
First Half of the Linear Algebra Course (wi1 277LR)

Row Reduction and Echelon Forms
A system of linear equations can be represented by an augmented matrix [A|b] or
by a matrix equation Ax = b or by a vector equation: x1a1 + · · · + xnan = b with
A = [a1 · · · an].

The augmented matrix can be changed into an equivalent echelon form: in this form
you can easily decide if the system is consistent or not, and if a general solution has
free variables (look at the pivots).

To solve the system: change the augmented matrix into its (unique) reduced echelon
form.

If vh is the general solution of the homogeneous system Ax = 0, and vp is one
(particular) solution of Ax = b, then vp + vh is the general solution of Ax = b.

Linear Transformation
T is a linear transformation if T (cu + d v) = c T (u) + d T (v) for all u and v
and all scalars c and d.

Example The matrix transformation T : x 7→ Ax.

If T : Rn → Rm is a linear transformation, then A = [T (e1) T (e2) · · ·T (en)] is the
standard matrix for T , that is T (x) = Ax.

A mapping (general function, transformation) T : V → W is one-to-one if each b
in W is the image of at most one x in V . The mapping T is onto W if each b in W
is the image of at least one x in V .

Span
Span{v1, · · · , vp} is the collection of all the linear combinations of the vectors v1, · · · , vp

[= the set of all vectors that can be written in the form c1 v1 + · · ·+ cp vp ].

Subspace
H is a subspace of Rn if H is a set of Rn with the properties:
1) 0 is in H and 2) for each u and v in H and for each scalar c and d, the linear
combination cu + dv is also in H.

Examples Span(v1, · · · vp), Col(A), Nul(A).

Given: A = [a1 · · · an] is a m×n-matrix. Then ColA ≡ Span(a1, · · · , an) is a subspace
of Rm and Nul(A) (≡ the set of all solutions of Ax = 0) is a subspace of Rn.

ColA = Rm ⇔ Ax = b is consistent for all b
⇔ all rows of (the echelon form of) A contain a pivot
⇔ the matrix transformation T : x 7→ Ax is onto Rm

NulA = {0} ⇔ Ax = 0 has only the trivial solution
⇔ all columns of (the echelon form of) A contain a pivot
⇔ the matrix transformation T : x 7→ Ax is one-to-one
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Linear Independent
The set B = {v1, · · · , vp} is linearly independent if the vector equation
x1v1 + · · ·+ xpvp = 0 has only the trivial solution (that is: x1 = x2 = · · · = xp = 0).

A set {v1, · · · , vp} is a basis for H if
1) H = Span(v1, · · · , vp) and 2) {v1, · · · , vp} is linear independent.

If {v1, · · · , vp} is a basis for subspace H then dimH = p.

• The set of vectors B is linear independent if and only if no vector of B is a
linear combination of the other vectors of B

• If {v1, · · · , vp} is linearly independent, then it spans a p-dimensional subspace.

• The set {v1, · · · , vp} of vectors of Rn is linearly independent if A = [v1 · · · vp]
has in each column a pivot.

• Suppose there is some linear dependence relation between a1, . . . , an and
A = [a1 · · · an] is row equivalent to B = [b1 · · · bn]. Then the same linear
dependence relation exists between b1, . . . ,bn.

Rank
The rank of matrix A is equal to dimColA.
The pivot columns of A form a basis of ColA.
A basis of NulA has as many vectors as the solution of Ax = 0 has free variables.
Therefore: dimColA + dimNulA = number of columns of A

Coordinate vector
If B = {b1, · · · ,bp} is a basis for H and x is in H, then the coordinate vector of x
relative to the basis B is

[x]B =




c1
...
cp


 with x = c1b1 + · · ·+ cpbp

Matrix Multiplication
If B = [b1 · · ·bp] then AB = [Ab1 Ab2 · · ·Abp].

If A is a square n × n-matrix with AB = BA = In for some matrix B then A is
invertible (A is also called non singular) and B ≡ A−1 is the inverse of A.

(AB)T = BT AT . (AB)−1 = B−1A−1 if A−1 and B−1 exist.

If A−1 then Ax = b has the unique solution x = A−1b.

Let A =
[

a b
c d

]
. A−1 exists only if detA = ad− bc 6= 0. A−1 = 1

det A

[
d −b
−c a

]
.

Inner product in Rn

u • v ≡ u1v1 + · · ·+ unvn = [u]T [v]. Some properties:
u • v = v • u, (au + b v) •w = au •w + b v •w, u • u = 0 ⇔ u = 0.

Norm (or length): ‖u‖ ≡
√

u2
1 + · · ·+ u2

n =
√

u • u .
Distance: dist(u, v) ≡ ‖u− v‖ .

Orthogonality: u ⊥ v if u • v = 0.
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u ⊥ v ⇔ ‖u− v‖ = ‖u + v‖.
u ⊥ v ⇔ ‖u + v‖2 = ‖u‖2 + ‖v‖2 (Pythagorean Theorem for Rn).

u ⊥ W if u ⊥ w for all w from W .
W⊥= orthogonal complement of W ≡ the set of all u with u ⊥ W .

