .  vz  =  na
. . .

The Zero  vector 0 in A
"

,s  a  vector  which has  as  wmrsonats  h Zeros
.

o VECTOR SDITION
° DLGEBRAIC  PROPERTIES  of R

"
Vectors  WN ,  W  scalars :  c , d

°  Sum  of U  and  V  is  equal to  U  +  v

a) u  +  v  =  Vtw e) C ( utv ) = Cu  +  cv

u , | kg ] v=|}z) utv  = (§g) b) ( utv ) +  w  =  u  + ( vi.  w ) f ) ( cto ) u  =  Cu  + du

c) u  to  =  w G ) C Cdu ) = (Cd ) a
0 SCALAR MULTIPLICATION

d) u - u=o h ) 1u=u

° Goes  a  vector
' '

uiin IR
"

and a  scalar  C

The scalar product of u by c  is  a  new  vector  CU

E×aµo#_ Is
[?g ] a linear  combination of [¥ and #

a ' ( } ) and a  =3  cu= (?g)
× , # , a ( §|=[ty)

tscaearmuetnacaton

X ,
• diner combination ⇐gift (EID = (} )

vectors :  ✓ , ,uz .
. . .

 Up 3. Augmented Matrix

scabs :c , .cz . . .gs } uedor Y Y ' EIV'  + Aik " ' '  + CPIVP

⇐ Eg I ?y]~|gly0|3g| 2 Vector aditionweights

a  ⇒ f×ixI¥I'yXz  =2 -5×1+6×2=-3



VECTOR EQUATIONS

. A vector  equation  is  as  equation of the form

X ,  a ,  +  Xzaz  +
.  . . .  Xn  an  = b ( l )

with al .az . . .  an  and  b  in  R
"

known
.

° THEOREM : A vector  equation ( i ) has the same  solutions  as the linear  system  with augmented matrix

[ a ,  as
. ...  an lb ]

LECTURE 2 Spans  and Matrix .  VECTOR PRODUCTS

° CONSISTENCY
:  of a  vector  equation ° SPANS

. X ,  a ,  +  xz.ae  + .  . .
 xn .  an  = b

° Definition : The  subset of R
"

spanned ( or generated ) by a , .az . .  ap  in  R
"

is  he  set of all linear  combinations of a , ,  az
.

... ,  ap
" b is  a linear  combination of the vectors  a , ...

,
an

Span { a .az . ... ,  ap }. for  which b Is the linear  system  consistent '

This set  contains all vectors that  can be  written  as

Xi  al  t  XZAZ  +
. . .

 + Xp .  Ap

MATRIX - VECTOR PRODUCT

• Definition :

If s  is  an  mxn  matrix /  with  columns  ai , ...  an
,  and if ×  is  in Ra

,
then the product of S and ×

, denoted by DX ,  is the Area

combination of the columns of A  using the corresponding entries  In ×  as  weight ; that  is
.

Ax  = [ a ,  az
. . .  an ]|§fg|=  aixi  +  Azxr . . .  . an Xn

0 MATRIX EQUATIONS

a Theorem :

If A  is  an  mxn  matrix
,  with columns  a ,  -

.  . an
,  and if b

is  in IR
"

,
then the  natnx  eauahon Ax  =b has the  same solution

as the vector  equation .  × ,  a ,  +  xzaz  +
. . . .  +  xaan  = b which has the same  solution  as [ a ,  az .

. .  an lb ]

PRE LECNRE 3 SOLUTION
SETS  OF  LINEAR  EQUATIONS

° HOMOGENEOUS  EQUATION ?

XZ  tX3  =  O
. Systems for  which the right hand sides  consists of °^lY Ms 2×1+4×2  +4×3=0 }

} costing fee origin .Trivial Solution : to  a homogeneous  system is the  solution  with Only Zoos : X ,  =  0×2.0×3=0

o Non
- trivial solutions :  X ,  =  0×2  = - Xs

° IS 't has  a trivial solution  is  consistent [ {×g}=÷¥ x=t ( f )°

If there  is  a pivot  In each column :  one  solution
°  If the is  no  pivot  in  a  colon :  infinite  solutions

.

ox=o °  ×=tff) s×=t H + SM

Xss
X }

.
 wo  variables

.

or s Xz Xz%
Xi

8 INHOMOGENEOUS  EQUATIONS

{ a. IIIIII .int'

::L:t→Y¥÷o: ''ll:###.. ...
.

• Translate of the homogeneous equation . from  origin to  vector tip



SOLUTION  SETS  OF  INHOMOGENEOUS  EQUATIONS

° Theorem "

•
Consider the inhomogeneous  eqakon Ax=b

° Thus  if Ap=b ,
then all solutions of Ax=b are  gives  in the form*

 The set of solutions  is  ore  of the : ×=p+Vh with Avh =o

° empty
°

a  translate of the  solution  set  of the equation Dx=O

LECTURE 3

&  NEARLY  INDEPENDENT

A  set of vectors { v , .ve ... .Vp } in  M
"

is linearly  independent  ' 8 the  homogeneous  equation  × .  v ,  +  xzvz  +
. . . .  +  xp .  Vp  =  0  only has the  trivial  solution

.

