Second Half of the Linear Algebra Course (wil 277LR)

Determinants
Cofactor expansion across the ith row: det A = a;1Ci1 + -+ -+ ainCin
with cofactor Cj; = (—1)"7det 4;;. Cofactor expansion across an
arbitrary row or column of A gives the same answer.  Then also:
det AT = det A.

Row operations A ~ B:
row replacement = det A = det B, row interchange = det B = — det A,
row multiplication by k = det B = kdet A, and therefore det (kA) =

k™ det A.
= First simplify the determinant by row or column operations before
expanding!
A1 exi A
Properties: exists < detA#0

Area of parallelogram, volume of parallelepiped:
2 x 2 matrix A = [aj ag] = area{a;,as} = absolute value of det A.
3x3 matrix A = [a; agag] = volume{a;,as, a3} = absolute value of det A.

If S is a region of R* and T : R¥ — RF is a linear transformation with
T(x) = Ax then: volume of T'(S) = |det A| - volume of S.

Theoretical properties

o T(x1,X2,...,X,) = det[x;x2 -+ xp,] is a multi linear function,
that is: linear in each of its arguments’.

e Cramer’s rule Let A be invertible and Ax = b. The matrix

A;i(b) is obtained by replacing column 4 by the vector b. Then
T = det Az(b)
7 detA

e A formula for A~ by means of a matrix of cofactors, called the
adjugate of A.

Vector space
A vector space is a nonempty set V' of objects, called vectors, closed
under two operations: addition and multiplication by scalars, and sat-
isfying certain rules.
The set contains a zero vector 0 with u +0 = u, and u+ (—u) =0.

e R™. The zero vector is 0 = [00---0]7.

e The set of all real-valued functions f : D — R, with the well
known addition and scalar multiplication for functions. Zero
function f(t) =0 for all t € D acts as the zero vector.

e [P, (set of polynomials of degree at most n).
The zero polynomial [p(t) = 0 for all ¢] acts as the zero vector.

163.2 p.197 Proof by expanding across the appropriate column.

det (AB) = (det A)(det B), therefore: det (A~!) =1/det A



One can apply earlier notions: linear combination of vectors, linearly
independent set of vectors, span of a set of vectors, subspace, basis,
dimension, coordinate vector.

Ezample: a (standard) basis of IP,, is the collections of polynomials & =
{e1 ,€9, ", en+1} with el(t) = 1, 82(75) = t, 83(t) = t2, teey en+1(t) =
t", and so dimP, =n + 1.

—2
If p is a polynomial of Py with p(t) = —2+¢-+3t% then [ple = | 1

3

Coordinate systems
Let B = {by,---,b,} be a basis for vector space V. The coordinate
mapping x — [x|g is a one-to-one linear transformation from V' onto
R™. Linearity of the mapping:

[cu+dv]pg =clulg+ d]v]s

C1

Special case: V' =R". Since [x|g= | ! | and x =c¢1b; + -+ ¢, by,
Cn

therefore x = Pp[x]p with the change-of-coordinates matrix Pg =

[byby---b,].

The matrix representation of linear transformations
The information about vectors can be stored in a column [coordinate
vector|. The information about a linear map (transformation) can be
stored in a matriz?.

Let V be a an n-dimensional vector space, W an m-dimensional vec-
torspace, and T : V — W a linear transformation from V tot W, that
is:

T(cu+dv)=cT(u)+dT(v) for all u, v from V and all scalars c,d

Choose basis B = {by,---,b,} for V and basis C for W. Then
[T(x)]e = M[x]g where M = [[T(b1)lc [T(bs)lc - [T(bn)]c]

M is called a matrix representation of " relative to bases B and C.

Special case: Linear transformation 7" from V to V with basis B for V.
The B-matrix for 7' is [T|g = [[T'(b1)]s [T'(b2)]s -..[T(by)]s].

Ezample Consider the linear map D : Py — Py with D(p) = p’ (the
derivative). Standard basis & = {1,t,t?} for Py. Then the £-matrix of
D is

0 0
[Dle = |0 0 2
0 0

S O =

2See §5.4.



