
AE4870A - Rocket Motion - Summary

Chapter 1

Fundamentals

1.1 Equations of motion for a rocket

As a start the definition of the impulse of a system and the relation with Newton’s second law is given (for
constant mass):

p =

∫
M

V dM ;
dp

dt
= Ma = F u (1.1)

The Thrust can be derived by determining the change in impulse:

dp = pt+dt − pt = (M + dM) (V + dV )− udM −MV (1.2)

This results in the equation of motion for a rocket, with external forces Fu and an exhaust velocity c.

M
dV

dt
= mc+

∑
Fu with m = −dM

dt
and c = V − u (1.3)

Introducing the thrust, drag and the gravity loss gives:

M
dV

dt
= T −D −Mg with T = mc+Ae(pe − p0) = mceff (1.4)

And introducing the parameter Isp:

Isp =
T

mg0
=
ceff
g0

(1.5)

1.2 Velocity increase: Tsiolkovsky’s equation

To derive the ∆V the equation of motion is integrated.

M
dV

dt
= mceff = −ceff

dM

dt
→ dV = −ceff

dM

M
(1.6)

Integration yields the following equation, with Λ = M0/Me:

(Ve)id = ceff ln (M0/Me) = ceff ln Λ with V0 = 0 (1.7)

This equation gives the Ideal end velocity Ve, which is derived for a gravity-free space and vacuum. The
equation shows that the velocity increase is independent of burn-time and burn-program m = m(t).
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1.3 Travelled distance

The travelled distance is derived for a gravity free space and in vacuum. For the burn-program with a
Constant Mass Flow the rocket also has constant thrust, because ceff is constant. The mass varies
linearly and the acceleration will increase with time. The burn will be:

tb =
M0 −Me

m
=
Isp
Ψ0

(
1− 1

Λ

)
with Ψ0 =

T

M0g0
(1.8)

Using Tsiolkovsky’s equation the following equation for the travelled distance can be derived:

Se =

∫ tb

0

V dt =
ceff
m

∫ M0

Me

(lnM0 − lnM) dM (1.9)

Evaluating the integral results in the following equation:

Se =
c2eff
Ψ0g0

(
1− 1

Λ
(1 + ln Λ)

)
(1.10)

For the burn-program with a Constant Thrust Load Ψ = T
Mg0

, the acceleration is constant.

dV

dt
=

T

M
= Ψ0g0 (1.11)

Substituting the equation of the thrust T = mceff and integration results in the following relationship
between the thrust load and the momentary mass:

Ψ =
T

Mg0
= −

ceff
dM
dt

Mg0
→ M = M0e

− Ψg0
ceff

t
(1.12)

The burn-time is then:

tb =
ceff
Ψg0

ln Λ =
Isp
Ψ

ln Λ (1.13)

The travelled distance is obtained by substituting the time and acceleration into the equation for the distance.

Se =
1

2
at2b =

1

2

c2eff
Ψg0

ln2 Λ (1.14)

1.4 Comparison of burn programs

The burn programs are compared for identical values of ceff , Isp and Λ. The following relationship is found
for the velocities of the different burn-programs. The relationship shows that the (ideal) end velocity is
independent of the burn-program.

(Ve)T=constant

(Ve)Ψ=constant

= 1 (1.15)

The burn time of the burn-program with constant thrust is found to be smaller than the burn time of the
burn-program with constant thrust load.

(tb)T=constant

(tb)Ψ=constant

=
1− 1

Λ

lnΛ
< 1 for Ψ = Ψ0 (1.16)

The travelled distance is also found to be smaller with a constant thrust.

(Se)T=constant

(Se)Ψ=constant

= 2
1− 1

Λ (1 + lnΛ)

ln2Λ
< 1 for Ψ = Ψ0 (1.17)
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AE4870A - Rocket Motion - Summary

Chapter 2

Launch Trajectories

The launch Trajectory can be devided in three parts. The first part is while the Rocket is burning fuel
and accelerates until the point of extinction. After the point of extinction the Rocket will pursue a ballistic
trajectory without thrust. The Rocket continues to increase altitude until the culmination point where the
vertical velocity is zero. After that the Rocket starts descending.

