
Second Half of the Linear Algebra Course (wi1 277LR)

Determinants
Cofactor expansion across the ith row: detA = ai1Ci1 + · · ·+ ainCin

with cofactor Cij = (−1)i+j detAij . Cofactor expansion across an
arbitrary row or column of A gives the same answer. Then also:
detAT = detA.

Row operations A Ã B:
row replacement⇒ detA = detB, row interchange⇒ det B = −detA,
row multiplication by k ⇒ detB = k det A , and therefore det (kA) =
kn det A.
⇒ First simplify the determinant by row or column operations before
expanding!

Properties:
A−1 exists ⇔ det A 6= 0
det (AB) = (detA)(detB) , therefore: det (A−1) = 1/det A

Area of parallelogram, volume of parallelepiped :
2× 2 matrix A = [a1 a2] ⇒ area{a1, a2} = absolute value of det A.
3×3 matrix A = [a1 a2 a3] ⇒ volume{a1, a2, a3} = absolute value of detA.

If S is a region of Rk and T : Rk → Rk is a linear transformation with
T (x) = Ax then: volume of T (S) = | detA| · volume of S.

Theoretical properties

• T (x1, x2, . . . , xn) = det[x1 x2 · · · xn] is a multi linear function,
that is: linear in each of its arguments1.

• Cramer’s rule Let A be invertible and Ax = b. The matrix
Ai(b) is obtained by replacing column i by the vector b. Then
xi = det Ai(b)

det A .

• A formula for A−1 by means of a matrix of cofactors, called the
adjugate of A.

Vector space
A vector space is a nonempty set V of objects, called vectors, closed
under two operations: addition and multiplication by scalars, and sat-
isfying certain rules.
The set contains a zero vector 0 with u + 0 = u, and u + (−u) = 0.

• Rn. The zero vector is 0 = [0 0 · · · 0]T .

• The set of all real-valued functions f : D → R, with the well
known addition and scalar multiplication for functions. Zero
function f(t) = 0 for all t ∈ D acts as the zero vector.

• Pn (set of polynomials of degree at most n).
The zero polynomial [p(t) = 0 for all t] acts as the zero vector.

1§3.2 p.197 Proof by expanding across the appropriate column.
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One can apply earlier notions: linear combination of vectors, linearly
independent set of vectors, span of a set of vectors, subspace, basis,
dimension, coordinate vector.

Example: a (standard) basis of Pn is the collections of polynomials E =
{e1 , e2 , · · · , en+1} with e1(t) = 1, e2(t) = t, e3(t) = t2, · · · , en+1(t) =
tn , and so dimPn = n + 1.

If p is a polynomial of P2 with p(t) = −2+t+3t2 then [p]E =



−2
1
3


.

Coordinate systems
Let B = {b1, · · · ,bn} be a basis for vector space V . The coordinate
mapping x 7→ [x]B is a one-to-one linear transformation from V onto
Rn. Linearity of the mapping:

[cu + d v]B = c [u]B + d [v]B

Special case: V = Rn. Since [x]B =




c1
...

cn


 and x = c1b1 + · · ·+ cnbn,

therefore x = PB [x]B with the change-of-coordinates matrix PB =
[b1 b2 · · ·bn].

The matrix representation of linear transformations
The information about vectors can be stored in a column [coordinate
vector]. The information about a linear map (transformation) can be
stored in a matrix 2.

Let V be a an n-dimensional vector space, W an m-dimensional vec-
torspace, and T : V → W a linear transformation from V tot W , that
is:

T (cu + d v) = c T (u) + d T (v) for all u, v from V and all scalars c,d

Choose basis B = {b1, · · · ,bn} for V and basis C for W . Then

[T (x)]C = M [x]B where M = [ [T (b1)]C [T (b2)]C . . . [T (bn)]C ]

M is called a matrix representation of T relative to bases B and C.
Special case: Linear transformation T from V to V with basis B for V .
The B-matrix for T is [T ]B = [ [T (b1)]B [T (b2)]B . . . [T (bn)]B ].

Example Consider the linear map D : P2 → P2 with D(p) = p′ (the
derivative). Standard basis E = {1, t, t2} for P2. Then the E-matrix of
D is

[D]E =




0 1 0
0 0 2
0 0 0




2See §5.4.
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Similarity
Square matrices A and B are similar3 if there is an invertible P with
B = P−1AP .

