
Partial Differential Equations Summary

1. The heat equation

Many physical processes are governed by partial differential equations. One such phenomenon is the
temperature of a rod. In this chapter, we will examine exactly that.

1.1 Deriving the heat equation

1.1.1 What is a partial differential equation?

In physical problems, many variables depend on multiple other variables. For example, the temperature
u(x, t) [K] can depend on both position and time. Such variables don’t have normal derivates like du/dt.
Instead, they have partial derivates, like ∂u/∂x and ∂u/∂t.

We can set up an equation with multiple partial derivatives. We would then get a partial differential
equation (PDE). So a partial differential equation is an equation containing partial derivatives. If a
differential equation does not contain partial derivatives, it’s only an ordinary differential equation
(ODE).

1.1.2 Conservation of energy for a one-dimensional rod

Let’s consider a one-dimensional rod of length L. We define the thermal energy density e(x, t) [J/m3]
as the energy per unit volume. It depends not only on the position in the rod, but also on time. This is
because it can change as time passes by.

There are two reasons why e can vary in time. First, there is the heat flux φ(x, t) [J/m2s]. This is the
heat flowing to the right through a unit cross-section per unit time. Second, there can be internal heat
creation due to heat sources. The amount of heat created is denoted by Q(x, t) [J/m3s].

We can now apply the law of conservation of energy to our rod. Let’s examine a thin slice. To be more
specific, we examine the rate of change of energy in it. This must be equal to the heat created, plus the
heat flowing in, minus the heat flowing out. This gives us

∂e

∂t
= −∂φ

∂x
+ Q. (1.1.1)

This equation is called the integral conservation law.

1.1.3 Deriving the heat equation for a one-dimensional rod

Let’s define u(x, t) [K] as the temperature in the rod. There is a relation between this temperature u,
and the variable e. But to find it, we first have to define two other variables.

Let’s define the mass density ρ(x) [kg/m3] as the mass per unit volume. (Usually ρ varies with
temperature, and thus also with time. However, these variations are usually small. We thus neglect
them.) We also define the specific heat c(x) [j/kg K] as the heat necessary to raise the temperature
of a 1kg-mass by 1 Kelvin. (We assume it to be constant in time for the same reasons as for the mass
density.)

Using the above definitions, we can derive that

e(x, t) = c(x)ρ(x)u(x, t). (1.1.2)
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This transforms the integral conservation law into

cρ
∂u

∂t
= −∂φ

∂x
+ Q. (1.1.3)

Usually Q is known. But u and φ are not. So we still have two unknowns. But you may be wondering,
doesn’t the heat flow depend on the temperature as well? In fact, it does. The heat flow depends on
temperature differences. The higher these differences, the higher the heat flow. So we can say that

φ(x, t) = −K0
∂u

∂x
. (1.1.4)

This equation is called Fourier’s law of heat conduction. The variable K0(x) [J/Kms] is called the
thermal conductivity. (It is also assumed to be constant for varying temperatures.) The above law
now reduces our differential equation into

cρ
∂u

∂t
= K0

∂2u

∂x2
+ Q. (1.1.5)

If there are no heat sources (and thus Q = 0), we can rewrite this to

∂u

∂t
= k

∂2u

∂x2
, where k =

K0

cρ
. (1.1.6)

The important equation above is called the heat equation. By the way, k [m2/s] is called the thermal
diffusivity.

1.1.4 Initial and boundary conditions

When solving a partial differential equation, we will need initial and boundary conditions. But what
conditions do we exactly need?

If we look at the heat equation, we see that there is only a first time-derivative of u. So we need only
one initial condition (IC). (An initial condition is a condition at t = 0.) Usually such a condition takes
the form u(x, 0) = f(x).

However, the heat equation contains a second derivative with respect to x. So we will need two bound-
ary conditions (BC). (A boundary condition is a condition at a specified position.) These boundary
conditions are usually the temperatures at the edges of the rod. So, u(0, t) = T1(t) and u(L, t) = T2(t).

However, it is also possible to set the heat flow φ (or equivalently ∂u/∂x) at the edges of the rod. We
would then have values given for ∂u(0, t)/∂x and ∂u(L, t)/∂x. If the rod is perfectly insulated at its
edges, then φ = 0 and thus also ∂u/∂x = 0 at the edges.

It is of course also possible to combine the two possibilities above. In that case, we deal with Newton’s
law of cooling. The heat flow then depends on the difference in temperature with respect to a certain
reference temperature uB(t). This would give us

−K0(0)
∂u

∂x
(0, t) = −H (u(0, t)− uB(t)) and −K0(L)

∂u

∂x
(L, t) = H (u(L, t)− uB(t)) . (1.1.7)

Here H is the heat transfer coefficient. Note that if H = 0, we are dealing with an insulated edge.
On the other hand, if we have H = ∞, we would have a constant temperature at the edge.

1.2 Special cases of the heat equation

1.2.1 Perfect thermal contact

Let’s suppose we have two rods of length L. We can connect them to each other, such that their edges
are in contact. So one rod goes from x = 0 to x = L, while the second goes from x = L to x = 2L. We
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can make this connection in such a way that there is perfect thermal contact. You may wonder, what
does that mean? Well, it means two things.