In this case a homogeneous gravity field and vacuum are assumed. It follows that the equations of motion
in x and z direction are:

M
dVx
dt

= T cos θ (2.1)

M
dVz
dt

= T sin θ −Mg0 (2.2)

2.1 Constant pitch angle

2.1.1 General expressions

The equations of motion with a constant pitch angle are:

ax
g0

=
T

Mg0
cos θ0 ;

az
g0

=
T

Mg0
sin θ0 − 1 (2.3)

Integrating the equations of motion, yields the velocity profile.

Vx = ceff ln

(
M0

M

)
cos θ0 ; Vz = ceff ln

(
M0

M

)
sin θ0 − g0t (2.4)

From this the flight path angle can be found:

tan γ =
Vz
Vx

= tan θ0 −
g0t

ceff ln
(
M0

M

)
cos θ0

(2.5)

The intial flight path angle is determined by taking the limit, using l’Hopital:

lim
t→0

tan γ = tan γ0 = tan θ0 −
g0

ceff
m
M0

cos θ0
= tan θ0 −

1

ψ0 cos θ0
(2.6)

And using the following derivative:

d

dt

(
ln

(
M0

M

))
=

d

dM

(
ln

(
M0

M

))
dM

dt
=
m

M
(2.7)
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The conditions in the Extinction point or burnout point follow from the equations of motion, since the
pitch angle is constant :

Vxe = ceff ln Λ cos θ0 = Veid cos θ0 (2.8)

Vze = ceff ln Λ sin θ0 − g0tb = Veid sin θ0 − g0tb (2.9)

Ve
Veid

=

√
1− 2g0tb sin θ0

Veid
+

(
g0tb
Veid

)2

(2.10)

In these expressions, for a pre-determined burn time, the condition of motion in the burnout point is inde-
pendent of the thrust as a function of time.

2.1.2 Flight with constant Thrust

The equations of motion for the Flight with constant Thrust and constant pitch angle in the burnout point
are:

(ax)e
g0

=
T

Meg0

M0

M0
cos θ0 = Ψ0Λ cos θ0 ;

(az)e
g0

=
T

Meg0

M0

M0
sin θ0 − 1 = Ψ0Λ sin θ0 − 1 (2.11)

The burn time is found by using the definition of the thrust load and assuming constant thrust.

tb =
ceff
g0Ψ0

(
1− 1

Λ

)
(2.12)

Substituting the burn time in the equation for the velocity and integrating this equation yields the end
velocity and the coordinates of the extinction point:

Xe =

∫ tb

0

Vxdt =
c2eff
Ψ0g0

(
1− 1

Λ
(1 + lnΛ)

)
cos θ0 (2.13)

Ze =

∫ tb

0

Vzdt =
c2eff
Ψ0g0

[(
1− 1

Λ
(1 + lnΛ)

)
sin θ0 −

1

2Ψ0

(
1− 1

Λ

)2
]

(2.14)

The flight path angle can be determined by substituting the burn time. After the extinction point, the rocket
will pursue a ballistic trajectory with T = 0.

dVx
dt

= 0 ; Vx = (Vx)e ;
dVz
dt

= −g0 ; Vz = (Vz)e − g0(t− tb) (2.15)

The Culmination point can be derived by using its property Vz = 0. Resulting in:

tc = tb +
(Vz)e
g0

=
(Ve)id
g0

sin θ0 (2.16)

The coordinates can be determined by substituting the culmination time. The point of impact can be
determined by using the property Z = 0.

For a launch by means of an impulsive shot, the properties below are valid. These are the expressions
for the ”bullet trajectories” over a flat Earth (parabolic trajectories).