Similarity of Matrix Representations4

Given a basis B = {b1, · · · ,bn} for Rn and a matrix transformation
T : Rn → Rn with T (x) = Ax. Then [T ]B = PAP−1 = B with
P = [b1 · · ·bn].

Application
Consider the discrete dynamical system x0

A→ x1
A→ x2

A→ · · · [ the dif-
ference equation xk+1 = Axk]. Let be given the change-of-coordinates
matrix P = PB = [b1 · · ·bn].
If xk = Pyk and therefore [xk]B = yk, then y0

B→ y1
B→ y2

B→ · · · with
B = PAP−1.

Eigenvalues and eigenvectors Given: A is a n× n-matrix.
v is an eigenvector of the square matrix A if v 6= 0 and Av = λv
for certain λ. The scalar λ is then called an eigenvalue of A and
Eλ ≡ {x |Ax = λx} = Nul(A− λI) is called the eigenspace of A corre-
sponding to λ. Remark: dimEλ ≥ 1.

Geometric example: Let A be the matrix of the orthogonal projection
x 7→ Ax in R3 on a plane W through O. Then A has two eigenspaces:
E1 = W and E0 = W⊥ (= line perpendicular to W through O).
Discrete dynamical system: x0

A→ x1
A→ x2

A→ · · ·. If x0 is an eigenvec-
tor of A with eigenvalue λ then xk = λkx0.

• A (real) matrix A may not have (real) eigenvalues.

• If v1, · · · , vp are eigenvectors corresponding to distinct eigenval-
ues, then
the set {v1, · · · , vp} is linearly independent.

Calculating all the eigenvalues and eigenspaces
First solve the characteristic equation det (A− λI) = 0. Then for
each solution λ solve (A − λI)x = 0, that is: determine a basis for
each Eλ.

• det (A− λI) is a polynomial in λ of degree n (characteristic
polynomial).

• The (algebraic) multiplicity αλ of an eigenvalue λ is its multiplic-
ity as a root of the characteristic equation. 1 ≤ αλ ≤ n.

3See §5.2. Remark: ‘similar’ (=‘gelijkvormig’) , do not confuse with ‘row equivalent’
(=‘rij-equivalent’)

4See §5.4.
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• Theorem: dim(Eλ) ≤ αλ. That is:
The dimension of the eigenspace Eλ, also called the geometric
multiplicity of the eigenvalue λ, is less than or equal to the alge-
braic multiplicity of λ. (5)

• 0 is an eigenvalue ⇔ A is not invertible

• Similar matrices have the same characteristic polynomial, there-
fore the same eigenvalues λi with the same multiplicities αλi .

Diagonalization
A is diagonalizable if A is similar to a diagonal matrix, that is: there
is an invertible matrix P and a diagonal matrix D such that A =
PDP−1.

Theorem The n× n matrix A is diagonalizable ⇔ there is a basis
of Rn consisting of eigenvectors of A.

In the diagonal of D: eigenvalues of A. The columns of P form a
(corresponding) basis of eigenvectors. D = diag(λ1, · · · , λn) and P =
[p1 p2 · · ·pn] with Api = λi pi.

Theorem Let A be an n×n matrix with distinct eigenvalues λ1, · · · , λp.

• A is diagonalizable ⇔
p∑

i=1

dimEλi = n

• A is diagonalizable ⇔





for all eigenvalues λ : dimEλ = αλ
p∑

i=1

αλi = n (”enough eigenvalues”)

Calculation of D and P
Determine for each eigenvalue λk a basis Bk for the eigenspace Eλk

.
If the total collection of vectors in B1, · · · ,Bp has n vectors, then A is
diagonalizable and this collection forms an eigenvector basis for Rn.
Put this basis in P and make the diagonal matrix D with the corre-
sponding eigenvalues in the diagonal.

Diagonal Matrix Representation
If A is diagonalizable: A = PDP−1 , then the transformation x 7→
T (x) = Ax has a very simple matrix representation, namely by a di-
agonal matrix: [T ]B = D where B is the basis for Rn formed from the
columns of P .

Complex eigenvalues
The characteristic equation of the square matrix A has always exactly
n roots, provided that possibly complex roots are included.