Otherwise  tie  set  is  called linearly dependent .

independent dependent
...

... ÷*

.

, f)
LINEAR DEPENDENCE

.

Theorem :

Any set { vi. vz
,

. . .
 Up } of p  vectors  in  Rn is linearly dependent  If PM '

Theorem :

A  set { v , ,vz ,
... .V3 } is linearly depadat  if and  only '8 at least  one of these  hectors  is  a linear  combination  of the  other  vectors  in  the  set

.

Theorem :

{ Vi
, Va } with  Vz=o  is linearly dependent

SOLUTIONS
 OF  s  Homogeneous  LINEAR  DIFFERENTIAL EQUATION

o Consider differential equation Superposition tee us that linear  combinations of solutions  are  solutions  as  wcee

Y
"  +32 '  +2g  =  o

yct ) =  aettczett ( Ci
,

Cz EIR )
oy , Lt )=e 't

• yzlt )=e#
. a  e- t.ge#=o&neaey independent ?

t
C2= - a @

÷G works  if Cz  and C ,  =  O y.lt ) and yz Ct ) we  independent

PRE
. LECTURE 4

Consider fcx ) = b ° RANGE :

set of aee  outcomes fcx )
' is Here a  solution ?

•

'

of f the  equation flx ) - b has  at least  one  solution
.How  many  solutions  are there ? s A function  is  onto if for  each b in the  woman

o A function .

s in  if for  each b in the  woman off , #equation fcx,=b has  at  most  one  solution
.

DEFINITION :

Matrix  TRANSFORMAMON : function  T of the form TK ) =A× for  gone  Matrix A
.

A=[ '

o
32 § ] TC ( §) ) =[*t3zy tys;]

Domain TR ' Tonto  or  to ? every row has  a pivot
Codonain  T :  RZ So s×=b have  a  solution for  ale b



LECTURE 4 SLIDES

° LINEAR
 TRANSFORMATIONS 1 f :

• T ( w  +  v ) =  T ( w ) + Tcu ) for  ale  u ,  v  in the domain  of T
. Theorem : For  any matrix  A

,
the  matrixtransformation TK ) =  Ax

• T ( Cu ) =  CTIU ) for  all scalars  c  and a  n th domain  ogt
is a linear transformation.

°  TYPES :  ROTATION
,  REFLECTION

,
SHEAR ,  CONTRACTION / EXPANSION  /  PROJECTION

s NONLINEAR TRANSFORMATIONS

.tl#t..tstxxIx. ]
° SIKH :#⇒

0  MATRIX  OF A LINEAR  TRANSFORMATIONS

•  THEOREM :

. Let  T :  R "  →  R "
be  a linear transformation .

Then there  exists  a  unique  mxn  matrix  A  such that  TCN  =  Ax for all  ×  in R
"

.

The columns of the  matrix A  are the  images under T of the standard unit  vectors : A - [ The , )
.

.  . + ( e.) ] A  is  called tie standard matrix

of T
.

o PROPERTIES  OF  LINEAR  TRANSFORMATION

•  THEOREM

Let T :  Rn - sRm be a linear transformation ,  with standard matrix A. Thu :

°  T  is  one - to - one  if and only if tie following statements hold
.

'

. TCH  =  0 has  only the trivial solution
.

• The columns  of A  are linearly  Independent.

• Every column  of A  contains  a pivot.

• T is  onto  if and only if the following equivalent  statements hold :

• The columns of A  span Rm

. Every row of A  contains a pivot .

LECTURE  

5 MATRIX  OPERATIONS

ALGEBRAIC
 PROPERTIES :

Theorem : Let  A. B.  C be matrices of the same  size  and let  r  and  s be  scalars
.

a.  A  +  B =  B +  A
d.  r( At  B) =  rA+rB

b. ( A  +  B) +  C .  A  + ( B ,  c) e. ( rts ) A  =  RA  +  SA

C . A  + 0 = A f .
 r ( SA )  = (a) A

COMPOSITIONS  OF  LINEAR  TRANSFORMATIONS CALCULATING  AB IN  OTHER  WAYS

RP T Rn S Rn •  column  rule :  column j of AB equals AB

- #
A ( Bx )X aB- •  row - column  rule :  entry ( i ) ) 08 AB equals  row ; (A) bj

St
.  Tow  rule :  row  i of AB equals  rowi (A) B

THE  IDENTITY  MATRIX

DEFINITION :

The  identity matrix In  is  an  nxn  mat , ,×  with  ones  onte  diagonal and teas  every where else
.

Info : :p



ALGEBRAICPROPERTIES

Theorem : Let  A be  an  mxn  matrix
,  and let  B and c be matrices  with sizes for which the indicated sums  and products  are defined .

 Then :

a . A ( B  C) = ( AB ) C b
.  ACB +  C) = AD  +  AC c

. ( is  +  c) A  =  BA  + ( a d.  r( AB ) = (A) D= ACRB) for  any scalar  r  e.  In . A  = A
.

