
Probability Theory
Exam July 2008 - Solutions

Question 1

Let A and B be events in a probability space. P (A) = 0.6 and P (B) = 0.2. Furthermore, B ⊂ A. The
probabilities P (Ac ∪B) and P (Ac ∪Bc) equal respectively...

Solution

We can find P (Ac ∪B) using

P (Ac ∪B) = P (Ac) + P (B)− P (Ac ∩B). (1)

We have P (Ac) = 1 − P (A) = 0.4. Also, since B ⊂ A we have Ac ∩ B = ∅ (if you don’t follow this, try
drawing a Venn diagram), and thus P (Ac ∩B) = P (∅) = 0. It follows that

P (Ac ∪B) = P (Ac) + P (B) = 0.4 + 0.2 = 0.6. (2)

Now let’s find P (Ac ∪Bc). For that, we first note that (since B ⊂ A) we have

1 = P (A|B) =
P (A ∩B)

P (B)
, (3)

so P (A ∩B) = P (B) = 0.2. It follows that

P (Ac ∪Bc) = 1− P (A ∩B) = 1− 0.2 = 0.8. (4)

Question 2

How many ways are there to choose a chairman, his deputy and a first and a second assistant from 30
participants at an election meeting?

Solution

It is important to note that the chosen persons have different positions. So it DOES matter which person
gets chosen first. We therefore need to find the amount permutations. This is

30!
26!

= 30 · 29 · 28 · 27 = 657720. (5)

Another way to discover this is, is by using plain logics. We can choose our chairman out of 30 people. We
can then choose his deputy out of 29 people, his first assistant out of 28 people and his second assistant
out of 27 people. So the amount of ways in which we can do this is, indeed, 30 · 29 · 28 · 27 = 657720.

Question 3

Three machines produce the same type of product in a factory. The first one gives 20% of the total
production, the second one gives 30% and the third one 50%. It is known from past experience that 5%,
4% and 2% of the products made by machine 1, 2 and 3, respectively, are defective. If a single, randomly
selected, product is defective, what is the probability that it was made by the first machine?

Solution
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We know that machine 1 makes 20% of the products, out of which 5% is defective. So 0.2·0.05 = 0.01 = 1%
of the products are defective and made by machine 1. Similarly, 1.2% of the products are defective and
made by machine 2. The percentage for machine 3 is 1%. So in total 3.2% of the products are defective.
We know that 1% of the products are defective and made by the first machine. So that chance that a
defective product is made by the first machine is

1
3.2

= 0.3125. (6)

Note that we have, in fact, applied Bayes’ rule in the above computation.

Question 4

Assume that the duration of horse pregnancies varies according to a normal distribution with mean
336 days and standard deviation 3 days. In what range of duration fall 99.7% of horse pregnancies
(symmetrical with respect to the mean duration)?

Solution

We can solve this using a TI calculator. We insert the equation normalcdf(336 −X, 336 + X, 336, 3) =
0.997 and let it solve for X. We find X = 8.9 days. So the range that was asked for is approximately
[327, 345].

Question 5

Two aircraft fly at the same lateral position but at different altitudes. The altitude h1 of aircraft 1 is
normally distributed with mean 8.0km and standard deviation 125m. The altitude h2 of aircraft 2 is
normally distributed with mean 9.0km and standard deviation 125m. The random variables h1 and h2

are independent. What is the probability that the two aircraft are within a distance of 500m?

Solution

Let’s define the random variable y = h2 − h1. It follows that y = 1000m and also that σ2
y = σ2

h1
+ σ2

h2
.

It follows that y = h2 − h1 = 9000 − 8000 = 1000 and also that σy = 125
√

2. We are now looking
for the probability that −500 ≤ y ≤ 500. We can find this using a TI calculator, and by inserting
normalcdf(−500, 500, 1000, 125

√
2). We get as a result 0.00234.

Question 6

We want to determine the mass of a block (i.e. a rectangular parallelepiped) made of copper by measuring
the edge lengths x1, x2 and x3 once. Before the actual measurement, we would like to assess the precision
with which the block mass can be determined. We know that the edge length x1 is approximately 10cm,
that the edge length x2 is approximately 3cm and that the edge length x3 is approximately 2cm. We
assume that the edge length measurements are independent and have a standard deviation (precision)
of 1mm. The density of copper is assumed to be infinitely precise and equals 8.9g/cm3. What is the
standard deviation of the mass of the block, to a first-order approximation?

