Row Reduction and Echelon Forms

A system of linear equations can be represented by an *augmented* matrix $[A|\mathbf{b}]$ or by a matrix equation $A\mathbf{x} = \mathbf{b}$ or by a vector equation: $x_1\mathbf{a}_1 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$ with $A = [\mathbf{a}_1 \cdots \mathbf{a}_n].$

The augmented matrix can be changed into an equivalent *echelon form*: in this form you can easily decide if the system is consistent or not, and if a general solution has *free variables* (look at the pivots).

To solve the system: change the augmented matrix into its (unique) reduced echelon form.

If \mathbf{v}_h is the general solution of the *homogeneous* system $A\mathbf{x} = \mathbf{0}$, and \mathbf{v}_p is one (particular) solution of $A\mathbf{x} = \mathbf{b}$, then $\mathbf{v}_p + \mathbf{v}_h$ is the general solution of $A\mathbf{x} = \mathbf{b}$.

Linear Transformation

T is a linear transformation if $T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$ for all \mathbf{u} and \mathbf{v} and all scalars c and d.

Example The matrix transformation $T : \mathbf{x} \mapsto A\mathbf{x}$.

If $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then $A = [T(\mathbf{e}_1) T(\mathbf{e}_2) \cdots T(\mathbf{e}_n)]$ is the standard matrix for T, that is $T(\mathbf{x}) = A\mathbf{x}$.

A mapping (general function, transformation) $T: V \to W$ is **one-to-one** if each b in W is the image of at most one x in V. The mapping T is **onto** W if each b in W is the image of at least one x in V.

Span

Span{ $\mathbf{v}_1, \dots, \mathbf{v}_p$ } is the collection of all the linear combinations of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_p$ [= the set of all vectors that can be written in the form $c_1 \mathbf{v}_1 + \dots + c_p \mathbf{v}_p$].

Subspace

H is a subspace of \mathbb{R}^n if *H* is a set of \mathbb{R}^n with the properties:

1) **0** is in *H* and 2) for each **u** and **v** in *H* and for each scalar *c* and *d*, the linear combination $c\mathbf{u} + d\mathbf{v}$ is also in *H*.

Examples Span($\mathbf{v}_1, \cdots \mathbf{v}_p$), Col(A), Nul(A).

Given: $A = [\mathbf{a}_1 \cdots \mathbf{a}_n]$ is a $m \times n$ -matrix. Then $\text{Col}A \equiv \text{Span}(\mathbf{a}_1, \cdots, \mathbf{a}_n)$ is a subspace of \mathbb{R}^m and Nul(A) (\equiv the set of all solutions of $A\mathbf{x} = \mathbf{0}$) is a subspace of \mathbb{R}^n .

$ColA = \mathbb{R}^m$	\Leftrightarrow	$A\mathbf{x} = \mathbf{b}$ is consistent for all \mathbf{b}
	\Leftrightarrow	all rows of (the echelon form of) A contain a pivot
	\Leftrightarrow	the matrix transformation $T: \mathbf{x} \mapsto A\mathbf{x}$ is onto \mathbb{R}^m
$NulA = \{0\}$	\Leftrightarrow	$A\mathbf{x} = 0$ has only the trivial solution
$NulA = \{0\}\$		$A\mathbf{x} = 0$ has only the trivial solution all columns of (the echelon form of) A contain a pivot

Linear Independent

The set $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is linearly independent if the vector equation $x_1\mathbf{v}_1 + \dots + x_p\mathbf{v}_p = \mathbf{0}$ has only the trivial solution (that is: $x_1 = x_2 = \dots = x_p = 0$).

A set $\{\mathbf{v}_1, \cdots, \mathbf{v}_p\}$ is a basis for H if

1) $H = \text{Span}(\mathbf{v}_1, \dots, \mathbf{v}_p)$ and 2) $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is linear independent.

If $\{\mathbf{v}_1, \cdots, \mathbf{v}_p\}$ is a basis for subspace H then $\dim H = p$.

- The set of vectors \mathcal{B} is linear independent if and only if no vector of \mathcal{B} is a linear combination of the other vectors of \mathcal{B}
- If $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is linearly independent, then it spans a *p*-dimensional subspace.
- The set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ of vectors of \mathbb{R}^n is linearly independent if $A = [\mathbf{v}_1 \cdots \mathbf{v}_p]$ has in each column a pivot.
- Suppose there is some linear dependence relation between $\mathbf{a}_1, \ldots, \mathbf{a}_n$ and $A = [\mathbf{a}_1 \cdots \mathbf{a}_n]$ is row equivalent to $B = [\mathbf{b}_1 \cdots \mathbf{b}_n]$. Then the same linear dependence relation exists between $\mathbf{b}_1, \ldots, \mathbf{b}_n$.

Rank

The **rank** of matrix A is equal to dimColA.

The pivot columns of A form a basis of ColA.