- A  In

WARNING

.  If AB  and  BA  are both  well-defined than  In general they are  not  equal .

• If AB - AC
,

then  in general it  is  not true that  D= C

• If AB=0
.

then  in general you can  not  conclude that  A=O  or 13=0

Pitch
,  ROLL

,  YAW

° FOLLOWING  ROTATION  MATRICES

Role :  12×10 '=[boggs; fans;] Piton : Rycos= [9%851090] Yaw : Rico )=[YnYo -80300,8 )
o multiple rotations  can be obtained by  multiplying rotation  matrices

.

•  Are  not  commutative : final position  may differ depending on the order
.

POWERS
 OF  A  SQUARE  MATRIX :

If A  is  an  nxh  matrix  and if k is  a positive  Integer ,
then  Ah denotes the product of h copies  of A : Ah

=AA=
THE  TRANSPOSE  OF  A  matrix

h factors

Definition :  For  each mxn  matrix A  the transpose  of A
,

denoted by At is the matrix  of size  nxm  which is  obtained from  A by interchangingthe rows  and the  columns of A
.

Theorem : Let  A and B be matrices  with sizes  such that the following operations  are allowed .

a. (ATT = A b. ( At  B) t.AT  +  Bt c
. GAY :  rail for  any scalar d. ( A B) T  

= AT . Bt

LECTURE 6

INVERTIBLE  MATRIX

DEFINITION : A  square  nxm  matrix  A  is  invertible  if there is  an  nxn  matrix C Such that CA  = In  and AC  =  In

If C exists
,  it  is  unique  and it  is  called tee of A

.
 It  is denoted by A-

 '

. TS C does  not  exist
,

we call  A  singular .

THEOREM :

↳ + A  
= [Ebd) . If ad - bc  =/ ,

the  A  is  invertible  and A
"  

= aol.bz [de ha) if ad - bc - o
,

then A  is  singular .

USING  AN  INVERSE  MATRIX

Theorem :  If A  is  an  invertible nxn  matrix ,
the for  each b in  Rh

,
the  equation A×=b has the unique  solution  ×= A

"

. b

ALGEBRAIC  PROPERTIES

THEOREM :

a :  if A  is  an  invertible  matrix
,

then A
' '

is  Invertible and ( A
' ' )

.  '

= A

b :  if A  and B are  nxn  invertible matrices
,
# her  so  is AB

,  and the inverse  of AB  is the product of the  inverses of A  and B in the reverse

order
.

that  is ( AB )
"

=  B-
 '

. A
"

c :  if A is  an  invertible  matrix
,

the  so  is A 't

,  and the  inverse  of AT is the transpose  of A
' '

.

That  is
, (AT )

"

= ( A- YT

R
"

-

R
"

R
"

Bl As*
Y z

- -

B'
 '

T
' '

A'
 

's "



ELEMENTARY MATRICES

Definition :  An  nxh elementary matrix is  a  matrix obtained by performing a  single elementary row  operation  on In .

Eaton : :D tattoo:Dest 's::p
E. ask.lk?t.=kW
INVERTIBLE  MATRIX

6rem : An  nxn  matrix A  is  invertible  If and only if A  is  row  equivalent to In
,

and in this  case ,  any sequence of elementary row
Operations  that  reduces A  to In also transforms In  into A

' '

Algorithm for finding A
' '

:

Row  reduce  the augmented matrix [ Al In ] . If a  is  row  equivalent to  In
,

the [ AIIN ] is  row  equivalent to [ In IA
' ' ] . Otherwise

,
A does  nothave  an  nuese

.

THE  INVERTIBLE  MATRIX  THEOREM

Theorem : Let A be a  square  nxh  matrix
. Then the following statements  are logically equivalent :

a
. A  is  an  invertible  matrix

b
.  A  is  row  equivalent  to  In

e
. The columns of A form  a linearly independent set

C . A has  n pivot positions .

f . The linear  transformation  ×  → Ax  is  one-to-one
d. The equation Ax - o has  only the  trivial solution g. The equation  A×=b has  at least  one  solution for  each b in  R "

.

a. The columns of A  span R
"

d
.

There is  an  nxn  matrix  D such that  AD =  I
b.  The linear transformation  ×  →  Ax  maps  R

"
01+0 R "

e . At is  an  invertible  matrix
.