Solution

We know that the mass is the density times the volume, so M = ρV . (Note that we don’t treat ρ as a
random variables because it is infinitely precise.) Also we have V = x1x2x3. So first let’s find σV .

From page 43 of the reader (just before equation 2.67) we find how we van find σV if V is the product
of two random variables. (Note that ρ in this equation denotes the correlation coefficient, which is zero,
since the measurements are independent.) We can easily guess what this equation will look like if V is
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the product of three random variables. We thus get

σ2
V = σ2

x1
(x2x3)

2 + σ2
x2

(x3x1)
2 + σ2

x3
(x1x2)

2 = 0.12
(
62 + 202 + 302

)
= 13.36cm6. (7)

It follows that σV = 3.66cm3 and thus that σM = ρσV = 8.9 · 3.66 = 32.53g.

Question 7

Let x be a continuous random variable with a standard normal distribution. We consider the transfor-
mation y = |x|. The probability density function (PDF) of y is given as...

Solution

We know that y ≥ 0. So for y < 0 the probability P (y ≤ y ≤ y + dy) = 0. So fy must be zero for y < 0.

But what if y ≥ 0? In this case (for some value y) the event y = |x| = y is twice as likely as the event
x = y. (We can rewrite the first case as x = y ∪ −x = y. Both these events are equally likely, so thus
P (|x| = y) = 2P (x = y).) It follows that fy(y) is also twice as large as fx(y). In an equation this becomes

fy(y) = 2fx(y) =
2√
2π

e−
y2

2 =

√
2
π

e−
y2

2 . (8)

Question 8

Let x and y be random variables with standard deviation σx and σy, respectively. The correlation
coefficient of x and y is ρ 6= 0. The variance of z = 1

2x− y equals...

Solution

Let’s define v = 1
2x and w = −y. It now follows that σv = 1

2σx and σw = σy. Also, z = v + w. We now
have

σ2
z = σ2

v + σ2
w + 2ρvwσvσw =

1
4
σ2

x + σ2
y + 2ρvwσvσw. (9)

However, we don’t know ρvw. But we do know ρxy. So we need to express ρvw in ρxy. We know that the
correlation coefficient between x and y is given by

C(x, y) = E(xy) = ρxyσxσy. (10)

Similarly, the correlation coefficient between v and w is given as

ρvwσvσw = C (v, w) = E (vw) = E

(
−1

2
xy

)
= −1

2
ρxyσxσy. (11)

(We have silently assumed here that v = w = 0. This is not necessarily the case. However, it doesn’t
matter if v 6= 0 or w 6= 0. Although the computation is a bit more difficult, the result is the same.)
Inserting the above finding into our previous equation will give us

σ2
z =

1
4
σ2

x + σ2
y − ρσxσy. (12)

(Note that we have simply written ρxy and ρ.)

Question 9
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Let x1, x2 and x3 be independent random variables, all having a standard normal PDF. These random
variables are combined into the three-dimensional random vector x = [x1, x2, x3]

T . We define a new
random vector

y =
[
y
1
, y

2
, y

3

]T
= [2x1 − x2, x1 − x2 − x3, x1 + 3x3]

T
. (13)

Which components of y are positively correlated?

Solution

We first note that all the random variables involved in this question have as mean zero. That simplifies
things a bit.

If a pair of random variables is positively correlated, then ρ > 0. It follows that the covariance C must
also be bigger than zero. So let’s try to find this covariance C for all the pairs.

First let’s examine the pair y
1

and y
2
. We know that

C(y
1
, y

2
) = E ((2x1 − x2) (x1 − x2 − x3)) . (14)

We can work out brackets for the above equation. We can also use the fact that E is a linear operator.
We then get

C(y
1
, y

2
) = 2E

(
x2

1

)
− 3E (x1x2)− 2E (x1x3) + E

(
x2

2

)
+ E (x2x3) . (15)

Since x1 and x2 are independent, we know that E(x1x2) = E(x1)E(x2) = 0 · 0 = 0. The same goes for
the other pairs of random variables. So we find that

C(y
1
, y

2
) = 2E

(
x2

1

)
+ E

(
x2

2

)
= 2σ2

x1
+ σ2

x2
= 3σ2. (16)

In the last step we have used the fact that the random variables have the same standard deviation σ.
Since σ2 is obviously positive, we know that the covariance is also positive. So the random variables y

1
and y

2
are positively correlated.

