
Mechanics of Materials Theory

1 Thin-Walled Structures

Before we venture further into the depths of mechanics of materials, we first need to discuss some basic
ideas. The first idea we will discuss is that of thin-walled structures. Let’s consider the I-beam cross-
section shown in figure 1. Such a cross-section is often used in constructions for reasons we will discover
in later chapters.

Figure 1: Another example of a cross-sectional shape: an I-beam.

We can try to calculate the area of this I-beam. We see a horizontal part of the beam with width w, a
vertical part with height h and another horizontal part with height w. So we might initially think that

A = wt + ht + wt = 2wt + ht. (1.1)

However, now we’ve counted the overlapping parts twice. If we keep those into account, we will get

A = wt + (h− 2t)t + wt = 2wt + ht− 2t2. (1.2)

The second way of calculating things is more exact. However, as cross-sectional shapes get more compli-
cated, this second way will become rather difficult.

Now let’s look at the differences. The difference between the two methods is in this case 2t2. Usually the
thickness t is small compared to the width w and height h. The quantity t2 is then very small. If this is
the case, we say we have a thin-walled structure. We then may neglect any factors with t2 and such.

So the key idea is as follows: In thin-walled structures you do not have to consider the very small parts
(with high powers of t). There will be no terms like (h − 2t) and such. These terms all simplify to just
h. By using this assumption, the analysis of many cross-sections is simplified drastically.

2 Center of Gravity - Method 1

In the next chapters we will be analyzing forces in beams. The way in which the beams behave, strongly
depends on the shape of its cross-section. So the coming couple of paragraphs we will examine the
cross-sections of beams.

A first thing which we need to find is the position of the center of gravity of a cross-section. This
position has coordinates (x, y). The values of x and y can be found using

x =
1
A

∫
A

x dA and y =
1
A

∫
A

y dA. (2.1)

To explain how to use these equations, we use an example. Let’s consider the rectangle shown in figure
2.
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Figure 2: An example of a cross-sectional shape: a square.

The value of x can be found using

x =
1
A

∫
A

x dA =
1

hw

∫ w

0

h x dx =
1

hw

1
2
hw2 =

1
2
w. (2.2)

Identically we can find that y = 1
2h. So the center of gravity is exactly in the middle of the rectangle, as

was expected.

3 Center of Gravity - Method 2

The method of the previous paragraph has a few downsides. For complicated cross-sections it is often
very hard to evaluate the integral. Cross-sectional shapes often consist of an amount of sub-shapes, of
which you already know the position of the center of gravity. It would be much easier to use that fact to
find the position of the center of gravity.

Now we will do exactly that. Let’s define Atot as the total area of the cross-section. We can now find x
and y using

x =
1

Atot

∑
xiAi and y =

1
Atot

∑
yiAi, (3.1)

where xi, yi is the position of the center of gravity of every subpart i and Ai the corresponding area. For
the shape of figure 1 (the I-beam) we will thus get

y =
1

Atot

∑
yiAi =

1
2wt + ht

(
(0)(wt) +

(
1
2
h

)
(ht) + (h)(wt)

)
=

1
2h2t + wht

2wt + ht
=

1
2
h. (3.2)

The center of gravity is exactly in the middle. We could have expected that, since the structure is
symmetric. Instead of having to integrate things, we only need to add up things with this method.
That’s why this method is mostly used to find the center of gravity of a cross-section.

3.1 Moment of Inertia - Method 1

A quantity that often occurs when analyzing bending moments is

Ix =
∫

A

(y − yr)2 dA and Iy =
∫

A

(x− xr)2 dA. (3.3)

Here the point xr, yr is a certain reference point. The parameters Ix and Iy are called the second
moment of inertia about the x-axis/y-axis. The second moment of inertia is also called the area
moment of inertia, or shortened it is just moment of inertia. The moment of inertia is always
minimal if you calculate it with respect to the center of gravity (so if xr = x and yr = y).
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To see how these equations work, we will find the value Ix for a rectangle, as shown in figure 2. We do
this with respect to the center of gravity. We thus get

Ix =
∫

A

(y − y)2 dA =
∫ h

0

(
y − 1

2
h

)2

w dx =

[
1
3
w

(
y − 1

2
h

)3
]h

0

=
1
12

wh3. (3.4)

Identically, we find that the moment of inertia about the y-axis is Iy = 1
12hw3.

Next to Ix and Iy, there is also the polar moment of inertia Ip, defined as

Ip =
∫

A

(
x2 + y2

)
dA = Ix + Iy. (3.5)

This quantity is also often denoted as J .

4 Moment of Inertia - Method 2

Evaluating an integral every time we need to know a moment of inertia is rather annoying. There must
be a more simple method. It would be great if we can evaluate a cross-section part by part. Well, why
can’t we do this?

There is a good reason for that. A moment of inertia is always with respect to a certain reference point.
We can’t add up the moment of inertias of parts with different reference points. So what we need to do,
is make the reference points for every part equal. We need to move them! More specifically, we need to
move them to the center of gravity of the entire cross-section. How do we do this?

There is a rule, called Steiner’s rule (also called the parallel axis theorem), with which you can move
the reference point. Suppose we have the moment of inertia with respect to the center of gravity and
want to know it with respect to another point xr, yr. The equations we can then use are

Ixr
= Ixcog

+ A (yr − ycog)
2 and Iyr

= Iycog
+ A (xr − xcog)

2
. (4.1)

So if we move the reference point away from the center of gravity by a distance d in a certain direction,
then the moment of inertia for the corresponding axis increases by Ad2. This term Ad2 is called Steiner’s
term.

So, taking into account the Steiner’s term, we can derive another expression for the moment of inertia.
It will become

Ixtot
=
∑(

Ixi
+ Ai (ycogtot

− ycogi
)2
)

and Iytot
=
∑(

Iyi
+ Ai (xcogtot

− xcogi
)2
)

. (4.2)

If we apply this to the I-shaped beam of figure 1, we find

Ix = 2

(
1
12

wt3 + (wt)
(

1
2
h

)2
)

+
1
12

th3 =
1
2
wth2 +

1
12

th3. (4.3)

We don’t have a Steiner’s term for the vertical part of the beam (the so-called web). This is because
the center of gravity of this part coincides with the center of gravity of the whole cross-section. Also
note that we have ignored the term involving t3 at the horizontal parts (the flanges). This is because
we assumed we are dealing with a thin-walled structure.

5 Common Cross-Sectional Shapes

To apply the method of the previous paragraph, we need to know the moment of inertia for a couple of
shapes. Some of them are given here. The following moment of inertias are with respect to the center of
gravity of that cross-section. For that reason, the position of the center of gravity is also given.
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• A rectangle, with width w and height h. The center of gravity is in its center (at height 1
2h and

width 1
2w). The moment of inertias are

Ix =
1
12

wh3 and Iy =
1
12

hw3. (5.1)

• An isosceles triangle, with its base down and tip up. (The tip then lies centered above the base.)
The base has width w, and the triangle has height h. The center of gravity now lies on height 1

3h
and on width 1

2w. The moment of inertias are

Ix =
1
36

wh3 and Iy =
1
48

hw3. (5.2)

• A circle, with radius R. Its center of gravity lies at the center of the circle. The moment of inertias
are

Ix = Iy =
1
4
πR4 (5.3)

• A tube, with inner radius R1 and outer radius R2. Its center of gravity lies at the center of the
tube. The moment of inertias are

Ix = Iy =
1
4
π
(
R4

2 −R4
1

)
(5.4)
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