Ψ0 =∞ tb = 0 (2.17)
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2.1.3 Flight with constant Thrust-load

For a constant Thrust load, the accelerations are constant. Therefore, the velocities increase linearly and
the flight path angle γ and angle of attack remain constant. The trajectory is thus rectilinear.

ax
g0

= Ψ cos θ0 ;
az
g0

= Ψ sin θ0 − 1 ; tan γ = tan θ0 −
1

Ψ cos θ0
= const. (2.18)

The extinction point, culmination point and impact point can be determined by substituting the burn
time.

tb =
ceff
Ψg0

ln Λ =
(Ve)id
Ψg0

(2.19)

2.1.4 Maximum shooting range

The maximum shooting range is derived with the use of the variable K:

K =
1
Λ + ln Λ− 1

Ψ0 ln2 Λ
(2.20)

For a burn program with constant thrust, the total flight time becomes:

tig0

(Ve)id
= sin θ0 +

√
(sin θ0 − 2K) sin θ0 (2.21)

The shooting range becomes:

Xig0

(Ve)id
= cos θ0

[
(sin θ0 −K) +

√
(sin θ0 − 2K) sin θ0

]
(2.22)

For the impuslive shot launch K = 0 and Ψ0 =∞ it holds that:

Xig0

(Ve)id
= 2 sin θ0 cos θ0 = sin 2θ0 (2.23)

The maximum shooting range is achieved in this case when θ0 = 45◦.
For a finite value of Ψ0 the optimal pitch angle can be determined by differentiating the shooting range with
respect to θ0, yielding:

K =
2 sin2 θ0 − 1

2 sin3 θ0

;
Xig0

(Ve)id
=

cos θ0

2 sin3 θ0

;
tig0

(Ve)id
=

1

sin θ0
(2.24)

For the flight with a constant thrust load the shooting range is given below, which is the same as for the
constant thrust provided one read 1/2Ψ for K.

Xig0

(Ve)id
= cos θ0

[
(sin θ0 −

1

2Ψ
) +

√
(sin θ0 −

1

Ψ
) sin θ0

]
(2.25)

The optimal pitch angle is found by differentiating, yielding a similar result:

Ψ =
2 sin2 θ0 − 1

2 sin3 θ0

(2.26)
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2.1.5 Optimal steering program

The steering program θ0 = constant yields the a maximal velocity Ve in the burn out point at a pre-
determined path angle γe. This is determined by using the relationship between Vx and Vz and determining
the maximum velocity. This result is independent of the burn program. The following relationship between
the final flight path angle and the pitch angle is known:

tan γe = tan θ0 −
g0tb

(Ve)id cos θ0
(2.27)

The following constant pitch angle is derived to be optimal:

cos θ0 =

− g0tb
(Ve)id

sin γe +

√
1−

(
g0tb

(Ve)id
cos γe

)2
 (2.28)

2.2 Ascent trajectories without angle of attack - ”Gravity-turn”)

The ascent trajectories without an angle of attack are important for rocket flight through the more dense
layers of the atmosphere, in order to keep the aerodynamic loads on the rocket as low as possible (no lift
acting as transverse force on the rocket). For simplification of the analysis, the motion is said to take place
in vacuum.

The equations of motion become:

M
dVx
dt

= T
Vx
V

; M
dVz
dt

= T
Vz
V
−Mg0 ; M

dV

dt
= T −Mg0 sin γ (2.29)

If the equation of motion in the X-direction is multiplied with Vz and the equation of motion in the Z-direction
is multiplied with Vx, substraction yields:

M

(
Vx
dVz
dt
− Vz

dVx
dt

)
= −Mg0Vx → 1

Vx

dVz
dt
− Vz
V 2
x

dVx
dt

=
d (Vz/Vx)

dt
= − g0

Vx
(2.30)

Realizing that tan γ = Vz/Vx and Vx = V cos γ, the following equation of motion can be derived:

d(tan γ)

dt
=

1

cos2 γ

dγ

dt
= − g0

V cos γ
→ V

dγ

dt
= −g0 cos γ → V 2 dγ

ds
=
V 2

R
= −g0 cos γ (2.31)

In this equation R is the radius of curvature of the path. This indicates that the centrifugal force perpendic-
ular to the trajectory is in equilibrium with the weight component in this direction. The described trajectory
is commonly named a gravity turn for this reason.