We can do the same for y
1

and y
3
. We then get

C(y
1
, y

3
) = 2σ2

1 = 2σ2. (17)

This is evidently also positive. So y
1

and y
3

are positively correlated.

Now let’s investigate the pair y
2

and y
3
. We now find that

C(y
2
, y

3
) = σ2

1 − 3σ2
3 = −2σ2. (18)

This is evidently a negative number. So y
2

and y
3

are not positively correlated.

Question 10

We consider the so-called Central Limit Theorem of Lindeberg-Levy. Let x1, x2, . . . , xn be independent
random variables, all having the same distribution with mean µ and variance σ2. Then the probability
density function of the random variable

z =

(
1
n

∑n
i=1 xi

)
− µ

σ/
√

n
(19)

converges to the standard normal density function for n →∞, i.e.,

fz(z) =
1√
2π

exp
(
−z2

2

)
forn →∞. (20)
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Then at the same time, for n →∞, the random variable y =
∑n

i=1 xi is normally distributed with mean
nµ and standard deviation σ

√
n. Practically, n →∞ means n > 30.

As an application of this important theorem of probability theory, we consider the following example: A
person sets out the track for a 100 meter running match by taking 100 steps. The length of each step
is uniformly distributed on the interval (0.9 meter, 1.1 meter). Assume the length of the steps to be
independent. The probability that the length of the track differs less than 1 meter from the required 100
meter is...

Solution

The average length of the track that was set out is 100 meters. The standard deviation of one step is
(according to table 2.2 (page 31) of the reader) equal to σs =

√
0.22/12 = 0.0577m. This makes the

standard deviation of the entire track σt = σs

√
100 = 0.577m.

The probability that the length of the track is between 99 meter and 101 meter now can be found using
the Central Limit Theorem. We assume it is normally distributed with the just found mean and standard
deviation. We insert in our TI calculator the calculation normalcdf(99, 101, 100, 0.577). The result is
0.9167.

Question 11

Let x1 and x2 be independent random variables, both normally distributed. The mean of x1 and x2 are 2
and 5, respectively, whereas the variances x1 and x2 are 5 and 9, respectively. We define y = 3x1−2x2+1.
The probability P (y ≤ 6) reads...

Solution

We know that x1 and x2 are normally distributed. Also, all linear combinations of normal distributions
are normal distributions. So y is also normally distributed. We only need to find its mean and its average.

The mean of y can be found using
y = 3x1 − 2x2 + 1 = −3. (21)

The standard deviation of 3x1 is 3
√

5. The standard deviation of 2x2 is 2
√

9 = 6. The standard deviation
of the number 1 is, of course, simply 0. So the standard deviation of y can now be found using

σ2
y =

(
3
√

5
)2

+ 62 = 81. (22)

It follows that σy =
√

81 = 9. We can now find P (y ≤ 6) using normalcdf(−1E99, 6,−3, 9). The result
is 0.8413.

Question 12

Let x be an exponentially distributed random variable with parameter λ = 1
2 , i.e. the probability density

function (PDF) of x is

fx(x) =
1
2

exp
(
−x

2

)
for x ≥ 0 and fx(x) = 0 otherwise. (23)

The conditional probability P (x > 3|1 < x < 4) equals...

Solution

Let’s apply the definition of conditional probability. We find that

P (x > 3|1 < x < 4) =
P (x > 3 ∩ 1 < x < 4)

P (1 < x < 4)
=

P (3 < x < 4)
P (1 < x < 4)

. (24)
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To find this probability, we need to integrate the PDF. It follows that

P (x > 3|1 < x < 4) =

∫ 4

3
e−

x
2∫ 4

1
e−

x
2

=
e−3/2 − e−4/2

e−1/2 − e−4/2
= 0.186. (25)

Question 13

An object is moving along a straight line. The following measurements yi of the object’s position have
been made at corresponding times ti:

i time ti (in s) position yi (in m)
1 −1 −2
2 0 0
3 1 3
4 2 5

We fit the data by a linear model y = x0 + vt using the method of least-squares curve fitting. The
(unweighted) least-squares solution for the speed v is...