C.  There is  an  nxn  matrix C such that  CA  = I

INVERTIBLE  LINEAR  TRANSFORMATIONS

Definition : A linear transformation T : R "  → R "

is  invertible if there  exists  a transformation S :P "→ R "such that for all × ER
"

S ( Tcx ) ) =  ×  TCS ( × ) )=  ×

If S exists
, s is the inverse of T and we  write T

"

THEOREM :

Let  T :  R
"

→  R " be a linear transformation  and let A be the standard matrix for T Then Tis  invertible  if and only if A  is  an  invertible
matrix

. In that  case T
"

( × ) = A
'

×

£EcnRE 7 LINEAR SUBSPACES

o SUPERPOSITION
.  ×=o  is  a  solution

( }g
"

} ]x  =  o
° His  asohha  so  is |}n] • [ k] and [f) are  solutions

,
thus  so  is [To]

- Sum
multiplication

° LINEAR
SUBSPACE

°  Definition :

A linear  subspace of IR"
is  a  set H satisfying the properties :

•  0  is  In H

• If V  and  w are  in H then  so  is  ✓  tw

• If V  is  in H and C in  R thn CV  is  in H



ONULLSPACES

Definition :

The null space Noe (A) of a  matrix A  is the  set  of solutions  of the homogeneous  equation Ax=o

A  = [ } ! ! ] A×=o :[ }y 318 ]Q~ [ 204038 ] x.  = -2×2 .
 %  × , xzxsfeeuoiables ×= TH + s[§]

DEFINITION '

.

The span of a  set of vectors { Vi
, Vz

, ... Un } is the set of all linear  combinations GV ,  +  Czvzt .
.  . + Cuva

A×=o - at # +  s{ I ]
Noe (A) = Span { M ,[ I ] }

Column SPACE

0  DEFINITION !

The column  space Col (A) of a  matrix A  is the  set  of all vectors of The form Ax

A  = [ } hf }] Ax  = X, [ }) t  ×z[
"

g) +  Xs( } )

° THEOREM

The  column space Col CAI Is the span of the  column  vectors of A

LECTURE 7

o  A  set U is  vector  space  if for  every ±,  ±E H and C
,

d  ERCItdv  EH

° Nue A  = { ✓ lA±=e } o Gets = Span { b-
, ,ha }

" ( !) A=[ its;] ✓  = we (a) whfmsog ,
µ,

?o| ! ) " consistent

TWO  IMPORTANT  EXAMPLES  OF  SUBSPACES .

Theorem , the set of solutions to  a homogeneous system of m  equations  with n  unknowns  is  a
linear  subspace  of Rn

.

Theorem : The span of a set of vectors { Vi
. . .

 Un } in Rm 's  a linear  subspace of Rm is alinear  subspace of R ?

o Nulla ) is  a linear  subspace of R ? • Span { v..  . ..µn } = H ( vector  in  Rn ) is hear  subspace

0  Poot ° PROOF

let  × , ye  U ×  =  G.  V , ...  .
+  Cn .  Un

let  ± ,  ve NUCCA )

→  ⇐ # =o }
the '  A' at  to " =  a Aaida .  cetoeo →

tgh.ee#ug;eEfts)so.u.n.+ye;+oyy...n.+on.unJYI.FI9nIns .

→  Cut  to  Y  E Nue (A) d (d
, .v ,  + .  . . .  +  on .vn )let  c. d ER

NULL  SPACE  AND  COLUMN  SPACE

DEFINITION :

The  column  space  of a  matrix  A  is He  set  Coll Al of all  linear  combinations of the columns  of A

Remark :  The column  space Cola ) of an  mxn  matrix A  is  a  subspace of RY

DEFINITION !

The null space of a  matrix A is the set Nue (A) of all solutions  of the homogeneous  equation A×=0

Remark : The null space Nul CAI of an  m×Hmatrix A  is  a  subspace of R ?



Basis

DEFINITION :

. A  basis for  a  subspace H of RM is  a  get  of vector  which :

.  is linearly independent  and

.  spans H

THEOREM :

•  The pivot  columns of a  matrix A form  a  basis for the column  space of A.

LECTURE 8 DIMENSIONS Prelature

× ,
.  xz  t  2×3  =  0 CONSISTENCY

:*;

.

" until EMMIE:L .IE#
.

K
. b={ v.  in }

.

⇐ Weakly :p → ftp.t :p . poll :p :::b:b: a:3 a  a

ANOTHER Basis

w ,  = ( to ] we  =P;] a .

. { wnwz } ×=f}]=  a [ to ] +4µg)

Kennedy iii. '

set 't

LECTURE 8 DIMENSION

DIMENSIONS  AND RANK

DEFINITION:

The dimension of a  nonzero  subspace U
,

denoted by dim ( U )
,  is th  number of vectors  in  any basis for U

.

DEFINITION :

The rank of a  matrix A
, denoted by ranh (A) is the dimension of the column  space of A

.

RANK  THEOREM

If a  matrix A has  n  columns
,

the  rank (A) + dim ( Nul (A) ) =  n

Theoremi

We  can  control the system if the matrix C has  a  rash n  where

C=[B AB
. ...

An "B]

The BASIS Theorem

Let U be a p
. dimensional subspace  of R "

.

° Any linearly independent  set of exactly p elements  in U is  a basis for H

• Any set of p  elements  of H that  span 's H is a basis for H

EXTENSION  TO  INVERTIBLE  MAIRK  THEOREM

Suppose A  is  an  mxn  matrix
.

The following are  equivalent: Suppose A  is  an  mxn  matrix  The following are  equivalent :

. Null At = { 0 }• Col (A) = Rm

. dim ( Nul (A)) =  0• rank (A) =  m

• Every row  A has  a pivot
•

Every column of A has  a pilot



%E - LECTURE 9 .