For the lift-off of launch rockets, the rocket is accelerated vertically from the launch pad to a certain V0

and the rocket receives a kick-angle δ, then with V0 and γ0 = π/2− δ the initial conditions have been set
for the gravity turn. For burn program with constant thrust the e.o.m. can only be solved numerically. For
burn program with constant specific thrust the e.o.m. can be solved analytically. The pitch-over maneuver
for the gravity turn should occur when the vertical velocity is not that too large so soon after launch but
also the atmosphere should not be too dense; basically it is a trade-off to avoid large aerodynamic loads. On
average, but depending on the size and construction of the rocket, the rocket parameters and the intended
orbit a gravity turn takes place at around 10km height.

In conclusion, the gravity turn is a form of trajectory optimization that uses the gravity to steer the
rocket such that enough horizontal velocity is created (heading into the right orbit) and to keep the angle of
attack as low as possible to minimize aerodynamic stress.

6



2.3 Vertical Ascent Trajectories

This type of trajectories is amongst others of importance to sounding rockets. In reality these rockets are
usually launched under an angle, which deviates somewhat from 90◦, for example 80◦.

2.3.1 Vertical flight with aerodynamic drag

In the vertical flight through the atmosphere, the equation of motion is:

M
dV

dt
= T −D −Mg0 with D = CD

1

2
ρV 2S (2.32)

Numerical integration can be used to determine the trajectory of the rocket and the drag losses. During the
vertical powered flight the velocity V increases, while the density ρ decreases with increasing altitude. In
the beginning of the flight the velocity dominates, yet at greater altitudes the density becomes so small that
the term approaches zero. At a certain altitude the drag will be maximum after which it starts to decrease.
Evidently the dynamic pressure q has a maximum at an altitude of roughly 10 km. For altitudes greater
than 60 km, the dynamic pressure q is so low that, despite the high velocity, the aerodynamic resistance can
be neglected.

The velocity losses ∆Vg and ∆VD are heavily dependent on the thrust load Ψ0 = T0/M0g0. With in-
creasing Ψ0, the burn time tb decreases and thus ∆Vg decreases. On the other hand, with increasing Ψ0, the
velocity is greater in the more dense layers of the atmosphere and therefore ∆VD increases. Unlike the verti-
cal flight in vacuum, the culmination altitude wil not increase monotonously with Ψ0, but will nevertheless
display a maximum for a certain value of Ψ0.

2.3.2 The influence of wind

In the first phase of the flight through the atmosphere, the motion of the rocket will also be subjected to
the influence of horizontal wind velocities.

The rocket can be Pitch stabilised which means that the pitch angle remains fixed. A sideways motion
with respect to the ground and the windspeed yield an angle of attack.

tanα =
Vw − Vx
Vz

(2.33)

As a result of the angle of attack a normal force arises perpendicular to the longitudinal body axis, so that
the equation of motion in the X-direction becomes:

M
dVx
dt

= N = CNαα
1

2
ρV 2S (2.34)

During the larger part of the flight V >> Vw, thus Vz ≈ V and tanα ≈ α. Also assuming that the wind
velocity Vw is independent of the altitude Z, results:

MV
dVx
dZ

= CNα
Vw − Vx
Vz

1

2
ρV 2S ;

d(Vw − Vx)

Vw − Vx
= −nαdZ ; nα =

CNα
1
2ρS

M
(2.35)

Integration leads to the horizontal wind profile. This can be approximated by assuming the value Nα to be
constant.

Vx
Vw

= 1− e−
∫ z
0
nαdZ ≈ 1− e−nαdZ (2.36)

It has been shown that sounding rockets obtain a horizontal velocity during powered flight that approaches
the (horizontal) wind velocity. In the free flight the horizontal velocity does not change if the wind velocity
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does not change with altitude. Thus, as a global estimate the wind velocity can be assumed to be equal for
the whole flight. Resulting in the following ”wind displacement”.