5The matrix A is called defective if dimEλ < αλ for some eigenvalue λ.

4



This complex root λ is an eigenvalue of A when we let A act on the
space Cn of n-tuples of complex numbers: Ax = λx with x in Cn. (6)

If x from Cn then we can form: Re x, Im x, the complex conjugate x.
When A is a real matrix then complex eigenvalues occur in conjugate
pairs, that is:
if Ax = λ x and A is a real matrix, then A x = λ x.

Example Let C =
[

a −b
b a

]
with real a, b 6= 0.

Then C is a rotation followed by a scaling: C = r

[
cosφ − sinφ
sinφ cosφ

]
,

with φ and r being the argument and modulus of the complex eigen-
value λ = a + b i , that is: λ = a + bi = r eiφ.

Any 2 × 2 matrix with complex eigenvalue is similar to a rotation
followed by scaling. Theorem Let A be a real 2 × 2 matrix with a
complex eigenvalue µ = a− b i (b 6= 0) and associated eigenvector v in

C2. Then A = PCP−1 where P = [Re v Im v] and C =
[

a −b
b a

]
.

For the rotation angle and scaling factor: see the example.

Symmetric matrices
A matrix A is orthogonally diagonalizable if there is an orthogonal
matrix P (that is: P−1 = P T ) and a diagonal matrix D such that
A = PDP−1.

A symmetric matrix is a matrix A such that AT = A. For a symmetric
matrix any two eigenvectors from different eigenspaces are orthogonal.
The eigenspaces are therefore mutually orthogonal.

• If A is orthogonally diagonalizable, then A is symmetric (simple
proof).

• Proposition7: If A is symmetric then A is diagonalizable.

By choosing/constructing an orthonormal basis for each eigenspace,
one gets an orthonormal basis of eigenvectors for the whole space and
from this basis an orthogonal matrix P which does diagonalize matrix
A. Therefore:

Theorem A is symmetric ⇔ A is orthogonally diagonalizable.

6The dimension of the complex eigenspace may be less than the algebraic multiplicity
of the eigenvalue (the matrix A is then called defective). Otherwise the matrix is complex
diagonalizable.

7Its proof is not simple.
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Spectral decomposition If A = PDP−1 with orthogonal ma-
trix P = [u1 · · ·un] and D = diag(λ1, . . . , λn), then A = λ1 u1uT

1 +
· · ·λnunuT

n .

The Principle Axes Theorem for quadratic forms
A quadratic form Q : Rn → R is defined by Q(x) = xT Ax where A is a
symmetric matrix. Let P orthogonally diagonalize A with A = PDP T .
Then a change of variable x = Py gives xT Ax = yT Dy, an expression
for the quadratic form without cross-product terms. The columns of
P are the principal axes of the quadratic form Q.

See: a geometric view of principal axes. Graph of the level set Q(x) =
constant in standard position, principal axes determined by the or-
thonormal eigenvectors.
Application: three-dimensional dynamics of rigid bodies. The rota-
tion energy of a rigid body is a quadratic form based on the symmetric
inertia matrix.

Classification of a quadratic form Q(x) = xT Ax
A quadratic form Q is positive definite if Q(x) > 0 for all x 6= 0.
A quadratic form Q is positive semidefinite if Q(x) ≥ 0 for all x.
Q is indefinite if Q assumes both positive and negative values.

Theorem The quadratic form Q is positive definite ⇔ eigenvalues of
A are all positive. Q is indefinite ⇔ A has both positive and negative
eigenvalues (proof by orthogonally diagonalizing).
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APPLICATION Discrete Dynamical Systems xk+1 = A xk

Consider x0
A→ x1

A→ x2
A→ · · · with diagonalizable A. Let v1 , . . . , vn

be a basis of eigenvectors with corresponding eigenvalues λ1 , . . . , λn.

The general solution of the system xk+1 = A xk can be written as

xk = c1 (λ1)k v1 + · · ·+ cn (λn)k vn for arbitrary scalars c1, . . . , cn

The eigenvector decomposition of x0 determines what happens in x0
A→

x1
A→ · · · since the coefficients ci are determined by x0 = c1 v1 + · · ·+

cn vn.

Long term behavior

• The system xk+1 = A xk has infinitely many solutions, one of
them is the (trivial) constant zero solution: xk = 0 for all k.