.

DETERMINANTS
determinants

-
eoem : A  = ( acb) invertible if ad - be  to A'

 '

= ok #iab)

SUB  MATRICES

Definition : Aig is  a  sub  matrix obtained from  a  matrix  A  with row  i and column j removed
.

afloat,I÷¥tanti :It
Definition : The Cisj ) - cofactor of a  matrix A  is Cij and isgiven by Cij=( - hit 's

det ( Aij )

A ' ( }§zfj| Gs .

. C-1) 5) to5.2/+2

DETERMINANTS

Definition : The determinant  of an  nxh  matrix  A ,  with nzz  ,s gua by det (A) =  an Cn  +  an  + Gzt .  .
. . t  a.  n

. Gn  if n 't Oct (A) =  A

LECTURE 9 DETERMINANTS

Theorem :

The determinant of an  nxn  matrix A  can be  computed by a  cofactor  expansion  across  any row  or down  any column
.

The cofactor  expansion  across  row  I is gives by
det CA ) =  ait Cir  +  aizciz  + . . .  +  Ain . Cin

The cofactor  expansion down  column  j is given by
del (A) =  anjcpj  

+  azjczjt . . .  +  anj
 ← Cnj

DETERMINANTS  OF  TRIANGULAR  MATRICES

Theorem '
.

If A  is  an  nxn triangular  matrx , then total is the product of treaties of the  main diagonal of A : detla 1 =  Gil - 922 . -  - ann

BOW OPERATIONS  AND  DETERMINANTS

ELEMENTARY  ROW  OPERATIONS :

1
. One  row  is  replaced by the sum of itself and a  multiple of another row

.

2 .  Two  rows  are interchanged.

3
. One  row  is  multiplied by a  nonzero  constant  h

.

Theorem :

Let A be a square  matrix  and A  ~B using one  row  operation
.

a.  Is row  operation 1 was  used , then dot  B = det A

b.  If row  operation 2 was  used then det  B = - det  A

c. If row  operation  3  was  used then detB = h . data



INUERTIBILIT > AND  DETERMINANTS

Theorem :

A  square  matrix A 's invertible if and only if det  A  to

Theorem :

dot  A  =  o  if and  only if the  columns  of A  are linearly dependent .

PROPERTIES  OF  DETERMINANTS

Theorem :

If A  is  an  nxn  matrix then det  At  
= det  A

Column  operations  are handled in the same  manner  as  row  operations

Theorem :

If A  and B are  nxn  matrices
,

the det ( AB ) = detca ) . dot  LB )

Corollary :

If A  is  an  invertible matrix the detca - ' ) =
1-

det CA )

PRE Lecture 10 Craner 's Rule

SYSTEM
 OF  N  EQUATIOUS  IN  N  UNKNOWNS

FORMULAS  FOR  INDIVIDUAL  ENTRIES

.Ax=b for  an ( nxu ) . matrix A  and  vector b in  R "

• Solution  ×= At
 '

b
• System  has  unige  solution  only if ( det  A  to )

.  In  that  case  x=A'
 '

b
x=|§gla|→ I?}

xa :=?
(2×2) MATRIX

CRAMER 'S  RULE  IN (2×2) - CASE
A :[98) b :[ Pa)

dp - bq
Xi  = - A , (b) = (Pg bjf Az (b) = [ {gp ]ad - bo

a " ¥ total×tat|×.=.

capote ×= seethed * Etta "

× :#
ftp.ebay

CRAMER 'S RULE GENERAL  CASE

System Ax . b with invertible Cnxn ) - matrix  A  and b in R
" has  a  unique  solution  ×= [ × , ,x2 ,

... , x . ]T

Cramer 's  nee : xi.de#Cb) )

dot (A)

Ai ( b ) = [ a ,  . . . air baia -  .  - an ]

LECTURE 10 APPLICATION  OF  DETERMINANTS

Determinants  as  area  or  volume :

Theorem : If A  is  a 2×2 matrix
,

the  area  of the parallelogram determined by The columns of A  is |det( A) |
.

If A 's  a  3×3  matrix
,

the uoenme  of the parallelepiped determined by the columns of A  is # (A) I
.



LINEAR  TRANSFORMATIONS  AND AREAS  OR  VOLUMES

THEOREM :

Let T : R '
→ 132 be  a linear transformation  with standard matrix A

. If S is  a finite  region  in 1122
,

then :

Area of TCS ) = ldet (a) 1. ( area  of s )

Similarly ,  if T.IR '
→ 1123 is  a linear transformation  with  standard matrix A  and S is  a finite  region in 1123

,
then :

Volume  of TCS ) = Idet (A) 1. ( volume of S )

A  = [ I ] Determinant  

=  z

The knew transformation maps the rectangle with vetoes 10,0 )
,

( 3,0 ) , ( 3,2 ) and ( 0,0 )

to the parallelogram  with  vertices (0/0) , C- 2/4 )
,

( 1,7 ) and ( 3,3 )