∆Xi = Vwtf (2.37)

An unguided, Statically stable rocket will direct itself towards the relative velocity of the wind with
respect to the rocket. As a result the thrust will get a horizontal component and the rocket will thus move
in a direction against the direction of the wind. If the rocket has a large static stability, the momentary
angle of attack will repeatedly be zero. With respect to a reference frame attached to the wind, the rocket
will thus still describe a gravity turn. At the end of the powered flight, the rocket has acquired a horizontal
velocity with respect to the wind, which is maintained during the free flight that follows. When the wind
velocity is independent of altitude, the reference frame attached to the wind has a uniform motion with
respect to the inertial reference frame, so that the equations of motion remain unchanged. The resulting
wind displacement will be:

∆Xi = Vwtf (2.38)

The trajectory displacement resulting from the gravity turn is considerably greater than that due to the
wind displacement.
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AE4870A - Rocket Motion - Summary

Chapter 3

The Multi-Stage Rocket

A Multi-stage rocket is given in the figure below.

Figure 3.1: Nomenclature of a Multi-Stage rocket.

3.1 Rocket Characteristic Quantities and Ratios

The derivations of the equations for a Multi-Stage Rocket repeatedly make use of Ratios of Characteristic
Quantities.

The total rocket mass or start/initial mass M0 is made up of the construction mass Mc, the propellant
mass Mp and the payload (useful load) Mu.

M0

M0
=
Mc

M0
+
Mp

M0
+
Mu

M0
= 1 (3.1)

Herein the Payload Ratio λ is:

λ =
Mu

M0
(3.2)
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Since the rocket can be carrying various payloads, which are not directly of any influence on the construction
mass Mc, the Construction Mass Ratio ε is defined by:

ε =
Mc

Mc +Mp
(3.3)

The Propellant Mass Ratio ϕ can be expressed in terms of payload ratio and the construction mass ratio:

ϕ =
Mp

M0
=

Mp

Mc +Mp

Mc +Mp

M0
= (1− ε) (1− λ) (3.4)

The Mass ratio Λ is defined by:

Λ =
M0

Me
=

M0

M0 −Mp
=

1

1−Mp/M0
=

1

1− ϕ
→ 1

Λ
= 1− ϕ = λ(1− ε) + ε (3.5)

Using the Mass ratio ,the ideal end velocity can be rewritten as:

(Ve)id = ceff ln Λ = −ceff ln (λ(1− ε) + ε) (3.6)

From which, the payload ratio and the proppelant mass ratio can be derived.

λ =
e
− (Ve)id

ceff − ε
1− ε

and ϕ = 1− 1

Λ
= 1− e−

(Ve)id
ceff (3.7)

In the limit case, the maximum (Ve)id
ceff

is reached when the payload ratio is equal to zero.

lim
λ→0

(Ve)id
ceff

= − ln ε (3.8)

The Total Payload Ratio can be rewritten as the multiplication of the payload ratio of all rocket sections:

λtot =
(Mu)N
(M0)1

=
(Mu)1

(M0)1
· · · (Mu)N

(M0)N
= λ1 · · ·λN =

N∏
i=1

λi (3.9)

The ideal end velocity can then be rewritten as:

(Ve)N =

N∑
i=1

(ceff )i ln Λi = −
N∑
i=1

(ceff )i ln (λi(1− εi) + εi) = f(λi) (3.10)

To obtain the Maximum end velocity for a given λtot the distribution of the values λi can be determined.
This done by using the above equation f(λi) and adding a subsidiary requirement (adding a zero to get a
solution).

F (λi) = f(λi) + µg(λi) with g(λi) =

N∑
i=1

ln(λi)− ln(λtot) = 0 (3.11)

Differentiating the equation F (λi) with respect to λ) results in N + 1 equations and N unknown λi and the
unknown µ. Yielding the optimal values for λi.