First of all the temperature u at the edges of both rods must be equal. We write this as u(L−, t) =
u(L+, t). In words, if we approach the point x = L from the left (negative) side, we find the same
temperature as if we approach it from the right (positive) side.

But, perfect thermal contact also means that no heat is lost. The energy that exits the first rod enters
the second rod. In an equation this means

φ(L−, t) = φ(L+, t), or, equivalently, K0(L−)
∂u

∂x
(L−, t) = K0(L+)

∂u

∂x
(L+, t). (1.2.1)

1.2.2 Finding the steady-state solution

Let’s suppose we have a heat problem where Q = 0 and u(x, 0) = f(x). Also suppose that our boundary
conditions are constant. (They don’t change in time.) Then we can expect that, after a while, the
temperature u(x, t) will not change in time anymore. The corresponding solution for u(x, t) is called the
equilibrium or steady-state solution.

How can we find this solution? Well, we know that ∂u/∂t = 0. So also ∂2u/∂x2 = 0. This means that
the temperature is given by u(x, t) = C1x+C2. Using the boundary conditions, we can often find C1 and
C2. Only if both rods have an insulated edge, we can’t find both constants yet. In that case we would
have to find C2 using the initial condition. This goes according to

C2 =
1
L

∫ L

0

f(x) dx. (1.2.2)

1.2.3 The heat equation in 3D

What happens when we don’t have a one-dimensional rod, but a three-dimensional body? In that case
we can also derive a heat equation. There are some small differences though.

This time the temperature u(x, y, z, t) depends on a lot more variables, as does the heat flow φ. Also,
the heat flow has a direction, so it is a vector (written as φ). It thus has a divergence ∇ ·φ. The relation
between φ and u is now given by φ = −K0∇u. Using this data, we can derive that the 3-dimensional
heat equation becomes

cρ
∂u

∂t
= K0∇2u + Q. (1.2.3)

Here ∇2 is the Laplacian operator, defined as

∇2u =
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
. (1.2.4)

Let’s look at the conditions. The intial condition takes the simple form of u(x, y, z, 0) = f(x, y, z).
However, the boundary conditions are slightly more difficult. We can set the temperature u(x, y, z, t) at
the edge of our body at a certain value. We could also set the heat flow at the edge of our body at a
certain value. We would thus set ∇u · n̂. (Here, n̂ is the unit vector at the edge, pointing outward.) We
also have a 3-dimensional version of Newton’s law of cooling. This would be

−K0∇u · n̂ = H (u− uB) . (1.2.5)

What would happen if we try to find the steady-state solution in 3D? In that case, we would have to
solve the equation ∇2u = −Q/K0. This equation is called Poisson’s equation. If we also have Q = 0,
we would have to solve ∇2u = 0. This equation is called Laplace’s equation. We will solve this later
in this chapter.
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1.3 Basic concepts needed to solve the heat equation

It is almost time for us to solve the heat equation. However, before we do that, we will have to look at
some other things first.

1.3.1 Linear operators and linear equations

A linear operator is some operator L for which

L(c1u1 + c2u2) = c1L(u1) + c2L(u2), (1.3.1)

where c1 and c2 are constants. For example, the heat operator

∂

∂t
− k

∂2

∂x2
(1.3.2)

is a linear operator. A linear equation for u is an equation of the form L(u) = f , with the function
f known. If f = 0, we have a linear homogeneous equation. Linear homogeneous equations have
a certain advantage. We can apply the principle of superposition to it. Suppose we would have two
solutions u1 and u2. Then also c1u1 + c2u2 is a solution, for any constants c1 and c2.

1.3.2 Orthogonality

The property of orthogonality comes in very handy when solving heat equations. So let’s examine it. We
say that two function f(x) and g(x) are orthogonal on the interval [0, L] if∫ L

0

f(x)g(x)dx = 0. (1.3.3)

It can be shown that the functions sin(nπx/L) and sin(mπx/L) (with n and m positive integers) are
orthogonal if n 6= m. And the same goes for cosines. That comes in handy! In fact, the general rules for
the interval [0, L] are ∫ L

0

sin
nπx

L
sin

mπx

L
dx =

{
0 if m 6= n,

L/2 if m = n.
(1.3.4)

∫ L

0

cos
nπx

L
cos

mπx

L
dx =


0 if m 6= n,

L/2 if m = n 6= 0,
L if m = n = 0.

(1.3.5)

Sometimes, however, we are examining the interval [−L,L]. In this case all values double. So,∫ L

−L

sin
nπx

L
sin

mπx

L
dx =

{
0 if m 6= n,

L if m = n.
(1.3.6)

∫ L

−L

cos
nπx

L
cos

mπx

L
dx =


0 if m 6= n,

L if m = n 6= 0,

2L if m = n = 0.

(1.3.7)

By the way, the functions sin(nπx/L) and cos(mπx/L) are always orthogonal on the interval [−L,L]. So
for every n and m we have ∫ L

−L

sin
nπx

L
cos

mπx

L
dx = 0. (1.3.8)
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1.4 Solving method for the heat equation

In this part we will present a basic method to solve the heat equation.