INTEGRATION  AND  CHANGE  OF  VARIABLES

A  unit rectangle Is  mapped from ( a ,v ) - coordinates to  a  region  in  ( x. y ) - coordinates that  Is  approximated by a parallelogram -

PRELECTURE11 INNER PRODUCT
 and ORTHOGONALITY

NNER  PRODUCT  IN  TWO  DIMENSIONS

Definlhon : ALGEBRAIC GEOMETRIC

For  two  vectors  a  = ( ED and b= (by'z| The inner product :  a. b =  a. . bi  +  az.bz a. b
= Hall . 11511 .ws  a

Length of a : lace  
= afa

Distance between  a  and b : dist ( a ,  b) =  Ha - bn  = FIT



INNER  Product  IN R
"

Definition :

For two  vectors  a. ( En) and b. . [ bjln ) a. b=  a , .b ,  +  az.bz#.....can.bn=atb

ELEMENTARY  PROPERRES :

Theorem :

. a. b = b.  a  ( symmetry )

• a. ( btc ) =  a. b +  a.  C ( linearity ) a.  a  =  a ,2t  azzt . . .  +  an
2

. a. ( k . b) = h . ( a.b) - ( a. a) . b ( linearity )
• a.  a  ZO  and  a.  a  =  0  only if a  =o  C positivity

GEOMETRYIN IR
"

( A  IEW ) PROPERTIES  OF  NORM  AND  DISTANCE

Definitions : for two  vectors a  and b in an :
11  ran  = Irl Hall Hatbll c- Hall + llbll ( triangle inequality )

dist  ( a , b) = dist ( b , a)
• The

nod of a : Hall = FI

a+b
° The distance between  a  and b : distcaib ) = ha - by b

•  Orthogonal if @b=  of a

ORTHOGONAL PROTECTION ONTO  A  LINE

^
b

.

b- b i ( b .5) = ( b - oa ) 1 a  → ( b - Ca ) .  a  =o

'

;

:
 - c. a c=b= b= bid

. a

a.  a a.  a

Span { a }

*
a

LECTURE 11 INNER Product  AND ORTHOGONAL 'T >

ORTHOGONAL COMPLEMENT

Definition : A  vector  x  is  orthogonal to  a  subspace s of Rn if × 1 s for  each s  in S notation :  × 1 S

The orthogonal complement of S
, denoted st

,
is the  set of all vectors x that  are  orthogonal to S

,  ano  is always  a  subspace of Rn

ORTHOGONAL SET

Definition . A  set S of vectors { vi. . . . , up } in  an is  called an  orthogonal set ifVI.  Vj  
=  0 for  each pair

Theorem : AN  orthogonal set S= { v , ... . up } of nonzero  vectors  is  a heady independent  set
.

COORDINATES
WITH  RESPECT  TO  AN  ORTHOGONAL  BASIS

Definition : An  orthogonal for  a  subspace W is  a basis for w that  is  also  an orthogonal set
'

Theorem : If S = { vi. .  . Up } is an  orthogonal basis for  a  subspace W in  R "

we  can  write
any vector y EW in the following way :

Y=v?I
,

.v ,  + YI
.

vi. .  .  . + yjqp.us



PRE LECTURE 12 ORTHOGONAL  PROJECTIONS

ORTHOGONAL  PROJECTION  ONTO  A  PLANE

z=y - f
a - - - -

,
y

1 y
.  Ui

I
. - .  h ,

uz

gepnju
, Y =

u , .u ,t.eu#g=pojw
> 5 .

↳ "
.

^

gzpojuzy
= bugger ,

} 5=51+5 '

y
w=  plane

J .
U ,

Hy - 5/1 = distance y to W :  shortest distance of Hy-JH is distance from y
to W

FORMULA  OF  ORTHOGONAL  PROJECT  ON  OF Y ONTO  W

Theorem :

The  orthogonal projection J of y onto  a plane W with orthogonal basis { w , ,uz} is :

g= baidu.nu ,  + YI
. uz

Uz . Uz

LECTURE 12 ORTHOGONAL PROJECTIONS

RTUONORMAL SETS  ; ORTHOGONAL  MATRICES

Definition :

An  orthonormal set S is an  orthogonal set { u .

,
...

, up } of unit  vectors

So
, ui

.

uj
 

=  0 if i. j ,  and ui .  ui  
÷ 1

Theorem :

An  mxn  matrix U has  orthonormal columns  if and only If UTU = 1

Definition :

An  orthogonal matrix  is  a  square  invertible matrix U such that U
"

= Ut

ORTHOGONAL Projections :
The  GENERAL  CASE

DEFINITION :

° Let W be a  subspace of Rh
.

Then each y in R
"

can be written  in the form y
= j  ' - Z

.

• Where J is  in W and -2 is  in the  orthogonal complement Wt
.

• J is  called the orthogonal projection of y .

Theorem :

The decomposition y=g
 +  Z  is unique . If { ui ,

...

,  up } is  an  orthogonal basis of W then

y
.  Upj=YI '

.  u ,  + ...
- . up ,  and Z=y

- f
Ui .  Ui Up . Up



ORTHOGONAL PROJECTION

. You  can determine the  matrix of the projection  onto the Kit ) - plane .