λi =
µεi

((ceff )i − µ) (1− εi)
and

N∏
i=1

λi = λtot =

N∑
i=1

µεi
((ceff )i − µ) (1− εi)

(3.12)
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3.2 Identical stages

A special case is the multi-stage rocket with identical stages for which both the effective exhaust velocity
ceff and the construction mass ratio are the same for each stage.

(ceff )1 = (ceff )2 · · · and ε1 = ε2 · · · and ϕ1 = ϕ2 · · ·

Since µ is a constant, it follows that the optimal multi-stage rocket also has identical rocket sections. With
λ1 = λ2 = . . . = λN . The ideal end velocity can be rewritten as:

(Ve)N = −Nceff ln(λ(1− ε) + ε) and (Ve)N = −Nceff ln(λ
1/N
tot (1− ε) + ε) (3.13)

In the limit case, the maximum (Ve)id
ceff

is reached when the total payload ratio is equal to zero.

lim
λtot→0

(Ve)id
ceff

= −N ln ε (3.14)

The dimensionless end velocity (Ve)N/ceff increases as the number of stages increase, reaching a maximum
for N =∞. Using ’l Hopital’s rule it follows:

(Ve)N
ceff

=
−ceff ln(λ

1/N
tot (1− ε) + ε)

1/N
lim
N→∞

(Ve)N
ceff

= −(1− ε) lnλtot (3.15)

With the use of:

a = λ1/N ; ln a =
1

N
ln λ ;

d (ln a)

dN
=

1

a

da

dN
= − 1

N2
ln λ → da

dN
= −λ

1/N

N2
ln (λ) (3.16)

3.3 Coasting

In the previous sections of this chapter it was assumed that the (i+ 1)th rocket stage is ignited directly after
ejection of the previous (ith) stage. In some missions, however, a free (unpowered) flight is executed before
igniting the next rocket stage. This is known as ‘coasting’.

Figure 3.2: Vertical flight with and without coasting
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The culmination altitude without coasting follows as:

hc = ∆h1 + ∆h2 + ∆V1tb2 +
(∆V1 + ∆V2)2

2g0
(3.17)

The travelled distance during the coasting phase and the starting velocity of the second stage become:

∆hco = ∆V1tco −
1

2
g0t

2
co ; (V2)0 = ∆V1 − g0tco (3.18)

Substituting above equations gives the culmination altitude with coasting:

h′c = ∆h1 +

(
∆h2 −

1

2
g0t

2
co

)
+ (∆V1 − g0tco) tb2 +

(∆V1 + ∆V2)2 − g0tco
2g0

(3.19)

In this expression it holds that ∆V2 + g0(tb)2 = (∆V2)id. Thus the difference in culmination altitude will
become:

∆h′c = h′c − hc = −ceff,2 ln Λ2tco (3.20)

From analyzing the flight time, it can be derived that the culmination flight time is independent of the coast
time.

3.4 Boosters

Up until now only successive rocket stages have been discussed, those that are mounted on top of each other
and are ignited one after the other. It is also possible to place the rocket stages side-byside and allowing
them to operate simultaneously. In the last case one speaks of ‘parallel staging’, whereas the previous is
often referred to as ‘tandem staging’.

Because the effective exhaust velocity of the boosters can differ from the core stage, an average effective
exhaust velocity can be determined by:

ceff =
T1 + Tb
m1 +mb

=
m1ceff,1 +mbceff,b

m1 +mb
(3.21)

add ratios etc
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AE4870A - Rocket Motion - Summary

Chapter 4

The Ballistic Flight over the Earth

The ballistic flight is exclusively determined by the gravitational attraction acting on the rocket. The Kepler
equation yields,

r =
a
(
1− e2

)
1 + e cos θ

=
p

1 + e cos θ
(4.1)

for which r = p when θ = π/2 and θ = 3π/2

Figure 4.1: Elliptic trajectory over the Earth
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The semi-latus rectum and the angular momentum are related by the following equation. The relationship
between the angular momentum and the Launch conditions is given in the second equation below.