1.4.1 Introducing the method of separation of variables

Let’s try to solve the homogeneous heat equation

∂u

∂t
− k

∂2u

∂x2
= 0. (1.4.1)

Of course, there are also an initial condition u(x, 0) = f(x) and two boundary conditions. To solve this
problem, we use the method of separation of variables. According to this method, we assume that
we can write u(x, t) as X(x)T (t). Here, the function X(x) only depends on x and T (t) only depends on
t. We can now rewrite the above equation to

1
kT

dT

dt
=

1
X

d2X

dX2
. (1.4.2)

We have reduced the PDE to an ODE! It can also be shown that both sides of the above equation equal
a certain constant −λ. Here, λ is called the separation constant. We thus get two ordinary differential
equations, being

d2X

dx2
= −λX and

dT

dt
= −λkT. (1.4.3)

Solving the latter one is easy. The solution is

T (t) = ce−λkT , (1.4.4)

where c is a constant. (It depends on the initial conditions.) However, solving the equation for X is a
bit more difficult. In fact, we will find that it can only be solved for certain values of λ. These values are
called the eigenvalues of the equation. The corresponding solutions for X(x) are the eigenfunctions.
Let’s take a look at how we can find them.

1.4.2 Finding the eigenvalues and the eigenfunctions

We want to solve the ODE
d2X

dx2
= −λX. (1.4.5)

We see that X = 0 is a solution. We call this the trivial solution, in which we are not interested. If we
ignore this solution, we can distinguish three cases:

• λ < 0. In this case the general solution for X(x) is

X(x) = c1e
√
−λx + c2e

−
√
−λx. (1.4.6)

When applying boundary conditions, we usually only find the trivial solution. Only in certain
special cases will there be eigenvalues λ < 0.

• λ = 0. Now we would find the solution X(x) = c1x + c2. Using the boundary conditions, we can
solve for c1 and c2. Sometimes it turns out that c1 = c2 = 0. In this case X(x) is the trivial
solution, and λ = 0 is not an eigenvalue. Sometimes, however, X(x) is not the trivial solution. In
this case λ = 0 actually is an eigenvalue, with the corresponding eigenfunction X(x).
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• λ > 0. In this case the general solution for X(x) is

X(x) = c1 cos
√

λx + c2 sin
√

λx. (1.4.7)

We can apply the boundary conditions to the above equation. We should then look for a solution
for which X(x) 6= 0. (We don’t want the trivial solution.) It usually turns out that there are only
solutions for certain λ. These λ are the eigenvalues. The corresponding solutions for X(x) are the
eigenfunctions.

The above method to find the eigenfunctions might seem a bit odd initially. However, they will become
more clear after the examples that will be treated in the upcoming part.

1.4.3 Putting together the eigenfunctions

Now several eigenvalues λn and eigenfunctions Xn(x) are known. We can see that every function
Xn(x)Tn(t) is a solution to the PDE. So, the general solution is then given by all linear combinations of
these solutions. In an equation this becomes

u(x, t) =
∞∑

n=1

cnXn(x)Tn(t). (1.4.8)

To find the coefficients cn, we must use the initial condition. Just insert t = 0 in the above equation.
Then, using orthogonality, you can find expressions for the coefficients cn. Although this is also slightly
more difficult than it seems, we will demonstrate it using the following examples.

1.5 Example solutions of the heat equation

1.5.1 First example: Both edges having u = 0

Let’s suppose our rod has both its sides kept at a constant temperature u = 0. So our boundary conditions
are u(0, t) = 0 and u(L, t) = 0. From this follows that X(0) = 0 and X(L) = 0.

If λ < 0, then we can show that X(x) = 0 as well. So we only find the trivial solution.

What happens if λ = 0? In this case X(x) = c1x + c2. Applying the boundary conditions will give
c1 = c2 = 0. So, λ = 0 is not an eigenvalue.

However, if λ > 0, we will find some eigenvalues. We can apply the boundary condition X(0) = 0 in
equation 1.4.7. We will then find c1 = 0. If we also apply X(L) = 0, we will find c2 sin

√
λL = 0. If we

also have c2 = 0, we would only find the trivial solution. So, instead, we must have sin
√

λL = 0. This
can only be true if

√
λL = nπ, with n = 1, 2, 3, . . .. So our eigenvalues λn and eigenfunctions Xn(x) are

λn =
(nπ

L

)2

and Xn(x) = sin
(nπx

l

)
. (1.5.1)

Note that we have dropped the constant at Xn(x). We are allowed to do this because constants don’t
really matter with eigenfunctions. If Xn(x) is an eigenfunction, then so is any multiple of it.

So, we can now see that any function of the form

un(x, t) = X(x)T (t) = sin
(nπx

L

)
e−λkt, with n = 1, 2, 3, . . . (1.5.2)

is a solution satisfying the differential equation. In fact, any linear combination of the above solutions is
a solution. So we could say that our general solution is

u(x, t) =
∞∑

n=1

Bn sin
(nπx

L

)
e−λkt. (1.5.3)
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However, there is one condition we haven’t satisfied yet: the initial condition. And we can use this
condition to find the constants Bn. To satisfy the initial condition, we must have

f(x) = u(x, 0) =
∞∑

n=1

Bn sin
(nπx

L

)
. (1.5.4)

Now we must apply the property of orthogonality to find the coefficients Bn. To do this, we multiply by
sin(mπx/L) and integrate from 0 to L. We then get∫ L

0

f(x) sin
(mπx

L

)
=

∞∑
n=1

Bn

∫ L

0

sin
(nπx

L

)
sin

(mπx

L

)
. (1.5.5)

Now we can note that every term in the sum on the right drops out (is zero), except for the term with
n = m. The right side of the equation thus reduces to BmL/2. It follows that

Bm =
2
L

∫ L

0

f(x) sin
mπx

L
dx. (1.5.6)

Using this equation, we can find our constants Bn, and thus also our unique solution for u(x, t).