Similarity
Square matrices A and B are similar® if there is an invertible P with

B =P lAP.

Similarity of Matriz Representations

Given a basis B = {by,---,b,} for R” and a matrix transformation
T : R* — R" with T(x) = Ax. Then [T]z = PAP~! = B with
P =1b; - -by].

Application

Consider the discrete dynamical system xq A4 X1 A X2 AL [ the dif-

ference equation xj; = Axg]. Let be given the change-of-coordinates
matrix P = Pg = [by ---by].

If x;, = Py and therefore [xi]p = yi, then yq B yi B yo B .. with
B =PAP™ !

Eigenvalues and eigenvectors Given: A is a n X n-matrix.
v is an eigenvector of the square matrix A if v # 0 and Av = Av
for certain A. The scalar A is then called an eigenvalue of A and
Ey) = {x |Ax = Ax} = Nul(A — A\I) is called the cigenspace of A corre-
sponding to A. Remark: dim FE) > 1.

Geometric ezample: Let A be the matrix of the orthogonal projection
x — Ax in R? on a plane W through O. Then A has two eigenspaces:
E; =W and Ey = W+ (= line perpendicular to W through O).

. . A A A . .
Discrete dynamical system: Xg — X1 — X9 — ---. If Xy is an eigenvec-
tor of A with eigenvalue A then x;, = \¥xg.

e A (real) matrix A may not have (real) eigenvalues.

o If vi,---,v, are eigenvectors corresponding to distinct eigenval-
ues, then
the set {vi,---,vp} is linearly independent.

Calculating all the eigenvalues and eigenspaces

First solve the characteristic equation det (A — AX) = 0. Then for
each solution A solve (A — AI)x = 0, that is: determine a basis for
each F).

e det (A — \I) is a polynomial in A of degree n (characteristic
polynomial).

e The (algebraic) multiplicity «) of an eigenvalue A is its multiplic-
ity as a root of the characteristic equation. 1 < ay <n.

3See §5.2. Remark: ‘similar’ (=‘gelijkvormig’) , do not confuse with ‘row equivalent’
(=‘rij-equivalent’)
1See §5.4.



e Theorem: dim(E)) < ay. That is:
The dimension of the eigenspace FE), also called the geometric
multiplicity of the eigenvalue J, is less than or equal to the alge-
braic multiplicity of A. (°)

e (0 is an eigenvalue < A is not invertible

e Similar matrices have the same characteristic polynomial, there-
fore the same eigenvalues \; with the same multiplicities a, .

Diagonalization
A is diagonalizable if A is similar to a diagonal matrix, that is: there
is an invertible matrix P and a diagonal matrix D such that A =
PDP™L.

Theorem  The n x n matrix A is diagonalizable < there is a basis
of R™ consisting of eigenvectors of A.

In the diagonal of D: eigenvalues of A. The columns of P form a
(corresponding) basis of eigenvectors. D = diag(A1,---,A,) and P =
[P1P2 - pn] With Ap; = A; p;.

Theorem Let A be an nxn matrix with distinct eigenvalues Ay, -+ -, A,.

P
e A is diagonalizable < ZdimE,\i =n
=1

for all eigenvalues A\ : dimE) = a),

o . P
e A is diagonalizable <« Z @, =n ("enough eigenvalues”)
i=1

Calculation of D and P

Determine for each eigenvalue A\ a basis By, for the eigenspace E, .
If the total collection of vectors in By, - - -, B, has n vectors, then A is
diagonalizable and this collection forms an eigenvector basis for R”.
Put this basis in P and make the diagonal matrix D with the corre-
sponding eigenvalues in the diagonal.

Diagonal Matriz Representation

If A is diagonalizable: A = PDP~!, then the transformation x —
T(x) = Ax has a very simple matrix representation, namely by a di-
agonal matrix: [T]|g = D where B is the basis for R™ formed from the
columns of P.

Complex eigenvalues
The characteristic equation of the square matrix A has always exactly
n roots, provided that possibly complex roots are included.

5The matrix A is called defective if dimE\ < a» for some eigenvalue \.