Orthogonal sets
{u1, · · · ,up} is a orthogonal basis for W : a basis for W with ui ⊥ uj for all i 6= j.

{u1, · · · ,up} is an orthonormal basis for W : orthogonal basis with ‖ui‖ = 1 for all i.

The m× n-matrix U has orthonormal columns ⇔ UT U = In.

The square matrix A is an orthogonal matrix if A−1 = AT . An orthogonal matrix
has orthonormal columns.

Special case: {u1, · · · ,up} is a orthogonal basis for W and y in W . Then

y = c1 u1 + · · ·+ cp up with cj =
y • uj

uj • uj

Orthogonal projection

Orthogonal projection of vector y on L = Span{u}: ŷ ≡ projLy =
( y•u

u•u
)
u.

ŷ is the vector with the property: ŷ in L and z = (y − ŷ) ⊥ L.

Orthogonal projection of vector y on subspace W is the unique vector ŷ = projW y
defined by the decomposition y = ŷ + z with ŷ in W and z = (y − ŷ) ⊥ W .

Remarks:

• If y in W then ŷ = y

• ŷ is the closest point in W to y (best approximation in W ).

Special case: {u1, · · · ,up} is an orthogonal basis of W . Then

ŷ = projW y = c1 u1 + · · ·+ cp up with cj =
y • uj

uj • uj

Gram-Schmidt process
The Gram-Schmidt process is an algorithm: starting from a basis {x1, · · · , xp} of
subspace W it constructs an orthogonal basis {v1, · · · , vp} for W .

v1 = x1 , W1 = Span{x1} = Span{v1}
v2 = x2 − projW1

x2 = x2 −
(

x2•v1
v1•v1

)
v1 , W2 = Span{x1, x2} = Span{v1, v2}

v3 = x3 − projW2
x3 = x3 −

[(
x3•v1
v1•v1

)
v1 +

(
x3•v2
v2•v2

)
v2

]
, W3 = Span{x1, x2, x3} = Span{v1, v2, v3}

...
...
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Least-squares problems
Given the matrix equation Ax = b (may be inconsistent).
Replace this equation by Ax = b̂ = projW b with W = ColA. The solution x̂ of the
later equation is called the least-squares solution of Ax = b.

Remarks

• ‖b− b̂‖ = ‖b−Ax̂‖ ≤ ‖b−Au‖ for all u. A least-square solution x̂ is such that
Ax̂ is the closest you can get to b (best approximation).

• You can determine the orthogonal projection of b on W = Span{a1, . . . , an} by
first calculating a least square solution x̂ of Ax = b (with A = [a1 · · · an]) and
then calculating Ax̂.

• If Ax = b is consistent then b̂ = b and a least-squares solution is a solution of
Ax = b.

• The least-squares error = ‖b− b̂‖.
• The least-squares solution may not be unique. It is only unique if Ax = b̂ has

a unique solution, that is: all the columns of A have a pivot (so the columns of
A are linear independent; also: Nul(A) = {0}).

Theorem The set of least-squares solutions of Ax = b is equal to the general solu-
tion of the normal equations AT Ax = AT b.

Application
At time t = 0 a certain mixture of radioactive substances contains MA grams of
substance A and MB grams of substance B. A model for the total amount y of the
mixture present at time t is y = MA e−0.02t + MB e−0.07t.
The following (t, y)-data are available:

(10, 21.34), (11, 20.68), (14, 18.87), (15, 18.30)

Determine the equation y = MA e−0.02t + MB e−0.07t which is the best fit to these
data according to the least-squares method.

Solution By inserting the data in the (model) equation you get a system of equa-
tions, linear in the unknown parameters MA and MB. For example:

(10, 21.34) ⇒ MA e−0.20 + MB e−0.70 = 21.34
(11, 20.68) ⇒ MA e−0.22 + MB e−0.77 = 20.68

Etc. The parameter vector x =
[

MA

MB

]
has then to satisfy the matrix equation




e−0.20 e−0.7

e−0.22 e−0.77

e−0.28 e−0.98

e−0.30 e−1.05




[
MA

MB

]
=

A︷ ︸︸ ︷


0.8187 0.4966
0.8025 0.4630
0.7558 0.3753
0.7408 0.3499




x︷ ︸︸ ︷[
MA

MB

]
=

b︷ ︸︸ ︷


21.34
20.68
18.87
18.30
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The least-squares solution of the (inconsistent) equation Ax = b can be computed
by solving the normal equation AT Ax = AT b, or by computing x̂ = (AT A)−1AT b.
Solution: MA = 19.9411, MB = 10.0996.
Therefore the equation y = 19.94 e−0.02t + 10.10 e−0.07t is the best fit to these data
according to the least-squares method.
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