• If |λ1| ≥ 1 > |λj | for j 6= 1 , then for sufficiently large k: xk+1 ≈
c1 (λ1)k v1.

• 0 is called an attractor if for all eigenvalues |λi| < 1. All trajec-
tories of xk+1 = A xk tend toward 0.

• 0 is called a repellor if for all eigenvalues |λi| > 1. All trajecto-
ries of xk+1 = A xk (except the constant zero solution) tend away
from the origin.

• 0 is called a saddle point if for some eigenvalues |λi| > 1 and
for the other eigenvalues |λj | < 1. The origin attracts solutions
from some directions and repels them in other directions.

Change of variables
Let A = PDP−1. Consider x0

A→ x1
A→ x2

A→ · · ·, take P as the
change-of-coordinates matrix and define yk = P−1xk. Then y0

D→
y1

D→ y2
D→ · · · with D a diagonal matrix and therefore one has in

these new variables a very simple discrete system yk+1 = Dyk. The
system is in these new variables decoupled.

Graphical picture (in case n = 2) With P = [v1 v2] , draw axes from
the origin through v1 and v2 and make a graph with trajectories as
viewed in terms of these eigenvector axes.

Discrete Dynamical System with complex eigenvalues (in case n = 2)
If real A has two complex eigenvalues (λ and λ) whose absolute value
is greater than 1, then 0 is a repellor: the trajectory spirals outward
around the origin. If the absolute values are less than 1, the origin is
an attractor (inwards spiralling trajectories).
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APPLICATION Continuous Dynamical Systems x′(t) = Ax(t)
Consider a continuous dynamical system described by a linear system
of differential equations (of first order) x′(t) = A x(t) with diagonaliz-
able matrix A.
Let v1 , . . . , vn be a basis of eigenvectors with corresponding eigen-
values λ1 , . . . , λn, that is: A = PDP−1 with P = [v1 · · · vn], D =
diag(λ1, . . . , λn).

• The constant solution x′(t) = 0 for all t, is the trivial solution of
a system x′(t) = Ax(t).

• Fundamental set of eigenfunctions: v1 eλ1t, · · · , vneλnt. These
are (basic) solutions of the system x′(t) = A x(t).

• The general solution of the system is

x(t) = c1v1 eλ1t + · · · cnvn eλnt

(proof by decoupling the system through a change of variables
x = Py)
The eigenvector decomposition of x(0) = x0 (initial value) deter-
mines the value of the coefficients ci.

Long term behavior

• If all eigenvalues λ > 0, then the non trivial solutions tend away
from 0 as t → ∞, since in this case eλt → ∞. The eigenvectors
belonging to the greatest eigenvalue give the direction of greatest
repulsion. 0 is a repellor.

• If If all eigenvalues λ < 0, then the non trivial solutions tend to
0 as t → ∞, since in this case eλt → 0. 0 is an attractor. The
eigenvectors belonging to the most negative eigenvalue give the
direction of greatest attraction.

• If some eigenvalues are positive and the other eigenvalues are
negative then 0 is a saddle point.

Complex eigenvalues (in case n = 2)
The real 2× 2 matrix A has a pair of complex eigenvalues λ = a + bi
and λ = a− bi (b 6= 0), with associated complex eigenvectors v and v.
A general complex solution is

x(t) = d1 veλt + d2 veλt , with complex scalars d1, d2.

Fundamental set of real eigenfunctions is: Re[veλt] = Re[veλt] , Im[veλt] =
−Im[veλt].
A general real solution is then

x(t) = c1 Re[veλt] + c2 Im[veλt], with real scalars c1, c2.
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The origin 0 is a spiral point. If λ = a + bi and a > 0 then the
trajectories spiral outward by a factor eat, if a < 0 then the trajectories
spiral inward. If λ = ib (b 6= 0), then the trajectories rotate around
the origin.
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Appendix NUMERICAL TOPICS
Optional (the appendix doesn’t belong to the course wi1
277lr)

When using algorithms for large-scale problems one has to consider
questions of computational efficiency and propagation effects of round-
off errors in the computations. These algorithms are therefore different
from the algorithms used for explaining concepts of linear algebra and
making simple computations by hand.

• In solving a system of linear equations the strategy of partial
pivoting is used to reduce roundoff errors in calculations.