This complex root A is an eigenvalue of A when we let A act on the
space C" of n-tuples of complex numbers: Ax = Ax with x in C". (6)

If x from C™ then we can form: Rex, Imx, the complex conjugate X.
When A is a real matrix then complex eigenvalues occur in conjugate
pairs, that is:

if Ax = Ax and A is a real matrix, then AX = AX.

a

Ezxample Let C' = [ b

_ab ] with real a, b # 0.

Then C'is a rotation followed by a scaling: C' = r [ cos¢ —sing } ,

sing cos¢
with ¢ and r being the argument and modulus of the complex eigen-
value A = a + b1, that is: A = a + bi = re'®.

Any 2 x 2 matrix with complex eigenvalue is similar to a rotation
followed by scaling. Theorem Let A be a real 2 x 2 matrix with a
complex eigenvalue = a — bi (b # 0) and associated eigenvector v in
C2. Then A = PCP~! where P = [Rev Imv] and C = [ Z _ab ]
For the rotation angle and scaling factor: see the example.

Symmetric matrices
A matrix A is orthogonally diagonalizable if there is an orthogonal
matrix P (that is: P~! = PT) and a diagonal matrix D such that
A= PDP~ !

A symmetric matrix is a matrix A such that A7 = A. For a symmetric
matrix any two eigenvectors from different eigenspaces are orthogonal.
The eigenspaces are therefore mutually orthogonal.

e If A is orthogonally diagonalizable, then A is symmetric (simple
proof).

e Proposition”: If A is symmetric then A is diagonalizable.

By choosing/constructing an orthonormal basis for each eigenspace,

one gets an orthonormal basis of eigenvectors for the whole space and

from this basis an orthogonal matrix P which does diagonalize matrix

A. Therefore:

Theorem A is symmetric < A is orthogonally diagonalizable.

5The dimension of the complex eigenspace may be less than the algebraic multiplicity
of the eigenvalue (the matrix A is then called defective). Otherwise the matrix is complex
diagonalizable.

"Tts proof is not simple.



Spectral decomposition If A = PDP~! with orthogonal ma-
trix P = [uy---u,] and D = diag(A\1,...,\n), then A = Ajujud +
e )\nunug.

The Principle Axes Theorem for quadratic forms

A quadratic form @ : R® — R is defined by Q(x) = x” Ax where A is a
symmetric matrix. Let P orthogonally diagonalize A with A = PDPT.
Then a change of variable x = Py gives x! Ax = y” Dy, an expression
for the quadratic form without cross-product terms. The columns of
P are the principal axes of the quadratic form Q.

See: a geometric view of principal azes. Graph of the level set Q(x) =
constant in standard position, principal axes determined by the or-
thonormal eigenvectors.

Application: three-dimensional dynamics of rigid bodies.  The rota-
tion energy of a rigid body is a quadratic form based on the symmetric
inertia matrix.

Classification of a quadratic form Q(x) = x” Ax

A quadratic form @ is positive definite if Q(x) > 0 for all x # 0.
A quadratic form @ is positive semidefinite if Q(x) > 0 for all x.
@ is indefinite if () assumes both positive and negative values.

Theorem The quadratic form @ is positive definite < eigenvalues of
A are all positive. @ is indefinite < A has both positive and negative
eigenvalues (proof by orthogonally diagonalizing).



APPLICATION Discrete Dynamical Systems x;,1 = Ax;,

. A A A . . .
Consider xg — x; — X9 — --- with diagonalizable A. Let vi,... ,v,
be a basis of eigenvectors with corresponding eigenvalues Ay, ..., Ay.