1.5.2 Second example: Both edges being insulated

In the second example we examine a rod with both its edges insulated. So our boundary conditions are
∂u/∂x(0, t) = 0 and ∂u/∂x(L, t) = 0.

If λ < 0, then we can again show that X(x) = 0 as well. So we only find the trivial solution.

Let’s examine the case where λ = 0. We now do find a non-trivial solution. Once more we have
X0(x) = c1x + c2. Both boundary conditions imply that c1 = 0. However, c2 can be anything. So
we have found a non-trivial solution. Thus λ = 0 is an eigenvalue! The corresponding eigenfunction is
X0(x) = 1. (Remember that we were allowed to ignore constants when examining eigenfunctions.)

Now let’s consider the case λ > 0. This time our solutions will be

λn =
(nπ

L

)2

and Xn(x) = cos
(nπx

l

)
. (1.5.7)

The resulting general solution of our PDE (before applying the initial conditions) will then be

u(x, t) = A0 +
∞∑

n=1

An cos
(nπx

l

)
e−λkt. (1.5.8)

The constants A0 and An follow from our initial condition. This time we must multiply by cos(nπx/L)
and integrate from 0 to L. We then find that

A0 =
1
L

∫ L

0

f(x) dx and An =
2
L

∫ L

0

f(x) cos
nπx

L
dx. (1.5.9)

1.5.3 Laplace’s equation

We can also extend the method of separation of variables to a two-dimensional plate with width L and
height H. However, things get more difficult now. So to make it easier, we only want to find the
steady-state solution (with ∂u/∂t = 0). This turns our differential equation into Laplace’s equation,
being

∂2u

∂x2
+

∂2u

∂y2
= 0. (1.5.10)
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To demonstrate the solution method, we will show one example. Let’s assume that we have boundary
conditions u(0, y) = 0, u(L, y) = f(y), u(x, 0) = 0 and u(x, H) = 0. To apply the method of separation
of variables, we assume that u(x, y) = X(x)Y (y). Our differential equation now turns into

1
X

d2X

dx2
= − 1

Y

d2Y

dy2
= λ. (1.5.11)

So we again have two ODEs. For Y (y), we have two rather easy boundary conditions, being Y (0) = 0
and Y (H) = 0. So let’s focus on the y-part. We can solve this using methods we have seen earlier. We
find as eigenvalues and eigenfunctions

λn = (nπ/H)2 and Yn(y) = sin
nπy

H
. (1.5.12)

Now let’s find X(x) as well. we now have to solve

d2X

dx2
= λX, or equivalently

d2X

dx2
=

(nπ

H

)2

X. (1.5.13)

The solution for this equation is

X(x) = c1e
√

λx + c2e
−
√

λx or equivalently X(x) = c1 cosh
√

λx + c2 sinh
√

λx. (1.5.14)

We can use either of the above relations. However, in this case the relation with sinh and cosh is more
convenient, since then one term will drop out. So let’s use that one.

One of our boundary conditions is X(0) = 0. If we apply this, we find that c1 = 0 and the part with
cosh will disappear. We thus have as eigenfunctions Xn(x) = sinh

√
λx. Our general solution for u then

becomes

u(x, y) =
∞∑

n=1

cn sin
nπy

H
sinh

nπx

H
. (1.5.15)

However, we haven’t applied one boundary condition yet, being u(L, y) = f(y). We can use this to find
the constants cn. Inserting x = L in the above equation gives

f(y) = u(L, y) =
∞∑

n=1

cn sin
nπy

H
sinh

nπL

H
. (1.5.16)

It can then be derived, using the porperty of orthogonality, that

cn =
2

H sinh nπL
H

∫ H

0

f(y) sin
nπy

H
dy. (1.5.17)

And this completes our solution to the problem.
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2. Fourier series

It is often convenient to express a function as its Fourier series. But can you do this for all functions?
And can you differentiate/integrate Fourier series? That’s what we will examine in this chapter.

2.1 Basic concepts

2.1.1 Definitions

Before we examine Fourier series, we must examine some definitions.

• Simply said, a function f(x) is continuous if it has no jumps, nor any places where f(x) → ±∞
or df/dx → ±∞.

• A function f(x) is piecewise continuous if it can be split up into pieces, which are all continuous.
This means that so-called jump dicontinuities are allowed for piecewise continuous functions.

• A function f(x) is smooth if it is continuous, and its derivative df/dx is also continuous.

• A function f(x) is piecewise smooth if it can be split up into pieces, which are all smooth.