A basis of NulA has as many vectors as the solution of $A\mathbf{x} = \mathbf{0}$ has free variables. Therefore: dimColA + dimNulA = number of columns of A

Coordinate vector

If $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_p}$ is a basis for H and \mathbf{x} is in H, then the coordinate vector of \mathbf{x} relative to the basis \mathcal{B} is

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_p \end{bmatrix}$$
 with $\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_p \mathbf{b}_p$

Matrix Multiplication

If $B = [\mathbf{b}_1 \cdots \mathbf{b}_p]$ then $AB = [A\mathbf{b}_1 A\mathbf{b}_2 \cdots A\mathbf{b}_p]$.

If A is a square $n \times n$ -matrix with $AB = BA = I_n$ for some matrix B then A is invertible (A is also called *non singular*) and $B \equiv A^{-1}$ is the inverse of A.

 $(A B)^T = B^T A^T$. $(A B)^{-1} = B^{-1} A^{-1}$ if A^{-1} and B^{-1} exist.

If A^{-1} then $A\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. A^{-1} exists only if $\det A = ad - bc \neq 0$. $A^{-1} = \frac{1}{\det A} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

Inner product in \mathbb{R}^n

$$\begin{split} \mathbf{u} \bullet \mathbf{v} &\equiv u_1 v_1 + \dots + u_n v_n = [\mathbf{u}]^T [\mathbf{v}]. \quad \text{Some properties:} \\ \mathbf{u} \bullet \mathbf{v} &= \mathbf{v} \bullet \mathbf{u}, \ (a \, \mathbf{u} + b \, \mathbf{v}) \bullet \mathbf{w} = a \, \mathbf{u} \bullet \mathbf{w} + b \, \mathbf{v} \bullet \mathbf{w}, \quad \mathbf{u} \bullet \mathbf{u} = 0 \iff \mathbf{u} = \mathbf{0}. \\ \text{Norm (or length):} \quad \|\mathbf{u}\| &\equiv \sqrt{u_1^2 + \dots + u_n^2} = \sqrt{\mathbf{u} \bullet \mathbf{u}}. \\ \text{Distance:} \quad \text{dist}(\mathbf{u}, \mathbf{v}) \equiv \|\mathbf{u} - \mathbf{v}\|. \\ \text{Orthogonality:} \quad \mathbf{u} \perp \mathbf{v} \text{ if } \mathbf{u} \bullet \mathbf{v} = 0. \end{split}$$

 $\mathbf{u} \perp \mathbf{v} \Leftrightarrow \|\mathbf{u} - \mathbf{v}\| = \|\mathbf{u} + \mathbf{v}\|.$ $\mathbf{u} \perp \mathbf{v} \Leftrightarrow \|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 \quad (Pythagorean \text{ Theorem for } \mathbb{R}^n).$ $\mathbf{u} \perp W \text{ if } \mathbf{u} \perp \mathbf{w} \text{ for all } \mathbf{w} \text{ from } W.$ $W^{\perp} = \text{ orthogonal complement of } W \equiv \text{ the set of all } \mathbf{u} \text{ with } \mathbf{u} \perp W.$

Orthogonal sets

 $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is a orthogonal basis for W: a basis for W with $\mathbf{u}_i \perp \mathbf{u}_j$ for all $i \neq j$. $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthonormal basis for W: orthogonal basis with $\|\mathbf{u}_i\| = 1$ for all i.

The $m \times n$ -matrix U has orthonormal columns $\Leftrightarrow U^T U = I_n$.

The square matrix A is an orthogonal matrix if $A^{-1} = A^T$. An orthogonal matrix has orthonormal columns.

Special case: $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is a orthogonal basis for W and **y** in W. Then

$$\mathbf{y} = c_1 \, \mathbf{u}_1 + \dots + c_p \, \mathbf{u}_p$$
 with $c_j = \frac{\mathbf{y} \bullet \mathbf{u}_j}{\mathbf{u}_j \bullet \mathbf{u}_j}$

Orthogonal projection

Orthogonal projection of vector \mathbf{y} on $L = \text{Span}\{\mathbf{u}\}$: $\hat{\mathbf{y}} \equiv \text{proj}_L \mathbf{y} = \begin{pmatrix} \underline{\mathbf{y}} \cdot \mathbf{u} \\ \mathbf{u} \cdot \mathbf{u} \end{pmatrix} \mathbf{u}$. $\hat{\mathbf{y}}$ is the vector with the property: $\hat{\mathbf{y}}$ in L and $\mathbf{z} = (\mathbf{y} - \hat{\mathbf{y}}) \perp L$.

Orthogonal projection of vector \mathbf{y} on subspace W is the unique vector $\hat{\mathbf{y}} = \operatorname{proj}_W \mathbf{y}$ defined by the decomposition $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$ with $\hat{\mathbf{y}}$ in W and $\mathbf{z} = (\mathbf{y} - \hat{\mathbf{y}}) \perp W$. Remarks:

Remarks:

- If \mathbf{y} in W then $\hat{\mathbf{y}} = \mathbf{y}$
- $\hat{\mathbf{y}}$ is the closest point in W to \mathbf{y} (best approximation in W).