The general solution of the system x;,; = Ax; can be written as

X, = C1 ()q)k vi+---+ep, ()\n)k v,, for arbitrary scalars cq,..., ¢,

The eigenvector decomposition of xg determines what happens in xq 4

A . . .
x1 — --- since the coefficients ¢; are determined by xg =civi+---+
Cn V.-

Long term behavior

e The system x;1; = Ax; has infinitely many solutions, one of
them is the (trivial) constant zero solution: x; = 0 for all k.

e If |[\| > 1> |\j| for j # 1, then for sufficiently large k: xz41 ~
C1 ()\1)19 Vi.

e 0 is called an attractor if for all eigenvalues |\;| < 1. All trajec-
tories of xg11 = Ax tend toward 0.

e 0 is called a repellor if for all eigenvalues |\;| > 1. All trajecto-
ries of xg11 = A Xy (except the constant zero solution) tend away
from the origin.

e 0 is called a saddle point if for some eigenvalues |\;| > 1 and
for the other eigenvalues |Aj| < 1. The origin attracts solutions
from some directions and repels them in other directions.

Change of variables
Let A = PDP~!. Consider x A X1 A X2 A ---, take P as the
change-of-coordinates matrix and define y; = P~!x;. Then yq A

Y1 B, Yo D .. with D a diagonal matrix and therefore one has in
these new variables a very simple discrete system yx.1 = Dyg. The
system is in these new variables decoupled.

Graphical picture (in case n = 2) With P = [v; vg], draw axes from
the origin through v; and vo and make a graph with trajectories as
viewed in terms of these eigenvector axes.

Discrete Dynamical System with complex eigenvalues (in case n = 2)

If real A has two complex eigenvalues (A and \) whose absolute value
is greater than 1, then 0 is a repellor: the trajectory spirals outward
around the origin. If the absolute values are less than 1, the origin is
an attractor (inwards spiralling trajectories).



APPLICATION Continuous Dynamical Systems x'(t) = Ax(t)
Consider a continuous dynamical system described by a linear system
of differential equations (of first order) x'(¢t) = A x(t) with diagonaliz-
able matrix A.

Let vi,...,v, be a basis of eigenvectors with corresponding eigen-
values A1,...,\,, that iss A = PDP~! with P = [v;---v,], D =
diag(A1,. .., An).

e The constant solution x'(¢t) = 0 for all ¢, is the trivial solution of
a system x'(t) = Ax(t).

e Fundamental set of eigenfunctions: vqe*?, --- v,e*?. These

are (basic) solutions of the system x'(¢t) = Ax(¢).

e The general solution of the system is

x(t) = cpvy eMt 4 - epvy, et
(proof by decoupling the system through a change of variables
x = Py)
The eigenvector decomposition of x(0) = x¢ (initial value) deter-
mines the value of the coefficients c;.

Long term behavior

o If all eigenvalues A > 0, then the non trivial solutions tend away
from 0 as t — oo, since in this case e’ — oco. The eigenvectors
belonging to the greatest eigenvalue give the direction of greatest
repulsion. 0 is a repellor.

o If If all eigenvalues A < 0, then the non trivial solutions tend to
0 as t — oo, since in this case e’ — 0. 0 is an attractor. The
eigenvectors belonging to the most negative eigenvalue give the
direction of greatest attraction.

e If some eigenvalues are positive and the other eigenvalues are
negative then 0 is a saddle point.

Complex eigenvalues (in case n = 2)

The real 2 x 2 matrix A has a pair of complex eigenvalues A = a + bi
and \ = a — bi (b # 0), with associated complex eigenvectors v and V.
A general complex solution is

x(t) = dy ve + do Vet , with complex scalars d, do.

Fundamental set of real eigenfunctions is: Re[ve*] = Re[Ve] | Im[veM] =

—Im[veM].

A general real solution is then

x(t) = ¢; Re[ve] + o Im[ve],  with real scalars ¢, co.



The origin 0 is a spiral point. If A = a 4+ bi and a > 0 then the
trajectories spiral outward by a factor e, if @ < 0 then the trajectories
spiral inward. If A = ib (b # 0), then the trajectories rotate around
the origin.