2.1.2 Odd and even functions

A function g(x) is odd if it satisfies g(−x) = −g(x). In other words, if you rotate the graph of g(x) by
180◦ about the origin and wind up with the same graph, then g(x) is odd. Similarly, a function h(x) is
even if it satisfies h(x) = h(−x). In other words, if you mirror the graph of h(x) about the y-axis and
wind up with the same graph, then h(x) is even.

2.1.3 Odd and even extensions and parts

Suppose we have a function f(x). Let’s examine the right side of its graph (for x > 0). We can extend
this part to the left side, such that we wind up with an odd function. As discussed before, we need to
rotate this part about the origin by 180◦. This new function is called the odd extension of f(x). Its
definition is

fodd,ext(x) =


f(x) if x > 0,

−f(−x) if x < 0,

0 if x = 0.

(2.1.1)

Note that this function satisfies the definition of odd functions. Similarly, we can find the even extension
of f(x), being

feven,ext(x) =

{
f(x) if x ≥ 0,

f(−x) if x < 0.
(2.1.2)

But we can do more with a function f(x). We can also split it up in parts. The odd and even parts of a
function f(x) are defined as

fo(x) =
f(x)− f(−x)

2
and fe(x) =

f(x) + f(−x)
2

. (2.1.3)

Note that we have f(x) = fo(x) + fe(x). Also, if f(x) is already odd, then fo(x) = f(x) and fe(x) = 0.
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2.2 Fourier series and its convergence

Now it is time to examine Fourier series. What are they? And when do they actually converge?

2.2.1 Definition of the Fourier series

The Fourier series of a function f(x) is the series satisfying

f(x) = a0 +
∞∑

n=1

an cos
nπx

L
+ bn sin

nπx

L
. (2.2.1)

Here, a0, an and bn are the so-called Fourier coefficients. We can find them using the property of
orthogonality. In fact, we will find that

a0 =
1

2L

∫ L

−L

f(x) dx, (2.2.2)

an =
1
L

∫ L

−L

f(x) cos
nπx

L
dx, (2.2.3)

bn =
1
L

∫ L

−L

f(x) sin
nπx

L
dx. (2.2.4)

It is important to note that this series is periodic with period 2L. So in fact, the Fourier series is only
valid for the interval [−L,L].

2.2.2 Fourier series and odd and even functions

The Fourier series of odd and even functions are quite interesting. It can be shown that, for odd functions
g(x), we always have an = 0. On the other hand, for even functions h(x), we always have bn = 0. We
thus find that

g(x) ∼
∞∑

n=1

bn sin
nπx

L
, and h(x) ∼ a0 +

∞∑
n=1

an cos
nπx

L
. (2.2.5)

The Fourier series of g(x) is now called a Fourier cosine series (since it only consists of cosines).
Similarly, the Fourier series of h(x) is called a Fourier sine series.

Sometimes we only want the Fourier series of a function f(x) on the interval [0, L]. In this case we have
a certain advantage — we can choose whether we use a cosine series or a sine series. If we use a cosine
series, then we actually find the Fourier series of feven,ext(x). Similarly, if we use a sine series, then we
find the Fourier series of fodd,ext(x).

2.2.3 Notation for convergence of Fourier series

There is an important question mathematicians like to ask. Will the Fourier series of f(x) actually
converge to f(x)? It turns out that this is not always the case. If this is not the case, then we may not
write an equality sign =. Instead, we usually write

f(x) ∼ a0 +
∞∑

n=1

an cos
nπx

L
+ bn sin

nπx

L
. (2.2.6)

The ∼ sign means ‘has the Fourier series’. But it doesn’t imply convergence. If the series does converge,
we of course can write an = sign.
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2.2.4 Rules for convergence of Fourier series

Of course it would be nice to know when the Fourier series of f(x) actually converges to f(x). There are
rules for that. First we examine the rules of normal Fourier series on the interval [−L, L].

• Let’s suppose f(x) is piecewise smooth on the interval [−L,L]. Now the Fourier series of f(x)
converges everywhere on the interval [−L, L], except at jump discontinuities. At these points the
series converges to the average of the jump, being

f(x−) + f(x+)
2

. (2.2.7)

• Let’s suppose f(x) is both piecewise smooth and continuous on the interval [−L,L]. Also suppose
we have f(−L) = f(L). Now the Fourier series of f(x) converges everywhere on the interval [−L,L].
(Note that the conditions simply demand that there are no jump discontinuities.)

We can state similar rules for the cosine/sine series. As you know, these series are only valid on the
interval [0, L].

• Let’s suppose f(x) is both piecewise smooth and continuous on the interval [0, L]. In this case, the
Fourier cosine series converges everywhere on the interval [0, L].

• Let’s suppose f(x) is both piecewise smooth and continuous on the interval [0, L]. Also suppose
that f(0) = f(L) = 0. Only in this case, the Fourier sine series converges everywhere on the interval
[0, L].

2.3 Differentiating and integrating Fourier series

2.3.1 Differentiating Fourier series term by term

Let’s suppose we have a Fourier series of some function f(x). We now want to find the Fourier series of
the derivative df/dx. Can we then simply take the derivative of the Fourier series? Well, it turns out
that we can only do that under certain conditions. We can only differentiate the Fourier series of f(x)
term by term if...