p =
H2

µ
= a

(
1− e2

)
; H = rVt = REV0cosγ0 (4.2)

The law of energy yields:

V 2

2
− µ

r
= − µ

2a
with V 2

c =
µ

RE
and S0 =

V0

Vc,0
(4.3)

From which the semi-major axis can be derived as a function of the launch conditions.

a

RE
=

1

2− V 2
0

µ/RE

=
1

2− S2
0

(4.4)

Using the definition of S0 and the definition of H yields the equation for the semi-latus rectum

p

RE
=

H2

µRE
=
V 2

0 cos2 γ0RE
µ

= S2
0 cos2 γ0 (4.5)

and after substitution in the equation for the semi-latus rectum the eccentricity becomes:

e =
√

1− S2
0 cos2 γ0 (2− S2

0) (4.6)

Substituting this in the Kepler equation yields:

r

RE
=

S2
0 cos2 γ0

1 +
√

1− S2
0 cos2 γ0 (2− S2

0)cosθ
(4.7)

The Semi-shooting range Ψ0 is determined by using the above equation and realizing that r/Re = 1
yielding:

1 =
S2

0 cos2 γ0

1 +
√

1− S2
0 cos2 γ0 (2− S2

0) cos θ0

Ψ0 = π − θ0 =
d/2

Re
(4.8)

And the final result, using cos Ψ0 = − cos θ0 :

Ψ0 =
d/2

Re
= arccos

(
1− S2

0cos
2γ0√

1− S2
0cos

2γ0(2− S2
0)

)
(4.9)

flat earth approx...

4.0.1 Launch trajectories

The possible lanch trajectories are derived by using the following equations:

tan Ψ0
S2

0 sin 2γ0

2 (1− S2
0 cos2 γ0)

sin Ψ0

cos Ψ0
=

S2
0 sin 2γ0

2− S2
0 (1 + cos 2γ0)

(4.10)

This leads to the following equation. For S0 <
√

2, the results of both sides should always be positive.

sin (2γ0 + Ψ0) =

(
2

S2
0

− 1

)
sin Ψ0 for S0 <

√
2 sin (2(γ0)1 + Ψ0) = sin (π − 2(γ0)2 −Ψ0) (4.11)
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Two solutions exist for two different launch angles. The following equation can be found:

2(γ0)1 + Ψ0 = π − 2(γ0)2 −Ψ0 → (γ0)2 =
π

2
((γ0)1 + Ψ0) (4.12)

These equations yield several solutions. For S0 < 1, a high and a low trajectory yield the same shooting
range. For S0 = 1 a high trajectory and a trajectory over the surface of the Earth is found. For 1 < S0 <

√
2

a short and a long trajectory is found. The short trajectory is a high trajetory to the impact point. The
long trajectory is a low trajectory in the other direction around the Earth, thus yielding a shooting range of
Ψ0 > π/2.

4.1 Maximum shooting range

4.2 Flight time

The flight time is determined by using the definiton for the Eccentric anomaly:

tf = tθi − tθ0 =

√
a3

µ
(Ei − E0 − e(sinEi − sinE0)) (4.13)

Resulting in the following equation for the flight time.

tf = 2

√
a3

µ
(π − E0 + e sinE0)) with Ei = 2π − E0 and sinEi = − sinE0 (4.14)

To determine the flight time as a function of the launch conditions, information is needed about the semi-
major axis and the Eccentric anomaly. The following expression is used to derived a function of the Eccentric
anomaly:

r cos θ = a cosE − ae (4.15)

Substituting the equation for the radius r and the equation for the semi-latus rectum p as a function of a
and e into the above equation yields:

cosE0 =
e+ cos θ0

1 + e cos θ0
=

e− cos Ψ0

1− e cos Ψ0
with θ0 = π −Ψ0 (4.16)

The cosine of E0 is determined by substituting equations 4.6 and 4.9 into the above equation. Realizing that
for S0 < 1, cosE0 is negative and thus E0 > 90◦.