Appendix NUMERICAL TOPICS
Optional (the appendix doesn’t belong to the course wil
277lr)

When using algorithms for large-scale problems one has to consider
questions of computational efficiency and propagation effects of round-
off errors in the computations. These algorithms are therefore different
from the algorithms used for explaining concepts of linear algebra and
making simple computations by hand.

e In solving a system of linear equations the strategy of partial
pivoting is used to reduce roundoff errors in calculations.

e In practical numerical work A~! is seldom computed, since solv-
ing Ax = b by row reduction costs less arithmetic operations and
may be more accurate.

e The larger the condition number of a square matrix, the closer
the matrix is to being singular (non-invertible). Matrix computa-
tions with nearly singular or ill-conditioned matrices can produce
substantial error.

e Methods of matrix factorization (expression of A as product of
matrices) are important for fast numerical computations.

LU Factorization

A = LU with L alower triangular matrix with 1’s on the diagonal,
U an echelon form of A (assume no row interchanges needed).
Solving Ax = b is equivalent to solving

Ly=b, Ux=y

(when A is sparse, this solving is much faster than using A=1).

Algorithm for constructing the LU factorization:

1. Reduce A to an echelon form U by a sequence of row replace-
ment operations

2. Place entries in L such that this sequence of row operations
reduces L to I.

QR Factorization
Given: A has linearly independent columns. Then A = QQ R where
the columns of ) form an orthonormal basis for ColA and R is

an upper triangular invertible matrix with positive entries on its
diagonal. Remark: R = QT A.

When the orthonormal basis {ui,...,u,} is constructed by the
Gram-Schmidt process then @ = [ujug ---u,] (with an appro-
priate sign for each column).

10



The equation Ax = b has a unique least-squares solution which
can be computed by solving exactly Rx = QTb.

There is a QR algorithm for estimating eigenvalues:
A= R = A1 = RiQ1 = Q2Ry = Ay = ReQ2 = Q3R3 = -+

A is similar to Ay, As,... and A becomes almost upper trian-
gular with diagonal entries that approach the eigenvalues of A.

Iterative estimates for eigenvalues

Power method for estimating a strictly dominant eigenvalue

Assume A is diagonalizable, with a basis of eigenvectors vy, - - -, v,
and corresponding eigenvalues Aj,--- where |A1| > [Ao| > -+ >
[Anl-

When xg = ¢1vq +- - - then ~L- AFxy — cjvy as k — o0, therefore

(A1)k
x;, = AFx( points almost in the direction of v;.
Scale each xj, to make its largest entry 1. Then the sequence {xy}
will converge to a multiple of v; and the largest entry in Ax; is
close to A\q.

1. Select xg whose largest entry is 1.

2. For £ =0,1,... compute: y; = Ax; and then xx1 = l%kyk
(ux is entry of y, whose absolute value is largest).

3. Then X — CV1 and M — )\1.

The inverse method for estimating an eigenvalue A of A

Suppose a good initial estimate « of eigenvalue A is known. Take
B = (A — al)~! and apply the power method to B. The eigen-
values of B are /\1%&, —

S Ap—a”

0. Select an initial estimate « close to A.

1. Select xg whose largest entry is 1.

2. For k=0,1,... compute: y, = Bx; that is solve (A—al)y; =
Xk .

Define x;4+1 = ;leyk' Compute v with ;%k =, — Q.

3. Then x;, — cv and v — .

Singular Value Decomposition

For any m x n matrix A a factorization A = QDP~! is possible.
A special factorization of this type is the singular value decom-
position.

The singular values of A are the square roots of the eigenvalues
of AT A, that is o; = ||Av;| with v; an unit eigenvector of the
symmetric AT A.

11



The Singular Value Decomposition

Given: the m x n matrix A with rank r. Then there exists an
m xn matrix ¥ with the first r diagonal entries being the nonzero
r singular values and further zeros, and an m X m orthogonal
matrix U and an n X n orthogonal matrix V such that

A=UxvT

Construction of U and V

Let {vi,...,v,} be an orthonormal basis of R" consisting of
eigenvectors of AT A, and eigenvalues \; # 0 for 1 < i < r.
{Avy, ..., Av,} is a basis of ColA.

Normalize each u; := Av; for all 1 < ¢ < r. Extend to an or-
thonormal basis {uy,...,u,} of R™. Take U = [u; uy ... uy)]
and V = [vi va ... vp].

The columns of U are left singular vectors, the columns of V' are
right singular vectors of A.
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