Special case: $\{\mathbf{u}_1, \cdots, \mathbf{u}_p\}$ is an orthogonal basis of W. Then

$$\hat{\mathbf{y}} = \operatorname{proj}_W \mathbf{y} = c_1 \, \mathbf{u}_1 + \dots + c_p \, \mathbf{u}_p \text{ with } c_j = \frac{\mathbf{y} \bullet \mathbf{u}_j}{\mathbf{u}_j \bullet \mathbf{u}_j}$$

Gram-Schmidt process

The Gram-Schmidt process is an algorithm: starting from a basis $\{\mathbf{x}_1, \dots, \mathbf{x}_p\}$ of subspace W it constructs an orthogonal basis $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ for W.

Least-squares problems

Given the matrix equation $A\mathbf{x} = \mathbf{b}$ (may be inconsistent).

Replace this equation by $A\mathbf{x} = \mathbf{\hat{b}} = \operatorname{proj}_W \mathbf{\hat{b}}$ with $W = \operatorname{Col} A$. The solution $\hat{\mathbf{x}}$ of the later equation is called the least-squares solution of $A\mathbf{x} = \mathbf{\hat{b}}$.

Remarks

- $\|\mathbf{b} \hat{\mathbf{b}}\| = \|\mathbf{b} A\hat{\mathbf{x}}\| \le \|\mathbf{b} A\mathbf{u}\|$ for all \mathbf{u} . A least-square solution $\hat{\mathbf{x}}$ is such that $A\hat{\mathbf{x}}$ is the closest you can get to \mathbf{b} (best approximation).
- You can determine the orthogonal projection of **b** on $W = \text{Span}\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$ by first calculating a least square solution $\hat{\mathbf{x}}$ of $A\mathbf{x} = \mathbf{b}$ (with $A = [\mathbf{a}_1 \cdots \mathbf{a}_n]$) and then calculating $A\hat{\mathbf{x}}$.
- If $A\mathbf{x} = \mathbf{b}$ is consistent then $\mathbf{b} = \mathbf{b}$ and a least-squares solution is a solution of $A\mathbf{x} = \mathbf{b}$.
- The least-squares error = $\|\mathbf{b} \hat{\mathbf{b}}\|$.
- The least-squares solution may not be unique. It is only unique if $A\mathbf{x} = \mathbf{b}$ has a unique solution, that is: all the columns of A have a pivot (so the columns of A are linear independent; also: Nul $(A) = \{\mathbf{0}\}$).

Theorem The set of least-squares solutions of $A\mathbf{x} = \mathbf{b}$ is equal to the general solution of the *normal equations* $A^T A \mathbf{x} = A^T \mathbf{b}$.

Application

At time t = 0 a certain mixture of radioactive substances contains M_A grams of substance A and M_B grams of substance B. A model for the total amount y of the mixture present at time t is $y = M_A e^{-0.02t} + M_B e^{-0.07t}$. The following (t, y)-data are available:

$$(10, 21.34), (11, 20.68), (14, 18.87), (15, 18.30)$$

Determine the equation $y = M_A e^{-0.02t} + M_B e^{-0.07t}$ which is the best fit to these data according to the least-squares method.

Solution By inserting the data in the (model) equation you get a system of equations, linear in the unknown parameters M_A and M_B . For example:

$$(10, 21.34) \Rightarrow M_A e^{-0.20} + M_B e^{-0.70} = 21.34 (11, 20.68) \Rightarrow M_A e^{-0.22} + M_B e^{-0.77} = 20.68$$

Etc. The parameter vector $\mathbf{x} = \begin{bmatrix} M_A \\ M_B \end{bmatrix}$ has then to satisfy the matrix equation

$$\begin{bmatrix} e^{-0.20} & e^{-0.7} \\ e^{-0.22} & e^{-0.77} \\ e^{-0.28} & e^{-0.98} \\ e^{-0.30} & e^{-1.05} \end{bmatrix} \begin{bmatrix} M_A \\ M_B \end{bmatrix} = \overbrace{\begin{bmatrix} 0.8187 & 0.4966 \\ 0.8025 & 0.4630 \\ 0.7558 & 0.3753 \\ 0.7408 & 0.3499 \end{bmatrix}} \overbrace{\begin{bmatrix} M_A \\ M_B \end{bmatrix}} = \overbrace{\begin{bmatrix} 21.34 \\ 20.68 \\ 18.87 \\ 18.30 \end{bmatrix}$$

The least-squares solution of the (inconsistent) equation $A\mathbf{x} = \mathbf{b}$ can be computed by solving the normal equation $A^T A \mathbf{x} = A^T \mathbf{b}$, or by computing $\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$. Solution: $M_A = 19.9411$, $M_B = 10.0996$. Therefore the equation $y = 19.94 e^{-0.02t} + 10.10 e^{-0.07t}$ is the best fit to these data

according to the least-squares method.