Solution

The least-squares solution x̂ can be found using

x̂ =
(
AT A

)−1
AT y, (26)

where we have

A =


1 −1
1 0
1 1
1 2

 and y =


−2
0
3
5

 . (27)

We can first find that (
AT A

)−1
=
[

0.3 −0.1
−0.1 0.2

]
. (28)

It follows that

x̂ =
[
x0

v

]
=
[
0.3
2.4

]
. (29)

So we have v = 2.4.

Question 14

The length x of an object is measured three times with three different instruments, denoted A, B and C.
The three measurements and their precision (standard deviation) are list in the table below.

instrument measurement (cm) precision (cm)
A 5.19 0.4
B 5.27 0.5
C 5.21 0.2

All three measurements are uncorrelated. The Best Linear Unbiased Estimate (BLUE) of x, as a weighted
average of the three measurements, and its standard deviation are...
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Solution

The variance matrix of the measurements is given as

Qyy =

0.42 0 0
0 0.52 0
0 0 0.22

 . (30)

Also, we are trying to solve the system y = Ax, where A =
[
1 1 1

]T . The BLUE is now given by

x̂ =
(
AT Q−1

yy A
)−1

AT Q−1
yy y. (31)

We can find that AT Q−1
yy A = 141/4 = 35.25 and also that

(
AT Q−1

yy A
)−1 = 4/141. We eventually find

that
x̂ =

25y1 + 16y2 + 100y3

141
. (32)

Inserting values gives x̂ = 5.213. Also, we can find that

σ2
x =

252σ2
y1

+ 162σ2
y2

+ 1002σ2
y3

1412
. (33)

Inserting values, we find that σ2
x = 4/141. It follows that σx =

√
4/141 = 0.1684.

Question 15

Given is the linear model E(y) = Ax, D(y) = σ2I3, with x = [x1, x2]
T and

A =

 1 0
−1 1
0 −1

 . (34)

The standard deviation of the BLUE of x1 is given as...

Solution

The BLUE is, as always, given by

x̂ =
(
AT Q−1

yy A
)−1

AT Q−1
yy y. (35)

We can find that (
AT Q−1

yy A
)−1

= σ2

[
2/3 1/3
1/3 2/3

]
. (36)

It follows that

x̂ =
[
2/3 −1/3 −1/3
1/3 1/3 −2/3

]
y. (37)

So we have
x1 =

2
3
y1 −

1
3
y2 −

1
3
y3. (38)

The variance of x1 is thus given by

σ2
x1

=

((
2
3

)2

+
(

1
3

)2

+
(

1
3

)2
)

σ2 =
2
3
σ2. (39)

It follows that the standard deviation is σx1 =
√

2
3σ = 0.816σ.
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Question 16

Given is the linear model E(y) = Ax, D(y) = Qyy, where A is an m× n matrix with rank(A) = n. Let
x̂ be the weighted least-squares estimator (WLSE) of x, with weight matrix W = σ2Im. The variance
matrix of ẑ = FT x̂ + f0 is then given as...

Solution

We know that z = FT x̂ + f0, with F a constant matrix and f0 a constant vector. Adding up a constant
vector to a random vector doesn’t change its variance matrix. So we may ignore f0 when calculating the
variance matrix. But what about x̂? Well, we know that

x̂ =
(
AT WA

)−1
AT Wy. (40)

It follows that
z = FT

(
AT WA

)−1
AT Wy + f0. (41)

We can now apply the variance propagation law from the reader (page 64, equation 2.120). We find that

Qzz = FT
(
AT WA

)−1
AT WQyyWT A

(
AT WT A

)−1
F. (42)

However, we know that W = σ2Im. Inserting this into the above equation gives

Qzz = FT
(
AT σ2ImA

)−1
AT σ2ImQyyσ2ImA

(
AT σ2ImA

)−1
F. (43)

From linear algebra we know that (cB)−1 = 1
cB−1 (with c a scalar and B a matrix). Using this rule, we

can reduce the above equation to

Qzz = FT
(
AT A

)−1
AT QyyA

(
AT A

)−1
F. (44)

Question 17

The amplitude (signal-strength) of a received radar signal is measured once; observation y. The observable
has a Rayleigh distribution with unknown parameter x:

fy(y|x) =
y

x2
e−

y2

2x2 with y ≥ 0, x ≥ 0. (45)

Determine the Maximum Likelihood Estimate for the parameter x.