This is  achieved by the mapping Tcx
,  y ,z ) = ( × ,  o ,z )

• The matrix  is thus  gives by M = [00%090]

Best APPROXIMATION

Theorem :

Let W be a  subspace of Rn
, y a  vector  in R

"
and let ny be the orthogonal projection y onto  W

.

Then

Hyiyllc Hy - 41 for  aee vectors  v  in W

PRE Lecture 13 The Grau - Schmidt Process

HOW  TO  FIND  AN  ORTHOGONAL  BASIS ?

Suppose U=  span { b
, .bz

,
... ,bu } is  a  subspace in R "

.

1. Is there an  orthogonal bas 's { u ,
, wz , ...

,
hh } for H ?

2
. How to find { Ui

, in
, ... . Uh } ?

NUMERICAL EXAMPLE

b '  =/
.

}) ,
bz  =/;D ,

↳ , |§|
FW an  orthogonal basis for h=  

spawn
{ b , .bz ,k , }

.bz1
.

Ui=b ,

u ,

2
.

U2= bz -52  = bz - bgibj- . b ,  = bz.bz#u
, bz

↳  ' £9
' { b

, }= Spa , { a , zU
, .  hi

3
. Us  = bz -

£3
: bz - b3=

.  u ,  -
b3-= .  uzU

, .  hi Uz . Uz

GENERAL  STEP

bi  
+1 . Uz bi  +  ^ - hihi + a  = bi  +1 -

lbi+"I
.  U ,  -

- .  wz
-

. . .  -
-

. ui
U , .  U , Uz . U2

Ui . hi

What  IF  THE VECTORS ARE  DEPENDENT ?

Suppose H =  span { b , .bz
,

. ... ,bh } is  a  subspace  in N
. If { b , , bz , ... , bh } is  a dependent  set

,
can Gram - Schmidt  still help

to find an orthogonal basis for H ?



LECTURE B The Gram . Schmidt Process

° Construction of projection matrix from orthonormal basis

COROLLARY :

If { w '
i

.
- iup } Isan orthonormal basis of W and U = [ u , in . . .  Up ]

,
the

projwy = UUTY

Pre
. Lecture 14 LEAST

-SQUARES PROBLEMS

LEAST SQUARES SOLUTION

Definition :

• A  is  mxn  matrix
,

b E Rm and Ax  = b C in ) consistent

A least - squares  solution of A×= b 's an  I E # such that 1lb - AIH c- Hb - Axll
, for all ×  € #

.
Jib A

-•§:# •  I
COCA

B
"

& 's least - square  solution of ax  = big and only if sI=b
.

A ×  =
b ( inconsistent ) - sx  

=D ( always  consistent )

80640ns of Ax  =D are  called least - squares  solutions  and denoted by I

LECTURE 14 Least - Squares PROBLEMS

1
' K is  a least . square  solution of A×=b ,g and only if six =D = pojwe (A) ( b )

2 . If the columns of A  are linearly independent
, then the least  squares solution of the system Ax - b is  unique

If the  columns of A  are linearly dependent,
the Ax :b has  infinitely many least - squares  solutions

.

NORMAL EQUATIONS

THEOREM '

.

Theset of least - squares solutions of A×=b coincides  with the nonempty set of solutions of the system .

AtA×  = Atb ( normal equations )

°

If ATA  is  invertible ,
then the System Ax=b has  a  unique least . squares

solution K
,  which is given by I  

= ( ATAJ
'

Atb



PRE
.

LECTURE 15 EIGENVECTORS AND EIGENVAWES
.

• An  eigenvector of an  nxn  matrix A  is  a  nonzero  vector  ×  such that A×=X× for  some  scalar X

• A  scalar X  is an  eisen  value of an  nxn  matrix A  18 the equator Ax  =Xx has  a  non - trivial solution
.

A- [SE ] s=[s's ] ×i=
. u ix. . n ?

u=[5) au
-

- f Yo ) = - u[9) = . uu
→ A×=x  →  * - ×=o - sx - ix.  o

→ ( A -I)×=o  → [5,6/5] ~ [ 100,100 ]N° Now - Trivial  solutions

v=[ I ) *  =liy±xv
LECTURE 15 EIGENVECTORS  AND EIGENVAWES

DEFINITION :

• A reae number X  is  an  eisaualue of a  matrix A  If there exists  a  nonzero  vector  x for  which Ax  = Xx
. In that  case the

vector  ×  is called an  eigenvector  corresponding to ×
.

• The eigesspace of an  nxn  matrix A  corresponding to the eigeruabe X  consists  of the  too  vector  and all He  eigenvectors

with eiseruabe X
,  i.  c

.  it  is the set of all solutions of the equator ( A - X 1) ×  =  O

Theorem :

The  aguuahes of a triangular  matrix are the entries  on  its main diagonal .

Theorem :

If vi. Vz , .  .
Vr  as  eigenvectors  corresponding to the distinct  eiseruatues Hitz

, ... ,
tr  respectively of an  nxn  matrix A

,

then the set { v , ,Vz , ...
,

Vr } is linearly independent.