• f(x) is piecewise smooth on the interval [−L,L],

• f(x) is continuous on the interval [−L,L],

• we have f(−L) = f(L).

All of the above conditions must hold. (It can be noted that the above conditions simply mean that there
are no jump discontinuities in f(x).)

Now let’s ask ourselves, when we can we differentiate a Fourier cosine series term by term? We can
simply modify the above rule for that. It can be noted that cosine series always automatically have
f(−L) = f(L). So, we may drop that condition. We thus find that we may differentiate cosine series if
f(x) is both piecewise smooth and continuous on the interval [0, L].

Now let’s ask ourselves, when can we differentiate a Fourier sine series term by term? Sadly, we can not
ignore any conditions now. In fact, there is an extra condition. We can only differentiate a Fourier sine
series if f(x) is both piecewise smooth and continuous on [0, L] and also f(0) = f(L) = 0.
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You may wonder, what happens if we differentiate a sine series, but f(0) 6= f(L) 6= 0? We then have a
special case. Let’s suppose we differentiate the Fourier sine series

f(x) ∼
∞∑

n=1

Bn sin
nπx

L
. (2.3.1)

Our result will then be

df(x)
dx

∼ f(L)− f(0)
L

+
∞∑

n=1

(
nπ

L
Bn +

2
L

((−1)nf(L)− f(0))
)

cos
nπx

L
. (2.3.2)

2.3.2 Integrating Fourier series term by term

Let’s examine the Fourier series of f(x), being

f(x) ∼ a0 +
∞∑

n=1

an cos
nπx

L
+

∞∑
n=1

bn sin
nπx

L
. (2.3.3)

Now we want to find the integral of f(x), being

F (x) =
∫ x

−L

f(x)dx. (2.3.4)

Are we allowed to integrate the Fourier series term by term? Well, luckily it turns out that we can. We
are always allowed to integrate a Fourier series term by term. And the integral always converges. There
are no special conditions attached. We can thus say that

F (x) = a0(x + L) +
∞∑

n=1

an

nπ/L
sin

nπx

L
+

∞∑
n=1

bn

nπ/L

(
cos nπ − cos

nπx

L

)
. (2.3.5)
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3. Vibrating Strings

In this chapter we will examine a vibrating string. And, surprisingly, we can also model this with a
partial differential equation! Let’s find out how.

3.1 What is the wave equation?

3.1.1 Deriving the wave equation

Let’s suppose we have a string of length L. Its deviation from a certain position is given by u(x, t) [m].
Here x [m] denotes the horizontal position on the string, and t [s] denotes time. Also, we define ρ(x) [kg/m]
to be the mass per unit length of the string.

To derive a PDE for u, we look at a very small piece of string. This piece has length ∆x and thus
weight ρ(x)∆x. Now we examine all the vertical forces acting on this piece of string. First of all, there
is the tension T (x, t) [N ] in the string. It can be shown that T causes a vertical force on our particle of
magnitude

FT =
∂

∂x

(
T

∂u

∂x

)
. (3.1.1)

By the way, the above equation is only valid for small deviations u. It lacks accuracy if the devia-
tions/slopes of the string become very high.

Besides tension, there can also be external forces. Let’s denote the body force Q(x, t) [m/s2] as the
vertical force per unit mass acting on the string. This body force then causes a force Q(x, t)ρ(x) on our
piece of string.

Now we have examined all the forces. The sum of the forces should of course equal to ma, or, equivalently,
to m∂2u/∂t2. This gives us the equation

ρ(x)
∂2u

∂t2
= T0

∂2u

∂x2
+ Q(x, t)ρ(x). (3.1.2)

This equation is still rather difficult to solve. To make things easier, we assume that the string is
perfectly elastic. This implies that T (x, t) is actually constant for the entire string. We therefore now
denote it as T0. We also assume that there are no body forces. (Q(x, t) = 0.) And if we then also define
c [m/s] such that c2 = T0/ρ(x), then our PDE turns into

∂2u

∂t2
= c2 ∂2u

∂x2
. (3.1.3)

The above equation is called the one-dimensional wave equation.

3.1.2 Boundary conditions

What kind of boundary conditions can we apply to a string? Of course, we can give the edges of the
string a certain deflection u(0, t) = f(t). (Or, similarly, u(L, t) = f(t).) We can also give the edges a
fixed slope ∂u/∂x(0, t) = f(t). In fact, if we attach the edge of the string to a (frictionless) vertical slider,
then we have ∂u/∂x(0, t) = 0.

We could make the situation even more complicated. Let’s suppose we attach the edge of the string to
a mass (with weight m [kg]) attached to a vertical spring (having stiffness k [N/m]). Let’s examine the
forces acting on this mass. There is of course the force of the spring. There is also the tension T caused
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by the cable. Furthermore, there can be an external force g(t). The governing equation of the mass then
becomes

m
d2u

dt2
(0, t) = −k(u(0, t)− uE(t)) + T0

∂u

∂x
(0, t) + g(t). (3.1.4)

By the way, uE(t) is the equilibrium position of the spring. The above equation may look very compli-
cated. But usually g(t) = 0. If we also assume the situation to be steady (everything stands still), then
also d2u/dt2(0, t) = 0. We remain with

k(u(0, t)− uE(t)) = T0
∂u

∂x
(0, t). (3.1.5)

This is quite interesting. If k equals zero, then we again deal with a horizontal slider. If, however, k →∞,
then we have simply given the edge of the string a fixed position u(0, t) = uE(t).