Solution

To find the MLE, we need to find the x which maximizes the PDF. In other words, its derivative (with
respect to x) should be zero. This gives us the equation

−2y

x3
e−

y2

2x2 +
2y2

2x3

y

x2
e−

y2

2x2 = 0. (46)

It follows that
y3

x5
= 2

y

x3
. (47)

We know that x > 0, so we may rewrite this as y3 = 2yx2. If y = 0 all x are valid solutions. So we
assume that y 6= 0. We can then rewrite our equation to

x =

√
1
2
y2 =

1
2

√
2y. (48)
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Since this is the MLE, we denote it as x̂. So x̂ = 1
2

√
2y.

Question 18

A vehicle is moving at constant speed, along a straight line. It started at t = 0 at x = 0. At time
t = 1, 2, 3 the position of the vehicle is observed. The observation values are y(t = 1) = 4, y(t = 2) = 11
and y(t = 3) = 16. The observables all have standard deviation σ = 1 and are uncorrelated. Compute
the BLUE for the velocity of the vehicle.

Solution

We know that x0 = 0, so our equation is y = vt. We have

y =

 4
11
16

 and A =

1
2
3

 . (49)

We can still find the BLUE using
x̂ =

(
AT Q−1

yy A
)−1

AT Q−1
yy y. (50)

Eventually we find that

v =
1 · 4 + 2 · 11 + 3 · 16

14
= 5.286 = 74/14 = 5 + 2/7. (51)

Question 19

For the problem of Question 18, compute the standard deviation of the estimator for the position at
t = 4.

Solution

We know from the previous problem that our BLUE is

v̂ =
y
1

+ 2y
2

+ 3y
3

14
. (52)

It follows that the variance of v̂ is given by

σ2
v̂ =

σ2 + 22σ2 + 32σ2

142
=

1
14

σ2 =
1
14

. (53)

It follows that σv̂ = 1/
√

14. However, v̂ denotes the initial velocity. We know that the initial position is
still simply x0 = 0. So the position x at t = 4 can be found using x = v̂t = 4v̂. The standard deviation
of this position now becomes σx = 4σv̂ = 4/

√
14 = 2

7

√
14.

Question 20

Suppose that the standard deviation of the estimator x̂ is σx̂ = 4. The estimator is normally distributed.
The 97.5% confidence region [x̂− ε, x̂ + ε] for x, centered at the estimate x̂, extends to both sides by ε.
The one-sided length of the interval is...

Solution

With the ”one-sided length” it is meant that we should find the length of the interval from the average
to one edge. In other words, we should just find ε. To do this, we use a TI calculator. We insert the
equation normalcdf(−X, X, 0, 4) = 0.975. The result is 8.9656.
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(In the above computation have assumed that the average is 0. However, we could also assume it to be
some value A. We then need to insert the equation normalcdf(A−X, A + X, A, 4) = 0.975. The result
will, however, be exactly the same for every A.)

Question 21

With a laser-disto-meter the same, unknown, distance is measured four times. The observables are
normally distributed, uncorrelated and the measurement error standard deviation is 2 millimeter, as
specified by the manufacturer. The observations are y1 = 5.241m, y2 = 5.239m, y3 = 5.236m and
y4 = 5.244m. Determine the squared weighted norm of the BLUE residual vector, and check the value
of the quadratic form against its nominal distribution at the 1% significance level. The value of the
quadratic form and the critical value read...

Solution

We first need to find the BLUE of the measurements. It can be shown that this is simply the average
value, so x̂ = 5.240. The BLUE residual vector now is ê =

[
0.001 −0.001 −0.004 0.004

]
. But how do

we find the squared norm? For the weighted least squares method (according to page 102 of the reader
(just after equation 3.13)) we find that the squared (weighted) norm is êT Wê. In the BLUE method, the
weight matrix W corresponds to the inverse of the variance matrix, so we can say that W = Q−1

yy . Since
Qyy = σ2I4 we have W =

(
1

σ2

)
I4. It follows that

êT Wê =
e2
1 + e2

2 + e2
3 + e2

4

σ2
=

1 + 1 + 16 + 16
4

= 8.5mm. (54)

Now let’s try to find the critical value of this squared norm. We have seen that, when finding this squared
norm, we added up 4 squared values. In fact, we have added up 4 squared normally distributed random
variables. And when we add up normally distributed random variables, we get a Chi-square distribution.