CHARACTERISTIC POLYNOMIAL

• Of an  nxn  matrix A is given by the determinant IA - HI

THEOREM :

A  scalar Xi is  an  eigerualee of the hxn  matrix A  if and only if Xi is  a  solution ofthe  characteristic polynomial of A.

MULTIPLICITY  OF  EIGEN  VALUES

. Algebraic  multiplicity : Li of an  eigauahe Xi is the  number of factors ( X - Xi ) " the characteristic polynomial.

• Geometric  multiplicity :  of an  eigerualue Xi is defined as the dimension of He elsaspace Exi
.

 number of independent  eigenvectors for ti
.

DIMENSION OF  THE  EIGENSPACE

Theorem :

For  each  eigenalue X the geometric  multiplicity is  at  most  equal to the  algebraic multiplicity :

1 e dim txcdx

INVERTIBLE MATRIX THEOREM

Theorem :

If A  is  an  nxn  matrix , then the following  statements  are logically equivalent

a. Tnuehble matrix

S . Number  0  is  not  an  eiggualve

t
.

The determinant of A  is  not  zero .



PRELECTURE16 DIAGONISABLE MATRICES

• TO di  agonize  a  matrix

P=[ '23 ] F 'aP=[ 2003 ]

• A  matrix A  is  called diagonisable if there  exists  as  invertible matrix P Such that P
.  '

AP Is a diagonal matrix

LECNRE 16 DIAGONAL
 IZATON

SIMILARITY :

Square matrices  A  and B are  similar  if there  is  an  invertible matrix P such that

A  = PDP
"

THEOREM !

If n×n  matrices A  and B are  similar ,
then they have the  same  characteristic polynomial and  here the same  eisuualvls ( with

the same  multiplicities )

DIAGONHABLE  MATRICES :

* A  matrix A  is dagonizable if and only if A  similar to  a diagonal matrix D
.

• This  means that A  is  equal to  PDF
'

for  some  invertible matrix  P and  diagonal matrix  D
.

DlAooN=AnoNTne0REM
:

Theorem :

An  nxn  matrix A  is diagonal ,  table if and only if A has  n linearly independent  eigenvectors .

Theorem :

An  nxn  matrix A  is  diasonahzabee if and  only if the  sum of the dimensions of the  eiserspacls  is  n
. That  is :

§ dim Ex = n

n xh matrices  with fewer than  n distinct  eguualvesDIAGONSUZATION  MATRICES

1.  Find the isuualues of A.

.

lheoam : Let A be an  nxn  matrix  all n  asenualues  are  real
. A  is dagon ,  table if and

2- Find a basis for  each eguspacc
only  if for  each  eisuualve X. the dimension of the  eisnspace Ex  is equal to the algebraic

3. Construct  P multiplicity of X .

4. Construct  D



PRE - LECTURE 17 COMPLEX EIGENVAWES AND EIGENVECTORS

Complex PLANE

The complex plane CZ is the  vector  space That  consists of all vectors  with  two  coordinates  Z ,  and tz
,  where both Z ,  and zz

are  complex  numbers
.

Complex VECTORS

Real part :  of a  complex  vector Z - ×  +  iy with × and y in 17 "

is : Z =  ×

Imaginary part : of a  complex  vector Z  =  ×  *iy with ×  and y in  R "
is : Z=y

Conjugate  is : E =  × - iy

REAL
- VALUED MATRICES

THEOREM :

If A  is  an  mxn  matrix with real entries and X  is  a ( complex ) eiguuatue  of A  with  eigenvector  ✓
,

then

• X is  also  on  cigesualve of A

° J is the corresponding eigenvector.

STRUCTURE  OF  A  MATRIX  WITH WNPLEX  EIOENUAWES

Theorem :

. Suppose  a  and b are  real and not both zero  and the  matrix A  is  equal to [ 5
-

ba ]
Theegeruahes of A  are  at bi and a - bi

.

.  is ⇐ Fbi a= to;] . Eliot :L"sYhl the "

COORDINATE VECTORS

DEFINITION
:

Assume  �1� = { b.
,  

. ... ,bp } is  a basis for  a  subspace W of Rn
.

The coordinate  vector of ×  in  W relative to  B is A,b = (Jpl)
with G , ... , Cp  such that

X=  G . b ,  + .  . .  + Cp . bp

COORDINATE TRANSFORMATIONS

Theorem :

Assume D= { b
, , . ... ,

bn } is  a basis for R ' and P=[ bi ... bn ] .

Then for  ×  " R
"

A . p . c. P
' '

P[x]B=X ←>[x]B :P "x muetby
× - Ax

A

mpoft,

by|muept by

✓

|
[A×]B= asy=[×]B -

muet  by
C

DEAL  MATRICES  with Complex EIGENVALUES

Theorem :

Let A be a  real 2×2 . matrix  with  complex  egesuacve  a - bi  and an  associated eigenvector  v  in C 2. Then A  =P Cpi
'

,
where

P=[ Re . v. emv ] and c=[ §tab ]