3.1.3 Initial conditions

Next to boundary conditions, we also need initial conditions. The wave equation contains a second
derivative w.r.t. time. So we need to initial conditions. Usually both the initial position and velocity are
prescribed. So,

u(x, 0) = f(x) and
∂u

∂t
(x, 0) = g(x). (3.1.6)

3.2 Solving the wave equation using separation of variables

We will now solve the wave equation. We do this using the method of separation of variables, which we
are familiar with.

3.2.1 The solving method

You might have noticed that the wave equation kind of looks like the Laplace equation we have seen
earlier. Solving it also goes similar. We assume that we can write u(x, t) = X(x)T (t). If we insert this
into the heat equation, then we can derive that

d2X

dx2
= −λX and

d2T

dt2
= −λc2T. (3.2.1)

First we examine the left part. Together with the boundary conditions, we can find eigenfunctions Xn(x).
After that, we find a solution for the right part. We can combine it with the initial conditions to find our
final solution for u(x, t).

Well, that’s easier said than done. So we demonstrate this solving method with an example.

3.2.2 Vibrating string example problem

Let’s suppose we have a vibrating string with initial conditions given by equation (3.1.6). The boundary
conditions are u(0, t) = 0 and u(L, t) = 0. We assume that u(x, t) = X(x)T (t). It follows that X(0) = 0
and X(L) = 0. Using this, we can find that the eigenfunctions are

Xn(x) = sin
√

λnx = sin
nπx

L
, with corresponding eigenvalues λn =

(nπ

L

)2

, (3.2.2)

with n = 1, 2, 3, . . .. We can now use the values of λn to find the general solution for Tn(t). This is

Tn(t) = An cos
√

λnct + Bn sin
√

λnct = An cos
nπct

L
+ Bn sin

nπct

L
. (3.2.3)
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Our general solution for u(x, t) thus becomes

u(x, t) =
∞∑

n=1

Xn(x)Tn(t) =
∞∑

n=1

An sin
nπx

L
cos

nπct

L
+ Bn sin

nπx

L
sin

nπct

L
. (3.2.4)

We only haven’t applied the initial conditions yet. However, we can use the property of orthogonality for
that. We can then find the coefficients An and Bn. They are

An =
2
L

∫ L

0

f(x) sin
nπx

L
dx, (3.2.5)

Bn =
2

nπc

∫ L

0

g(x) sin
nπx

L
dx. (3.2.6)

And this concludes our solution.

3.2.3 Interpreting the vibrating string solution

There are several things we can learn from the solution that we just found. So we take a closer look at
it. Our solution consisted of a summation of terms

sin
nπx

L

(
An cos

nπct

L
+ Bn sin

nπct

L

)
. (3.2.7)

Every term represents a normal mode of vibration. It has its own natural circular frequency,
given by

fn =
nπc

L
. (3.2.8)

This circular frequency is the amount of oscillations in 2π seconds. It also has its own amplitude, being

Amplitude =
√

A2
n + B2

n. (3.2.9)

Together, all these modes of vibration form the actual vibration of the string.

3.3 The method of characteristics

There is another way to solve the wave equation. It is called the method of characteristics. Let’s examine
this method.

3.3.1 Characteristics

Let’s examine the wave equation. We can rewrite this equation in two ways, being(
∂

∂t
+ c

∂

∂x

) (
∂u

∂t
− c

∂u

∂x

)
= 0 and

(
∂

∂t
− c

∂

∂x

) (
∂u

∂t
+ c

∂u

∂x

)
= 0. (3.3.1)

To write this in a more simple way, we define w and v as

w =
∂u

∂t
− c

∂u

∂x
and v =

∂u

∂t
+ c

∂u

∂x
. (3.3.2)

We can now rewrite the wave equation as two first-order partial differential equations. These equation
are

∂w

∂t
+ c

∂w

∂x
= 0 and

∂v

∂t
− c

∂v

∂x
= 0. (3.3.3)
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That’s great news, but we’re not satisfied yet. We want to transform those equations into ordinary
differential equations as well. To do that, we examine these equations along the lines x(t) = x0 + ct and
x(t) = x0 − ct, respectively. Now why would we do that? To find that out, we consider the derivative of
w(x, t) w.r.t. t along these lines. By using the chain rule, we can find that

d

dt
w(x(t), t) =

∂w

∂t
+

dx

dt

∂w

∂x
=

∂w

∂t
+ c

∂w

∂x
= 0. (3.3.4)

What does this mean? It means that dw/dt = 0 along the lines x = x0 + ct. Similarly, we can find that
dv/dt = 0 along the lines x = x0 − ct. So we have reduced the PDEs to ODEs. Any curve that reduces
a PDE to an ODE is called a characteristic. Thus the lines we just examined are characteristics of the
corresponding PDEs.

But, what’s the use of all this? Well, now we know we can write w(x, t) and v(x, t) as

w(x, t) = P (x0) = P (x− ct) and v(x, t) = Q(x0) = Q(x + ct), (3.3.5)

with P (x) and Q(x) any function. We have thus found the general solution to equation (3.3.3).