• In practical numerical work A−1 is seldom computed, since solv-
ing Ax = b by row reduction costs less arithmetic operations and
may be more accurate.

• The larger the condition number of a square matrix, the closer
the matrix is to being singular (non-invertible). Matrix computa-
tions with nearly singular or ill-conditioned matrices can produce
substantial error.

• Methods of matrix factorization (expression of A as product of
matrices) are important for fast numerical computations.

LU Factorization
A = LU with L a lower triangular matrix with 1’s on the diagonal,
U an echelon form of A (assume no row interchanges needed).
Solving Ax = b is equivalent to solving

Ly = b , Ux = y

(when A is sparse, this solving is much faster than using A−1).

Algorithm for constructing the LU factorization:
1. Reduce A to an echelon form U by a sequence of row replace-
ment operations
2. Place entries in L such that this sequence of row operations
reduces L to I.

QR Factorization
Given: A has linearly independent columns. Then A = QR where
the columns of Q form an orthonormal basis for ColA and R is
an upper triangular invertible matrix with positive entries on its
diagonal. Remark: R = QT A.

When the orthonormal basis {u1, . . . ,un} is constructed by the
Gram-Schmidt process then Q = [u1 u2 · · ·un] (with an appro-
priate sign for each column).
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The equation Ax = b has a unique least-squares solution which
can be computed by solving exactly Rx = QT b.

There is a QR algorithm for estimating eigenvalues:

A = Q1R1 ⇒ A1 = R1Q1 = Q2R2 ⇒ A2 = R2Q2 = Q3R3 ⇒ · · ·
A is similar to A1 , A2 , . . . and Ak becomes almost upper trian-
gular with diagonal entries that approach the eigenvalues of A.

• Iterative estimates for eigenvalues

Power method for estimating a strictly dominant eigenvalue
Assume A is diagonalizable, with a basis of eigenvectors v1, · · · , vn

and corresponding eigenvalues λ1, · · · where |λ1| > |λ2| ≥ · · · ≥
|λn|.
When x0 = c1v1 + · · · then 1

(λ1)k Akx0 → c1v1 as k →∞, therefore

xk = Akx0 points almost in the direction of v1.
Scale each xk to make its largest entry 1. Then the sequence {xk}
will converge to a multiple of v1 and the largest entry in Axk is
close to λ1.

1. Select x0 whose largest entry is 1.
2. For k = 0, 1, . . . compute: yk = Axk and then xk+1 = 1

µk
yk

(µk is entry of yk whose absolute value is largest).
3. Then xk → cv1 and µk → λ1.

The inverse method for estimating an eigenvalue λ of A
Suppose a good initial estimate α of eigenvalue λ is known. Take
B = (A − αI)−1 and apply the power method to B. The eigen-
values of B are 1

λ1−α , · · · , 1
λn−α .

0. Select an initial estimate α close to λ.
1. Select x0 whose largest entry is 1.
2. For k = 0, 1, . . . compute: yk = Bxk that is solve (A−αI)yk =
xk.
Define xk+1 = 1

µk
yk. Compute νk with 1

µk
= νk − α.

3. Then xk → cv and νk → λ.

• Singular Value Decomposition
For any m× n matrix A a factorization A = QDP−1 is possible.
A special factorization of this type is the singular value decom-
position.

The singular values of A are the square roots of the eigenvalues
of AT A, that is σi = ‖Avi‖ with vi an unit eigenvector of the
symmetric AT A.
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The Singular Value Decomposition
Given: the m × n matrix A with rank r. Then there exists an
m×n matrix Σ with the first r diagonal entries being the nonzero
r singular values and further zeros, and an m × m orthogonal
matrix U and an n× n orthogonal matrix V such that

A = UΣV T

Construction of U and V
Let {v1, . . . , vn} be an orthonormal basis of Rn consisting of
eigenvectors of AT A, and eigenvalues λi 6= 0 for 1 ≤ i ≤ r.
{Av1, . . . , Avr} is a basis of ColA.
Normalize each ui := Avi for all 1 ≤ i ≤ r. Extend to an or-
thonormal basis {u1, . . . ,um} of Rm. Take U = [u1 u2 . . . um]
and V = [v1 v2 . . . vn].
The columns of U are left singular vectors, the columns of V are
right singular vectors of A.
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