cosE0 = − 1− S2
0√

1− S2
0 cos2 γ0 (2− S2

0)
→ E0 =

π

2
+ arcsin

(
1− S2

0√
1− S2

0 cos2 γ0 (2− S2
0)

)
(4.17)

It is also found that:

sinE0 =
√

1− cos2E0 =
S0 sin γ0

√
2− S2

0√
1− S2

0 cos2 γ0 (2− S2
0)

→ e sinE0 = S0 sin γ0

√
2− S2

0 (4.18)

Using the equation relating the semi-major axis and the Earth’s radius, the following equation can be
rewritten: √

a3

µ
=

√
R3
e

µ

(
2− S2

0

)−3/2
(4.19)

Substituting the above expressions the flight time becomes:

tf =

√
R3
e

µ

(
2− S2

0

)−3/2

[
π

2
− arcsin

(
1− S2

0√
1− S2

0 cos2 γ0 (2− S2
0)

)
+ S0 sin γ0

√
2− S2

0

]
(4.20)
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4.3 Influence of launch errors

Launch errors have an influence on the distance travelled. This difference can be approximated by:

∆d = 2Re∆Ψ0 = 2Re

[
∂Ψ0

∂V0
∆V0 +

∂Ψ0

∂γ0
∆γ0

]
(4.21)
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4.4 Three-dimensional ballistic flight across the Earth

To determine the Launch and Impact point on the Earth, the two-dimensional trajectory has to be mapped
on the three-dimensional surface. This is done by using the following figure:

Figure 4.2: Location of point of launch and point of impact

The following equations can be derived from the figure above:

cos i = sinβ0 cosλ0 ; tanλ0 = tanϕ0 cosβ0 ; tan (Λ0 − Ω) = tanϕ0 cos i = sinλ0 tanβ0 (4.22)

The latitude of the point of impact λi is determined by:

sinλi = sinλ0 cos d̂+ cosλ0 sin d̂ cosβ0 (4.23)

The longitude of the point of impact Λi is determined by:

tan (Λi − Ω) = tan
(
ϕ0 + d̂

)
cos i (4.24)
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Spherical triogonometry
The impact point is derived using spherical trigonometry. The following equations hold:

Figure 4.3: Spherical geometry

cos c = cos a cos b
sin a = sinA sin c
sin b = sinB sin c

tan a = tanA sin b
tan b = tanB sin a
tan b = cosA tan c
tan a = cosB tan c

cosA = sinB cos a
cosB = sinA cos b
cos c = cotA cotB
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Rotating Earth
For a rotating Earth, the local velocities and angles have to be transformed to inertial parameters. The
following figure illustrates the transformation. The transformation is dependent on the lattitute λ0 and the
heading angle β0.

Figure 4.4: Transformation of local velocity and angles to inertial velocity and angles

The velocity is increased by the Earth’s surface velocity in the longitudinal direction:

∆Ve = ωeRe cosλ0 (4.25)

The inertial velocities can be determined by the following equations:
V0,i,z = V0 sin γ0 (perpendicular to the Earth’s surface)
V0,i,y = V0 cos γ0 cosβ0 (direction of the meridian)
V0,i,x = V0 cos γ0 sinβ0 + ∆Ve (longitudinal direction)

The inertial launch velocity is then given by:

V0,i =
√
V 2

0,i,x + V 2
0,i,y + V 2

0,i,z = V0

√
1 + 2 cos γ0 sinβ0

∆Ve
V0

+

(
∆Ve
V0

)2

(4.26)

The inertial launch angle and azimuth-angle are then given by:

sin γ0,i =
V0 sin γ0

V0,i
; sinβ0,i =

V0 cos γ0 sinβ0 + ∆Ve
V0,i cos γ0,i

(4.27)

During the flight the Earth rotates under the Rocket, therefore reducing or increasing the longitude. The
true impact point Λ′i is found by using the following equation.

Λ′i = Λi + ωetf (4.28)
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