3.3.2 The solution of the wave equation

How can we use the things we just found, to solve the wave equation? That’s an interesting question. To
answer it, we define two new functions F (x) and G(x) as

F (x) = − 1
2c

∫
P (x)dx and G(x) =

1
2c

∫
Q(x)dx. (3.3.6)

We can combine these definitions with equation (3.3.2). If we do this, we will find the general solution
for u(x, t). This solution is

u(x, t) = F (x− ct) + G(x + ct). (3.3.7)

This holds for all functions F (x) and G(x).

So, what does this mean? It means that we can split the solution to u(x, t) up in two parts, being F (x−ct)
and G(x + ct). Let’s examine the part F (x − ct). This function is constant as x − ct is constant. Now
let’s plot F (x− ct) versus x for different times t. If both the time t and the position x increase, then the
function F (x − ct) remains constant. In other words, the graph simply slides to the right (the positive
x-direction). And it does this with a velocity c. Similarly, we can find that the graph of G(x + ct) moves
to the left. It also does this with a velocity c.

So, what can we conclude from this? It means that u(x, t) consists of two separate ‘waves’. One wave
moves to the left, while the other moves to the right with. Both do this with a velocity c.

3.3.3 Initial conditions

Now let’s add initial conditions to our problem. Let’s suppose that

u(x, 0) = f(x) and
∂u

∂t
= g(x). (3.3.8)

We can insert this into equation (3.3.7). By working things out, we can then find that

F (x) =
1
2
f(x)− 1

2c

∫ x

0

g(x̄)dx̄ and G(x) =
1
2
f(x) +

1
2c

∫ x

0

g(x̄)dx̄. (3.3.9)

So, by using the initial conditions, we can find F (x) and G(x). How can we derive the solution u(x, t)
from this? Well, one way is to simply find F (x−ct) and G(x+ct), and then add them up. But (depending
on the situation) there might be an easier way.
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First you can simply plot F (x − ct) and G(x + ct) for t = 0. (You thus actually plot F (x) and G(x).)
Now what if you want to find the graphs of F (x − ct) and G(x + ct) at some time t? Well, in this case
you simply shift the graph of F (x) a distance ct to the right. Similarly, you shift the graph of g(x) a
distance ct to the left. Finally, you should add up both graphs to find the graph for u(x, t).

3.3.4 Boundary conditions at x = 0

Previously we have not considered boundary conditions. In other words, we just assumed that our string
was infintely long. This is, of course, not the case. Now let’s add a boundary condition at x = 0. We
then only examine the string to the right of this boundary (with x > 0).

We now have a slight problem. The string is only present at x > 0. So, also the initial conditions f(x)
and g(x) are defined only for x > 0. This means that also F (x) and G(x) are defined for x > 0. In other
words, we may not insert negative variables in the functions F (x) and G(x). For G(x), this isn’t a very
big problem. (We only use G(x + ct). And we have x > 0, c > 0 and t > 0.) However, if x < ct, then
F (x− ct) is not defined. This means that we have a problem.

To solve it, we need to use the boundary condition at x = 0. Let’s suppose we give the string a fixed
position. So, u(0, t) = 0. We can insert this into our general solution. We then find that

u(0, t) = F (−ct) + G(ct) = 0 which implies that F (z) = −G(−z) for z < 0. (3.3.10)

So, we have now defined the right-moving wave F (z) for z < 0. This means that our problem is solved.

But what is the physical meaning of this? It means that, once the left-moving wave G(x + ct) reaches
the left end, it is reflected back. The new reflected wave takes the shape of −G(x) and moves to the
right. (Note the minus sign.)

You may wonder, what would happen if the boundary condition was different? For example, let’s suppose
that ∂u(0, t)/∂t = 0. This time we can find that

∂u(0, t)
∂t

= −c
dF

dx
(−ct) + c

dG

dx
(ct) = 0 which implies that

dF

dx
(z) =

dG

dx
(−z) for z < 0.

(3.3.11)
If we integrate the result, we can find that F (z) = G(−z) + k for z < 0, with k a constant. It can be
shown that this constant is zero, which implies that F (z) = G(−z), for z < 0.

Again, we examine the physical meaning of this. Once the left-moving wave G(x + ct) reaches the left
end, it is reflected back. This time, the reflected wave takes the shape of G(x) and moves to the right.
(Note that the minus sign is gone.)

3.3.5 Other boundary conditions

Of course we can also put boundary conditions at other positions. What happens if we put a boundary
condition at a right edge? Physically, exactly the same happens as when the boundary condition was at
the left edge.

Let’s suppose the boundary condition is u(L, t) = 0. Once a right-moving wave F (x− ct) encounters this
boundary, it is reflected back to the left. Its new shape is that of the function −F (x). (Note the minus
sign.) Things are similar if the boundary condition is ∂u(L, t)/∂t = 0. But this time the reflected wave
has the shape of F (x). (The minus sign is gone.)

So, you only need to remember the following. A fixed position at the edge reverses the wave (with a
minus sign) when bouncing it back. A fixed slope at the edge just bounces the wave back.
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