What amount of degrees of freedom does this distribution have? Well, we have 4 measurements, while
we only have 1 unknown. So the distribution has 4 − 1 = 3 degrees of freedom. Also we can assume
its noncentrality parameter λ is zero. So we are dealing with a central Chi-square distribution with 3
degrees of freedom. We can now look up the critical value on page 338 of the reader. Inserting the level
of significance α = 0.01 and the degrees of freedom n = 3 will give us the critical value 11.3449.

Question 22

It is assumed that the IQ-score for the population of students in Aerospace Engineering is distributed as
N(µ, σ2), with σ = 10. The TU Delft students’ average of µ = 110 is the null hypothesis H0. To test the
alternative hypothesis, Ha : µ = 120, that Aerospace students are smarter, a random sample is taken:
the IQ of 16 AE students is measured and the mean comes out as 114.5. Are they smarter? Use the Best
test. What is the decision at the 10% level of significance, and what is the decision at the 5% level of
significance? Reject the null hypothesis H0 and conclude ’yes, they’re smarter’? The decisions at 10%
and 5% level of significance respectively read...

Solution

If k is the critical value, and x is the IQ of the students, then the level of significance α is

α = P (x > k|H0). (55)

So we assume H0; we assume that the average IQ of the 16 students is µ = 110. We also know that
the standard deviation of the IQ of one student is σx = 10. The standard deviation of the average IQ
of all the 16 students that were tested now becomes σx/

√
n = σx/

√
16 = 2.5. Thus we assume that

x ∼ N(110, 2.5).
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Suppose α = 0.1. In this case we have P (x > k) = 0.1. Inserting the equation normalcdf(X, 1E99, 110, 2.5) =
0.1 in a TI calculator, and letting it solve it, gives k = 113.2. Since our measured value is above the
critical value, we have to reject H0. The students ARE smarter.

If α = 0.05, we can do the same calculation. We now find k = 114.1. We arrive at the same conclusion:
reject H0.

Question 23

For test statistic y with normal distribution, two simple hypotheses are put forward

H0 : y ∼ N(0, 4) versus Ha : y ∼ N(∇, 4). (56)

If, with a right-sided critical region, the type I and type II error probabilities are respectively α = 0.025
and β = 0.2546, what is the value of parameter ∇?

Solution

To solve this question, we need to take two steps. First we use H0 and α to find the critical value k.
Then we use k, together with Ha and β, to find ∇.

We know that
α = P (y > k|H0). (57)

So we assume H0. We then find the k for which P (y > k) is equal to α. We can find k with a TI
calculator. We insert the equation normalcdf(X, 1E99, 0, 2) = 0.025. We find that k = 3.92.

Now we use the definition
β = P (y < k|Ha). (58)

This time we insert in our calculator normalcdf(−1E99, 3.92, X, 2) = 0.2546. We find that ∇ = 5.24.

Question 24

The Probability Density Function (PDF) of observable y is given as

fy(y|x) =
1
x

e−
y
x with y ≥ 0 (59)

with two competing hypotheses concerning parameter x

H1 : x = x1 = 1 and H2 : x = x2 = 2. (60)

The costs for incorrect decisions are C(x = x1, δ = x2) = 2 and C(x = x2, δ = x1) = 1. Occurrence of
hypothesis H1 is twice as likely as hypothesis H2. One observation y is made. The best decision rule for
deciding between H1 and H2 reads: reject H1 (and accept H2) if...

Solution

Let’s sort our data. We know that C12 = 2 and C21 = 1. Also P (x1) = 2/3 and P (x2) = 1/3. Using
equation 5.15 (page 221) from the reader, we find that we need to reject H1 if

fy(y|x1)
fy(y|x2)

<
P (x2)C21

P (x1)C12
=

1 · 1/3
2 · 2/3

=
1
4
. (61)

It follows that
e−y <

1
4

1
2
e−

y
2 . (62)
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When working with inequalities, special care should be payed to the smaller-than/greather-than sign.
For example, if you multiply both sides of the equation by −1, the sign flips. So let’s not do that.

We can multiply both sides of the equation by 8ey. (This quantity is positive for all y, so the smaller-than
sign doesn’t change.) We get

8 < e
y
2 . (63)

Since both sides of the equation are positive for all y, we can take the natural logarithm of both sides.
The natural logarithm is an increasing function, so the smaller-than sign still doesn’t change. This time
we get

ln 8 <
y

2
. (64)

This reduces to
y > 2 ln 8. (65)

So we should reject H1 if y > 2 ln 8.
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